THEORETICAL INVESTIGATION OF THE BOND-BOND
INTERACTION FORCE CONSTANT IN

XF2 MOLECULES

By
ROY EDWARD PRUNS
. Bachelor of Arts
Southern Illinois University
Edwardsville, Illinois

1963

Submitted to the faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
May, 1968



OKLAHOMA
STATE UNWERS”Y
Lis RARY

OCT 24 1958

¥

THEORETICAL INVESTIGATION OF THE BOND-BOND

INTERACTION FORCE CONSTANT IN

XF2 MOLECULES

Thesis Approved:

‘L Mxéa'ai

Thesis Adviser

a'fm ﬂ?(/
<~ e
Q. Ahd
R /P fRortlon
N Mg

Dean of the Graduate College

688227

ii



ACKNOWLEDGMENT

I am deeply indebted te Dr. J, Paul Devlin for his guid#nce and
patience throughout‘the execution of this project.. I wish to express
my  gratitude to Dr. Lionel M. Raff for his invaluable advice pertain-.
ing to the quantum mechanical aspects of this problem. Acknowledgment
is also due to Dr. H. A. Pohl for numerous helpful discussions concern-.
ing this project.

This study was made possible by financial support from the
National ‘Aeronautics and. Space Administration through a National Aero-
nautics and Space Administration Traineeship and from the Dupont Chem-
ical Company through a Dupont Fellowship.

I also wish to thank the Oklahoma State University Computing
Center fér use.of their facilities during the preparation of this

thesis.

iii



Chapter

TABLE OF CONTENTS

I. INTRODUCTION e o e o & o s & o s s & * v .

II. THE VIBRATIONAL PROBLEM, . . « « & & & 4« o
Potential Energy Functions. . . . . .
GVFF Calculations . . . . « « « + + &
UBFF Calculations on OF,, NF, and CF,
Discussion of Results .. « . . « . &
III. THE LCAO-MO-SCF CALCULATION. . . . . . . .

The Four Electron Problem . . . . . .,
The Four Electron LCAO-MO-SCF Problem
Determination of the Binding Energy .
Semiempirical Integral Evaluations. .
Evaluation of Overlap Integrals . . .
Core-Core Repulsion . . . . + « « « &
Numerical Method. « &« ¢ v ¢« & « o« &+ &
Results and Discussion. . . . « + . .

IV. THE CONFIGURATION INTERACTION CALCULATION.

The Eight Electron Problem. . . . . .
Mathematical Formalism. . . . . . . .
Semiempirical Integral Approximations
Core-Core Repulsion Terms . . . . .

Calculation of Binding Energy . . . .
Overlap Integrals . . « « « &« o « o &
Results . « ¢« v ¢« o ¢« & o & ¢« o o &

V. DISCUSSION OF RESULTS. . . . + « o« « o + &

Summary . . . ¢ ¢ e 4 e e 4 e & o4 e e
Suggestions for Future Work . . . .

BIBLIOGRAPHY. o o « v o o ¢ &0 o o o o o o o o o .

APPENDIX A.

APPENDIX B.

iv

Page

10

11
16
17
18

21

22
26
30
32
43
44
44
47

58

59
65
67
67
70
70
71

82

92
93

96

99

. 108



Table

II.

III.

IV,

V.

VI.

VII.

VIII.

IX.

X,

XI.

XIT.

X111,

XIV,

XV.

XVII.

LIST OF TABLES

Vibrational Frequencies of Some Non-Linear Symmetric
Triatomlic Molecules « « o ¢« o « ¢ o o ¢ o o o o

Urey-Bradley Force Constants for‘OFz, NF, and CF

2 2°

. ®

s o

Slater Exponentilal Coefficients for Carbon, Nitrogen,

Oxygen and Fluorine Atoms and Ions. . . « . & . o
Semiempirical Integral Evaluations - Set I. . . . &
Semiempirical Integral Evaluations ~ Set IT . , .
F-Matrix Elements = Set I « « + s & 6 s ¢ o s o & o
F=Matrix Elements ~ Set II, o« &« + & ¢« & o« o o &« » o

Valence State Ionization Potentials and Electron

Affinities L] Q L] a 9 [ L) -] a 0 . o . L] . L) -] o Q )
Binding Energy Values for OF,, NF, and CF, -
Set I 2" 2 L2

LCAO-MO-SCF Coefficients for OF2, NF2 and CF2 -
Set T o ¢ o 6 o o o o o © o s s o« a « o o o o o o

Equilibrium Binding Energies and Bond Lengths for

0?2"NF2 and CF2° o o6 8 o o o o o o o o o o o o o

29 NF2 and CF2 - Set 1II

LCAO-MO-SCF Coefficients for OF2, NF2 and CF2 ~ Set

Equilibrium LCAO-MO-SCF Coefficients. o . « o+ « o .

Binding Energy Values for OF

Atomic and Molecular Orbitals for the Configuration
Interaction Problem . o » o &« o &« o ¢ o o o o o o

Semiempirical Integral Evaluations —-- Set I ~-
Configuration Interaction Problem ... . . . . . &

Binding Energies -— Out-of-Plane Atomic Orbital
Basis Set ¢« o o o 5 9.6 o o o o o 0 o o & o & o e

° @

Page

18

26
36
38
39

41

43

50

51

52
54
55

57

63

68

74



Table

XVIII.

XIX,

XXII.

XXIII.

XXIV.

Configuration Interaction Coefficients -~- Out-of-

LIST OF TABLES (Continued)

Plane Atomic Orbital Basis -Set .

Binding Energies -- In-Plane Atomic Orbital Basis

Set —— Symmetric Stretch. o . o ¢« o « ¢ o & &
Binding Energies —-- In-Plane Atomic Orbital Basis
Set —— Antisymmetric Stretch . . . . « . ¢ o &

Configuration Interaction Coefficients ~- In-Plane

a

Atomic Orbital Basis Set =-- Symmetric Stretch.

Configuration Interaction Coefficients -- In-Plane

°

°

°

o

Atomic Orbital Basis Set -- Antisymmetric Stretch.

Theoretical Values for f,.

Bond~Bond Interaction Constants for Several Triatomic

Molecules.

°

[

o

d

°

vi

°

o

L]

®

‘e

o

Page

75

76

77

78

79
87

88



LIST OF FIGURES

Figure
1. A DBNB Resonance Structure and the Stretching Modes of XF2.
2. An Atomic Orbital Diagram for Lucken's Calculation. . . . .
3. The Normal Modes of a Non—Linear.XF2 Molecule . . + W v . .
4. Intérnal Displacement Coordinates of Xon e s s s e e o
5. Non-Bonded Potential Energy Curves. . . « « s « o « o o = &
6. GVFF Calculations for OF) o v v v v v v v s e e e
7. The Cores and Atomic Orbitals Used in the Four Electron XF,
- Problem . ¢« ¢ v ¢ ¢ o ¢ ¢ o o o s o e 4 4 s 4t e e e 4 o
8. Effective Nuclear Charges for Core-Core Repulsion Terms . .
9. Binding Energy Curves for OF2, NF2 and CF2 - Set I, . .+ o &
10. Binding Energy Curves for OFZ,'NF2 and CF2 ~ Set IT . . . .
11, The Cores of OF2 for the CI Calculation . . . . . . . .
12, Atomic Orbital Basis Sets for the CI Calculation. . . - . &
13. Configuration Interaction Binding Energy Curves for OFZ—Sym—
metric Stretch, . . . . . . . o . 0 e e h e e e e e e
14, Configuration Interaction Binding Energy Curves for 0F2—Anti—
symmetricvStretch s s e e s 4 e s o o e s e o 6 s e e e
15.

AEg 1) énd AEBécI) as a Function of the Normal
Cootdinate, 3> - .

vii

Page

10
12
15

16

23
45
49
53
60

62

72

73

84



CHAPTER I
INTRODUCTION

The chemistry of fluorine atoms and ions and of molecules contain-
ing fluorine has been the object of extensive investigation by chemists
for many years. Much of this interest stems from the fact that fluor-
ine combines chemically with other elements in much the same way as.
hYdfogen although the two atoms have greatly different atomic.proper-
ties, Since fluorine can be directly substituted in many molecules for
hydrogen a direct comparison between fluorine substituted and hydrogen
substituted compounds can be made to determine the effect on bonding of
certain characteristics of the fluorine atom which the hydrogen atom
does not exhibit. For instance a comparison of the properties of OF2
and OH2 might shed considerable light on the interaction between non-
bonded atoms and . its relationship to the individual properties of the
fluorine and hydrogen atoms. The differences in chemical bonding which
might occur because fluorine can contribute to molecular orbitals with
several 2p atomic orbitals while hydrogen has essentially only a 1ls
orbital available for bonding can be investigated. A major purpose of
this research project was to investigate in a theoretical manner some
of the proposed explanations -for the various differences 'in chemical
and physical properties of analogous fluorine and hydrogen compounds.
Two major explanations are analyzed in this thesisj; the dquble bond-no

bond resonance theory first proposed by Brockway1 and the interaction
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between non-bonded afoms vhich has been of particular interest to molec~
ular spectroscopistsl°

Brockway1 first proposed double bond~no bond (DBNB) resonance in
1937 as an explanation of the fact that carbon-fluorine bond distances
in fluoromethanes were significantly shorter in compounds containing
several fluorine atoms than in the monofluoride molecule. This reso-
nance has been represented by the following structures for GF4,

F F F~
F-(::-F > ¥ '%ai‘«—»F—c-F «—> etc.

I
F F F
- +

If such DBNB resonance structures are of sufficiently low energy, they
should stabilize the molecule, This stability would be reflected in
stronger and hence shorter C-F bonds. In fluoromethanes containing
more than one fluorine atom the C-F bonds would then be shorter than
in the methyl fluoride molecule which cannot exhibit such resonance.
This shortening of the C-F bond can be explained by postulating
residual attractive forces between the non-bonded fluorinesz; The
assumption of a destabilizing in;eraction wifh residual repulsive
forces between the non-bonded atoms canmot account for such bond short-
enings, although these residual repulsive forces cannot be fuled out
for the fbllowing reason. . When the non-bonded intefaction is energet-
ically stabilizing the residual forces .between the atoms may be attrac-
tive or repulsive. An energetically stabilizing interaction would tend
to shorten the C-F bond regardless of the type of residual forces
existing between the non-bonded atoms. Many spect}oscopists accept the

viewpoint that the non-bonded interaction is,enérgetically



destabilizingB. In the next several paragraphs other chemical phenom-
ena which may be explained by postulating either DBNB resonance or sta-
bilizing non-bonded interactions are presented. .

In the disproportionation

2CH3F7—9 CH4 + CH2F2 AH = -5.2 kcal.

methane and methylene fluoride are favored over methyl fluoride4°' DBNB
resonance could-occur in CH2F2 but not iﬁ CHBFé From force constant
calculations one deduces that the Fe°°*F non-bonded interaction is much
larger than the interactions between hydrogen and fluorine or between
two hydrogens3° Therefore the existence of either significant multiple
bonding or of stabilizing non-bonded interactions would tend to -drive
the reaction to the right.

In both the structural and thermodynamic phenomena mentioned above,
the effects are much less striking when other halogens are substituted
for fluorine. The non-bonded Interaction force éOnstant between two
chlorines is calculated to be less than between two fluorinesBQ If
this interaction is stabilizing one would not expect methane and methyl-
ene chloride to be as heavily favored over methyl chloride as the cor-
responding fluoridé compounds;4

The relative significance of DBNB resonance in fluoromethanes
compared with other halomethanes is demonstrated by’the‘greéter ability
of fluorine, compared with the heavier halogens, .to donate a pair.of
electrons to the carbon atoms of aroméﬁic rings. A relative measure of
this donating abiiity is given by the numerical wvalues of the substitu-
ent constant, ¢, in the Hammett equationsq The ‘substituent constant

is a measure of the electron donating or electron withdrawing power. of



a substituent on an aromatic ring, a o value greater than zero indicat-
ing the former. A substituent on a benzene ring will produce different
electronic effects at the meta and para positions.: As a result ¢
values vary depending on the position of interest in the aromatic ring.
The substituent effect at the meta and para positions are denoted by
o and Gp’ respectively. The quantity of QP - Gﬁ has been. suggested gs
a measure of the ability of a substituent to add (or withdraw) elec-
trons to a T system by a resonance phenomenon.  This suggestion is ap-
proximately correct since inductive effects (such as the electro-
negativity of the substituent) perturb the meta and para positions to
approximately the same extent whereas resonance effects essentially
show up at the ortho or para position. Values of Up - Um for fluorine,
chlorine, bromine, and iodine are 0,275, 0.146,.0.159 and 0.076,
respectivelyo5

The vibrational frequencies of OF2, NFZ’ CF2 0Cl and‘OH2 are

2

listed in Table I. 1In a large number of nonlinear symmetric triatomic

TABLE I

_.VIBRATIONAL FREQUENCIES OF SOME NON-LINEAR SYMMETRIC
TRTATOMIC MOLECULES

6 7 8 — 9 10

Frequency¥* OF2 NF,”  OF, oc1, OH,

V1 (sym, str,) 929 1069.6 1222 630.7 3651.7
vy (sym. bend.) 461 573.4 668 296.4 1595.0
Vg (antisym. str,) 328 930.7 1102 670.8 3755.8

#A11 frequencies are given in cm .

molecules, Vs the antisymmetric stretching frequency is larger than Vs



the symmetric stretching frequency. This behavior is illustrated by
OClzvand OH2. But, in the carbon, nitrogen and oxygen difluorides Vl"
is larger than V3; Significant multiple bonding and/or stabilizing
non-bonded interaction between.the fluérines would tend to produce this
frequency inversion shown by these molecules. Figure 1 shows a DBNB
resonance structure for XF2 and a schematic diagram of its symmetric

and antisymmetric stretching modes. As one X-F bond is compressed,

0
_ x\ . X | . x>
’ ’ ‘(F/ \F\ ' d/ \F

Figure 1. For the XF, Molecule é) a DBNB Resonance Structure,
b) the Symmetric Stretching Mode, and c¢) the anti-~.
symmetric stretching mode,
multiple bonding should become increasingly important for that bond.
If DBNB resonance structures contribute significantly to the resonance:
hybrid, they would facilitate motion in. the antisymmetric stretching
mode, thus lowering Vgo 2 would be relatively unaffected by such
resonance structures but may possibly be increased by a small amount,
The non-bonded distance in XF, changes asythe molecule vibrates
in its symmetric stretching mode but this distance is almost constant
as the molecule moves in its antisymmetric mode. The existence of a
stabilizing non-bonded interaction between the fluorines would tend to

increase v, leaving v

1 relatively unaffected.

3

Vinylidene fluoride has an F~C-F angle 12° smaller than its H-C-H



angleall This would not be expected on the basis of electrostatic re-
pulsion between the non-bonded fluorines but is anticipated if this

. . . cqa s . 12

interaction is stabilizing. Pitzer has suggested resonance struc- .

tures of the type

F H
C—C:- —————

e N t

H F
for unsaturated hydrocarbons. If these structues were unimportant the
carbon atomic orbitals which form bonds with the fluorines would be spz
hybrids. The above structures would introduce added p character into
the C-F bonds at the expense of the C-C bond. Since the angle between
sp2 orbitals is larger than between sp3 orbitals one would expect a
smaller F-C~F angle in compounds in which the above structures are im-
portant. This same argument applies to the smaller F-C-F angle in

13

CHF, compared to CH,F

3 2°2°

increase in p character at the expense of the C~H bond.

In this case the C-F bond experiences an

The cis to trans conversion of 1,2~difluoroethylene 1s not the

F F H F
\\\C _ C’// s /,/

N / \

= 0,928 kcal

thermodynamically favored reaction compared to the reverse processol
Such a result is unexpected on the basis of bond dipole~dipole repul-
sions. Stabilizing non-bonded interactions in these molecules would
tavor the cis form. Resonance.structumés similar to those drawn for
. R ., 12 . (s
vinylidine fluoride have been used to explain the greater stability

of the cis form compared with the trans form of difluoroethylene.
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Lucken15 has measured 3 Cl nuclear quadrupole resorance frequen-
cies of various chloromethanes.. For those molecules for which struc-

tures -such as

F \C c1”
DZaN

H

might be drawn.the NQR frequencies of 35Cl are considerably lower than
in compounds where structures of this type cannot be drawn. Such
lowering in . .this frequency is expécted as the ionicity of the C-Cl bond
is increased.

Lucken15 has performed an approximate Huckel molecular orbital

calculation on the model illustrated in Figure 2 where X might be a

O

Pt

(-

ag

Figure 2. An Atomic Orbital Diagram for
Lucken's Calculation.
fluorine atom.. Double bonding is provided for by combining wx with an
antibonding orbital of the carbon~chlorine bond. His calculation can
account for the shortening of the C-~F bond length in the fluoromethane
series and the anomalously low quadrupole resonance frequencies of

chlorine in molecules where multiple bonding might take place. His



calculation is very sensitive to the choice made for the electronega~-
tivity of X and.the values chosen for the resonance integrals derived
in the calculation. A less arbitrary molecular orbital approach would
be desired to further test the significance of multiple bonding in-
these molecules.

Kaufmanl6 has explained why the N~F bond energy observed in NF2 is

larger than this same quantity observed in NF First the geometry of

3°
NF2 is more favorable for multiple bonding than the geometry of,NFBO
In NF2 the p orbitals available for m~bonding are perpendicular to the

plane .containing the NF2 molecule. NF3 has a.pyramidal structure sim-

ilar to ammonia. The most favored geometry for a DBNB resonance struc-

ture of NE3

would be a planar structure where the 2p orbitals on nitrogen and
fluorine, perpendicular to the plane, could come into maximum- coinci-
dence. Since more significant energetic factors favor the pyramidal
structure this geometry would not be favorable for multiple bonding in

NF Secondly, multiple bonding in NF, may occur through use of a half-

3° 2

filled atomic orbital on nitrogen whereas NF3~has only a fully occupied
..nitrogen non-bonded atomic.orbital.

In summary, many experimental phenomena hint at thé existence of
multiple bonding and/or stabilizing non-bonded interactions ‘in XF2 and

other fluorine containing molecules. No extensive molecular orbital

calculation has been accomplished to support either theory although the



Huckel calculation by Lucken indicates multiple bonding could be im--
portant in these molecules. Kaufman's explanation, using a half-filled -
orbital on nitrogen to explain bonding differences in NF2 and NF3 would

not explain the frequency inversion found in OF_ since this oxygen

2
contains only filled non-bonded atomic.orbitals. It appears that more
extensive molecular orbital calculations would be useful in establish-
ing the significance of DBNB resonance or multiple bonding in fluorine

compounds. These calculations have been performed on OF The tech-

9
niques are explained and the results are discussed later in the thesis.
Force constant calculations have beén performed which point out the
relationship between vibronic coupling of the double bond-no bond type
and non-bonded interactions which may -exist in these molecules. The

techniques and results of these calculations are given.in the next

chapter.,



CHAPTER II
THE VIBRATIONAL PROBLEM

XF2 molecules have three vibrational degrees of freedom:. Associ-
ated with each of these degrees of freedom is a fundamental frequency
and a normal coordinate. Displacement of the nuclei of a molecule from
their equilibrium position according to one of its normal:coordinates
will lead to simple motion in which ‘all the nuclei move in phase with
the same frequency. Such vibrations are called normal vibrations., The
apparently random vibration of an .actual molecule may be described as a
sum  of normal Vibrafions each with its own frequency and phase factor.
The normal.vibrations of a symmetric nonlinear triatomic molecule are:

illustrated in Figure 3.

2 .
X X X-»
/ \F \\/4'\,, /\
KE‘ ‘ \ F F ‘ZF F

V1 V) V3

Figure 3. Schematic Diagrams Representing the Symmetric
Stretching Mode With Frequency vl,'the Sym-
metric Bending Mode of Frequency v,, and the

AntisymmetrinStretchingvMode,of'Frequenéy_vBD

In general, normal coordinates may be defined quantitatively by

NG
-

the following relationship,

10
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3N
= S 1,y k= 1,2 °** 3N (1)

i=1
where Qk denotes the normal coordinates of the molecule, N represents
the number of atoms in the molecule and the q; are the 3N mass-weighted
cartesian displacement coordinates defined by the set of equations

uuoN’ (2)

q, = m,AX,. _ j=
R L oee 3N

i =

th . . L
The mass of the j atom is given by m.j and AXi is one of the three
cartesian displacement coordinates of the jth atom. The coefficients,

1,., in (1), are chosen so that in terms of the normal coordinates, Q

ki k’?

the kinetic energy, T, and the potential energy, V, of the nuclei have

the form
3N 3N
= 2 = 2
2T = Z Q, and 2V = z Ao Q (3)
k=1 k=1

where Qk is the time derivative of Qk and the Kk are related to the
vibrational frequencies, Dy of the normal modes by
= 417 Ly - (4)

For a nonlinear molecule six of the normal modes correspond to transla-
tional and rotational modes of zero frequency. The remaining 3N-6 modes

are vibrational modes corresponding to the 3N-6 fundamental frequencies.
Potential Energy Functions

Although it is convenient to express the potential energy of the

nuclei in normal coordinates it is physically more meaningful to express
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this quantity in terms of internal coordinates (coordinates describing
the internal configuration of the molecule without specifying transla-
tional or rotational coordinates). The potential energy may be ex~

panded in a Taylor series about the minimum where Vo is the potential

2
_ v oV
2V = 2VO + ZZ(BRt v R+ zz(aRtaRt.) Rth, + (5)

energy of the molecule at equilibrium and Rt represents one of the 3N-6
internal coordinates. If the internal coordinates are independent and
the harmonic oscillator approximation is invoked (5) becomes

2
) 5% s »
=28 GRER v Refer TEE i RRer ()

where f are the force constants for this potential energy function.

tt!

For an XF2 molecule the above equation may be written as

_1 2 .1 2, 1. 0 2
V=73 fr(Arl) + 5 f (Ar)" + 5 f Q)"+ frr(ArlArZ) +
frdﬁArlAa) + frd(ArzAa) (7)
where,Arl and Ar2 are displacement coordinates of the X-F bonds and Aa

is a displacement coordinate of the F-X-F angle as illustrated in

Figure 4. The force constant of the X-F bond is denoted by fr’ £y

Aq

Figure 4. 1Internal Displacement
Coordinates of XF,
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i

corresponds to the force constant of the F-X-F angle, and frr and fra
are the bond-bond and the bond-angle interaction force constants,
respectively. The force field corresponding to this potential energy
expression is called the géneral valence force field (GVFF). Through
these force constants, fundamental understanding of the nature of chem-
ical bonding in the molecule may be attained. The technique involved
in obtaining force constants from the frequency data will not be dis=-=
cussed here as it is described thoroughly in several referencescl7’18
Equation (7) contains four unknown force constants for an XF2 molecule
but there are only three fundamental frequencies. In the absence of
other supplementary data the problem is under-detel;mined° As a result
it is only possible to solve for three of the force constants in terms
of a fourth one.

An approximate quadratic force field widely employed by chemists
to reduce the number of unknowns is the Urey-Bradley force field

(UBFF). The potential energy expression for this force field may be

written as
v 2 2 , 2
2V = 2K r(Arl +Ar2) + K(Arl +Ar2) + 2H'Qe) + HQo) ™ +
' 2
2F'q( q) + F(AQ) (8)

where K', H' and F' are (aV/ari)V (aV/ad)V and (aV/aq)V respectively
o’ ) )

2 2y 2
(3V/3w )V and (3 V/aqz)V respec—
o) o)
tively and r and q are the X~F bond distance and the F°°°F non-bonded

and K, H, and F are (BZV/ari)v .
o
distance, respectively, as illustrated in Figure 4. Note that an extra
internal displacement coordinate, Aq, denoting the displacement of the

non-bonded fluorines, has been introduced and this set. of internal

coordinates is not independent. Therefore the (aV/BRt)Vo in. equation
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(5) may not be set equal to zero as the potential energy in each co~
ordinate is not necessarily at a minimum when the molecule is at its
equilibrium geometry. Therefore K', H' and F' remain in equation (8)
while such terms are absent in (7). Expressiné Aq as a function of
Arl, Ar2 and Aq and substituting it in equatioh (8) allows one to re-

lieve this dependency, and derive the following expression.

