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Abstract

We define the degenerate two boundary affine Hecke-Clifford algebra H4, and
show it admits a well-defined q(n)-linear action on the tensor space M@N @V ¢,
where V' is the natural module for q(n), and M, N are arbitrary modules for q(n),
the Lie superalgebra of Type Q. When M and N are irreducible highest weight
modules parametrized by a staircase partition and a single row, respectively,
this action factors through a quotient of Hy4. Our second goal is to directly
construct modules for this quotient, H%, using combinatorial tools such as
shifted tableaux and the Bratteli graph. These modules belong to a family of
modules which we call calibrated. Using the relations in %, we also classifiy
a specific class of calibrated modules. This result provides connection to a
Schur-Weyl type duality: the irreducible summands of M ® N ® V®¢ coincide

with the combinatorial construction.
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Chapter 1

Introduction

In the early twentieth century, Schur studied the actions of the general linear
group, GL(V), and the symmetric group on a tensor space V®¢. The two
actions fully centralize each other. This is now known as Schur-Weyl duality
and it provides a powerful link between the representation theories of these two
groups. For example, the finite dimensional irreducible representations of GL(V')
which occur as summands of V®? are in bijection with the finite dimensional
irreducible representations of the symmetric group, whenever dim V' > d. Schur-
Weyl duality continues to be studied and has been generalized to many other
settings.

For example, following Schur’s work, given a finite dimensional module M
and the natural module V' for the general linear Lie algebra gl,,(C), Arakawa-
Suzuki [1] studied an action of the affine Hecke algebra H*f on M @ V®¢
which centralizes the action of gl,(C). As a result, there exists a family of
functors from the category of finite-dimensional gl,,(C)-modules to the category
of finite-dimensional H*f-modules.

An analogue of H called the degenerate two-boundary braid algebra
G4, was studied by Daugherty [6]. The quantum version of this algebra has a
diagrammatic presentation in [7] . In particular, given any two finite dimensional
gl,,(C)-modules M, N, there exists a well defined action of G; on the tensor

module M @ N ® V¥, As a special case, one can choose M, N to be simple



modules parametrized by rectangular Young diagrams as explained in Section
2.4 of this thesis. Daugherty then defined a quotient HS* of G4, under extra
relations dependent on the Young diagrams. It follows that the action of Gy
satisfies the extra relations and factors through the quotient H$*. Moreover,
Daugherty constructed irreducible HS*-modules using combinatorial tools, and
showed that irreducible summands of M ® N ® V®¢ are isomorphic to these
combinatorially constructed modules.

A super (i.e. Zs-graded) analogue of the above result was developed by
the author in [18]. This was done by studying the connection between the

ext

representation theory of Hg* and the representation theory of the general linear

Lie superalgebras gl,,,(C). Similar to the representation theory of gl (C),

njm(
polynomial g[n‘m(((:)—representations are also controlled by combinatorial tools,
in the sense that characters of polynomial representations are given by hook
Schur functions.

In particular, given finite dimensional supermodules M, N for the general
C).

linear Lie superalgebra gl (C), M@N®V®? is naturally a module for gl

An action of Gy on M @ N @ V®? can be defined using a certain Casimir element,
and this action commutes with the action of gl,,,(C). Moreover, when M
and N are irreducible representations whose highest weights are given by
rectangular Young diagrams, the defining relations for H$, as a quotient of
Ga, are also satisfied, and this induces a further action of H$*. We therefore
recover the irreducible HS*-modules in [6] by studying irreducible summands of
M ® N @ V® as right HG*modules, and they coincide with the combinatorial
construction in [6].

On the other hand, Hill-Kujawa-Sussan [10] studied the Type Q version of

the construction in Arakawa-Suzuki [1]. In particular, the Type Q analogue



of the affine Hecke algebra is the affine Hecke-Clifford algebra H2 whose
underlying vector space is the tensor product between H* and the Clifford
algebra. Given any finite dimensional module M for the Type Q Lie superal-
gebra q(n), there is a well defined action of H2 on M ® V®? which commutes
with the g(n)-action. Similar to [1], there is a family of functors from the cat-
egory of finite-dimensional q(n)-modules to the category of finite-dimensional
H2-modules. In addition, Hill-Kujawa-Sussan constructed H-modules using
combinatorial tools such as shifted Young tableaux.

This thesis is a generalization of Hill-Kujawa-Sussan [10] to the two boundary
case, or alternatively, a generalization of [6] and [18] to Type Q. In Section 3.1,
we first define the degenerate two boundary affine Hecke-Clifford algebra Hy in
the spirit of the two boundary Hecke algebra Gy. Similar to the case of gl,(C)

and gl,,,,,(C), there is an odd Casimir element 2 € q(n) ® q(n) which induces

a q(n)-linear action on M ® N for any q(n)-modules M and N. We have our

first main result in Theorem 3.7:

Theorem 1.1. Let d > 0 and M, N be arbitrary modules for q(n). There is a

well-defined algebra homomorphism Hq — Endgm) (M @ N ® yed),

We then focus our study on the case when M and N are polynomial modules.
By definition these are modules which occur as direct summands of V®¢ for
some e > 0. Polynomial modules are semisimple as explained in Section 2.3, and
they are closed under tensor product. According to [17], irreducible polynomial
modules of q(n) are parametrized by strict partitions defined in Section 2.4, and
their tensor product decomposes into polynomial representations in a fashion
controlled by combinatorics of the Schur P-function [14]. We further choose

M and N so that the irreducible summands occuring in the decomposition



of M ® N have the smallest possible multiplicity. By a combinatorial result
developed by Bessenrodt [2], this is true when M = L(«) is parametrized by a
staircase shape o and N = L([3) is parametrized by a single row §. In this case
any irreducible summand occurs with multiplicity 2 (see Section 2.4). A similar
result is true for W ® V' when W is any simple polynomial module and N is
the natural module. These multiplicity results allow us to describe summands
of M ® N ® V% using the Bratteli graph introduced in Section 5.1 .

If 5 has p total boxes, we define a quotient H!, of H, under extra relations
involving n and p. A key formula in Proposition 4.6 establishes a connection
between 2 and certain even central elements in q(n), whose actions on a simple
polynomial module can be easily calculated. Using this formula, we show the
above action factors through the quotient and we have the following result in

Theorem 4.11.

Theorem 1.2. There is a well defined action

p: HY — Endg (L(a) @ L(B) @ VEY).

Similar to Daugherty and Hill-Kujawa-Sussan, we also construct H5-modules
in Section 5.2 using combinatorial rules. In Lemma 2.3, we reformulated the
decomposition formula for Schur P-fuctions given by Stembridge [14], and
define a Bratteli graph I', g whose vertices are strict partitions and directed
edges are defined representation theoretically. Let A be a fixed vertex in this
graph, and denote I'* to be the set of all paths from a to A. Let f: I'* — C*
be any function with the condition (5.2.1), such as the one in Definition 5.10.
We define a vector space D}, whose basis is given in terms of paths in the

Bratteli graph and the generators of H% acts by explicit formulas. In particular,
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the graph and these formulas depend on « and 3, which are determined by
the parameters n and p in the defining relations of H%. We have the following

result in Theorem 5.12 and Theorem 5.22:

Theorem 1.3. The vector space DJ’} admits a well-defined action of HY, and

18 1rreducible.

Following the spirit of Hill-Kujawa-Sussan [10] and Wan [16], we study
H-modules on which certain polynomial generators act by eigenvalues. We
then classify a specific family of these H -modules, where the eigenvalues are
assumed to be given by the combinatorial data in the Bratteli graph. In
particular, for each path 7" and integer ¢, the eigenvalue k(i) is defined in
Lemma 5.4. We then focus on the case when the parameter n in the defining
relations of HY, is even. Equivalently, when the number of nonzero rows in
a (and hence \) is even, we have the following result in Proposition 6.1 and
Theorem 6.2, which shows that these eigenvalues determine the simple modules

defined above.

Theorem 1.4. When the number of nonzero rows in « is even, given an

HE-module W, if it admits a free Clgy1-module structure W = @ Clgyivr,
Ter>
where each vy is homogeneous and z;.vp = kr(i)vy, 0 < i < d, then WA ~ D}‘

for some f.

In the case when n is odd, we expect a similar result to hold due to the
theory of taking Clifford twists of a category as mentioned in [4, 9].

Similar to Schur-Weyl duality, a q(n)-version of the double centralizer
theorem in [17] states that L(a) ® L(3) ® V®¢ decomposes into bimodules for

q(n) and its centralizer, Z; = Endy,)(L(e) ® L(8) ® V®?). Since the image



p(HY) in Theorem 1.2 is a subalgebra of Z;, any irreducible Zz-summand £*
of L(a) ® L(B) ® V¥ admits a module struture for p(H%). In Theorem 6.5
and Theorem ??7, we show we can recover the combinatorially constructed

irreducible modules D}‘ via this restriction:

Theorem 1.5. When the number of nonzero rows in « s even, there exists

an isomorphism Resj{(‘g{p) LA ~ DJ’} for some choice of f.
d



Chapter 2

Preliminaries

2.1. Lie Superalgebras

The study of Lie algebras dates back to the ninteeth century. The Lie al-
gebra gl(n) is a noncommutative, nonassociative algebra consisting of n-by-n
matrices, whose algebra operation is given by the commutator backet. In
more generality, Lie algebras are vector spaces imposed with a bilinear map,
called the Lie bracket, which is antisymmetric and satisfies the Jacobi identity.
Mathematicians such as Cartan and Killing studied its structure using Cartan
subalgebras, root space decomposition and the Killing form, and they were
able to classify semisimple Lie algebras. Their representation theory was later
studied using highest weight theory.

This thesis is based on the “super” analogue of the above theory, the
representation theory of Lie superalgebras. In [11], Kac studied such algebras

g that are C-vector spaces with a Z, - grading:

g= 07D o1

We shall call gg the even part of g and gy the odd part of g. An element is
homogenous if it is purely in gz or gr. We denote by T € Z, the degree of a

homogeneous element x € g.



It has an algebra operation called the Lie superbracket:

-, -] g®g—g

and the bracket satisfied the following:
1) It is compatible with the grading, i.e. [g7,95] C g;75-
2) It has “super” antisymmetry: [x,y] = —(—1)*Y[y, x].
3) It satisfies the super version of the Jacobi identity: if = € gz, v € gy,

Zeggf

(=[x, ], 2] + (=1)"*[ly, 21, 2] + (=1)""[[2, 2], 4] = 0.

A Lie superalgebra homomorphism p : g — g’ between two Lie superalgebras
g and g¢’, is a linear map which preserves the Lie superbracket and grading, i.e.

p(g;) C g5,4=0,1, and

[p(z), p(y)] = p([z,y]),Vz,y € g.

A representation or module V' for the Lie superalgebra g is a Zs-graded

C-vector space V', with a Lie superalgebra homomorphism
¢:g— Endc(V)

where Endc (V) has a Lie superalgebra structure given by the super commutator
[fygl = fog— (—1)?'§g o f, for homogeneous elements f,g € End(V'). Here,
composition is as linear maps, and the grading on End(V) is defined as follows:

f € End(V)isevenif f(Vz) C Vi and f(V5) C V4, and it is odd if f(V5) C Vi



and f(V5) C V. For € g and v € V, we will sometimes denote ¢(z)(v) as
x.0.

In this thesis we shall only be concerned with graded representations. In
particular, a representation is irreducible if it has no proper graded subrepres-
entations.

Given two modules M, N for a Lie superalgebra g, a homogeneous module
homomorphism is a linear map ¢ : M — N which is either even (i.e. preserves
the grading) or odd (i.e. reverses the grading,) with ¢ defined according to its

parity, such that

We denote by Endg (M, N) the space spanned by homogeneous module homo-
morphisms from M to N, and Endy(M) = Endy (M, M).

2.2. q(n) and its representations

We will use [17] as reference throughout the rest of the chapter. The Lie

superalgebra of type Q, denoted by q(n), is defined as follows:

A B
qg=q(n) = |A, B € Mat,, ,(C) 7,
B A



where Mat,, ,,(C) is the set of n by n matrices with entries in C. The Z, -

grading is given via

A 0
05 = |A € Mat,,,,(C) 3,
0 A
B
q7 = |B € Matn,n((C)
B 0

The Lie superbracket is the super commutator bracket, similar to that defined

in the previous section,

[z,y] = xy — (—1)"yz,

for homogeneous x € qz, ¥ € qy, and the multiplication is as matrices. It can

be checked that all the axioms in the previous section are satisfied.

For future convenience let us compute the superbracket on a basis. Let

E;; € Mat,, ,(C) be the matrix unit with a single 1 in the 4, j-position and 0’s

elsewhere. Let

E; 0
€ = ! , (2.2.1)
0 By
0 Ej
fii = , (2.2.2)
E; 0

then {e;;, fij}1<ij<n constitutes a homogeneous basis of q. It can be checked

10



that the superbracket is according to the following formulas:

[eij, epq} = 0jp€ig — 0igCp; (2.2.3)
(€33, fpal = Oipfia = dig.fps (2:2.4)
[fiss €pal = Gipfiq = diq.fps (2.2.5)
[fis: foal = Ojp€iq + digep; (2.2.6)

We will only check the last identity, and the rest of the calculations are similar:

0 Eij 0 qu
[f R f pq] = )
Eij 0 qu 0
E,-j qu 0 qu E;; 0
= +
0 E; 'qu 0 qu E;.

= 0jpCiq + Oigep;

We will also denote e; by h; and fi; by h;.
Define

f)ﬁ = (C — span{hi}lgign.

Similarly, define

by = C - span{E}1§i§n-

11



The Cartan subalgebra of q(n) is the Lie supersubalgebra

h = by ® br.

Using equations (2.2.3) — (2.2.6), one can check b is a Lie subsuperalgebra. For

« € b7, define the root space

o ={z €q | [h,2] = a(h)x,Vh € bg}.

Let A = {Oé € h%/{O}, Jo 7£ 0} Then A = {61‘ — Ej}lgi,jgn where

€; : ha — C, GZ(d) = d; (227)

and d; is the i-th diagonal entry in d € bhy. Define the set of positive roots
AT = {¢; — €;}1<icj<n and the set of negative roots A~ = {& — €;1<jci<n.
Define n™ = @oea+ o and 1~ = Poen- qo- Unlike semisimple Lie algebras,
the root spaces q, are two-dimensional, which suggests that the representation
theory for q(n) will be rather different than the classical case.

The tensor algebra T'(q) is the associative superalgebra

T(q)=qgd(qRq) O qRIRq) -,

where multiplication is given by concatenation and the Z, - grading is defined
as 1 ® -+ ® g = T1 + - - - + T4. The universal enveloping superalgebra U(q)
is the associative superalgebra that is the quotient of 7'(q) under the relations
[z,y] = xy — (—1)®Yyz, for homogeneous elements z,y € q.

Just as for Lie algebras, a g-module M can be regarded as a U(q)-module.

12



Vice versa, any U(q)-module is a g-module based on the usual imbedding
q C U(q) into the one tensor subspace. Hence we will not distinguish between
a g-module and a U(q)-module.

There is a map of superalgebras:

A:U(q) = Ul(q) ®@U(q)

r—rl+1®u, Vo € g

where U(q) ® U(q) is a superalgebra whose the multiplication obeys

(1 @ y1)(T2 @ ya) = (—1) 2V 19 @ Y1Ya-

For U(q)-supermodules M and N, U(q)®U(q) acts on M @ N via the following:

forr®@yeU(q)@U(q) and me M, ne N,

(z@y).(men) = (=1)""(x.m) ® (y.n).

Therefore we can define the action of U(q) on M ® N as

rz.im®n)=A(z).(men)=(z1+1®x).(men)

= (z.m)@n+ (=1)""m @ (z.n)

for all homogenous z € q,m € M,n € M. One can check the above satisfy the
axiom (1 ® A)o A = (A®1)oA, therefore, tensor products of three modules
or beyond can be defined as taking successive tensor products: M @ N ® P =
M@N)@ P~M®(N®P).

As mentioned in [17, Section 2.1.6 |, a class of irreducible modules for

13



q(n) can be constructed using Verma modules, similar to the theory for
the Lie algebra gl(n) or the general linear Lie superalgebra gl(n|m). Recall
" = @uca+ o and 17 = @Puea- do- It is known that U(q) has a triangular
decomposition U(q) ~ U(n") @ U(h) ® U(n"). Recall ¢; € h* in (2.2.7). We
identify the set P = EnB Ze; with Z" via

=1

)\:>\161+"'>\n6n'—> ()\1,...,)\n). (228)

For A € P, define a 1-dimensional hz-module spanned by vy, where h;.vyx = \;va.
The induction C(A) = U(h) ®py;) Coy is an h-module, and C'()) has a unique
irreducible quotient E(\).

Let b = nT @ h. With a slight abusive use of notion let F(\) be the b-module
where n' acts as zero. Define the Verma module M () = U(q) ®Qu) £(A) to
be the Verma module associate to the sequence A. By [8], M(\) has a unique
irreducible quotient L(A) for A € Z". Moreover, if 3p € h*, w, € L(\) such
that hyw, = pw,, 1 <i <n, we will call w, a vector of weight i, and one
can impose a partial order on the set of weights in L(\). By construction,
A is highest according to this partial order, and if w) is a vector of weight
A, ntawy, = 0. We will call an element such as wy a highest weight vector of
weight A.

Define V' = C?" to be the set of column vectors of height 2n with complex

entries, with a Zs-grading given by

U 0
V@Z ’UJGC” VT: |w€(C”

14



The g(n)-action is given by matrix multiplication on the left, and the action is
compatible with the grading. The module V' corresponds to the highest weight
simple module L(ey), with ¢ = (1,0,...,0) from the above construction.

By [17, Lemma 3.4], similar to the Type A Lie algebras and superalgebras,
there is a super version of Schur’s Lemma. As a result, one can define a simple

module to be of Type M or Type Q based on its q(n)-endomorphism space.

Lemma 2.1 (Super Schur’s Lemma). Let W, U be two simple modules for q(n),

then
0 if W AU
dim Endgm) (W, U) = < 1 if W ~ U s of Type M
2 if W~ U is of Type Q

In the latter case, Endg,)(W) has a basis {1, c}, where ¢ is an odd q(n)-
endomorphism. When W = V' is the natural representation defined above, ¢

can be taken as left multiplication by

: (2.2.9)

where [, is the n X n identity matrix. In particular, it can be checked that
[c, 2] = 0 for all elements x € q(n).

Choose an ordered basis {e1,...,en, f1,..., fu} of V, where e; is the vector
of height 2n with 1 in the i-th entry and 0 elsewhere, and f; is the vector of
height 2n with 1 in the (n+1i)-th entry and 0 elsewhere. Observe that c(e;) = f;,
c(fi) = —e; where ¢ € Endy(V') is the map defined above. For notation purposes

let w be either symbol e or f, then ey, (w;) = diqwp, fog(wi) = (=1)"16;(c(wy)).

15



For any q(n)-module W, define IIW to be the module with the same
underlying vector space and opposite grading, i.e. v € IIW is even if and only
if v is odd in W, and vice versa. The action of q(n) on IIWW is defined as

r.w = (—1)*x.w, for homogeneous = € q(n) and w € W.

2.3. Combinatorics of Shifted Diagrams

Let us now introduce shifted diagrams (or equivalently, strict partitions). Let

Zh, ={A= (A1, . ) | N €Zso, N > Niya,

be the set of positive, dominant integral weights whose entries are strictly
decreasing. The shifted diagram associated to A € Z7  consists of rows of
boxes, with A; boxes in the first row, Ay boxes in the second row, ... , where
the beginning of the i-th show is the i-th column. By length ¢(\) of A, we mean
the number of rows in the diagram of A\. When giving the entries of a strict
partition A, we sometimes omit the repeating zeros at the end. For example,

the shifted diagram associated to the weight (4,2,1) is:

(2.3.2)

and the length of (4,2,1) is 3. For a box b in a diagram, define the content
c¢(b) of the box b to be

c(b) = col(b) — row(b),

16



where col(b) is the index of the column in which b lies and row(b) is the index
of the row. Notice one can intepret ¢(b) as the index of the diagonal in which b

sits. In Example (2.3.2), the content for each box is as follows:

0(1(12]3

0

We say a strict partition v is contained in another strict partition A, if
vi < A; for all 4. For strict partitions v contained in A, Stembridge [14] defined
a semistandard tableau of shape \/v to be a filling of the boxes that are in
A but not in 7, with entries from an ordered set 1’ <1 <2’ <2 < ---, such
that the numbers are weakly increasing along each row and each column, and
each i’ (or primed integers) occur at most once along each row and each i
(regular integer) occur at most once along each column. Given a semistandard
tableau T' of shape A/~ with entries from {1,1’,... ¢, '}, let the multiplicity
w(T) € ZN be (1, pia, - - - 1, 0,0, ...), where p; is the total number of 1’s and
(1')’s, po is the total number of 2’s and (2')’s, etc.

Ezample. The following is a semistandard tableau of shape \/u, where

A=(5,3,2,1), u = (3,1), and the multiplicity of the fillings is (4,2,1,0,0...):

1/
1|2
12

3

When v = (0,0, ...) is the empty partition, the definition above specializes

to tableaux of shape A. In this case, define the Schur Q-function associated to

17



A to be the following formal sum:

semistandard tableaux of
QA(IE) = Z # {shape A and fillings with } M. (233)
N multiplicity u
pe

Here, x# = 24?2}, when p = (p1,...,14:,0,0,...), and # denotes the

cardinality of a set. The Schur P-function is
P)\(ZE) = 2_€(>\)Q>\(ZL‘)

where /(\) denotes the number of nonzero rows in A as defined before.
Denote by Py(x1,...,z,) the truncated polynomial obtained from Py by
setting z; = 0 for ¢ > n. Notice Py(z1,...,2,) can be defined using (2.3.3) by
only counting semistandard tableaux with entries up to n.
Also observe that when ¢(\) = n, the largest entry in a tableau of shape
A must be at least n in the partial order, using the following pattern in the

boxes with content 0 and 1:

1.
2712,
313

For any other taleaux, entries in these boxes must be equal or larger, because
of the nonrepeating condition. Therefore, there are no semistandard tableaux
of shape A\ with entries up to n, when ¢(\) > n. In other words, all terms in
P, must contain some z; for i > n, hence Py(z1,...,2,) =0 when {(\) > n.

In [14, Section 8], it is shown that multiplication of Schur P-functions obeys
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the following decomposition

P\P, = foqu.
v
We evaluate the above equation at z; =0 for ¢+ > n + 1:

Py(x1, .. xn)Pulay, o wn) = Y Py, ) (2.34)
Y

Because P,(z1,...,%,) = 0 when £(y) > n, the remaining discussion will be
applied to the coefficient f\ , when £(v) < n.

The coefficients fl ., can be computed combinatorially as follows. Similar to
the definition of semistandard shifted tableax of shape A, a semistandard shifted
tableaux of skew shape v/, is a filling of boxes in « that are not in A, with
integers 1,2,... and 1,2',... under the order 1’ <1 <2’ <2 < ---, subject
to the semistandard condition introduced in the beginning of this section.
To compute fl# we also need to define a lattice condition: in particular, let
w = wy - - - wy be the word obtained by reading the entries in a tableaux from
the bottom row to the top row, and from left to right. Denote by # the number
of times an entry appears. For any i, define the occurrence m;(k) at step k as
follows:

H1<k<t,
m;(k) = #iin wy_gyq, ..., wy
2)t+1<k<2t,

mi(k) = my(k —t) + #¢ inwy, ..., w_y
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With the convention m;(0) = 0. In other words, the function m;(k) is
counting regular integers backward from the end of w to the beginning, and
counting primed integers forward from the beginning of w to the end. Call w a
lattice word if the following is true

1) When 1 < k <t,if m;(k) = m;q1(k), then wy_p #i+1,(i + 1)

2) When t + 1 < k < 2t, if m;(k) = m;1(k), then wy_¢1 #0, (i + 1)

Define the absolute value |i| = |i'| =i for 1 <i < n. In [14], the Stembridge
states the analogue of the Littlewood-Richardson rule for fy , in (2.3.4) as

follows.

Theorem 2.2. [14, Theorem 8.3] fy , is equal to the number of semistandard
tableaux of shape v/ such that the word w is a lattice word, and for any i, the

first letter in w with absolute value i is a reqular integer.

Ezample. Let us compute f;f s Where

All semistandard shifted tableaux of shape v/ whose fillings have multiplicity
given by u, are in the form of the following, where x is representing one of

1,1,2,2.
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The square can be filled with the following posibilities:

111 111 v v 112 12
1|2 1|2 1|2 1|2 12 12

1 111 K v 112 12
212 2|2 212 2|2 212 212

The others fail for various reasons:

BT the associated word 1’211 has 1" before all other 1.
; 12’ : yellow box violates the lattice condition (1).
. yellow box violates the lattice condition (2).

Using the above result, Bessenrodt [2] classified all the cases of pairs of
partitions (A, u) such that fy , is either 0 or 1. Among them, two cases are
important for us and they are as follows:

1) A= (t,t —1,...,1), which we call a staircase shape, and p = (s).

2) A is arbitrary and p is a single box.

