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Abstract 

The ability to identify the intensity and orientation of fractures within both unconventional 

and conventional resources can have a critical impact on oil field development. Fractures and faults 

are often the primary pathways for hydrocarbon migration and production. Because of their 

complexity and commercial importance, fractures have been studied by each of the main 

disciplines – geology, geophysics, petrophysics, and engineering. The focus of this dissertation is 

to present an understanding of how different geophysical technologies can be used to characterize 

fractures at different scales. Seismic attributes are one of the main tools to map the distribution of 

fractures and can be categorized into geometric attributes, azimuthal velocity anisotropy, 

amplitude variation with offset and azimuth, and diffraction imaging. These categories are 

complementary to each other and can provide overlapping information. The diversity of the 

assumptions under each category makes it challenging to bridge the gap for real world applications. 

Acquisition footprint overprints most seismic surveys and can mask or in some cases be 

misinterpreted as underlying faults and fractures. There are two modern trends in imaging the 

subsurface with high quality 3D seismic surveys. The first is to acquire new high density, high 

fold, wide azimuth surveys that exhibit less footprint. The second is to combine multiple legacy 

surveys into “megamerge” (or even “gigamerge” surveys) that exhibit multiple footprint patterns. 

To address this latter problem, I start my dissertation by introducing an adaptive 2D continuous 

wavelet transform (CWT) footprint suppression workflow whose design is based on artefacts seen 

on seismic attributes.  Suboptimum seismic acquisition is one of the major causes of acquisition 

footprint.  5D interpolation (also called 5D regularization) is a modern seismic processing 

workflow that attempts to fill in the missing offsets and azimuths. I examine the effect of a 

commercial Fourier-based 5D interpolation on both footprint artefacts and geologic discontinuities 
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measured using seismic attributes. I find that by accurately interpolating specular reflections, 5D 

interpolation suppresses acquisition footprint and improves the lateral continuity of prestack 

inversion images of P-impedances. Unfortunately, 5D Fourier-based interpolation incorrectly 

corrects diffraction events and therefore attenuates faults and karst edges seen in coherence.  

Whereas 5D interpolation attempts to enhance the specular component of seismic data, 

diffraction imaging attempts to enhance the non-specular or diffracted component of the seismic 

data necessary to image fractures. Although the lateral resolution of diffractions is better than that 

of specular reflections, closely spaced fractures forming a “fracture swarm” may appear to be a 

single, larger fracture, while more laterally extensive fracture swarms give rise to azimuthal and 

offset anisotropy. I investigate each technique’s ability to detect fractures using forward modeling 

and find that diffraction’s focusing sensitivity to velocity inaccuracies makes it an excellent 

candidate to highlight close-spaced fractures. I also find that cross-correlating images of 

diffractions from nearby experiments is useful in constructing an objective function that can be 

used to update the velocity due in the image domain.  I demonstrate the efficiency of these findings 

using synthetic models with different complexity. Azimuthal and offset anisotropy signature for 

irregularly spaced fractures is complex and different from the constant fracture spacing 

approximated by effective medium theory particularly for reflection below the fractures.  I find 

isotropic amplitude variation modeling give an indication if fractures are located at the bottom 

portion of the reservoir. 

xvii
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Chapter 1: Introduction  

 

Naar et al. (2006) state that “All reservoirs should be considered fractured until proven 

otherwise.” Fractures exist across a vast range of scales, from millimeter-scale microcracks to 

macroscopic kilometer-long features. Fractures matter in drilling, well completion, and reservoir 

management, effecting the economics of a development program (Delbecq et al., 2013). Fractures 

and their response to waste water are also of interest to government regulators concerned about 

induced seismicity (Wines, 2016). The ability to identify fractures and their characteristics is 

critical and depending on the scale, different geophysical techniques are used to image the fractures 

(Figure 1.1). This dissertation is structured in chapters that address challenges not only for 

analyzing fractures at different scales but also in seismic data conditioning.  

Chapters 2 and 3 address concepts of data conditioning, where one of the major challenges 

is coherent and random noise linked to the seismic data acquisition and processing. “Acquisition 

footprint” refers to the component of the seismic amplitude that in some way mirrors the lateral 

deployment of sources and receivers of the acquisition geometry. There are multiple causes and 

therefore multiple expressions of acquisition footprint, including coherent noise such as guided, 

surface that are insufficiently attenuated before or by the stack or systematic errors introduced by 

an inaccurate velocity model. In chapter 2 I present a novel workflow that uses a 2D Continuous 

Wavelet Transform (CWT) to suppress acquisition footprint and incoherent noise on poststack 

seismic data. that for either time, money, or even data access reasons cannot be reprocessed from 

the original common shot gathers. I show that by decomposing time slices of amplitude and 

attribute data into voices and magnitudes using 2D wavelets., that I can design filters to suppress 

footprint whose pattern varies laterally across the survey. I demonstrate the efficacy of the method 
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on a legacy data volume from the Delaware Basin of New Mexico and on a recently reprocessed 

mega-merge of four legacy surveys exhibiting two footprint patterns from north Texas. 

 In the chapter 3, I use a commercial implementation of a Fourier transform based 5D 

interpolation algorithm to further regularize a well-sampled data modern from northwest 

Oklahoma. I show that an underrecognized pitfalls associated with Fourier based interpolation is 

the suppression of subtle but important lateral discontinuities such as faults and karst edges. 

Through numerical models, I show how the technique accurately interpolates specular reflections 

but inaccurately interpolates non-specular diffractions. Such inaccurately interpolated diffractions 

result in the attenuation of fault and karst edges at the target Mississippian horizon and a channel 

at the shallower Pennsylvanian age Red Fork horizon.  

Chapters 4 and 5 focus on the transition from micro-scale to meso-scale fractures using full 

wave modeling software. In the chapter 4, I examine the effect of fracture clustering and the 

validity of effective medium theory. After reviewing the theoretical background, I examine the 

differences between models of constant vs. random fracture spacing in both confined and 

unconfined settings. I hypothesize that modeling the isotropic amplitude variation with offset can 

provide indication of the location of fractures within the formation of interest. I also examine 

factors controlling diffraction imaging resolution on fractures and their horizontal orientation.  

In chapter 5, I utilize diffraction’s high sensitivity to local errors in the velocity model, 

with the goal to better locate and focus the diffractors. I present a workflow consisting of two steps. 

First, I analyze the velocity errors based on the focused energy of diffracted events in the image-

domain. For a single common shot image, the maximum energy along each migrated trace provides 

a maximum focusing at the diffraction location for the correct velocity. The diffractor can be 
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distinguished even in the heterogenous medium. Second, I improve upon this initial observation 

by cross-correlating multiple nearby common shot images, where the cross-correlation are both 

maximum and laterally symmetric for the correct velocity. I combine these observations to 

construct an objective function, which can be used to estimate velocity errors in the image-domain. 

I summarize my conclusions in Chapter 6.  
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 Abstract 

 Acquisition footprint manifests itself on 3D seismic data as a repetitive pattern of noise, 

anomalously high amplitudes, or structural shifts on time or horizon slices that is correlated to the 
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location of the sources and receivers on the earth’s surface. Ideally, footprint suppression should 

be handled by denser seismic acquisition and more careful prestack processing prior to seismic 

imaging. In the case where only legacy data exist, or where economic and time constraints preclude 

more expensive acquisition and more careful processing, interpreters must deal with data 

contaminated by footprint. While accurate time-structure maps can be constructed from footprint-

contaminated data, the effect of footprint on subsequent attributes such as coherence, curvature, 

spectral components, and P-wave impedance will be exacerbated. In this work, we propose a 

workflow that uses a 2D Continuous Wavelet Transform (CWT) to suppress coherent and 

incoherent noise on poststack seismic data. The method involves decomposing time slices of 

amplitude and attribute data into voices and magnitudes using 2D wavelets. We exploit the 

increased seismic attribute sensitivity to the acquisition footprint to design a mask to suppress the 

footprint on the original amplitude data. The workflow is easy to apply and improves both the 

interpretability of the data and improves subsequent attribute resolution. 

Introduction 

The interpretation of 3D seismic data and attribute analysis is challenging in the presence 

of severe noise. In reflection seismic data, we generally consider the reflected and the diffracted 

wavefields to be signal and everything else to the noise. The noise can be either coherent or 

incoherent. Coherent noise can be defined as non-reflection energy that contains a systematic 

phase relation between adjacent traces and remains strong after stacking (Sheriff, 2002). In 

contrast, noise that either is or appears to be random will be weaker after stacking. Acquisition 

footprint refers to that component of the seismic amplitude that in some way mirrors the lateral 

deployment of sources and receivers of the acquisition geometry. While acquisition footprint is 
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often associated with coherent noise, its root cause is more systemic, allowing it to generate 

artifacts from incoherent noise and even signal as well. Edge detection attributes like coherence 

and curvature exacerbate the appearance of footprint, thus hindering their effectiveness detecting 

fractures and faults. The effects of footprint can also contaminate more quantitative attribute 

analysis, including impedance inversion and waveform classification. 

Cahoj et al. (2016) used seismic modeling to hypothesize the main causes of acquisition 

footprint: (1) coherent noise such as guided, surface and airwave data that are insufficiently 

attenuated before or by the stack array, (2) systematic errors introduced by an inaccurate velocity 

model, resulting in non-flat and/or stretched NMO-corrected or migrated gathers.  

Dense acquisition greatly reduces the impact of acquisition footprint (Meunier et al.  2008). 

Alternatively, acquisition footprint can be suppressed in the processing workshop using more 

careful velocity analysis, least-squares migration (Ha and Marfurt, 2017), and 5D interpolation 

(Trad, 2009; Chopra and Marfurt, 2013). In the case where only legacy data exist, or where 

economic and time constraints preclude more expensive acquisition and more careful processing, 

interpreters must deal with data contaminated by footprint. While accurate time-structure maps 

can be constructed from footprint-contaminated data, the effect of footprint on subsequent 

attributes such as coherence, curvature, spectral components, and P-wave impedance will be 

exacerbated. 

Several techniques can be found in the literature on filtering the acquisition footprint on 

poststack data through domain transformation. Sahai and Soofi (2006) used a 2D low-pass filter 

in the kx - ky domain to suppress the footprint. Drummond et al. (2000) used a wavenumber notch 

filter to estimate the noise and adaptively suppress it. Soubaras (2002) used the offset distribution 
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as an input to design a kx - ky filter to attenuate the footprint. This latter filter can be very effective 

but requires access to (at least the geometry of) the prestack traces. A pitfall with any filter is if 

the signal and noise overlap in the transform domain. For this reason, highly localized notches are 

much more effective than broad interpreter-drawn polygons. Chen et al. (2012) used an adaptive 

stationary wavelet transform to suppress footprint and other random noise. Al-Bannagi et al. 

(2005) used a truncated singular value decomposition algorithm in a cascaded multi-directional 

manner to suppress the noise on a time/horizon slice. In this paper, we use a 2D continuous wavelet 

transform variation of a workflow based on application of kx - ky filters constructed from attributes 

originally proposed by Falconer and Marfurt (2008), and extended by Davogustto (2011). 

Filtering in the wavelet transform domain has been used in seismic data processing for the 

past 20 years. Selesnick et al. (2005) highlight the pros and cons continuous and discrete wavelet 

transforms (CWT and DWT). The DWT is widely used in seismic data compression (Vassiliou et 

al., 1984). Goudarzi et al. (2014) implemented a 2D DWT to attenuate ground roll. The CWT is 

more amenable to seismic processing, with one of the more common applications being the 

attenuation of the airwave within a processor-defined corridor (Schuster and Sun, 1993). Yu and 

Whitcombe (2008) applied 2D CWT on common shot gathers to parameterize and then suppress 

coherent noise components. Yu et al. (2017) used a 3D CWT to suppress coherent noise, cross talk 

and random noise on prestack gathers. Although this list is not complete, it gives a flavor of 

different applications of filtering in the wavelet domain.  

In this paper, we present a novel technique that uses 2D Continuous Wavelet Transform to 

model the footprint and subsequently suppress it on poststack data volumes, time slice by time 

slice. First, we introduce the arithmetic and various element in the workflow. Second, apply the 
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workflow to legacy data volumes, showing how to use attribute in the filter design. Finally, we 

quantify the parameters considered in the noise suppression and illustrate potential pitfalls.  

 

Method 

1D Fourier Transform 

For a given function in space 𝑓(𝑥), the spatial Fourier transform is given by: 

𝑓 ( 𝑘𝑥) =  ∫ 𝑓(𝑥)
∞

−∞
𝑒−𝑔 2𝜋𝑘𝑥𝑥 𝑑𝑥,                                        (1) 

where 𝑥 is the distance, 𝑘𝑥 is the spatial wavenumber scaling constants have been omitted, f̂ (𝑘𝑥) 

is the data in the wavenumber domain and 𝑔 = √−1. The Fourier transform converts the signal in 

space f(x) to the wavenumber domain by integrating over the whole space axis into a complex 

function f̂ (𝑘𝑥). The Fourier transform can precisely detect which frequencies reside in the data, 

but yields no information about the time position of signal features. 

1D Continuous Wavelet Transform 

The continuous wavelet transform can be defined differently based on the normalization and 

conjugation and it gives the projection of the function 𝑓(𝑥) at any scale 𝑎 and position 𝑢 into 

wavelet domain by (Mallat, 2009): 

𝐶 (𝑎, 𝑢) =
1

√𝑎
∫ 𝑓(𝑥)𝜓

∞

−∞
(

𝑥−𝑢

𝑎
)𝑑𝑥,                                                               (2) 
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where 𝐶 (𝑎, 𝑢) refers to the data in the wavelet transform domain, and 𝜓 is the wavelet used to 

transform the data, 𝑎 is the dilation or scale, while 𝑢 is the translation parameter. We can make a 

couple of observation on equation 2. First, it transforms the input data from one dimension into a 

two dimensions. Second, the term (𝑥 − 𝑢) in the integral indicates that CWT is a convolution 

process and hence we can rewrite it as: 

𝐶 (𝑎, 𝑥) =  𝑓(𝑥) ∗  𝜓 (
𝑥

𝑎
).                                 (3) 

Equation 3 simply states that the CWT is a convolution of the input data with a set of complex-

valued functions generated from the mother wavelet (Liner, 2010). Therefore, for computation 

efficiency we can compute the wavelet transform in the Fourier domain where convolution is 

replaced by multiplication. Hence, we can rewrite equation 2 as: 

𝐶 (𝑎, 𝑥) =  𝐹𝑇−1{𝑎𝑓 (𝑘𝑥) 𝜓̂(𝑎𝑘𝑥)},                                            (4) 

where 𝜓̂(𝑎𝑘𝑥) is the Fourier transform of wavelet modulated by the scale 𝑎 and 𝐹𝑇−1 is the inverse 

of the Fourier transform. Next, we illustrate the parameters of CWT in equation 2 to build up the 

understanding our application. For that purpose, we consider two wavelets with different dilations 

(𝑎) and their representation in the wavenumber domain in Figure 2.1a. For simplicity, we assume 

that the Fourier transform of the wavelet is nonzero in the positive wavenumber and consider a 

real wavelet only. First, Figure 2.1a indicates that a short dilatation wavelet corresponds to a high 

wavenumber content in the transform domain and vice versa. Consequently, the dilation of the 

wavelet in the space domain controls the number of components 𝑖 in the transform domain, needed 

to cover the whole spectrum. Also, it controls the interval shift in the wavenumber 𝜂, given by 

(𝑚𝑎𝑥 (𝑘𝑥))

𝑖
. In our application, we use a uniformly shifted version of that of the prototype filter along 
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the wavenumber domain. Hence, the magnitude response of all the wavelets is uniformly transform 

into a Gabor wavelet or more accurately a modified Morlet wavelet in the space domain (Cohen, 

1995). In the wavenumber-domain the wavelet can be given as: 

𝜓̂(𝑘𝑥) = {
(cos

𝜋(𝜂 𝑖−𝑘𝑥)

2 𝜂
)

2
, 𝜂(𝑖 − 1) ≤ 𝑘𝑥 ≤ 𝜂(𝑖 + 1) ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                     (5) 

 

 As indicted by Equation 5 the wavelets' spectrum in the wavenumber domain is represented by a 

raised-cosine at each component i.  Figure 2.1b shows a couple of the 1D wavelets for eleven 

components along the kx showing the real, imaginary and absolute wavelets. 