2V = (K + aF + bF')(Ari + Arg) + (H + cF + dF')AO!2 +

| T
2(eF + fF )ArlAr2 + 2(gF + hF )(Arlez+ArZA o) (9)

In this expression "a" through "h" are functions of the geometry of the
molecule and have been tabulated by Overend and Schererc19 Equation
(9) contains four unknowns, K, H, F and F', which must be evaluated
from three fundamental frequencies, unless additional data is available.
Before a solution of this problem can be obtained a relationship be-
tween two of these force constants must be found.

In determining this relationship it has been common to assume that
the interaction between non-bonded atoms is essentially of the van der
Waals' type,20 the potential energy of which may be represented by a

Lennard-Jones expression of the form

(105

Figure 5 illustrates a rough plot of the potential energy of such an
interaction against the non-bonded distance q. For the range of typical
non-bonded distances found in most molecules, the potential energy is

repulsive and the second term in equation (10) is negligible. With
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=== U

Figure 5. Curve a - Stabilizing Non-bonded Interaction.
Curve b - van der Waal's Interaction.
}~——— Typical Non-bonded Distance Range in
Molecules.

this assumption and the equations

2
o 1Y -
F q(;q)q and F (Mf_)q

where 4 is the equilibrium non-bonded distance of a '"typical' molecule
one arrives at an expression relating F and F', i.e., F' = -0.1F.
Whether this practice is valid or not is subject to some questionz’21
but since F’ is usually quite small it does not affect the calculation
to a large degree. Therefore, the force constants K, H and F may be
determined from the three fundamental frequencies of an XF2 molecule.
Before presenting the results of the GVFF and UBFF calculatidns
for these triatomic difluoride molecules, a brief discussion concerning
the bond-bond interaction force constan;, frr’ will clarify its physical
significance. When one bond of a molecule is distorted, the electronic

structures of the other bonds are affected and their properties changed.

. 22 , . . .
Linnett and Hoare = have considered ten symmetrical triatomic molecules



theoretically and have found the following relationships:
- If frr is positive, bresking one bond leaves the other.
bond stronger and shorter.
If frr is negative, breaking one bond leaves the other
bond weaker and longer.
Linnett and Hoare also state that if the two bonds concerned contain
only localized electrons, the cross term, frr’ tends to be negative
while"frr tends to be positive if the bonds contain delocalized elec-

trons.
GVFF Calculations

Duchesne and Burnelle23 have completed extensive force constant
calculations on OF2° They have obtained values for fr’ fa and frr as
a function of fra° Their allowed solutions for frr as a function of
fra are shown in Figure 6. For the negative values of frr shown in

this figure fr and fa take on physically unreasonable values. They

Irr

Figure 6. GVFF Calculations for OFjy,
Allowed Solutions of fr
as a Function of frda

16
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concluded that frr for OF, is definitely positive. Less extensive

2
force constant calculations have been completed in our laboratory and
. . . “ 22
our results agree with those given above. Linnett and Hoare =~ have
also stated that f  may measure effects other than the delocalization
rr

. 20 . ; s
of electrons. Linnett and Heath ™ have explained that a large positive
bond-bond interaction constant, frr’ may be due to a non~bonded inter-
action. This fact was illustrated by the eguation

f 4+ f =K+ 2F sin 20/2 . (11)
r Irr

A large non-bonded force constant, F, tends to show up in the inter-
action constant, frr' and vice versa. This can be seen in the UBFF

calculations on the XF, molecules presented in the next section.

2

UBFF Calculations on OF., NF., and CF

2° 2? 2

UBFF calculations on OFZ’ NF2 and CF2 were performed in our labor-
atory. The potential energy expression (9) and the frequencies given
in Table I were used to calculate K, H and F. These calculations were
accomplished by means of a computer program described in several ref-
erences°l7’19 The program was run on an IBM 7040 computer at Oklahoma
State University. The results of the calculations are given in Table

II. Two calculations were performed on OF one assuming that F' is

2’
negligibly small, the other utilizing the assumption of a Lennard-Jones
potential describing the non-bonded interaction. As expected, the two

calculations are not significantly different even though the non-bonded

interaction constant is quite large.
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TABLE II
UREY-BRADLEY FORCE CONSTANTS OF OF2, NF2 AND CF2
Force Constants OFZ(F'=O) NFZ(F'=O) CFZ(F'=O) OFZ(F'=-01F)
K 3.15 3.60 4,42 3,37
H -0.08 0.02 0,07 -0,.32
F 3.14 4,51 6.01 2.81

Force Constants are in units of millidynes/angstrom.

Discussion of Results

A comparison of results between the two force field calculations
illustrates the correspondence between the non-bonded force constant,
F, and the bond-bond interaction constant, frr’ as expressed in equa-
tion (11). The correspondence of a large non-~-bonded interaction con-
stant as reflected in F and the large positive bond-bond interaction
constant, frr’ is clearly demonstrated. In the absence of other experi-
mental data which might allow a calculation including both of these
force constants in a potential energy function it would be very diffi-
cult to deduce which effect is producing large values for F and frro
This is not incongruous with the experimental results presented in
Chapter I where either stabilizing non-bonded interactions or DBNB
resonance could explain most of the data presented.

It appears as though the non~bonded force constants calculated for
OFZ’ NF2 and CF2 are measuring effects in addition to the non-bonded
interaction, because their large values cannot be explained by assuming
either a stabilizing or destabilizing non~bonded interaction. The X-F

equilibrium bond distances in these molecules are between 1.38 and 1.48
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which correspond to non-bonded distances in the range of 2,08 to 2.2%.
It seems unreasonable to accept values of F2K for these molecules in
view of the distances listed above if the non-bonded interaction is
stabilizing. Shimanouchi24 lists values of non-bonded force constants
between fluorines calculated for molecules using the UBFF potential
energy function and compares these values with force constant values
calculated assuming a destabilizing interaction and using a Lennard~
Jones 6:12 potential such as is given in Equation (9a). Shimanouchi
illustrates that relatively good agreement exists between the two sets
of force constants for the molecules examined. However the non-bonded
force constants for OFé, NF2 and CF2 presenféd earlier in this chapter
do not exhibit this agreement. For example, the F°°°F distances in
OF2 and CF4 are approximately equal (2.148 and 2,162) whereas the non-
bonded force constant in OF, is about 2.5 times as large as this same

2

force constant in CF4(FOF = 3.14 ml/R, F = 1.24 ml/g).24 Hopefully,
2 4
theoretical molecular orbital calculations treating non-bonded inter-

CF

actions and/or DBNB resonance might help clarify the situation to a
large extent.

In this research project the significance of DBNB resonance has
been studied by a configuration interaction calculation; A wave func-

tion of the form

= (12)
T =0Cp¥p +Cpp¥yp + Crpp¥opr |

was used to calculate the binding energy of OF The wave function ¢I

2"

describes a set of localized electrons in OF2 while ¢II_and wIII

describe a delocalization of electrons which would produce multiple

bonding in this molecule. The variation of this binding energy as



20

OF2 vibrates in its symmetric and its antisymmetric stretching modes
was calculated. From these energy values and the size of the coeffic-
ients, CII and CIII’ in equation (12),deductions of the significance
of multiple bonding can be made. The methods involved in the calcula-

tion and the results of this calculation are presented later in this

thesis,



CHAPTER III

THE LCAQO-MO~SCF CALCULATION

In order to carry out a quantum mechanical energy calculation to
-determine whether multiple bonding, as discussed in the previous chap-
ters, is significant in XF2 molecules, it is first necessary to obtain
physicélly resonable wave functions for the molecules involved. A
frequently utilized and reasonably successful approximation for molecu-
lar wave functions is the linear combination of atomic orbital (LCAO)
method to build up molecular orbitals (MO). The method has previously
met with particular success in the explanation of bonding phenomena and
the mathematical apparatus needed to handle many electron problems has
been well formulated. Because of these two facts, the LCAO-MO technique
seems particularly well-suited for the present problem. It has thus

been chosen to treat the OF NF, and CF

29 9 molecules.

2
To determine the energy, E, of a time independent quantum mechan-

ical system, an equation of the form
HY = EJ (13)

must be solved. This can be cast into the form

* .
fll) Hydx
all space

J vt

all space

E = (14)

21
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where the asterisk indicates a complex conjugate quantity and dt is the
volume element for fhe integration over all space. |

Both Equations (13) and (14) are virtually impossible to solve for
systems of high complexity. Thus one usually resorts to the variation
principle25 to obtain approximate ehergies. Here one guesses a wave
function, y, of proper symmetry and minimizes the expression

f Y¥Hyd T
E - all space (15)

VAR
Jv*yar

all space

with respect to parameters contained in §. The variation principle
then guarantees the result to be an upper limit to the true energy, if

the integrals are evaluated exactly.
The Four Electron Problem

OF2, NF2 and CFz‘have 26, 25 and 24 electrons, respectively.
Treating such a large number of electrons éxplicitly, even within the
framework of the variation féchnique, results in a very tedious quantum
mechanical problem. For this reagon,it is desirable to use a technique
'wﬁich treats explicitly those electrons which are involved in chemical
bonding, and to a large extept determine the chemical and physical’
properties of a molecule, while treating the “non—bonding".electrons
implicitly in nénpoiarizable cores about the nuclei. This type of
separation has been employed extensively to unsaturated hydrocarbons
and recently has been applied to sigma bonded systems by Pohl et al,26

With this procedure one can reduce the XF,2 calculation to one involving

four electrons. This approximation, in terms of wave functions, may be
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expressed as

P =L@ eEhH]
total

where L' denotes a four by four‘Slater determinant corresponding to the
wave functions for the four bonding electrons and the brackets repre-
sent the proper antisymmetrization of the total wave function.. I rep-
resents a Slater determinant containing orbitals representing the core
electrons. By this approximation the effect of electrons occupying
orbitals in the I part of the total wave function are introduced em-
pirically into the calculation through the nonpolarizable cores about
the nuclei.

- The core for the four electron problem is showﬁ in Figure 7 for
the XF2 molecule, Each fluorine core méy be described by the electron-

ic configuration, 182 252 2Px2 2Py2, The carbon atom has a core

4

: N/

2
: X
X, geTe
Py(® ,
.

Iy

(2) R Jd o x % XZPz(Fl)

+1 4] ' | APZ(FZ)

21
rxi

Figure 7. a) The cores of the XF, Molecule, b) The Atomic
' Orbital Basis Set for XF,. Subscripts 1 and. .2
Denote "Different" Fluorines.

configuration lS2 252 while electrons are added to the 2Px orbital to

describe the nitrogen and oxygen cores. The four bonding electrons may
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then be described as occupying the ZP& and 2Pz atomic orbitals on the X
atom and the ZPZ atomic orbitals on the fluorines. This basis set of
atomic orbitals is then used to form molecular orbitals for the XF2
molecule.

The Hamiltonian operator for the four electron problem (in atomic

units) may be written as

4 ' 4 L )
H (1,2,3,4) = j;’ He (1) + > ;l— (16)
— AP &
i=1 i<j=1

where the summations are carried over all the electrons, rij represents

.t .th
the distance between the i h and j electron, and

3
iy =-L,2.
By =-35v >V (17

a=1

In Equation (17), a is a summation index for the three nuclei, Vai rep-

resents the interaction of one of the three cores of XF2 with the ith

2 , , ,
electron and - %-Vi represents the kinetic energy operator for the 1th

electron. For the XF2 four electron problem we may represent the

Hamiltonian operator as

4 -3 4 1
1 2 s ‘ — 18
H = Z (- 5 Vi - Vai) + Z rij . ’ (18)

i=1 a=1 i<j=1

The four electron wave function is written as a Slater determinant

Al(l)Xz(l)K3(l)X4(l)
1 p@a,@ay@,2)
[T WEOTWEIPWEPWE
AL (8, (A ()2, (4)

v = (19)
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where, as a first approximation, we shall take

Al = ¢la,lx2 = ¢18, AB = ¢2a and A4 = ¢26.
The Ai are spin orbitals made up of‘a spatial MO function, ¢i’ and a
spin function, aor B. The spin functions,cxand‘B, correspond to an
electron spin quantum number, Sz’ of + 1/2 or - 1/2. Placing these
spin orbitals in a Slater determinant insures the proper antisymmetri-
zation of this wave function with respect to electron exchange. The
molecular orbitals, ¢l and ¢2, are taken to be linear combinations of
the atomic orbitals illustrated in Figure 7 and are given by the

equation

4y = eqp¥op o)X * *ei o (20)
z z(Fz)

' c, X
(0) Farp PO

The coefficients, c,  , will be determined by a self-consistent field

iv
procedure to be discussed later in this chapter. Essentially these are
the parameters which are varied in Equation (15) until the total energy
for the XF2 molecule is at a minimum., The atomic orbitals in Equation

(20) aré assumed to be Slater atomic orbitals.

A Slater atomic orbital27 for atom X may be defined by the equa-

tion

nli )
X = Ry () Yy, (8,0 (21)

where n, 1, and Adenote the three spatial quantum numbers of the

orbital. The Yl \ (6 ,0) are the spherical harmonic functions while
,’I

the radial part of the Slater orbital is given by

_ n-1-§ -ur
Rnl(r) = anr e (22)
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where an is a normalization constant, n~6 15 an effective quantum
number and I is a constant depending on the core being described. For
orbitals with a principal quantum number, n = 2, § is zero. The expo-
nential coefficient, u, may be expressed as p = (Z-s)/n where Z is the
nuclear charge of the nuclei and s is a screening constant for the
electrons -about the nuclei. This latter quantity may be determined
from Slater's ruleso25 Values of U for the atoms and ions of interest

in this problem are listed in Table III.

TABLE III

SLATER EXPONENTIAL COEFFICIENTS

ATOM C ct N Nt 0 ot F FH

1.625 1.800 1,950 2.125 2,275 2.450 2,600 2,950

The Four Electron LCAQ-MO-SCF Problem

The formalism for the application of the self-consistent field
method to LCAO-MO type wave functions was first presented by Roothaano28
Essentially this method uses the variation principle in determining
which set of LCAO coefficients, the Cyy gives the minimum total energy
for the molecule. In other words this technique finds the 'best"
LCAO-MO wave function for binding energy calculations. Pople29 has
given a set of working equations for Roothaan's method which have been
employed in this calculation. The equations for the LCAO coefficients
are given by

4 4
FUQCiv = ei:E: Suvciv ° A (23)
v=1
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In equation (23) the Arabic letter indices are summed over the molecu-
lar orbitals, while the Greek letters correspond to the atomic orbitals.

Suv represents the overlap between the Vth and uth atomic orbitals,

ioec'

e ey, a

F is defined as
v

4 |
Fu Byt 3 B[l ggd- Flg kY] @
Ao=1 : ' | :

In this equation

| 2
RN G S AR AR R A D FRCE

? - * X -
G rp v = quU)XA(Z)rl% X, (D xg (Ddr dr,, (27

© and

PAG = 21 i % (28)

In these equations Huv is the matrix element of the one electron

Hamiltonian for motion of an electron in the field of the ath core.

1

. -1 . . . o
The integral <@A|r12| v€>‘ is a two electron integral, with dT
representing the volume elements for electrons numbered 1 and 2. In

and de

equation (28) Plo is a summation over various LCAO coefficients. The

€ in equation (23) are the two lowest roots of the determinant
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|F-es| = o (29)

where F and S are 4 x 4 matrices made up of Fuv and Suv matrix elements
for the XF2 molecule. The secular equation corresponding to the above

secular determinant is represented by
Fc = eSc. (30)

The 4 x 4 matrix c consists of four eigenvectors whose elements make up
the LCAO coefficients for the various eigenvalues of Equatioﬁ (29).
That equation yields four eigenvalues corresponding to four molecular
orbitals for Xer The four’bonding electrons are placed in the two
molecular orbitals corresponding to the~FWOhlowest eigenvalues of Equa-
tion (29). The total electronic energy using these two molecular orbi-

tals is given by

& - %' 2 Py (Huvv+Fuv) ’ (31).

In solving this eigenvaluelproblem,_elements of F and S are deter-
mined by use of eqdatioﬁs (24)‘thf§ugh (28) . Then Equation (29) is
solved for its eigenvalues. Thése eigen§alues are then substituted in
Equation (30) from which the eigenvectors may be obtained. Equations
(29) and (30) are complicated by the fact that the elements of F depend
on the solutions of Equation (30), the.civa For this reason the solu-
tion of these two equations is determined by the following iterative
procedure.

1) The zeroth set of coefficients are chosen in some manner,

usually involving an "edQcated guess."

2) The elements of F are then obtained using Equation (25).
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3) The elements of F and S are substituted into Equation (29)

and the eigenvalues, €i, are obtained.
4) With these eigenvalues, the eigenvectors are obtained through
Equation (30).

5) This set of coefficients, Cij’ are then qsed to determine new
elements of F (Step 2) and the process is repeated until the
LCAO coefficients become constant or self-consistent.

In addition to the aforementioned assumptions, three assumptions
were used to simplify this iterative calculation. First, maximum ortho-
gonality of the atomic orbital basis set is attained by constraining
the XF2 molecular angle at 90° and using nonwhybridizedbslater orbitals
on the X atom as shown in Figure 7, With this assumption, the only
non-orthogonal atomilc orbitals on adjacent atoms are those oriented
directly toward one another along an X~F bond. In principle, the cal-
culated energy should be miﬁimized with respect to angle but in this
problem we are mainly concerned with the binding energy and its varia-
tion when the X~F bonds are stretched and compressed,

Overlaps between atomic orbitals on nonadjacent atoms are assumed
to be zero. This assumption is commonly made in molecular orbital cal-
culations and here it implies that the overlaé between XZP and

z(F,)
ZPZ(FZ) is zero. One can see that this overlap is considera%ly smaller

than the overlap between XZP and x2P or XZP and XZP

z(X) z(Fy) y(X) z(Fj)

because the F1°°°F2 distance is larger than the X'-F1 bond length and

X

because these two orbitals are not strongly directed towards each other.

The third assumption states that the XF2 molecule contains only

localized bonds. In other words
$1 = S11%2p tCio%op (32)
z(X) z(Fy)
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and

9y = °23szy (33)

+ ¢4, % .
(%) 24 ZPZ

(F,)

Inspection of Equation (20) illustrates that C and C2 have

13> G140 O3 2
been set equal to zero, Although this assumption is not rigorous if
the electrons occupy delocalized molecular orbitals, we are mainly
interested here in determinipg good localized molecular orbitals. The
delocalization effects in thé XF2 molecules will be brought into the
problem by means of a configuration interaction calculation described
in the next chapter,

In Equation (18) pfovision has not been made for electrostatic re-

pulsion between the nuclei or core-core repulsions. The term which

when added to (18) forms the complete Hamiltonian for XF2~is

3
< Z Z

_ . f
Z eff(cx)R eff(B) (34)
o<B=1 aB

where 0 and B are the summation indices for the nuclei, Za and ZB are

the effective nuclear charges of nuclei o and B and RaB is the dis-
th th . . :

tance between the o and B8  nuclei. The total Hamiltonian may be

expressed explicitly for the XF2 molecule as the sum of Equations (18)

and (34).
Determination of the Binding Energy

The binding energy, EB’ of an XF, molecule is defined as the change

2

in energy of the reaction

X + 2F *‘§'XF2
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where the reacting atoms are infinitely separated and each of these
atoms is in its ground electronic state. This energy is calculated by

considering the following processes. In the first step,
X+ 2F—=>X + 2F_,
v v

the three infinitely separated atoms are promoted to their hypothetical
, 30 . . o o

valence states, the energy change for this process being PX + ZPF

where P represents the promotion energies of the various atoms from the

31,32

ground state to the valence state. The atoms are then ionized

while in the valence state
X+ 2F —> X' 4+ 2F 4+ 47
v v v v e

i I + + 2T
the energy change being V() IV(X+) 2 v(F) where IV denotes the
valence state ionization potentials for species indicated in the sub-
scripted parenthesis. The atoms are then brought from infinity to a
proper molecular geometry of the XF2 molecule. This hypothetical step
occurs without any changes in the electronic configuration of the three
ions and may be symbolized by the equatiogﬁ 
+ =+ o+
X 42 —> F - X -F
v v v v v

where AE for this process is simply the nuclear-nuclear repulsion
energy, Enu@’ given by Equation (34). With the species in this geo-
metrical configuration the four electrons are then placed in the lowest
available unoccupied molecular orbitals
+ ++ + _
F X «F +4e —% F - X °* F —XF
v v v v v

v 2

The energy required for this last process is the electronic energy,fg,

¢
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of Equation (31). For the overall process

X+ 2F—>XF2

the binding energy may thus be expressed as

[o] [o]
=p° + +1
Ep = Po+ 2P + I .+

5 2Ly FEH g .

(X IV( xH) nuc

Semiempirical Integral Evaluations

In a semiempirical MO calculation of this type some scheme must
be employed to evaluate the integrals. Two sets of integral approxi-
mations have been investigated in this project, these being identified
as Set I and Set Iio Both sets are an extension of the integral eval-
uations used by Pohl, et ale‘,26 for the hydrogen halides.

For the semiempirical integral approximations of Set I, the 2Pz
and 23y Slater wave functions for the X atom are assumed to have expo-
nential parameters -(u) equal to those of the X+ ion rather than the X
atom. The 2Pz Slater wave function for fluorine contains a U value of
the fluorine atom.

To clarify the above assumption consider a fluorine atom in XFZQ
All the electrons save one are considered to be in a core about fluor-
ine, The remaining electron occupies a 2Pz orbital and is considered
explicitly in the MO calculation. This electron should see about the
same effective charge as a 2p electron on a free fluorine atom. The
Slater orbital containing this electron should then be described‘by a
Slater function with an exponential coefficient for the fluorine atom.
The central atom, X, has all but two of its electrons in its core.

These remaining electrons occupy the 2Pz and 2Py orbitals on an X atom
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and are considered explicitly in this calculation. Considering either
one of these electrons, it will see an effective charge of the X core
which will approximately equal the effective charge seen by a 2p elec-~
+ . . e s
tron of an X ion. Therefore the Slater wave function describing the
atomic orbital containing this electron should have an exponential
. + .

parameter corresponding to the X ion,

The various integrals appearing in the MO calculation are now

approximated as follows:

Q(x)-lv’z-v 72Xy = (z(x)]-i z(x> = - T+ (35)
2 xt xt X

where Z(X) = X Here the fact that HY = E¥ for an electron

ZPZ(X)Q

about a nonpolarizable core has been employed.
Two center core integrals such as the integral in Equation (36)

are evaluated using Pople's point charge approximation.
<Z(F )‘ v IZ(F> = Z.RY = or7L (36)
11 Vx+ | 20 o RS o

where ZX is the charge of the core of atom X and Z(Fl) represents the

2P Slater orbital on fluorine one.
z

The one center core integrals such as

EW| vy | 26PRE® | 20r [20) = 24E®| |2
(37)

are evaluated analytically. In this equation r represents the distance
between an electron in a ZPZ orbital and the nucleus of the X atom.
Upon substitution of the expression for a 2Pz Slater orbital, XZP =

=W T z{X)

L +
(NX.|.)/2 re X cos B, into Equation (37) one finds that
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ew |z - Ao, (38)

n

where n = 2 for a 2pz orbital.