For Case 2, it is immediate that f;# =1 if and only if v can be obtained

from adding a single box to A. We reformulate Theorem 2.2 for Case 1:

Lemma 2.3. When A = (t,t —1,...,1,0,0,...), p = (s), f\, =1 if and only
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if v 1s of the form

vy=A+(s0,1,1,...,1)

= (t+so,t,t—1,....5+1,5,j—2,7—3,...,1)

Where 7 > 2, s+t —j+1=s. In other words, v is obtained by pasting an

upside down L-shaped diagram to the right of .

Proof. By the previous theorem, if fg,u # 0 if and only if there exists a
semistandard tableau of shape v with content s, satisfying the above conditions.
Specifically, boxes in v that are not in A must be filled with 1 or 1’. Since the
semistandard condition implies that no square can be filled with 1 or 1’, any
such tableau must be in the mentioned form. On the other hand, given any
such partition A+ (sg, 1,1,...,1), one can fill the “L” shape using the following

pattern:

1] 1(1
1/
1/

1/
1

Since only one integer is used, the lattice condition is easily satisfied and the

first letter in w is also unprimed. O

2.4. Polynomial Representations and Characters

For this section we shall focus on finite dimensional ¢(n)-modules. For a module

W and A € b*, let Wy = {w € W|h.aw = A(h)w,Vh € b} be the A\-weight space
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in W. Recall )\; is the i-th entry in A as in (2.2.8). If W ~ @) W), define the
set of weights to be {A | W) # 0}, and the character of W to be the formal

suimn

Ch(W) =" dim Wy - 2" 232 - - - 2.

n
Aeh

One can also check the following is true

Ch(W) ® Wy) = Ch(W)) - Ch(Wa),

Recall that V' denotes the natural representation for q(n) from Section 2.2.
Summands of V®? for an arbitrary d are called polynomial representations. By
[17, Theorem 3.49], V®? is semisimple, therefore polynomial representations are
semisimple. Furthermore, if M is a summand of V% and N is a summand of
V® then M ® N is a summand of V®(@+d2) "and therefore is again polynomial.
Therefore the full subcategory of polynomial representations is closed under
tensor product. By [17, Theorem 3.49], any polynomial representation W is
isomorphic to some L(\) defined in Section 2.2, where A is the unique weight
in W that is highest under the partial order mentioned in Section 2.2, and A is
a strict partition. By [17, Theorem 3.48], the connection between characters

and Schur P-functions is given as follows:

Z(A)+1J

Ch(L(N) =272 1Py (2, ..., ) (2.4.1)
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For A\, € Z7% ,, L(\) ® L(p) is polynomial and hence semisimple. In particular,

L)@ L)~ @ L) (2.4.2)

AEZT |

for nonnegative integers cy ,, where Z%, was defined in (2.3.1). Equations

(2.4.1) and (2.4.2) yield

2L%JH%JPA(%, v @) Py(z, .. xy) = Zc:(’”ﬂwjpv(xl, ey X))
The coefficients ¢} , are therefore related to the Littlewood-Richardson type
coefficients fy , in (2.3.4). In particular, ¢} , = 0 if and only if f , = 0, and
the set of partitions v occuring in the direct sum obeys the combinatorial rule
by Stembridge.

In the special case where \ is a staircase of length n, all partitions ~ that
occur in the decomposition contain A, and must have length exactly n, and
0(X\) = {(y) = n for all occuring ~. If in addition, ¢(u) = 1, the above equation

reduces to

2P\(21,. .., xn)Pulay, .. xn) = D} Py (@, 2), (2.4.3)

T o
therefore ¢, , = 2f) .
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Chapter 3

The Degenerate Two Boundary Affine Hecke-Clifford Al-

gebra

3.1. Presentations

In [6], Daugherty studied the degenerate two boundary Hecke algebra G and its
representations using certain representations of the general linear Lie algebra
gl(n). In particular, G is generated by three polynomial rings and CX,, where
Y4 is the symmetric group on d letters. On the other hand, Hill-Kujawa-
Sussan [10] studied the degenerate affine Hecke-Clifford algebra H2, and
its representations using certain representations of the Lie superalgebra q(n).
To study the two boundary version of the work of Hill-Kujawa-Sussan, or
equivalently, the Type Q version of Daugherty, we need to define the two

boundary analogue of H2T.

Definition 3.1. Define the degenerate two boundary affine Hecke-Clifford al-
gebra Hq to be the associative algebra over C generated by generators I, ..., Tq,
Yty Yds 20y--+32ds Cly---,Cdy S1s---,8q4, where T;, ¥;, Z;, ¢; are odd, s; 1S

even for all i, subject to the following relations:
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(Sergeev relations)

N

S5iSi4+15;

SiSj

=

CiCj
SiCj
S;iCj

SiCj+1

(Hecke relations)

SiTi = Tit18i + C — Ciq1
SiYi = Yi+15i T Ci — Cit1

SiZi = Zi41Si T Ci — Cit1

(commuting relations)

1 1<i<d

Si+18iSit1 1<i<d-1
;S li—j|>1

—1 1<i<d

—cj¢; i# ]

C;S; JgFi,i+1

Cj+18i

CjSi

(1<i<d-1)
(1<i<d-1)
(1<i<d-1)
T;8; = S;T;
Yjsi = 5;Y;
2j8; = 8iZj
(G #ivi+1)

26



(near commuting relations)

8i(Ti + Tig1) = (¥ + Tig1)si + 2(ci — ciy1)
$i(Ui + Uiv1) = (Ui + Git1)si + 2(¢i — i)

Si(éi + 5¢+1) = (21 + 21’-1—1)31' + Q(Ci — Ci+1)

(1<i<d-1)
(anticommuting relations)
;= =T
il = —Y;Ci
ciZ; = —Z;c
(1<i,j5<d)
flﬂ?j - —ijlfl
Yi¥j = —Y;Yi
53 = —5%
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(further relations)

%%, = —%;%
ZiY; = —Yj%i
(J <)
(Bo—1—Ba— - — B+ E)E = (B0 — 5 — Bo— oo — 5+ &)

Go+Zi+2++Z—-0)0i=—0F+5H+ 2+ -+ 2 —0)
(1<i<d)

Ti+ Ui = % — Z (cj —ci)tyi
1<j<i-1

(1<i<d)

Here, tj; = 5j8j41* 8i—15iSi—1" - S;415; corresponds to the symmetric group

element (17) in cycle notation.

To emphasize the similarity to the Type A setting, the list of relations
above are introduced in a similar pattern as the degenerate two boundary braid
group in [6], with some slight differences in “further relations”. However, most
of the generators and relations above are redundant, and we aim to obtain a
shorted presentation for later purposes. In particular, we first introduce a few
lemmas to show some relations can be obtained by others, for an intermediate
presentation in Corollary 3.4, and a more reduced presentation with odd
polynomial generators in Theorem 3.5. The final goal is a reduced presentation

with even polynomial generators in Proposition 3.9.

Proposition 3.2. The “near commuting relations” can be obtained from the

“Hecke relations”, and “further relations” can be reduced to the following

28



(shortened further relations)

ZoX1 = —X129
Zol1 = —Y122
(50 —Z1+ i’l)i‘l = —j’l(ig —Z1+ Zi‘l)

(Zo+ 21 —01)th = —th(Zo+ 21 — )

i+ =2

Proof. 1) We claim the “near commuting relations” are redundent: the “Hecke

relations” are equivalent to

8T = Tiy15; + (¢ — Cit1)

T8 = 8iTiv1 — (¢ — Ciq1)

By combining the two equations one obtains the “near commuting relations”
for xz;.

2) The relation

Zilj = —i’ng (Z > j)

can be obtained from

and other relations.

First, the second relation above imples s;x;s; = x;41 + (¢; — ¢i41)8;. Suppose
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the claim is true for all j < jo. When j = jo + 1, Vi > j9 + 1:

ZiZjo+1 + Tjo+1Z;
= 2i(3joij03jo - (Cjo - Cj0+1)5j0) + (Sjofijosjo - (Cjo - Cjo-i-l)sjo)gi
= Sjo('gijjo + fjogi)sjo - (Zi(cjo - Cj0+1)sjo) + (Cjo - Cjo-&-l)sjo)gi)

=0

The last equality holds because of the induction hypothesis and the fact that z;

anticommutes with (c;, — ¢j,4+1) but commutes with s;,. Similarly, the relation

ZilY; = —VY;Zi (i >j)

can also be obtained from other relations.
3) The relation Z;#; = —%12;(i > 2) can be obtained from 2,7y = —71 2,
and the Hecke relations.

Assume the claim is true for all 7 < k.

2101 + T12k41
= (SkZrsk — (Ck — Crg1)5k)T1 + T1(SkZkSk — (Ck — Chg1)Sk)

= Sk(ékii'l + flik)sk =0

Similarly, Z;57 = —912;( > 2) can be obtained from Z;7; = —¢; 22 and the
Hecke relations.
4) The relation
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can be obtained from

(Fo— 514 81)F1 = —i1 (50 — 51 + 1)

and other relations. Assume the claim is true for integers i < k.

(20— 21— Zo— = Zpy1 + Tpy1)Taga

+ Tp1(Z0 — 21— 2o — -+ = Zpg1 + Thp)
= (20— 21— 22— — Zpp1 + Tr) (SkTwsk — (G — Crp1) i)+

(skTrsk — (ck — crr1)se)(20 — 21 — 22—+ — Zpg1 + Tpp)
=sp(Z0— 21— 22—+ = Zpg1) TSk + SkTk(Z0 — 21— Z2 — 0 — Zpg1)Sk

+ 2(ck = Chg1) TSk — 25Tk (Ck — Cr1) + Thr15KTkSk + SETRSETht1
—(20—21—Z — - — Zpg1)(Ck — Chg1) Sk
—(ck —cry1)sk(Bo— 21 — 22 — - — Ziy1)

— (Ck — Chy1)SkTht1 — Tht1(Cl — Cht1) Sk

The calculation is too long in one setting, therefore let us break up the pieces:

sp(Zo— 21 — Zo— - — Zpg1)TuSk + SkTi(Z0 — 21 — Zo — -+ - — Zpy1) Sk
:Sk(go—gl —52—"-—ik—i-:i'k)i'ksk—i-skii'k(fo—gl —52—'~'—5k+i'k)8k
— Sk(fik + §k+1)~%k3k - Ski’k(i’k + 5k+1)5k

= _25kt%z5k
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by the induction hypothesis.

Ty1SkTkSE + SkTESkTRy1
= (5kTk — (Ch — Cr41))TiSk + 56Tk (Task + (ck — Cry1))

= 25,338k — (Ck — Chs1)TnSk + SkTk(ch — 1)

—(20—21—Z — - = Zpg1)(Ck — Crg1) Sk
- (Ck - Ck+1)5k(50 —Z1—Zy— o — 5k+1)
=(cxr —crp1)(Bo— 21 — 2o — -+ - — Zpy1) Sk
— (e —cpy1)(Bo— 21 — Z2 — -+ — Zy1) Sk + 2(c — Cyr1)’

= 2(cx — cps1)?

Therefore,
(20— 21— 2 — - — Zpg1 + Tpt1) T
+ Zpp1(Bo— 2 — 2o — -+ — Zpy1 + i)

= 2(c, — Chy1)Tpsk — 288Tk(cr — Chy1) — (Ck — Chpr)SkThr1 — Trr1(Ck — Crpr)Sk
— (ck — Chg1)Tusk + Sk@n(cr — crr1) + 2(c — cpp1)’
= (Ck — Chy1)TrSk — SkTh(Ck — Chp1) — (Ck — Chp1) (Twsk + (Ck — Crt1))

+ (sk7k — (e — cxr1))(cr — rp1) +2(ck — cpi1)* =0

The calculations for the y; version of the relations are similar yet slightly

different. Again assume the y-portion of the claim is true for all + < k.
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(Z0+ 21+ 22+ + Zks1 — Got1) Uk
+ Gpr1(Z0 + 21+ Za+ 00+ Zeyr — Ukr1)
=(Z0+ 21+ Z+ -+ Zkyr — Ukrr) (SkUrSk — (Ck — Crp1)Sk)
+ (skUksk — (ck — chy1)s) (2o + 21 + 22 + -+ + Zepr — Grtr)
=sk(20+ 21+ 2+ o+ Zeg1)UkSk + SkUk(Z0 + 21+ Z2 -0+ Zpg) Sk
—2(¢k — Chg1) TSk + 255Uk (Cr — Crg1)
— U1 (SkUksk — (Cr — crr1)sk) — (SkUksk — (Ck — Crr1)Sk) Ur1
—(Zo+Z+ 2+ + Zpp1)(cr — Chg1)sk

— (Ck — Ck+1)8k(50 + 21 + 52 + -+ §k+1)

Calculate each piece individually:

sk(Zo+ 214 Zo 4+ Zra1)UkSk + SkUk(Z0 + 21+ Z2 4+ - + Zka1) Sk
=sp(Zo+ 21+ 2+ + 2k — Ur)UrSk + SkUk(Z0 + 21 + 2o + -+ + 2k — Uk)Sk
+ 8k(Zep1 + Uk)UeSk + SkUk(Zr1 + i) Sk

~2
= 25,Y;,5k
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= 1 (SkTesk — (cr — chr1)sk) — (SkUesk — (Ck — Ch1)Sk) ks
= —(sf — (ck — 1)) TSk + U1 (cr — Crr) sk

— skUk(Uksk + (ck — ck1)) + (ck — Chi1) SkYkt
= =285k + U1 (Cr — Crp1) Sk + (Cr — Cry1) SkTr41

+ (¢ — Crt1) TSk — SkUk(ck — crt1)

—(B+ 2+ 2+ -+ Zegr)(cr — Crp1) sk
— (g —cpy1)sk(Zo+ 21+ 22+ - + Zepa)
= (Ck — Ck—}—l)(EO + 51 + 22 + -+ 2k+1>3k — (Ck — ck+1)(20 + 21 + 22 + -+ 2k+1)5k

—2(ck — crp1)? = —2(ck — ce1)”

Therefore,

(Z0+ 21+ 22+ + Zks1 — Got1) Uk
+ Ur1(Z0 + 21+ Z2 + -+ Zpg1 — Trs1)
= Ur+1(ck = Cor1) sk + (b — Chr1) SkYrr1
+ (ck — Cht1)UkSk — SkUk(ck — Cri1)
—2(¢k — Chr1)UnSk + 255k (Cr — Crt1)
— 2(ck — Ck+1)2
= —(cx — ck+1) (skUx — (cx — Crv1)) + (& — Crr) (Trsi + (& — Ct1))
— (¢k — Cr1)UrSk + seUr(cr — Cry1)

— 2(Ck — Ck+1)2 =0
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5) The relations

Ti+0i=2%— >, (c—ct, (1<i<d)
1<5<i—1

can be obtained from z; 4+ ¢; = Z; and other relations.

Assume the claim is true for 7 < k.

Tht1 + Ynt1
= SkTrSk + SkUkSk — 2(ck — Cry1)Sk

= Sk(gk — Z (Cj — Ck)tj,k)sk — 2(Ck — Ck+1)8k
= Zem — sk( DL (G — crtin)sk — (ck — Crg) sk
1<j<k—1

= Ze1— () (5 — chpr)sutjnse) — (Cr — Cop1)sk
1<j<k-1

=Z1 — (Y, (¢ — ) tjpsr) — (Cr — Cogr) Sk
1<j<k—1

= Zp1 — (Y (65 — crs1)tinr)
1<5<k

]

Proposition 3.3. The “commuting relations” can be obtained by “Hecke rela-

tions” and the following

i‘lsj = SjL%l (2 < ] < d)
Y155 = 5551 (2<j<d)
21'3]':5]'22' Z?’é],j+1
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and the “anticommuting relations” can be obtained by “Hecke relations” by

CT1 = —T1¢ (2<1<d)

CiY1 = —YiG (2<i<d)

ciZj = —Z;c (1<i,j<d)
T1(512181 — (1 — e2)s1) = — (512151 — (€1 — €2)s1) T4
Ji(s1t1s1 — (a1 — ¢2)s1) = —(s19151 — (1 — ¢2)s1)
Zo(s12051 — (€1 — ¢2)s1) = — (812051 — (€1 — €2)$1) 20

Proof. 1) First claim that Z;s; = s;Z;, @ # j,j + 1 is the result of Z1s; = 5,2,
and other relations. Suppose the statement is true for all i < k, j # 14,7 — 1.

When k # 5 —1,,7 + 1,

Tpy18) — SjTpq1
= (srTrsk — (Cr — Crr1)Sk)S; — Si(SkTwsk — (Ck — Chy1)Sk)
= SkTkS;Sk — SkS;TrSk — (Ck — Crg1)SkS; — S;j(Ck — Crr1) Sk

= —(ck — Cht1)5kS; + (Ck — Ckt1)55K =0
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When k=35 +1,

Th4155 — SjTr+41
= (SkTrsk — (Ck — Crt1)5k)Sk—1 — Sk—1(SkTrSk — (Clk — Chy1)5k)
= (8k(Sk—1Tp—15k—1 — (Ck—1 — Ck)Sk—1)5k — (Ck — Chkt1)Sk)Sk—1
— Sk—1(Sk(Sk-1Tk-15k-1 — (Ck—1 — Ck)Sk—1)8k — (Ck — Cry1)Sk)
= SkSk—1Tk—15kSk—15k — Sk(Ch—1 — Ck)Sk—15kSk—1 — (Ck — Chy1)SkSK—1
— SkSk—15kTk—15k—15k + Sk—15k(Ck—1 — C)Sk—15k + Sk—1(Ck — Ct1)Sk
= _5k<ck71 - Ck)skskflsk - (Ck - Ck+1)3k3k71
+ Sp—1(Ch—1 — Cht1)SkSk—15k + (Che1 — Cht1)Sk—15k
= —(Ch—1 = Cry1)Sk-15% — (Ck — Chy1)SkSk—1
+ sk-1(ch—1 — Crr1)Sk—15kSk—1 + (Ck—1 — Chy1)Sk—15%

= —(ck — Chy1)SkSk—1 + (Ck — Crg1)SkSk—1 =0

Similarly, the relations §;s; = s;7;, (i # j,j + 1) can also be obtained from

other relations.
2) Next we claim that the relations Z;,c; = —¢;Z; can be obtained from

Zic; = —c;T1 and other relations. Assume that the statement is true for ¢ < k.

Tpy1Cj + CjTpqn
= (Ski’ksk — (Ck — Ck+1)8k>0j + Cj(Ski’kSk - (Ck — Ck+1)8k)

= _(Ck - Ck—l—l)skcj - Cj<ck - Ck+1)8k
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The above quantity is 0 if 7 # k,k + 1. When j = k,

T1C5 + €T
= _(Ck - Ck+1)5kck - Ck(ck - Ck+1)5k

= —(cr — Crr1)Chy18k — ck(ck — cry1)sk =0

Similarly when j =k + 1,

Tk+1C5 + Cji'k:-i-l
= _(Ck — Cht1)SkChi1 — Ck+1(ck - CkJrl)Sk

= —(ck — Chg1)CkSk — Chp1(Ck — Cr1)5k = 0

The y-version of the claim is true by a similar argument.

3) Claim that #,7; = —%,%;, (i # j) can be obtained from

Tl(slflsl — (Cl — 62)81) = —(slflsl — (61 — 62)51)571

(or equivalently 7179 = —Z2%1) and other relations. Assume the claim is true

foralli <7 <k. Fori <k,

TiTh1 + Tp1 Ty
= Zi(SkTrsk — (Ck — Cry1)Sk) + (SkTrSk — (Ck — Crr1)Sk)Ti

= 5u(Ti T + TTi) Sk — Ti(ck — Chg1)Sk) — (Ck — Cr1)56Ti = 0
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When i = k,

TpTpg1 + Tpp1 T
= (Sk—1Tk—15k—1 — (Ch—1 — Ck)Sk—1)Tht1 + Ths1 (Sk—1Th—15k—1 — (Ch—1 — C)Sk—1)
= (Sp—1Tk—1Tk+15k—1 + Sk—1Th1Th—15k—1

— (Ch—1 — Ck)Sk—1Tht1 — Thr1(Cho1 — Ck)Sp—1 =0

The y and z-version of the claim is also true by a similar calculation. O]

These two lemmas lead to a shortened presentation, which is an intermediate

version towards the final presentation.

Corollary 3.4. The algebra H, is isomorphic to the algebra generated by %1,
Y1y 205+ 2d, Cly--->Cds S1,---,S4, where Ty, 11, Z;, ¢; are odd, s; is even for
all i, subject to the “Sergeev relations” and the following relations: (Hecke

relations)

Sigi = gi—&—lsi +c — Ci+1 (0 S 1 S d— 1)

(commuting relations)

flsi:SZ‘fZ’l QSZSd
Y18i = Sil1 2<0<d
2]‘81' = Sigj (] 7é Z,Z + 1)
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(anticommuting relations)

CT1 = —T1¢ (2<1<d)
CilY1 = — G (2<i<d)
ciZj = —Zjc (1<i,j<d)
T1(512181 — (1 — e2)s1) = — (512151 — (€1 — €2)s1) T4
Ji(s1t1s1 — (a1 — ¢2)s1) = —(s19151 — (1 — ¢2)s1)
Zo(s12051 — (€1 — ¢2)s1) = — (812051 — (€1 — €2)$1) 20
(shortened further relations)
2ok = —X129
Zo1 = — Y122
(20— 21+ 21)T1 = —21(5% — 21 + 1)

(Zo+ 2 — 01t = —01(Z0 + 21 — 1)

i+t =%
Proof. Let H/, be the algebra given by the above presentation, and define a
map ¢ : Hq — H/;, where 21, 11, Z;, ¢;, s; get mapped to the generators with

the same name, and ¢(&;) is defined recursively as

A(Tiv1) = SiTiS; — (¢ — Cip1)Si

(with the slight abusive notation that symbols on the right hand of the equation
represent elements in #/,.) Then all relations except the Hecke relations in H,

are already the relations in H/, and the Hecke relations are satisifed by the
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definition of ¢. The inverse of ¢ is given by the map taking all generators to

their counterparts in H, with the same name. O

We aim to obtain a reduced version of the presentation with even generators
in Section 3.3, and the following is an odd version of the main presentation,

where the polynomial generators are still odd.

Theorem 3.5 (Reduced presentation with odd polynomial generators). The
algebra Hy is isomorphic to the algebra generated by x1, Zo, ..., 24, C1y--.,Cq,
S1,...,84, where Ty, Z;, ¢; are odd, s; is even for all i, subject to the “Sergeev
relations”, and the following relations:

(Hecke relations)

8iZi = Zi418; + C; — Cip1 (0<i<d-1)

(commuting relations)

57181‘ = Sl'.i’l (2 S 1 S Tl)

Zjsi = 8i%j (j #i,i+1)

(anticommuting relations)

C;T, = —T1¢; 2<3<d

ciZ; = —Z;c (1<i,j7<d)
T1(s17181 — (1 — 2)81) = — (8517181 — (€1 — €2)81) T4
Zo(s12081 — (c1 — ¢2)s1) = — (812081 — (€1 — €2)$1) 20
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(further relation)

291 = —T1%2

(20— 21+ 21)T1 = —31(%0 — 21 + T1)

Proof. Let H., be the algebra defined in Corollary 3.4 (the third presentation,)
and let H/, be the algebra defined by the presentation in this proposition.
Define ¢ : Hl, — H!} to be the map taking all generators except 7; to their
counterparts under the same name, and ¢(g;) = Z; — #;. The inverse 1 is given
by taking all generators of H/; to their counterparts in H},. The map v is a
homomorphism since the relations in ‘H} are already relations in H},. To check

¢ is a homomorphism, it is enough to show that the relations

Y18i = Silh 2<i<d

CiY1 = —Y1G (2<i<d)

i = —Y1%i (2<i<d)
Ji(sigis1 — (a1 — ¢2)s1) = —(s15151 — (a1 — c2) 1)

(Zo+ 21 —01)th = —th(Zo+ 21 — )

are satisfied. Equivalently, it is enough to show the following relations are
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satisfied in H}

(5 — #1)s; = s:(51 — &) 2<i<d
(5 — 1) = —(5 — B1)es 2<i<d)
55— i) = —(5 — 515 (2 <i<d)
(31— E1)(s1 (31 — F1)s1 — (e1 — e2)s1) = —(s1(F1 — 1)s1 — (1 — ea)s1) (1 — 1)
Got+ 51— (21— 1)) (51 — 1) = — (51 — 31) (o + &1 — (51 — 1))

The first three relations hold via a straighforward calculation. In the following

calculations, let To = s1%151 — (¢1 — ¢2)s1. The second to last relation becomes

(21 — Z1)(s1(21 — &1)s1 — (c1 — ¢2)81)
+ (s1(21 — 1)1 — (c1 — ¢2)81) (%1 — T1)
= 2122 + 2221 — 21817181 — S1T15121
— X129 — 29%1 + T1512151 + 51215171
= — (5122 — (1 — @2))T151 — 5121(Z281 + (1 — 2))

+ (81532 — (Cl — 02))i‘1$1 + 8152‘1(@281 -+ (Cl — 02)) =0

The last relation becomes

(50 + 21 — (51 — .%1))(21 — 1'1) + (51 — Li'l)(gg + 51 — (:7:1 — i’l))
== (50 + .’1~71)<21 - 531) + (21 - .fi’l)(go + 2%1)
- 531(21 - 2%1) - 50571 + 5051 + (21 — .571)3?1 + 5120 - i‘léo

=151 —T1— %)+ (51— 71— 2)T1 =0
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Hence all the relations in H/; are satisfied and H/, ~ H,. O

3.2. An Action of H,

The Sergeev algebra S(d) is the algebra generated by c1,..., ¢4, S1,.-., 841
subject to the “Sergeev relations” in Definition 3.1. Therefore, there is a
homomorphism S(d) — H,4 of algebras, mapping the generators ¢; and s; to

generators with the same name. In [12], Sergeev defined the following action

of §(d) on V&4,

Theorem 3.6. [12, Theorem 3] There is a well defined surjection of superal-

gebras

S(d) — Endygy (VE?)
c; > 120D @ ¢ @ 1%471

i > 1®(i—1) Ro® 1®d—i—1

where ¢ is the odd map in End(V') as mentioned in Section 2.2, and o is the

signed permutation on V©2:

o.(w; @ wy) = (—1)"" 2w, @ wy.
Fix arbitrary finite-dimensional q(n)-modules M and N. To generalize the
work of [6] and [18] to the case of q(n), as well as to generalize the work of
[10] to the two boundary case, we will define an action of the algebra H, on

M X N® V®d. Recall {eij}lgmgn and {fij}lﬁiyjf’ﬂ defined in Equations (221)

and (2.2.2) constitute a homoegeneous basis of q(n). Define the following odd
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element in q ® q:

Q= > e;®fii— Y, fii®eju

1<ij<n 1<i,j<n

Note for any modules M and N, €2 has a natural action on M ® N, following
the definition in Section 2.2. Based on the fact that j; = 0 and f;; = 1, we

have

Qmen)= > (=1)7(ezm)@ (fn)— D (fy-m)® (en).