The 2D Continuous Wavelet Transform 

The 2D continuous wavelet transform can be thought of as two cascaded 1D CWTs which can be 

implemented as a 2D convolution in the x-y space domain or as a simple multiplication in the kx-

ky wavenumber domain. Generalizing equation 4 by representing the 2D wavelet transform 

. C (𝑖, 𝑗, 𝑥, 𝑦) as the inverse Fourier transform of the multiplication between the input data and 

wavelets of choice gives  

C (𝑖, 𝑗, 𝑥, 𝑦) =  𝐹𝑇−1{𝑖 𝑗 𝑓(𝑘𝑥, 𝑘𝑦) 𝜓̂(𝑖𝑘𝑥 +  𝑗𝑘𝑦)},               (6) 

where  

𝑘𝑥 and 𝑘𝑦  are the wavenumbers,   

𝑖 and j are the indices of the components 
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 𝑓(𝑘𝑥, 𝑘𝑦) is the 2D spatial Fourier transform of the amplitude or attribute slice, and  

 𝜓̂ is the 2D spatial Fourier Transform of the wavelets.  

Choosing values of i and j to be −5 ≤ 𝑖 ≤ +5 and −5 ≤ 𝑗 ≤ +5 results in 121 2D 

wavelets. Figure 2.2 shows nine representative wavelets (one central and eight outer components) 

of 121 in the wavenumber domain. Figure 2.3 shows 2D spatial wavelets of the nine center real 

and imaginary components. We notice that the real and imaginary wavelet satisfy the Hilbert 

relation with a 90 degrees shift between the two. Also, we can predict that the 2D image in space 

will be decomposed into four minor orientations: an isotropic orientation in the center, and east-

west, north-south and diagonal azimuthal orientations away from the center. Based on the number 

of components used, the corresponding 2D wavelet characteristics will change. We define the 

voices and magnitudes, which are the data in the CWT domain, for the component (i,j)th to be: 

𝑚𝑎𝑔(𝑖, 𝑗) =  | 𝐶 (𝑖, 𝑗, 𝑥, 𝑦)|       (7) 

𝑣𝑜𝑐(𝑖, 𝑗) =  ℜ[ 𝐶 (𝑖, 𝑗, 𝑥, 𝑦)]       (8) 

where mag are the magnitudes, voc are the voices and ℜ is the real part. Ultimately, one can 

consider the magnitudes and voices as the data decomposed into different wavenumber 

components using the 2D absolute and real wavelets.  

Mask: 

Attributes computed along structure such as coherence exacerbate footprint anomalies but 

are relatively insensitive to dip, allowing us to use the 2D CWT of an attribute to design a mask. 

The mask, m(i,j), is defined as  
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𝑚(𝑖, 𝑗) =  
 𝜀 𝑚𝑎𝑔 (0,0)

𝜀 𝑚𝑎𝑔 (0,0)+𝑚𝑎𝑔 (𝑖,𝑗)
      (9) 

where mag (0,0), is the zero-wavenumber (or mean background magnitude) component and 𝜀 is a 

fractional value. For attributes computed along dip, the (0,0) component will be the largest while 

other components (with the exception of periodic footprint) will be significantly smaller. We apply 

the mask in equation 1 to the 2D CWT of the seismic amplitude data, allowing us to reject 2D 

CWT components that are significantly greater than a user-defined percentage of the (0,0) 

component. Thus, if 𝑚𝑎𝑔(𝑖, 𝑗) ≫  𝜀 ×  𝑚𝑎𝑔 (0,0), the mask, 𝑚(𝑖, 𝑗) ≈ 0, and the (i,j)th 

hypothesized footprint component is kept. In contrast, if  𝑚𝑎𝑔(𝑖, 𝑗) ≪  𝜀 ×  𝑚𝑎𝑔 (0,0), the mask, 

𝑚(𝑖, 𝑗) ≈ 1, and the (i,j)th component is rejected. This allows us to model the noise. 

The value of 𝜀 ranges between 0 and 1, with smaller values suppressing more components. 

The mask is calculated so that when it is applied to the voices, it will match the data as well as 

possible in a least-squares sense. Subsequently, the generated footprint is subtracted from the 

original data. The reconstructed data, lacking the voice (s) representing the footprint, is a more 

interpretable seismic amplitude data set with better signal. Figure 2.4 shows the workflow 

implemented by this algorithm. 

Results and Discussion 

We demonstrate our proposed technique by applying it to two vintage data. The first 

volume is acquired from Vacuum field in southeast New Mexico and on the northwest shelf of the 

Permian Basin. The field is associated with an anticline developed through differential compaction 

and faulting. The time slice under consideration is at 450 ms, just above the San Andres producing 

formation (Pranter et al., 2004). Figure 2.5 shows the amplitude and coherence slices considered 
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for this analysis. On the amplitude slice, we notice a strong amplitude contrast corresponding to 

the gently dipping layers. The coherence slice shows coherent geology as high coherency and 

footprint as low coherence expressions. Figure 2.6 shows the kx - ky domain of both the data and 

attribute, the noise appears as periodic spikes in the transform domain. In our case, we use 121 

components, 5 ≤ 𝑖 ≤ +5 and −5 ≤ 𝑗 ≤ +5, and 𝜀 = 0.15 but we will limit our analysis through 

this section on the nine central components to illustrate how the method works. Ultimately, we 

will make the case to why we think the magnitude of the attribute yields a better mask to suppress 

the noise.  

We start with the amplitude slice; Figure 2.7 shows the nine central magnitudes of 121 

components. The central (0,0) component (Figure 2.7e) is the result of cross-correlating the 

isotropic 2D wavelet with the amplitude slice. It is dominated by the geology and is noise free. 

Figure 2.7b and 7h show magnitudes with a weak north-south azimuthal orientation, while Figure 

2.7d and 7f show a weak east-west azimuthal orientation. The strong amplitude features 

highlighting the azimuthal orientation indicate the sensitivity of the magnitude of the amplitude 

data to the geology. Next, we consider the voices of the amplitude data shown in Figure 2.8. The 

azimuthal orientation on the voices are more pronounced than on the magnitudes. Note the north-

south (Figure 2.8b and 8h), east-west (Figure 2.8d and 8f) and a diagonal azimuthal orientation on 

the four corner voices. These non-central azimuthal orientations are affected by both the geology 

and footprint with the central voice also dominated by the signal but not impacted by acquisition 

footprint noise. 

Next, we consider the magnitude and voices of the coherence slice. The nine central 

magnitudes are shown in Figure 2.9. We do not observe a pronounced azimuthal orientation in all 
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magnitudes. Further, the coherent geology corresponds to a low magnitude in all the components 

except for the central component. This leads us to conclude that the magnitudes of the coherence 

are more sensitive to noise than to coherent geology. In other words, it recognizes the coherent 

geology and exacerbates the noise. Thus, the magnitudes of the coherence provide a good 

candidate to compute the mask to filter out the noise.  

Figure 2.10 shows the voices of the attribute. Similar azimuthal orientations are seen on 

the nine components with a clear sensitivity to the noise but not to the geology. For that purpose, 

we cannot apply the mask to these voices as they lack the geology, to begin with. This leads to us 

to design the mask using the magnitude of the attribute, according to equation 6, then applying it 

to the voices of the data 

Next, we address the choice of number of components and threshold 𝜀. For that purpose, 

we vary the parameters needed to design the mask and analyze the results. In theory, the optimum 

number of components is a function of the acquisition parameters which defines the periodicity of 

the footprint in the kx - ky domain. This survey was acquired using an orthogonal source and 

receiver line with 1320 ft line spacing, resulting in an approximately 1320 by 1320 ft footprint 

pattern. The source and receiver intervals within the line are 220 ft resulting in a natural 110 ft by 

110 bins. The periodicity of the footprint in the wavenumber then 
2𝜋

𝜆𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡
≈ 4.8 radian/kft. The 

Nyquist wavenumber of the data is 
2𝜋

∆𝑥
≈ 28.6 radian/kft and thus 6 times greater than that of the 

footprint along the + 𝑘𝑥 . Given the (0,0) 𝑘𝑥 is an over lapping element between the +𝑘𝑥and −𝑘𝑥, 

the ideal number of components is 11. Sampling the footprint significantly with less than 11 

components under samples the pattern of the footprint, while sampling significantly greater than 

11 times gives a comparable result at increased cost.    
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To illustrate the effect of the number of components, we analyze the filtered results using 

different components, namely 9, 49, 121 and 225. We observe a directionally proportional 

relationship between the number of component and smoothness of the results. We start with the 

nine components (1 ≤ 𝑖 ≤ +1 and −1 ≤ 𝑗 ≤ +1), Figure 2.11a, where we clearly observe the 

noise. Figure 2.11b shows the modest improvement using 49 components with significant noise 

present. Using a 225 components oversmooths the data and results in losing geological 

information, thus hindering the interpretability of the results. To link the number of components 

to the predicted periodicity, we consider Figure 2.12a. We show the spectrum along kx with 

synthetic periodic spikes to resemble the footprint with the spectrum of wavelets superimposed for 

the four cases. In the 9 and 49 components case, we include more spikes than desired per wavelet 

spectrum which makes suppressing them more challenging. The 121-component case is optimal 

because we sample each spike in a wavelet and subsequently suppression more efficient. The 225-

components samples it fine enough but oversmooths desired amplitude in the spike free spectrum. 

Figure 2.12b shows the rejected from Figure 2.11d, the amplitude of the rejected noise. 

To analyze the influence of the 𝜀, we consider the spatial trace of is at inline = 251 (Figure 

2.13). We also keep the number of components fixed at 121 and vary 𝜀 = 0.01, 0.15 and 0.3. 

Evidently, the larger the epsilon, the higher the rejection. We notice the power of 𝜀 is critical in 

reducing the spikes related to the footprint noise but preserving the trend of the actual data. The 

choice of the optimum value is subjective to the signal to footprint ratio and the source of the noise. 

Although not mathematically supported, in our applications on a number of datasets with different 

footprint characters, marine and land data, we found 10-20% is a reasonable range for 𝜀. This is 

predominantly driven by the geological features of interest with 10% for subtle features and 20% 
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for completely flat layers. For this data, the structure is relatively flat, and an ideal result was 

achieved for 𝜀 = 0.15.  

Although the method is implemented on a slice by slice basis, we show two figures to 

reflect how it improves the quality on a vertical section of the data. Figure 2.14 shows the inline 

251 before (2.15a) and after (15b) the footprint suppression. Figure (2.15c) shows the noise 

suppressed using the workflow. Although the noise appears as possible geologic collapse features 

in the shallow section suggesting, it does not match prior information from the area. Instead, these 

features are the footprint likely due to processing pitfalls and appear as quasi-hyperbolic artifacts 

around the reflector or variation in the amplitude along strong reflectors. The noise level reject is 

about 20-30% of the original amplitude. Suppressing the foot results in continuous reflectors and 

more acceptable geology representation. Subsequently, this allows for better automated 

interpretation such as auto horizon/fault pickers. The improvement in the overall quality is better 

seen on Figure 2.15a showing the kx - ky transform of the filtered slice. Compared with Figure 2.6a, 

we see that a lot of periodic noise magnitudes are suppressed on the transformed data. Figure 2.15b 

shows the edge detection attribute computed on the filtered data.  

Finally, we demonstrate the efficiency of the method on a horizon slice from a megamerge 

survey acquired in north central Texas. This data consists of four separate surveys all shot two 

decades ago, three of which had east–west receiver lines and one with north–south receiver lines. 

The prestack gathers are contaminated with highly aliased ground roll which contributes to the 

severe footprint (Verma et al., 2016). The horizon considered in this example is the PaloPinto, a 

shallow target at (t=0.9 s) with a pronounced normal fault (Figure 2.16a). The coherence horizon 

is shown in Figure 2.16b; the footprint masks the subtle faults making interpreting this time 
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structure very challenging. Because the of the different acquisition pattern, we used 121 

components and an 𝜀 =0.1. Figure 2.16c shows the same horizon extracted after applying the 

workflow. We clearly suppressed the noise and improved the resolution of the structural features.    

Discussion and Limitation 

There are multiple causes and therefore multiple expressions of acquisition footprint. 

Although it is not necessary to know the exact cause of the footprint, the proposed workflow 

assumes that the interpreter can identify its expression. If the cause is variability in the signal-to-

noise ratio due to periodic changes in the number and distribution of offsets, the footprint will 

often be expressed by a coherence attribute. If the cause is systematic errors in velocity that result 

in a suboptimal NMO (or migration) correction, periodic changes in the distribution of offsets will 

give rise to a structural footprint, that may be expressed by a curvature attribute. Footprint 

associated with steeply dipping, and hence, low-apparent-frequency, migration aliasing artifacts 

may be characterized by a given spectral component. Improper balancing of the gathers for mutes 

prior to stack can lead to periodic changes in amplitude, such that the amplitude itself (or 

alternatively, its envelope) is an appropriate attribute for footprint characterization.  Inability to 

identify such an attribute makes this workflow useless. 

Although not discussed here, these processes can be applied to prestack migrated gathers, 

typically through application to one offset or azimuth volume at a time. Prior to migration, one 

should evaluate some type of improved trace balancing, noise suppression, or 5D interpolation. 

This paper has focused on using the 2D CWT to analyze (and then attenuate) noise. The 

2D CWT holds potential to characterize signal, such as the periodicity and orientation of polygonal 
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faulting, syneresis, joints in carbonates, cleats in coal seams, or other laterally repetitive geologic 

patterns. Such quantitative measurements may be then correlated to the orientation of stresses at 

the time of deformation or the amount of clay in the formation. 

Conclusions 

While the 1D continuous wavelet transform (CWT) is widely used as a seismic data 

analysis and data processing tool, only a limited number of geophysical applications have used the 

spatial 2D CWT. In this paper, we apply the 2D CWT to time slices of both a seismic amplitude 

and a corresponding seismic attribute volume that exacerbates footprint contamination, allowing 

it to be more easily characterized. By using attributes computed along structure and displayed as 

a time slice, rather than through a time slice through the original amplitude data, the resulting 

periodicity represents footprint only, rather than footprint and geology. The choice of the attribute 

depends on the kind of footprint. In the first legacy data from Vacuum Field in this paper, a primary 

cause of footprint was due to the periodicity in the collection of offsets in any given CMP, which 

thereby resulted in a periodic variability of the noise rejected by the stack array. This lateral 

variability in the signal-to-noise ratio is easily characterized by coherence. At each patch, we use 

the magnitude of the coherence attribute of the center (0 wavenumber) component and an 

appropriate threshold (𝜀) value to construct a 2D CWT mask that is then applied to the 

corresponding 2D CWT voices of the amplitude data to model the noise. This reconstructed noise 

is then adaptively subtracted from the original amplitude data.  

In contrast to previously implemented kx-ky footprint characterization workflows, the 2D 

CWT masks applied to the data vary laterally. Lateral changes in footprint occur due to changing 

the weathering zone (and hence ground roll that has leaked through the stack or migration array), 
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to lateral changes in overlying dip, and most commonly in land data in the midcontinent USA, 

different acquisition designs used in multiple surveys comprising a megamerge. The efficiency of 

the method was demonstrated on the vintage merged data from north Texas. 