One center-two electron integrals such as

Z(X)Z(X) ‘ rI;' ‘Z(X)Z(X)> = I+ A, (39)

. . . s 33
are evaluated using Pariser's approximation.

Two center Coulomb integrals such as
Z®2E) | i |2z = R (40)
1| T12 1 fxr,

are evaluated by an interaction energy of point charges at the nuclear

29
centers.

For two center integrals of the type,
Gz | 75 [zmzE)>
12 172

Mulliken's approximation34 is used to reduce the integral to a sum of

those listed above, This approximation is 1llustrated by the equation

<&@z | rﬁ 'IZ(X)Z(F1> =

s
Z(X)Z(F.)
___Z___L. [Q(x)z(x) | rﬁ l z(x)z(X>
s
) Z(X)Z(E. ) )
+ gz | 1, iZ(X)Z(F1)>]= — ‘[Ix* Akt erl‘lj

(41)
In this equation SZ(X)Z(Fl) is the overlap integral of a 2pz orbital

on X and a 2PZ orbital on fluorine. Three center-two electron integrals

and some two center-one electron integrals were simplified in the same
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manner.,

One center exchange integrals such as <?(X)Z(X)\ rzé\ Y(X)Y(X§>,
where Y (X) represents a,2Py Slater orbital on X, were evaluated psing a
method described by Rein and Harris,35 This integral may be approxi-

mated by the expression

<&@z | rIi’ | Y x)

emp

Gz | x| @y xp
L@ | ry; | 200 wx)

B Gy | | 20t )

num

emp

(42)
where the subscripts "emp" and '"num" indicate that the integrals have
been determined empirically and numerically. An integration program
written by Switendick and Carbat_:o36 numerically evaluates the integrals
in Equation (42) for Slater orbitals. This program, written in Fortran
II for the IBM 7090 computer, was obtained through the Quantum Chemistry
Program Exchange at the University of Indiana (DI BC DIAT, #29). The
ratio of the numerically evaluated integrals in Equation (42) was found
to be independent of the Slater exponential coefficient, p, and this

equation may be expressed as

ez | 1y |Yyad = 0.06040 Z@Y@ |yl zeova

where X may be the C, C+, N, N+, 0, or O+ atomé and ions.
Table IV lists the different types of integrals arising in the MO
calculation and the Set I semiempirical evaluations employed. These

integrals were evaluated using procedures analogous to those presented

in the above examples,

The semiempirical integral approximations of Set II will now be
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TABLE IV

INTEGRAL EVALUATIONS - SET I

One Electron Integrals:

e®|- 3 Vever| zx) = QQ)L%v{&4y6>=-Iﬁ
Cap| -3V l2a)y -
& - 37 FZIZ<F2> - I
@X)WFJZ@ - Q<‘X)|VF1|y<X>
&olv Flzm) - <y,<X>IVF2|y<X>
G| v J2r,) =+2§a
irpluglzim,)y =+ ZR;;Z
<Z<F1)|VF2|Z<F1)> <Z<F2)|VF1IZ<F2> - R
&gz} = + 2044
<Z<F1)|-VF1‘Z<F1> <Z<F25|VF2|Z<F2)> =P

Two Electron Integrals:

&y )7ty oy ®)
12 ‘

&0y (0 |12y )
<Z(F YZ(F )‘r“’llz@?. )Z(F >

&wzm| £, |ly®y @)

<z<x)z<F )| 12 |Z(X)Z<F2>

&ozr)|r, \z<x>z<pl>

@(Fl)z@z)\rlz |z¢r D2 (F, )

&z |, |20 2zx) Loy + At
I+ + Ayt
GEPyED e,y EDyE ) =1y + A
= 0.06040 (Lyp + Ayy) |
gonplidhwany -
qrepl s ey -

* R
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examined. The exponential parameters of the Slater orbital expressions
are simply those of the corresponding atoms, independent of the number
of electroﬁs from each atom which are treated explicitly in the problem.
The Slater orbitals are solutions to the central field problem
where V(r), the potential, is given by.(porresponding to the convention

used in Equation (18))

2 - g)e? _ n*@* - 1n?

r 8172mr2

V(r) = +

where Z is the nutlear charge of the atoﬁ, s -1s the Slater screening
constant, n* represents the "effective quéntum numbér," h is Planck's
constant, m is the ﬁass of an electron and r is the distance between
the electron and the nucleus. For the X atom and the Xt ion (in atomig
units) |

Zx “8x _ Ixt T sx+ 35
r r r

Vx(r) - VX+(r) =+

Using this relationship, the integral
1,2 _ 12 _ 235,
e® | -5 - VX+’|Z(X§> = | -39 -v, -2 z(i?

= & | - %-vz - Vg |z(2>> - .35 <%(X)| £l z(3§> = -Iy - .35, |

where the last two integrals afe solved by procedures demonstrated in
Equations (35) and (38). The balance of the integrals derived in this
calculation, which are not of the form given in the last equation, are
evaluated using the procedures demonstrated by Equations (36) through
(42). A listing of the different types of integrals derived in this

calculation and their evaluation using Set II approximations may be
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TABLE V

SEMIEMPIRICAL. INTEGRAL EVALUATIONS - SET II

One Electron Integrals:

Q(X)lnv%vzmvﬁ]z(x» = <y(X)l==21v2=vx+ly(x> = - I - .35,
<Z<F1)l”51V2”VFlIZ(F1> - <Z(F2)l"§1'V2'VF2'Z(F2> = Ip
Quﬂﬁﬁza> =<Qaﬂ%ﬂym> - ga )

Cwve lz@p = Gl Iy - R;‘fl“z

Geplyay - md

& vz, = 2R;;2 |

&wpluglze) - <Z<F2)IVF1'Z(F2)> - Ky

G lvglzx) = -2y

<@(Fl)|vFl|Z(F1>. = <§(F2)|VF2|Z(F2> = p#

Two Electron Integrals:

Gy, yyEy = Ezm|r |2y = 1+ A
eyl elzmyay = 1+ A

&2 [r, |26 P2 ) - GEDYED Ly Epy @) =i+ A
&m2D| |y My () = 0.06040 (I, + A)
GEZED|e S y®zE ) = &wzE)|r,lzmzeE) - R;él
Gz |rlywzE,) = eyl imee,) - P;;Z

<Z(F1)Z(F2)|r121|z‘('Fl)Z(F2) = R;,Fl.
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TABLE VI

F~MATRIX ELEMENTS - SET I

11

22

33

44

12

]

+

-1 -1 2
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(I 4+ Ags
2 1 XFy X" X

723 24 XF2
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- 0.125 SXF (£X+ + Ax+ + I+ AF

-1 -1
1) +2Cy45C, XFZ(RXFl + Rpp)

. i ]
Tge - R Ryp ¥ [Ix+ + Agy - 0.03020(1, + Ay)

2 -1 21 2 |
2012RXF1 + 023(Ix+ + AW 2024[RXF2 - 0.125 sXF2(1X+ F AL+ T
-1

+ A+ 2R, ) 1+ 2011012SXF (Iyr + Ag+ + Ry )

F F

1

2 -1 -1 2 [ -1
“Igp - 2RXF Rpp ; 2C11RXF2 + 2C12RFF 2Cy5 RXF2

2 1 2
0.125 Sy 2(1 +H A+ I+ AL+ 2RXFzﬂ +Cy, (I + Ap)

-1
2011C125XF1<R F, + Ry ) + Cy3Cy, XF (Ip + Ap + Ryp )

. -1 =1 -1
= 0.5 SXFl(m I - IX+ < Pyt - OOSQF - l°5RXFl - RXF2 - RFF)
2 -1
0.5 SX . (IX+ + AX+ + R 1) + 0.5 ClZSXFl(IF + AF + RXF )

2 -1 -1
(IX+ + A <+ + R ) + CZ4SXF1 RXF + RFF)

2 . g
0.75 CllchSXFl(IX+ + AX+ + Ip + AF + ZRXFi? 11C12RXF1

-1 a0

Cy3%24 XFl XF2<IX+ + Agr + Ry XF, + RXF2 + Ryg)

Fo1

2
CZSSXF

~1
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TABLE VI (Continued)

34

13
14
23

24

F43

2
11

S

~ -1 -1 -1
0.5 SXFZ(:*’IF IX+ Oyt RXFl 1.5 RXF2 RFF o.SpF)
(To, + A4 + RL Y + . s (R'l + R°1) +0.5 C2.s (1
XF, " X+ xt XF, 12°XF, XF1 FF *2 23 XF,, xt
-1 2
* Byp ) +0.5C Spp (Ip +Ap + RXF )+ C11C1,5xr Sxp. (gt
2 2 12
- 2 -1
+ RXF RXF + RFF) + 0.75 C23024SXF2 <IX+ + AX+ + ZRXFZ + IF
1
C23%94 XF2
=0
=0
=0
=0
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TABLE VII

F-MATRIX ELEMENTS - SET II

11

22

33

44

12

1

S2
-1 -1 2 . 2 -1 XF
I, - .35, RXF1 RXF2 +¢] (I, + A +2c], [RXFl —Lay
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-1

RXFZ)

§2
e opml =12 T -1 KFy
Te ZRXFI Rer * 2011 [RXFl .
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25%%F, + 2%24%pr T C11C12%r Ur At R )
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2C,.C FF)
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2384 Byp TR
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x T RXFl) + °23°24SXF2(1x + Ay

-1
Rxr,’
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s
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TABLE VII (Continued)

P } L ) el -1 -1
Py, = Fyg = 0.5 SXFz( I, - I, - 1.35 - .50, RXF 1.5 RXF2 R
2 of 2 2
+ CIISXFZ(IX oy RXF ) +Cp,8 XF, (RXF = RFF) + 0.5 C23SXF2(IX

=1
+ Ax i RXF ) + 0.5 024 XFZ(I + A + RXF ) + ClchZSXFlsXFZ(I

+ A + RXF + RXF + RFF) + 0.75 c23 2 XF (1 B AX B 1 + AF

2
t 2.0 erz) - Czsczaerz

Py ™ Ty ™0
Bap ® Tyg =0
Frg =Fg3p =0

Fou = Fyp =0
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found on Table V. With either set of semiempirical integrai evaluations
the F matrix elements, as expressed by Equation (25), may be determined.
These elements for an XFZ molecule are listed in Tables VI and VII.
The former table corresponds to Set I integral approximations while the
latter table corresponds to those of Set II.

The ﬁumefical values for the valence state ionization potentials
and electron affinities used in these calculations are given in Table

VIII.

TABLE VIII

VALENCE STATE IONIZATION POTENTIALS AND ELECTRON AFFINITIES®

I = 0.7672 | I, = 0.4020 Ay = =0.0310
Ipt = 2.2515 Iet < 0.8926 Agh = =0.5127
I, = 0.635 Ay = =0.1287 A, = -0.0281
I+ = 1.2543 Agtt = =1.3504 | At = =0.4020
I, = 0.5127 Ay = ~0.07403
I+ = 1.0658 Ag+ = =0.6354

*The valence state values given above were obtained from ground
state jonization potentials and electron affinities and from
promotion energies which have been published by Hinze and Jaffe
in references (31) and (32) and from an Air Force report which
may be obtained from Professor Jaffe.

Evaluation of Overlap Integrals

Numerical values of overlap integrals for Slater orbitals were
obtained from a paper by Mulliken etoalo37 The overlap integral be~
tween ZPZ orbitals on two centers, and X atom and a fluorine atom,

directed toward each other may be expressed as a function dependent on
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the distance between the two centers and on the Slater exponential pa-
rameters of the two nuclei involved. In Mulliken's paper this overlap

integral is expressed as a function of p and t where

Y, - H
1 F X
3 - IS ———
P=73 (uF u X)r and t TS

and where r is the distance between the nuclei in atomic units.
Mulliken lists tables of values for overlap integrals correspond-
ing to various values of p and t. (Each table depends on the quantum
numbers of the two Slater orbitals involved.) A simple graphical in-
terpolation was utilized to obtain values for overlap integrals which

are not listed.
Core-Core Repulsions

Herman and Skillman38 have determined the Hartree~Fock potentials
for all the atoms of interest in the XF2 problems. Values of effective

nuclear charges, for the various cores were obtained from these

Zeff'
potentials. Effective nuclear'chérges are needéd for the fiuorine
atom and for the oxygen, nitrogen and‘carbon singly chafged lons.
"Values of Zeff‘fprjthese lons were 6B;ained by addipg 1 atomic unit to
the effective nuciear charges of the oxygen, nitrogen and ‘carbon atqms°

Values of Zeff as a function of distance are given in Figure 8 for the

carbon, nitrogen, oxygen and fluorine atoms.

Numerical Method

'

A computer program was written in Fortran IV to handle the tedious
computations demanded by this calculation. A description of the pro-

gram and a Fortran listing of the program are given in Appendix A. Two



45

2.20

200 p—

180 foee

160 fre

1,40}
1,20}
1.00 1 | [
10 1.2 14 16 18 2.0 2.2 24 26
R/au. :

The Effective Nuclear Charges for Core-Core Repulsion

Figure 8.
Terms.



46

main points are mentioned here. First, the solution of the secular

equation

Fe = eS¢ , (30)

is obtained in a straightforward manner. The overlap matrix S is dia-

gonalized and the secular equation is rearranged to form

F'c' = sEc'

where E is the identity matrix and F' and cf differ from F and c. Then
the F' matrix is diagonalized and. the eigenvalues and eigenvectors of
Equation (30) are obtained. |

Secondly, each LCAO coefficient is tested for self-consistency by

an equation of the form

ALl < 0.0001 (43)
iv iv

The superscripts i and i+l merely indicate that the coefficient being
considered has values obtained from successive iterations. This tesf
was applied to each LCAQ coefficient, all of thch must satisfy
Equation (43) before the sét is accepted and used to calculate binding
.energies. The program was tested for.cqrfectness by calculating bind-
ing energies of the FC1 moleculé as a function of bond distance. This
calculation has been previously carried.out by Pohl and Raff.39 The&
solved for LCAO coefficients using a grid technique rather than using
the matrix diagonalization method. The results of both calculations

were identical indicatihg that the subroutines employed in this problem

. to. obtain the eigenvalues and eigenvectors are correct.
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‘Results and Discussion

For symmetric, nonlinear, triatomic molecules the study of the
variation of energy és one changes the two bond lengths may be accom-
plished in two ways. The two bqnds may be extended or compressed from
equilibrium by the same amounts which would approximate the symmetric
stretching mode of the molecule. Actually the expression of the sym-
metric stretching no;mal coordinate ‘as a function of internal coordi-
nates indicates that the angle varies as the bond lengths change but
this is neglected in thése calculations. Secondly, displacing the nu-
clei of XFz,in its antisymmetric stretching mode permits a study of
the variation in energy‘as one bond is compressed and the other bond is
extended from equilibrium by the same amount. This mode is a pure
stretching mode with no change in the molecular angle. The calcula-
tions discussed in the remaining part of this chapter correspond to the
symmetric stretching mode. For these calculatibns, molecular symﬁetry
allows Equations (32) and (33) for the two bondihg moiecular orbitals

to be expressed as

9, = “xX2p_ t cpXop

(%) 2(F))
9y = cx¥op +epXop
y (%) 2 (F,)
where CX = cll = c23 and cF = c12 = 024.

The procedure explained thus far differs from Huckel theory40 in
that no calibration scheme has been employed in describing the XF2
series. As a result one cannot expect quantitative predictions of

binding energies which are as accurate as those one might obtain if the

calculations were judiciously calibrated.
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One can introduce such a calibration into this type of MO treat-
ment through the Wolfsberg—Helmholtz pa‘rameter,26 the value of which is
theoretically equal to one. In references (26) and (39) wvalues of this
parameter are determined such that the calculation of certain physical
properties (binding energy, dipéle moment, etc.) are in optimum agree-
ment with the experimeﬁtal_data;for a sefies of molecules. Such a
technique could be employed herevand would undoubtedly improve the
agreement between the calculétéd and experimental binding energies.

Binding energy values as a function of bond distance, using thé

Set I integral approximations, are shown in,Figure 9 for OF,, NF, and

2> 772
CFzg Table IX contains a listing of these binding energles at varilous
bond distances. Téble X contalns a listing of the LCAO coefficients
obtained in these SCF calculations, Table XI illustrates how the cal-
culated values of equilibrium binding energieq and bond lengths compare
with the corresponding experimental values., The calculated binding
energles are much too large, the ratio of the calculated to experimental
energles being 301,‘109 and 1.4 for OFZ,NF2 and CF2 respectively. The
trend of these calculated binding energies és-one compares the series
OF,, NF, and CF, is not in agreemeﬁg Qith experimént as the calculated
binding energy of OF2 is larger thén this qUéntity'for NFZ.
The calculated equilibrium bond lengths for these molecules are
much shorter than the corresponding experimental quantities. This re-
sult was not unexpected since the hYdfogen halide and interhalogen cal-
cﬁlations show this same general phenomenon. The calculated equilib-

rium bond lengths of the XF2 molecules do not vary by more than 0.1 o

which is in agreement with experimental observatioms.
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TABLE IX

BINDING ENERGY VALUES FOR OFZ’ NF2 and CF; - SET I

Ree(au)  RA) By OF) ev. By (V) ew. By (CF) ew.
1.50 0.794 -12.62 | - 6.04
1.60 0.846 - 2.10 - 8.88 3.5
1.70 0.899 6.87 6.65 10.65
1.80 0.952 11.64 9.62 13.53
1.90 1.005 12.74 10.80 13.98
2.00 1.058 12.19 11.85 14.05
2,10 1.111 11.57 11.61 14.01
2.20 1.164 10.82 10.93 13.74
2.30 1.217 9.98 10.19 13.29
2.40 1.270 8.99 9.35 12.36
2.50 1.323 7.92 8.52 11.50
2.60 1.375 - 7.69 10.68

2.70 1.428 - - 9.90

*In this and the following tables and in the discussions concern-
ing binding energies in the body of the text, the convention of listing
and discussing the negative values of the binding energies (-E, as

B

Hefined on page 30) is used.



TABLE X

LCAO-MO-SCF COEFFICIENTS FOR OFZ’ NF, AND CF2
RXF(a UL CO CF CN CF CC CF
1,50 . 1746 .9365 .02173 1.0031
1.60 .2964 .8708 .07579 .9775 .00803 1.0015
1.70 4078 .7911 . 1459 .9483 .01623 .9963
1.80 4637 . 7469 .2226 .9102 .05089 .9861
1.90 4941 .7231 .2935 .8693 .09350 .9713
2.00 .5134 .7099 .3473 .8359 L1417 .9317
2.10 .5273 .7022 .3863 .8110 . 1899 . 9299
2.20 .5384 .6987 4150 .7927 .2346 .9080
2.30 .5479 .6976 .4362 . 7811 .2728 .8885
2.40 .5565 .6986 4526 7747 .3040 .8727
2.50 .5646 . 7009 .4663 ;7705 .3294 . 8606
2.60 .4780 - .7678 .3506 .8510
2.70 .3685 . 8438

159
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TABLE XI

EQUILIBRIUM BINDING ENERGIES AND BOND LENGTHS

XF Bond Distances (X) _ XF2 Binding Energies (e.V.)

Exptl. Set T Set II Exptl. Set I Set II

OF, 1.386 - 1.00 0.96 3,940 12074 6.33
NF, 1.377 1.07 1.02 6.2*2  11.90 8.47
CF, 1.32° 1,07 0.99 210% 14.08 13.56

Figure 10 shows tﬁe binding energy-bond distance curves for these
three molecules as calculate& using the Set II integral approximations.
Table XII lists nﬁmerical values»of binding epergies at various X-F
boﬁd lengths. Table XIII lists the LCAO coefficients obtained at these
vsame distances. Table XI compares the calculated énd experimental
values for thé Set 1II caiculations. The calculated binding energies
are much cloéer'to the experimental energies than the corresponding
Set I calculations. The calculated valués‘are agaiq too large, deviat-.

ing from the experimental values by 59%, 37% and .367 for OF,, NF, and

2? 2

CFZ’ respeétivelyo The trend in the‘calculated binding-energies agrees
quite well with the experimental trend. Thé calculated values for the
.equiliﬁrium bond léngthé‘are'again too small,

The calculated binding energies for molecules containing fluorine
are anomalously large when compared with the calculatea energies 6f
non-fluoride‘moleculese Pohl and Raff39 have éalculated a binding
energy for the fluorine ﬁolecule of 3.90 e.V. while the experimental
energy, although not exactly determined, has an upper 1limit of 2,5 e.V.

The equilibrium binding energies for C12, Br2 and I2 were approximately
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BINDING ENERGY VALUES FOR OF,, NFZ'AND CF, - SET II.
Ryp(a.u.) RXF(X) Eﬁ_(OFz).e.v. B, (NF)) e, E, (CFy) e.V.
1.50 0379%. -13,75 - - 5.91
1.60 0.846 ~ 4.52 -11.83 3.59
1.90 0.899 2.65 5.77 10,71
1.80 0.952 6.06 7.88 13.41
'1.90 1.005 6.22 8.46 13.56
2.00 1.058 5.06 8.38 13.22
2.10 1.111 4.04 7.42 12.71
2.20 1.164 3.04 6.15 11.94
2.30 1.217 2.03 5.00 11.02
2.40 1.270 0.96 3.89 9.68
2.50 1.323 - .15 2.86 8.48
2.60 1.375 - 1.87 7.39
2.70 1.428 - - 6.38




LCAO-MO-SCF COEFFICIENTS FOR OF

TABLE XIII

29 NF2 and CF2 ,SET IT
oE‘ NF, CF

RXF Co 'Cf CN CF .CC | CF

1.50 .03891 .9883 -.04066 1.0054
1.60 .09327 .9682 -.00382 1.0010 -.03825 1.0065
1.70 .1634 .9354 .02847 .9915 -.03063 1.0064
1.80 .2297 .9009 .06802 .9774 -.01548 1.0037
1.90 .2856 .8697 .1122° .9595 .00509 9986
2.00 .3295 .8449 .1562 .9404 .02977 .9915
2.10 .3630 .8264 .1976 .9213 ,05720 .9824
2.20 .3885 .8140 .2351 .9034 .08602 .9723
2.30 .4086 .8058 .2662 .8891 L1147 .9617
2.40 .4248 .8015 .2910 -8793 .1419 9516
2.50 .4384 .7997 .3123 .8714 .1668 .9426
2.60 .3306 .8653 .1896 L9345
2.70 .2102 .9275

15
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.7 - .9 e.V. smaller than theif experimental values. The calculated
binding energies of HF, -HCI, HBr and HI are all smaller than their ex-
perimental binding energies.26 However, the calculated values for HCI,
HBr and HI deviate from the experimental values by a constant fractionm,
58%, whereas the calculated value for HF is 93% of its experimental
value. Both the above data and the results of the XF2 calculations
seem to.indicate that the extremely high jonization potential and elec-
tron affinity of the fluorine atom result in these unusually large cal-
culatedbenergy values.,

TaBle XIV lists the LCAO coefficients for 0F2, NFZ’ CF2 and ClF39

close to their calculated equilibrium bond lengths. The trend of these

LCAO coefficients through the CF,, NF_ and OF

series is correct for
2° 2 2

both calculations. Both sets of calculations result in molecular or-
bitals which have LCAO coefficients indicating an egtraordinarily high
electron density on the fluorine atom of these XszmoleculeSa The Set
I LCAO coefficients, exhibit this phenomenon to a lesser degree than
the Set II coefficients. The electronegativity difference of the
nuclei of the N-F and Cl1-F bonds are about the same although the LCAO
- coefficients of the N-F mélécular orbitals in each calculatioﬁ indi-
cate a much larger attraction of electrons for the fluorine atom than
do the LCAO coefficients for the Cl-F molecular orbital. It appears
as though these difluofide calculations may over-—emphasize the repul-
sion of the two X.electrons forcing the LCAC coefficient for fluorine
to take anvunusually large value when the electronic energy is mini-.
mized. Of course Cx would then be small due to the overlap condition.