1<i,5<n 1<i,j<n

Use the imbedding ¢ty x : U(q) @ U(q) = U(q)®4, 2@y — 1@y @ 199,
and denote Qv = ¢(2). It follows that Qy n acts on M @ N @ V¥ by only

acting €2 on the M and N tensor factors. Similarly, denote taz;, tn; and ¢;; to

be the imbeddings U(q) ® U(q) — U(q)®@+?) defined as following:

ity 11907 @y @ 19 (3:2.1)
IN; T QY= 1®r® 186D g 4 @ 1900

Li,j r® Yy — 1 ® 1 ® 1®(i—1) Rr R 1®(j—i—l) ® y ® 1(d_])

That is, tpr; imbeds the tensor factors  and y in the corresponding positions
of M and the i-th copy of V', and similarly for tx; and tpr n.
Define QM,'L' = [,Mﬂ'(Q), QN,i = LNJ'(Q), Qi,j = [/i,j<Q)> and let

Qugve-ry = Qi+ Qi+ - Qi
Qngve-ty = Qng+ Qi+ - Qicy

Queneve-ty = Qi+ Qi+ Qi + Qv+ Qg+ Qi
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Notice that the effect of Qpgyei-1y acting on M @ N ® V@4 is the same as
acting by Q on the module W ® V', where W = M ® V®~1 and similar is true
for Qngyei-1y and Qyengyei-1y.

One of the main results of this thesis is that one can define a Hz-module

structure on M ®@ N @ V&2 ag follows.

Theorem 3.7. For any finite dimensional q(n)-modules M and N, there is a

well defined algebra map

p: Ha — Endgy(M @ N @ VO
.f?i —> QM®V®’F1,V7
Ui = Qngyei-1y,

Zi = Quenegvei-1,v,

and c¢; and s; act as specified in Theorem 3.6.

Proof. 1t is enough to show that all the relations in Theorem 3.5 are satisfied.
Because of Theorem 3.6, the “Sergeev relations” are automatically satisfied. In
addition, the “commuting relations” is a straightforward calculation to check.
Therefore we shall focus on the remaining relations listed in Theorem 3.5.

1) Hecke relations

We will later give a presentation for H, with even polynomial generators,
and show that our version of the Hecke relations are equivalent to the even
versions mentioned in [10]. As a consequence, since the Hecke relations in
[10] are satisfied according to [10, Theorem 7.4.1], the Hecke relations in our

definition will be satisfied. For completeness we also include the calculations
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here.

8i%i — Liy18; — Ci + Cit1

=5 + Qui- - Q1) — (Ui + Quier - Qiip1)S — ¢+ Cia
We argue that
580 = 2 it15i.
Forany j <i—1, 0y @un Qv @ Q@ug€ M@ N @ Ve

SZ'Q]'J'(”UM RUINQU K-+ X ’Ud)

= (1) N Uy @ @ epgUf ® - @ [l @ Vi @ -+ @ Vg

1<p,g<n

_(_1)W+...+vj7—13i Z UM®"'®quvj®"'®eqpvi®vi+l®"'®’Ud

1<p,g<n

— (_1)(W+T)W+W+“'+m Z V@ @ epgU @ @ Vi1 @ fopti @+ ® Vg

1<p,q<n

— (—1)TEEEIMEET LN g @ @ fpgly @ @ Vg1 @ egply ® -+ Q@ g

1<p,q<n

On the other hand,

Qiir18i(vy QUN @1 ® -+ - ® vy)
= (_1)W-F¢Qj,i+1<UM QUINRUV Q- QU1 QU Q-+ & Ud)

_ (_1)vi+1-v¢+v1\4+---+v¢71+v¢+1 Z V@ Qepgtj ® -+ @ Vg1 @ fqpvi R Qg

1<p,g<n

+ (_1)W'U7+W+'“+Uj771 Z VM@ @ gV @ @1 @ gyt @ -+ Qg

1<p,q<n
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And the two expressions are equal as expected. Similarly,

SiQM,i = QM,i+1Si (322)

We also check that

—Qi7i+1s,~ — ¢+ Cit1 = 0. (323)

Assume that v; and v;, 1 are basis vectors of V. Recall that for an ordered
basis {e1,...,€n, f1,..., fi} of V, where w is either symbol e or f, E,w; =
SiqWp, fpqwi = (—=1)"0;y(cwp). Assume v; = wg, vi41 = up, where w,u are

symbols e or f. The following sums are over all 1 < p,q < n.

(=18 — i+ ¢iv1) (V@ QUi_1 QW @ Up @ - -+ @ Vg)
= _(_1)w7a.7b9i7i+1(UM R RU_ 1 QW U, Q-+ R Ud)
— (_1)W+~.+mf0M R QU QW QUp @ -+ - R vy
+ (=1)PM Ty @ @ Ui @ We @ ity ® -+ @ g
= —(—D)TETHADE AT N ) @ @ vy @ epglly ® Foptla ® - - ® Vg
4 (_1)w7-u7+m+---+mva R QUi @ fpgp @ €gpg @ -+ @ Vg
— (—1)W+---+HUM R QU W, QUup ® -+ R vy
4 (_1)W+---+m+“’7vM R QU1 QWg®CUy ® -y
= —(—1)Te WA ATIA DA Ty @ QU QU R Wy D - @ Uy
F (= )T AT, @) @ ® e @ Wy @ - ® Vg
— (—1)W+"'+HUM R QU] QCW, QUpy Q-+ R vy

+ (—1)W+"'+H+W“UM R QU QW Uy X -+ R vy
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The answer is zero if v and w are the same symbols. If v is e and w is f,

uy =0, w, = 1, cw; = —u; and c.u; = w;.

(=Qit18i — G+ Civ1) (V@ - QUim] QW @ Up @ -+ R Vg)
= (=) @ QUi @ U @ Up @ -+ @ Vg

+ (=) @ QU QW QW R - ® Vg

— (1) Q- QUi QU QU R - - ® Vg

+(—1)W+"'+W7_1+TUM®"‘®Uz‘—1®wa®wb®"'®vd:0

On the other hand, if If uis f and wis e, uy = 1, w, = 0, c.w; = u; and

C.U; = —W;.

(=118 — G+ Civ1) (V@ - QUim] QW @ Up @ -+ - @ Vg)
= (—)TE T @) @ @ U @ Uy ® -+ ® g
+ (=) @ QU @ W, @ Wy @ -+ ® Vg

(—)™MT Ty @ QU R U, QU @ R g

+(—1)W+"'+W7_1+TUM®"‘®Ui—1®wa®wb®"'®vd:0

The Hecke relations for y; and z; can be checked similarly.

2) Anticommuting relations

Again, these relations are expected to hold as they are an odd version of
the relations in [10, Section 3]. It is enough to check that €, ; commutes with
¢k, for any 1 < 4,5 < d. The cases when k # i, j are straightforward to check.
When i = k, it is enough to check that Q(c®1) = —(c® 1) ® Q the calculations

are similar to that in [10] (notice the Casimir tensor €2 in [10] is even.) The
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following sums are over all 1 < p,q < d.

Qe@1) =D (ep ® fop)1 @) = Y (fp ® egp)(1 D )
= (epg ® fape) = D (fpa ® €qp0)
= =Y (epg ® cfap) = D (foa ® ceqp)
== (1@ c)(epg ® fap) + D_(1® ) (fpq ® egp)

=—(1® ).

Similarly, Q(c® 1) = —(c ® 1) ® Q and therefore Q; ;c; = —¢;Q; ;.
For the relations 7129 = —I9T; and ZyzZ; = —Z129, we will first show

QN Q1+ QUv1) = —(Qars + Ona) Qe

QN (Qpra +QUva) + (g + Qva) Qe

=D (0@ fp @1 = frq @ e @1) D (e, @1® fi — fi; @ 1@ ey

:q 2]
+1Qe; @[ — 1@ f;;Qe;)+ > (65,911 fji— fi; ®1Qey
i

T1®e; @ fi = 1@ fij @eji) D (pg @ fop @1 — frg @ egp @ 1)

p.q

= Z (epgCij — €ijpq) ® fop ® fji + Z (epqfis — fijepq) ® fop ® €5

,4,p,q 4,J,P,q
+ Z epg ® (fopeis — €ijfep) ® fii — Z epg @ (fopfis + fisfap) ® €5
1,,0,4 1,9,0,4
- Z (fpq€ij — €ijfpg) ® €qp @ fi + Z (foafis + fijfog) @ €qp ® €ji
,3,0,9 ,7,0,9
- Z Jog ® (eqpeij - eijeqp) ® fji + Z Jrg ® (eqpfij - fijeqp) ® €53
,J,p,q ,J,p,q
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= Z ( qipj — 5jp6iq) ® fop @ fi + Z (0gifoj — Ojpfia) @ fop @ €ji

1,3,P,9 ,J:P,q
+ Y epg @ (Opifay — Oiafin) © fii = D pg @ (Opicqs + 0jqeip) @ €5
,J,P,4 4,J,P:q
- Z (0gifoj — Ojpfiq) ® €qp @ fri + Z (0gi€pj + djptiq) ® €qp @ €5
4,J,p,q 4,J,P,q
= D foe @ (Bpiqy — 8jgip) @ fii+ Y fog @ (Opifas — Giafin) @ e
1,3,0,9 1,3,0,9
- Zepj@fqp@)qu_ Zeiq@fqp®fpi+prj@fqp®€jq
JP:q 4,p,q JP:q
- Zfiq@fqp@’epi"’Zepq@qu@fjp_ Zepq@fip@fqi
4,p,q 7,09 4,p,q
- Zepq@@gj@ejp_ Zepq@eip®eqi_ prj@eqp@’qu
JPsq 4,p,q JPsq
+ZfiQ®€qp®fpi+Zepj@eqp®ejq+Zeiq@eqp@)em'
4,p,q J,Pq 4,D,q
- prq@eqj@fjp+prq@eip@fqi"‘ prq@qu@ejp
Jp:q 4,p,q Jipsq
_ZfPQ®fip®€qi:O-
1,p,q

Therefore, 5021 = —2120. Slmllarly, QM,l(QM,2+Ql,2) = —(QM72—|—9172)QM71,
and Ziljg = —5/’2‘%1.
3) Further relations.

Since

2001+ T120 = (2 + Uva + Qo)1 + Qa1 (e + Qv + Q1 2)

On one hand, (QM,Q + Ql,Z)QM,l + QM71<QM72 + 9172) = 0 was shown earlier,
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and

Qn 21

=) (1®e; @1 f;; 10 f; ©1® fj)

,J

'Z(epq@l@fqp@l_qu®1®€qp®1)

pq

= D (—ep®ei; ® fop @ fji + frqg @ €ij @ €qp @ fi

4,J,P:q

— €pg @ [ij @ egp @ fii = [pg @ [ij @ €gp @ fi) = =12
Lastly,

(20— 21+ 21)T1 +T1(Z0 — Z1 + T)

= (Qun — Qv 1)1 + Q1 (Qary — Q)
where

QunQma + Qi Qv

=Y (e ®@[i®1—[;0e; Q1) (g @1 ® fop — frq @1 ® egp)
i

p.q

+Z(epq®1®fqp_qu® 1®6qp)2(€ij ®f;i®1— fi;®e;®1)

Dsq 4,J

= Z ((€ij€pq — €pglis) ® fii ® fop + (€ijfoq — frpa€is) ® fii @ egp

4,J,P,4

— (fijepq — epgfij) ® €i @ fop + (fijfog + foafis) ® €5i @ fop)
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= Z ((0jp€iq — Oigpi) @ fii @ fop + (5jpfiq — Oigfpj) ® fii @ egp

,3,0,9
— (Ojpfiq = igfrj) ® €ji ® fop + (Oip€iq + digeps) ® €5i @ fop)
= Zeiq@fpi@fqp— Zepj@qu@fqp+Zfiq@fpi@eqp

4,p,q J»P:q 4,p,q

_prj@qu®eqp_Zfiq@epi®fqp+prj®€jq®fqp

Jpsq 4,p,q Jpsq

+Zeiq®€jp®fqp+ Zepj@ejq@fqpv

J:Psq J:p:q

and

Qn Qv+ Qi Qna

= Z(l e ® fii —1® fi ®eji)2(€pq® 1® fop — fog ® 1 ® egp)
1,J

pq

/L"j

D (e ®1® fop— frg®@1®Qeg) > (1@ ey ® fii —1® fij ® eji)
prq

= Z (epg @ €15 @ (fjifap + fopfii) + foq @ €15 ® (fiieqp — €qpfii)

1,3,0,9
— epg ® fi; ® (€jifgp — fap€ii) — fpg ® fij ® (eji€qp — €gp€yi))
= Z (epg ® €ij & (5iq€jp + 5jp€qi> + fpg @ €1 ® (5iqup - 6jpfqi)
4,J,P,q
—epg ® [ij ® (5iqup - 5jpfqi) — foa ® fi5 ® (51'(163'17 - 5jpeqi))

= Zepq@eqj®€jp+zepq®eip®eqi+prq@eqj@)fjp
7,Pq 4,D,q Jpsq

_prq@eip@’fqi_Zepq@qu®fjp+Zepq@fip@’fqi

%,p,q JPsq 4,p,q

- prq@’qu ® ejp + prq@fip@)eqi-

Jipsq 4,p,q
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By comparing the two expressions one obtains

(Qun — Uv1) Q1 + Qua (Quy — Qnp) = 0.

Therefore we have checked all the relations. O

3.3. When M or N Admits An Odd Endomorphism

Given two associative superalgebras A and B, define their tensor product A® B

to be the algebra whose product is given by

(a1 ® by) - (ag ® by) = (—1)"(a1a2) @ (byby)

where ay,a9 € A, by, by € B are homogeneous elements.

When N is a q(n)-module with a distinguished odd map ¢ € Endg@,) (V)
and ¢ = —1 (for example, one can take N to be a simple module of Type
Q), we define an enlarged Hecke-Clifford algebra H%Y = H4 @ Cly, where the
Clifford generator of Cl; is denoted by cy.

Notice that HJ has a presentation given by generators and relations. It is
generated by all generators mentioned in Section 3.1 for H,4, together with an

extra generator ¢y, subject to all defining relations for H; and the following
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relations:

0(2) =—-1
CoC; = —CiCo 1<i<d
CoT; = —ZiCo 1<:<d
Co¥i = —YiCo 1<i<d
CoZi = —Z;Co 0<1<d
CoS; = S;Co 1<i<d-1

The following result shows that H2 also acts on M @ N @ V®4 when N

admits a distinguished odd g(n)-endomorphism which squares to —1.

Theorem 3.8. There is a well defined superalgebra homomorphism

pN i HY — Endyy(M @ N @ V&)

COI—>1®C®1®d

where c is the distinguished odd map in End(N), and all other generators act

as those specified in Theorem 3.7.

Proof. Notice Qy1(1®c® 1) = —(1® c® 1)Qy1. By an earlier calculation,
Ovi1(1®c®1) = —(1®c®1)Qn1, therefore the additional relations ¢y =
—CoT1, Y1Co0 = —CoU1, 20Co = —CoZo, 21C0 = —CpZ1 holds. Other relations hold

by a similar argument. O]

With the addition of ¢g, the element Zycy is even. We now give the final

presentation we will be using in later chapters.
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Proposition 3.9 (Main presentation). The algebra HY is isomorphic to the
algebra generated by 1, 2o, ..., 24, Co,C1,---,Cd, S1,---,8q, wWhere ¢; is odd, s;,
x1, 2; are even for all i, subject to the “Sergeev relations”, and the following

relations:

(Hecke relations)

8i%i = Zit15; — L+ ¢icipq (1<i<d-1)

(commuting relations)

T18; = S;T1 (2<i<n)
ZjSi = SiZj (] 7£ Z,Z + 1)

r1(s12181 + (1 — c1¢9)81) = (s12181 + (1 — c109)81) 21

Cil1 =— T1C; (2 S 1 S d)
Cizj = 246G (1 a j)
(anticommuting relations)
C1T1 = —X1C1 2 S 7 S d
20%1 = 2120

(further relation)

22X1 = X122

(zococ1 + 21 — x1)x1 = —21(20C0C1 + 21 — 1)
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Proof. Let Hg4 be the algebra with presentation given in Proposition 3.5, and H/,
the algebra defined in this proposition. Define ¢ : Hy — H/, via ¢(T1) = —x1¢1,
¢(Z;) = —zic;, and other generators get mapped to the elements in H/, with
the same name. Define ¢ : H), — Hy via (x1) = T1¢1, ¥(2) = Zic;, and other
generators get mapped to elements in Hy; with the same name. ¢ and ¢ are
inverses of each other, it is enough to show their are both homomorphism. In
fact, the relations above are image of the relations in Proposition 3.5 via the

map ¢. In particular, when i # j,

QS(CZQ]‘ + 5]‘01')
= —CiZjCj — ZjCjCi

= (—cizj + zi¢)¢

when 7 = 7,

= TGz — ZiCiC

= —(ciz;i + zici)c

57



For the Hecke relations,

A(8iZ — Zig18: — (¢ — Ciy1))
= —58;2;C; + Ziy1Ci418i — (¢ — Cix1)
= —8;2;C; + zi415:¢; — (¢; — Cix1)
= (=582 + zit18 + (¢ — civ1)c)c

= (=sizi + ziy18i — (1 = cici)) e

and the relation zi(sjz1s1 + (1 — ¢1¢2)s1) = (s12181 + (1 — ¢1¢9)s1)21 can be
checked using zo = sy7151 + (1 — ¢1¢9)s1 and zyx9 = w9z, similar to the

calculations for z;. For the “further relations”,

O(Z2Z1 + T122)
= Z29C2X1Cq + T1C122C2
= Z29X1C2Cq + T122C1C2

= (Zle - $1Z2)C2C1

and

?((Z0 — 21 + T1)21 + T1(% — 21 + 11))
= (200 — 2161 + T101) 2101 + 2161 (2000 — 2161 + T109)
= (—20coc1 — 21 + x1)c12101 + 21 (—20C0C1 + 2’16% — $1C%)
= (—zpcoc1 — 21 + x1)x1 + 1 (—20C0C1 — 21 + T1)

= —(z0coc1 + 21 — 1)1 — 21(20C0C1 + 21 — X1)
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]

Similarly, when both M and N are modules with odd maps ¢y € Endgm) (M)
and ¢y € Endym)(N), under the condition that ¢}, = ¢, = —1, we can further
define an enlarged version HNV = H,; @ Cl; ® Cl;. Let ¢j and ¢y be the

Clifford generators in each factor Cl;.
Theorem 3.10. There is a well defined homomorphism

PN HEN — Endyy (M @ N @ V)

CMF—)C®1®1®d

where c is the odd map in Endy, (M), and all other generators act as those

specified in the previous theorem.

3.4. The Degenerate Affine Hecke-Clifford Algebra

In [10], Hill-Kujawa-Sussan defined the degenerate affine Hecke-Clifford algebra
H3T to be the algebra generated by z1,...,24, €1,...,Cq, 51, ., 84 subject to

the “Sergeev relations” in Definition 3.1 and the following relations

Cizj = 2j¢; (i # )
Ciz; = ZiC;

Siki = ZiS; — 1 -+ CiCit1

When V = C?" is the natural representation for q(n), elements in End(V)

can be written as 2n x 2n matrices. Recall e;;, f;; € q(n) are defined in (2.2.1)
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and 2.2.2, and the map ¢ € Endyy,) (V) can be written as in (2.2.9). Let

€;;, fi; € End(V) be given via the following matrices:

E; 0 _ 0 —E,
€ij = fij 0C=
0 —Ey Ey 0

Hill-Kujawa-Sussan [10, Section 7.2] defined an even Casimir element

00 = Y oei®es— Y. fi ®Tji
1<i,j<n 1<i,5<n
= Z 623 f]z © C Z fl] eji © C)
1<4,5<n 1<i,5<n

— 00 (19 0) € q(n) ® Bud(V)

We can use Q° to define elements Qg“ € q(n) @ End(V)®? = 1,,,(Q°) where
Ly is the imbedding defined in (3.2.1).

Hill-Kujawa-Sussan then defined an action of H3T on M @ V&4

Theorem 3.11. [10, Theorem 7.4.1] Let M be a q(n)-supermodule. There is

an algebra homomorphism
M — Endg (M @ V)

where the s; and ¢; act as generators for the Sergeev algebra in Theorem 3.6,

and z; acts as

Q?\4z+ Z )Sﬂ

1<5<4

where sj; = S$jSj41°-Si—28i—18i—2 -+ Sj415; @S the transposition that inter-
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changes i and j.

Recall that S(d) is the Sergeev algebra on d letters. The action of H, on
M @ N ® V@ specializes to the action of S(d) and H3T mentioned above, in

the following sense.

Proposition 3.12. 1) There exists a surjective homomorphism ¢y : Hqg —
S(d). When M = N = C is the trivial q(n)-module, the action of Hy on
M@N®V® factors through the quotient S(d) and induces the action introduced
in Theorem 3.6.

2) There exists a surjective homomorphism ¢y = Hq — HAE. When M = C
is the trivial q(n)-module, the action of Hq on M @ N @ V¢ factors through
the quotient HAT and induces the action introduced in Theorem 3.11. A similar

result is true for a different surjection ¢z : Hq — H3T and N = C.

Proof. In Theorem 3.9 we gave a reduced presentation of HJ with even poly-
nomial generators. In the general case when M and N are arbitrary finite
dimensional q(n)-modules, there is a similar presentation of H, with even poly-
nomial generators xy, 21, ..., zg and odd polynomial generator Z,, by omitting
the generator ¢y in H% and modifying the relations involving z9. Using this
presentation, there is a homomorphism ¢; : Hqy — S(d), given by x; — 0,
Zo+— 0,z = 0(1 <i < d), where s; and ¢; get mapped to generators with the
same name. This map is well-defined, since all relations regarding x1, Zy or z;
are satisfied after setting 1 = Zy = 2; = 0, and the remaining relations are the
Sergeev relations in S(d). Moreover, the kernel of this map is generated by
X1, 20, - -+, 24. In the special case when M = N = C is the trivial representation
on which q(n) acts as zero, the action of z1, 2, . .., z4 is therefore 0, and the

action of H,4 factors through the quotient, where the generators cy, ..., c; and
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S1,...,84_1 act as introduced in Theorem 3.6.

When M = C, there is a homomorphism ¢, : Hy — H3T given by x;
0, Zo — 0, where the kernel is generated by x; and Zy. The action of H4 also
factors through the quotient when N is the trivial representation. Moreover,
x; is defined recursively as x;11 = s;x;8; + (1 — ¢;¢41)s;. In Equation (3.2.2)

we showed that

QM,Z'+1 = SiQM,iSi

When z;_; acts as z;_; in Theorem 3.11, x; acts as

Si(QMﬂ'Ci + Z (1 — CjCi)Sji)Si + (1 — Cici-i—l)si

1<j<i

= (SiQM,iSi)Cz’—l—l + Z (1 - Cjci+1)8j,i+1 + (1 - Cici—i-l)si,i—i-l
1<5<1

= Oarit1Cit1 + Z (1 = ¢jcit1)s5i41
1<j<i+1

which agrees with the action of z;.
The other claim when N = C can be proven similarly, using the homo-

morphism ¢3 : Zg — 0 and x1 — 2.

We also have the following result:
Corollary 3.13. There are imbeddings of algebras S(d) — Hy and HAE — H,.

Proof. The map 1 : S(d) — H, is given by mapping all Sergeev generators
to elements with the same name. Since the Sergeev relations are included in

the defining relations of H4, this map is well defined, and the composition
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¢1 019 = id where ¢, is the surjection in the previous proposition, and 1, is
injective.