We have found de-nosing using CWT to be robust and simple to use. The results of 

applying the workflow to 3D datasets with a strong acquisition footprint are promising. After 

suppression, we have improved the overall S/N, resolved structural and stratigraphic features and 

preserved the spatial bandwidth, resulting in subsequent attribute images that exhibit lateral 

changes in geology. This works as a handy tool for interpreters to enhance the quality of the signal 

and understand the subsurface better.  
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Figures 

 

Figure 4.1a Left: the spectrum in the wavenumber domain. Right: the wavelet in the space domain. 

a0 and a1 are the scales of the two wavelets, i is the component number, 𝜼𝟎 𝒂𝒏𝒅 𝜼𝟏 are the 

wavenumber shifts and 𝜼𝟎𝒊 𝒂𝒏𝒅 𝜼𝟏𝒊 are the location of the components. When the scale decreases, 

the wavenumber spread increases and covers high wavenumbers. 2.1.b Left, the spectrum of the 

wavelet in the wavenumber domain. Right: the wavelet in the space domain. We display the real, 

imaginary and absolute of the wavelet. 
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Figure 2.2. The central and eight edge wavelets of 121 in kx – ky transform. 
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Figure 2.3. The nine central 2D wavelets of 121 in the x-y domain (a) real. (b) imaginary. 
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Figure 2.4. The workflow for attribute-assisted footprint suppression using CWT.  
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Figure 2.5. Time slice at 450 ms through (a) amplitude and (b) coherence. The red arrow 

indicates a high amplitude contrast that represent the slice cutting through a strong reflection on 

the amplitude data. 
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Figure 2.6. The kx - ky transform of the time slices through (a) amplitude (b) 

coherence shown in Figure 2.3. 
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Figure 2.7. The nine central components of 121 magnitudes corresponding to the time slice shown 

in Figure 2.4a. The black arrows indicate the azimuthal orientation of geology leakage highlighted 

by the 2D wavelets.  
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Figure 2.8. The nine central components of 121 voices corresponding to the time slice shown in 

Figure 2.4a. The red arrow indicates the azimuthal orientation of geology leakage highlighted by 

the 2D wavelets.  
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Figure 2.9. The nine central components of 121 magnitudes corresponding to the coherence slice 

shown in Figure 2.4b. Yellow arrows indicate areas that are contaminated by periodic events which 

we interpret to be footprint. Red arrows indicate areas that are less periodic and relatively footprint-

free.  This leads us to conclude that the magnitude of the attribute is insensitive to the geology and 

highly sensitive to the noise.  
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Figure 2.10. The nine central components of 121 voices corresponding to the coherence slice 

shown in Figure 2.4b. Red arrows indicate the absence of periodic geology. Yellow arrows 

indicate areas dominated by strong periodic coherence anomalies, which we interpret to be 

footprint. 
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Figure 2.11. The filtered data using 𝜺 = 0.15 and (a) 9, (b) 49, (c) 121 and (d) 225 components. 

The rejection is directly proportional to the number of components.   
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Figure 2.12. (a) The spectrum in wavenumber showing the synthetic periodic noise (black 

spikes) with the wavelet spectrum superimposed for 9, 49, 121, 225 components. The ideal 

number of components is achieved when we isolate the spike of the noise using different 

spectrum to allow for better adaptive subtraction. (b) The noise rejected from Figure 2.11c, the 

amplitude values used in this colorbar are 20% that of the original data. 
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Figure 2.13. A comparison between the spatial traces at inline = 251 using a fixed 121 

components and 𝜺 = 0.01, 0.15 and 0.3. The rejection is directly proportional to the value of 𝜺. 
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Figure 2.14. A comparison between the spatial traces at inline = 251 using a fixed 121 

components and 𝜺 = 0.01, 0.15 and 0.3. The rejection is directly proportional to the value of 𝜺. 
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Figure 2.15. (a) kx - ky transform of the filtered data. (b) Coherence computed on the filtered 

data shown in Figure 2.11.c. 



35 

 

 

 

 

 

Figure 2.16. (a) crossline 1090 through the north Texas seismic data showing the top  PaloPinto 

horizon in red. The yellow arrow indicates the fault that cuts through the horizon. (b) A horizon 

slice along the top PaloPinto through the coherence volume. The coherence image is contaminated 

with footprint noise. (c) A PaloPinto horizon slice through coherence volume computed after 

footprint suppression We preserve the fault and structural features, whereas the groundroll noise 

bursts that gave rise to organized low coherence impulse responses are now significantly reduced. 

The two yellow arrows indicate two faults that can be better interpreted after the noise suppression. 

The cyan line shows the vertical profile shown in (a).  
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Appendix A  

A Step-by-Step Description of the aaspi_kxky_cwt_footprint_supression workflow 

The goal of the footprint suppression workflow is to generate an estimate of the footprint noise 

component using edge detection attribute. We subsequently adaptively subtract the modeled noise 

from the original unfiltered data. We show below screen captures of the GUI and introduce the 

different steps. We choose (1) the input amplitude data and (2) the footprint sensitive attribute.  

Step 1. Slice the amplitude volume (3) 

Step 2. Slice the attribute volume (4) 

 

Step 3. 

Compute the mask using the footprint-sensitive attribute 2D CWT components to model the noise 

on the 2D CWT seismic attribute components. Then, inverse transform the modeled noise back to 
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x-y space and subtract it from the original seismic amplitude volume. This step is all done using 

the kxky_cwt code from the workflow. The parameters needed for these steps are:  

(1) Operator window size along kx (defines the number of components along kx) (1) 

(2) Operator window size along ky (defines the number of components along ky) (2) 

(3) Aggressiveness of the noise suppression (3) 

(4) An optional choice to output the mask for quality control (4) 

(5) An optional choice to output the voices and magnitudes also for quality control (5) 

(6) After selecting these values click Execute Step 3 (6) 

 

 

  

Step 

4. 

Unslice the filtered data to construct the filtered results. (1) 
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Chapter 3: Data Conditioning of a Modern Midcontintent Data Volume using 

POCS Five-Dimensional Interpolation  

Alali, A., P. Swetal, N. Nakata and K.J. Marfurt 

This paper will be submitted to the SEG journal Interpretation  
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Abstract 

Seismic data acquisition design is subjected to variety of geophysical, operation and cost 

constraints. In the states like Oklahoma, where property boundaries as well as access roads 

generally run N-S and E-W, the most common 3D land acquisition geometry is to deploy source 

and receiver lines at right angles. CMP bins that fall between the two adjacent shot and two 

adjacent receiver lines contain a variable number of traces exhibiting different source-receiver 

offsets and azimuths. In the absence of obstacles, this pattern repeats, resulting in variations in 

fold, signal-to-noise ratio, sensitivity to velocity errors, and AVO response that is called 

acquisition footprint.  

5D interpolation is a well-established technique that addresses these issues by regularizing 

the data. In general, 5D interpolation is designed to construct missing specular reflections and have 

been shown to improve inversion for P- and S-wave impedance. Less well documented is the 

impact of 5D interpolation on nonspecular diffractions needed to accurately image faults and 

stratigraphic edges. Obvious to seismic processors, but less obvious to interpreters, because 5D 

interpolation is driven by the input velocity model, it has little value in suppressing multiples where 

the original primary moveout velocity has been masked. 

We present a case study based on a well-sampled Mississippi Lime survey acquired in NW 

Oklahoma, USA, where the objective was to map not only impedance anomalies indicative of 

more porous parts of the fractured chert reservoir but also to map subtle faults that may cause a 

horizontal well to leave the target zone. The original 200-fold data provide good fault images but 

suffer from acquisition footprint and other noise. Footprint and noise artifacts contaminate 

subsequent prestack inversion. We use a commercial Fourier transform based interpolation 

technique Projection onto Convex Sets (POCS) to construct an interpolated 800-fold data volume 
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and find footprint to be suppressed and lateral continuity of prestack inversion images improved. 

However, fault and karst edges at the target Mississippian horizon and a channel at the shallower 

Marmaton horizon have been significantly attenuated. We therefore recommend interpreters who 

use such technology to request both volumes from their processor – using the original data to 

define structural and stratigraphic edges, and the interpolated data for inversion for rock properties.   

 

Introduction 

5D interpolation is applied routinely in seismic data processing with the purpose of 

reducing migration operator aliasing artifacts, suppressing acquisition footprint, and suppressing 

random noise. Ideally, seismic data are acquired on a grid; if we sort the data by offset-azimuth 

sectors, the traces in a given bin will be irregular. Seismic data regularization can be divided into 

two categories, the first category relies on wave-equation-based methods to reconstruct the data 

using the wavefield velocity. The second category is based on signal processing techniques where 

a transform such as Fourier, Radon or curvelet transform is used to reconstruct the data. Numerous 

applications in previous studies have demonstrated the advantages of 5D interpolation. Verma et 

al. (2015) used a (wave equation) migration-based 5D interpolation on a legacy data from Texas 

to increase the fold and carry better quantitative interpretation. Downton et al. (2008) used 5D 

interpolation to address inadequate sampling and showed that it preserves the amplitude and 

improves AVO analyses. Chopra and Marfurt (2013) demonstrated the value of interpolation in 

filling gaps of source or/and receiver spacing, reducing acquisition footprint, and improving 

geometrical attribute quality. Barnes et al. (2013) applied amplitude-preserving interpolation to 

regularize marine data prior to Kirchhoff depth migration.  
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The most common signal processing interpolations methods are Fourier transform based 

and have become the standard in commercial software. The comparison of the details of each 

method is beyond the scope of this paper; rather, we simply list the most common Fourier 

transform based algorithms and their main properties.  

The first group relies on the Discrete Fourier transform (DFT) and requires annulus sector 

binning prior to interpolation. This binning process is not associated with the geometry and is used 

to bin the data on a regular grid in order to compute the DFT. The DFT-based algorithms are 

computationally fast but can introduce errors due to the annulus sector binning. The Minimum 

Weighted Norm Interpolation (MWNI) (Liu and Sacchi, 2004, Trad, 2009) algorithm preserves 

amplitude and can interpolate spatially sparse data. It has a drawback of introducing artifacts when 

the number of iterations is not accurately chosen. Another technique is Projection onto Convex 

Sets (POCS) (Abma and Kabir, 2006), which utilizes a 4D Fourier transforms in space (receiver-

space and source-space) for each frequency slice. By applying a threshold only, the higher 

magnitude components are kept, after which the data are inverse Fourier transformed spatially. 

POCS requires more iterations than MWNI and creates more artifacts for data with large gaps (Pan 

and Schlosser, 2013). On the other hand, POCS is less sensitive to the number of iterations than 

MWNI (Pan and Schlosser, 2013). The second group of techniques relies on a Non-Discrete 

Fourier Transform (NDFT) and does not require annulus sector binning before interpolation such 

as Anti-Leakage Fourier Transform reconstruction (Xu et al., 2005). NDFT is computationally 

intensive because it reconstructs each wavenumber separately but can accurately handle narrow 

azimuth marine data. NDFT can interpolate at any location and does not suffer from the binning 

issues observed in the first group. Finally, and more recently, hybrid approaches have been 
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implemented which apply regular grids with an additional interpolation to minimize binning error 

helping the far offsets (Jin, 2010; Wang and Wan, 2013, Pan and Schlosser, 2013). 

To assess the artifacts and validity of the 5D interpolation algorithm, Cary and Perz (2012) 

used the newly interpolated traces to reconstruct the input traces. They compared the newly 

generated traces with the original and confirmed that subtle geological features such as diffractions 

are not interpolated properly. This workflow serves as a measure of energy leakage in the 5D 

interpolation process and can be used to assess the output of any 5D interpolation algorithm. 

Perry (2017) demonstrated on his Red Fork case study that 5D interpolation attenuated 

geometrical structures such as faults and channels. The objective of his work was amplitude 

enhancement and found that 5D interpolation provided superior prestack inversion results. 

However, he was surprised that 5D interpolation degraded the fault and channel images mapped 

by coherence attributes. The underlying cause of this degradation and those observed by Chopra 

and Marfurt (2013) motivates this study.  The objective of this study is to examine the advantages 

and disadvantages of 5D POCS interpolation on a land seismic data from northwestern Oklahoma. 

In particular, we are interested in understanding issues associated with suppressing subtle 

geometric features after 5D interpolation. Fractures and drilling zones of interest are often 

associated with karst (Milad and Slatt, 2017).  The paper is structured as follows: We begin with 

a synthetic model to illustrate the mechanics of the 5D POCS algorithm and how it handles 

specular and nonspecular scattered events. Next, we summarize the background geology of the 

area of interest, after which we describe the data acquisition and processing workflow leading up 

to the interpolation. We present our choice of interpolation method for this dataset and examine 

the influence on velocity picking, imaging and geometrical attributes. Finally, we apply model-
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based post stack acoustic inversion on both datasets and summarize the advantages and limitations 

using POCS interpolation.  

A Simple Model of Specular and Nonspecular events  

5D interpolation affects both specular events such as reflection and nonspecular events 

such as diffraction. To illustrate the effect of normal moveout (NMO) on diffraction and the 

sensitivity of interpolation to the annulus sector binning, we construct a 3D model with a vertical 

fault as a diffraction generator (Figure 3.1a). Diffractions in theory are sensitive to small scale 

such as faults, channels and karst features (Rauch-Davies et al. 2014; Decker, 2014). We use a 15 

Hz peak frequency Ricker wavelet as the source, a Δx=Δz=5 ft grid size and 101 receivers in the 

inline and crossline direction with a receiver spacing of 40 ft. We propagate the source using a 

finite difference acoustic modeling algorithm and bin the data on a 151 x 151 grid resulting in a 

maximum fold of 9. Figure 3.1b shows seven NMO-corrected CMPs. By construction, POCS 

interpolation algorithm involves filtering lower amplitude wavenumbers in the Fourier domain and 

hence can introduce undesired energy in the time domain. To enhance the viewing of the result, 

we added 10% Gaussian noise and show the same CMPs in Figure 3.1c. To mimic the inconsistent 

sampling problem in real data problem, we mute four sources and show the same CMPs in Figure 

3.1d. The stacks of both regular and decimated data are shown in 3.1e and 3.1f. Applying NMO 

using the correct RMS velocity accurately flattens the reflector but results in residual moveout on 

the diffraction (red arrows). This is due to the fact that diffractions have a longer travel time than 

the reflection. Also, the underlying assumption of 5D interpolation is that missing traces look like 

adjacent traces. This assumption has shortcomings in areas with different travel times events. We 

feed the decimated data into a commercial POCS algorithm to reconstruct the missing traces using 
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the following annulus sector bins: Δφ=45° by Δh=80 ft (Figure 3.1g) and Δφ=45° by Δh=100 ft 

(Figure 3.1h). Visualizing the CMPs shows that the data reconstructed has different characteristic 

for the deeper reflection (red arrow). The different can be explained by the bias due to the anulus 

sector bin used. To better analyze the effect of the interpolation, we stack the interpolated data 

using different annulus sector bins to evaluate the effect it has on constructing a seismic image. In 

Figure 3.1i we use Δφ=90° and Δh=750 ft offset, note the specular reflection in this simple model 

not well constructed (green arrows) and the diffraction (red arrow) is suppressed. In Figure 3.1j 

we use Δφ=45° and Δh=100 ft sector bin which results in a better specular reflection constructing 

with minor artifact but suppresses the nonspecular energy completely (red arrow).  Finally, we 

show the results for Δφ=45° and Δh=80 offsets sector bins. We successfully construct the energy 

of the specular energy and partly construct the diffraction with minor artifacts. In general, coarse 

annulus sector binning affects both reflection and diffraction. In particular, diffractions are more 

susceptible and tend to be the first feature of the data to be affected. The sampling differences 

between the original and 5D interpolation in offset and azimuth could easily account for some of 

the differences in the diffractions and flat events that we see in Figure 3.1i-j. Processors should get 

into the habit of testing different annulus sector bins to ensure the features of interest are preserved.  

Geological Background 

The data used in this study were acquired by Chesapeake Energy to image a "Mississippi 

Lime" play in northwest Oklahoma. The “Mississippi Lime” is a loose term that represents a 

heterogeneous package of tight limestone, siliceous limestone, and fractured chert. The reservoir 

is complex with most porosity being fracture porosity with most of the fractures being shrinkage 

(diagenetic) rather than tectonic fractures. The original siliceous limestone was deposited during 
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the Mississippian and then tectonically uplifted in the early Pennsylvanian leading to periodic 

subaerial exposure and erosion, as well as post-depositional alteration. This complex geologic 

journey has led to a significant lateral and vertical heterogeneity and compartmentalization within 

Mississippian formation (Montgomery et al., 1998). The main four electrofacies proposed by 

Lindzey (2015) are high-porosity tripolite, chert, fractured tight chert, and tight limestone.  

The structure in this area is relativity flat with one major fault that trends roughly northeast 

to southwest across the survey with the downthrown block to the south. The offset of the fault 

varies across the area with the maximum offset at 100 ft and the fault (Lindzey, 2015). The target 

of the survey is relatively shallow, ranging between 5000 to 5300 ft and 800-850 ms.  

The Mississippian Limestone play has been drilled vertically with significant success over 

the past century. Intensive horizontal drilling started in 2007 followed by unconventional 

exploration which renewed the interest of this play over the past decade. Between 2011-2014, the 

production saw a jump from 50,000 bbl/day to 300,000 bbl/day.  