The greater variation in these XF, LCAO coefficients as a-function of

internuclear distance compared to this variation in the diatomic LCAO
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coefficients is not incongruous with the above explanation,

TABLE XIV

EQUILIBRIUM LCAO-MO-SCF COEFFICIENTS

Set I ' Set II
Molecule CX CF - CX : CF
on 4941 .7231 .2856 .8697
NF, . 3473 .8359 1122 9595
CF, 1417 .9517 .0051 .9986
Cer Cp
CIF .4988 <7437

' The results of these four electron LCAO—MO;SCF calculations are
.also used to provide a basis of attack on the eight electron'configura—
tion interaction calculations, in which the significance of double
bbnding in OF2 is investigated. This problem is discussed in the next

chapter.



CHAPTER IV
THE CONFIGURATION INTERACTION CALCULATION

The significance of double bond-no bond resonance in OF2 was in-
vestigated by means of a configuration interaction (CI) calculation40
which is described in this chapter. A CI calculation is essentially
the application of the linear variation method to a wave function which
is approximated as a linear combination of Slater determinants. The

CI wave function for OF2 is.approximated as

i

v = CpPp + CpyDpy + CrpgDpggp (44)

where the coefficients CI’ CII and CIII are chosen such that the energy
of OF2 is minimized, The Slater determinantg.DI, DII and DIII'corfes-

pond to the resonance structures

/ 0\ \
Fo ¥ Fy Fay o Foy
I , II ITI

I, IT and III respectively. The magnitude of the coefficients, C,.. and

II
CIII’ with respect to CI gives a measure of the significance. of the DIi
and DIII structures., The added stability calculated for OF2 using the
wave function described by Equation (44) compared with a calculation

using 4 ='DI alone,'gives a>measure of the effect of determinants DII

58
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and DIII on the molecular energy of OF2.
The O.F2 molecule was chosén as the subject»of the»cqnfiguration
interactioﬁ calculation because the most important form. of ™ ~bonding
should occur through the DBNB resonance structures shown above. How-
ever multiple bonding may occur in NF2 and CF2 through use of a vacant
or half—filled 2P orbital on carbon or nitrogen and a filled 2P orbital

on a fluorine atom in addition to multiple bonding through DBNB

resonance.,
The Eight Electron Problem

Resonance structure I can be related to structure II in the follow-
ing way. The two electrons in O—F(z) bond in structuré I are localized
on the F(2) atom forming an F ion in structure II. A localized pair
of electrons on F(l) in structure I may be thought of_as forming a m-
bond in structure II using the vacated atomic orbital on oxygen. In
resonance structure III, a localized pair of electrons on F(2) forms a
mbond with oxygen. Eight electrons are needed to describe these three
resonance structures of OF2 simultaneously in a configuration inter-
action wave function. Therefore eight electrons will be considered
expiicitly in this calculation while the effect of the remaining 18
electrons are introduced into the problem through nonpolarizable cores
about the nuclei. The cores of OF2 used in this calculation are repre-
sented schematically in Figure 11. The electronic configﬁrations of
the various cores in this CI calculation are the éame as 1n the SCF
problem except that a palr of electrons on each fluorine are considered
explicitly in this eight electron problem whereas these electrons were

part of the non-polarizable fluorine cores in the four electron SCF
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problem.

+2
F
F2) » (1)
+3 +3
Figure 11. The Cores of OF,
for the CIL
Calculation.

The eight electron Hamiltonian may be expressed as

8 3 8
_ 1.2 N R
H"Z(zvi Lvai)-'- Z T, +
Ci=1 a=1 , i<j=1 J
3
 Zass@)leff(B)
) 2 (45)
o <B=l :

where the symbols have been defined in Chapter III and the Vai repre~-

sent the potentials of an electron about the 0, F(l) and F(2) cores.

The wave function in Equation (44) is a linear combination of three
8 x 8 Slater determinants, each determinant having a form similar to

D, as expreésed in Equation (46).
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Al(l)kz(l)k3(l)k4(l)AS(l)A6(l)A7(l)A8(l)
A2, (2)A5(2)2,(2)A5(2) A (2 A5 (2)Ag(2)
AL (D2, (325 (D, (DA (A (DAg(3)

1 Al(4)A2(4)A3(4)A4(4)A5(4)A6(4)A7(4)A8(4)
D = : - LN (46)
I EE A (5N, (5IA5(5) X, (5IA5(5) A, (5)A,(5) Ag(5)

AL ()2, (615 (6)1,(6) A5 (6) A (6)2, (6)Aq(6)
AL DA (DAL A (DA DA DA (DD
AL (8)2, (815 ()1, (B)A5(8)Ag (8)X,(8)Aq(8)

where the spin orbitals, A ;, are approximated as the product of a molec~—

ular orbital, ¢i’ and a spin orbital,o or B, by7fﬁe equations

_ ¢i+l @ )
Ai = =5 for odd values of i
and
. B
Aj = ¢l/2 for even values of i.

The basis set functions;¢i, have been expressed in essentially two
ways - by using either an in-pléne or an out-of-plane basis set of Slater
atomic orbitals. These alternatives are represented schematically in
Figure 12, The atomic orbitals and molecular orbitals used to build
up each determinant, for both the in-plane and the out-offpiane cases
are given in Table XV. For ?ach basis éet,' ﬂ;bonding in OFz'may occur

through overlaps of theVZPy(OS and 2P Slater orbitals and the

Y(Fl)

ZPZ( 0) and 2P )

The ¢~ bonds in OFZ have been described by normalized molecular

y(F.) Slater orbitals.

orbitals of the form

1
V2 + 25

(47)

o, = op = *tX
2 [ 2P, 0y ZPJZ(Fl)] -

1(o)



' Figure_lz;

(ITb)

Atomic Orbital Basis Sets for the CI Calculation. (The Roman numerals in
parenthesis correspond to the Slater determinats in equation (1), a-
corresponds to the out-of-plane A.O. basis set .and b.corresponds to the

" in-plane basis set. The shaded orbitals contain two electrons while the
other orbitals, which contain one electron, are used to form molecular
orbitals.) C '

9
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TABLE. XV

ATOMIC AND MOLECULAR ORBITALS FOR THE CONFIGURATION
 INTERACTION PROBLEM

Atomic and molecular orbitals for the out-of-plane basis set;#:

Pyt - Pppt Py - |
0, = X(Fp) | 0, = X(Fy)) ¢, = N,L2(0) +y(F,]
¢, = Nl[Z(O),+ Z(Fl)] ¢2 =N [2(0) + 2(F, )] @8 = Z(Fl)

II

by = MLy (0) +2(F)]) ¢,
by = X(Fp) P

N [y(O) +y(F; )] Py = N[y (0) + 2(F,)]
Z(F2) p4 X(F)

Atomic and molecular orbitals for thé in-plane basis set:*

D_: D._: D

I it - 111
¢, = v (F,p) b =y | 95 = NLy(0) + Z(F,)]
0, = N,[2(0) +2(FD] ¢, =N [2(0) +2(ED] ¢, =y(E)
by = N[y(0) +2(F)T O = Nly(®) +yEDT ¢, = N,[2(0) +y(F,)]
b, =y ED be = 2(F,) g = Z(F)
where:
1
N, = where S =8
1 /b 25 ) »OFI(G) Z(0)Z(F,)
- L ’ L=
N2 = /5 ~ 23 o where SOFZ(O) Sy(O)Z(Fz)
OF o
N, = L where S =38
| /2 +-230F o OF | () | y(0)y (Fy)
1°
N, = L where

S =8
, OF,, () z(0)y(F,)
/2 + 230F2<n) 2 2

*
‘The above formulae have been expressed using the shorthand nota-
tion for Slater orbitals employed in Chapter IIL.
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1

=1x + X
5= [xar, ZPzgfz)] e

- 77 2(0)

(48)

Equations (47) and (48) are special cases of Equations (32) and
(33) where cé = - This eéuality of LCAb coeffiéients implies that
the O-F bond is completely covalent. The LCAO-MO-SCF caiculations for
OF2 presented in Chapter III resulted iﬁ orbital coefficients which in-
dicated a greater ionic character for the 0-F bond than would be expect-
ed on the basié of the electronegativities of the oxygén and the
fluorine atoms. It seems reasonable to expect that constraining the
LCAO coefficients as indicated in Equations (47) and (48) would tend to
balance those effects in the calculation which tend to over—emphasize

the ionic character of the O-F bond.

The m=molecular orbitals are also assumed covalent as

. .
b5 = : X2p T Xp ] (49)
J2 + ZSOFl(”) [ y(0) y(F )
1 d .
= : X + X (50)
it J2 + 2SOF2(H) I 2P (0 ZPy(FZ)]

Two additional assumptions, similar to approximations given in
Chapter III, ;fe used to simplify these CI caléulationsq First, the
OF2 molecular angle is set at 90° rather than the experimentally de-
termined value of 101,50, Secondly, the -overlap between atomic oribtals
on nonadjacent atoms,(the,tWO fluorines) are assumed zero, The com-
ments made in Chapter III concerning these assumptions also apply to

this CI calculation.
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Mathematical Formalism -

A mathematical formalism for CI calculations has been worked out
and is presented -in the reference by Parr.4o The energy corresponding
to the approximate wave function given in Equation (44) may be deter-

mined by the solution of the secular determinant

H - €S H - €8 ‘H - €8

11 11 12 12 113 13
Hyp = €5y Hyy = €8y, Hyq = €54 =0
Hyp = €54 Hyy = €84, Hyy = €544 (51)

where © represents the electronic energy plus the nuclear repulsion

energy of the molecule and

Hij J‘Di H Dj dt (52)

54 J‘Di D, dT | (53)

where the integration in Equations (52) and (53) are carried out over
all space and dt = dwldﬁz,v-- dié. The subscripts of the various

volume elements refer to the volume elements for each electron of the

eight electron_problem; Equation (51) may be expressed as

|8 - es] =0 | (54

where H and S are 3 x 3 symmetric matrices containing the Hij and Sij
elements and ¢ represénts thé three roots of this secular determinant.
The CI coefficients, CI’ CII and CIII’ may be determined by solv-

ing for the_eigenvectors_of the secular equation

HC = eSC. (55)

These eigenvectors can be obtained in a straightforward manner . by
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solving the set of simultaneous equations

Cpq(Hy =88 9) + Cpp(Hyy=eS,,) + Cig(H 5-e8,9) = 0 (56)
Cpp(Hyyme8,57) F Cpp(Hyp=e8y0) + Cyg(Hyg=eS,0) = 0 (57)
CBl(H3l-aS3l) + C32(H32—6532) + C33(H33-6333) = 0. (58)

Numerical values for Hij and Sij are substituted in Equations (56)
through (58) along with the lowest root of the three eigenvalues of
Equation (54). The CI coefficients corresponding to this lowest con-
figuration interaction energy state, CI’ CII and CIII’ of Equation
(44), may then be determined from these three equations.

The solutions of Equations (52) and (53) are straightforward but
contain a large number of terms. Each 8 x 8 determinant is a sum of
64 terms, each term containing as factors expressions for the molecular
and atomic orbitals occupied by the eight electrons. If the spin or-

bitals ‘used in the calculation are orthonormal

j}ixjdrk= 515 9 (59)

where sij =0 1if i #:j and ¢ =1 if i = j, then the equations given

1]
by Parrl can be used as most of the terms of Equations (52) and (53)
integratg to zero,

In the OF2 calculation the spin orbitals do not‘make up an ortho-
normal set. Rather than orthogonalize these spin orbitals and.use the
equations given by Parr,40 Equations (52) and (53) were expanded and
each term was examined individually to determine its value. This pro-
cedure was greatly simplified-by use of a theorem mentioned by

Roothaan.28
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i=1 i=1

8 8 '
E%J‘[Z;—DP T @) H[Zp(—l)P‘ﬂ' @] drpary -

f[xl(l)xz(Z)....xs(s)] H{Zp(—l)P i Xi(i)] 87 .00 d1g
| i=1 |

(60)

g indicates a sum over all possible permutations, and (—l)P is

where
+1 if'the'permutation is even and (-l)P is =1 if the permuation is odd.-

This theorem also holds for the overlap integral where H in Equation

(60) may be taken as equal to one.:
Semiempirical Integral Approximations

The semiempirical procedures used to evaluate the integrals result-
ing from expansion of . the Hij matrix elements are essentially the same
as those employed in the-LCAO-MO—SCF calculations discussed in Chapter
ITT. Semiempirical integral values using the Set I integral approxima-

tions for the in-plane atomic orbital basis set of OF, are givén in

2
Table XVI,  No table is included containing these values for the out-
of<«plane AO basis set as these are very similar, and in many cases-

identical, to those listed in Table XVI.
Core~Core Repulsion Terms

The  core-core repulsions for this eight electron problem were ob-
tained using the procedure explained in Chépter IIT. Figure 8 gives
the values for Zeff for the oxygen and- fluorine atoms. Two atomic

units were added to Zeff for fluorine and one atomic unit was added to
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TABLE XVI

- SEMIEMPIRICAL INTEGRAL VALUES - SET I

. One Electron Integrals:

G F )I 79 - VF*“ y(® 2)> <Z(F |- 37 - VF;ZI' Z(F2>

&E|- -,}vz - vﬁu '|'y<F1); = &)~ %vz - Vep2 bze))

=-IF++
GO|vgHy©) = G| vz = w2

G |Vely )

GED|V F )

<Z(F2)| v0+|2(F2\)) = +2RE);,2

Gap|velze ) =g

1

<y(F2)IVF',-]}:2.‘ y(F'2> - 'Q(FZ)IVF-{Z l Z(F2)> =+3R;;]
<}'(F1)|VF;2 | vy - &)l rp? [z = my
Gl 177 +1gl P - GO 15 2 dvo)
GO Vp2 |y ) .
1

GOl [y =g

& vz | z<o}
1
&) VF;.Z 120

Q(F2)|VF_2!_2. L y®) = CEP|vg 2> = 3 42

[}

2

‘<Z(F1)|VF]‘_‘2"I z@{)} - Q(FQIVF{Z” e = W 42
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TABLE XVI (Continued)

Two Electron Integrals:
-1 ]
LZFEZE)| ), IZ(Fl)Z(F1>

+ A
F+2

GEpyEpllyepyEy =1,

L@zl leEpaE,y = GEYE Ly EEY = 1,

+ A
F+2

<z(Fy (7)) 3,512y (F,) <y(F1>z<F1>|r]21}y<F1)z<F}1)> 1,

+ A

i
<z(0)Z(F1)]r”12112(0)z(F1)> = Q(O)Z‘(Fl)'r-lzlly(o)z(Fl) =R6F1,'1
&y F )| 1|2y E ) - Q(oﬁycrl)lr'lzllyco>y<Fl> =R;§1
GOyt zoyE,) - &Oz(E)| 7, |2z2,) =R;§2
GOy @),y @yE,) = Loy 1, ly©zE,) =R;§2

§ (Fp)2(F )| rzzl,?’(Fz)Z(Fl» - _<Z(F2)'y(F1)‘r-lélz(Fz)Y(Fl» - Hp

/Q(O)Z(O)l r‘izlfz(o)Z(oy ‘Q(O)y‘(O)’ ri;’Y(O)Y(@ =L tAL

: (g(o)y(o)lr'izllz(O)y(@ Lop A+

]
o

&)y (0)|£],]y (©)2(0P = 0.06040 Ty + A

o"')

o+
0.06040 (1F+2 A )

<&@y Ep| |y EpaE,d 2

-1
<Z(F2)y(F2)| 5y 7z, 0.06040 (I, +4 L))

e
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Zeff for oxygen to compensate for the fact that the cores of oxygen and

fluorine have formal charges of +2 and +3 in this calculation.
Calculation of Binding Energy

The method used to calculate thevbinding‘energy corresponding to

the process

0+ 2F ——%OFZ

is analogous to the procedure described in Chapter III. The processes

involved, with their energy changes in parenthesis, are given below:

0. o
0+ 2F-—4>0V + 2FV (P0 + ZPF)

+2 +3
- _
OV + 2FV OV + 2Fv (ZIV(F) + ZIV(F+) + ZIV(F+2)

+ Iv(o) + IV(0+))

+2 +3 +3 43 _+3
0y + 2F >y 0, Fy (E.nuc)

F.” » 0. ° F + 87 —> OF, ©

The binding energy, EB’

is then given by
+1I

gty ooy Y yoh Y

_ 50 )
E =P + ZPF + ZIV(F) + ZIV(F+)

B 0

E_+6&

nuc

The symbols and processes given above have been described in Chapter .

11T,
Overlap Integrals

- Numerical values for the overlap integrals containing Slater

orbitals were obtained from Mulliken's paper37 as described in
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Chapter III.
Results

The eight electron calculations, as described earlier in this
chapter, were attempted using the Set II integral appfoximationsa The
results of these calculations (for both the out-of-plane and the in-
plane AO basis sets) were unsatisfactory in that they predicted an un-
stable OF2 molecule with respect to the separated atoms.

The calculations using the Set I integral approximations predicted
very reasonable values for the binding energy of the OF2 molecule.

Figure 13 illustrates the binding energy versus bond distance curves

for the symmetric stretch of OF, for both the in-plane and the out-of-~

2
plane AO basis sets. Figure 14 shows the analogous curves for the anti-
symmetric stretching mode of 0F2. The calculated equilibrium binding
energies, 5.683 e.V. for the out-of-plane set and 4.015 e,V, for the
in-plane set, agree quite well with the experimental binding energy
of 3.9 e.V. The calculated equilibrium bond distances for the out-of-
plane and the in-plane basis sets are 1.03 R and 1.09 & respectively.
These bond lengths are considerably smaller than the experimentally de-
termined value of 1.38 .

Tables XVII and XVIII contain data for the CI calculation using
the out-of-plane AO basis set. Table XVII lists values of the binding
energy for OF2 at various internuclear distancesAgorresponding to the

symmetric and antisymmetric stretch. EB(I) corresponds to the binding

energy calculated using the wave function

v =D ' (61)
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TABLE XVII

BINDING ENERGIES -- OUT-OF-PLANE ATOMIC ORBITAL BASIS SET

ROF(a°u°) EB(I)(e.V.) EB(CI)(eOV,)
Symmetric Stretch:
1.55 | =34.602 =34.594
1.65 ~18.183 -18.175
1.75 = 3.543 - 3.535
1.85 3.005 3.013
1.95 5.675 5.683
2.05 . 5.210 5.218
2,15 o 4.470 4.479
2,25 - 3.443 3.451
2.35 | 2.094 _ 2.102
ROFl(a°u°) ROFz(a.u.) EB(I)(e.V.) EB(CI)(e,VQ)
Antisymmetric Stretch:
1.55 2.35 -16.253 ~16.,245
1.65 2.25 - 7.369 - 7.361
1.75 2,15 0.465 0,473
1.85 2.05 4,109 4,117
1.95 1.95 5.675 5.683
2.05 1.85 4.109 4,117
2,15 1.75 0.465 :00473
2,25 1.65 - 7.369 - 7.361

2.35 1.55 -16.253 -16.245
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CONFIGURATION INTERACTION COEFFICIENTS -~ OUT-OF-PLANE ATOMIC
ORBITAL BASIS SET

Rop (a-u+) Cr 11 111
Symmetric Stretch:
1.55 .9999 -.01164 -.01164
1.65 .9999 -.01037 -.01037
1.75 .9999 -.009673 ~-.009673
1.85 .9999 -.009403 -.009403
1.95 .9999 -.009428 -.009428
2.05 .9999 -.009561 -.009561
2.15 .9999 -.009813 -.009813
2,25 .9999 -.01017 -.01017
2,35 .9999 -.01065 -.01065
ROFl(a,u.) ROFz(a.u.) CIv CII CIII
Antisymmetric Stretch:
1.55 2.35 .9999 -.01252 -.009889
1,65 2.25 .9999 -.01133 -.009378
1.75 2.15 .9999 -.01047 ~-.009127
1.85 2.05 .9999 ~.009842 -.009148
1.95 1.95 .9999 -.009428 -.009428
2.05 1.85 .9999 -.009148 -.009842
2.15 1.75 .9999 ~-.009127 -.01047
2,25 1.65 .9999 -.009378 -.01133
2.35 1.55 .9999 -.009889 -.01252
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which corresponds to a resonance structure for OF, with no provision

2
for multiple bonding. EB(CI) denotes the configuration interaction
binding enérgy of OF2 which corresponds to the wave function given by
Equation (44). Table XVILII lists the configuration interaction co-
efficients-corresponding to the values of EB(CI) given in Table XVII.
Tables XIX through XXIT contain data for calculations utilizing
the in-plane AO basis set, Tablex XIX and XX contain values of EB(I)
and EB(CI) for the symmetric and antisymmetric configurations respec-
tively. Tables XXI and XXII list the configuration interaction coeffi-

cients for the symmetric and antisymmetric stretching geometries of

OF2°

TABLE XIX

BINDING ENERGIES ~- IN-PLANE ATOMIC ORBITAL BASIS
SET -- SYMMETRIC STRETCH

ROF(a'u°) EB(I) EB(CI)
1.57 ~ 39.483 -37.308
1.67 -—19.070 -17.865
1.77 — 5.169 ’ - 4,544
1.87 | 1.191 1.460
1,97 3.810 3,932
2.07 3.996 4,015
2,17 3,750 3,755
2.27 3.043 3.065
2.37 2.012 2.091
2.47 0.606 0.748

2.57 -0.767 : © =~0.563
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BINDING ENERGIES -- IN-PLANE ATOMIC ORBITAL BASIS
SET -- ANTISYMMETRIC STRETCH

ROFl (a.u.) ROF2 (a.u.) EB(I) e.V, EB(CI) e.V,
1.57 2,57 -20.307 -19.717
1.67 2.47 - 9.376 - 9.052
1.77 2.37 ~ 1.667 -~ 1.447
1.87 2.27 2.077 2,167
1,97 2.17 3.76857 3.80664
1.98 2.16 3.79494 | 3.82893
1.99 2.15 3.85368 13.88413
2.00 2.14 3.91405 13,94124
2,01 2.13 3.92193 3.94776
2.02 2.12 3.92873 3.95320
2,03 2.11 3.93607 '~3.95864
2.04 2.10 3.97632 © 3.99807
2.05 2,09 3.98012 400133
2,06 2.08 3.98203 4.00242
2.07 2,07 3.99589 4.,01520
2,08 2.06 3.98203 ia.oozaz
2.09 2.05 3.98012 4.00133
2.10 2.04 3.97632 3.99807
2.11 2,03 3.93607 3.95864
2,12 2,02 ©3.92873 3.95320
2.13 2.01 ©3.92193 3.94776
2,14 2.00 3.91405 3.94124



TABLE XX (Continued)
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ROFl (a.u.) Rsz (a.u.) EBkI) e.V. EB(CI) e.V,
2.15 1.99 3.85368 3.88413
2.16 1.98 3.79494 3,82893
2,17 1.97 3.76857 3.80664
2,27 1.87 2,077 2.167
2,37 1.77 -1.667 - 1.447
2.47 1.67 -9.376 - 9.052
2.57 1.57 -20.307 -19.717

TABLE XXI
CONFIGURATION INTERACTION COEFFICIENTS -- IN-PLANE ATOMIC
ORBITAL BASIS SET -- SYMMETRIC STRETCH

ROF CI CII CIII

1,57 .7550 .2848 .2848

1.67 .8498 .2017 .2017

1.77 L9134 .1370 .1370

1.87 .9556 .08764 .08764

1.97 - .9816 .05341 .05341

2.07 1.0031 .02110 .02110

2,17 '1.0177 -.003830 ~.003830

2,27 1.0278 -.02392 ~.02392

2,37 1.0358 ~.04169 -.04169

2.47 1.0408 ~.05461 ~.05461

2.57 1.0452 -.06691 -.06691
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TABLE XXII

CONFIGURATION INTERACTION COEFFICIENTS -~ IN-PLANE ATOMIC
ORBITAL BASIS SET =~- ANTISYMMETRIC STRETCH

Ror, Ror, ‘1 11 Crir
1.57 257 .9433 .2098 -.02874
1.67 2.47 L9715 .1472 -.02373
1.77 2.37 .9881 .1012 -.01806
1.87 2.27 .9977 .06566 ~.007951
1.97 2,17 1.0005 .04379 .005770
1.99 2.15 1.0013 - .03848 ©,008730
2.01 2,13 1.0025 .03308 01082
2.03 2.11 1.0027 .02939 .01404
2.05 2.09 1.0022 .02582 .01889
2.07 2.07 1.0031 .02110 .02110
2,09 2.05 1.0022 .01889 .02582
2.11 2.03 1.0027 .01404 .02939
2.13 2.01 1.0025 .01082 .03308
2.15 1.99 1.0013 .008730 .03848
2.17 1.97 1.0005 .005770 .04379
2.27 1.87 .9977 -.007951 .06566
2.37 1.77 .9881 ~.01806 .1012
2.47 1.67 .9715 -.02373 1472

2.57 1.57 .9433 ~.02874 .2098
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Tables XVII, XIX and XX illustrate that E for all the

B(D)< Ep(c1)

geometrical configurations calculated. This is to be expected since
the wave function in Equation (61) is a special case of the more gen-
eral configuration interaction wave function. This latter: wave function

should be a better approximation to the "true" wave function than the

. t
single determinant wave function, ¥ . In Chapter V the significance

of this increase in binding energy upon introducing D.. and DI into

I1 IT

the OF2 wave function will be examined.
The CI coefficients listed in Table XVIII illustrate that CI is

much greater than C and CI I-for all the geometrical configurations

II I

listed. This is reflected energetically in the fact that the config-

uration interaction energy is never more than 0.0l e.V. larger than

EB(I)'

For the in-plane basis set the determinants D and DI are more

I1 IT

important in Equatiom (44) than they are fbr the out-of-plane basis
set., For the geometrical configuration where both bonds are about
0,25 X shorter than the calculated equilibrium bond lengths, the ratio,
CII/CI = CIII/CI = 0.37. As the bonds are stretched toward equilibrium
this ratio becomes smaller, as one might anticipate. As DII and DIII
become less impbrtant in the CI wave function, the absolute magnitude
of the difference, EB(CI)-EB(I) becomes smaller.