Similarly, the map ¥, : H3T — H, is given by ¢; — ¢, s; — s; and
2+ 1;(1 < i < d). The image of all relations in H3T are also relations of H,,

and ¢, 0 1y = id, hence 1), is injective. O
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Chapter 4

A Quotient of H,

4.1. The Quotient H}

In this chapter we will define a quotient of H,4 (and similarly of H2" and HAN.)
These will be the Type Q equivalent of the extended degenerate affine Hecke
algebra mentioned in [6]. The definition is dependent on specific choices of M
and N. We will make the choices so the following is true:

1) Both M and N are polynomial, and therefore M ® N ® V®4 is semisimple.

2) The decomposition of M ® N into simple modules with multiplicity
2. That is, each irreducible submodule of M ® N occurs exactly twice in its
isotypic component.

The decomposition of M @ N @ V& as q(n)-modules, and consequently
the resulting H;-modules, can then be described combinatorially.

In particular, recall a strict partition A is said to be a staircase shape if it

is of the form A = (s,s —1,...,1). For example, when s = 5, the diagram is as
follows:
Fix a positive integer n, and take o = (n,n — 1,n — 2,...,1), the staircase

of length n. Let M = L(«) the associated highest weight irreducible q(n)-

module defined in Section 2.2. In addition, fix a positive integer p and let
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8 =(p,0,0,...,0), the partition with a single row of p boxes, and N = L(f).
By Lemma 1.44 in [17], for a strict partition A, a simple module L(\) is of
Type Q if and only if £(\) is odd. Therefore N is of Type Q, and M is of Type
M if and only if n is even.

Define the quotient HY by cases:

Definition 4.1. 1) When n is even, or equivalently L(«) is of Type M, define
HE to be a quotient of HY .

2) When n is even, or equivalently L(«) is of Type Q, define HY to be a
quotient of HY™N.

In both cases, define HY to be the quotient of the corresponding degenerate
affine Hecke-Clifford algebra under the following relations, which only depends

on p and n.

P —nn+1)=0
(7 —p(p+1)5i =0
7@ — %7 = 0.
Here, we define ® = 22 — pz? + ML;@_I), an element in Hgy.
We also mention a presentation of H% in the light of Proposition 3.9.

Corollary 4.2. HY is isomorphic to the algebra generated by x1, 2o, . . ., Zd,

COy -y CdyS1,- -+, Sa (and in the case when n is odd, an extra generator cys),
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with the grading and relations in Proposition 3.9 and the extra relations

22 =n(n+1)
(x1 —20)" = p(p + 1) (21 — 21)%.

1‘1(192 = @21‘1.

We will show these relations are satisfied by the actions p (in the case
when n is even) or pMV (in the case when n is odd) defined in the previous
chapter, and the action factors through to give an action of H%. To show this

we need some properties of the odd Casimir tensor () introduced in Section 3.2.

4.2. Casimir Elements

Sergeev [13] introduced certain central elements in U(q(n)). These elements

are defined recursively as follows: (1) = ey, 2;(1) = fi;(1 < 4,5 < n), and

23j(m) = il@isxsj(m ) (1)l (- 1))

I
NE

;5 (m) (eistyy(m —1) + (1) fiszg5(m — 1))

Vo)
Il
—

The Sergeev’s elements are

Zr = Zn:xm-(% —1). (4.2.1)

Brundan-Kleshchev calculated the action of z; on a highest weight vector of

weight A = (A, ..., \,):

Theorem 4.3. [5, Lemma 8.4] Let M be a q(n)-modules and vy € M, be a
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vector annthilated by e;; and fi;, V1 <i < j <n, then z,.v\ = z.(\)v, where
2(N) =D (=2 - N (N = X)) (N = )

and the sum s taken over all1 < s <r, 1 <14 < - <1, <n, a; € ZL>o,

a+---t+as=r—:s

Remark 4.4. Left multiplication by the element z, induces an even q(n)-
endomorphism on L(X), and hence acts by a scalar according to Super Schur’s
Lemma mentioned in Lemma 2.1. Moreover, since vy € L(\)x is a highest
weight vector, z, acts on vy by the above scalar. Hence for any v € L(\),

20 = 2z (A)v.

Remark 4.5. For future convenience the explicit formulas for elements of

lower ranks are as follows

ZL‘Z](2> = Z (eisesj - fisfsj)

1<s<n

x;;j(2> = Z (eiSij - fiSGSj)

1<s<n

.CL’IJ(?)) = Z (eisxsj (2) + fisa:;j (2))

1<s<n

= Z (€iseskerj — €isfskfrj + [iseskfuj — fisfsk€is)

1<s,k<n

1 = Z €ii

1<i<n

Z9 = Z 513”(3)

1<i<n

2N = (A4 A3 — (A AP
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Theorem 4.3 along with the following proposition will allow us to compute

the action of 2, ..., 24 on L(a) ® L(8) @ V&%

Proposition 4.6. Let z; be the elements defined in (4.2.1). The following is

true

1
P =2(Az) - 2®1-102+22 8 2).

Proof. First,

2y = Z (€iseskeri — €is [k fri + fis€skfri — fisfsk€ri)

1<i,s,k<n

where

A( Z €is eskeki)

1<i,s,k<n

= ) (es®1+1®eu)(ean @1 +1Reg)(er @1+ 1Q ey)

1<i,8,k<n

= Z (1 @ €is€skChi T €is & €5kl + sk & €i5€k; + €y @ €565+

1<i,s,k<n

= €5k @ €ki + €isri @ s + €splri @ €5 + €isspr; @ 1)
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- A( Z eisfskfki)

1<i,s,k<n
=— Y (es®141Qe)(fax@1+1® fou)(fi @1+ 1@ fri)
1<i,s,k<n
=— > (Cisfskfri ® 14 €isfor @ fri — €isfii @ for + Forfui @ €is
1<i,s,k<n

+ €is @ forfri + fsk @ €isfri — fri @ €isfor + 1@ €is for fri)

A( Z fiseskfki)

1<i,s,k<n

= > (fs®1+1® fis)lex ®14+1Qeu)(fri ® 1+ 1Q fii)

1<i,s5,k<n

- Z (fiseskfki® 1+fis€sk®fki+fisfki®esk _eskfki®fis

1<i,s,k<n

+ fis ® eskfk:i + esp ® fzssz - sz & fiseskz +1® fisesszki)

- A( Z fisfskeki>)

1<i,s,k<n

= - Z (fisfskeki®1+fisfsk®eki+fiseki®fsk_fskeki®fis

1<i,8,k<n

+ fis @ fskeri — fsk @ fiseri + €ri @ fisfor +1® fisfsker:)
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Therefore,

A(ZQ)_ZQ®1_]-®ZQ

= Z (eisesk @ €gi + €isChi & €si + €skChi & €is

1<i,5,k<n
— Cisfsk @ fri + €isfri @ fsk — €skfri ® fis
+ fisesk @ fri — fiseri @ for + foreri @ fis
— JisSsk @ eri + fisfri @ esk — [suSri @ eis
— fis @ fareri + fsk @ fiseri — [ri @ fissk
T €Cis @ CepChi + €5k & €isChi + Chi D CisCsk
+ fis @ €skfri — fok ® €isfri + [ri @ €isfak

— €is X fsksz + €sk X fzssz — €k ® fzsfsk)

On the other hand, let us compute Q2. All sums without indexing set are
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understood to be taken over 1 <, 4,p,q < n.

302
= D 3e ®@ fii— fij Qeji) D (epg @ fop — fpg @ €qp)
1<i,j<n 1<p,q<n

= 3(eijepg ® fjifop + €ijfog @ fiiap — fijepq ® €jifop + fijfog © €jitqp)
=2 2(€z’j€pq ® fjifap — €pa€ii © fiifap + €pais @ fiifap + €ijepg ® fiifop)

+ D 3(Ciifog @ fiiap — foaCis @ fiiap + foaCis @ fiieap — fijepq @ €jifap)

+> ;)(fijqu ® €ji€qp + fpqfij @ €jiep — fpafij ® €jieqp + fijfpqg @ €ji€qp)
=3 g((%@iq — Oigep;)) @ fiifop + €pais @ fiifop + €pais @ fop[ji)

+ > 3((0jpfig = Gigfoi) ® fiieap + fogeis ® fiieqp — fpaiy ® eqpfii)

+ Z ;((53'106%'11 + igps) @ €ji€qp — fpafij ® €jieqp + foafij ® eqpesi)

3 3 3
= Z 561'(1 ® fpifop — Z iem‘ ® figfop + Z §€pq6ij ® (digejp + jpeqi)

1,p,q JP:q
+ Z 3fiq ® fpiqp — Z 3[pi @ fiqCqp + Z 3fpatis @ (Gigfip — Ojpfai)
4,p,q J\Psq
3 3 3
+ Z §€iq & epiCqp + Z iem' ® €jqCqp — Z iqufij ® (5iq€jp - 5jpeqi)
4,p,q J,Psq
3 3 3 3
= Z ieiq ® fpifop — Z §€pj ® figfop + Z erqeqj ® ejp + Z §€pq€ip ® €qi
1,p,q JPsq J:P:q 1,p,q
+ Z 3fiq @ fpi€qp — Z 3Jpi @ fiqCqp + Z 3fpa€aj @ fip — Z 3 fpaCip @ i
4,D,q J\psq Jspsq 4,p,q
3 3 3 3
+ Z §€iq & epiCqp + Z gem ® €jqCqp — Z iququ ® ejp + Z §qufip ® €qi
i,p,q X Jp.q i,p,q
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Comparing the two results,

392 - (A(Zg) — 29 1-1 ®22)

= Z ;(eiq ® foifop + €iqg @ fopfpi) + Z 1(

€pCip @ €qj — €jppg ® €yj)

: — 9
i,p.q Jpsa
+ Z 2(fiq ® fri€qp — fig ® qpfpi) — Z(fpj ® fiqeqp — Jpi ® eqpf]'q)
4,p,q J,P:q
+ Z(queqj ® fip — €qifpa ® fip) — Z 2(fpqip ® foi — €ipfog @ foi)
qu 1,p,q
1
+ Z (€iq ® epitep — €ig @ eqpepi) + Z §(ququ ® ejp + fo5.foq ® €5p)
qu J:p»q
1
= Z §€iq ® (diglpp + €4i) + Z 5(561]'6171) — €jq) ® eyj
4,D,q Jspsq
+ Z 2fiq ® (6iqup - fq% Z fm pr pijq)
i.p,q Jpsa
+ Z(fpj pijq ® pr Z 2 5q2fpp fiq) ® fqi
qu 4,0,
+ Z ezq (Gigepp — €ip) + Z (epj + Opjeqq) @ €jp
zpq Jpq
= 226” X Epp = 2(2 6”') X (Z epp) = 221 X 21
i,p 7 p

4.3. L(a)® L(B) @ V®? as an H, -Module

Let Z' | be the set of strict partition with at most n rows, as defined in (2.3.1).
Recall from Section 2.3, as a consequence of the Stembridge rule, for A € Z"
L(A\)®V >~ @,c) ., L(7v) where the sum is over all v € Z, that can be obtained
from A by adding a single box. Q acts on L(\) ® V' and consequently on the
summand L(7).

Recall that for a box b in a shifted Young diagram, we write ¢(b) for the
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content of b, as defined in the beginning of Section 2.3. We compute the action
of Q% explicitly.

Lemma 4.7. Let L() be an irreducible summand of L(A\) @ V. Yv € L(7),
0?0 = q(e(y/N)v, where q(t) :== t(t + 1) for any integer t, and c(y/N) is the
content of the distinct box in  that is not in \.

Proof. By the previous proposition, 2% acts as %(A(ZQ) — 2001 —1®20+221R21).
Also recall that z; acts on L(A) by the scalar z;(\) as defined in the previous

section, and V' = L(€;). Assume v = A + ¢; for some 1 < i < n. In particular,

let |A] = Ay + -+ An,

z1(A) = [A|

2(A) = A+ A = AP

za(y) =[Al+1

(V) = A4+ N 1D)P 4+ A = (A 1)
z1(e1) =1

29(€1) =0

Therefore, 2 acts as the scalar

$(200) — 20 - () + 25 (V2 (er)

1
:g((A§’+---+(A@-+1)2+-~+A§’L—(\)\y+1)2)
— (AT AL = AP) + 21

= XNi(ANi +1) = qlc(v/N))

and the last equality holds because the content of the first box in any row is
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zero, and the content of the added box is equal to the number of boxes in the

i-th row of . ]

Recall for the fixed choice of n and p (and therefore « and £3), in Lemma 2.3

we determined the set

Po(a, B) = {v | L(v) is a direct summand of L(a) ® L(S)}
={a+7 | 7=(s,1,1,...,1),s+4(1)=p+1}
Here, ¢(7) denotes the number of nonzero rows in 7.

Lemma 4.8. Let L(y) C L(a) ® L(B) be an irreducible summand, v = a +
(s,1,1,...,1). Further let m =~ be the number of boxes in the first row of -,
then Yv € L(7),

O?.v = mp(m — p)v

Proof. Observe
n(n+1
z1(a) = (2)

(@)= +2°+-4n®)—(1+2+---4+n)*=0
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On the other hand, notice

vy=a+(s,1,1,...,1)

=(n+snn—1...n—p+s+ln—p+s—1,...

_n(n+1)
a() = =5
2(v) = (n+s)’+ (12 +27+ - 40
—(n—p s - (D Ly

Therefore, for any v € L(v), Q% acts by the scalar

L(22(5) — 22() = 22(8) + 221(a)1 (8))

1
:§«n+sﬁ+(ﬁ+23+~-+n%—mn—p+sf

—(WZFD+M2—@“ﬂﬂ+ﬂ-Mé;D
= 0+~ (= p o+ =)
= (P = (m =)+ )
Z;@m%—3mﬁ)
= mp(m — p)

Using the above two lemmas, we can deduce the action of €2 on an irreducible

summand.

Lemma 4.9. 1) For L(7) that is an irreducible summand of L(p) @ V', then

Viee {IN € ZLy[A1 > Ao > -+ > Ay > 0}, Q acts on L(7y) via the nonzeroscalar

v e(0)(c(b) + 1) or —y/c(b)(e(b) + 1), where ¢(b) is the content of the distinct

5
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box b in v but not in L.
2) For L(v) that is an irreducible summand of L(a) @ L(B), 2 acts on L(7)

via the nonzeroscalar \/mp(m — p) or —y/mp(m — p), where m is the number

of boxes in the first row of .

Proof. In Case 2), we showed in equation (2.4.3) that since () = 1, the
multiplicity of L(7) in L(a) ® L(B) is 2. Since €2 is central in A(U(q(n))) C
U(q(n)) ® U(q(n)), the action of 2 commutes with q(n) on L(«) ® L(5). By
Schur’s Lemma, € acts on the isotypic component L()\)%2.

Since Q% acts on L(a) ® L(3) via the scalar a = mp(m — p), {2 has possible
generalized eigenvalues y/a or —y/a on L(\)®2. Let U be the generalized /a-
eigenspace of 2. Since © commutes with A(U(q(n)), U is a q(n)-submodule of
L(\)®2,

If U ~ L(\), then since €2 induces an even q(n)-modules homomorphism,
Q act by v/a on U by Super Schur’s Lemma 2.1. Similarly, the generalized
(—+/a)-eigenspace of ) is also the (—/a)-eigenspace, therefore Q) acts by scalars
Vva, —/a on each L()).

If U~ L(\)%2, let t = dim L(\) and choose a basis so that Q acts via an
uppertriangular matrix. Let W, T be the two subspaces spanned by the first
t and last t vectors in this basis. Since 2 acts invariantly on W, W ~ L(\)
and Q acts on W via y/a, Moreover, € induces a q(n)-modules homomorphism
U/W — U/W, therefore acts by the scalar \/a on U/W =~ L()\). The matrix

is as follows,

Jal, A
0 al
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By using Q2 = a - I5; and the fact that a # 0, we obtain that A = 0, therefore
Q acts on L(A)®? via \/a. When U = 0, the same arguments applies to the
generalized (—./a)-eigenspace and € acts on L(\)®? via —/a.

The argument is similar in case 1) as ¢(¢;) = 1. We now argue that the
scalar «v is never zero in either case. In case 1), a = ¢(b)(c(b)+1), and the added
box has content 0 if and only if it sits at the beginning of each row, which is
never true when the entries of p are nonzero. In case 2), a = mp(m — p), which
is only zero if m = p. However, using the combinatorial result in Lemma 2.3,
if y=a+p,since l(p) <n,p=|pu/<(m-n)+(n—-1)=m-—1, and a is
never zero.

O

Recall ® = 23 — p2? + % as in Definition 4.1. Since the elements
2 and 2; act only on the first three tensor factors of L(a) ® L(8) @ V¥4, we

slightly abuse the notation ® by considering it as an action on L(a) @ L(5)® V.

Lemma 4.10. On any isotypic component of L(\) in the direct sum decom-
position of L(a) ® L(B8) ® V, ®* acts as a scalar which only depends on \.

Moreover, if X only has only a single box with content n, the scalar is nonzero.

Proof. We perform the decomposition as follows:

(L)@ L)V =_( B L)V =LA

#GPO (avﬁ) A

where A ranges over all partitions such that L(\) is a summand of L(a) ®
L(B) ® V In particular, each copy of L(\) occurs as a direct summand of
L(p) ® V, for some p € Py(a, B). Notice p must be obtained by removing a

box in A. Recall in Lemma 2.3 we gave a cominatorial description of elements
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in Py(a, §). We list the two possibilities of the partition A, where the yellow
boxes highlight o, and the red box is the unique box in A but not in u:

1) The partition A is of the form:

a)l EE | b) (11}

2) The partition A is of the form:

HEEE (4.3.1)

In case 2), if the red box is in any other position, the other boxes would not
form a partition Py(c, 3).

In all cases, let m be the number of boxes in the first row of A. We calculate
the action of ® in each case

Case la):

By the previous lemma, 22 acts as (m — 1)p(m — 1 — p), the red box has

content m — 1 therefore 27 acts as m(m — 1), therefore ® acts as

pp+1)(p—1)

(m —1)p(m —1—p) — p(m —1)m +

= plp+ )1 —m+ D) = plp+ 1)(-m+ L 1)

Case 2a):

Similarly, z2 acts as mp(m — p), the red box has content m — p — 1 and
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therefore 27 acts as (m —p)(m —p — 1), ® acts as

mp(m —p) —p(m —p)(m —p—1) +

o 4 P2 = plps -

which is the opposite of the scalar above, therefore ®2 acts as a constant when
A is of the form in case 1). When A only has a single box of content n, \ takes

the form in Case 1), and the scalar is zero if and only if m — £ — > = 0 or

1
2 2

2m = p+ 1. Observe for any partition yu = o+ € Py(«, 5), the combinatorial

result in Lemma 2.3 implies that ¢(v) < n, therefore p < m and p+ 1 < 2m.

Case 2): The element 22 acts as mp(m — p) and the red box has content n,

therefore ® acts as

plp—1(p+1)
9

mp(m —p) —pn(n+ 1)+

and ®2 acts as a constant.

On the other hand,

La) @ L(B) @V ~ L(a) @ V @ L(B) ~ (L(a + €)%%) ® L(f)

and for any irreducible summand L(A\) C (L(a+¢)®?)®V, z; acts via a scalar
by the previous lemma.

]

Theorem 4.11. The action p (when n is even) and the action p™~ (when
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n is odd) satisfy the extra relations for HY, and induce a further action

¢ : HY — Endg (L(0) ® L(8) @ V&)

Proof. Since L(a) @ L(8) @ V¥ ~ L(a) ® V®? @ L(), and for any irreducible
summand L(y) C L(a) @V, Q2 acts on L(v) by g(c(y/a)) as shown in Lemma
4.7. Since 3 = 77 acts on the entry M ® V and therefore on L(v), it also acts
on L(v) ® V®¥1 @ N by the same scalar. Since the only way to add a box to
« is to add a box to the first row with content n, the action of 23 = 7} = Q?
has to be the scalar n(n + 1).

The argument is similar for the action of y;. Since L(a) ® L(3) ® V& ~
L(B) @ V¥ @ L(a), and for any irreducible summand L(y) C L(8) ® V, 2
acts on L(7y) by q(c(v/8)) as shown in Lemma 4.7. Since y7 = §3 acts on the
entry N ® V and therefore on L(7), it also acts on L(y) ® V®4~1 @ M by the
same scalar. There are two ways to add a box to 8: by adding a box to the
first row with content p or a box to the second row with content 0. Therefore
the action of y? is either p(p + 1) or 0, satisfying the extra relation.

To see that the relation z;®? = ®%x; is satisfied, we showed in Lemma 4.9
that x; = Q1 acts invariantly on any irreducible summand of L(a) ® V' and
therefore any irreducible summand of L(a) ® L(8) ® V, on the other hand,
by Lemma 4.10, ®? acts as a scalar on L(\) C L(a) ® L(8) ® V which only

depends on A, therefore the two actions commute.
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Chapter 5

Construction of Calibrated Modules

5.1. The Bratteli Graph

The goal of this section is to construct a certain class of modules for H
using combinatorial tools. We first introduce the Bratteli graph, the key
combinatorial data which leads to the construction. Its connection to the
module M ® N ®@ V®? will be explained in the next few sections. Recall « is
the staircase of height n, and g = (p,0,0,...,0). For fixed n and p, define the

Bratteli graph I'), , as follows

Definition 5.1. The Bratteli graph I, ,, associated to n,p is a directed graph,

(o]
whose set of vertices is U Pi(a, B), a set strict partitions. Here,

i=—1

,P—l(a>ﬁ) = {CY}
Pi(a, 8) ={y | L(v) is a summand of L(a) ® L(B)}
Pi(a, 8) ={v | L(v) is a summand of L(\) ® V,

for some A € Pi_y(a, )}, i>1

We allow no repetitions in the above definition, so that if a summand occurs
with multiplicities, we only include it once in Pi(«, B). Also, we call a partition
i € Pi(a, B) a vertex at level i, and the combinatorial formula for P;(c, B) was

given in Lemma 2.3 and the discussion prior to it.
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The directed edges in the Bratteli graph are defined as follows:

There is a directed edge from « to each vertex at level 0. For i > 0, there is

an edge from X € Pi(a, B) to v € Piv1(a, B) if and only if L(7y) is a summand

of LA)@V.

Example. When n=5,p=3,d=3.

a=|

Partitions in Py(a, f):

Ay =1 [ ]

8 =01

For the remaining partitions we omit the staircase portion o and only display

the yellow portion. Partitions in Py («, 5):

Blzlj:I:l:‘ BQZ

Partitions in Ps(a, f):

¢, =LLITT] G =

Cy=[11]

I
R
|




The associated Bratteli graph starts with

(0%

SN

Ay A, As

VRN RN

By By Bs By Bs

LIRS

C 1 02 Cg 05 CG C?

We identify paths in I, , and semistandard tableaux of a skew shape via

the following definition.

Definition 5.2. Fiz A € Py(a, ), and define the set
A_ A
=Ty, = {all paths T from o to A}.

Let T € T, we identify T with the sequence of vertices it travels through.:
T =T 10 . T@ =X), where T € P;(a, B). By construction TV is
a strict partition contained in Tt . Given a path T, we can construct a
semistandard tableau of shape \/T©), where the distinct box in TW /T s

filled with the integer i, 1 < i <d.

Since the unfilled boxes outline the shape of T® € Py(a, #), one has the

following result

semistandard tableau of shape )\/T(O)}

{pathS from « to )\} «— with each integer 1,2,...,n
filled in exactly one box,T(®) Py (a,B)

For future references we will use both notions interchangeably. For a path T,

denote by cp(i) = ¢(T® /c(TY) the content of the distinct box in 7™ that
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is not in 701,

In the next section we will need operators s; on the set of paths. To be
precise we define operators on an enlarged set I} = ' U {x} set, where *
serves as a symbol. For T € I'*, 1 < i < d — 1, define s;.T to be the tableau
by interchanging the entries ¢ and ¢ + 1 in 7', if the resulting tableau is still
semistandard. Otherwise, define s;. 7" = x. In addition, define s;.x = x for all
1<i<d—1.

Example. We use green color to highlight boxes in T that are not in «.

When T and L are the following tableaux, we have s,.7" = L:

T=I 1]3] L=l 1]2]

When T is the following tableau, we have s5. T = *:

T=I 2]3]

Notice s;.T" = « if and only if the entries 7,7 + 1 in 7" are in the same row
or column. Interpreting 7' € I'* as a path in the Bratteli graph, the above
operation is equivalent of reversing the order of adding the i-th and (i 4+ 1)-th
box, and taking a different pair of edges from the partition 70—V to partition
TG+ The resulting path is the unique other path which shares all vertices
with T" except at level 4, if such a path exists.

To define the operator sy, we have the following combinatorial fact.

Lemma 5.3. For any T € T, there is at most one other T" € T* such that

(YD =170 (T =T7@ (T =T,
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Proof. There exists such a path 7" if and only if the partitions (7")(® and 7
are both contained in 7. By Lemma 2.3, such situation exists only when

(0

(T")© has exactly one more box than T® in the first row or vice versa. [

Define the action of sy to be sq. 7" = T" if there exists another path 7" as in
the above lemma, and sg. 7" = x otherwise. In addition, define sy.x = *.