Seismic Data Acquisition and Processing 

The seismic data in this study cover 44 km2 using the orthogonal acquisition pattern shown 

in Figure 3.2a. Twenty-six receiver-lines with a line spacing of 440 ft were active for each shot 

with a 220 ft receiver spacing. The source-line spacing is 880 ft with 220 ft source interval. This 

acquisition pattern produces a maximum nominal fold of 220. The maximum offset is 14,000 ft in 

the E-W direction and half that offset in the N-S direction. Figure 3.2b shows a representative 

spider plot for this survey.  
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The data quality is hindered by the presence of ground roll that can be linked to a shallow 

gypsum layer. This layer extends from the north of Oklahoma to the south of Kansas (Suneson 

1998), evident by the presence of one of the largest gypsum caves, publicly accessible, close to 

this survey. We process the data using a conventional workflow starting with trace editing followed 

by relative amplitude scaling and surface consistent deconvolution. Next, we apply linear noise 

suppression. Refraction statics precede velocity analysis and surface consistent residual statics. 

Due to the fairly regular acquisition in our survey with few gaps, we chose POCS 5D interpolation 

technique using commercial software prior to migration velocity analysis.  POCS is widely used 

in signal and image reconstruction. The main controlling factors for this technique are the annulus 

sector binning, the number of missing seismic traces and the threshold used to reject the low 

amplitudes wavenumber (Zi-Jian et al., 2015). POCS requires at least half the traces to be live in 

the input gather (Pan and Schlosser, 2013). We interpolated the data along the azimuth and offset 

axes using Δφ=45°and Δh=660 ft bins. The objective of this interpolation is to enhance the 

coherent signal and suppress the acquisition footprint whilst preserving the geology. Figure 3.3a 

and 3.3b shows the fold map of the data before and after 5D interpolation resulting in an average 

increase in fold by a factor of 4. Figure 3.3c shows the spider plot for the same CMP shown in 

Figure 3.2b after 5D interpolation.  

Effect on Migration and Geometric Attributes  

To compare the two datasets, we first consider the effect of 5D interpolation on the velocity 

analysis. The velocity semblance is constructed by combining a number of CMP’s that lie close 

together to form a super-gather. The data quality and offset coverage dictates how many CMPs are 

used in the super-gather. For these data, we used 7 by 7 bins (or 49) CMPs to construct a 



50 

supergather for semblance-based velocity analysis. In fact, one may consider the super-gathers as 

a crude form of interpolation where we rely on adjacent CMPs to provide denser offset coverage. 

The advantage of 5D interpolation over super-gathers is that the it uses higher dimensions to 

interpolate. Figure 3.4 show the velocity semblance for a super-gather computed using the data 

with and without 5D interpolation. The interpolated data improves the velocity semblance 

resolution in the shallow section, resulting in more continuous reflectors on the interpolated gather. 

The zone of interest is highlighted with the yellow box on both datasets. At the zone of interest, a 

significant improvement is achieved in the far offset which gives a clearer semblance. The deeper 

section on both Figure 3.4a and 3.4b is contaminated by the multiples due to the carbonate layering 

in the zone of interest. Because of the improvement seen on the interpolated data, we used it to 

pick the migration velocity.  

Unfortunately, if we picked multiples below the top of the basement (below the yellow 

box), the continuity of these vents will be also improved. The data beyond the muted zone (red 

dashed line in a) have been extrapolated and the result in the far offset may be inaccurate. Such 

extrapolation may result in an image that is highly prejudiced by the initial picked velocity. We 

show a CMP before and after interpolation to verify the effect of interpolation on the far offset in 

Figure 3.5. To reduce the effect of the interpolated data, a harsh mute is applied after migration to 

suppress all the artificial events created in the far offset.  

There are two pitfalls in this model-driven workflow. First, if we assume our model to be 

one of hyperbolic moveout, weaker, far offset nonhyperbolic moveout traces may be 

misinterpolated or perhaps extrapolated based on the higher amplitude near traces (Figure 3.5). 

Second, if it is difficult to pick an accurate velocity due to strong multiples (such as below the 
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basement at t=1.2 s in this data volume), then we will preferentially interpolate and enhance 

multiples rather than the weaker primaries. 

Figure 3.6 shows line AA’ through the stacked data volume after prestack Kirchhoff time 

migration for both data sets in Figure 3.6 using the velocity picked on the interpolated data. The 

Mississippian top appears as a broad peak on the seismic data that can be difficult to pick in certain 

areas (Lindzey, 2015). We observe a more balanced amplitude after the interpolation (Figure 3.6b) 

which can be linked to the reduction in footprint. In addition, the fault is clearer on the interpolated 

section (green arrow).  For that reason, the balanced amplitude is more desired for automatic 

pickers. This is also a product of the higher fold generated by the interpolation  

The third comparison is on seismic geometrical attributes. The vertical resolution is defined 

as a quarter wavelength of the data. We computed coherence on the original dataset and extracted 

horizons slices along the Marmaton and Mississippian formation in Figure 3.7. Both slices show 

both random and coherent noise. Other techniques in the literature such as SOF (Zhang et al., 

2016a) and radial trace time frequency peak filtering using Hurst exponent statics (Zhang et al., 

2016b) can reduce the random and coherent noise. Also, separate techniques also exist in the 

literature to suppress footprint such as those described by AlAli et al. (2018) and Galibert et al. 

(2002); however, they offer no data regularization. Coherent noise such as footprint is more 

difficult to predict by interpolation as they mask in with the signal. Interpolating without 

distinguishing the two could indeed result in distorting coherent signal amplitude. Trad (2014) 

acknowledged that applying normal moveout (NMO) prior to interpolating the data simplifies the 

task by reducing the wavenumber bandwidth (and aliasing) in the offset direction and reducing the 

binning error. Applying NMO allows the interpolation to preserve the coherent signal and suppress 
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the footprint. Figure 3.8 shows the same two horizon slices extracted from the coherence volume 

after 5D interpolation. Both slices show less acquisition related noise. The channel edges seen in 

Figure 3.8a are suppressed after the interpolation. The Mississippi Lime horizon slice shows a 

clearer image and a slimmer fault. 

 The ability of 5D interpolation to enhance the reflections and preserve subtle features such 

as faults, diffraction and fractures is crucial. The challenge for 5D interpolation parameterization 

is in defining the appropriate annulus sector binning to approximate the diffraction wavenumbers 

properly. Such sensitivity is more of an issue for data located close to the borders of the survey, 

particularly at shallow times or far offsets because of decrease in the number of live samples. 

Effect on P- Impedance 

To further evaluate the impact of seismic data interpolation, we performed model-driven 

acoustic impedance inversion on the data before and after 5D interpolation. A total of four wells 

are available for this survey with P-wave logs and density. Perry (2017) demonstrated how 5D 

interpolated and spectral balancing together can improve the P-impedance compared with the 

original data. Figure 3.9 shows horizon slices along the top Mississippi lime through the regular 

and 5D interpolated volumes. Both slices show similar overall trends. The linear features shown 

by black arrows in Figure 3.9a are artefacts that correspond to acquisition footprint seen on the 

original amplitude data. 5D interpolation suppress the footprint noise and hence, in the impedance 

we have a much smoother variation of P-impedance.    

Figure 3.10a and 10b shows coherence co-rendered with P-impedance for the original and 

5D interpolated data respectively. Lindzey (2015) indicated that the downthrown block shows a 
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broader peak in the at the top of the Mississippian immediately south of the fault compared to the 

north of the fault. She concluded that is due to result of the abundance of chert conglomerate 

transported from the upthrown (red arrow) block down to the downthrown block (white arrow). 

Both slices show similar trends with a more pronounced low impedance on the 5D interpolated 

data.  

Finally, we show the impedance slice through the same horizon with the coherence 

computed on the original data for comparison. The structurally governed impedances changes are 

imaged better in Figure 3.11 than in Figure 3.10a and 10b. Such an analysis make sense, since with 

the original coherence we can preserve all the structural features and with 5D interpolated P-

impedance we are able to suppress all the footprint noise and its effect on impedance.   

Conclusions  

For economic reasons, most seismic surveys are acquired on coarse grids which gives rise 

to acquisition footprint. This limitation can degrade the quality of the data and affects semblance-

based velocity analysis, geometrical attributes and amplitude preservation. In the midcontinent of 

the USA, 5D interpolation methods have become a well-accepted part of the seismic processing 

workflow that helps suppress acquisition footprint and improves specular reflections for 

impedance inversion. Although regularized seismic data yields a better signal-to-noise ratio and 

better AVO analysis, one must be aware of the inherent limitations of the method due to parameters 

settings and the nature of the features being interpolated. We have demonstrated using POSC 

interpolation algorithm on an Oklahoma Mississippi Lime dataset that subtle features can be 

damaged at the expense of improving the amplitude analysis. We attribute the loss of “edges” in 

the seismic images using the traditional Fourier transform based 5D interpolation techniques to 
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the error introduced due to the annulus sector binning, and inherent NMO correction. All these 

factors could lead to the lack of low-amplitude wavenumber needed to construct subtle features 

such as diffraction and which are of importance to interpreters.  In our analysis we found that 

computing geometrical attributes on original interpolated seismic data gives better results whereas 

impedance is better computed on 5D interpolated data. We recommend that interpreters request 

data volumes with and without interpolation to construct a more detailed image of the subsurface. 
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Figure 3.1. (a) Model of a faulted reflector in depth. (b) 7 CMPs after NMO correction using the 

correct velocity. Red arrows indicate unfocussed diffraction events. (c) same CPDs in (b) after 

adding gaussian noise 10% of the amplitude. (d) CMPs in (c) after decimation. We muted 4 out 

of the possible 9 sources in the modeled data. (e) Stacked original data. (f) Stacked data after 

decimation. Red arrows indicate areas where we can see residual moveout on the diffraction. 

Also, note how the strength of the diffraction is different between two stacks are different due to 

decimation. The edge of the top diffractor is shorter. CMPs after POCS interpolation using the 

annulus sectors bins measuring Δφ=45° and Δh= 80 ft (g) and Δφ=45° and Δh=100 ft (h). The 

number of traces per CMP depends on the annulus sector bin size. In this figure we illustrate the 

remnant moveout on the diffraction after NMO and express the importance of annulus sector 

binning prior to interpolation. To better illustrate the result, we show the stacks due to different 

annulus binning in figures (i) Δφ=90° and Δh= 750 ft (j) Δφ=45° and Δh= 80 ft (k) Δφ=45° and 

Δh= 80 ft. The specular reflection energy is not properly constructed due to the in appropriate 

annulus sector binning (green arrows). (k) give the best binning to enhance the specular 

reflection. Red arrows show areas where the nonspecular energy is not is not constructed. With 

this minor change and after 3D stacking subtle features may get suppressed.  
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Figure 3.2. (a) Map showing the survey acquisition geometry. orthogonal geometry. Squares 

indicate shot locations with shot lines running approximately North-South. Plus, signs “+” 

indicate receivers with receiver’s lines running approximately East-West. Back circle and 

green + signs indicate a representative common-shot gather. (b) Spider diagram a 

representative common midpoint gather.  Notice the survey has longer offsets in the E-W 

direction than in the N-S direction. (c) cartoon showing the annulus sector binning of a 

common midpoint gather with two offset and four azimuthal sectors with (left) data before 

5D interpolation showing three bins containing one traces, one bin containing two trace, and 

four bins containing no trace. (right) the goal of 5D interpolation is to fill each bin with at 

least one trace. In our implementation, the annulus sectors bins measuring Δφ=45° and Δh= 

660 ft used to interpolate the data. At least 50% of the traces need to be alive to interpolate. 
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Figure 3.3. Fold map of the survey shown in Figure 3.2 (a) before and (b) after 

5D POCS interpolation. The nominal bin size is 110 x 110 ft. In general, this 

more regular fold will result in reduced acquisition footprint. (c) Spider plot of 

the same representative common midpoint gather shown in Figure 3.2b after 5D 

interpolation.  
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Figure 3.4. Velocity semblance panels and the corresponding CMP supergathers (a) 

before and (b) after 5D interpolation. The yellow box indicates the target area 

consisting of high-velocity “Mississippi Lime” and other fast Paleozoic sediments. 

Top of basement is at approximately t=1.2 s. The section below top basement is 

contaminated by multiples (black arrow). The interpolated semblance (b) shows more 

focused “wrap-ups” in the semblance panel (red arrow) and more continuous 

hyperbolae in the CMP gather (green arrows). Unfortunately, if we picked multiples 

below the top basement, this continuity of these events will also be “improved”. The 

data beyond the mute zone (red dashed line on the gather in a) have extrapolated and 

may result in inaccurate response and a stacked volume that over stresses the initial 

picked velocity.  
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Figure 3.5. (a) Original CMP without mute. (b) Original CMP after the mute. (c) Interpolated 

CMP. The three CMPS are plotted against absolute offset. Note we have stronger reflections 

after interpolation and more traces per CMP bin (red arrow). The green arrows show the 

extrapolated data along the reflections. This data results in stressing the far offset amplitude on 

the stack.  
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Figure 3.6. Vertical slices along line AA’ through the migrated volumes generated (a) without 

and (b) with 5D interpolation. Note the better amplitude balancing in the zone of interest 

between t=900 and t=1200 ms. The vertical resolution at the deeper Arbuckle horizon is also 

significantly improved in (b) when compared with (a). The improved amplitude balancing is 

directly related to the more consistent fold and spider diagrams provided by 5D interpolation as 

shown in Figure 3.3. Red arrow indicates areas where the noise has been suppressed. The green 

arrow shows the fault. 
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Figure 3.7. A horizon slice along (a) the top of the Marmaton and (b) top Mississippian through 

coherence volumes computed from on the original data. Note the channel running north-south on 

the Marmaton slice, indicated by red arrows. In the Mississippian image note what appear to be en 

echelon faults (orange arrow) and elliptical karst collapse features, some of which were identified 

by Cook (2016) on horizontal image logs. In both slices, the N-S and E-W acquisition design 

results in a rectangular footprint pattern that fades in and out across the survey that is directly 

linked to the deployment of sources and receivers shown in Figure 3.2.    
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Figure 3.8. The same horizon slices shown in Figure 3.7 along the top of the Marmaton 

(a) and Mississippian (b) formations but now through the coherence volume computed 

from the 5D-interpoled volume. Most of the footprint artifacts have been eliminated. 

Unfortunately, the channel edges seen in Figure 3.7a have been lost after 5D 

interpolation. The NE-SW trending fault that appeared to be en echelon in Figure 3.7b 

appears to be more continuous after 5D interpolation rather than as an en echelon fault 

in Figure 3.7b. Karst collapse features in the Mississippian identified by Cook (2016) 

also appear to have been suppressed.  
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Figure 3.9. Horizon slices along the top of the (a) Marmaton formation and 

Mississippian through the P-wave impedance volumes obtained by prestack inversion 

of the original data. The black arrow indicates the liniment feature we describe as 

footprint.   
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Figure 3.10. Mississippian horizon slices through acoustic impedance co-rendered with 

coherence (a) before and (b) 5D interpolation. 
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Figure 3.11. The impedance computed on 5D interpolated data co-rendered with the coherence 

computed on the original data. Note the coherence anomaly seems to delineate the high 

impedance (magenta) anomaly in the SE part of the image. 
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 Abstract 

Fractures play an important role in most carbonate and unconventional reservoirs. For this 

reason, accurate identification of fractures and their associated properties using seismic data have 

significant importance in reservoir characterization. Amplitude variation with azimuth analysis 

provides measurements that are sensitive to the intensity (fracture density) and orientation of 

fractures. If the fractured unit can be treated as an equivalent anisotropic effective medium, we can 

create an approximate fracture model.  The underlying assumption of effective medium theory is 

that the fractures are uniformly disturbed and sufficiently close such that only specular reflections 

from the boundaries of the fractures are observed. In contrast, for random fracture spacing, 

individual scattering occurs, and the assumptions of effective medium theory assumption are 

violated.  

In this paper, we model discrete fractures in the reservoir and analyze the amplitude at the 

top and bottom of the reservoir. In the first analysis, we examine constant vs random fracture 

distributions. We find that the bottom reflection is more sensitive to the fracture scattering and 

hence shows a larger amplitude deviation between the constant and random fracture spacing 

amplitudes. In the second analysis, we vary the fracture vertical location within the reservoir. The 

deviation in the bottom reflection is reduced with reduced fracture vertical extent. Finally, 

comparing the amplitude of the top reflection generated of isotropic and the fractured models 

indicates the location of fractures within the reservoir.   