For the antisymmetric stretching mode where for example, the
O-F(l) bond is compressed and‘;he O-F(ZS bond is stretched‘from equi-
librium by the same amount, C

> CIiI; the more one distorts the mole-

II

cule from equilibrium in this manner, the more important DBNB resonan-
ce structure II becomes relative to resonance structures I and III,

When the O—F(l) bond is about 0.25 X shorter than the calculated
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equilibrium bond length the ratio of CII/CI = (0.22., In Chapter V the

significance of these CI coefficients, which are a measure of the ex-

tent of DBNB resonance in OF2, is discussed.



CHAPTER V
DISCUSSION OF RESULTS

The data obtained from the molecular orbital calculations in
Chapter IV are analyzed in this chapter to determine whether the model
employed to describe DBNB resonance can explain the frequency inversion
one observes in OF2. This frequency inversion appears to be the most
striking physical manifestation of DBNB resonance (and/or non-bonded
interaction) in the OF2 molecule.

The fundamental frequencies of OF

, are related to the general

. 10
valence force constants through the equations:

2 2 . fr + frr v 2m 2 95 fa
Al + Az = (l_+-1;- cos 50 —— 4t 2(1 + —— sin 2
o o m._r
F
(62)
2mF f + £ £
T rr o
AAy = 2(1 + = ) 7 > (63)
o ny r
2m : f - f ‘
Ay = (1 + —E gin? &) L IL (64)
3 m 2 mF
o

These equations are derived by solving the vibrational problem using
the potential energy function given in Equation (7). Equations (62)

and (63) have been simplified by setting the bond-angle interaction

82
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constant, fru; at zero, although Equation (64) is exact within the
harmonic oscillator approximation. The variables & and r represent the.

equilibrium molecular angle and bond length for OF, while m and mF

2
indicate the masses of the oxygen and fluorine atoms respectively. The

force constant notation has been defined in Chapter II. The vibration-

al frequencies, vy, are related to the Ai by the equation

22 ’
Ai =47 vi (65)

Inspection of Equations (62) through (64) indicate that a positive bond-
bond interaction constant, frr,~would tend to lower the value of the
antisymmetric stretching frequency, V3:,*whi1e it would tend to increase
Vl, the symmetric stretching frequency. A delocalization of electrons
in OF2, such as DBNB resonance, would manifest itself in a positive
bohd—bond interaction constant which, if large enough, would. cause Vl
to have a larger value than V3. In molecules where frr is nearly zero,
such as HZO’ this frequency inversion is not observed. Ihe next sever-
al paragraphs indicate how a value for this bond-bond interaction
constant is obtained from the energy data of the MO calculations pre-
sented in Chapter IV, Ihis value is then compared with the interaction
constant deterﬁined experimentally from the fundamental frequencies of
OF2° |

In Chapter IV the results of two MO calculations are given for
both A0 basis sets presented. Those energy values corresponding to the .
single determinantal wave function, denoted by EB(I)’ approximate

energy values for an OF, molecule in which the binding electrons are

2

localized in their respective bonds. Delocalization effects are explic-

itly entered into the calculation through the determinants DII and DIII
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in the CI wave function. Binding energies corresponding to the CI wave

function were denoted by E in Chapter IV. The bond-~bond inter-

B(CI)

action force constant for OF2 may be determined by considering the

change in binding energy of OF2 as the molecule is displaced from equi-

librium. The quantities AEB(I) and AEB(CI) are defined by Equations
(66) and (67),
AE = Eo .. E (66
) - Fem' T Fa(n) (66)
and
1E = E. E 67
B(CI)  ~B(CI) ~ ~B(CL) (67)
where EO and EO are the single configuration and the CI energies

B(I) B(CI)

for the equilibrium geometry of OF2. Figure 15 illustrates a schematic

A I -_
B(I) and EB(CI) as a function of the anti

symmetric stretching normal coordinate, Q3.

drawing of the quantities AE

\

AEg T

()

AFg en)

Q3

Figure 15. Schematic Drawing of the Quantities
AE and AE as a Function
ofBgﬁg NormalBéggzdinate, Q3.
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The change in the potential energy of OF, as the molecule vibrates

2

in its antisymmetric stretching mode may be expressed as

1 2 2
‘AV =5 £.(0r] + Ary) + £ Ary Ar, . (68)
For this normal mode Ar = Arl = —Ar2 and Equation (68) may be simpli-.
fied to
W= £ ar? - £ ar? . (69)
T T
The quantities AE and AE )? which measure this change in energy

B(I) B(CI

for the calculations using the wave functions given in Chapter IV may

be expressed as

- £ 2 T 2
AEB(I) frAr frr AT (70)
and

2 2
AEB(CI) = fr AT - frr Ar (71)

The quantities f; and f;r represent force constants for energy galcula—
tions in which no provision has been included for delocalization of
electrons. The force constants friand frr correspond to energy calcu-
lations in which eleétron delocalization effects, in the form of DBNB
resonance, have been provided for in addition to the localized effects
illustrated by the quantities in Equation (70).

The difference

_ 2, 2
AEg 1y = ABpeery = (fn = £)4r" + (£ - £] Jar (72)

is illustrated in Figure 15, The equality of fr and f; is not guaran-

teed because the addition of determinants D

IT and DIII to the wave

function described by DI results in added stability calculated for OF2°
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This stability may be reflected in stronger O-F bonds so that one may -

state that f'<f or
r r

Rearranging Equation (72) results in the equation

AE_, . - AE -
B(1) BCD _af = ¢ - ¢ (73)
Ar

2 r- rr rr

The first term on the left-hand side of this equation is positive so
that one may write the expression

A - A

Ep) ~ “Egeen '

2 < frr - frr = fd ’ (74)
Ar

For convenience the difference, frr - f;r,'is denoted by fdo

The quantity, f;r, measures the interaction constant essentially
of a 0- bonded system containing localized electrons. The constant,
frr’ measures contributions to the interaction constant from DBNB reso-
nance as well as from the localized system of electrons. Theoretically
the_quantity; fd’ would be the contribution to the bond-bond inter-
action constant due to electron delocalization of the DBNB resonance
type. Theoretical values 6f fd as determined from the data presented
in Chapter IV using the term on the left-hand side of expression (74)
are given 1n Table XXIII along with the displacements from equilibrium
at which these quantities were calculated. The displacements chosen

are lafge enough such that the difference, AE , was signif-

B(1) ~ “Ea(cr)

icant, and are small enough such that they correspond roughly to the

size of the displacements expected for an O-F bond in the Q3 coordinate.
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TABLE XXIII

THEORETICAL VALUES FOR fd

In Plane Atomic Orbital Basis Set:

r () ' fd X 10-5 dynes/cm
0.02116 1.166
0.62645 1.181
0.03174 1.036
0.03703 0.920
0.04232 0.996
0.04761 1.037
0.05290 1.073

OQut-of-Plane Atomic Orbital Basis Set:

0.0529 0.000

For the out-of-plane basis set, only one value is entered in
Table XXIII, but it is representative of all the points calculated.

These calculations predict a value of zero for fd’ resulting from the-

fact that the difference E is constant for all the anti-

B(1) ~ FB(cm)
symmetric geometries calculated for OF2.
The values listed for the in-plane calculation predict a value of
1.058 x 105 dyne/cm for the quantity, fd’ this value being an average
of those listed in Table XXIII. Thus the model employed in this calcu-~
lation of the binding energy for OF2 predicts ‘a large positive contri-
bution to the bond-bond interaction constant as a result of DBNB reso-.

nances Such a contribution could partially explain why a positive

] . s s 22
bond-bond interaction constant, which Linnett and Hoare state as a
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characteristic of triatomic molecules with delocalized electrons, is
calculated for OF2 from the frequency data.

Use of expressiop (74), coupled with a reasonable estimate of f;r’
allows a calculation of the interaction constant, frr’ which can be

compared with experimental data. If f;r;z 0 expression (74) may be

written as

AEB(I) - AEB(CI) <t (75)

2

rr
Ar

If this is the case, the values listed for f, in Table XXIII should pro-

d
vide a reasonable estimate of a lower limit for the bond-bond inter-
action constant. If f;r< 0 it is unlikely that it will have a large
absolute magnitude judging from the results of force constant calcula-
tions for essentially o-bonded triatomic molecules. Table XXIV list
some of these molecules and their corresponding interaction constants.
It seems unlikely that f;r would have a value larger in absolute magni~

tude than ahy listed in Table XXIV. If this is the case, expression

(75) should be approximately correct.

TABLE XXIV

BOND-BOND INTERACTION CONSTANTS FOR SEVERAL TRIATOMIC MOLECULES

Molecgle H20 ' HZS - H2‘Se : I-}gCl2 | Hg?rZ HgIZV
. =201 . -.219  -.249 -.058  -.0905  =-,0912

Values taken from reference (22), (Constants in dynes/cm x 10—5;)‘

The possible experimental values for frr of 0F2, calculated by

Duchesne and Burnélle,23 have been presented in Figure 6 as a function
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of fru’ the bond-angle interaction constant. Assuming that the equal-
ity in expression (75) is approximately correct our calculated value of
ffr’ 1.058 x 105 dyne/cm, represents allowed solutions of 0.35 x 105
and 2.2 x lO5 dyne/cm for fra/r° Duchesne and Burnelle list representa-—
tive values of frr and fra/r of 1.1 x lO5 and 0.38 x 105 dyne/cm for
OFZ’ although they state no reason for this choice over other possible
solutions. This excellent agreement, in view of the approximations
heretofore made and the fact that the experimental frr also includes
contributions from the non-bonded interaction between the fluorines to
some extent, is probably fortuitous, but the reasonableness of the"
theoretical quantity, fd’ is clearly demonstrated.

Linnett and Hoare22 have demonstrated that a large non-bonded
interaction between the fluorines in OF, can result in a major contri-

2
bution to the large positive experimental value for frr in OF2. Equa-
tion (11) illustrates this correspondence between F and frr° Assuming
a potential energy function containing both F and frr’ these authors

conclude that the non-bonded interaction in OF, cannot completely ex~

2
plain the large positive frr° For example, assuming that F = 2 x lO5
dyne/cm, which seems reasonable compared to other fluorine molecules in
which DBNB resonance is not expected to be as significant as in OF2, a
set of force constant solutions with reasonable values for fr’ fa and
fra’could exhibit a value of frr’ of + 0.6 x lO5 dyne/cm, which should
measure essentially bond-bond interaction.

The model employed here -indicates that a solution with frr of this
magnitude and sign may be explained by significant DBNB resonance in

0F2. When sufficient data becomes available to determine all the force

constants -of. the GVFF, modified by a proper non-bonded interaction, a
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more definite conclusion about the significance of frr may be drawn.

The assumption that OF, contains only localized electrons, in the

2

light of these calculations, seems premature, Therefore the correla-
. . . 2 . . .

‘tion described by Linnett and Hoare, ? between the algebraic sign of

frr and the electronic configuration of a triatomic molecule, is not

necessarily violated by the specific example of OF, as originally in-

2
ferred in reference (23).

The positive contribution to frr due to DBNB resonance, fd as de-
termined by these calculations,'would decrease the frequency of the
antisymmetric stretch by approxiﬁately 480 cm—l, according to equation
(64). Inspection of equations (62) and (63) indicate that the frequen-
cy of the symmetric stretching mode would be increased by a comparable
amount. Such frequency increments could easily account for the fre-
quency inversion observed in 0F2;

One of the most intéresting aspects ofvthis‘study ié the apparenﬁ-
ly acute sensitivity of the interaction constant, ffr’ to.a small change
in the trial wave function. Fér the data used to calculate the differ-~
ence between frr and f;r, the largest value of the'vériétion coeffic-

ients, C I and C

I

r1p» is 0.04379 at a bond displacement of 0.0529 &,

Resonance structures, such as those of the DBNB type, which may appeér
unimportant in.the determination of molecular properties, such as bind-.
ing energies, bond‘force constants, etc., may not be insignificant as
far as their effect on the bond-bond interaction constant.

The above analysis may be extended to NF2 and‘CFz. In these.
molecules a filled fluorine AO and either a vacant or half-filled or-

bital on carbon or nitrogen may participate in significant 7-bonding.

This would be reflected in positive contributions to frr in addition to
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those effects mentioned for OF2.

The binding energy curves which approximate the symmetric stretch
are more difficult to interpret. First, the symmetric stretching mode
as determined from normal coordinate analysis contains a considerable
amount of,angular displacement as the bond lengths are varied. Second-

ly, the analysis used to calculate f, for the antisymmetric stretch is

d

complicated by the presence of fa’ fy

& fr in the potential energy

function for the symmetric‘stretch. 'If such effects are ignored, the

resultant calculations of f, are discouraging. At the bond displace-

d
ment of -0.0529 X, this quantity is =5.3 x 105 dyne/cm and at +0.0529,

fd = +1.4 x 105 dyne/cm. This latter value agrees reasonably well with
the results of the antisymmetric stretching calculations, but the
former value deviates badly and even possesses a negative sign. The

negative sign for f, results from a relatively large contribution of

d

determinants, D I and DIII’ to the CI wave function which would lead

I

0 .. . A ’—A . .
to a large positive difference, EB(I) EB(CI)’ for the symmetric

stretch. Such a difference would result in a large negative value for

fdo DII and DIII represent resonance structures
o 0
*\\\ and %///7
+ .
F F B F

IT ‘ IIT .

The molecular angle has been constrained at 90?}this angle cannot be-
come larger as the bonds are compressed. This would result in an

abnormally high core-core répuision between Fhe fluorines, The intro-
duction of determinants DII and DIII’ multip;ied by adjustable paraﬁ—-

eters may allow the effect of this abnormally high repulsion term,
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‘which in reality is decreased by_a'&ider gngle at short bond distances,
to be compensated for by a relativel& large contribution of-structures
IT and IIL to the CI wave function. This woyld explain why the values
of fd,.cglculafed for the symmetric stretchiﬁg-geometries, deviate less
frbm»the antisymmetric stretching values as the bond length is in-
creased. |

The model predicts an increase in thermodynamic stabi}ity,of OF2

of 0.445 kcal/moie due to the inclusion of DII and DIII into the CI

wave functién; This.value waé‘calculated from the difference Eg(CI) -
ngl)’ these quantities representing equilibrium binding energies as
determined in Chapter IV. Since two DBNB resonance structures may be
drawn for OFz, this corresponds to a resonance energy of 0.223 kcal/mole
for each possible DBNB resonance structure. No experimental data is
available for DBNB resonance structures involving oxygen and fluorine.
Hine4 estimates a value of 3.2 kcal/mole resonancebenergy for each.

DBNB resonance structure in carbon~fluorine compounds. The calculation
of this1value assumes that all this resonance energy is due to DBNB
resonanée with no contribution from the non—bonded interaction betﬁeen,
"~ the fluorines. From the above data, it appears as though our calculafed

value for the resonance energy is considerably smaller than the value

which might be expected experimentally.
Summary

2? NF2 and CF2

semiempirical LCAO-MO~SCF procedure, deséribed in Chapter III, are

1. The binding energies calculated for OF using the

larger than theirvcorreSpondingaexperimental»values. This appears to

be the result of the relatively,high ionization potential and electron
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affinity of the fluorine atom employed in the semiempirical evaiuatioﬁx
of the integrals which determine the binding energies of these mole-
cules,

2, The Set II integral approximations, coupled with the assump-
tion of completely covalent O-F bonds in OF,, lead to equilibrium bind-
ing energies of 5.683 e.V, and 4.015 e.V. fﬁr the out-of-plane and in-
plane AO basis sets, respectivély. These CI binding energies agree
reasonably well with the experimental energy of 3.9 e. V.

3. The model employed in this calculation predicts a bond-bond
interaction constant of approximately 1 x 105 dyne/cm. This calculated
value explains the large positive bond-bond interaction constant calcu-
. 2 )

4. This calculation indicates that the OF, molecule obeys the

2

correlation of Linnett and Hoare between the sign of the bond-bond

lated from the fundamental frequencies of OF

interaction constant and the electronic configuration of the triatomic
molecule.

5. The calculation indicates that DBNB resonance, while having a
relatively small effect on the equilibrium binding energy, plays a
large role in determining the value of the bond-bond interaction
constant,

6. A resonance energy of 0.223 kcal/mole for each possible DBNB
resonance structure ﬁas determined for OF,. This appears to be incon-

2

sistent with Hine's conclusion, as frr 1s less for CF4 than for OF2°

Suggestions for Future Work

1. Extend the LCAO=-MO-SCF calculations for the XF, molecules by

utilizing other possible sets of integral approximations and by
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minimizing the energy 6f these molecules with respect to the molecular
angle. Possibly a study of the effect of the Wolfsberg-Helmholtz
parameter on the calculated molécular properties of these molecules
would be of value.

2. A study of the CI wave function and the calculated binding
energies of OF2 as a function of molecular angle for the symmetric
stretching mode, coupled with calculations similar to those presented
above for thé symmetric stretch, may illustrate the proper dependence

and E

of EB(I) "for symmetric stretching geometries on the positive

B(CI)
bond-bond interaction constant.

3. . A configuration interaction calculation to determine the
extent of bonding between the fluorines in XF2 molecules would appear
to be helpful in classifying the nature of the interaction between
these atoms.

4, Theoretical investigations of the alkaline earth dihalideé,
with emphasis on non-bonded interaction and/or multiple bonding would
be particularly interesting as several of these molecules are nonlinear.

5. As data becomes available on more triatomic.dihalide moleéules,
such as CCl2 and NBr2, calculations of the type déscribed.in this thesis
may be employed to determine values for the bond-bond interaction
coﬁstantov A comparison of these values with experimental data wéuld be
helpful in deducing the importance of DBNB resonance in these molecules.
Also LCAO~MO-SCF calculations'would be useful in determining the best
set of semiempirical integral evaluations to be employed in treating
these molecules.

6... Vibronic coupliﬁg of the DBNB resonance type in OF, may be in-

2

vestigated by measuring the experimental band intensities of the
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fundamental frequencies for OF2. By comparing the intensities of the
symmetric and antisymmetric stretching modes an estimate of the extent

of vibronic coupling in OF, may be obtained.

2



10.

11.

12.

13,

140

15.
16.

170

18.

BIBLIOGRAPHY

. Brockway, L. O., J. Phys. Chem., 41, 185 (1937).

Devlin, J. P., J. Chem. Phys., 39, 2385 (1963).

- Shimanouchi, T., J. Chem., Phys., 17, 848 (1949).

Hine, J. T., J. Am. Chem. Soc., 85, 3239 (1963).

Hine, J. T., Physical Organic Chemistry, McGraw-Hill, New York
(1962) .

Bernstein, H. J. and Powling, J., J. Chem. Phys., 18, 685 (1950).
Harmony, M. D. and Myers, R. J., J. Chem. Phys., 37, 636 (1962).

Milligan, D. E., Mann, D. E., Jacox, M. E. and Mitsch, R, A., J.
Chem. Phys.,41, 1199 (1964). .

Rochkind, M. M. and Pimentel, G. C., J. Chem. Phys., 42, 1361
(1965).

Herzberg, G. H., Infrared and Raman Spectra of Polyatomic
Molecules, D. VanNostrand, Princeton, N. J. (1945).

Laurie, V. W. and Pence, D. T., J. Chem: Phys., 38, 2693 (1963).

" Pitzer, K. S. and Hollenberg, J. L., J. Am. Chem. Soc., 76, 1493

(1954) .

Sutton, L., E. (ed.), Tables of Interatomic Distances and Configu-
rations in Molecules and lons, Special Publication No. 11,
The Chemical Society, London (1958).

Craig, N, C. and Entemann, E. A., J. Am. Chem. Soc., 83, 3047
(1961).

Lucken, E, A, C.,, J. Chem. Soc.y 2954 (1959).

Kaufman, J. J., J. Chem. Phys., 37, 759 (1962).

Latimer, B. D., "A Vibrational'Study‘of Some Trihaloboroxines"

(unpub. Ph.D. thesis, Oklahoma State University, 1966).

Wilson, E. B., Decius, J. C. and Cross, P. C., Molecular Vibra-
tions, McGraw~Hill, New York, N. Y. (1955).

96



19.

20.

21.

22.

23.
24,

25,
26.

27.
28.
29,
30.
31.
32.
33,
34,
35,

36.
37,
3.
39,

40,

97

Overend, J. and Scherer, J. R., J. Chem. Phys., 32, 1289 (1960).

Linnett, J. W. and Heath, D. F., Trans. Faraday Soc., 48, 592
(1952).

Devlin, J. P., J. Chem. Phys., 41, 2951 (1964).

Linnett, J. W. and Hoare, M. F., Trans. Faraday Soc., 44, 884
(1949).

Duchesne, J.. and Burnelle, L., J. Chem. Phys., 19, 1191 (1951).
Shimanouchi, T., Pure and Applied Chem., 7, 131 (1963).

Eyring, H., Walter, J. andeimball, G. E., Quantum Chemistry,
John Wiley and Sons, New York, N.Y. (1944).

Pohl, H. A., Rein, R. and Appel, K., J. Chem. Phys., 41, 3385
(1964).