Example. For the following tableaux, sqg. 7 = L:

T = 1]3] L= [3]

For the following tableau, so. T = *:

T =1 2]3]

Recall that in Lemmas 4.7 and 4.8, for a summand L(T®) in L(T0~Y) ®
V(1 <i<d),or L(T®) as a summand of L(a) ® L(B), Q% acts on L(T®)
via a scalar 0 < i < d. Denote this scalar by xp(i)> where r7(i) > 0. The

following is a direct consequence of these two lemmas.

Lemma 5.4. Let T®) = o + ~, where v is of the form (s,1,1,...,1), and

m = s+n is the number of boxes in the first row of T©).

kr(0) = /mp(m — p)

kr(i) = er(i)(er(i) + 1) 1<i<d
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Lemma 5.5. The following is true for all T € T*.

kr(0)? + k1 (1)? = kg1 (0)* + Kgyr(1)?

Furthermore, if so. T # *,

ko + Pk =P (p+ 1)K} + p(p + 1)Kg + 2pKgk;

Proof. Without a loss of generality, assume 7 = o + (s,1,...,1) and
(50.T)® = a + (s + 1,1,...,1). Therefore the box TW /T is added to
the first row with content n + s = m, and the box (s0.7)™" /(s50.T)©® is added

to the (p — s + 1)-th row with content n — (p — s) = m — p.

Therefore,

kr(0)” + Kr(1)? = (K1(0)* + Ksp.r(1)?)
=mp(m —p)+m(m+1)—(m+1)p(m—p—1) = (m—p)(m—p+1)
=m(mp —p* +m+1) — (m—p+1)(mp+p+m—p)

=mm—-—p+1(p+1)—(m—-—p+1)m(p+1)=0
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Furthermore,

kg — pK; = —mp® —mp = —mp(p + 1)
9 .9
ki
p(p+1)

2 2 2 2
2 Ko —DPR1, Ko — PRy

ki=m(m+1)=— (— +1)
! plp+1)" plp+1)

p*(p+1)°k] = kg + p°r1 — 2prgk — p(p + 1)kg + p*(p + 1)k7

ko + P’k = p*(p + 1)K} + p(p + 1)K§ + 2pKgK;

[]

Define r7 = 1/k7(0)2 + k7(1)2, then the above lemma implies that r7 only

depends on 7M. We show that the other direction is also true.

Corollary 5.6. Let T € T and sq.T # «, then T") can be uniquely determined

by K.

Proof. In the above calculation, k% = m(m — p + 1)(p + 1) is an increasing
positive function in m, therefore is distinct for every m + 1, the number of

boxes in the first row of 7M. O
Also, a path T' is uniquely determined by the sequence k- (1), ..., Kr(d).
Lemma 5.7. Given T, S € T, if k(i) = ks(i) for 1 <i <d, then T = S.

Proof. First, T = §@ = \. Given u € P¥ (e, B), c(\/ ) is distance for each
1, since a removed box is uniquely determined by the diagonal, or equivalently
the content. By successively removing boxes, one obtains the unique path

associated to the sequence kr(1),..., kr(d). O
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Lemma 5.8. Denote kg = kr(0), k1 = kr(1l), kj = Ksy.1(0), K} = Ksyr(1).

Then

Ko = DK
O PN ) + 2 (k)2

K+ K | (st + (1)
K3 + p?K? ! !
| m+ s , \/ (kh)? + ())?

K1 =
] N RCORENECHE

Proof. Based on the calculation in Lemma 5.5, observe

Kokl = py/m(m +1)(m — p)(m —p + 1)

kiky = \/m(m+1)(m —p)(m —p+1)

/

I / __ PRy : 2 2 __ 1\2 ’1\2
Then Kok = pr1K], O Ko = FaAk Since ki + k1 = (ky)* + (K1)7,

20 ,1\2
p*(Kh)
(/€/0)12 /{% + K’% = (K6)2 + (K'I)Q
2(,.1\2
i1+ U — gy 4
(K0)
o [ 2
PO (80)% + PR ()
The other identities can be checked similarly. O]

5.2. A Combinatorial Construction

Hill-Kujawa-Sussan [10] constructed modules for the degenerate affine Hecke-

Clifford algebra HaT using the following combinatorial method. For a partition
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He P()(Oé,ﬂ), let
A . .
[} = {paths from y to A in the Bratteli graph}

or equivalently, 1"2 is the set of semistandard tableaux of skew shape A/u. In
[10, Section 5], Hill-Kujawa-Sussan constructed a module for HaT associated

to each skew shape.

Proposition 5.9 (Proposition 5.1.1 [10]). There is a well defined action of
HAE on HMw = P Clavr via

A
Ter)

Z; U = IiT(i)UT 1 S ) S d
1 . 1
I{T(i) - I{T(i + ].) I{T(Z.) + KT(i +1

si.vp = (— )C¢C¢+1)UT

1 1
¢ (ke (@) + rr(i+ 1)) (vr(i) = rri+ 1))
and the Clifford generators c; act by multiplication in Clg.

In [10], Hill-Kujawa-Sussan defined modules to be calibrated if zq,. .., 24
act semisimply. In the same spirit, we define calibrated modules for H} as
follows: a finite dimensional H -module W is calibrated if it admits a basis on
which zg, ..., zq act by scalars.

Let A be a fixed strict partition at level d in the Bratteli graph associated
to n,p. Notice once A is given, n = ¢(A), and p = |\| = (1 +2+---+n)
can be deduced from A\. We will construct a family of strongly calibrated
HE-modules with respect to A. Recall I'* = {all paths T from a to X in I[',,,,}

and we defined the action of s, ...,s4_; on a slightly enlarged set ['* U {x} in
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the previous section. Based on the definition of k7 (7) in Lemma 5.4, we define
ko = kr(0), k1 = kr(1) Ky = Ksy.7(0), Ky = Kggr(1)
For our construction we also define a slighly smaller set
I = {T e Tso.T # *}

Further let Ny = n(n+1) and f: T* — C be a set function which satisfies the

following equation whenever so.T" # *:

FT)F(50.T) (10 — )% + (sy + #))2) = — 2P (Y (N — (1))2)

(K5 + prT)
(5.2.1)

In particular, since ko, K, k1, &} are real numbers, and either x; or ] is nonzero

based on the formula in Lemma 5.4, f can be taken as

(5 + p?*k1)(No — K1) (No — (k1)?)
kg + pri)?((Ko — 50)? + (k1 + K1)%)

F(T) = fs0T) = \/—(

Definition 5.10. As a superspace, let D}‘ be the free module over the Clifford
superalgebra by cases:
1) When n is even, recall Hy is a quotient of HY . Let D} = @ Clajivr,

Ter?
where Clgyy is the subalgebra of Hyq generated by co, cq, ..., cq.

2) When n is odd, recall HY is a quotient of HAN. Let D}‘ = @ Clgyovr,
Ter>
where Clgys s the subalgebra of Hy generated by cyy, co, C1, - .., Cq.
In both cases, let m be the number of bozes in the first row of T, and

declare v to be even if m is even, and vy to be odd if m is odd. Define the degree
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of ¢i, -+ ¢ vp to be T+Ur. The action of Clgyq or Clyie in HY is multiplication
in the Clifford algebra. Since the generators zg, ..., 24, 21,81, -.,Sq_1 can be
moved past the Clifford generators using the commuting or anticommuting
relations in Proposition 3.9, it is enough to define the action of these remaining

generators on vy, for each path T € T*. They act as follows:

zp.vr = Kr(0)vr

zi.vr = kr(i)vr 1<i<d

k(i) — k(i + 1) kp(i) + k(i + 1
1 1

+ \/1 - (liT(l) + HT(i + 1))2 o (:‘iT(Z> — IiT(i I 1))21]51..1«

sivr = (— )Cz‘Cz‘+1)UT

In the above formula, we declare v, 1s the zero vector.

To define the action of x1, we introduce the following 2 X 2 matrices:

Ko — Koy K1+ K]
Z=|" 0 T (5.2.2)
K1+ K] K{— Ko

Let k = /K% + k3. When sy.T # x, the action of x1 on vy is given by a 4 x 4

matriz on the subspace spanned by vectors vy, coci1vr ,CoVs, 7 and c1vs, T, where

PR1 —HRo Ko K1
X + f(s0.1)Z
—Kg —PK1 R1 —Ro
21 (T) =
Py K Ko —K)
FT)Z % 1 o |, 0 1
I Ky —PR) —K] —ko |
(5.2.3)

Recall from above we declare v, = 0. As a consequence, whenever sqg. T = %, the
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action of x1 on {vr, cocrvr} is given by the upper left 2 x 2 block of the above

matriz.

In order to prove two main results, Theorem 5.12 of this section and
Theorem 6.1 in Section 6.1, we will need a reformulation of the matrix z,(7)

in the following lemma.

Lemma 5.11. In Definition 5.10, the matriz x1(T) can be defined alternatively

via the following. Let

258 (5 — 1 — ()%) + (R + (¥1)* —p(p+ 1))

‘- 2(Kok1 + K(KY)

Then c is equal to

Rok1

A LY (S |
K3+pﬁ%(ﬁ2(p )+1)
KoK} No
S 1 WY G L YR D
oo+ pley? e W FY
Further let
Ko K1 Kby —K K1 —Ko KL Kl
¥ v _ 0 1 Q- o |M 0
K1 —HKo —K] —K; —Ko —K1 Ky —K)

Then the matriz x1(T) in Equation (5.2.3) can be written as

MQ+cX  f(s0.1)Z
0z DR+ cY

2 (T) = (5.2.4)

where Z is defined in Equation (5.2.2). and the condition (5.2.1) on f is
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equivalent to
N2
0 R F) S0 T (0 — o+ (e + ) =Ny (525)

We also have f(T')f(s0.T) # 0 whenever so.T # *.

Proof. We use the formulas given in Lemma 5.8 to rewrite the constant c:

2 2 2 2
No 2 2 K{TK] 2 2 Kgt+KT
2°%8 (kg — K ,i(2)+p2,$§) + (K1 + kg e R p(p+1))

Ki2 li2
2(kok1 +p/‘€0/€153fﬁ)
_ 258K5(p° — DRt + (k2 (k5 + p°K1) + Ko (K5 + £T) — p(p + 1) (K5 + P*K1))
2k0k1(p + 1)(K5 + pri)

where according to Lemma 5.5,

Ri (kg + PRY) + kg (kg + k1) — p(p + 1) (kg + p*s7)

= P*w1 + Ko + 2kgRT — p(p + 1) (kg + K1)

=2(p+ 1)/@35%

Therefore

. 250153 (p? — 1)KT + 2(p + 1)K3k3
20k (p + 1) (K8 + pri)
KoK N,
= Ny

R+ R 2

To see that the above expression is equal to a similar version with x{ and ],

s
KoKl _ __ Kokl
RApRT T (PG

it is enough to show Indeed, this is true based on the
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formulas given in the proof of Lemma 5.5.

)

Koki m\/(m +1)(m —p)p
Ko + pRi mp(2m —p+ 1)
while
KoK _ (m+1—p)\/(m+1)(m—p)p

(m+1—pp2m+1—p)

Y

and the two expressions are equal. Now let us simplify the entries in the matrix

of x1 using the above formula.

N,
/TSQ +cX
NO K1 —Ko Kok1 NO
= TR D
Ko —K1 0 T PR1
No k(K5 + pri) + (p — 1)Kgk

—ko(kE + pr3) + (p — 1)Kok?

Kok1 Ko K1
2 2
K K
0 T DK1 K1 —Ko
2 2 2 2
Ny pri(kg + K1) —ko(kg + K1)

—ro(K§ +K])  —pri(Kg + K7)

—kRo Ro

K§ + pRi

PR1 Kok1 K1

—KRo —Pki K1
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Ro k1

R1  —RKo

—ro (kg + prt) + (p — 1)koki

—r1 (kg + pri) = (p — Dk

RoRk1 Ko K1

2 2
Kg -+ PR
0T PR g kg



Similarly,

Y +cY
"R R
_ NO plill "ié) K,g,‘-{jll 1‘16 —K1
(ko) + p(k1)* Ky —pK) (K0)? + p(K1)? -
Lastly,
N2
Ny — 7;) _ 021%2
K
1 N2
- m(—ﬁfg((’f% +pri)? = (p - 1)%3;{%)
0 1
+ No((k2 + pr)? — 2(p — 1)iR3) — rin2i?)
where

(kg + pr1)* + (p — 1)°KKT
1{2
o ko + p2 Rt 4 (p? + 1)KEK?
B K3 + K3

_ 2 2 92
= Ky + PR}
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Hence

N2
Ny — —g — K2
K
1
= m(—]\fg(’fg + p*K1) + No(kg + pPR1 + 263K7) — KgkiK”)
1
= _W(NO — &3)(No(kg + P*R3) — Ko (kg + k7))
2 2,2 2 2
= — S EPEL (N — k) (No — L)
(“0 +pf£1) Kg + P*RY
i+

=~ gy o — Do - (k1)%)

where the last equality holds because of Lemma 5.8.
Finally, if f(T)f(so.T) = 0, one of the expressions Ny — k%, Ny — (k})? or
K2+ p?k? is zero, therefore k; = /Ny or k) = \/Ny. This is only the case when

T® is of the form (4.3.1), or equivalently when s.7" = *. O
Theorem 5.12. The vector space D} admits a well-defined action of HY.

Proof. In the proof of Proposition 5.9, Hill-Kujawa-Sussan checked that the
Sergeev relations and the relations s;2; = 2,115, — 1 + ¢;¢;11 hold. Since the
action of s1,...,84-1 and z1, ..., z4 coincide with our action, these relations
hold by the same calculations. It is enough to check the remaining relations

regarding x; and zp. We list all the relations here from Proposition 3.9 and
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Corollary 4.2.

208; = Si20 (2 S 1 S d)
Z0R%1 — 21%0
291 = L1229
T18; = S;T1 (2<i<n)

zr1(s12181 + (1 — c1c2)s1) = (s12151 + (1 — c1¢9)81) 2y
(zococ1 + 21 — x1)x1 = —21(20C0C1 + 21 — 1)
2} =n(n+1)
(21— 21)" = p(p+ 1) (21 — 21)*

371(1)2 = (I)le

1) The first three relations are automatically satisfied since so, ..., 41, 21
preserves the eigenspaces of 2, and x; preserves the eigenspaces of zs.

2) The relation z1s; = s;x1 (2 <@ < d—1) holds. For Vi, 1 <i<d—1,
notice if S = ;. T, then ko(T) = ko(S) and k1 (T) = k1(S), therefore all the
data for the action of z; is the same for 7" and S in the above definition. Also
notice that the action of s; (2 < ¢ < d) commutes with the action of sy on
A, therefore s9.S = s;.(s0.T). Let x1.07 = (a3 + axcoey)vr + (azco + aser)vsy.r,
where a; is given by the above definition, then x;.vg5 = (a1 + ascocr )vs + (agco +
a4C1)Vs,.5- Also notice k;(T) = ki(so.T) and ki11(T) = Kiy1(s0.T), therefore if

s;.vp = (b + baciciv1)vr + bsvg, where b; is given by the above definition, then
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$iUsor = (b1 + baciCiy1)vsy r + b3Usy.s-

1'1.(SiUT)
= 21((by + bacicit1)vr + b3vg)
= (b1 + baciciv1)((a1 + ascoer)vr + (asco + agcr)vs, )

+ b3((ay + ascoer)vs + (agco + agcy)vs, s)

on the other hand,

si.(x1v07)
= $;((a1 + agcoer)vr + (asco + ascr)vsy 1)
= (a1 + a2cocr) ((br + bacicipr)vr + bsvg)

+ (agco + asc1)((by + baciciy1)vsy 1 + b3vsy.s)

The two results are the same by comparison.
The last five relations are included in the following two lemmas for an easier

read. O

Lemma 5.13. The relations

(zococ1 + 21 — 1)1 = —21(20C0C1 + 21 — 1)
22 =n(n+1)
(z1 — 21)* = p(p+ 1) (21 — 21)*

Z'1CI>2 = (I)Qilj'l

hold in the above construction.
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Proof. Observe the following identities are true

Q2:R2:X2:Y2:Ii2

7% = (ko — Kp)* + (k1 + k)

QX +XQ =0, YR+RY =0
XZ+ 7Y =0, ZX +YZ =0
QZ + ZR =0, RZ+2Q =0

The first two identities are straightforward. Let us check the remaining three

results on the left and the others can be checked similarly.

QX +XQ
K1 —ko| [Ko K1 Ko K1 K1 —ko
= +
—RkRg —Ki1 K1 —KRo K1 —KRo —RkRgp —Ki1
0 k2 0 —x?
k2 0 —k% 0
XZ+ZY
/ !/ / / !/ /
Ko K1 Ko — Rg K1 + Rq Ko — KRg K1 + Rq Rg —K3
= +
/ / / / / /
K1 —Kol| |kK1 + Ry Kg— Ko K1+ Ky Kg— Kol| |[—K] —Kg
2 / / / / 2 / / / !/
K® — Kokg + K1k Koky + K1Kg K® — Kokg + K1K KoKy + K1Kyg
/ / / / !/ !/ / /
— (koK) + k1K) K% — Kokpy + k1K) — (koK) + K1Kh)  K* — Kokl + K1K)
=0
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QZ+ ZR

!/ / / / / !/
K1 —Ro| |Ko— Kg K1+ K Ko — Ky K1+ K| |R] Ky
= +
/ !/ / !/ !/ !/
—Ko —Ki| |K1+ K] Kyg— Ko K1+ Ky Kg—Ko| |Rg —kKi
—KoK) — K1K{) K + K1K) — Kok}
— (K% + k1K) — KoKp)  —KoK) — K1Kg
—KoK| — K1K() K%+ K1K) — Kok
2 / / / /
—(K* 4+ K1K] — KoR()  —RKok} — K1K{

1) The relation 3 = n(n + 1) is satisfied. On the subspace spanned by
{vr, cocrvr, covsyr, Uo7},

2

MQ+cX  f(s0.T)Z
f(MZ SR+ cY

2
Ty =

Let us calculate the 2 x 2 blocks individually,

2
() = 0@ + X + CRQX + XQ) + () f(50.T) 7

2.2
:Noli

K4 + A2 + f(T)f(SoT)((I{O — 56) + (/{1 + /{/1)2)

=Ny
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by the condition imposed on f. Similarly,

2 NG 2 2y2, No 9
(11)22 = —F B2 + X2 + —2(RX + X R) + (1) f(s0.T) 2

K4
Ng/€2 5 o / 1\2
= TR+ (D) f(s0.T) (K0 — ko) + (k1 + 1))

=N,
Moreover,

(1) = Fs0 T)C2(QZ + ZR) + f(so T)A(XZ + 2Y)) = 0

(@ = 1D(2Q + RZ)+ ()X + Y 2)) =0

Therefore 73 = Ny = n(n + 1).
2) The relation (zococ; + 21 — x1)r1 = —x1(2000¢1 + 21 — x71) is satisfied.

Notice the matrices for zg, cocq, 21 under the given basis are

kg O 0 0 0 -1 0 k1 0 0 0
0 —kg O 0 1 0 0 0 —r1 O 0
20 = y CoC1 = y 21 =
0 0 —ky O 0 0 -1 0 0 w| O
0 0 0 & 0 0 0 0 0 0 —rj}
and zgcocr + 2z, acts as
K1 — R 0 0
-k —k1 O 0 Q 0
20CoC1 + 21 = =
0 0 K] kK 0 R
|0 0 Ky —kY]
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Therefore,

(ZOCOCl + 21>ZE1 + 2 (ZoCOCl + 21)

Q 0| | 2Q+cX f(s01)Z MQ+cX flseD)Z||Q 0
+

0 R|| f(NZ R+cY Mz DR+cY| |0 R

2002 1 o(QX +XQ)  f(s0T)QZ + ZR)
f(1)(ZQ + RZ) Z0Q* + ¢(RY + YR)

3) The relation z;®? = ®2x, is satisfied.

This relation is equivalent to (z;® — ®z1)P + &(2;P — Pxy) = 0. Using

the matrices for 2, z; in 2),

(p=1) )Iz 0

0 () = plry)? + P00

where I is the 2 x 2 identity matrix. As a consequence of the proof of Lemma

4.10,

® = (k§ — pri + 5
0 —I
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Therefore, when

T11 T12
xIr —

To1 22

p(p+1)(p—1)) 0 —z1

1P — Oxy = 2(k2 — prT + 5

T21 0
and any skew-diagonal matrix anticommutes with ®.

4) To check the last relation, first claim that

(11 + K1)* (K0 — K)* + (k1 — K1)*)

+1) =
plp+1) (o — wo + (1 + 1)

We will use the formulas for ky and x; we developed in the proof of Lemma

5.5. In particular, the following quantities will be useful.

K1+ (k1)? = m(m+ 1)+ (m —p)(m —p+1)

Kok = pym(m + 1)(m — p)(m — p + 1) = prik]

k1K) = \/m(m+1)(m —p)(m —p+1)

K2 =m(p+1)(m—p+1)

(k1 + &) (Ko — Kp)? + (k1 — K1)?)
(ko — k()2 + (k1 + K))?
(k2 4+ (KY)? + 2K1K)) (2K% — 2Kok) — 2K1K))
2K% — 2K0K( + 2K1K]
(k] + (k1)* + 2k067) (K° — (p + 1)KaKY)
K2 — (p — 1)KiK]
_ RA(RT A (81)%) = 2(p + D) (ar)? + (267 = (p+ D(KT + (51)?)) K1k
K2 — (p— 1)Kk1K]
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where

K2(kf + (£1)?) — 2(p + 1) (ka1s1)?
2(p + 1) (k1s1)?

=Kt + (k1) —

—m(m+1) + (m—p)(m—p+1) —2(m+1)(m —p) = p> +p

and

26% — (p + 1) (K7 + (57)?)

—(p—1)
_2m(pt ) —p+ 1) = (p+ Dmlm + 1)+ (m — p)(m — p+ 1)
—(p—1)
_ 2m(p+ 1) (—p+1) =2(p+1)m(l —p)+ (p+ Dp(—p + 1) —(p+1)p
-p+1

1 0

4) The relation (z; — 21)* = p(p + 1)(z1 — 21)? holds. Let J = :
0 —1

notice that on the four dimensional subspace,

MQ+cX —kiJ f(s0.T)Z
1 — 21 =

f(z MR+ Y — kYT

Let us compute each 2 x 2 block in (z; — 21)* = (A;;) individually:

2
Ay = (];@@2 + X2+ f(T)f(50.T)Z?) + K3 — A;(;C(QX + XQ)

N,
_ ,2;”1 (JQ +QJ) — cki(JX + XJ)
2 Nyk2
= Ny + fi% — 702111 — 2¢cKoK1
KR
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similarly
Ng N
Agy = <,7[1)R2 +AY? + f(T)f(sO.T)ZQ) + (,{1)2 _ LC(RX + XR)

N,
— 2 (JR+ RJ) — cri (JY + Y )
K

2Ng(lil)2

! !
— 2cKyK,
Also we have

= —f(s0.T)(k1JZ + K1 ZJ)
Agt = f(T)(]E(ZQ YR 4 ZX +YZ) — (KJZ + 11 Z]))

=—f(T)K\JZ + K1 ZJ)

Since A;1 and A2 are scalar matrices, the condition A? = p(p + 1)A is

equivalent to the following

A2+ AjpAyr (A + Ag)Arg A A
=p(p+1)
(A1 + Ago)An A§2 + A1 Ajo Ay Agg

which is equivalent to

A%l + A12A21 — p(p + 1)1411 =0
A%+ AnAis —p(p+1)An =0

(A1 + Ag) =plp+ 1)
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The last condition is automatically satisifed due to our choice of ¢. In particular,

Al + Ao
2Nyk? 2Ny (K))?
= (No + &7 — 702/11 — 2ckok1) + (No + (K))? — (ji(fl) — 2ckKgKY)
2N0 2 2 1\2 2 1\2 o
= ?(” — K] — (K1)7) + (k1 + (K1)7) — 2c(Kok1 + ”0“1)
=p(p+1)

Let us check A2, + A15A45 — p(p + 1)A;; = 0 and the other relation can be

checked via symmetry. To calculate A15As;, observe

1777 - 1 0| |ko—Ky K1+K] 1 0| |ko—Ky Ki1+K]
0 —1| |k1+K, —(ko—kKgy)| |0 —1| |k1+K] —(Ko— Kp)
- 2
Ko — K K1+ K]
= ° | = G0 =)t = (a4 )
— (k1 + K1) Ko — Ky

2

2
Ko — ki K1 + K 1 0

JZZT = ot
0 —1| |k1+K, —(ko—rgy)| |0 —1

= (ko — kp)* + (k1 + K))?

ZJJ7Z = 7% = (ko — k) + (k1 + K,)?
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and

7177 Ko — Ky K1+ K] 1 0| |ko—Ky Ki1+K, 1 0
_/ﬁ—i—/{’l —(RO—I{6>_ 0 —1| |k +rK, —(ko—ry)| |0 —1
- 42
ko — Ky — (k1 + K]
= " o R R——
Eha Ky Ko— K
Therefore

A12A21 = f(T)f(SQT)(Hp]Z + K)&ZJ)(KJ;JZ + K1ZJ)
= J(T)f(s0.T)(2k15 (550 — £g)* = (k1 + K1)°)
+ (K1 + (K1) (ko — Kp)” + (k1 + £1)?))