 

Introduction 

Natural fractures exist in both conventional and unconventional reservoirs. Natural 

fractures exist in various scales, from discrete joints/faults measuring 10s or 100s of meters to 
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microcracks measured in millimeters.  Fractures are important in oil and gas exploration and 

development, providing not only significant permeability, but sometimes significant porosity as 

well. The knowledge of the spatial distribution, orientation and mechanical properties of the 

fracture systems is critical in constructing numerical reservoir simulators to enhance oil recovery. 

Fracture detection is an integrated task involving geology, geophysics and petrophysical 

techniques. A common approach is to use hard-data, such as cores, outcrop analysis, image log, 

and well logs measured directly from the target formation.  In general, such measurements provide 

very high vertical resolution and can be used to constrain predictions made from 3D surface 

seismic data. Hard-data are essential in characterizing the zones of interest and providing 

information on whether the fractures are limited to a specific formation or cut through multiple 

formations. Core and log measurements are local and hence fail to provide information on the 

natural network and lateral extent of the fractures (Milad et al., 2018).  

Another common technique relies on 3D surface seismic data which provide higher lateral 

resolution but lower vertical resolution than well control. Depending on the scale of the fractures, 

different seismic attributes can be used. Large-scale faults can be detected using seismic geometric 

attributes, such as coherence, curvature or disorder (Marfurt and Chopra, 2007). “Fracture 

swarms” which are closely spaced fractures can be detected using diffraction imaging (Decker, 

2014). Cracks and micro-scale fractures can be indirectly detected through azimuthal variation in 

velocity and amplitude (Grechka, 2014; Liu et al., 2016; Liu and Martinez, 2012). 

 Figure 4.1 shows the different scale fractures and their methods of detection. Beginning 

with fractures that are much smaller than the seismic wavelength, such microscale fractures, give 

rise to amplitude and velocity variations that can be measured on prestack seismic offset and 

azimuth gathers. This directional dependence of velocity and amplitude, or anisotropy, requires a 
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theoretical model that allows us to build relation between the sub-seismic scale properties and the 

seismic wavelength. We use Effective Medium Theory (EMT), to replace the small scale 

heterogenous isotropic medium with an equivalent large scale homogeneous anisotropic media to 

represent the fractures. When the size of fractures relevant to the seismic wavelength is extremely 

small, the effect of a fractured layer on the seismic response can be treated as the average properties 

of a medium (Schoenberg and Sayers, 1995).  

Techniques characterizing the anisotropy can be based on velocity or amplitude variations 

with direction. The most common velocity-based techniques to characterize the anisotropy include 

velocity variation with azimuth (VVAz) and shear-wave splitting, as well as amplitude-based 

techniques such as amplitude variation with Azimuth (AVAz). The anisotropy parameters 

predicted by each technique vary due to method sensitivity and underlying approximations 

(Delbecq et al., 2013).  

Since initial observations of azimuthal changes in velocity by Lynn et al. (1995), Mueller 

(1991), Crampin (1981), and Thomsen (1986), anisotropy analysis from surface seismic data has 

progressed rapidly. Rüger and Tsvankin (1997) defined the basic theory for amplitude-variation-

with-offset (AVO) inversion in fractured media. Gray (2008) used azimuth-dependent variations 

in the AVO to allow fracture delineation. Zelewski et al. (2009) demonstrated the usefulness of 

wide-azimuth and AVAz in predicting the presence of fractures. Dong and Davidson (2003) 

discussed seismic acquisition design and its impact on the prediction of fracture density and 

orientation. Liu et al. (2011) proposed a pre-processing workflow dedicated to amplitude versus 

incident and azimuthal angle (AVAz) inversion, while simultaneously addressing the imaging 

issues caused by the shallow surface overburden complexity and acquisition footprint. Liu et al. 
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(2016) studied the effects of overburden and thin layers on fractures-induced azimuthal AVO 

response through forward modeling.  

Other scholars conducted more complicated forward modeling experiments to validate the 

robustness of the effective medium theory. Liu et al. (2015) constructed a synthetic model with 

parallel and orthogonal fractures at different scales and estimated the fracture density of the small-

scale fractures even when large-scale fractures were present. Fang et al. (2017) showed that 

fracture clustering, which violates the uniform fractures distribution assumed by EMT, can 

significantly affect the reflection characteristics and cause AVAz/AVO responses to deviate from 

those corresponding to constant spaced fracture amplitude.  Seismic amplitude in the presence of 

fracture clustering is dominated by fracture scattering; with sufficient clustering one may treat 

fracture scattering as a single separate diffraction. Schuster et al. (2017) argue that with sufficient 

lateral seismic data resolution that one can separate diffractions using diffraction imaging.  

Diffraction imaging is unique due to its ability to image small-scale discontinuities 

including faults, edges, pinch outs, rugosity, channel edges, fractures, and karst (Sturzu et al., 

2014; Sturzu et al., 2015; Decker, 2014; Osareni et al., 2017). Liu et al. (2015) used four color-

blended diffraction volumes to highlight lineament in the sub surface. Rauch-Davies et al. (2014) 

and Berkovitch et al. (2009) used diffraction imaging to generate a diffraction strength volume and 

correlated it with fracture density from well logs to highlight potential fracture corridors. In 

addition to scattering due to fractures, the effect of the overburden, thickness and lateral 

distribution of the fractures is an active area for research. Documenting the effect of fracture 

signature on seismic amplitude can help bridge the gap between the high resolution seen on image 

logs such as Schlumberger’s Fullbore Formation Microimager (FMI logs) and the seismic data.  
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In this study, we consider two groups of fractures, confined fractures which are extensional 

non-sheared fractures that do not cross through the entire layer and unconfined fractures which are 

fractures that cut through the whole layer. We follow the work by Fang et al. (2017) and examine 

the seismic amplitude due to a fractured medium using both constant and irregular fracture spacing. 

in both confined and unconfined settings. 

The paper is structured as follows: First, we briefly introduce the models of fractured media 

and the parameters needed to build the model of choice. We use the power-law theory that provides 

the randomness of the fracture spacing. Second, we introduce the modeling algorithm and the 

properties of the fractures considered in this study. Third, we validate our modeling accuracy by 

constructing a three-layer model with a constant fracture spacing and propagating the wavefield 

as an EMT (single anisotropy parameters) vs. discrete joints fractures, where each fracture is 

modeled using a single stiffness. Next, we generate a suite of three-layer models and vary the 

confined and unconfined fracture spacing and location within the reservoir and analyze the 

amplitude on CMP gathers. We conclude with a summary of the advantages and limitations of 

studying fractures using full wavefield modeling.  

 

Models of Fracture Media 

Fracture intensity and orientation are two of the more important parameters we need to 

estimate both in the exploration stage of the oil field and later in the development and mature stage 

when constructing geocellular models for flow simulation (Milad and Slatt, 2018). Working 

backwards from 3D surface seismic data, we first characterize the seismic anisotropy and 

subsequently the physical properties of the fractures. The most popular method to characterize 

anisotropy is the estimation of Thomson’s parameters (Rüger et al., 1997; Thomsen, 1986). While 



76 

Thomson’s parameters are very useful in characterizing anisotropy, they offer no direct reference 

to the fracture properties of the medium. A second widely used fracture model is based on either 

Schoenberg’s (1980) Linear Slip Theory (LST) on Hudson’s (1980) model.  

Linear Slip Theory describes a fracture as a thin layer inside an isotropic host medium. As 

the thickness of the inserted layer approaches zero, the resulting medium reduces to a linear slip 

interface. The LST technique allows us to study the fracture represented as a weakness surface. A 

horizontally fractured medium is formed by an interface inserted in a homogeneous isotropic host 

medium. A vertically fractured medium is formed by a vertical interface inserted in a homogeneous 

isotropic host medium. 

Hudson’s (1980) model represents fractures as aligned isolated penny shaped cracks inside 

the host rock. The origin of the isolated penny shaped cracks indicates the type of anisotropy, 

typically with a Horizontal axis of symmetry (Horizontally transverse isotropic, HTI) or Vertical 

axis of Symmetry (vertically transverse isotropic, VTI). Hudson’s model treats fractures as isolated 

cracks and therefore does account for the fluid flow between cracks.  The accuracy of Hudson’s 

theory decreases when the crack density is large. In contrast, LST holds for large crack densities 

(Grechka and Kachanov, 2006). Also, LST offers a more intuitive understanding of the fracture 

because it does not assume penny shaped cracks. For this reason, we will use the LST to model   

fractures in this paper. The elastic properties of a fracture are described by the fracture compliance 

matrix and depend on the geometry of the fracture surface (Schoenberg, 1980; Schoenberg and 

Sayers, 1995). The stiffness matrix for an HTI medium is given by: 
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𝐶 =

[
 
 
 
 
 
 
 
(𝜆 + 2𝜇)(1 − ∆𝑁) 𝜆(1 − ∆𝑁) 𝜆(1 − ∆𝑁) 0 0 0

𝜆(1 − ∆𝑁) (𝜆 + 2𝜇)[1 −
𝜆2

(𝜆+2𝜇)2
∆𝑁] 𝜆(1 −

𝜆

𝜆+2𝜇
∆𝑁) 0 0 0

𝜆(1 − ∆𝑁) 𝜆(1 −
𝜆

𝜆+2𝜇
∆𝑁) (𝜆 + 2𝜇)[1 −

𝜆2

(𝜆+2𝜇)2
∆𝑁] 0 0 0

0 0 0 𝜇 0 0
0 0 0 0 𝜇(1 − ∆𝑇) 0
0 0 0 0 0 𝜇(1 − ∆𝑇)]

 
 
 
 
 
 
 

(1) 

where 

∆𝑁=
𝑑𝑓𝑍𝑁(𝜆+2𝜇)

1+𝑑𝑓𝑍𝑁(𝜆+2𝜇)
,                                                              (2) 

and 

∆𝑇=
𝑑𝑓𝑍𝑇𝜇

1+𝑑𝑓𝑍𝑇𝜇
 ,                                (3) 

where 

 𝜆 and 𝜇 are the lame parameters, 

 ∆𝑇 and  ∆𝑁 are the tangential and the normal weakness, 

 𝑍𝑁 and 𝑍𝑇 are the normal and tangential compliances, and 

 𝑑𝑓 is the fracture spatial density that is defined as the number of fractures per unit distance.  

 Note that C44 is equal to the  𝜇  of the homogeneous isotropic host medium stiffness which 

indicates that the fracture is described by the elements corresponding to the fracture system only 

(Cui et al., 2018; Bakulin et al., 2002). Under the LST, the anisotropy parameters can be linked 

directly to the fractures using equations 1-3. The HTI medium is the simplest to study the fracture 

behavior and seismic data signature as a function of offset and azimuth. 
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To construct the randomness of the fracture spacing, we follow the power-law function by 

Priest and Hudson (1976) and Fang et al. (2017) given by: 

𝑚 =
𝑎𝑛−𝑎𝑚𝑖𝑛

𝑛

𝑎𝑚𝑎𝑥
𝑛 −𝑎𝑚𝑖𝑛

𝑛 ,                                                (4) 

where 𝑎 is the fracture spacing in unit distance, 𝑛 is the power-law exponent that controls the 

distribution, 𝑚 is a random number between 0 and 1, and 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 are the minimum and 

maximum values for fracture spacing, respectively. By solving equation 4 for 𝑎 we obtain models 

with different fracture spacing. Using 𝑛 = 1 generates uniform random distribution between 𝑎𝑚𝑖𝑛 

and 𝑎𝑚𝑎𝑥 which can lead to the formation of clusters of fractures.  

Finite Difference Modeling  

We use the finite-difference software of Tesseral Technology Inc (Kostyukevych et al., 

2008) to model the anisotropic wavefield. A grid size of 4 meters in ∆𝑥  and ∆𝑧  is used for 

optimized forward modeling. The source is a Ricker wavelet with 30 Hz peak frequency. Each 

fracture is modeled as a single grid width size. We define the normal stiffness (𝑍𝑁 = 5 e-9 m/Pa) 

and (𝑍𝑡 = 5 e-8 m/Pa) as a function of the normal (∆𝑁) and tangential weakness (∆𝑇). We generate 

fractured models using both effective medium theory (EMT) and as discrete joints akin to the work 

done by Fang et al. (2017). For the EMT, we model the fractured layer using the average 

anisotropic parameters over the wavelength. In all our models, the fractures are situated in a layer 

with vP=3 km/s, vS=1.7 km/s and density 2200 
𝑘𝑔

𝑚3. The fracture planes are assumed to be vertical 

(HTI) for all cases such that the only variable is the fracture spacing. Given the frequency and the 

velocity of the fractured layer, we determine the dominant wavelength to be 100 meters.  
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Numerical Validation  

Our objective is to examine the amplitude due to non-uniform fracture spacing in different 

confined setting. First, we analyze the scattering due to a single fracture in a homogenous medium. 

Figure 4.2 shows a simple sketch to describe the different arrivals due to a single fracture. The 

observed arrivals are: PP and PS diffractions from the top and bottom tips of the fracture, as well 

as scattering from the sides of the fracture in the form of P-P scattering and P-S scattering. Fang 

et al. (2013) carried a detailed analysis and concluded that the factors that influence fracture 

scattering are the stiffness of the fracture and specifically (𝑍𝑁/𝑍𝑡), incident angle and Poisson's 

ratio of the host medium (Fang et al., 2013). In our analysis we use 
𝑍𝑁

𝑍𝑡
< 0.5 and hence P-S 

scattering dominates the energy scattered due to the fracture (Fang et al., 2013).   

Second, we validate the accuracy of the modeling algorithm using uniformly distributed 

fractures modeled via the EMT and as discrete joints fractures.  We construct a model with 129 

fractures and 12-meter spacing using a single source located in the middle of the survey. Figure 

4.3 shows the models used to generate the two datasets. Figure 4.4 shows the shot gather generated 

using the EMT (Figure 4.4a) and the discrete joints (Figure 4.4b). The two shot gathers are 

identical which indicate the validity of our modeling algorithm under the EMT assumption of 

uniformly spaced fractures. Next, we use equation 5 to generate a random fracture distribution 

with 𝑎𝑚𝑖𝑛 =8, 𝑎𝑚𝑎𝑥 =24 and 𝑛=1. The spacing between adjacent fractures is plotted against the 

offset in Figure 4.5. As a comparison, we show the shot gather generated using the constant spacing 

fractures vs. the randomly spaced fractures in Figure 4.6a and 4.6b. Using the random distribution, 

we observe scattering particularly below the second reflection. Scattering also occurs under the 

first reflector but are weaker.  

CMP Amplitude Analysis  
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In the previous section we demonstrated how scattering due to irregular spaced fractures 

can generate amplitude signatures different from uniformly spaced fractures on common shot 

gathers. In this section, we analyze the seismic amplitude on CMP stacked data in three different 

scenarios: isotropic, consent spacing fracture, and irregularly spaced fractures. We also vary the 

location of the fractured zone. Figure 4.7a shows the models in depth with unconfined fractures 

that cuts through the whole formation, fractures confined to the top (4.7b) and fractures confined 

to the bottom (4.7c) of the formation.  

The acquisition configuration is shown in Figure 4.7d. The fracture parameters and wavelet 

used for modeling are the same as those used in Figure 4.3. For the irregular fracture model, we 

computed 30 simulations for each of the models shown in Figure 4.7 using equation 1 and 𝑎𝑚𝑖𝑛 

=8, 𝑎𝑚𝑎𝑥 =24 and 𝑛=1. CMP data are collected from 0.5 to 1 km. We show the normalized P wave 

amplitude comparison in Figure 4.8. The red and yellow curves indicate the response of the 

constant and irregularly spaced fracture models. The blue dashed curves indicate the response due 

to an isotropic case. Figures 4.8a and 4.8b are for the unconfined fracture, Figures 4.8c and 4.8d 

are for the fracture confined to the top of the formation and finally Figure 4.8e and 4.8f show the 

bottom confined fracture. For the unconfined fractures, comparing Figure 4.8a with 4.8b shows a 

smaller deviation between the constant and random fracture spacing for the top reflection and a 

big deviation for the bottom reflection. The bottom reflection has a larger Fresnel zone and is 

affected more by the fractures. For the top confined fracture, Figure 4.8c shows identical results 

to 4.8a because the same fracture scattering is seen by the top reflection in both cases. For the 

bottom reflection 4.8d, the isotropic reflection has larger normalized amplitude than the fractured 

reflection. For the bottom confined fracture, the top reflection of the fractured cases matches the 

isotropic case.  In the presence of an accurate velocity model such as from tomography or CMP 



81 

reflection scan, modeling the response for an isotropic model and comparing it with the real data 

gives a quick indication about the location of the fracture. From our analysis we notice the top 

reflection is less influenced by fracture scattering and can provide insight when compared with the 

modeled isotropic amplitude behavior. The bottom reflection sees more of the fracture signature 

but translating the signature into fracture spacing is challenging. Due to the deviation between the 

constant spacing and irregular fractures, the results indicate that EMT may give inaccurate results 

because it does not account for fracture clustering effect. 