Slater, J. C., Phys. Rev., 36, 57 (1930);

Roothaan,; C. C. J., Rev. Mod. Phys., 21’.69,(1951)'

Pople, J. A., TrénsovFaraday Soc., 49, 1375 (1953).

Moffitt, W., Ann. Repts. Progr. Phys., 17, 173 (1954).

Hinze, J. and Jaffé, H. H., J. Am.vChem. Soc., 84, 540 (1962).
Hinze, J. and Jaffé, H. H., J; Phys..Cheﬁ., 67, 1501 (1963).
Pariser, R., J. Chem. Bhys., 21, 568 (1953)0

Mulliken, R. S., J. chim. phys., 46, 497 (1949).

Rein, R. and Harris, F. E., J. Chem. Phys., 41, 3393 (1964).

Switendick, A. C. and Carbato, F. J., Quarterly Progress Report,
Solid State and Molecular Theory Group, M.I.T., 70 (1959).

Mulliken, R. S., Rieke, C. A., Orloff, D. and Orloff, H., J. Chem.
Phys., 17, 1248 (1949). '

Herman, F. and Skillman, S., Atomic Structure Calculations,
Prentice-Hall, Englewocod Cliffs, N. J. (1963).

Pohl, H. A. and Raff, L. M., International Journal of Quantum
Chemistry, 1, 577 (1967). :

Parr, R, G., The Quantum Theory of Molecular Electronic Structure,
W. A. Benjamin, New York, N. Y. (1964).



41.

42.

43.

4h.

.98

Dibeler;, V H., Reese, R. M. and Franklin, J. L » J. Chem. Phys.,
27, 1296 (1957)

Kennedy, A. and Colburn, C. B., J. Chém. Phys., 33, v1892 (1961).

. Thrush, B. A. and Zwolenik, J. J., Trans Faraday Soc., 59 582

(1963)

Ralston, A. and Wilf, H. S. (ed,), Mathematical Meth‘ods for

Digital Computers, John Wiley and Sons, New York, N Y.
(1960)



APPENDIX A

The LCAO-MO-SCF problem fof an XF_, molecule using the procedure

2

described in Chapter III demands solution of the determinant

F - &S =0 (29)

where F and S are 4 x 4 symmetric matrices and € represents the eigen-
values of this equation. A well-known matrix diagonalization routine
written in Fortran IV and emﬁloyed in this project successfully de-
termines the eigenvalues and eigenvectors corresponding to the secular

determinant

'

[F - €E| =0 (76)

where F' can be a 4 x 4 symmetric matrix and E is the identity matrix.
The procedure for deriving Equation (76) from (29) is described below.

Since F is a8 symmetric matrix the equations

sD = cl scl an
or
s = c.s.ct (78)
1°p~1

may - be written where S is a diagonal matrix. Substituting Equation

D
(78) into (29) yields

-l _
LF - ecsc| =0 (79)

Pre~ and poét-multiplying this equation by C-l

1 and Cl respectively

99



100
results in the determinant
-1 :
C FC, - sSD = 0 (80)

This same procedure may be applied to S  in order to transform it into

D

the identity matrix. This procedure yields the determinant

il
o

-1.-1
‘ C2 Cl FClC2 - €E

which is identical to Equation (76) where

v -1 -1
F = C, C] FC,C,

A Fortran IV listing of the computer program used in these LCAO-
MO-SCF calculations is presented at the end of this Appendix. This
program contains four subroutines, COEF, EVAL, DIAGP, and HDIAG, in
addition to the main program. The main program specifies the input
variables and the geometry of the molecule in addition to calculating
the binding energy of the XF2 molecule. The subroutine COEF specifies
the initial guess for the LCAO coefficients and tests the successive -
sets of coefficients for self-consistency. Subroutine EVAL evaluates
the elements of the F and S matrices as given by Equations (24) and
(25). The steps presented earlier in the derivation in this Appendix
is essentially used in the subroutine DIAG to prepare matrix Equation
(29) for subroutine HDIAG. This latter subroutine determines the
eigenvalues and eigenvectors of an equation similar to (76) by a mod-.

ified Jacobi methoda44
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C READ IN DATA FOR CALCULATION

DIMENSION H(444)4F (4, 4)'5(4v4)!C(4'4)

COMMON PF4PD4AF,AD4RHIF,RHOO, NN,N;ROF].ROFZ.RFF.SOFI.SDFZ-ZEFD,
12ZEFF,CyFqsH,S

C SYMMETRIC STRETCH }
711 READ(5,10)PF,POsAF s AD,RHOF yRHNO, CONST
10 - FORMAT(7F10.4)
READ(5,11)NN )
11 FORMATI(I3)
READ(5,14)N
14 FORMATI(12)
READ(5,12)R0OF1
12 FORMAT(F10.4)

DR=0,10

D0 15 I=1yN

DO 15 J=1,N

15 H{I,J)=0.0

DO 16 I=1,N

DO 16 J=1,N

16 F(I44)=0.0
DO 17 1I=1,N
DO 17 J=14N

17 S(1,J4)=0.0
DO 18 I=1,N
DD 18 Jd=1,N

18 ClI,J)=0.0

DO 50 Jd=1,4NN

ROF2=ROF1

RFF=SNRT(ROF1*RNOF1+ROF2%¥ROF2Y

13 FORMAT(4F10.4)

RFAD(b.lB)SﬂFl.SﬂFZleFO,ZEFF

CALL CODEF

C CALCULATE ELECTRONIC ENERGY

Cl(2,3)=C(1,1)

C(Zv"):C(le'

EE=CULy1)*CULs L)*(H(L,1V+F(1,1))+C(1,2)%C(12)%(H(2,2)+F(2,2))+C(2
193)%C(293)%(H(343)+F(343))+4C(244)*%C(244)%(H{(494)+F(444))+2.0%C(1s]
2V¥CELy2)%(HULy2)+F (192))+2,0%C(293V%C(244)%(H(3,4)+F(3,4))

C CALCULATE ENERGY CONTRIBUTION FROM NUCLEAR REPULSIDNS

ENUC=2.,0%ZEFN%ZEFF%(1.0/ROF1)+{1.0/RFF) ;

C CALCULATE BINDING ENERGY

EBIND=EE+ENUC+CONST

BINDE=EB IND*27.19224%4

202 FORMAT(1X,30H SLATER EXPONENTIAL PARAMETERS,10X,6H RHOO=4F10.545Xy,
16H RHOF=4F10.5/1Xs22H TONIZATION POTENTIALS,10X,4H PD=4F1045,5Xs4H
2 PF=4F10.5/20H ELECTRON AFFINITIES,10X,4H AO".FIO 5¢5Xy4H AF=,F10.
35/)

204 FORMAT(1X,20H NUCLEAR SFPARAT[ONS,SX 10HROF1=R0OF2=,F10.5,/1X,13H.C
10EFFICIENTS,5X+4H CO=yFl0e5¢5Xe4H CF=,F10. 5/1Xv16H ELECTRDN ENERGY
2910X+4H FE=4F15.9)

WRITE({6,202)RHOD,RHOF PO, PF AD,AF

HRITE(b.204)R0F1:C(111),C(1:2).EE

205 FORMAT(///17TH BINDING ENFRGY=4EL15.8///)

WRITE{6,205)BINDE -

50 ROF1=ROF1+DR

READ(S,11)M

IF(M-0)712,711, 712

712 CONTINUE |

STOP
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END
C SUBROUTINE COEF
) SUBROUTINE CDEF
€ THIS SUBROUTINE GIVES THE FIRST GUESS FOR THE LCAO COEFFICIENTS AND
C SEARCHES FOR SELF-CONSISTENCY.
DIMENSION H(444)oF(404)9S5(444),Cl4,4)
COMMON PF,PO0, AF » AD,RHOF, PHOO NNy Ny ROF1, ROFZ.RFF SDFlgSDFZ,ZEFOo
1ZEFFsCyFyH,S

Cl4,4)=0.7
C(314)-—6(4’4)*SOFl+SQRT(C(4v4)*C(4.4)*SOFI*SDFI#I 0-C (4, 4)*C(4 4)
1)

T7T 2212=Cl444)
2211=C{(3,4)
116 FORMAT(14H 2211 AND 2112)
WRITE(64116)
WRITE(Ay115)2711,2212
115 FOQRMAT(2F10.4)
CALL EVAL(C,H,F,S)
INN=C{3,4)%C(3,4)+2.0%C(3, 4)*C(4'4)*SDF1+C(4 4)%¥Cl4y4)
SZNN=SQRT(ZNN)
C(3,4)=C(3,4)/SINN
Clay4)=C(444)/SZINN
IF (ABS(C(3,4)-2Z11) .GT., .0001) GO TO 77
IF (ABS(C(444)~2212) .GT. 0001} GO TO 77
C(l,1)=C(3,4) ~
Clly2)= f(4o4)
RETURN
END
€ SUBROUTINFE EVAL
SUBROUTINE EVAL(C+H,F,S)
DIMENSTON Clé4y4) 4yHIG, 4)0F(4v4)05(4v4)
COMMON PF,P0D,AFyADyRHOF,RHDOyNNyN,ROF1, ROFZ;RFF S0F1,S0fF2,2EF0,
12EFF
Cli=C(3,4)
Cl2=Cl4,4)
C23=C(3,4)
C24=C(4+4)
C EVALUATE H(I,J) TERMS
H(1l,1)=-P0-.35%RHO0-1.0/R0OF1~-1. O/RUFZ
H(242)=-PF-2,.0/R0OF1-1.0/RFF
H(3,3)=H(1l,1)
Hl4y4)=-PF-2,0/R0OF2~1., O/RFF
H{192)=0.5%SOF1*{~-PF- PO*I 35%¥RH00-0,5%RHOF~1.5/R0OF1-1.0/RNF2~-1,0/R
1FF)
H{2,1)=H{1,2)
H(1,3}=0,0
H{3,41)=H(}1,3)
H(1,4})=0.0
Hl{4,1)=0.0
H{2,3)=0.0
H(3,2)=0,0
H(2,4)=0.,0 ]
H{4,2)=0,0 .
H(3,4)=0,5%SOQF2%(~PF~PD~-1. 35*RH00 0o5%RHOF~1,/ROF1-1.5/ROF2~1., O/RF
1F)
H{4,3)= H(3v4)
C FEVALUATE FELEMENTS OF F-MATRIX.
F(lyl)=H(1,1)+C11%Cl1i*(PO+ADY+2, 0*rl?*c12*(1 O/ROF1=-((SOF1*SNF1)/8
1.0)*(PO+AD+PF+AF+2.0/R0OF1))+2,0%C23*%C23%(PO+AD-{(.0604/2.0)*(PO+AD
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2)))+2, 0*C24*C24*(1.0/ROF2)+Cll*CIZ*SOFI*(PUOAUOI 0/RUFI'+2 0%C23%C
324%SOF2%(PO+A0+1,0/R0OF2)

Fl2,2)=H{2,2)+2, 0*C11*C11*(1 0/ROF 1~ ((SUFl*SDFl)/B 0)*(PD+A3+PF+AF
142.0/ROF1))+C12%C12%(PF+AF)+2, O%C23%C23%{1.0/ROF1)+2,0%C24%C24%{1.,
20/RFF)+C1[*CIZ*SDFI*(PF+AF+1 0/ROF1)+2, 0*C23*C24*SOF2*(1 0/ROF1+1.
30/RFF) Co

F(3,3)= H(3'3)+2 O*Cll*CII*(PO+A0 ({.06040/2,. 0)*(P0*A0))'+2 O*CIZ*C
112%(1.0/ROF1)+C23%C23%(PO+AD) +2.0%C24%C24% (1. 0/ROF2~( ( SOF2%SOF2)/8
2<0)*(PO+A0+PF+AF+2.,0/RDF2))+2. O*CII*CIZ*SOFI*(PD#AO+I 0/ROF1)+C23*
3C24*SOF2«(PO+A0+1.0/R0OF2)

Fl4a,4)=H(4,4)+2,0%C11%C11*(1.0/ROF2)+2,0%C12%C12%(1. 0/RFF)+2 0*C23
1*¥C23%(1,0/ROF2-( (SOF2%SNF2)/8.0) *(PO+AO+PF+AF+2.0/R0OF2))+C24*C24%(
2PF+AF)+2,0%C11*%C12*SOF1*(1.0/R0OF2+1., O/RFF)+C23*C24*SOF2*(PF+AF+1 0
3/R0OF2)

F(l42)¥=H(1,2)+C11%C11%0. 5*SOFI*(PO+AO+1 0/ROFl)+0 5*C12*C12*SDFl*f
LPF+AF+1.,0/ROF1)+C23%C23%SOFL1%( PO+A0+1.0/ROF1)+C24%C24%SOF1*(1.0/R0
2F2+1.0/RFF)+0,75%C11%C12%SOF1%SOF1% (PO+AO+PF+AF+2,0/R0OF1)-Cl1%C12%
3(l./RUFl)+C23*C24*SOFI*SOF2*(P0+AU*1.0/RDF1+1.00/ROF2+l.0/RFFl

Fl241)=F (1,2}

F(1,3)=0.0

F(3,1)=F(1,3)

Fll,4)=0.0

Fl4s1)=F(1l,4)

F(2,3)=0.0

F(3,2)=F(2,3}

F(3,4)=H(3,4)+CL1%CL1%SOF2%(PD+A0+{1.0/ROF2))+C12%C12*SOF2%((1.0/R
10F1)+(1.0/RFF))}+0,5%C23%C23%SOF2%(PO+AO+(1.0/R0OF2))+0.5%C24%C24%*50.
2F2%(PF+AF+(1.0/R0OF2) )} #C11%C12%SOF1*SOF2%(PO+AD+(1.0/ROF1)}+(1.0/R0OF
32)+{1.0/RFF))}4+0,75%C23%C24%SOF2%SOF2*(PO+AQ+PF+AF+2,0/R0OF2)~- C23*C2

44%(1,0/R0OF2)

Fl4,3)=F(3,4)

Fl2+4)=0.0

- Fl4,2)=0,0 )
¢ EVALUATE ELEMENTS OF THE DVERLAP MATRIX.

S(1,1)=1.0

S(2,2)=1.0

S(3,3)=1.0

S{4,4)=1.0

S(1,2)=S0OF1

S(1,3)=0.0

S{1,4)=0.0

S(243)=0.0

S(2,4)=0.0

S{3,4)=S0F2

S(2,1)=S{1,2)

S(3,1)=5(1,3)

S{4,1)=S1{1+4)

S(3,2)=5{2,3)

S{4,2)=5(2,44)

S{4,3)=5(3,4)

CALL DIAGP({SyF, C)

RETURN )

END

C SUBROUTINE DIAGP
C THIS SUBRDOUTINE PREPARES DATA FNR SUBROUTINE HDIAG.
C FIRST DIAGDNALIZE S MATRIX,THEN THE RFSULTING F PR]HE MATRIX,

SWBROUTINE DIAGP(S,F,C)

DIMENSION S{444), F(4|4’1C(414)1 (414)vB(4v4)1T(4.4)

COMMON PF,PO,AF,AC,RHOF,RHOO,NN,N,ROF1,ROF2,RFF,SOF1,SOF2,ZEFD,



C

177

109

110

120

1ZEFF

DO 777 I=1,N

DD 777 J=1,N
T(I,J)=0.0

DO 109 I=1,N

D0 109 J=1,N
AlT,J)=S(TI,J)

CALL HDIAG(A+N,0,T4NR)
DO 110 I=14N
TEMP=1.0/SQRT(A(TI+1))
00 110 J=1,N
TEJsI}=TLJ,1)*TEMP

DO 120 I=1,N

DO 120 J=1,N
All,J)=F(1,J)

PREPARE NEW MATRIX TO BE DIAGONALIZED, SHS-1

130

140

150

2002
2003
2004

30

OO0

DO 130 I=1.N

DO 130 J=1,4N

ClI,J)=0.0

DO 130 K=14N

ClIodV=ClI J)+T{KyIV1%A(K,J)

DO 140 I=1,N

DO 140 J=1,N

Al(I,J)=0,0

DO 140 K=1,N
AlTyJ)=A0T,J)+CLIKI%T(K,J)

CALL HRIAG(AN,0,B4NR)

DD 150 I=1,N

D0 150 J=1,N

ClIsJ}1=0,0

DO 150 K=1,N

ClIyJ}=C{I,J)+TLLI, K)*B(K.J)'

K=0

K=K+9

Kl1=K-8B :

IF(N .LT. K)K=N ‘
FORMAT(//33H EIGENVALUES IN DECREASING ORDER(.IZ,aH TO, Ia.lHl/)
FORMAT{1HO0,9E13.6)

FORMAT(55H EIGENVECTORS 1IN CDLUMNS UNDER CDRRESPOND!NG ETGENVALUE/
1)

WRITE(6,2002)K1,K
WRITE{642003)(A(JsJ)sJ=K]1,K)
WRITE{6,2004)

DO 30 [=1,N '
WRITE(692003)(C(I1yJ)yJ=K1ly4K)
RETURN

END

SUBROQUTINE HDIAG (HyNyIEGEN,U,NR}
SUBROUTINE HOIAG.

PROGRAMED BY Fa. Jo CARBATO AND M.MERWIN OF THE MIT
COMPUTATION CENTER, :

THIS SUBROUTINE COMPUTES THE EIGENVALUES AND EIGENVECTORS
OF A REAL SYMMETRIC MATRIX, Hy OF ORDER N ( WHERE N MUST BE LESS
THAN 511y AND PLACES THE EIGENVALUES IN THE DIAGONAL ELEMENTS OF
THE MATRIX Hy AND PLACES THE EIGENVECTORS (NORMALIZED ) IN THE
COLUMNS 0OF THE MATRIX U. IEGEN IS SET AS 1 IF ONLY EIGENVALUES
ARE DESIREDyAND IS SET TO O WHEN VECTORS ARE REQUIRED. NR CON-

104 .



OO0

[aEeXe]

2001
2002
2003

10
11
12

14
15

17

20

30

40

60

70

80

90

100
110

105

TAINS THE NUMBER OF ROTATIONS DONE,.

Hs Ny TENGEN, U, AND NR OF THE ARGUMENT LIST ARE DUMMY VARIABLES
AND MAY BE NAMED DIFFERENTLY IN THE CALLING 9OF THE SUBROUTINE.

SUBROUTINF PLACES. COMPUTER IN THE FLOATING TRAP MODE

THE SUBROUTINE DPERATES ONLY ON THE ELEMENTS OF H THAT ARE TO THE
RIGHT OF THE MAIN DIAGONAL. THUS, ONLY A TRIANGULAR
SECTION NEED BE STORED IN THE ARRAY H.:

DIMENSION H(4,4),U(4,4),X(4),10(4)

FORMAT(14H MAX OFF DIAG=,F1l4.7,3HNR=,13)

FORMAT (1X,8E15.8) '

FORMAT (18H ORTHOGONAL MATRIX)

FORMAT(15H ROTATED MATRIX)

IFUTEGEN.NE.O) GO TO 15 °

DO 14 1=1,N

DO 14 J=1,N

IF(I1-J.NE.O) GO TO 12

UlT,d1=1.0

GO TO 14

Ul1,4)=0.0

CONT INUE

NR = 0

IF(N-1.LE.0) GO TO 1000

SCAN FOR LARGEST DFF-DIAGONAL ELEMENT IN EACH ROW

X(I) CONTAINS LARGEST ELEMENT IN ITH ROW

I0(1) HOLDS SECOND SUBSCRIPT DEFINING POSITION OF ELEMENT

NMI1=N-1

DO 30 I=1,NMI1

X(I) = 0.0

IPL1=1+1

DN 30 J=IPL1,N :

IF(X(I)-ABS(H(I,J)).6T. 0.0) GO TO 30

X(I)=ABS(H(T,J})

1Q(1)=J

CONTINUE

SET INDICATOR FOR SHUT-OFF.RAP=2%%-27,NR=NO. OF ROTATIONS

RAP=7.450580596E~9

HDTEST=1,0€38

FIND MAXIMUM NF X(I) S FOR PIVOT ELEMENT AND .

TEST FOR END OF PROBLEM

DD 70 [=1,NMI1. .

IF(I-1.LF.0) GO TO 60

IF(XMAX=X(T}.G£,0.0] GO T0 70

XMAX=X (1)

IPIV=1

JPIV=IN(T)

CONTINUE

IS MAX. X(I) EQUAL TN ZERD, IF. LESS THAN HDTEST, REVISE HDTEST

IF(XMAX,LE.0.0) GO TD 1002 o

IF(HDTEST.LF.0.0) GO TO 90 °

IF(XMAX-HDTEST.GT.0.0) GO TO 148

HDIMIN = ABS( H(1,1) )

DO 110 I=2,N '

IF(HDIMIN- ABS({ H(I,I} ).LE. 0.0) GO TO 110

HDIMIN=ABS( H(I,I) )

CONTINUE

HOTEST = HDIMIN%*RAP

RETURN TF MAX.H(I,J)ILESS THAN(2¥%=27)ABS(H{K,K}=MIN)



148

106

IF(HDTEST—XHAX GE.0.0)60 T0 1002 ‘
NR = NR+1" i

C COMPUTE TANGENT, SINE AND COSINE,H(I, l)-H(J-J)

laNxNel

150

152

153

200
210
230
240
250

300
320

350

370

380

390

TANG=SIGN (2.0 (HIIPIV,IPIVI~H(JPIV,JPIV)))*H(IPIV, JPIV)/(ABS(H(I
1PIV,IPIV)- H(JPIV.JPIV))+SQRT((H(IPIV.IPIV! H(JPIV;JPIV)D**2*4 O*H
2(IPIVsJPIV)*%2) )"

COSINE=1.0/SQRT(1.0+TANG**2)

SINE=TANG*COSINE

HIT=H{ IPIV,IPIV)

HIIPIV,IPIV)= CﬂSINE**Z*(HII#TANG*(Z *H(lPIVpJPlV)#TANG*H(JPIVv
1JPIVY))

H(JPIV.JPIV)—CDSINF**?*(H(JP!V:JP[V)-TANG*(Z *H(IPIV.JPIV) TANG#*H
111))

HUIPIV,JPIV)=

PSEUDO RANK THE EIGENVALUES

ADJUST SINE AND COS FOR COMPUTATION OF H(IK) AND - UCIK}

IF{H(IPIV,IPIV)-H(JPIV,JPIV).GE.Q.0) GO TOQ 153

HTEMP = H(IPIV,IPIV)

HOIPIV,IPIV) = H(JPIV,JPIV)

HIJPIV,JPIV) = HTEMP

RECOMPUTE SINE AND COS

HTEMP = SIGN(1.0, ~SINE) * COSINE

COSINE = ABS (SINE)

SINE = HTEMP

CONTINUE
JINSPECT THE IQS BETWEEN. l#l AND N~1 TD DETERMINE

WHETHER A NEW MAXIMUM VALUE SHOULD BE COMPUTED SINCE

THE PRESENT MAXIMUM IS IN THE I 0R J ROW..

D0 350 I = 1,NMI1

IF(I-IPIV.FQ.0) GO TO 350 )

IF(I-IPIV.LT., O ) GO .TD 210 .

IF{I-JPIV.EQ. O ) GO TO 350

IFCIQ(I)~IPIV.EQ. 0) GO TO 240

IF(IQ(I)-JPIV.NE. O ) GO TO 350

K = 19(1)

HTEMP = H([,K)
H(I,K) = 0.0
IPLL = [+
X{I) = 0,0

SEARCH IN DEPLETED ROW FOR NEW MAXIMUM

DO 320 J = IPLI,N

IF( X(I)-ABS{ H{I,J) ).GT. 0.0) GO TN 320
X(I) = ABS(H(I,J))

1901y = 4

CONTINUE

HOE,K) = HTEMP

CONTINUE

X{IPIV) = 0.0
X(JPIV) = 0.0 .