= f(T)f(s0.T) (57 + £1)*((Ko — k)" + (i1 — K1)*)

by the claim in 6), and the condition in f imposed in the construction, this

quantity is equal to

ArpAgr = f(T) f(s0.T)((Ko — "46)2 + (K1 + %3)2)19(29 +1)
= o+ DV~ 28 e
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Therefore it remains to check the following quantity is zero.

A% + AjpAn —p(p+ 1Ay

2Nyk? N2
= (Np + k7 — 70:1 — 2ckok1)? + p(p+ 1) (N — /-Tg — *K?)
2Nyk?2
—p(p+1)(Ng + K2 — Kgl—zmmg
N, N, N, K2
= (5 (K = 26}) + K] — 2ckor1)” + p(p + 1) (K (= — (—5)%) — (crokin)*—5—)
K K K KgKS

N
—plp+ 1)(?5(/{2 — 2K7) + KT — 2ckgky)

Let us substitute % with x, and organize the above equation according to the

power of (ckok1):

A% + A Ao —p(p+1)An

DR plp 1) — 4G — 263) + K)o

= (4
( "f%"ﬁ

+ (x(8? = 27) + £1)% + p(p + 1R (z — 2%) = p(p + 1)(x(k* — 267) + &7))

Now we plug in all formulas we developed for s, kg, k1 which are mentioned in

claim 6). In particular, the coefficients for the variable (ckgr1) are as follows

, P+ 1R

plp+ 1)Pmlm—p+1)
m2p(m — p)(m + 1)
(m—p+1)(p+1)
m(m —p)(m+1)

=4

—4—
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2p(p + 1) — 4(z(k* — 247) + K1)

=2p(p+1) —4m(m + 1) — dzm(pm —m —p* — 1)

and lastly,

(2(k* = 267) + K1)* + p(p + Dr*(x — 2°) — p(p + 1) (2(* — 267) + K7))
= 2°((k* — 2k1)* — p(p + 1)K*) + z(2K7 (K* — 2K7) + p(p + 1)K°
—p(p + 1)(k* = 2k7)) + &1 — p(p + 1)x7
= 2*(m*(mp — p* —m —1)* = p(p + 1)*m(m — p + 1))
+x(2m(m + Dm(mp — p* —m — 1) + 2p(p + 1)m(m + 1))
+m(m+1)(m(m+1) —p(p+ 1))
=m(m —p)(m+1)(p—1)(m(p - 1) — (p + 1)*)2*

+2m(m+1)(m —p)(mp—m —p— 1)z +m(m+1)(m—p)(m+p+1)

Therefore

A% + A2 Ao —p(p+1)An

(m—p+1)(p+1)
m(m — p)(m + 1)

= (4 — 2

)(croka)
+ (2p(p 4 1) — 4m(m + 1) — dom(pm — m — p* — 1)) (ckok1)
+m(m —p)(m+1)(p—1)(m(p— 1) - (p + 1)*)a”

+2m(m+ 1)(m —p)(mp —m —p— 1)z +m(m+1)(m—p)(m+p+1)
(**)
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To calculate ckgr1, observe

Kok = my/(m+ 1)(m — p)p

Koy = (m+1—p)y/(m+1)(m — p)p
K1+ ()2 —p(p+1) =m(m+ 1)+ (m—p)(m—p+1) —p(p+1)
=m-p)((m—-p+1)+(m+p+1))

=2(m—p)(m+1)

and
K — (K1 + (K1)%)
=m(p+1)(m—p+1)—m(m+1)—(m—p)m-p+1)
=(m—p)(mp+1) —m—(m—p+1))
=(m—p)(m—+1)(p—1)
Therefore

278 (k* — w7 — (K1)%) + (k] + (K)* — p(p + 1))

e 2(1 + 5)
_m(m—p)(m+1)(p— 1)z N m(m — p)(m + 1)
2m —p+1 2m —p+1

We claim that all the coefficients of = in Equation (**) are zero. The coefficient
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of 22 is:

m—p+1)(p+1)?* mm—p)(m+Hp-1),

(1 )( )

m(m —p)(m+1) 2m—p+1
—dm(pm —m — p? — 1)m(m —22(Tp++1)1(p by

+m(m —p)(m+1)(p—(mp—1) = (p+ 1)*)

_ mlm—p)(m+ D)(p — 1)
(2m —p+1)2

where

B =4m(m —p)(m+1)(p—1)—(m—-p+1(p+1)*p-1)
—dm(pm —m —p* = 1)(2m —p+1)
+(m(p—1) = (p+1)*)(2m —p+1)*
= (2m —p+ 1)(—4m(pm —m —p* — 1)
+(m(p—1) = (p+1)*)(2m —p+ 1)
+(@2m* = (p—m—(p+1)")(p— 1))

=02m—-p+1>*mp-1)—(p+1)*-mp-1)+(p+1)?* =0
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The coefficient of z is:

o(q — M=+ D+ D*ymA(m = p)(m + 1)*(p — 1)
m(m — p)(m + 1) am—p i)y

+ @plp+1) — dm(m+ 1)) DR =D

— dm(pm —m = p* - 1>m(?m_f );T 3 :

+2m(m + 1)(m — p)(mp —m —p — 1)

_mlm = p)(m+ 1)
(2m —p+1)2

where

C=8m(m—p)(m+1)(p—1)—2m—-p+1)(p+1)*(p—1)
+@2m—p+1((2p(p +1) —4m(m +1))(p — 1)
—dm(pm —m —p® = 1)) +2(2m —p+1)*(mp —m —p — 1)
=2(2m —p+1)((p(p+1) = 2m(m +1))(p — 1) = 2m(pm —m — p* — 1)
+@m—p+1D(mp—m—p—1)+(p—1(m2m —p+1) - (p + 1)*))

=202m—p+1)*((mp—m—p—1)+mp-1)—2mp—-1)+(p+1)) =0

Finally, the constant term in Equation (**) with respect to z is:

(m—p+1)(p+1)2) m(m—p)(m+1))2
m(m —p)(m +1) 2m —p+1
(m—p)(m+1)
2m—p+1

(4 -

+ (2p(p+1) — dm(m + 1))

+m(m+1)(m —p)(m+p+1)
_ m(m — p)(m + 1)
(2m —p+1)2
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where

D = 4m(m —p)(m+1) — (m—p+1)(p+1)°
+ (2p(p+1) —4m(m +1))(2m — p+1)
+(m+p+1)©2m—p+1)>
=@m-p+1)((m+p+1)2m—p+1)+ 2p(p+1) — 4m(m +1))
—(p+1)* +m(2m —p+1))

=C2m—p+1)*((m+p+1)+m—-2m—(p+1))=0

Therefore we have verified the last relation. O]

Lemma 5.14. The relation

zr1(s12181 + (1 — c12)81) = (s12181 + (1 — ¢1¢9)81) 21

is satisfied.

Proof. Let C5 be the Clifford algebra generated by cq, c1, co and ¢g, @1 be the
C-linear map on Cj such that z1a = ¢g(a)xy, sia = ¢1(a)s; for any a € Cs.
Notice ¢g(c1) = —c1, ¢1(c1) = co and ¢1(c2) = ¢;. For any path T € T, let
1.7 = apvr + bpvg, p, s1.07 = dpvr + eg, pvp, where ap, by, dr € Cs, and

er € C as given in the construction, and ¢g(er) = ¢y (er) for any T € T,

x181.07 = x1(dpvr + ervs, 1)

= ¢o(dr)(arvr + brvs, ) + er(as, 75, 7 + bsy TVs0s1.T)
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X181T181.U7
= 2151.(¢o(dr)(arvr + brvs, ) + er(as, 705 1 + bsy 10505, 7))
= 21.(¢100(dr)d1(ar)(drvr + €rvs,.1)

+ ¢100(dr) 1 (br ) (dsg V5.7 + €50.7Vs150.7)

+ erdi(as, )(ds, 705, T + €5, TVT)

+ e7®1(bsy 1) (dsosy TVsps1. T + 5951 TVsy5051.7))
= ¢o¢191(dr)Pod1 (ar)o(dr)(arvr + brvs,r)

+ ¢op1d0(dr)Podr(ar)er(as, Vs, 7 + bs, TVss,.T)

+ Pop190(dr)Pod1 (br)do(dsy.1)(@se. 7Vs.7 + bsy.7VT)

+ GoP190(dr) P01 (b1) sy 1(Asy 50 7Vs150.7 F bsy 50 TVsg5150.T)

+ erdodi(as,.1)Po(ds, 7) (s, Vs, 1 + bsy 7Vs5,.7)

+ erdodi(as, r)es, (arvr + brvg, )

+ er@od1 (bsy 1) P0(dsgsy. 1) (Asgsy TVss1 T + bsgsy TVsyT)

+ €T¢0¢1(bsl.T)esosl.T(aslsosl.TUslsosl.T + bslsosllTUsoslsosl.T>

Similarly,

s1x1.07 = $1(arvr + brvg, 1)

= ¢1(ar)(drvr + ervs, 1) + ¢1(br)(dsy 7Vso T + €59.7Vs,50.T)
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121812107
= s1(do¢1(ar)do(dr)(arvr + brvs,.r) + God1(ar)er(as, 7vs, 7 + bsy TVsos,.7)
+ @001 (br)Po(dsy 1) (@so V5o T + bsy 70T)
+ P01 (D7) eso.7(Asy50. TVs1 507 + bsy 59 T7Vsgs150.7))
= ¢19001(ar)1¢0(dr)d1(ar)(drvr + ervs, 1)
+ 10091 (ar) P10 (dr)d1(b1) (dsy. 7Vs0.7 + €50.7Vs150.7)
+ d10091(ar)erdi(as, ) (ds, TVs, 7 + €s,.70T)
+ d10001(ar)erdi (bs, 1) (dsys, TVsos,. T + €sos1 TVs1 501.7)
+ 10091 (b) 100(dsy 1) P1(ase.7) (dsy TVso. T + €5, TVs150.7)
+ 010001 (br) p100(dso. 1) 91 (bso.7) (drvr + €105, 1)
+ G10001(br)€so. 701(0s150.7) (dsys0.7Vs1 507 + 5150 7V50.7)

+ ¢1¢0¢1 (bT)eso.T¢1(bslsg.T>(dsoslsg.TUsoslso.T + esoslsg.TUslsoslsoAT)

To check

r1(s17181 + (1 — c1¢9)81) — (81181 + (1 — c1e9)81) 21

= 11812181 — 12181201 + (1 + c1e0)x181 — (1 — ¢re9) 8111

is equal to zero, let us check the coefficients for each vy of the above expression.
We will let T be one of the following tableaux in two cases. Again we omit the
staircase portion of the tableaux, as well as boxes filled with integers 3 and

above, and green boxes have no entries.
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(via 51 ) Ly= -Z

Case 1) L1=

(via sg ) Lz= "'-:(viasl <) Ly= -:

Notice sg.Ly = Ly, so.Ly = L4, because given the partitions Lgl) and
Lil), the position of the first added box is uniquely determined. Therefore
Usy.L; = Usy., = 0 and by = 0 for T' = Ly, so.L1, L4, 59.Ls. Also let m be the
number of boxes in the first row of Léo), consistent with the notation in the

proof of Lemma 5.5, and recall Ny = n(n + 1). The eigenvalues for z, 21, z5 of

the above tableaux are given as follows

< (0) k(1) 5 (2)
Ly mp(m — p) VN m(m +1)
Ly mp(m — p) m(m + 1) VN
Ly | /(m+ Dp(m +1—=p) | /(m—p)(m—p+1) VMo
Ly | /(m+1)p(m + 1 —p) VN V(m—=p)(m—p+1)
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Case 2) Ty= r. !
(vin 51 ) Tgr"'-z

2 (via sg ) Th= r-z

(via sg <) T4r"'-
[

1

2

Let m be the number of boxes in the first row of Téo), then the eigenvalues for

20, 21, 2z are as follows

£(0) k(1) K(2)

Ty | /(m=1)p(m —1—p) m(m — 1) ym(m+1)

T mp(m — p) V(m—p—1)(m—p) ym(m+1)

Ty mp(m — p) m(m + 1) V(m —p—1)(m—p)
Ty | /im+Dpm+1=p) | Jim=p)(m—p+1) | \/(m—p—1)(m—p)

For the rest of the discussion, for any one of the paths T above, Let kg, k1,

ko be the eigenvalues associated to T, then the eigenvalues associated to the

other three paths in the same orbit of 7" are as follows:

8081.T 81.T T S().T 8180.T 808180.T
20 | Ky Ko | Ko | Ky K Ky
21 Ky Ky | K1 | K] Ko Ky
/ /
Z9 K1 K1 Ko Ko K1 K1

We also list the following quantities based on the above eigenvalues: The
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quantities ap:

Nop + K2k —Ny + K2k
ar = ( Og 02 1 | 20 12) Ococl = v+ dcocq
K + PK1 K + PRT

(Nop + (kp)*) 1 | (=No + (K1)*)Ag

! /
Qso.T = coc1 = + 0oy
* (k)% + p(k1)? (K0)% + p(K1)?
(N0p+ R%)’KL? (_NO + ﬁ%)ﬁﬂ " 1"
Qs, T = coc1 = Y1 + 01cocr = + 6" epe
1.T K2 + pr2 K2+ p(ra)? 01 =N 1€oC1 =7 0C1
(N0p+ (’%})2)/{2 (_NU + K%)”é) " "
Qg s0 T = CcoCp = + 6" eqe
R O e A L 7
N + /€”2 K —N + /1”2/1”
Usys1. T = ( op ( 0) ) 2 ( 0 ( 2) ) 00001 = Yo + d2c0C1

(ro)? +p(r3)*  (Kg)? + p(kz)?

The quantities by:

br = f(T)((ko — Kj)co + (k1 + K))er) = Aco + Bey
= f(T)(A'co+ B'cy)

beor = f(50.T) (= (k50 — Kb)co + (k1 + #,)e1) = Deo + Ecy
= f(so.T)(—A'co + B'ey)

bs, = f(51.T)((ko — Kg)er + (k2 + Ky)er)
= f(s1.T)(Aico + Bicy) = f(s1.T)(Feo + Gey)

bsos; 7 = f(8081.T)(—Fco + Gey)

bsysor = f(5150.T) (kg — Ko )eo + (ka2 + K5 )er) = f(s180.T)(Heo + Iey)
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Note that AE = —DB. The quantities dr:

1
dp = —
K1 — k2
1
dso.T = T
'%1 - /{2
1
dsl.T = -
Ko — K1
1
dsosl.T = _K,” Kjl
5 —
J 1
sos180. T — — " 7
Ko — Ry

The quantities er:

1
c1c = a+ feics
K1 + K9
1 o /
S cicp = a + Bcicy
K1+ Ko
1
cicy = oy + fBicicy
K9 + K1
1
7 c10y = Qg + Bacic
Ko + K1
1
7 16y = a3 + B3cic
Ky + Kj

1 1
T Gt \/ (k1 — K2)? (K1 + K2)?

1 1

= = 1_ -
cwr =ent =\ s~ G

We now check the coefficients individually: the coefficient for vy will be
checked manually. The other coefficients will be checked using MAGMA, by

computing rational functions and check that after simplification, the numer-

ator is a polynomial in the variables \/m, vm —1, vVm +1, \/p, \/m —p,

vm—p—1,vym—p+1,/n, vn+ 1 which is identically zero.

1) The coefficient for vy.
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It is helpful to observe that

B —2%2 ’ ;o —2/4,2
™ R o) e
4K1K 4K K
2 2 172 N2 N2 17v2
o = f= (@) = (8 = s
(KT — K3)? (K1) — K3)?
OéOé/ o BB/ — 2<,{1 + K’II)KZ BO/ _ 046, — 2(,{/1 - K’l)’%Q

(kT — K3)((K1)% — K3)
2(k K] + K3)

((k1)* = K3) (K1 — K3)

(=17 — R3)(E — )
/ / 2 | — Kj /
o8+ off = ey o+

It is a straightforward calculation to see that

Gopr1o(dr)dodi(ar)o(dr)ar — ¢rdodi(ar)drdo(dr)¢(ar)dr
= —2(a? + )82c1c — 47 aBercy
(1 + cr69)do(dr)ar — (1 — c169) ¢ (ar)dy = —2yBcrcy + 2aye:1c
Pod100(dr)Pod1 (D) Po(dse 7)bso. 7 — $10001 (br)P160(dse. ) D1 (bso. )
= 2AD(a/B + aff)crcs — 2BE(ad + B8)crcs
er¢odi(as, r)es, rar — d1¢odi(ar)erdi(as, v)es,

= 2(5(5/C102

Therefore it is enough to check the following quantity is zero for all T € T'*:

—4aBy? — 26%(a? + B?) — 2ere,, 706 — 2By + 2y

+24D(af + o/B) — 2BE(ad + B3) (*)
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Therefore

AD(d/B 4 af) — BE(ad' + )
2f(T) f(s0.T)

" ()2 — kD) (K — kD) (Ko — Kp)*(Rak) — K3) — (K1 + K1)?(R1K) + K3))

Notice this expression is the same when for 7" and sq.7". Based on the condition

on f, notice that

(ko — K)?(R1ky — K3) — (K1 4 KY)?(K1R] + K3) )
(ko — k()2 + (k1 + K))?
!

_ raky (Ko — Kp)® — (K1 +K1)?) 2
(ko — k()2 + (K1 + K))? 2
o TR () = () = 2~ 2,
L 2K2 — 2Rokg + 2K1K) 2
I B L e
= 2

K2
251»;'1 —2(p—1)
And the last equality holds since kok{, = pr1k] in the calculation in Lemma

5.5. Moreover, when m is the number of boxes in T,

Ko — ki + (ko)” — (k1)°

=mp(m —p) —m(m+1)+ (m+ Lp(m+1—p)—(m—p)(m—p+1)

=2(p—1)(m —p)(m+1)

and
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Therefore the quantity in (1) is equal to —(m + 1)(m — p) — k3 and

¥, =2AD(d/B+ af') — 2BE(ad’ + B3")

_ 4f(T)f(s0.T) oo — k)2 o 4 k2 (k2 4 (m— D) m
= ((Fd/l)2_,€%>(,€%_ﬁ%)<< 0 — )" + (K1 + k1)) (K5 + ( p)(m +1))
K3+ (m—p)(m+1) Kg+p°si

((k1)? = K3) (k1 — K3) (K5 + pri)?

=4 (No — K1) (No — (K1)?)

where the last equality holds because of the condition on f shown in Lemma
5.11, and the quantity is still the same for T" and sq.7T" as argued earlier.

On the other hand,

Ny = —dafy’ = 26%(a® + %) — 267 + 20y

4 K2 K2 2(k3 + K2)
= (Nop + /fo)2 25— (—No+ /f1)2
K — K5 (K§ + pKT)? (kG 4 pKT)? (K1 — K3)?
K1 4"'i"l
__ ™M (N _ R
(= + o) P o)
4(N0 — /i%)

((Nop + rg)ri (i1 — K3)p — (K1 + K3) (No — K7) k)

(5 + D)2 (kT — K5)?

Also observe in Lemma 5.8, ok = pr1k] and

2(,4)2 K2 4 pr2
/£,2+p/£,2:/£/2+p,i0 0 :HIZO 1
(007 + p()? = () 4 p™0 1 = ()20
therefore

1 1 pK3 1 K3

- - ()

(k0)* +p(K1)* kG +pri (Kk0)* kG + pri p(k1)?

We now discuss by cases: When T' = Ly or Ly, k1 = +/Ng, 0 =0, v = /Ny,
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A=B=0,% =0, a=——1—and f = ——. The above quantity becomes

K1—K2 K1t+kK2

—4dafy?* — 287 + 207

4 4/4,1 [

KT — R3 KT — R3

When T = L, notice ' = 0. Also notice ko = v/Ny in either case, and

2 2.9
Ko + DK7Y

Y1 = 4(No + (m — p)(m + 1))W

7 (Nop st + (4 w3))
0 1

T
where k2 + p*k? = m?p(p + 1),

(Nop + Kg)Rip + (KT + K3)K
= (Nop + mp(m — p))m(m + 1)p + (No + m(m + 1))mp(m — p)
= Nom®p(p + 1) +m®(m + 1)p(m — p)(p + 1)

= m?p(p +1)(No + (m + 1)(m — p))

therefore ¥; + X5 = 0 and the coefficient (*) is zero.

When T = Lg, since ¥; remains the same, it is enough to show Y5 also
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remains the same. Here

(Nop + (r0)*)ip + (K7 + K3)K
= (Nop + (m + L)p(m + 1 — p))p(m — p)(m — p + 1)
+((m =p)(m —p+1) + No)(m +1)p(m +1 —p)
= Nop(p + 1)(m — p+1)* + (m — p)(m + )p(p + 1)(m — p + 1)

=p(p+ 1)(m —p+1)*(No + (m — p)(m + 1))

Moreover, £5+pri = mp(2m—p+1), (k)*+p(k1)* = p(m+1=p)(2m—p+1),
therefore ¥y remains invariant after changing the path from Lo to L.

When T'= T, or T5,

Nop + /ﬁg = p(No + m(m — p)), HS + p/ﬁ% =mp(2m —p+1)

/i%%—p/i%:(m—p)p@m—p—l), ff%—I—fig:Zm(m—p)—i-p(p—l—l)
2

Ky — Ky =—(2m —p)(p+ 1), K3+ (m—p—1)m=m(2m — p)

kg + PR = p(m —p)*(p+ 1), (K1) = K3 = —2m
Since the number of boxes in the first row of T, is m — 1, the formula for >; is

similar to the earlier, by changing m to m — 1,

N() — KJ% 1
(k1 — K3) (5 + pri)* —2m

¥ = 4(No — m(m — 1))ymp(m — p)*(2m — p)(p + 1)

When T = T5, let kg, k1, k2 be the eigenvalues associated to T5. Based on the

expression in (), let

2/2 = 22 — 256/€T651.T
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where ep = eg, 7 = \/1 — (m_lm)Q — (514352)2' Then

(k= £3)* — 2(ki + K3) ro(No — K1) (No — K3)

(k] — K3)? (kg + pri)(KG + pR3)

/
55 €T€51.T =

N() — /{2
Y, = ! 4(Nop + k2)K2p(K2 + pK?2
e [ A A

+drg (K] + k2) (kg + pNo) — 2(k] — K3)rg(No — i) (153 + PrY))

_ No — K} 2mp2(m _ p)Q-
(K + pr?)? (k8 + pr3) (kT — K3)

(No —=m(m —1))(p+1)(2m —p)(2m —p+1)

Since k2 + pr3 = mp(2m — p + 1), it follows that ¥; + 3} = 0, therefore the
coefficient in (%) is zero for T' = Th,.
When 7' = T, since s1.17 = Ty, e, = 0. Again let kg, K1,k be the

eigenvalue associated to the path 717,

K3+ m(m — 1 —p) =m(2m — p)
(k1) — k3 = (p+ 1)(2m — p)

kg + PR = (m —1)*p(p + 1)
Sym O TR y(Ny— (- p— 1)(m — p))
(K7 — K3) (Ko + prT)?
(m —1)%p(p + 1)m(2m — p)
(p+1)(2m — p)

Ny — ki 4 2 2
= (=2 1
(= (o +prpam P Y

- (No(m — 1) + (m = 1)(p — m)(m — 1 —p))

Sy =

Therefore 1 + Y5 = 0.
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When T = T}, notice s;.T' =T and therefore e = 0. let kg, k1, ko be the

eigenvalues associated to Ty,

ki — Ky = 2(m — p), K+ Ky = 2(m — p)*

(K)? =k =02m—p)(p+1), ky+p’si=pl+1)(m—p+1)

Therefore

4(J;fo — K}) 2)2p(m —p)(m —p+ 1DANy — (m + 1))

Y, = -, =
1 © (6] — R3)(k3 + i

When T = Ty, let let kg, k1, ko be the eigenvalues associated to T3, and let

¥y =39 — 288 eq,es, 1, as in the case T'=T,. We have the following

Nop + kg = p(No + m(m — p)), Ko + prs = p(m — p)(2m —p — 1)
Kt + K3 = 2m(m —p) + p(p + 1), K — ks = (p+1)(2m — p)
m8+pnf:mp(2m—p+1), fig—i-p/i%:m(m—p)(?m—p—l)

(K1)? — K3 = 2(m — p)

Therefore,

2

(kT — 3) (K5 + pri)?

Y=, = 2(2m — p)m*p(p + 1)(No — (m — p)(m — p+ 1))

2) The coefficient for vy, 7.

Notice v, 7 = 0 for T'= L, and T' = L4, therefore it is enough to check the
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following quantity is zero for all other six paths.

G190 (dr)Podr (ar)o(dr)br — ¢1¢061(ar)d160(dr)d1(br)ds,
+ God100(dr) o1 (1) Po(dsy 1) ase. 7 — 10061 (b1)P160(dse 1) D1 (asy 7)dsy 1
+ erod1(as, 1)es, T — P1901 (br)€sy 71 (Asy50.7)Es150.T
+ (1 + c1c2)go(dr)br — (1 — crca) b1 (br)ds, 7
= (@ — Berca) (v + deoes)(a — Beyes)(Acy + Bey)
— (74 Scocr) (a + Berca) (Acy + Be) (o + Blerey)
+ (o = Berea)(Aco + Beo)(of — Bleres) () + 8cocr)
— (Aco + Bey)(af + flerea) (v + 8'coca) (@ + Bleres)
+ 2 (7 + 8"coea) (Aco + Bey) — €2 p(Aco + Bey) (7" + 6" cocs)
+ (1 + creo)(a — Beres)(Aco + Bey) — (1 = c163)(Acy — Beo) (o + Blercy)

= M()Co + M101 + MQCQ + M4C00102

By substuting in the quantities at the beginning and expanding, we obtain the

expression for each M;.