 

Limitations: Although the thickness of this reservoir is unrealistic, similar results can be achieved 

using thinner formation and higher frequency wavelets. In addition, stacked carbonate can give 

rise to strong internal multiples and undesired arrivals and those have not included in this analysis. 

We also assumed knowledge of the spatial distribution and characteristics of the fracture to 

construct our forward models. For real data, we can rely on core and outcrops to approximate of 

the fracture characteristics and orientation to carry similar forward model analysis. Although 

numerical modeling does not encapsulate the full complexity of the real data problem, it gives 

more insight into studying fracture scattering as a complimentary method to the existing effective 

medium theory. Also, forward modeling can bridge the transition from EMT and fracture-

scattering theory to diffraction scattering theory base methods such as diffraction imaging. Linking 

diffraction imaging to fracture characterization is an active area of research. In Appendix A we 

analyze the effect of anisotropy as a function of azimuth for different fractured layer thicknesses. 

Also, we list some of the factors controlling the resolution of diffracting imaging through 

established concepts in the literature.  
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Conclusions 

Using numerical modeling under EMT and as unconfined, confined discrete joints we find 

that when: fractures are irregularly spaced, clustering occurs, and the response is different from 

the seismic amplitude predicted from EMT theory. This amplitude deviation is stronger for the 

bottom reflections.  

The top reflection is less influenced by fracture scattering and by comparing it to isotropic 

modeled AVO can establish whether fractures are confined to the bottom of the reservoir. It 

remains a future research area to study the effect of scattering in a thinner more realistic formation 

thickness and predict fracture distribution from fracture scattering directly. Also, studying the 

signature of random fracture length can spark ideas to using fracture scattering directly to analyze 

the anisotropic properties.  
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Figures 

 

Figure 4.1. Different scale fractures are detected using different methods. Larger scales can be 

detected through seismic attributes such as coherence. Meso-scales can be detected using 

diffraction imaging. Micro-scale can be detected through AVAz and AVO. In this paper, we focus 

on the micro-scale to meso-scale transition.  
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Figure 4.2. Different arrivals due to a single fracture for incident P-waves. Modified after 

(Fang, et al., 2013). Depending on the fracture properties such as stiffness, elastic properties 

and angle of incident (red arrows), different arrivals dominate the response. Although shear 

waves are generated from the refraction tips, we preferentially measure and process to 

enhance PP diffractions. In contrast, a P-wave incident on the side of the fracture will 

generate both PP and PS reflections. These events will convert at the bottom of the formation 

(forming what many call a prism wave) which where PPP and PSP events are measured at 

the surface.    
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Figure 4.3. The model used to generate the data under the effective medium theory (4.3a) and as 

discrete joints (4.3b). In 4.3b the spacing between the fracture is 12 m. The thickness of the 

fractured layer is 200 m and the fractures extend through the whole layer (unconfined fractures). 

We average the anisotropy parameters over the wavelength to represent the model under the 

EMT.  
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Figure 4.4. (a) Shot gather modeled using the model in Figure 4.3a. (b) Shot gather modeled 

using the model in Figure 4.3b. A wavelet with a peak frequency of 30 Hz, grid size is Δx=Δz=4 

m. The two shot gathers are identical which confirms that discrete joints give similar results to 

EMT when the fractures are uniformly spaced.   
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Figure 4.5. Fracture spacing generated using the power-law equation, the circle represents 

the fracture spacing between adjacent fractures against the source-receiver offset.  
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Figure 4.6. (a) Shot gather modeled using the model in Figure 4.3b. (b) Shot gather modeled 

using the model with irregular fracture spacing. The gather generated using the irregular fracture 

model shows scattering under the second reflection. The factor that controls the scattering 

include the fracture stiffness, frequency of the wavelet, fracture spacing and elastic properties of 

the host medium.  
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Figure 4.7. Velocity model in depth with irregularly spaced fractures (a) unconfined. (b) confined 

top of the formation. (c) confined to bottom of the formation. (d) acquisition geometry.  
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Figure 4.8. The P-wave normalized amplitude comparison between the isotropic (blue), regular 

fracture spacing of 12 meters (red) and irregular fracture spacing (yellow) for 30 simulation models 

generated using equation 4.   

 

 

 

 

 



91 

References 

Bakulin, A., V. Grechka, and I. Tsvankin, 2000, Estimation of fracture parameters from reflection 

seismic data Part I: HTI model due to a single fracture set: Geophysics, 65,1788-1802. 

Berkovitch, A., I. Belfer, Y. Hassin, and E. Landa, 2009, Diffraction imaging by multi-focusing: 

Geophysics, 74, no. 6, WCA75-WCA81. 

Crampin S., 1981, A review of wave motion in anisotropic and cracked elastic-media: Wave 

Motion, 3, 142-152. 

Chopra, S., and K. J. Marfurt, 2007, Seismic attributes for prospect identification and reservoir 

characterization: SEG. 

Cui, X., L. Lines, E. S. Krebes, and S. Peng, 2018, Seismic Forward Modeling of Fractures and 

Fractured Medium Inversion: Springer. 

Decker, L. A., 2014, Seismic Diffraction Imaging Methods and Applications: PhD thesis, 

University of Texas at Austin. 

Delbecq, F., J. Downton, and M. Letizia, 2013, A Math-free Look at Azimuthal Surface Seismic 

Techniques: CSEG Recorder, 21-31. 

Dong, W., and M. E. Davidson, 2003, Quantifying 3D acquisition adequacy for azimuthal AVO 

analysis: The Leading Edge, 22, 476-480. 

Fang, X., M. C. Fehler, T. Chen, D. R. Burns, and Z. Zhu, 2013, Sensitivity analysis of fracture 

scattering: Geophysics, 78, no. 1, T1–T10,  

Fang, X., Y. Zheng, and M. C. Fehler, 2017, Fracture clustering effect on amplitude variation with 

offset and azimuth analyses: Geophysics, 82, no. 1, N13-N25. 



92 

Gray, D., 2008, Fracture Detection using 3D seismic Azimuthal AVO: CSEG Recorder, 39-49. 

Grechka, V., 2014, Seismic characterization of fractured reservoirs: Encyclopedia of Exploration 

Geophysics, C1_1-C1_12. 

Grechka, V. and M. Kachanov, 2006, Effective elasticity of rocks with closely spaced and 

intersecting cracks: Geophysics, 71, no. 4, D85–D91  

Hudson, J. A., 1980, Overall properties of a cracked solid: Math. Proc. Camb. Phil. Soc., 88, 371–

384.  

Kostyukevych, A., N. Marmalevskyi, Y. Roganov, and V. Tulchinsky, 2008, Anisotropic 2.5D - 

3C finite-difference modeling: 70th Annual Conference and Exhibition, EAGE, Extended 

Abstract, P043. 

Liu, E., M. Johns, G. Zelewski, W. A. Burnett, X. Wu and J. Zhang, 2015, Fracture 

Characterization by integrating seismic-Derived attributes including anisotropy and 

diffraction imaging with borehole fracture data in an offshore carbonate field: Proceedings 

of the International Petroleum Technology Conference. 

Liu, E., M. K. Johns, G. Zelewski, W. A. Burnett, J. Zhang, X. Wu and G. L. Skeith, 2016, Effects 

of overburden and thin layers on fracture-induced azimuthal AVO response: 86th Annual 

International Meeting, SEG, Expanded Abstracts, 347-351. 

Liu, E., and A. Martinez, 2012, Seismic fracture characterization: Concepts and practical 

application: EAGE. 

Liu, E., G. Zelewski, C. P. Lu, J. M. Reilly, and Z. J. Shevchek, 2011, Mitigation of overburden 

effects in fracture prediction using azimuthal AVO analysis: An example from a Middle 

East carbonate field: The Leading Edge, 30, 750-756. 



93 

Liu, Y., N. Dong, M. Fehler, X. Fang, and X. Liu, 2015, Estimating the fracture density of small-

scale vertical fractures when large-scale vertical fractures are present: Journal of 

Geophysics and Engineering, 12, 311-320. 

Lynn, H. B., Bates, C. R., Simon, K. M., and van Dok, R., 1995, The effects of azimuthal 

anisotropy in P-wave 3-D seismic: 65th Annual International Meeting, SEG, Expanded 

Abstracts, 723-730. 

Milad, B., and R. Slatt, 2018, Impact of Lithofacies Variations and Structural Changes on Natural 

Fracture Distributions: Interpretation, 6, no. 4, 1-15 

Milad, B., S. Ghosh, and R. M. Slatt. 2018, Comparison of rock and natural fracture attributes in 

karsted and non-karsted Hunton Group Limestone: Ada and Fittstown area, Oklahoma: 

Shale Shaker, 69, no. 2, 70-86.  

Mueller, M., 1991, Prediction of lateral variability in fracture intensity using multi-component 

shear-wave surface seismic as a precursor to horizontal drilling in the Austin Chalk: 

Geophysical Journal International, 107, 409-415. 

Ogiesoba, O. C., and A. Klokov, 2017, Examples of seismic diffraction imaging from the Austin 

Chalk and Eagle Ford Shale, Maverick Basin, South Texas: Journal of Petroleum Science 

and Engineering, 157, 248-263. 

Rauch-Davies, M., Deev, K., Pelman, D., and Kachkachev-Shuifer, M., 2014, Diffraction imaging 

applied to pre-existing 3D seismic data to map fracture corridors in an unconventional play: 

First break, 32, 87-90 

Rüger, A., and I. Tsvankin, 1997, Using AVO for fracture detection: Analytic basis and practical 

solutions: The Leading Edge, 16, 1429-1434. 



94 

Schoenberg M. A., 1980, Elastic wave behavior across linear slip interfaces: The Journal of the 

Acoustical Society of America, 68, 1516–21 

Schoenberg, M. A., and C. M. Sayers, 1995, Seismic anisotropy of fractured rock: Geophysics, 

60, 204-211. 

Schuster, G. T., G. Dutta, and J. Li, 2017, Resolution limits of migration and linearized waveform 

inversion images in a lossy medium: Geophysical Journal International, 209,1612-1621. 

Sturzu, I., A. M. Popovici, T. J. Moser, and S. Sudhakar, 2015, Diffraction imaging in fractured 

carbonates and unconventional shales: Interpretation, 3, SF69-SF79. 

Sturzu, I., A. M. Popovici, M. A. Pelissier, J. M. Wolak, and T. J. Moser, 2014, Diffraction imaging 

of the Eagle Ford shale: First Break, 32, 49-59. 

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954-1966. 

 

 

 

 

 

 



95 

Appendix A 

In this appendix, we give a brief background on the motivations behind this work and 

provide additional model results to support our analysis. This effort started as a collaboration with 

Marathon oil company to understand the effectiveness of AVAz and diffraction imaging in 

characterizing fractures. In particular, Marathon geophysicists want to investigate how the 

thickness, velocity and fracture intensity of the reservoir change the seismic amplitude. 

Understanding the effects of these factors requires us to show the basic limits of seismic resolution. 

Ultimately, the goal is to compliment the results from the well logs through seismic forward 

modeling. We summarize our findings on the benefits and limitations of using finite difference 

algorithm to model fractures as AVAz and diffraction imaging problems.  

Amplitude Variation with Azimuth 

 Liu et al. (2015) used velocity, density and fracture intensity from well log to model AVAz 

for a marine data offshore of the United Arab Emirates. They used a reflectivity-based rather than 

a full-wave modeling algorithm and as a result, they did not model undesired arrivals such as 

multiples and P-S waves. For real data, mitigating the multiples is essential prior to any AVAz 

analysis. First, we constructed a 3-layer model to analyze the amplitude variation at a specific 

offset in three different scenarios: unconfined fractures, confined fractures the top and the bottom 

of the reservoir. Second, we generated three models to analyze the effect of the anisotropy as an 

overburden on a deeper isotropic/isotropic reflection as a function of azimuth. We use ∆𝑇 =0.1 and 

∆𝑁= 0.2 to represent the anisotropy.  
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 The models used for the first case are show in Figure A-1a to A-1c. To avoid tuning and 

shear-wave arrivals, we used a thick reservoir.  In Figure A-1a, the whole 600 m thick layer is 

fractured. In the Figure A-1b, the top 300 meters of the fractured cases. In the third scenario, the 

bottom 300 meters of the layer is fractured A-1c. For thick reservoirs, there is a strong sensitivity 

in the reflection from the top and the base of the zone to where the fractures are located. 

Specifically, the top reflectivity is insensitive to fractures when they are confined to the bottom. 

The base reflection is sensitive to the location of the fracture zone in all three scenarios.  

Figures A-2 shows a suite of the models constructed to examine the effect of the thickness, 

and the location of the anisotropic layer in the overburden. Figure A-2a, shows different models 

with three different thickness (10m, 50m and 150m). The anisotropic layer leaves an imprint on 

the deeper isotropic/ isotropic reflecting for all three thickness. A thicker anisotropic layer results 

in a lower amplitude deeper reflection. The maximum and minimum amplitude orientations are 

dependent on the thickness and positions of the fracture layer which may be another reason for the 

90-degree ambiguity in determining the fracture orientation from amplitude data. 

Diffraction Imaging 

Using diffraction imaging to deterministically resolve the fractures changes the nature of 

the task at hand. We rely on 2D synthetic data to model individual diffraction and examine the 

controlling factors. We structure this section as follows: The diffraction imaging assumptions 

considered in our models are:  

1- The acoustic PP wavefield are modeled and recorded only, 

2- The modeling is noise free,  
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3- Multiples due to reflections have been successfully migrated and removed, and 

4- We can separate non-specular diffraction from specular reflection. 

Finite difference modeling 

We use a grid size of 1 meter for ∆𝑥  and ∆𝑧. Diffractions are modeled with a 2% slower 

velocity than the background medium. The width of the fracture/diffractor affects the amplitude 

generated and therefore a thicker diffractor gives a stronger seismic amplitude. For synthetic 

modeling, any fracture width provides good results, especially in noise free environments. The 

only limitations for synthetic data are that thinner fractures (< 1 meter) require a smaller grid and 

subsequently increase the computation time. We chose a 10 meters thick fracture because it has 

5% of the reflection amplitude energy, and this representative of detectable diffraction in real data. 

For all the models, we use two diffractions separated by 100 meters. 

 To understand the detection limitations of diffraction imaging, we review the concepts of 

horizontal and vertical resolution for poststack data in a lossless medium. The vertical resolution 

for a poststack data in a lossless medium is given by Schuster et al. (2017): 

𝑑𝑧 =  
𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ

2
          (A-1) 

where 𝑑𝑧 is the vertical resolution and the wavelength is given by 
𝑣

𝑓
  where  𝑣   is the velocity and 

𝑓 is the frequency.  With winder range of incident angle, we approach the 
𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ

4
. Figure A-3a 

demonstrate how to approach the maximum resolution, and includes faults with the following 

throws 100, 40 and 5 meters. For faults to be deterministically detected on conventional reflection 

seismic data, they need to be above be a quarter of the dominant wavelength or more. For our 
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numerical example, this occurs for the fault with a throw of 34 meters and above. We can detect 

separate diffractions from the top and bottom of the feature for larger throw faults such as the 100-

meter fault. As we approach a quarter of the wavelength, the scattering from top and bottom 

interfere, and we detect the feature as a single point diffractor. Such faults cause reflection peaks 

to line up against troughs at the location of the fault (Figure A-3b). Smaller faults can still produce 

a recognizable displacement in the reflection. Finally, the fault with a throw of 5 meters or less 

appears difficult to detect. Using diffraction imaging, we can detect the 100 m and 40 m throw 

faults but may struggle with the 5 meters throw because it has a low amplitude and could be masked 

by the background noise.  