CHANGE THE OTHER ELEMENTS OF H

DO 530 I = 1,N

IF(I-IPIV.EQ. O ) 6O TN 530

IF(I-IPIV.GT. 0 ) GO TO 420

HTEMP = H(I,IPIV)

HOT,IPIV) = COSINE*HTEMP + SINEXH(I,JPIV)

IF{ XU[) = ABS( H(I,IPIV) ).GE. 0.0 ) GO TO 390
X(I) = ABS( H(I,IPIV) )

10(1) = IPIV , ‘ v

H(1,JPIV) = =SINE*HTEMP '+ COSINE*H(T,JPIV)



400

420

430

440

450
480

490
500
510

530
540
550

1002
1000

IFC Xt1) - ABSU H(I,JP[V) )eGEs 0.0 ) GO TO,53O

X(I) = ABS{ H{T,JPIV) }

T1Q(I) = JPIV

G0 TO 530 -
IF( I-JPIV.EQ. 0 ) GO TO 530

IF(1-JPIV.GT. O ) GO TO 480

HTEMP = H(IPIV,I)

HOIPIV,I) = COSINEXHTEMP # SINE®*H(I,JPIV): o
IF( X{IPIV) = ABS{ H(IPIV,I} }.GE. 0.0 ) GO TO 450
X(IPIV) = ABS( H{IPIV,I) ) ‘ ‘
1IQ(IPIV) = I .

H(I4JPIV) = —SINE®*HTEMP + COSINE#*H(I ,JPIV)

IF( X{I) - ABS{ H(T,JPIV) ).GE. 0.0 ) GO TO 530 -
IF( X(I) - ABS{ H(I,JPIV) ).LT. 0.0 ) GO TD 400
HTEMP = H(IPIVaI)

HUIPIV.T) = COSINEXHTEMP + SINE#H(JPIV,1)

IF( X(IPIV) ~ ABS( H(IPIV,I) ).GE. 0.0 ) 6O T0.500
X(CIPIV) = ABS( H(IPIV,I) ) o

IQ(IPIV) = I o L
HIJPIV, 1) = —SINE®*HTEMP + COSINEXH(JPIV,I)

IF({ X(JPIV) - ABS( HIJPIV,I). ).GE.0.0) GO TO 530
X(JPIV) = ABS( H{JPIV,I) )

1QUJPIVY = 1

CONT INUE

TEST FOR COMPUTATION OF EIGENVECTORS
IF(IEGEN.NE.O) GO TO 40

DD 550 I = 1,N

HTEMP = U(I,IPIV)

UCToIPIV) = COSINEXHTEMP + SINE*U(T,JPIV)

UlI.JPIv) = -SlNE*HTEMP*COSlNE*U(I,JPIV)
GO TO 40

WRITE(6y2) XMAXNR

RETURN

END



APPENDIX B

Six short computer programs, employed in the CI problem, are in-
cluded in this appendix. The first four programs calculate the Hij
matrix elements for the in-plane AO basis set. These matrix elements
are substituted into Equatibn (51) to obtain the eigenvalues and eigen-

vectors for the CI problem. The four matrix elements needed are Hll’

H22’ le and H23° For symmetric stretching geometries the balance of

the elements in Equation (51) are related to these four by the equa-

tions
Hyg = Hyp = Hyg = Hyy Hyg = Hyy
and sz = H33° .For antisymmetric stretching geometries
le = H21 s, H ., =H and H,, = H_,.

13 31 23 32

The matrix element H), described by the geometry

) )
ROF1 = ROF + AR and ROFZ = ROF f AR

is equivalent to the matrix element H13 described by the geometry

o o
ROFl = ROF - AR _and ROF2 = ROF + AR.

)
In these equa_tions-ROF indicates the calculated equilibrium bond length

in OF2 and AR denotes a displacement of the O-F bond from equilibrium.

The elements H and H

292 may be related in a manner similar to the -

33

108
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relationship between H., and Hl

12 3°

The two remaining programs calculate H and H2 for the out-of-

11 2

plane AO basis set. The balance of the matrix elements in this problem

were simple enough to determine using a. desk calculator.
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C THIS PROGRAM COMPUTES THE MATRIX FLEMENTS H1Y AND S11, IN PLANE AD BASIS SET.
1234 FORMAT(BF10.4)
12 FORMAT([3)
13 FORMAT(F10.4)
14 FORMAT(6F10.4) : ‘
16 FORMAT(1H1,5X4HROFL,10Xs4HROF2410X, 5H50F15,9x 5HSOF25'9X15HSDF1P,
19X, 5HSOF 2P 4 14X 2HEE// /)
DR=0,01
WRITE(6,16)
READ(5414)PF2, P01, AF2,A01,RHOF 2, RHODL
READ(5,13)ROF1
READ(54,12)N
DO 30 J=1,N
READ(5p1234)SDFlS.SDFZS,SDFlP'SDFZPoZEFDloZEFFI,ZEFDZ LEFF2
ROF2=4,000~-ROF1
RFF=SQRT(ROF1*ROF1+ROF2%ROF2) o
RT1S=SQRT{2,0+2.0%S0F1S)
RT25=SQRT{2.042.0%SOF2S)
$12=SOF2P/RT1S '
$34=SOF1P/RT2S
H11=-PF2~2.0/R0OF2-3,0/RFF
H33=0.5%(1,0/(L.0+SAF1S) )% (-POL~PF2-5,0/RNF1=3.0/ROF2~3.0/RFF +SOF1
1S%{-PF2-PN1~RHOD1~1.5%RHOF2-2,5/ROF1-3..0/R0OF2-3.0/RFF))
H55=0,5%(1,0/(1.0+SOF2S) ) %{~-PD1-PF2-3,0/R0OF1-5,0/RNF2~3.0/RFF+SOF2
1S*{-PF2-PO1~RHONOL-1,5%RHOF2~3.0/ROF1~2,5/ROF2~3,0/RFF})
H77=-PF2-2,0/R0OF1-3,0/RFF
H13=(SOF2P/RT1S) % (-P01~-1.5%RHOF2~1. S/RDFI 1.5/ROF2-1.5/RFF)
H31=({ SOF2P/RT1S)*(~PF2-RHOO1-1.0/ROF2-1.5/R0OF1-1.,5/RFF)
H57=(SOF 1P/RT2S)%(—-PF2-RHO0O1-1.0/ROFL-1.5/R0OF2~1.5/RFF}
H75=(SOF IP/RT2S)%{~-P01-1.5%RHOF2-1.5/ROF2~1. 5/ROF1=-1.5/RFF)
11212=PF2+AF2 .
11414=0,5%(1.0/R0OF 241, O/RFFl
13434=0,25%(PO1+AC1+PF2+AF2+2.0/R0OF1)
21214=({0.5%SOF2P}%(1.0/RT1S) *{PF2+AF2+1.0/RNF2)
I1434=(SOF2P/(4.0% 2T1S ))%(PO1+A01+1.0/R0OF1+1.0/ROF2+1. 0/RFF)
21234={ (SOF2P*SIF2P)/(8.0% (1. 0+SNF1S) )} )% (PF2+AF2+P01+A01+2.2/RNF2)
Z1515=0,5%(PF2+AF2+1.0/ROF2)
21717=1.0/RFF
71771=0.0
23535=0,25%(PO1+AD1+1,0/R0OF1+1.0/ROF2+1.0/RFF)
213553=0,25%(1,0/((1.0+SOF1S) %{1.0+SOF2S)))%(0,06040%(POL+ANL))
73838=0.5%(PF2+AF2+1.0/ROFL)
23773=0.5%(1.0/(1.0+SOF1S) ) *{0.0640%{PF2+AF2))
Z1551=0,5%(1.0/(1.04SOF2S) )% (0.06040%{PF2+AF2))
21535=(SOF2P /(4. 0%RT1S) ) ¥ (PF2+AF2+POL+ADL+2.0/RNF2)
71553=0.0
Z1737=(SOF2P/(2.0%RTLS)) *(1. O/RDF1+1 0/RFF)
21773=0.0
71517=((. G*SDFIP)/(RTZS))*(I O0/ROF2+1.0/RFF)
21571=0,0 _
73537=((0,25%SOF1PY/(RT2S))*(PF2+AF2+P01+A0L+2.0/R0OF1)
13573=0,0
Z21537=((SOF2P%SOF1P*0, 25)/(RTIS*RTZS))*(P01+A01+1 0/ROF1+1.0/ROF2+
11.0/RFF)
11573=0.0"
22864=0D.0 o '
75656=0,25%( PN1+A0L+PF2+AF2+2.0/ROF2)



15
20

30

C THI
" 1234
12
13
14
16

25858=0.5%(1.0/ROF1+1. OIRFF) .
17878=PF2+AF2

15676=(SOF1P/( 4. 0% RT2S ))*(P01+A01+1 0/RDF1+1.0/ROF2+1 OIRFF)
15878=(SOF1P/{2,0%RT25) ) *(PF2+AF2+1.0/ROF1) .

I5678=({ SOF1P*SOF1P)/(B.0*(1., 0+SOFZS)D)*(PF2+AF20P01+A01+2 0/R0F1)
I5757= 0.5*(1.0/ROFl+1 0/RFF)

25775=15678 =~ *

21331=21234

§Z12=1.0-S12%S12

$734=1.0-534%S34

$S11=SZ12%SI12%5234%5234 : '
E1=S212%S234%S734%({2.,0%H11+2.0%H33}~ 512*5212*5234*5234*(2 0*Hl3+2-

10*H3ll#SZ34*SZlZ*SZlZ*(2 0%H55+2,0%HT7 )~ 534*5234*5212*5712*(2 0*HS5 .

27+2.0%H7S).

E2=S734%S7134%(721212+2, 0*Zl4l4+l3434l-512*5234*5234*(4 0%71214+4.0%
121434) ¢S12%S12%S57234%5234%4 ,0%212344S57234%S234%5212%{2,0%21414~2.0%2
21331)4SZ12%5234%(4.0%71515+44.0%21717~-2.0%Z1771+4,0%23535~2,0%23553
344.0%73838-2,0%73773-2.0%Z1551}

E3=-812%5734%5212*%({B8,0%21535-4.0%21553+8.0%21737~4.0%21773)-S34%SZ
134%S212%(8.0%21517-4.,0%21571+8.0%73537-4.0%723573)+S512%534%5712%S73
24%(16.,0%¥71537-4.0%71573-4.0%72864)+5712%5212%(25656+2.0%25858+2787
38)-S34%S712%5212%{ 4.0%25676+4, 0*25878)+S34*534*SZIZ*SZIZ*(4 0*2567
48)+S212%S712%S234%(2.0%25757-2, 0*25775)

EE=E1+F2+F3

ENUC=ZEFO1%ZEFF1%*(1. OIRDF1)+ZFF02*ZEFF2*(1 0/ROF2) +{9,0/RFF)

HH11=(EE +SS11*ENUC)

FORMAT{F10.5¢5X+F1l0e54F14a54F13.5,Fl4.4, Fléo4sBXoF1448//)

WRITE(6515)ROF1,ROF2,SOF1S,S0OF2S,SOF1P,SOF2P,EE

FORMAT{6H SS11=,F12,8,6H HH11=,F12.8/7)

WRITE(A520)SS114HHLL :

RNOF1=ROF1+DR

CONTINUF

STOP

END

111

S PROGRAM COMPUTES THE MATRIX ELEMFNTS.HZZ AND 522, IN PLANE AO BASIS SET.

FORMAT(8F10.4)

FORMAT(13)

FORMAT(F10.4)

FORMAT{6F10.4)

FORMAT{LHL +5Xy4HROF1,10X, 4HR0F2110X-5HSDFISv9X,5HSOFZS'QX.SHSUFlPo
19X, SHSOF 2Py 9X14HSSZ?o15Xv?HEC///l '

PR=0.01 .

WRITE(6416)

RFAD(S.l4)PF2oPOl’AF2’ADl'RHOFZ,RHDﬂl

READ(5413)ROF1

READ(5,12)N

DN 30 Jd=1,N
‘RFADIS.I??4'SDFIS.SOF?S.SOFIP.SDFZP;ZEFDIoZEFFl.IEFOZnZEFFZ
ROF2=64,000~-ROF1

RFF=SQRT{ROF1*ROF1+ROF2%R0OF2)

RT1S=SQRT{2.,0+2.,0%SOF1S)

RT2S=SQRT(2,0+2.0%S0F2S)

RT1P=SQART{2.0+2.0%50F1P)

RT2P=5QRT{2,0+2.0%S0OF2P)
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S12=SOF2P/RT1S

$56=S0F2S/RT1P

§822=((1.0-S12%%2) %%2)%((1,0- S56%%2 ) %%2)

H11=-PF2-2.0/R0OF2-3,0/RFF

H22=(1.0/(RTL1S*RT1S) }*(-PO1-PF2~ ~5.0/RDOF1=-3,0/ROF2-3,0/RFF+SOF15#*( -
1PF2-PN1-RHOO1-1.5%RHOF2~2,5/R0OF1-3,0/ROF2-3.0/RFF)) o
H12=(SOF2P/RT1S)*{-PD1-1.5%RHOF2~1.5/ROF1-1.5/ROF2-1.5/RFF)
H21=(SOF2P/RT1S)*(~PF2-RHOO1-1.0/ROF2-1,5/R0OF1-1,5/RFF)
H55=(1,0/(RT1P*RT1P) }*(-PF2-P0O1-5.0/R0OF1-3.0/R0OF2-~3, 0/RFF+SOF1P#(-
1PF2-PO1~-RHOO1-1+5%RHOF2-2.5/R0OF1-3.0/RNF2-3,0/REF))
H66=-PF2-2.0/R0OF2-3,0/RFF
H56=(SOF2S/RT1P)*(-PF2-RHOO1-1.5/R0OF1-1.0/R0OF2-1, S/RFF)

H65=( SOF2S/RT1P)*(-P01-1.5%RHBF2-1.5/R0OF1~1.5/R0OF2-1% 5/RFF)
Z1111=PF2+AF2

21212=0.5%(1,0/ROF2+1.0/RFF) .
12222=0,25%(PO1+A01+PF2+AF2+2,0/R0OF1)
Z1121=(0.5%{SOF2P/RT1S)I*(PF2+AF2+1.0/R0OF2)
211222=(0,25%(SOF2P/RT1S) )% (POL+A01+1,0/ROF1+1,0/R0OF2+1, O/RFF)
Z1122=(0.125%SOF2P*S0F2P* (1, 0/(1.0+SOF15)))*(PF2+AF2+P01+AHI+2 0/R
10F2)

21212=0.5%{1.0/R0OF2+1. 0/RFF)

21221=71122

21515=0.5%{1.0/R0OF2+1.0/RFF)

Z1551=0.0

21616=PF2+4AF2

11661=0.06040%(PF2+AF2)

212525=0.25%( POL+AOL+PF2+4AF2+2, 0/R0OF1) .
22552=0425%(1.0/((1.04SOF1S)*{(1.0+SOF1P))) %0, 06040*(P01+AQI+PF2&AF
12) . .
22626=0,5%{1.,0/RDF2+1.0/RFF)

12662=0.0

21525=(S0F2P/{ 4. 0*RT1§))*(P01+A01+1 »0/ROF1+1., 0/ROF2+1 0/RFF)
21552=0.0

21626={SOF2pP /(2. O*RTIS))*(PF2+AF7+1 0/RDF2)

21662=0,0 .

Z1516=1SOF2S5/(2.0%RT1P))*(PF2+AF2+1, OIRDFZ)

21651=0.0

212526={SOF2S/( 4. 0*RT1P))*(P01+A01+1 0/ROF2+1.0/ROF1+1.0/RFF)
22652=0.0
22516=((SOF2P%SOF2S)/ (4. O*RTLS*RTIP)I*(POL+AQL+PF2+AF2+2,0/R0OF2)
12651=0,0

12561=0.,0

75555=0,25%{ POL+AD1+PF2+AF2+2.0/R0OF1)

25656=0.5%(1.0/R0OF2+1,0/RFF)

16666=PF2+AF2

2155655 (SOF2S5/(4.,0%RT1P))*(PO1+ANL+1.0/R0OFL+1.0/ROF2+1.0/RFF)
I5666=(SOF2S/(2.0%RTLP))*(PF2+AF2+1.0/R0OF2)
25566l((SDFZS*SHFZS)/(4.0*RT1P*RT1P))*(P01+A01+PF2+AF20?.O/ROFZ)
15665275566

EELlw{2,0%HLI1+2,0%H22 )M (1. 0=S12%%2) % (1,0=-S56%#2)wk2+(2, 0*H12+2-0*H2
11)%(=S12}%(1,0=~S12%%2) M (1, 0=S56M%2)wk2+(2,0%H55¢2, 0%HES6) *(1,0-556%
2¥2 )1k (1o0=S12%k2) w24 (2, 0%H56+2 ,0%HAS I (=S56) %[ 1,0-SE6%*2)H(]1,0=-512
Fk 2 )Rk 2

EE2w(21111+42.0%21212+472222)%(1.0- 556**2’**20(4 O*Z1121+64,0%21222)%
L(=S12)M(1,=S56%%2) %4244, 0071 122%S12%512M0(14~S56%%2)k%2+(2,0%712]12~
22,0%Z1221)%(140=-812%%2)%(1,0~S56%%2)%w2+(64,0%21515-2,0%71551+4.0%2
31616=2,0421661+4,0%22525-2,0%22552+464,0%22626~2,0%22662)%(1,0-S12%*
42)%(1,0-S56%%2)+(B,N%71525~4,0%21552¢8,0%21626-4, 0*11662)*( ~S512)%(
- 51.0-556%%2)%(1.,0-512%%2)
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EE3=(8.0%71516-4.0%¥71651+8.0%22526~4,0%22652)%(-S56)%(1.0-S12%%2)%
L{1.0-S56%%2)+({16.0%22516-4.0%72651-4.,0%22561)%S12%S56%(]1,0-S12%%2)
2%(1.0-S56%%2)+ (71555542, 0%25656+76666)%[1.0=-S12%%2) %%2+{4,0%75565+4

3.0%75666)% (~S56)%( 1.0-S12%%2)%#244,0%25566%S56%¥356%(1.0-S12%%2) *%2
4+(2.0%25656-2. 0*25665)*(1 0-S12%%*2)%(1,0~-S12%%2) ¥(1.0-556%%2) '

EE=EE1+EE2+EE3

ENUC=7EFOLl*ZEFF1%(1. O/ROFI!#ZFFOZ*ZEFFZ*(I 0/ROF2)+(9 0/RFF)

HH22=(EE+SS22*ENUC)

15 FORMAT(F10.5:5X¢FL0.5,F14.5,F13.54F14.5,F14.54F14.5,8X,F14.8//)

WRITE(64 15)ROF14RDF24SOF1S+SOF2S4SOF1P+SOF2P+SS22,4EE

20 FORMAT(6H S$522=,F12.8,6H HH22=,F12.8//)

"HWRITE(6,20)5S224HH22

30 ROF1=ROF1+4DR

CONTINUE

sTop

END

C THIS PROGRAM COMPUTES THE MATRIX ELEMENTS,HL2 AND_S12, IN PLANE AD BASIS SET.
1234 FORMAT{8F10.4)
12 FORMAT(I3)
13 FORMAT(F10.4)
14 FORMAT(6F10.4)
16 FORMATULHL,5X,4HROFL,10X, 4HR0F2.1ox.5Hsnpls.9x SHSOF 25 49X s SHSOF 1P,
19X, SHSOF 2P 4 14X , 2HEE/ / /) .
DR=0.01
WRITE(6,16)
READ(5,14)PF2,P0L, AFZ-ADI,RHOFZ.RHOOI
READ(5,13)ROF1
READ(5,12)N
DO 30 J=1,N
READ(5,1234)SOF 1S, SOF2S, SOFLP, SDFZP'ZEFOI.ZEFFI-ZEFUZgZFFFZ
RNF2=4 ,000-ROF1
RFF=SQRT (ROF L *ROF 1 +ROF 24ROF2 )
RT1S=SQRT(2.0+2.0%SOF1S)
RT1P=SQRT(2.0+2.0%SOF1P)
RT2S=SQRT{ 2.0+2.0%SOF2S).
RT2P=SQRT(2.0+2,0%SOF2P).
$12=SOF2P/RTLS '
$35=(1.0450F IP+SOF 25}/ (RT2S¥RT1P)
$36={1.,0+SOF25) /RT2S
$45=(1.0+SOF 1P )/RT1P -
SS12=536+536+ 5455454 (1, 0-5124512) #( 1. 0- S12#512)
H11=-PF2-(2.0/ROF2)~(3.00/RFF)
H13=(SOF2P /RTLS)*(~-POL~( 1. S¥RHOF2) - (1. S/RUFI)-(I 5/ROF2)-(1.5/RFF)
1)
H33=(1.0/(RTLS#RTLS) )% (=POL-PF2=(5,0/R0F1)~(3.0/R0F2)-(3.0/RFF ) +S0
1F1S*(=PF2-PO1-RHOO1~{1.,5%RHOF2)~{2.5/ROF1)-{3,0/ROF2)=(3.0/RFF)))
H31=(SOF2P /RT1S) *(~PF2-RHNO1=(1,0/ROF2)~(1.5/ROF1}={1.5/RFF))
H511=(1,0/RT2S)%(~PF2~(2,0/R0F2)~13.0/RFF)+SOF2S*(~PF2~RHOOL~{1.0/
1ROF2)=(1.5/ROF1)={1.5/RFF) )}
H711=0,0 . '
H79=(1,0/RTLP)*{~PF2=(2.0/ROF1)=(3.0/RFF) +SOF1P*(-PO1l~!1.5%RHOF2}~
1{1.5/ROF1)~(1.5/RDF2)~(1.5/RFF)})
HLL5=(1, 0/RT2S)¥ (~PF2-2.0/ROF2=3.0/RFF +SOF2S%(~POL-1. 5¥RHOF2-1. 5/R
10F2-1,5/ROF1-1.5/RFF))



HI17=0.0

H97={1.0/RT1P}*(~PF2~2,0/ROF1-3, O/RFF+SOF1P‘( PFZ RHOOI l OIROFI -1
1.5/ROF2~-1.5/RFF))

Z1111=PF2+AF2

21122=((S12%S12)/4. 0)‘(P01+A01+PF?+AF2+(2 O/ROFZ))
Z1112=(S12/2.0)%(PF2+AF2+{1.0/R0OF2))
‘21212=0.5%{{1.0/RFF)+(1.0/R0OF2))

21221=71122 )

21222=(S12/4.0)*(PO1+A01+(1, 0/ROFl)+(l O0/ROF2)+{1.0/RFF)}
Z1211=171112

22222=0. 25*(P01+A01+PF2+AF2+(2 O/ROFI))

12212=11222

12211=71122

Z1316={1. OIRTZS)*(PF2+AF2+(SOFZS/Z 0)*(PF2+AF2+(1., OIROFZ)D)
21326={1.0/(RTIS*RT2S) ) *{((SAF2P/2.0)*(PF2+AF2+(1,0/RNF2))+{(SOF2P*
1SOF2S)/4.,0)1%(PF2+AF2+P0O1+A01+(2.0/ROF2)))

21361=(1. OIRTZSl*(0.06040*(PF2+AF?))

21362=0.,0.