My = Ao’ + B) + Ay'(a + B) — A(()* = (8)*) + A(Y — 7)(ad — B)
+B(8' = 0)(Ba’ — aB) + Ay(a® — B%) + Alery" — €2, 17")

= kia(ko — Kg) (Mo1 + M)
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where the following is true after substitution in (1),

_ 412 (Ny + ()
M01:222—|— ,22 7 — ,20< 02 2p)2
ki —hks  (K1)2— ks ((K1)* — K3) (Kb + PKT)

2(pri(=No + (11)*) — Ki(=No + K1)
((k1)? = K3) (KT — K3) (K + pri)
2(pri(=No + (r1)?) — 5(=No + 1)) 4ri (Nop + K5)

((s1)? = w) (KT = K3) (K5 + prT) (K5 — (K)?) (KT — K3)* (K5 + ki)

| (58 = R3) = 2((k2 + K3) Nop + 2

(K7 — K3)? Ko + DR
N2 22 _9( (k! )2 2\ N 1\2
i ((s1) K) ((K1)? + K3) Nop + (k)
((K1)* — K3)? (K0)? + pr3

After clearing the denominators, the above quantity is a polynomial in x? and

(k1)? (i = 0,1,2,) and therefore is a polynomial in m, Ny, p for all tableaux

T, and can be checked as zero using MAGMA (the code is included in the

appendix.)
2k (Ko — Kg)
My = Mo
(K7 — #3)((K1)? — K3)
Ao — 1R (Nop + o) | mak (Nop + (K0)?)
03 — — %Q_i_ 2 ( 1\2 1\2
0 T DKT Ko)? + p(Kh)
+ (K1)? — KT (/‘6056(—]\70 + (k1)?)  rorg(—No + H%))
Ko — (k)2 \ (Kp)? + p(w1)? Kp + pKi
K1K]
kgt
2 12 ’i%p
Moy = —(Nop + "’i()) + (N0p+ (50) )(K/)Q
0
(= Ny + (1)) (=No+K2) =0
I K/ R —_ K‘/ =
T L
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My = Bla+ 8 =o' = 8) = By () = (8)") + Bly+ )8 — af')
— A0+ ) (ae/ = BB') + By(a® = %) + (e37" — €2, 77")B

= [(T)r2(k1 + K1) (M + M)

where
-2 2
M= g T -
. Nop+<ﬁ'o>2< W 2(})? )
)2+ (s \ (W2 — 22 (2 — D) (WL — 1)
N 2 (n%(—No T D) ()A(—No+ (m’f)))
(e -\ o (Pt o))

Nop + K2 ( 43 —2K?
ko +pri \(k1 = K3) (K1) — K3)(KT — K3)

(51 — K3)* = 2(k7 + K5) Nop + K

(Kt — K3)? K + Pr3
 ((m1)? = K3)* = 2((K1)* + K3) Nop + (5)*
((K1)? = K3)? (0)? + pr3

This is zero by a MAGMA computation (see Appendix.)

2
(kT — K3)((K1)? — K3)
kiRt (Nop + (kp)?) | wiky (Nop + A7)
(K02 + p(k))? K§ + prt
roko(—No + K7)  Kokg(—No + (K7)?)
kg + pri (k)2 + p(k1)?

(~(ap + ()

) =0

M12 =

M13

Mis =

K1K]

= R ) 4+ (Nop + £§) + p(—No + £7)
1\2 H(z)
—p(—No + (k1)7)

p(k1)?
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My = B(y' = 7)(ad’ + ) + A( + 0') (" + ')
+A0 = 8")((o)* + (8)?) + A6 — 8")(a” + 57)

+ A(6" 4+ 0")+ B(a — B —2afy) — B(a/ — ' —24/5'Y")

where

1 Ko
7—9' = —W(No — K1) (Ko — /46);,
0 1 1
1 DK

F48 = - (Ny— i,
+ 2 +p:‘i%( o — k1ky) (K1 + KY) %

B(Y = y)(ea + 55) + A(0 + &')(af + o/ B)
_ 4kok1(No — k1K) (k1 + KY) (Ko — K§)
(K +P’€1)(’<¢1 — k3)((K1)? — K3)

K2 — K2
§—0o" = T Nop + K
(5 + oD (3 + ) L8 0
/ " (’41)2 B ’i% / 1\2
O -6 = N,
((K0)2 + p(K})2) ((K))? +p/€%)/€0( op + (Ko)7)
11 1" /{0—|-I-€6 / 2 2
0" 0" = — No —
N e [ A R A

By using ok, = pk1£} and arranging the terms as rational expressions of k2,

(k})* and k1K), we obtain

My = FélfillMQl + My,
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where

4(—kikd + Nok§ — pNokT + pri(k))?)
(kg + pri) (KT — K3)((K7)? — K3)
2p(Nop + (K)*) ((K1)* + K3)
((80)? + p(K1)*)((K0)? + pr3)((K1)? — K3)
~ 2p(Nop +Rg) (KT +R3)  p(kg — (Kp)?)(No — K3)
(K7 — w3) (kg + prT) (kg +pr3)  (Kp + pr3)((Kh)? — K3)
2p(No — K1) 2p(No — (K1)?)
(K — K3) (8 +prT)  ((K1)? — K3)((K0)? + p(K1)?)
4(NokgrT — Nopri(sh)? + pri(K1)* — wowi(K))?)
(kg + prt) (KT — K3)((K1)12 — K3)
 2(kp)*(Nop + (kg)*) ((K1)* + w3) 2#5(Nop + w) (K7 + K3)
(k)2 +p(K)H)T (k)12 = K3) (K] — K3) (K5 + pr3)(KG + pri)
 plwg — (Kp)*)R3(No — K3) N 2pki(No — K1)
((ko)? + pr3) (kg +pr3) (KT — K3)(Kg + pKT)
2p(K1)*(No — (K7)?)
((k1)1% = K3)((K0)? + p(K1)?)

M21 =

M22 =

Both can be checked to be zero by MAGMA for all relevant tableaux 7" in the

two cases listed in the beginning of this proof (see Appendix.)

Mz =—A(y++)(af +d'B) — B0 — ') (ad + 86') + Ala — B — 2a37)
+A(d = f' = 20/8Y) = B(a® + %) (6 — &")

+ B((@/)2 + (B/>2>(6/ o 6///) + (5/// o 5”)B
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where

1 Ko
+ 7' = 55— (ko + ko) (No + K1k
YT = /fo+p (Ko o)(o 11)/{1
1 DK
§—8 =—— " (§ — N, !
2 +p/€%(/£1 k1)(No + K1K}) p

— A(y +9) (B +a'B) = B(6 — &')(aa’ + )
_Arori(No + r1kh) (g — (Kp)?)
(51 — K3)((K1)? — K3)(Kp + pKT)

and the rest of the calculation is similar to that in Ms. Hence

M;(ko + 56)(51 - fill) = /<é1f€/1M31 + M3z

where
Mo — 4(K§KT 4+ pNokT — Nokg — pri(k])*)X
A LMK
_ 2p(No — K)X n 2p(No — (k1)*) X pXY(No — K3)
LK MJ QR
_ 2pY (KT + w3)(Nop + A7) N 2pY ((w))* + w3)(Nop + (k5)?)
LKQ MJR
Mo — 4(Nokgri — Nopri(k))? — Kgki(K])? +p/f?(/f’1)2)X+
2 LMK
2rip(No — k1) X 2p(w1)*(No — (k1)) X n pr(No — K3) XY
LK MJ OR
2w} + K)RG(Nop + K3)Y N 2((K1)* + w3) (10)*(Nop + (Kp)*)Y
LKQ MJR
and

L=rki—r3, M= (k)’—k3 K=ri+pri, J=(ry)*+p(r))’

Q = ’18 +p’%§7 R = ("16)2 +p"£§7 X = ’i?) - ("%)27 Y = ’i% - (’i/1)2
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both can be checked to be zero using MAGMA (see Appendix.) Since ko # Ky,
k1 # Ky for T = Lo, L3, T, T, T3, Ty, it follows that Mj is zero for all the above
paths.

3) The coefficient for vy, 7. It is enough to show the quantity e;W is zero,

where

W =1+ cc)as, 7 — (1 = crca)pi(ar) + God1d0(dr)dodr (ar)as, v
+ o1 (as,.7)Po(ds, 1) as,. 7 — Pr10001 (ar)P1¢0(dr) 1 (ar)
— 019001 (ar)P1(as, 7)ds, 7+ Pod1(bs, 1) Po(dsys,. 7)bsosy T

— $100¢1(br)P1¢0(dso ) P1(bsy. 1)

== W0€102 + choCQ + WQCOCI + W3

and

Wo = M(=F?B, — G®as) — K((A')?8' + (B')’a’) = vy — addy — i fh
—82ay — 2B — 8% — 6810 — P F 1

Wy = M(GFas — FGBs) — K(—A'B'8' + A'B'd’) + ady1 — 561 + dam
— M P101 + 0By — yad — yoaq + 7181 + 01 — 0

Wy = M(—GFBy + GFay) — K(A'B'o/ — A'B'B") + B0y, + ayd, — 6,81m
+ a0; — dary + B0 — oy — ¥ By + 01— 0

Wy = M(F?ay + G*Bs) — K((A')*a’ + (B')*') + ayn — B3 + 7ien

+ 0181 — Ya — 6°8 — yyion + 06181 + 71 —
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where according to Lemma 5.11,

wp +p°Ri (No — K1) (No — (K1)?)
(kg + prT)? (Ko — Kp)? + (K1 + K))?
K+ K5 (No — K3)(No — (K5)%)
(K5 + pr3)? (ko — k()2 + (K2 + K5)?

K = F(T)f(s0.T) = —

M = f(T)f(s0.T) = —

These expressions are zero for all relevant tableaux T; and L; in the two cases
listed in the beginning of this proof, by a MAGMA computation (see Appendix.)
4) The coefficient for v, 7.

It is enough to show the quantity ey D is zero, where

D = ¢op1d0(dr) o1 (ar)bs, 7+ God1(as, 7)do(ds, 7)bs,. 1
+ ¢1¢0(bsl.T)(bO(dsosl.T)asosl.T + (1 + Clc2>bs1.T - ¢1¢0¢1 (aT)¢1 (bsl.T)dsosl.T

= f(SlT) (D()C() + chl + DQCQ + Dgcoclcg)

and

Dy = ayAy — ByB1 + y1aq Ay + 0151 B1 + Arays — BifB20s — YA e + By + Ay
Dy = BoA) + ayBy — 6151 A1 + yiou By — B1aye — Araads — 0A1an — BiyBe + By
Dy = adAy — BOBy + 6100 Ay — 11 Br + Bioawys + A1y — Biyos + 0A1 82 + By

D3 = —fBvA; — adBy — 1151A1 — S By — A1 Baye + Brasds — Bidag — yA1 B2 + Ay

These expressions are zero for all relevant tableaux T; and L; in the two cases
listed in the beginning of this proof, by a MAGMA computation (see Appendix.)

5) The coefficient for vg, s, 7.
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It is enough to check that the quantity e, 7 E is zero, where:

E = (1—cica)p1(br) + 1001 (ar)p1¢o(dr)p1(br) + ¢100¢1(br)d1d0(dse.1)d1(as, )
+ 010001 (b7)P1(asy50.7)dsys0.7 — PoP10(dT) P01 (br)as, 50,7

= f(T)(EOCQ + E101 + EQCQ + EgC()ClCz)

and

EQ:Ala/'}//—B//8/5/+A/’Y//C¥//+B/5///BI/—CYA/"}//—BB,(S”‘I‘éﬂB/—i‘PyaA/—‘—A/
E1:B/a/’}//+A/B/5/+B/PyHO//—Alall/B/,—ﬁB/’}/”—FCYA/é”—i‘(SOKA,—P)/éB/—FB/
E2: —Blﬁlf}/,—A/Oé,él—Alél,Od”—B/’VIIBII—CKBI’}/”—ﬁAléll—(SBA,—i—”)/OéB/—'—B/

E3:A/B/’}//—B/Oéldl—B/5//a/I+A/71/5/I+ﬁA/'y//—@B/éﬂ—i"}/ﬁA/—i‘é@B/—A/

These expressions are zero for all relevant tableaux T; and L; in the two cases
listed in the beginning of this proof, by a MAGMA computation (see Appendix.)
6) The coefficient for vy, so.7-

It is enough to check es, 7 &£ = 0, where

E = ¢0¢1¢0(dT)¢0¢1(bT)bslso.T - ¢1¢0¢1(bT)¢1 (bslso.T)dsoslso.T

= f(T)f(slsoT) (EOClCQ + E10002 + EQCOCl + Eg)
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and

EO = /BA/H — O./B,] — B/]Oé3 + A,Hﬁg
E1 = —OZB/H — ﬁA,I — A/]ag — B/Hﬁg
EQ = —BB/H + CEA,] + B/HOég - Allﬁg

E3 = —O{A/H - ﬁB,I + A/HOég + B,Iﬁg

These expressions are zero for all relevant tableaux T; and L; in the two cases
listed in the beginning of this proof, by a MAGMA computation (see Appendix.)
7) The coefficient for vg, g5, 1
Notice when T" # L, or Ly, at least one of vy, 7, Vsys; 7, and Vg, 05,7 = 0
is zero, the term vy, .5, 7 vanishes automatically. When 7" # L; or Ly, ar =

as,s05,. 7 = vV No, and it is enough to show that eres s, 7M = 0, where

M = ¢0¢1 (bsl.T)aslsosl.T - ¢1¢0¢1 (aT)¢1(b51.T)
=V No(¢o¢1(bs,.7) — ¢1(bs, 7)) =0

because by, 7 = f(s1.T)(Fco + Gey) and ¢opr(bs, 7) = ¢1(bs, 1) f(51.T) (Feo +
GCQ).
So far we have checked all coefficients are zero, hence the relation is satisfied.

]
Based on the surjection Hy — HY, we also have the following result.

Corollary 5.15. The superspace D]’} in Definition 5.10 admits a well-defined

action of Hq.
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5.3. Irreducibility

First we need some some combinatorial results. Given a semistandard tableau
T of a certain skew shape, denote by 7T™°" the tableau of the same skew
shape as T, filled with 1,2, ... successively along each row from left to right.
Recall the action of sg, ..., sq_1 on semistandard tableaux in I'* explained after
Definition 5.2. Given a word w in sq, ..., S4_1, we denote by w.T" the resulting
tableau after applying the letters in w successively. The following result is well

known.

Lemma 5.16. Let T be a semistandard tableau of any skew shape. There

exists a word w in Sy, ..., Sq—1 such that w.T = TV,

We first give the criteria for the two modules D}‘ and D;‘ to be isomorphic.
Recall the set Py(c, 3) of strict partitions at level 0 as defined in Definition 5.1,
and the partition 7 at level 0 associated to a path T as defined in Defini-

tion 5.2.

Theorem 5.17. For f,g: I'* — C which satisfy Equation (5.2.1), D} ~ D;\ if
and only if there exists a function H : T* — C*, H(T) is constant on all T'’s

which go through the same partition T at level 0, such that for any T € T,
S().T 7é *,

f(T) _ H(T)

g9(T)  H(so.T)

Proof. (=) Let D]’} = @ Clgy v and D;‘ = @ Clgywr according to the
Tel> Telr»
construction in Definition 5.10. If there exists an isomorphism ¢ : D}‘ — D;‘,
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then by the grading convention in the construction, ¢ is even, and

zi(¢(vr)) = ¢(zivr) = kr(1)g(vr), 0<i<d

According to Lemma 5.7, the list of eigenvalues for each basis vector is distinct
for each T, therefore ¢(vy) = H(T)wr for some H(T) € C*.

Denote s;.vp = drvr + epvs, 7, where dp,ep € Cly, the Clifford algebra
generated by ¢; and ¢;,1, and they are given via explicit formulas which only
depends on 7" in Definition 5.10. Similarly s;.wp = dyrwr + erws, r and we

have

P(sivr) = dro(vr) + erg(vs,.1)
= dTh(T)wT + eTH(Si-T)wsi.T;
s5:.¢(vr) = si(W(T)wr)

= H(T) (dTwT + GTU)SZ..T).

Whenever s;.T' # %, we have ep # 0 and w;, 7 # 0, hence H(s;.T) = H(T), for
any 1 <7 <d— 1. By the previous lemma, any two semistandard tableaux of
the same skew shape can be obtained from each other via a word in s1, ..., Sq_1,
hence H is constant on any semistandard tableaux of the same skew shape,
and only depends on T € Py(a).

Denote x1.v7 = arvr+ f(T)Vpvs, 7, where ar, b, € Cly, the Clifford algebra
generated by c¢g and c¢1, and ar, b/, have explicit formula in Definition 5.10

which only depends on T'. In other words, z;.wr = arwr + g(T)brws, 7 and
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we have

P(z1.v7) = arg(vr) + f(T)Vpd(vs,.1)
= CLTh(T)U}T + f(T)b/TH(S().T)MSO.T,
r1.¢(vr) = 21.(R(T)wr)

= H(T)(arwr + bpg(T)ws, ).

When s0.T" # *, we have wg, 7 # 0 and 0/, # 0. Also g(T') # 0 by Lemma 5.11,
therefore f(T)H(so.T) = g(T)H(T) and

f(r) _ H(T)

g(T)  H(so.T)

(<) On the other hand, if there exists such a function H , then the map
¢ : D} — D, defined by vy — H(T)wr defines an #j-module isomorphism,

based on the calculations given above.

Corollary 5.18. The modules D}‘ ~ D;‘ iof and only iof

() _ f(s:T)
g(T)  g(s:.T)

for all 2 <i <d and s¢.T # *.

Proof. (=) For i > 2, s98;.T = s;50.T for all T € I'*, and the condition in

the previous Lemma implies

fsT)  H(sT) _ H(sT) _ H(T) _ f(T)
g(s;. T)  H(sos;. T) H(siso.T) H(so.T) g(7T)
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(«<=) Notice there is a bijection

¢p: Py {n+pn+p—1,... max{n+1,p+1}}

W #n

Let s = max{n + 1,p + 1}, and define the function H : Py — C to be the

unique function (up to rescaling) such that

H) [T

H(i+1) g(T)

for some T such that ¢(T®) =i and ¢((s0.7)?) =i + 1. We check that the
function is well defined: if T is a path that satisfies the condition, then both
TO and (s0.7)©® are uniquely determined. Since T is the unique partition
containing both T and (so.7)®, it is also uniquely determined. The first two
edges in T' are fixed, therefore T" is well defined up to operators s; for ¢ > 2,
and the value on the right hand side is invariant under these operators s;.
When H is defined as above, the condition in the previous lemma is

automatically satisfied. O

Remark 5.19. [t is straighforward to construct functions f and g that fail
this requirement, and hence the modules constructed in Definition 5.10 often

belong to different isomorphism classes.

Lemma 5.20. Let Ty, T, € T'*, then there is a word w in sg, 51, ..., Sq such

that w. Ty = Ts.

Proof. Let Ly = T7°V and Ly = T;°V. Because of the previous lemma, it is

enough to show there exists a word w in sg, ..., sq_1 such that w.L; = L,. We
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first assume p; and po differ by a box in the first row. They can be obtained
from each other via the following moves. (For brevity we will denote tableaux
by omitting the staircase o, and empty boxes are emphasized with color. White

boxes are filled with certain integer entries.)

(via sg —)

(via a word in sq,...,84 —)

By repeatedly applying the above procedure, one can successively add green

boxes to the first row and obtain L, from L; via a word w in s, ..., Sq.

Lemma 5.21. Given a path T € T'*, if 5,.T # %, then the scalar
Vr(i) = (kr(i)* — kr(i +1)%)? = (kr(0) — wr(i +1))* = (ki) + £ + 1))

1S NONZero.
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Proof. Let a = kr(i) and b = kr(i + 1), we have

Yr(i) = (a* = b*)* = (a = )* = (a+b)”
= (a® +b°)? — 4a?0* — 2(a® + b?)
= (a®+b°—1)> —1—4a®V®
= (a®> + b — 1+ 2ab)(a* + b* — 1 — 2ab) — 1

=((a+0)*-1D((a—0)*—-1)—1

if s;.T" # %, then the boxes containing ¢ and 7 + 1 are not adjacent to each
other, therefore |a — b] > 2. Moreover, all boxes in a shifted tableau have
contents at least 0, hence one of a,b is at least 0 and |a + b| > 2. Therefore
Yr(i)>3-3—1=28.

O

Theorem 5.22. For any A € Py(a, B) and f satisfying the condition in (5.2.1),

the module D}‘ s simple.

Proof. Denote E = {0,1}¢"1. For any sequence ¢ = (€,...,€6q) € E and

T € T'* define

(20 — 00ko(5))* + - -+ + (24 — 0aka(S))”
o CE,5eTN ST (€0ko(T) — ooko(S))? + -+ + (€qra(T) — 0aka(5))?
1 (20 — gokio(5))? + (22 — 04ra(5))*
veB ot (e0ko(T) — 00ko(S))2 + -+ + (€qka(T) — 0aka(S))?

(5.3.1)

PT,e:

X

€d

Denote ¢ = ¢f* -+ ¢'. Since z;.(c‘vr) = (—1)%c‘vr, it is straighforward

that Pr..(c’vg) =0 for all S # T, Pr..(c’vr) = 0 for all o # ¢, and therefore
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Pr..(cvr) = cur.

Specifically, suppose W is a nonzero submodule of D*. Since D* admits a
basis {¢”vp} where o € E, given w € W, there exists T' € I' and ¢ € E such
that Pr,w = ac’vr for some a # 0, and vp € W. Note

1 1

O e e R G e e

= \/1 - 1 B I )
B (hr(i) — mr(i+1)2  (kp(i) + mr(i+1)2 "

Moreover, from the previous lemma the scalar

\/1 B 1 B 1 _ \/ V(i)
(HT(i) — HT(i + 1))2 (HT(Z) + HT(i + 1))2 (KT(i)z — liT<i + 1)2)2

is nonzero, therefore vy, 7 € W if vp € W.

On the other hand, notice

(52(0) = & (O)co + (e (1) + K (1))ex):
(21 — 0

= ((57(0) = w7(0))* + (57(1) + £7(1))*)vsp.r

(kr(1) — Kr(0)cocr) — e(kr(0) + kr(1)coer))vr

The constant (k7(0) — &%5(0))? + (k7(1) + &(1))? is nonzero since

kr(0), k7(0), kr(1), k(1) € R

and kp(1) + ~/-(1) > 0. Therefore vy, r € W if vp € W.
Therefore, for any word w in s, ..., sq, vy € W. By Lemma 5.20, vy € W

for all T € T*, hence c®vp € W for all 0 € E, T € I' and W = D which
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proves the claim.
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Chapter 6

HE-Modules via Restrictions

6.1. A Classification Result

Recall that the defining relations in H! are dependent on the fixed choice
of integers n = {(a) and p = |f]|. In addition, the Bratteli diagram I', 5 in
Definition 5.2 also depends on n and p, and so does the modules D]’}. In this
section we focus on the case when n is even, and we will give a classification
result about a certain family of calibrated modules defined in Section 5.2. The
module structure is largely determined by the action of the generators z;. Recall

that for o € E = {0,1}4*1 ¢7 = ¢°-- - 3%

Proposition 6.1. When n is even, let W be a module satisfying the following
properties:
1) It admits a homogenous basis {c"vr},ep rers-
2) For each 0 <1i <d, z;.upr = kp(i)vr.
Then the following is true:
1) The action of xy admits the formula in (5.2.4), or equivalently (5.2.3).
2) The grading on W is one of the two cases:
a) wyr € W is even if and only if v € D is even, or

b) wp € W is even if and only if vy € D> is odd.

Proof. Since z1z; = zjx1 for j > 2, x1 preserves the eigenspace with eigenvalues

kr(2),...,kp(d) for zy,...,z4. This subspace is spanned by vectors B =
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{vr, cocrvr, cous, V10g, Vs, CoC1Us, CoUT, cruT }, where S = 0.7 .
The linear maps will be given as matrices in the basis B. Specifically, the

matrices for cocq, zg, 21 are as follows

J 0 0 0 koH 0 0 0
0O J 0 0 0 —kyH 0 0
CoC1 = y R0 = ’
0O 0 J O 0 0 koH 0
0O 0 0 J 0 0 0 —roH
kiH 0 0 0
0 w/H 0 0
Z1 =
0 0 w/H 0
0 0 0 w1 H
Where
0 —1 1 0
J = JH =
1 0 0 -1
Therefore
P 0
ZpCoC1 + 21 =
0 P
where
KJ()HJ + lilH 0 KJE)HJ + /illH 0
Pl - 7P2 -
0 —KE)HJ + KlllH 0 —/foHJ + /€1H
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Now we will determine the action of ;. Assume

A B A A
v — A= 1 A

¢ D Ay Ag

with each A;; a 2 x 2 matrix, and the notation is similar for other blocks.