The horizontal resolution for a poststack lossless medium is given by Schuster et al. (2017): 

𝑑𝑥 =  
𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ

2

𝑧0

𝐿
          (A-2) 

where 𝑑𝑥 is the lateral resolution and 𝐿 is the migration aperture. From equation A-2 we conclude 

that shallower depths and smaller wavelengths result in increased horizontal resolution. The 

migration aperture is inversely proportional to the horizontal resolution, whereby a shorter aperture 

smears the diffractions and reduces the lateral resolution. For real data the aperture is a little more 

complex.  Large apertures will not only increase the computation time but also in poor signal to 

noise ratio and degrade the migration quality. Two nearby fractures are resolved when the 

horizontal resolution identifies them as two separate events.  We examine the influence of 

migration aperture in Figure A-4. In Figure A-4b we use a 1100-meter aperture and find the two 

diffractors are not resolved. In Figure A-4c, we use a 2250-meter aperture and can resolve the two 

diffractions.  
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Next, we examine the effect of velocity inaccuracy on horizontal resolution. We generate 

three models with a 5% slower, correct and 5% faster velocities. Velocity inaccuracy can push the 

energy up for slow velocity (Figure A-5a) or down for faster velocity (Figure A-5b). Also, it causes 

the energy of the diffractor in the image domain to be smeared to appear as a smile or a frown. 

Therefore, velocity inaccuracy reduces the horizontal resolution and the ability to resolve the 

features is no longer valid. Whereas an error in the overburden velocity may not necessarily reduce 

the resolution but it may move the diffraction location laterally.  

Confined vs unconfined fractures 

Next, we construct a 3-layer model based on well log obtained from Marathon company. 

The model consists of an overburden, a carbonate formation and a half space (Figure A-4-6a). We 

insert two diffractors 100 meters apart in the target tight mudrock and examine the following three 

scenarios: First, unconfined diffractors that cuts through the entire target formation (150m thick). 

Second, the fractures are 75 m long and confined to the bottom of the target. Finally, the fractures 

are 75 meters long and confined to the top of the mudrock. We also compute the envelope for the 

three cases given by: 

𝑒(𝑥, 𝑡) =  √𝑟(𝑥, 𝑡)2 + 𝑟𝐻(𝑥, 𝑡)2 

where 𝑟(𝑥, 𝑡) is the original trace and 𝑟𝐻(𝑥, 𝑡)  is its Hilbert transform. Note the unconfined 

diffractions have more significant effect on the amplitude at the bottom of the diffractor (Figure 

A-6b).  A confined fracture to the lower mudrock is more pronounced than a fracture confined to 

the top and hence can be imaged better both on the imaged data and the attribute (Figure A-7b). 

Further, the strength of the envelope can give an indication of the location of the fracture but is not 
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conclusive. The stronger diffraction amplitude seen at the bottom is driven by the contrast between 

the fracture and the bottom layer. For closely spaced fractures (below seismic horizontal 

resolution), the destructive interference may smear the amplitude and attribute. Distinguishing the 

models in that case using diffraction imaging results can be challenging. 

18-layers model 

Carbonate formation are often vertically stacked which adds an undesired complexity, 

creating a significant interbed multiples which can mark the deeper diffractions within the limited 

resolution. To illustrate how marking due to shallower fractures influences the amplitude, we 

examine the following three scenarios: Fractures located in the carbonate, the mudrock formation 

and both formations.  Figure A-8a shows a zoomed portion of the model with the layers 

highlighted.  Although interbed multiples due to reflections have been suppressed, we still observe 

multiples due to the diffractions. We also see a strong bottom reflection due to the strong velocity 

contrast at the base of the carbonate (Figure A-8b). Figure (A-8c) shows the imaged diffraction in 

the mudrock. Weaker multiples still existed due to the reverberations within the diffractors. 

Finally, in Figure (A-8d) the fracture located in the carbonate has masked the fracture at the top of 

the mudrock where the vertical resolution limit, the thickness from the top of the carbonate to the 

top of the mudrock is 50 meters. The vertical resolution according to equation (A-1) is 66 meters. 

With more sources and wider azimuth acquisition in the field, we may achieve a finer resolution 

and hence map the fractures better.   

For real data, factors like noise, data quality, acquisition parameters and processing can 

suppress low amplitude small-scale fractures.  Diffraction imaged real data are usually noisy 

because of the low amplitude of diffractions compared with background noise.  
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Figure A-1. Velocity model in depth with the middle layer(a) fully fracture (b) top 300 meters 

(c) bottom 300 meters. (d) Seismic trace at offset (750m), blue for fully fractured, red for bottom 

fractured, and yellow for top fractured. (e) Average amplitude for the top reflection. (f) Average 

amplitude for the bottom reflection. Although the maximum reflection for the bottom reflection 

of the red trace (bottom fracture) looks larger, it has the same average amplitude.  
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Figure A-2. A varying thickness anisotropic layer influences the deeper 

isotropic/isotropic reflection and gives a different amplitude signature. (a) Three 

models with different thickness fractured layer in blue. From the left the thickness of 

the layer is given as (10, 50 and 150 meters). (b) The variation of the amplitude as a 

function of azimuth for the three-model shown in (a). The corresponding thicknesses 

are given in the legend. The maximum and minimum amplitude orientations are 

dependent on the thickness and positions of the fracture layer which maybe another 

reason for the 90 degrees ambiguity in determining the fracture orientation from 

amplitude data  
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Figure A-3. (a)The model with 3 vertical faults cutting through a single reflector. From left to 

right, the fault throws are 5 meters, 40 meters and 100 meters. These faults correspond to 1/20, 2/5 

and 1 the dominant wavelength. Sources (circle) and receivers (triangles) are placed on the surface. 

For better visualization, we pushed the receiver deeper to distinguish both. (b) the CMP stack of 

the seismic data. Each fault produces a diffraction from the top and the base of the diffraction. The 

two faults at the far right produce detectable change to the reflection. The smaller fault with 5 

meters does not produces any detectable displacement. (c) shows diffractions modeled in the 

absences of the reflection. Using ideal diffraction imaging, all these faults are detectable.  
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Figure A-5. (a)Velocity model in depth. (b) Migrated data using a 1125 m aperture. (c) Migrated 

result using a 2250 meters aperture. The x-shaped impulse is a result of imaging the diffraction 

with limited wavenumber (incident angles). Increasing the incident angles results in reducing this 

effect.   
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Figure A-5. We show here the migrated results shown in Figure A-4-3c using (a)5% slower 

velocity. (b) 5% faster velocity and (c) the correct velocity. An error in the velocity reduces the 

horizontal resolution and affect the ability to resolve the two fractures. Velocity inaccuracy in the 

overburden can also shift the resolved feature laterally.  
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Figure A-6. (a) Velocity model in depth with two 10 meters thick fractures located in the middle 

layer (mudrock). The fractures are separated by 100 meters. (b) Diffraction imaged section due to 

unconfined fractures (cut through the whole layer). (c) Instantaneous envelope computed on the 

data shown in (b).  
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Figure A-7. (a) Diffraction imaged data using fractured confined to the bottom of the middle layer 

(top 75 meters). (b) Instantaneous envelope computed using (a). (c) Diffraction imaged data for 

fractures confined at the top of the middle layer (bottom 75 meters). (d) Instantaneous envelope 

computed using (c). 
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Figure A-8. (a) An 18-layers model based on well logs data obtained from Marathon with a close 

up of the formation of interest. We generated three model with fractured Carbonate, mudrock and 

both. For all cases, we use two fractures with 10 meters thickness and 100 meters apart. (b) 

Diffraction imaged section generated using the fractured Carbonate model. (c) Diffraction imaged 

section generated using the fractured mudrock model. (d) Diffraction imaged section generated 

using fractured Carbonate and mudrock formations. The blow arrows indicate the top of the 

diffractions which is easily seen on the three imaged sections. The diffraction from the bottom is 

more continuous when the Carbonate is fractured. This can be explained by stronger reverberation 

due to the strong contrast at the base. When both formations are fractured, the diffractions from 

the Carbonate masks the deeper diffractions. This can be explained by the concept of vertical 

resolution. If the two layers are within the limit of the vertical resolution, diffraction imaging will 

fail to separate the two. 
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Abstract 

 Diffractions provide valuable information about local discontinuities and other small-scale 

variations in the subsurface. Most velocity analysis workflows, from simple semblance scans of 

CMP gathers to more sophisticated tomographic analysis, emphasize the contribution of specular 

reflections. In this study, we evaluate the greater sensitivity of diffractions to errors in the velocity 

model as a potential high-resolution velocity analysis tool. Our analysis consists of two steps. First, 

we analyze the velocity errors based on the focused energy of diffracted events in the image-

domain. For a single common shot image, maximum focusing (measured as the maximum energy 

at a given subsurface image point) occurs when the diffraction is imaged with the correct velocity. 

The diffractor can be distinguished even in a heterogenous medium. We improve upon this initial 

observation by cross-correlating multiple nearby shot images and find that the cross-correlation of 

the images is not only maximum but also laterally symmetric for the correct velocity. We combine 

these observations to construct an objective function, which can be used to estimate velocity errors 

in the image-domain. We evaluate the efficacy of thee method using simple and complex 2D wave 

equation synthetic models followed by reverse time migration. 

Introduction 

Recorded seismic waves are either reflected or diffracted, depending on the geometry of 

the subsurface structures. Diffractions are indicators of small-scale faults, pinch-outs, karst, reef 

edges and sudden changes in facies (Krey, 1952). In general, diffractions exhibit lower energy than 

specular reflections (Klem-Musatov, 1994). In addition, conventional seismic data processing 

parameters are selected to enhance the energy of specular reflections and may be suboptimal in 

imaging diffractions. Nonetheless, the proper imaging of diffractions results in improved fault 

terminations needed for structural interpretation and onlap and downlap patterns needed for 
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sequence stratigraphic interpretation.   The greater sensitivity of diffractions to velocity make them 

an excellent candidate to further improve an initially velocity model based on specular reflections. 

A major challenge in utilizing diffractions is in detecting them. Landa et al. (1987) proposed a 

method of detecting diffractions imaged by common-offset sorted gathers. Fomel et al. (2007) 

separated seismic diffractions from reflections using plane-wave destruction which relies on the 

continuity of the local slope of the reflection in the stacked section. Once separated, they found an 

optimal velocity to image the diffractions using a local focusing algorithm. Khaidukov et al. (2004) 

proposed a focusing-defocusing technique in the post-stack domain, whereby they focus the 

reflection to a point while the diffraction remains unfocused over a large area. Then, they suppress 

the focused reflection and defocus the diffractions. Moser and Howard (2008) studied the 

sensitivity of the diffraction to the small-scale scatter in the context of depth imaging and modified 

the migration kernel to directly image the diffractions. Decker et al. (2017) implemented a 

semblance-weighted least-squares migration to enhance the imaged diffraction. 

Other scholars have explored the use of diffractions in analyzing and updating the velocity 

model. Harlan et al. (1984) used slant stacking to suppress the reflections then migrated the 

diffractions until the maximum focusing was reached.  Sava et al. (2004) updated the interval 

velocity using the focusing and defocusing of diffractions and reflections by analyzing residual 

diffraction focusing in physical space using prestack residual migration. Huang et al. (2015) 

concluded that tomograms inverted using diffraction energy significantly improved the resolution 

of the velocity model obtained from using only specular reflection because the first Fresnel zone 

of diffracted waves is only 70% the size of that from specular reflections. Khoshnava et al. (2018) 

analyzed the diffraction moveout approximation in the presence of anisotropy. They also examined 

the different anisotropic diffraction travel time approximation on several 2D examples with VTI 
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anisotropy. They found that ignoring the anisotropy can result in low-resolution images with 

wrongly position or spurious diffractions  

These studies indicate that diffractions can be used to assess inaccuracies in the migration 

velocity model. The most common technique to analyze the velocity of reflections in the image 

domain is Al-Yahya’s (1989) migration velocity analysis (MVA). MVA indicates that the correct 

velocity will give the same image for collections of sources and receivers. If traces at the same 

point but imaged from different geometries are plotted side by side, the accuracy of the migration 

velocity is measured by the consistency (or “flatness”) of the common image gathers (CIGs). Sava 

et al. (2005) suggested a different migration velocity analysis in the image domain by incorporating 

the focusing of diffractions. Beginning with a suboptimally focused image, they used the 

defocused migrated events to update the velocity. Because it is difficult to identify diffracted 

events on CIGs used in the MVA method, their diffraction focusing criterion is based on kinematic 

information in defocused diffraction and reflection.  

In this paper, we build on the previous observations that diffractions are more sensitive to 

velocity than specular reflections. We begin introducing the theoretical background for the 

behavior of focused energy of diffracted events in the image-domain and image cross-correlation. 

Then we validate the method using numerical models with different complexity. Next, we 

introduce the objective function base on image cross-correlation. We conclude with an assessment 

of the limitations of this workflow and how one might be able to construct an interactive velocity 

analysis tool. 

Theoretical Background 

Migrated images can be constructed using a one-way downward continuation (Stolt, 1978) 

or two-way extrapolation reverse-time migration (RTM) (Hemon, 1978; Baysal et al., 1983). The 
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latter is computationally intensive but recently has become routinely used in complex marine areas 

such as the Gulf of Mexico and the Red Sea where it is critical to handle multipathing and even 

turning waves. For those advantages, we use RTM as our imaging technique of choice.  We use 

Claerbout’s (1985) imaging condition  

𝑅(x) = ∑ 𝑊𝑠(𝑥, 𝑧, 𝑡)𝑡 𝑊𝑅(𝑥, 𝑧, 𝑡),      (1) 

where 𝑅(x) is the imaged section at x =  (𝑥, 𝑧), 𝑊𝑆(𝑥, 𝑧, 𝑡) and 𝑊𝑅(𝑥, 𝑧, 𝑡) are the receiver and 

source wavefields, respectively. The imaging condition in equation 1 suggests that we forward 

prorogate the source-generated wavefield and backward propagate the received wavefield (in this 

paper using a finite difference algorithm) using a velocity model in depth. At each time step we 

cross-correlate the two wavefields to generate the zero-lag reverse time migrated image. The term 

“reverse time” comes from the fact that we reverse the receiver wavefield and backpropagate it in 

time.  

Locating diffractors 

In order to locate potential diffractors, we propose a two-step workflow: First, we image 

the data using bulk-shifted velocities (the starting velocity multiplied by a -/+ percentage) centered 

around a reasonably accurate starting velocity such as the pre-stack migration velocity based on 

reflection events, tomography or velocity scans on CMPs pre-stack migration velocity. We repeat 

the imaging condition given by equation 1 using bulk-shifted velocities (Figure 5.1) where we 

examine the energy distribution as well as the location of the energy for a single diffraction. A 

velocity that is 10% too slow results in an image that is concave down but shifted too shallow 

(Figure 5.1). A velocity that is 10% too fast results in an image that is concave up but shifted too 

deep (Figure 5.1). For a velocity that is accurate velocity the diffraction is well focused at the 

correct location and has the highest energy in the center of the window (Figure 5.1). In the absence 
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of complex structure or strong lateral velocity variation, a good pre-stack time migration (PSTM) 

velocity should be within few percentages range of the correct velocity in the (Rauch-Davies et 

al., 2018).  

Second, we construct a 3D matrix with each slice corresponding to the migrated section 

using a different velocity. Then using a window around the zone of interest defined by the 

processers/ interpreter the size of the dominant wavelength, we compute the sum of the envelope 

along the depth direction at each imaged trace following: 

𝐸(𝑥) = ∑ √[𝑟(𝑥, 𝑧))]2 + [𝑟𝐻(𝑥, 𝑧))]2𝑧1
𝑧0 ,    (2) 

where  

𝐸(𝑥) is the average intensity (sum of the envelope) at location 𝑥,  

𝑧0 and 𝑧1 are the depth limits considered in the summation, 

 𝑟(𝑥, 𝑧) is the migrated trace, and  

rH(x,y) is its Hilbert transform in z. 

Zavalishin (2000) finds that the envelope removes sensitivity to the frequency and phase of the 

image. 

The diffraction should be focused and maximum at the correct spatial and depth location 

for the correct velocity slice as shown in Figure 5.1. The assumption of an optimal focusing for a 

diffractor within our analysis window is valid under the following conditions: (1) there should 

only allow subsequent velocity perturbations to include the correct velocity model, and (2) 

processing has minimized the introduction of imaging artifacts related to statics, strong multiples, 

and surface waves. 

 

Image correlation objective function  
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Given this suite of images, we now wish to quantify the velocity error in the image-domain. 