21416=0.0

Z1415=(1. OIRTIP)*((I 0/RFF)+(SOF1P/2 0)*((1.0/RFF)+(1. OIROFZD)D
11426=0.0

21425=(1.0/{RTIS*RTLIP) )% ((SOF2P/2. 0)*((1 O/ROF1)+(1 0/RFF!)+((SDF2
1P*SOF1P)/4.0)%(POL+AOL+(1.0/RQF1)+(1. 0/ROF?)+(1 0/RFF)))

21461=0.0

Z11451=0.0

71462=0.0

11452=0.0

22326=(1. OI(RTIS*RTIS*RTZS))*(((I O/ROF2)+(1.0/RFF} ) *{1.0+SAF1S)+{
1{SOF25/2.0)%(POL+ADL+{1.0/ROF1)+{1.0/R0OF2)+(1.0/RFF))*(1, O*SDFIS))
2)

22316=71326

12362=0,0

-22361=0.0
‘22426 0.0

22425=(1,0/{RTIS*RTIS*RTLIP) ) *{ ((PF2+AF2+(1.0/ROF1))*{1.0+SOF1S))+{
1(1.0+SOF1S)=(SOF1P/2, O)*(P01+A01+PF2+AF2+(2 0/RDOF1))1))

22416=0.0 :

22415=71425

22462=0.0 : .
22452=(1. OI(RTIS*RTIS*RTIPBD*(0.06040*(PF?+AF2!) s
22461=0.0 :

22451=0.0

23366=(1. 0/(RT2$*RT2$))*(PF2+AF2+(SOF?S*(PF2+AF2+(1 0/RDOF2)) ) +( (SO
1F2S*SOF2S)/4.0)*%(POL+AQL+PF2+AF2+(2.0/R0OF2)))

213456=0,0

23465=(1.0/(RT2S*RTIP)}*((1. 0/RFF)+((SOF1P/2 0)%{(1.0/RNOF2)+(1. OIR‘

LFF)))+((SOF25/2.0)%({1,0/ROF1)+{1.0/RFF)))+{(SOF2S*SOF1P)/4.0)*(PD
214A01+{1.0/ROF1)+{1.0/ROF2)+(1.0/RFF)) )"

13466=0.0

14466=0,0

24455=1(1., OIIRTLP*RTLP))FI(I§OF1P*SDF1P)/4 O0)*(PDL+ADL+PF2+AF2+(2,0
1/ROF1)}+(SOFL1PR(PF2+AF2+(1., 0/RDF1)))+PF2+AF2)

24456=0.0

24465=0.0

EELl=(S36%S36%545%545)%(1.0-S12%S12)%(2., 0*H11+2 0*H33)+(SIZ*536*536

1#S45%S45 )% (=1,0+S12%S12) (2, 0%H1342,0%H31) +S3I6HS45%545%(1,0-S12#%S1

22)%(1.0-S12%S12)%2,0%H511+S35%536%545%(1,0-512%S12)%(1.0~S12%S12)*
3(=2.0%HT11)+S36%S36%545%(1,0~-S12%S12)%(1,0~512%512)*(2.0%H79)
EE2=S5S36%S36%545%545%(21111+42.0%721212+422222)+(S12%536%536%545%545)%

114
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L{{-2,0%Z21112)+(~2.0%21222) +(-2.0%Z1211)+(~2.,0%22212) ) +({S12%S12%S36
2%536%S45%545)%(21122+(2.0%2Z1221)+22211)+(S36%S36%545%S45%(1,0-S12%
3S12) 1*¥(2.0%721212-(2.0%71221) )+ (S36%S45%545%(1.0~512%S12) ) *(4.0%213
S 416-(2.0%21361)+(4,0%22326)=(2.0%¥22362))+(S12%S36%545%545%(1,.0~-512%
5512) #{2.0%21362-(4.0%22316)+(2.0%22361)~(4.0%21326)))
EE3=(S35%S36%545%(-1.0+S512%S12))*((4.0%21416)~(2.0%Z1461)+(4,0%224
126)-(2.0%22462) )+{S36%536%545%(1.0-512%512) ) *{ (4, 0%21415)-(2.0%214
251)+(4.,0%22425)-(2.0%22452) )+ (S12%S35%S36%545%(1.0-5S12%512))*(4.0%
3214264(-2.0%721462)+(4.0%22416)+(~2.0%22461))+(S12%536%S36%545%(~1.
40+S512%512) )¥({4.0¢21425)-(2.0%21452)+(4.0%22415)-(2.0%22451}))
EE4={S45%S45%(1.0~-S12%S512)*(1.0-S12%S12}%(Z3366))+(S36*%S545%(~1,0+2
1.0%S512%S512-S12%%4)%(2,0%23456-4,0%23465) )+ S35%5645%(-1,+2,0%S512%S1
22-5S12%%4)%(23466%2,0)+((1.0-2. 0*Sl2*SlZ+SlZ**4)*(535*535*Z4466+S36
3%536%24455-24456%535%536—-24465%S35%5361)) '
EES5={S36%5S36%545%545)%(1.0-S12%S12)%(2.0%H11+2,0%H33)+{S12*5S36%*S36
1%545%545)%(-1.0+S512%512)%(2,0%H13+2.,0%H3 1) +S36*%545%545%(1.0~-512%S1
22)%(1.0-S12%512)%2.0%H115+535%536%S45%(1,0-S12%S512)%(1.0-S12%S12)*
3(-2.0%H117}1+536%S36%S545%(1.0~ 912*512)*(1 0-512%512)*(2,0%H97)
EE=0.5%(EEL1+EES)+EE2+EE3+EES
ENUC=ZFEFO1*ZEFF1*{1,0/R0OF1) +2ZEF02%ZEFF2%(1.0/R0OF2) +(9.0/RFF)
HH12=EE+ENUC*SS12
15 FORMATIF10e595X9F10e59F14654F13.5,F14.49F14.448XF1l4.8//)
WRITE{6,15)ROF1,ROF2,SOF1S,SOF2S,SOF1P,SOF2P,EE
81 FORMAT(6H SS12=,F12.8,6H HH12=4,F12,8//)
WRITE(6,81)SS124HH12 '
30 ROF1=ROFL+DR
CONTINUE
STOP
END

. THIS PROGRAM COMPUTES THE MATRIX ELEMENTS, H23 AND '$23, IN PLANE A0 BASIS SET.
1234 FORMAT(8F10.4}
12 FORMAT(13)
13 FORMAT(F10.4)
14 FDRMAT({6F10.4}
16 FORMAT(1H1+5Xy4HROF1 410Xy, 4HROF2,10X,5HSDF1§,9X.5HSﬂFZS,9X.5%SOFlP,
19X 4 SHSOF2P 414X 2HEE///)Y
© DR=0,01
WRITE(6416)
- READ(5414)PF2,P0L,AF2, AUl RHOF 2, RHOO1
READ(S,13)ROF1
RFAD(5,12)N
DO 30 J=14N
READ(5+1234)SOF1S, SﬂFZSySOFlP:SUFZP.ZEFOl,ZEFFI ZEFDZ.ZFFFZ
RNF2=4.000-ROF1
RFF=SART(ROF1*ROF1 +ROF2%ROF2}
RT1S=SQRT(2.0+2.0%SOF1S) ‘
RT2S=SQRT{2,0+2,0%SNF2S)
RT1P=SQRT(2,0+2,0%SNF1P)
RT2P=SQRT(2.0+2,0%SOF2P) -
S17=(1.,0/RT2P)*(1.0+S0F2P)
S27=(1.0/(RT1IS*RT2P)}*(1.0+SOF2P+SGF1S)
§28=(1.,0/RT1S)*(1,0+SOF1S)
$53=(1.0/(RT1IP*RT2S) }*(1.0+SOF2S+SOF1P)
$63=(1,0/RT2S)*(1.,0+SOF2S)



. §54=(1.0/RT1P)*({1, O*SOFIP) : '

$523=517#S 1 7452845284554 %554 %563%563
H1T7={1.0/RT2P)*{-PF2-2.0/R0OF2~3, 0/RFF+SOF2P*( PO1~ 1 5/RFF-1, SIRDFI
" 1-1.5%RHOF2-1. 5/ROF2)) !
H18=0.0"
H28=(1.0/RT1S)*{~ PF2 2. OIROFI 3. 0/RFF+SOFIS*( PF2-RHO01~1,0/ROF1-1
. 1e5/ROF2-1.5/RFF)) :

H54=(1.0/RT1P)*(~PF2-2,0/ROF1-3. 0/RFF+SOF1P*(-PF2 RHOOl ~-1.0/ROF1=1
1.5/R0OF2-1.5/RFF))

H63=(1.0/RT2S)*{~PF2~ -2. 0/ROF2-3, 0/RFF+SDF25*(-P01 1.5/RFF=1.5/R0OF1
1-1.5%RHOF2~1,5/R0F2) ). .

H64=0.0

H71=(1.0/RT2P)*{-PF2~-2., 0/ROF2 3. 0/RFF+SOF2P*( PF2-RHOO1~- 1. O/ROFZ—I
1.5/ROF1-1.5/RFF))

H81=0.0

H82=(1.,0/RT1S}*{~PF2-2,0/ROF1~340/RFF+SOF1S# (- Pnl 1.5«RHOF2-1,5/RD
1F1-1.5/R0OF2-1.5/RFF})

H45={1.0/RT1P)*(-PF2-2,0/ROF1- 3.0/RFF+50F1P*(—P01 le S*RHOFZ 1.5/R0
1F1-1.5/R0OF2-1.5/RFF))
H36=(1,0/RT2S)%(~PF2~2.0/R0OF2-3,0/RFF+SOF2S%(—PF2-RHNO1~1. 0/ROF2 1
1.5/R0OF1-1.5/RFF))

H46=0.,0

Z1177=(1.0/(RT2P%RT2P) ) * (PF2+AF2 +SOF2P* (PF2+AF 2+ 1, 0/ROF2)+{ SOF2P/4
1.0)% (PF2+AF2+P0O1+A01+2,0/R0OF2) *( SOF2P) )

I1178=0,0

71188=0.0

Z1278={1+ 0/(RT2P*RTIS))*((SDFIS*SOFZP/4 D)*(PO1+AD1+1.0/ROF1+1,0/R
10F2+1.0/RFF)+0, S*SDFZP*(l 0/ROFL+1.0/RFE)+0.5%SOF1S*(1,0/R0OF2+1.0/
2RFF)+1.0/RFF)

11287=0.0

Z21574=(1.,0/(RT2P*RT1IP) )% (0. 25*SDF2P*SOF1P*(P01+A01+1 0/R0F1+1 0 /R0
1F2+1,0/RFF)4+0.5%SOF2P*(1.0/RNOF1+1.0/RFF)+0.5%SOF1P*(1.0/ROF2+1.0/R
2FF)+1.0/RFF) .

71547=0.0

21584=0.0

11548=0.0

21673=(1.0/(RT2P¥RT2S) )% (0.25%SOF2P%SOF2S* (PF2 +AF2+POL+A01+2 s0/ROF
12)+0.5%SOF 2P % (PF2+AF2+1. 0/R0OF2 )14+ 0. 5%SOF2S* (PF2+AF2+1,0/R0OF2)+PF2+A
2F2) .

11637=(1. 0/(RTZS*RT?P))*(0 06040%( PF2+AF2) )

11683=0.0

71638=0.0

71674=0.0
" 21647=0.0

21684=0.0

21648=0,0

71288=0,0

12288={1.0/(2.0+2.0%SOF1S) )% {0, 25%SOF1SESOFLS* (POL+AOL +PF24AF2+2,0
1/RDE1) +SOF 1S*(PF24+AF2+1.0/R0OF1)+PF2+AF2)
12584={1.0/(RT1P*RT1S))*(0. ZS#SDFIS*SUFIP*(P01+A01+PF?+AF2+2 0/ROF
"11)4+{ 45%SOF1S+0.5%SOF1P)*(PF2+AF2+41.0/R0OF1)+PF2+AF2)

22548=(1.0/{RT1S*RTLIP))*(0.06040%(PF2+AF2)) =

12684=0.0 .

12648=0.0

22683=(1,0/{RTLIS*¥RT2S))*(0, ZS#SUFIS*SOFZS*(P01+Aﬂl+l 0/R0OF1+1.0/R0
1F2+41.0/RFF)+0,5%SOF1S* (1. 0/ROF2+1.0/RFF)+0,5%S0F25%(1,0/ROFL+1.0/R
2FF)+1.0/RFF) N ‘

12638=0,0

15544=(1. 0/(RT1P*RT1P))*(O 25%SOF 1P*#%2 *(P01+A01+PF2+AF2+2 0/R0OF1)
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l+SOFlP*(PF2+AF2+l O/ROFL1+PF2+AF2)
15643=(1.0/(RTLP*RT2S))* (0. 25*SDFIP*SOFZS*(PDI*AOI*I O/ROFI*I 0/R0
1F2+1.0/RFF)+0,5%SOF1P*(1,0/R0OF2+1.0/RFF}+0. 5#S0F2S#(1.0/R0OF1+1.0/R

2FF)+1.0/RFF)

- 15634=0.0
15644=0,0"

26633=(1. OI(RTZS*RTZS))*(O 25*SDFZS*SOFZS*(PDI+A01+PF2+AF2+2 0/ROF .

12)+SOF2S*{PF2+AF2+1, O/RDF2)+PF2+AFZB

16643=0.0

16644=0,0

EEl= Sl7*528*554*554*563*563*(2 0*H17%S28-2. 0*H18*527+2.*H28*Sl7)+5
154%S63%S17%S17%S528%S28%(2.0%H54%S63+2.0%H63%S54~2,0%H64%553) -

EE2=554%S54%S563%S63%(21177%528%S28+( -2.0%21178) %(S27#S28)1+21188%S
127%S27+S17%528%(4.0%21278-2.0%21287))+S17%S28%S554%S63%(S28%S63%(4,
20%71574-2,0%21547)-S27%S63%(4.,0%21584-2.0%71548)+528%554%(4,0%Z167
33-2.0%21637)+S27%S54% (-4, 0%71683+2,0%21638)+528%S53%(-4.0%21674+2,

. 40%21647)+S2T7%#S53%(4,0%71684-2.0%21648))
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EE3=554%S554%S563%563%(~2.,0%21288%S17%S27+22283%S17%S17)+S17%517%528
1%S54%S63%(S63%(4,0%22584-2, 0*22548)+SS3*( 4.,0%22684+2.0%22648)+554
2%(4.0%22683-2,0%22638))

FE4=Sl 7%S17%S28%528%S63%(S63%25544+554%(4,0%25643-2,0%25634) +5$53%(
1-2.0%15644) ) +S17%S17%528%528%( S54%554%166334553%554%(~2,0%26643)+S
253%553%726644)

EES=S17#S28%S54%S54%S63%S63% (2, 0%HT1%S28-2,0%HB1*S27+2 . ¥HB2%S17)+S
154%S63%S17%S17%S28%528%(2.0%H45%563+2,0%H36%554~2,0%H46%553)

EE=0,5%(EE1+EES ) +EE2+EE3+EE4 :

ENUC=ZEFOL*ZEFF1%(1. O/ROF1)+ZEF02*ZEFF2*(1 0/ROF2)+(9.0/RFF)

HH23=EE+ENUC*SS23

FORMAT(FL0e595X+Fl0e54F14454F13.5,F14.5,F14%. 5'8XyF14 8//)

WRITF(6415)ROFL4ROF2, SUFISfSDFZSeSUFIP:SDFZP,FF

FORMAT(6H S$S523=4F12.8,6H HH23 1F12.8)

WRITE(6591)S523,HH23

ROF1=ROF1+DR

CONTINUE

STOP

END

117

£ THIS PRUGRAM COMPUTES THE MATRIX ELEMENTSoHll AND SII'OUT OF PLANE AD BASIS

£SET
1234

FORMAT(B8F10.4)

FORMAT (2F10.4)

FORMAT (13}

FORMAT{F10.4)

FORMAT(AF10.4)

FORMAT(1H] ,5X,5H ROFL, sx SH ROF2,4X46H SOF1S.4X,6H SDFZS.IOX.BH EE
1)

DR=0.10

WRITE(h,25)

READ(5,24)PF2,P0D1,AF2,A01,RHOF2, RHOO1

READ(5,23)RNOF]

READ(5422)N

DO 30. J=14N

READ(541234)SOF1S, SOF2S, SOFIP,SOFZP'IEFOI,ZEFFI.IEFDZ ZEFF2
ROF2=4.000-ROF1

RFF= SQRT(RDFI*ROF1+RDF2*ROF2)



20

27

30

C THI
C SET
1234
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H11=—PF2-2.0/ROF2-3.0/RFF
H33=0. 5% (1.0/( 1. +SOF1S) ) #(~PO1-PF2~5.0/ROF 1~3. 0/ROF2-3.0 /RFF $SOFLS
1%(-PF2-PO1-RHON1~-1.5%RHOF2-2.5/ROF1=3,0/ROF2-3 .0 /RFF ) )
H55=045%(1.0/(1.0+¢SDIF2S) ) *(=~PD1-PF2~3,0/R0OF1-5.0/ROF2-3,0/RFF+SOF2
1S% (-PF2-PO1-RHOD1-1. 5¥RHOF2-3.0/R0F 1-2.,5/R0F2-3.0/RFF) )
HT7==PF2-2.0/ROF1-3.0/RFF

Z12=PF2+AF2

234=0,25%(PO1+AD L+PF2+AF 242, 0/ROF1)

156=0.25%(POL+ADL+PF2+AF 242, 0/ROF2)

213=0,5%(1.0/R0OF2+1.0/RFF) ‘

715=0.5% (PF2+AF2+1.0/ROF2) -

735=0.25%(POL+ADL+1.0/ROF1+1, 0/RDF2+1 OIRFFl

Z17=1.0/RFF

Z37=0.5%(PF2+AF2+1 ,0/ROF1}

257=0.5%(1.0/ROF1+1, O/RFF)

278=PF2+AF2

IK13=0.0 _

ZK15=0,5%(1.0/(1.0+SOF2S) ) %( 0. 0604% (PF2+AF2))

ZK17=0.0

ZK3520.25%(1.0/(1.0+SOF1S)%(1. 0+ SOF251 ) #(0.0604% (POL+AOL) )
7K15=0.0

2K57=0.0

ZK37=0.5%(1,0/(1.0+SOF2S) ) %(0.0604%(PF2+AF2))
EE=2.0%H1142.0%H3342, 0%H5542, 0%HTT4212+44,0%213+4,0%21544,0%2354234 .
L¥256+4.0421744.0%237+4. 0425742 78-2. 0#2K13-2,04ZK15-2.0%2K35-2. 0%2K
215~2.0%2K1T=2.0%2K37-2,0%ZK57 - » _
ENUC=ZEFO1%*ZEFF1%(1. 0/RDF1)+ZEF02*ZEFF2*(1 0/ROF2)+(9, O/RFF)
HH11=EE+ENUC

FORMAT (4F10.4,F15.8/)

WRITE(6y20 IROFL,ROF24 SOF 1S, SOF 25 ,EE

FORMAT(9H SS11=1.0,6H HH11=0F12.8//)

WRITE(6,2T)HH11

ROF 1=ROF 14DR

CONT INUF

STNP

END

S PROGRAM COMPUTES THE MATRIX FLEMENTS,H22 AND $22,00T OF PLANE AD BASIS .
FORMAT(BFL0.4)

FORMAT(4F10.4)

FORMAT (13)

FORMAT(F10.4}

FORMAT(6F10.4)

FORMAT(1HL 45Xy 4HROF 1 410Xy 4HROF2,10X,5HSOF1S, 9, SHSOF 259X, SHSOF 1P,
19Xy SHSOF 2Py 14X 4 2EE/ /7))

DR=0.01

WRITE(6,16)

READ(5414)PF2,P01,AF2,A01,RHOF2, RHOO1

READ(5,13)ROF1

READ(5,12)N

DO 30 J=1,N

READ(5,1234)SOF1S,SOF2S,SOF1P, SOF2P 4 2EFD1,2EFF1,2EF02, 2EFF2
ROF2=4.000-ROF 1 L

RFF=SQRT (ROF1%ROF 1 +ROF2¥ROF2)
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RT1S=SQRT{2.0+2,0%SDF1S)

RT1P=SQRT(2.0+2.0%SOF1P}

$56=(1.,0/RT1P)*SOF2S

§822=1,0-S56%S56+S56%%4

H11=~PF2-2,.0/R0OF2-3,0/RFF
H33=(0.5%(1.0/(1.0+SOF1S} )} }*(~PD1-PF2-5,0/ROF1-3.0/ROF2~3,0/RFF+S0
1F1S*(-PF2-P0O1-RHOD1-1.5%RHOF2-2.5/ROF1-3,0/R0OF2-3,0/RFF))

H99= 0,5%(1.0/(1.04S3F1P)}*(-PO1~PF2-5,0/RNF1-3.0/ROF2-3.0/RFF+SOF

11P*{(-PF2-P01-~RHOO1~1,5%RHNF2-2.5/ROF1-3,0/R0OF2-3,0/RFF)}

15

27

30

H1111=-PF2-2,0/R0OF2-3.0/RFF

H911={ SNF2S/RT1P)*(~-PF2~-RHNO1~1,5/ROF1-1,0/RNF2-1.5/RFF}
H119=(SOF2S/RT1P)*(~-PD1-1,5%¥RHOF2-1.5/R0OF1~-1.5/R0OF2-1, SIRFFB
Z1111=PF2+AF2

Z1212=045%(1.0/ROF2+1.0/RFF}

21515=0.5%(1, 0/ROF?+l O/RFF)

21616=PF2+AF2

12222=0.25%{PO1+A01+PF2+AF2+2.0/R0OF1)
22525=0,25%(PO1+A01+PF2+AF2+2.0/R0OF1}
22626=0.5%¥(1.0/R0F2+1,0/RFF)

© 215555=0,25%(PO1+A01+PF2+AF2+42,0/R0OF1}

15656=0,5%(1,0/ROF 2+1.0/RFF)

16666=PF 2+AF2 _ -
21661=0.0604%{PF24+AF2)
22552=0,25%(1.0/(1.0+SOF1S}%(1.0+SOF1P))#*(0.0604%(POL+A0L+PF2+AF2)
1)

25665=({ SOF25%SDF2S)/{8.0%(1.0¢SOF1P) ) ) *{PO1+AOL+PF2+AF2+2.0/R0OF2}
Z1516={1.0/RT1PY*{SOF2S/2.0) *{PF2+AF2+1.0/ROF2)
22526=(S0F2S/4.0)#(1.0/RT1P) #(PO1+A01+1.0/ROFL+1.0/ROF2+1.0/RFF)
25556=(SOF25/4,0)%(1.0/RT1P) *{PO1+A01+1.0/R0OF1+1.0/ROF2+1.0/RFF)
15566= ((SOFZS*SQFZS)/B 01%(1.0/(1, 0+SOFLP) ) # (PO} +AD1+PF2+AF2+2.0/R
10F2)

15566=15665

75666={SOF25/2.0)%(1.0/RTLP}*( PF2+AF2+1.0/ROF2)
EE={2.0%H1142.0%H33+421111+4,0%Z1212+422222)1%(1.0-(2,0%556%556}+{ 556
1%%4) ) 4{2.0%H99+2. 0%HL 11144, 0%2 151544, 0%21616+4,0%22525+4,0%22626+2
2.0%25656—2,0%25665~2.0%71661-2,0%22552) #(1.0-556%556)+(2,0%H911+2,
30%H119+8.0%2151648.0%22526)%(~S56+556%%3}425555+2,0%25656+26666+(4
4.0%2555644,0%25666)%(=556) +(2,0%25566+2,0%25665) *{$56%556) ‘
ENUC=ZEFO1*ZEFF1%(1. 0/ROF1)+ZFF02*ZEFF2*(1 0/ROF2)+{9.0/RFF)
HH22=EE+SS22%ENUC

FORMAT(F10.5,5X,F10, 5.F14 54F13,54F14,44Fl4, 4a8X'F14 8//7)
WRITE(6,15)ROF1,ROF2,SOF1SsSOF2S,SOFLP,SOF2P,EE

FORMAT(6H $$22=,F12,86H HH22=,F12.8//)

WRITE(6427)S522,HH22 '

ROF1=ROF 14DR :

CONTINUE

sTopP

END
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