We define the error as a local cross-correlation that measures the apparent shift between two 

nearby experiments. Hale (2006), Hale and Cox, (2008), and Perrone et al. (2015) shifted images 

using 

𝑐𝑖(x, 𝜆) = ∫𝑤(x − 𝜉)𝑅𝑖(𝜉 −
𝜆

2
)𝑅𝑖+1(𝜉 −

𝜆

2
)𝑑𝜉,    (3) 

where x =  (𝑥, 𝑧) for the 2D case, 

 𝑅𝑖 and 𝑅𝑖+1 are the reference and secondary image respectively, 

𝝀 is a 2D vector,  

ξ  denote a dummy variable of integration in the correlation and is defined in space 𝑥 and 𝑧 , 

 𝑎𝑛𝑑 𝑤 is the local cross-correlation weighting given by  

𝑤(x − 𝜉) = exp  {
−1

2
[(𝑧 − 𝜉𝑧) + (𝑥 − 𝜉𝑥))]}.      (4) 

The choice of window size X and Z is critical for several reasons. First, we have to ensure that the 

diffractor is present in the window imaged of choice. A good size for the window is the maximum 

wavelength in the data. The weight provides a smooth transition to zero along the sides of the 

correlation and removes the artefacts due to abrupt truncations. The two images 𝑅𝑖 and 𝑅𝑖+1 are 

products from the same velocity from nearby shots.  Next, we define the objective function 

following (Perrone et al., 2015): 

ℑ(𝑚) = ∑ ‖𝑐𝑖(x, 𝜆)‖x
2,     (5) 

where 𝑚 represents the velocity model parameters, the ∑𝑖 indicates we are summing over several 

experiment-pairs, x is the lateral coordinate of the migrated traces and  ‖ ‖2 indicates the 𝑙2norm. 

The objective function in equation 5 relies on the local coherence between nearby shots assuming 

they see similar portions of the model and provide comparable images. Equation 5 also evaluates 

the degree of similarity in semblance between images through local correlations in the image 
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domain. Also, requires it requires no picking a moveout or the evaluation of focusing in common-

image gathers (Symes, 1991).  

Numerical Validation  

Locating diffractors 

To demonstrate the efficiency of the method, we use three numerical models with various 

complexity. In all the models, we have imaged the data with the following range of velocities 10% 

too low, 5% too low, correct, 5% too high and 10% too high. A single source is used and the direct 

wavefield have been suppressed in the modeling stage because they are not of interest in this study. 

 

Diffractor in homogenous background velocity model 

Figure 5.2a shows the velocity model used to generate a diffraction in a homogenous back-

ground medium. This model is the basic scenario to observe how the sum works on a diffraction 

imaged using various velocities. Figure 5.2b shows the shot gather containing the diffraction after 

suppressing the direct wavefields. Figure 5.2c shows the imaging section using the correct 

velocity. Following equation 2, we sum the energy at each receiver location on each velocity slice 

using a 300 m window centered at the depth of the diffraction imaged by the correct velocity. We 

can consider the summation as a 1D filter to create a profile of the sum of envelope as a function 

of each migrated trace location. The normalized results are shown in Figure 5.3. As the velocity 

increases from 10% too slow to 10% too high, the correct velocity concentrates the intensity around 

the location of the diffractor. The maximum energy is reached when the velocity is correct. 

Exceeding the correct velocity results in reducing the normalized amplitude. The homogenous 

background model is not ideal to analyze the different velocity effect in focusing and locating the 

diffractor in Figure 5.3. To analyze how the energy changes at the diffraction locations, we plot 
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the normalized amplitude against velocity in Figure 5.4. The trend indicates that the diffracted 

energy is not symmetric when the velocity is inaccurate. 

 

Diffractor with heterogeneous velocity 

For a more complicated case, we use the von Kármán stochastic random model to build the 

heterogeneous background velocity model (Nakata and Beroza, 2015). The velocity change ranges 

from 0.2 to 1.4 km/s (Figure 5.5a). Side and back scattered waves are generated when the energy 

propagates through heterogeneous background medium (Figure 5.5b). Figure 5.6 shows the 

summation of the envelope along the receiver location normalized. The scattering interference 

reduced the overall amplitude at the location of the diffraction for inaccurate velocities images. 

The interference, however, gives a realistic representation of the method working in more realistic 

setting. We still achieve a pronounced focusing at the correct location when using the correct 

velocity. 

Sigsbee model 

Next, we use a portion of the Sigsbee model (Paffenholz et al., 2002) to locate diffractions 

in complex geology setting. Figure 5.7 shows the Sigsbee velocity model with the portion cropped 

for the test highlighted by the white box. Figure 5.8a shows a zoomed version of the portion 

considered in this example whereas Figure 5.8b shows the imaged section using the correct 

velocity. A single source is used to image this model and assess the validity of the method in a 

more realistic scenario under poor illumination. We consider the summation across the areas 

highlighted by the yellow box a, red box b, and green box c. Figure 5.9 shows the sum of the 

envelope for the yellow box. The correct velocity summation is not symmetric as the reflection 
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contributes to the energy sum. For the correct velocity model, the maximum value still occurs at 

the location of the diffractor, while for other models it does not.  

Next, we implement the same analysis on the reflections in red box b. The sum of the 

envelope at each receiver location is shown in Figure 5.10. The maximum and minimum velocities 

are dominated by reflectors and show no focusing. In contrast to the sum over window a, the 

reflection energy constructively interferes and show no focusing that allows one to analyze the 

velocity variation. 

Finally, we show the intensity for the poorly illuminated diffraction in box c in Figure 5.11. 

Even when the diffraction is poorly imaged, we still see a maximum energy at the location of the 

diffractor. 

Image correlation objective function  

In Figure 5.12 we show a simple single diffractor model imaged by the two sources in red. 

The source spacing is 80 meters. We use 401 receivers located on the surface with 5 meters 

spacing. The resulting images are shown in Figure 5.13 using the 2% fast, correct and 2% slow 

velocity. Using equation 3, we cross-correlate the images from the two adjacent experiments and 

show the result of the cross-correlation in Figure 5.14. Note the symmetric correlation image for 

the correct velocity and the asymmetric correlation for the inaccurate velocity models. 𝜆𝑥 and 

𝜆𝑧are the correlation lag in the image space. The preliminary results encourage us to construct an 

objective function following equation 5 that can be used to measure the apparent shift between 

two images from nearby shots. Figure 5.15 shows the values of the objective function (equation 5) 

for different constant perturbations of the model used for the simple example considered. 
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Limitations and Future Work  

We demonstrate the validity of the proposed method using synthetic data with variable 

complexity. We also demonstrate that the use of diffractions provides a smooth objective function 

that can be used to update the velocity model. A potential velocity updating technique is the adjoint 

state method which has been demonstrated for reflection by Perrone et al. (2015). We list below 

the inherent limitations and suggest additional research tasks to build on this work.  

First, the underlying assumptions of a single diffractor per window and low noise level 

require further analysis and can be the topic for a future research. We use the maximum intensity 

to locate potential diffraction which fails in the presence of multiple diffractions.  

 Second, extending the method to 3D can be demonstrated using the equations above but 

may become computationally intensive. For instance, the search for a maximum intensity becomes 

a 3D problem rather than a 2D which requires a more advanced grid search method.  

Finally, for 3D data or even for a large 2D data, imaging the section using bulk-shifted 

velocity is not desirable to say the least. Instead, we consider this work as a complimentary 

technique to analyze the velocity. Instead of propagating the wavefield through the whole section, 

we can achieve a subsequent localized forward simulation between the scattered wavefield caused 

by the bulk-shifted velocity within a target area and the unchanged velocity outside the reduced 

absorbing boundary (Masson et al., 2017). The localized simulation requires an exact boundary 

condition around the area of interest and changing the nature of the problem to a target oriented 

inverse problem. Basically, under the localized simulation, we save the wavefield everywhere 

except inside a zone of interest. Since our method is based on image cross-correlation, we worry 

mostly about that zone of interest. Hence, we can bulk-shift the velocity inside that zone of interest. 
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Conclusions 

Because diffractions are more sensitive to the accuracy of the velocity than reflections, 

diffraction focusing can be used as a velocity analysis tool. At present, the method is interactive, 

whereby an interpreter identifies specific diffractions (such as about faults) for further analysis. 

Once identified, we perturb the velocity model and sum the energy within an analysis window 

slightly larger than the dominant wavelength. Evaluating three synthetic models with various 

complexity for a single common shot gather indicates that the most energetic events occur when 

using the correct velocity, suggesting that this energy can be used as a quantitative measure of the 

quality of focusing.  

Multiple shots each will give diffraction images that are sensitive to the velocity in different 

ways. We use image cross-correlation between nearby experiences to analyze the velocity. 

Analysis of our synthetic models indicates that we obtain a more symmetric cross-correlation when 

the velocity model is correct and an asymmetric cross-correlation when it is incorrect. We combine 

these observations to construct an objective function that will be amenable to differential 

semblance optimization solutions.  
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Figures 

 

 

Figure 5.1. Top: Schematic cartoons of a diffraction model imaged using 10% slow, 5% slow, 

correct, 5% high, and 10% high velocities. The grey dashed box represents the window where we 

sum the energy at each image location (equation 2). The summation is done as a 1D calculation at 

each output migrated trace. The window should be placed around potential diffracting location. 

Bottom: The summation of envelope for each at each receiver normalized for each velocity slice. 

Because the diffraction is focused when the correct velocity is used, it gives the highest value 

(orange curve). 
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Figure 5.2. (a) A diffractor in a homogenous velocity model in depth. The red star indicates 

the location of the source (b) Gather generated using the model in panel (a) with direct 

wavefield suppressed. (c) RTM imaged gather in panel (b) using the correct velocity model. 
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Figure 5.3. The summation of the envelope at each imaged trace for images generated using 

bulk-shifted velocity of the model in Figure 5.2a. We use a 300 m window centered at the depth 

of the diffractor in Figure 5.2c for the summation. 
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Figure 5.4. The normalized summation of the envelope at each receiver location of the 

diffractor (x =1 km) plotted at different velocities. The skewness is linked to the diffraction 

energy behavior under different velocities. 
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Figure 5.5. (a) Velocity model of a diffractor in a heterogeneous background. The black red 

star indicates the location of the source. 401 receivers are located on the surface with 5 

meters spacing. (b) Gather generated using the model in panel (a) with direct wavefield 

suppressed. (c) RTM imaged using the correct velocity model in (a). The diffraction looks 

weaker due to the scattering from the background heterogenous model.   
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Figure 5.6. The summation of the envelope normalized at each imaged location for images 

generated using bulk-shifted velocity of the model in Figure 5.5a. We used a 300 m window 

centered at the depth of the diffractor in Figure 5.5c for the summation. The amplitudes for the 

±10% velocities are lower than those shown in Figure 5.3. The highest amplitude corresponds to 

the correct velocity. 

. 
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Figure 5.7. Sigsbee velocity model with the portion of interest highlighted in the white box. 
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Figure 5.8. (a) The portion of the Sigsbee velocity model considered in study. The red star 

indicates the location of the source. 801 receivers are located across the 5 km depth with 85 

meters spacing.  A single source is used to image the section to examine the technique in poorly 

illuminated data. The source location is given by the red star. (b) RTM image of panel (a) using 

the correct velocity. The yellow, red and green boxes indicate the windows used for our analysis. 

We check the validity of the method of detecting diffractions in areas with different complexity. 

The yellow window has a reflection and a diffraction, the red window has reflections only and 

the green window has poorly imaged diffraction and reflections.   
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Figure 5.9. The summation of the envelope normalized at each receiver location for the yellow 

box shown in Figure 5.8b. The correct velocity summation is not symmetric as reflection 

contributes to the energy sum. For the correct velocity model, the maximum value still occurs at 

the location of the diffractor, while for other models it does not. 
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Figure 5.10. The summation of the envelope normalized at each receiver location for the red box 

shown in Figure 5.8b. The maximum and minimum velocities are dominated by reflectors and 

show no focusing.  
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Figure 5.11. The summation of the envelope normalized at each receiver location for the green 

box shown in Figure 5.8b. Even for poorly illuminated diffractor, we still see a maximum energy 

at the location of the diffractor. 

 



132 

 

 

 

 

 

 

 

Figure 5.12. The model in depth used to cross-correlate two images from nearby experiments. 

The two sources are given by the red stars. 401 Receivers are located on the surface with 5 

meters spacing.  

 



133 

 

 

 

 

 

 

 

Figure 5.13. The imaged section from the two sources shown in Figure 5.12. The location of the 

source is given by the red star in each figure. The velocity used to generate the images are given 

in the title of each figure.  
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Figure 5.14. Local cross-correlation generated using the windows shown in Figure 5.13. We cross-

correlate images generated from different sources (different experiments). Note the symmetric 

correlation image for the correct velocity and the asymmetric. for the inaccurate velocity 

models.𝜆𝑥 and 𝜆𝑧are the correlation lag in the image space. The size of the local window for cross-

correlation is approximately equal to the maximum wavelength of the signal.  
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Figure 5.15. Values of the objective function for different errors in the velocity 

model. We consider a constant perturbation ranging from -2% to 2% of the 

correct velocity equation 5.  
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Chapter 6: Conclusions 

The world’s astonishing dependence on fossil fuels has not changed in the past four 

decades. Fossil fuels provide approximately 80% of the total energy used worldwide.  This high 

percentage indicates that despite the recent glut in the market, the demand will be there for years 

to come. If my visits to the talks held by the Geophysical Society of Oklahoma City has taught me 

anything, it would be that people find a way to keep the oil business running to put “bacon” on the 

table. This also pushes the envelope for researchers to look for new and innovative ways to 

optimize drilling costs.  

Fractures and faults are critical for drilling optimization. Fracture characterization aims to 

understand fracture patterns, so that an optimum strategy can be devised for completing and 

effectively draining a fractured reservoir. Fractures provide fluid migration pathways that can be 

exploited to extract reserves stored in low permeability rocks. This economic importance is driving 

significant improvement in ways seismic attributes can be used to characterize the fractures. 

Depending on the scale of the fractures, they can be stochastically or deterministically 

characterized on seismic data. In this dissertation, I examined the fracture and fault signatures 

imaged/enhanced using different seismic attributes.  

Geometric attributes are very effective in detecting large-scale fractures. In chapter 2, I 

enhanced the expression of faults and subtle features using a continuous wavelet transform based 

workflow to suppress acquisition footprint. This technique relies on an edge detection attribute’s 

sensitivity to periodic noise to design a mask and suppress the noise on seismic amplitude data. 

The workflow is suitable for legacy and mega-merged data where economic constrains limit 

reshooting or more carefully reprocessing the data.  
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 In chapter 3, I showed that although Fourier-based 5D interpolation improves specular 

reflections, seismic edges may be unintentionally suppressed. Coherence anomalies associated 

with faults, karst and channels were suppressed in after 5D regularization of a modern well 

sampled Mississippi Lime survey. Artefacts can be created in the far offsets, and if not muted, 

potentially providing misleading AVO and prestack inversion predictions, and the stacked volume 

being overly influenced by the velocity used in 5D interpolation. Until these algorithm’s 

limitations are addressed, I suggest that complimenting 5D interpolated with non-interpolated data 

is essential for constructing a better image of the subsurface.   

In chapter 4, I analyzed amplitude variation with offset and azimuth to predict the signature 

of small-scale fractures. Detecting fractures using this technique assumes that fractures are 

uniformly spaced. I examined the signature of the fractures when this assumption is violated by 

fracture clustering. The presence of irregularly spaced can result in deviation of the amplitude 

predicted by the effective medium theory and inaccurate fracture characterization. I find that 

forward modeling of the amplitude variation with offset (AVO) for the target horizon using the 

velocity model provides insight into the location of the fractures within the reservoir. Fractures 

located at the bottom of the reservoir have no effect on the top reflection. Hence, similar AVO 

trends are observed for both the bottom located fractures and the modeled isotropic case for the 

top reflection.    

In chapter 5, I analyzed how detected diffraction waves due to fracture can enhance 

imaging the subsurface. Due to diffraction’s sensitivity to velocity inaccuracy, they are diffractions 

are useful in updating the velocity to build a more accurate sub-surface image. I prototyped an 

interactive method whereby an interpreter first identifies areas with potential diffractions. Once 

located, the interpreter perturbs the velocity model and sums the energy within the analysis 
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window to analyze the degrees of diffraction focusing. To improve on the velocity, I use image 

cross-correlation between nearby common shot gathers and analyze the results. A more symmetric 

cross-correlation indicates an accurate velocity model. Finally, I combine observations from 

different nearby experiments pairs to construct an objective function that can be used in a 

differential semblance optimization solution.  
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