1) Claim that for each 2 x 2 block is in the form of

where a,b € C are potentially different constants for various blocks, and similar

is true for Bij7 Cij7 Dl]

This is because x1(coc1) + (coc1)z1 = 0, therefore
JAij + AUJ =0

and similarly for other blocks B;;, C;;, D;;. Let

a b
c d
Then the above condition becomes
—c —d b —a
+ =0
a b d —c
therefore a = —d and b = ¢, hence proving the claim.

2) Given the matrices @, R, X,Y, Z in Lemma 5.11, where kg = k7(0), k1 =
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HT(D’ KE) = Iis(O), /{/1 = Iis(l), K

constants a, b, ¢, d:

N,
AH = 7§Q+CX,
K

A21 :fZ7

= k2 + k32, claim the following is true for some

A12 =eZ

N,
Ay = — R+dY
K

Similarly, let @', R', X', Y’ Z" be the analogue of Q, R, X,Y, Z by switching

the role of ko with that of «j, and the role of x; with that of ], then

N,
Dy = *;Q, + X',
K

D21 = f/Z7

On the other hand,

By =b b,
01
By = by )
1 0
Ci = cn kb,
01
Co1 = ¢ )
1 0
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D12 = €,Z/

N
D22 — %R/ + d/Y,
K

01
By = byo
1 0
Bag = by I
01
Ci2 = c12
10
Cor = cpF



where

Ko+ Ky K1+ K} —(Ko + Kgy) K1+ K}

Y

K1+ K] —(Kko + Kp) K1+ Ky Ko+ K|

Indeed, these are all consequences of the relation x1(29coc1 + 21) + (20c0c1 +

z1)z1 = 2n(n + 1). For example,

A B||P 0 P 0| |A B
+ =2n(n+1)
C DI|0 P 0 B||C D

implies that

PlB—I—BPQ:O

PQC+CP1:O

Similar to the previous convention write Ny = n(n + 1). The first equation
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implies that

koHJ + ki H 0 Ay A
0 —KJE)HJ + /illH A21 A22
Ay Al |koHJ + ki H 0
+ — 2N,
Agr Ax 0 —koHJ + K H

(HoHJ + IilH)AH + AH(FLQHJ + I€1H> = 2N0
(HoHJ + KlH)Alg + Au(—liéHJ + fi/lH) =0
(—IQE)HJ + H&H)Am + AQl(FL()HJ + HIH) =0

(—I{E)HJ + HllH)AQQ + AQQ(_K/E)HJ + IfllH) = 2N0

Let us work out the first two equations in details and the other two equations

follow a similar calculation. Specifically, let

a b
Ay =
b —a
then
-b a a b —-b —a a —b
Ko +l€1 —f—lio —f-lil :2N0
—a —b —b a a b b a
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therefore

0
a = —5 Ky + ckg
K
No
b= ——kKo+ cky
K2

for some constant ¢, and A;; coincides with the claim. For the second equation,

Assume

A12 =

where a, b are potentially different constants than those used in A;;. Then the

equation regarding A, becomes

a(ky + Ky) — b(kg — k) =0

Therefore Ajs is in the form given in the claim. Similarly, the blocks Asq,
Ass can be deduced from the same calculation, replacing kg and k1 with the
appropriate version of x; and x}. We have concluded the claim regarding the

4 x 4 matrix A.
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For the matrix B, we use the equation P,B 4+ BP, = 0, or equivalently

koHJ + k1 H 0 By B
0 —HE)HJ + /€/1H Bgl BQQ
B11 B12 I€6H<] + /illH 0
+ —0
By By 0 —koHJ + ki H

Similarly to the earlier argument, assume

a b
By =

b —a

then

(/ﬁ)oHJ -+ K'IH)Bll + BlllﬁgHJ + /ﬂ}/lH
—b a a b —b —a a —b
= Ko + K1 + Ky + K] =0
—a —b —b a a —b b a
a(k1 + Ky) — b(ko + Ky) =0

Hence By, is of the form in the claim. Lastly,

(KZ()HJ —+ :‘ilH)Blg -+ Blg(—/ﬁloHJ -+ I@'lH>

-b a a b -b —a a —b

Therefore B, is in the form claimed. The calculations for Bsi, Bas and the
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4 x 4 matrix C are similar.
3) Claim vy and vg have the opposite parities. Assume on the contrary
that their parities agree, then x; acts on the basis vy, cocivr, vg, coc1vg via the

matrix

Ay By Q4 cX bnFE

CH D11 CHE %Ql + C/X/

It is straighforward to check QF + E(Q)' = 0 and XE = EX’, and recall in
the proof of Theorem 5.12 we showed Q* = X? = (Q')? = (X)? = x? and
XQ+ QX =X'Q + QX' =0, using the relation 23 = Ny we obtain

]:732 + CQKZ + anuEQ bn(C - C/)XE

=0
ci(c—d)EX JZ—SQ () K2y 011 B2
where E? = (ko + £()* + (k1 + K})?, therefore ¢ = ¢/, and
N2
R buen (0 -+ )"+ (1K) = N ()

Lastly let us use the relation (x; — z;)* = p(p + 1)(z1 — 21)%. Observe

/{2]2 0
(11 -2 =2+ -G=No+ | -G (1)
0 <l€/1>2]2
Gn G
G = 121 + 2101 = H .
G?l G22
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where

MK 0 10
K=

0 KK 0

21 =
—1

N
G = m (5 (KQ+QK) + (KX + KX))
N
= 2%1(?;)%1 + Clio)
/ N / / / / /
G = (5 (KQ' + Q'K) + (KX + X'K))

N
=2,y

/ !/
K] — CKp)
1
K2 0

G12 = bll(K1KE + I{IIEK)

_, Ko+ Ky K1+ K} . | Ko + Ko

= b11 (1 k1
—(k1 + KY) Ko+ kG K1+ K}

N (R [ R B

= bn

(K1)? = ki (Ko + K) (K1 + 1)

G21 = Cll(l*{,/lKE + K,lEK)

(Ko + #o) (k1 + K1) G

=1

(Ko + rip) (K1 + K1)

For future use let us compute

—(Kk1 + K))

/
Ko + Kg

G12Ga = 511011((/% + /‘66)2(/@1 + “3)2 + (’f% - (“3)2)2)

= bircn (k1 + K52 (Ko + k) + (k1 — K4)?)

Also, claim that

(51 + #1)* (50 + ) + (K1 — K1)*)

(***)

(p+ 1)p*k? + (p + 1)pri + Apr3k?

(/‘io + /16)2 + (Kll + /€,1)2
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where the definition of m follows that in the construction in Section 5.2, that
TO =a+(s,1,...,1) and m = n + s.

Following the previous lemma, let us compute the pieces separately,

(k1 + K))?
2 2
K’O + K1 9
= (K1 + Ko )
K + PPk

K2 + K2 K2 + K2
— R%+H3720+212 +2:‘£0KJ1 720+212
Ky + D°KY Ko + D*RT
_ Ko+ pPR+ (P + DRgsT kg + i
= K2 4 D22 + 2K0k14 | — 2.2
0+ P°RY kg + D7K1
_ﬁ@+Uﬁ+MP+Mﬁ+%%ﬁ+%ﬁﬁ+%ﬁ K§ + K1
kg + p2Ki N K3+ p2e3
B A o Ui e g + K1
=P K2 + D2r2 koki\| 5 5.2
0 T P7RY Kg + PR

(Ho + /41/0)2 + (/11 — /ill)Z

[ .2 2 2 2
Kg + KT o Kg + KT 1o

= (ko + pr1\| 5———==)" + (K1 — ko\| 5——=—
(o + pra /f%—l—p%%) (2 0 /ﬁ%—l—p%%)

2 2 2 2 2 2
2 Ky + K1 2 9 Kp T K] Ky + K1
=ry(l+ 5—5=)+r7(1+ 4+ 2(p — 1)Kkor
0( /13+p2/£%> 1( D I{/(Q)_'_pg %) (p ) 01 li%—szli%
2 2 2+1 2 2 1 2 2 2,.2 2+ 2
_ g HO‘Z(P : 2)”1 n%(p —|—2)/~€0;|—2p K3 +2(p — 1ok ’;0 ’;12
K + P*RY Kg + P*RY K + P*RY
2k + 2p°KT + 2(p?* + 1)K3KT K3 + K2
= 2, 2.2 +2(p — Dkok1y| 5 5
Kg + P*RT Kg + P*RT
3 9 2 2,2 2 2
P°K1 + prg + (P + 1)Kgky ko + K1
—2(p+1 4 2p — Doy 0L
™ N b= Drom ) g 22
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Similarly

(Ko + Ko)* + (k1 + KY)?

3 9 P 2.2 2 2

p°ki+ prg + (p + 1)KgRi Ky + K1
=2 1 2 1 —_—
(p+1) kg + P2kl 20+ Dror kg + pPrT

Denote the original quotient in the claim as ™YL where t = §3+'§§2, then it
24w/t Kot+Dp Ky
can be checked that
vy _ (p+ 1P’ + (0 + Dpkg + dprgr?
S w kg + 2R3
Hence proving the claim. We include the calculation here
x p’i + prg + (p + 1)kgR] 2(p — 1)rigri (kg + K1)
- = (p + 1) 3 5 2 + 3. 92 2 2.2
z Kp + P°KY (p+ 1)(P*kT + prg + (p + 1)KgkT)
PR+ phg + 265k1 | 2(p — 1)kgki (kg + K1)
={p+1) 2 L 2,2 2 2\ (p2 o 2,2
Kp + P°K1 (K5 + K1) (K5 + P?K1)
Q,_<_1ﬁ%€+w%+w®%+2ﬁ@+m%+%p+U%@
w P kg + p?R? k& + p2r?
We write this ratio in m (see proof of Lemma 5.5):
(k1 + K1) (50 + Kp)* + (r1 — K1)?)
(ko + Kp)? 4 (k1 + KY)?
_ (p+ 1)p’si + (p + 1)psg + dpriri
K + PPk
_ (p+Dp’m(m +1) + (p+ mp?(m — p) + 4p°m*(m + 1)(m — p)
m?p(1+p)
A(m +1)(m —p)p
=plp+1)+
p(p+1) T+
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Combined with Equations (**) and (***), this implies

2
NO 2

4(m+ 1)(m —
b11011G12G21 = (N() — ? —C KQ)(p(p—{— ]_) + ( )( P)p

1+4+p

) (1)

Now we conclude by contradition that the matrix for x; fails to satisfy the

relation (zq — 21)* — p(p + 1)(z; — 21) = 0. Using equation (1),

2
K1l 0 kil 0
No + —G | —plp+1)| No+ G| =0
0 (k1)L 0 (1)L

Or equivalently,

9 liil[z 0 9 H%[Q 0
N; —p(p+1)No + +G*+ 2Ny —p(p+ 1))
0 (8)'L 0 (k)L
K/%IQ 0 /i%[g 0
—(2No +p(p+1))G — G+G =0
0 (k1)L 0 (k)

Since the top right 2 x 2 block is zero,
G11G12 + G12G22 — (2Ng —|—p(p + 1))G12 — (lil + lill)Glg =0
Using the scalar values obtained for Gy, Gy earlier,

N N
2t + ko) + 20, (2R — ) — (2No + plp+ 1)) — (6} + ())?) = 0
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Therefore

.o <N0> R K= ()7 KT+ (K2 = plp + 1)
Kok1 — KoK 2(Ho/fl - /‘ﬁf)"‘ill)

Using the formulas developed in Lemma 5.5, it is a straighforward calculation

to see that

m(m —p)(m +1)
p—1

N
Chok1 = ,T;m(m +1)(m —p) +

We now claim that equation I is never satisifed, for m associated to any path

T. The top left block becomes

N02 —p(p+1)No + "511 + Gfl + b11c11G12G2

+ (2No — p(p + 1))K3 — (2No +p(p + 1) + 257)G 1

2

K2

N2 4(m+1)(m — p)p
Ny — 20 _ 2,2 |
+ (No e k) (pp+ 1) + Tt

2
= Ng —p(p+1)No + x7 + ( + 2ckok1)?

)

2Nok?
+ (2N = pp+ 1)) — (2No +p(p+ 1) +267) (55 + 2em0m1) - (#)

Substituting the expression for ckgkyi, G11, Gao and byic;1G12Goy as computed
in Equation (1) earlier. Notice Ny and p are fixed constants, and m is only
dependent on the path T'. We organize the above expression as a polynomial in

the variable %, with coefficients in the field C(m, p). We obtain the coefficients
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N2 .
for & is

kY 4 4kT + 8kim(m + 1) (m — p) + 4m*(m + 1)*(m — p)?

m%)(p(p 1y 4(m —f—ll)lrz —p)p

— (K2 +m?*(m + 1)*(m — p)?

)

K3k

— 4K*KkT — 4k*m(m + 1)(m — p)

_ o2 AmA 1?2 mP(m 4 1) (m — p)?

= k2(K® + TESE )—(1+ 252 )
.(4(m +111£r;—p)p +p(p+1)) —4k2 — dm(m + 1)(m — p)

o A(m + 1) Am+1)(m —p)+ (p+ 1)

=r*(m—p+1)(m(m+1)(1+ (p+1)2)_m p+1
—4dm(m + 1))

_Am+1Dp+1-m) ,

- i1 K

The coeflicient for % is
m(m —p)(m + 1)

—p(p+ 1)K + 2x7K% 4+ 8(kF + m(m + 1)(m — p)) -

4(m+1)(m—1?)p)
1+p
- (K? — Kgﬁ%Qm(m +1)(m — p)m(m ;p_)(lm +1)
_emm = p)m + 1)
p—1

+(p(p+1) +

)

+2p(p + 1)(57 + m(m + 1)(m — p))

— 4k} — 4xim(m + 1)(m — p)

= (m— pt m(—p(p+ 1) + 2m(m +2)(p + 1) + 22 ; 1_)21<m B,
2(p+ 1) (m —p)(m+1)

p(p—1)

4(m +1)(m —p)p
1+p
m(m — p)(m +1)
p—1

)((p+1) -

)

(p(p+1) +

—4(p+1) +2p(p+1)(m + 1) — d4m(m + 1)?)
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(continued from last page)

8m(m + 1)(m — p)
p—1
2p+1)*m—p) 8m-—pP(m+1) 4m(m—p)(p+1)

p—1 p—1 p—1

=m—-p+1)mim+1)2m(p+1)+ +4(m —p)p

+2p(p+1) —4m(m+ 1))

:(m—p+DZTTJNm_p%%Wn+U—2@+1V—&m_pmn+n

—dm(p+1)+ (—4m +2p —2)(p — 1))
(m —p+ 1)m(m + 1)*(m — p)

— 1 (8m —8(m —p) —8p) =0

The constant term is

W= p(p 4 D)2 4 A DA m = p) K7 mE(m + 1P (m - p)”

(p— 1) K2R3 (p— 1)
(plp+1) + Am +111£T; - p)p> L2t 1)77’;(77_% I p)(m+1)
_Am*(m 4 1)*(m — p?)
(»—1%)

4m(m + 1)(m — p)?

=m(m+1)(m(m+1)—plp+1)+

(p—1)
(p+1)(m—p)(m—p+1) 4(m +1)(m — p)p
L 2+ D)(m—p)  Am(m + 1)(m —p))
p—1 p—1
_ m(m + )(m — p)

(m+p+1D)(p—1)72+4m(m+1)(m — p)

(p+1)2
(p+1)(m—-p+1) 4(m +1)(m — p)p
- " ~(p(p+1) + T+
+2p(p+1)(p—1) —dm(m +1)(p — 1))
_ —Ap*m(m +1)(m —p)(m —p+1)
(p—1)2

)
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Therefore, Equation (#) becomes

N§4(m+ Dp+1-m) 4p*m(m+1)(m—p)(m—p+1) 0
p+1 (p—1)°

p’(p+1)m(m —p)(m —p+1)

Mo = (p—12(p+1-—m)

We claim that the right hand is always negative. Recall p is the number of
boxes in (s, 1,...,1) where o+ (s,1,...,1) is the partition T(®). Let [ be the
length of the partition (s,1,...,1) and we have [ + s — 1 = p. On the other
hand, I < n hence p <n+s—1=m—1, m —p > 1. On the other hand,
(m—p+1)+ (p+1—m) = 2 hence they are both positive if and only if
(m—p+1)=(p+1—m) =1, or m = p, which violates the result above.
Therefore, one of (m —p+ 1) and (p + 1 — m) is zero or negative, and the
quantity on the right hand of the equation is negative.

The assumption in the beginning of the claim 3) is false, therefore vy and
vg have the opposite parities.

4) The action of z1 on the subspace spanned by {vr, cocivr, covg, crvg} is

given by A. Using the relation z3 = Ny,

2

(22Q + cX)? +ef2? e(28Q+ cX)Z+ Z(23R+dY)) N
f(Z(%2Q+cX)+ (22R+dY)Z) (D R+dY)? +ef2? '

It was shown in the proof of Theorem 5.12 that QX + X@Q = RY + YR =
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XZ+2Y =YZ+7ZX =0, Q?=R?= X?=Y? = k? therefore

Z—§+cm2+efZ2 e(c—d)XZ N ()
= No
fle=d)ZX MRy dw+efz?

On the other hand, we follow a similar calculation to use the relation

(1 — 21)* —p(p+ 1)(z1 — z1) = 0.

2
(11 —20)’ =af+2f —L=No+ —L (1)
0 (k1)L
Lll L12
L= Tr1z1 + 2101 =
L21 L22

and a similar version of Equation (1) is true,
Li1Lya + LisLay — (2No + p(p 4 1)) Loy — (k1 + K1) Loz = 0

where

kK0 1 0
Z1 = ,K =
0 kK 0 —1

Ly = m(fQ(K@ +QK) + (KX + KX))

No
= 2/‘%1(?/{,1 + CI{())

No

Ly = fﬁﬁ(p

(KR+ RK)+c¢(KY +YK))

N,
= 2/1’1(—;/41 + cKp)
K
therefore ¢ is given as in the combinatorial construction in Section 5.2 and
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Theorem 5.12. The top left block in Equation (##) implies the condition on

the product ef as specificed in the construction. O
Regarding the action of s;, we have the following result:

Theorem 6.2. Let W be a module satisfying the conditions in the previous
theorem, then there exists a homogeneous module isomorphism ¢ : W» — DJ’)

for some f: T — C.

We need a few lemmas to prove the result. In particular, to understand the
action of s;, it is helpful to study elements ®; associated to s;. In [16], Wan

mentioned the intertwiners

P; = 3@<212 - Zi2+1) + (2i + ziy1) — coc1(zi — 2i)

and it can be checked that

Q2 = 211D,
Qizip1 = 2P
Oz = 2;P; jF#Fi,i+1
7 = 2(27 + 224) — (57 — 21,)?

= (27 = 21)” + (2 = 2i01)” + (20 + 2i1)”
Following Hill-Kujawa-Sussan[10], define

Yr(i) = Y(kr (i), k(i + 1))

= (kr(2)? = kp(i +1)*)? = (kr (i) — wr(i +1))* = (kp(i) + Kr(i 4+ 1))

163



Then Vr(i) = Vs, 7(i) and ®?vr = —Yr(i)vr.

Lemma 6.3. The following is true

yT(Z)ySLT(Z + 1)y5i+15i-T(7:) = yT(Z + 1)y5i+1-T(i)ySi3i+1-T(i + 1)

Proof. Let k; = kp(i), Kir1 = k(i + 1), Kiro = k(i 4+ 2), then the values of &

on the following paths are as follows

k(1) | k(1 +1) | k(1 +2)
T K Kit+1 Ki+2
5.1 Kit1 Ry Kit2
Sip1.1' K Kit2 Kit1
5iSip1- 1 | Kigo Ki Rit1
Siy18i 1 | Kia Kit2 Ky

Then both sides are equal to the quantity YV (k;, kit1)V(Kiv1, Kire) Y (Ki, Kiva).

]

Proof of Proposition 6.2. For notation purposes let us replace vy with wy in

Theorem 6.1 so that W = EB Clgyywr and zywr = kp(i)wr, 0 < i < d.

Ter*
Since
KT(i)q)in = (I)i(Zin) = zz’+1(q)in>
IiT<i + 1)(I)ZU)T == (I)i(ZZ‘_HwT) = Zz(q)sz)
kr () Piwr = O;(zwr) = z;(Pywr) A+ 1
It follows ®;w7 is a vector with eigenvalues k7(0), ..., kr(i+1), kp(i), ..., kr(d)
for zp, ..., z4. By since w, r is such a vector, by Lemma 5.7 ®,wy is a scalar
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multiple of wy, 7. By a similar argument, ®;w,, 1 is also a scalar multiple

v = Yr (i)

ar(i)

of wy. Let ar(i), as,7(i) be constants such that ®;wr =
73}&1'1“(7’)

as,. T

—w,, 7 and
Qwg, p = wy. Since ®? acts on vy by the scalar —Yr(i), it follows
that ar(i)as, 7(1) = 1.

Define the Cly,-superlinear map ¢ : WA — D> as follows: let Ly be the
standard tableau of the skew shape A/, where p is the partition with p —n + 1
boxes attached to the first row of «, and one box attached to each row from
the second row down. As a result of the proof for Lemma 5.20, for any two
tableaux standard tableax T and S, if () has exactly one more box than
S in the first row, there is a word w in sq, ..., Sq_1 such that wsy.S = T.
Similarly, for any semistandard tableau 7' = (T'®), ... T = \), let Ty be the
standard tableau of the skew shape A\/T(®, then there are words wy, ..., w,
in sq1,...,84_1, such that wisqwssg - - - wysgLg = Ty, where t is the difference
between the number of boxes in the first row of Ty, and Ly. Therefore there is
another word w) such that w]sowssg---wisoLo =T

Define the map ¢ recursively via ¢(wr,) = wr,, ¢(ws, r) = ar(i)vs, 7 and

d(wsy 1) = wr. For example, when w = sy, « -+ sy, and 1 < ky,..., k; < d, such

that w1y, = T. Define

¢(w5k1"'5kt~T) = astSkg---SktT(kl)a’skg---SktT(k2> e a‘skt.T(k’tfl)aT(kt>vskl---Skt.T

To see the well-definedness of the map, we only need to show it is independent

of the choice of the words wi, ws, ..., w; under the symmetric group relations.
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For |i — j| > 1,

NE) VEIEG) (=Y, (D))

(Di(DjUJT = q)z(

a) T T T e T
Dy — (VYO VEY(D) (Ve (7))
(I)jq)z T—(I)J( GT(i) si-T>_ CLT(Z)Cle () s58:.T

Since YV, 7(j) = Yr(j) and Yr(i) = Vs, (i), it follows that a, r(i)ar(j) =

as, 7(j)ar(i) for any tableau T', therefore

P(ws,s;.7) = as, 7(1)ar(j)wr = as,.v(j)ar(i) = ¢(ws;s,.)

Similarly,

\/(_y5i5i+l-T<i + 1))( yS@-H T( ))( yT(Z + 1))
asisi+1~T(i + 1)a3i+1~T( )aT(Z + 1)
D o oo ) G e G [ Gz )
B = et i+ Dar()

D, 1 PP ywr = wr

wr

and by the pI"GViOIlS lemma aSiSi+1.T(i+ 1)a31+1.T (Z)CLT(Z—l_ 1) = Qsit15,.T (1)aszT(Z+

1)ar(i). Therefore

¢(w3i5i+13i~T) = a3i+15i~T(i)a3i~T(i + 1)GT(i)wT

= a3i57;+1~T<i + 1)a81+1~T(i)aT<i + 1)wT = ¢(w5i+15i5i+1~T)

The map ¢ intertwines the action of zg, ..., z4 since both vy and wr are
eigenvectors for z; with the same eigenvalue. It also intertwines the action of
S1,...,54-1 by design. We only show the work for T" = T§; and the other cases

can be proved inductively via the recursive definition of ¢. In particular, since
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—Yr (i)

Siwr, = Y Trowr,, it follows that
—Vr(i
(sa(22 = 22,) + (2 + 2041) — cocr (20 — 2i41))wr,, = 7?()71}81.%
ar(i)
( ! —+ 1 )
Silry, = (— : . - , CoC1)Wr,
Tt kr(t) — kr(i+ 1) kp(i) + kp(i 4+ 1) 0€1) W
1 I
+\/1 T k(D) —rr(+1)2) T (kr () +rr(i+1))2
) 8. Tst
ar(i)
Therefore
&( )= ( 1 N 1 |
W) = 7 ' ' , . CoC1) VT,
Tyt kr(t) —kr(i+ 1) kp(d) + kr(i 4+ 1) 0C1 )V,
1 1
\/ Gor@) —mr G D8 (or ) - i+ o = o)

We now show that ¢ intertwines the action x;. Since x12z; = z;xq for
all i > 2, x; preserves the k(i) eigenspace of z; for 2 < i < d, therefore
x1.wp = hpwr + brws, 7, where hp, by is in the Clifford algebra generated by
cp and c¢;. Since wr and wy, r have different parities, hr is even and by is
odd. By Propositions 6.1, z1.vp = hpw; + brws, r with the same coefficient
hr,br in D*, and ¢ is a homogeneous map. Let a be the constant such that
¢(wr) = avr from the definition above. We discuss by cases:

1) When wr has the same parity as vy, ¢ is an even map

¢(x1.wr) = ¢(hrwr + brws,.r)
= ahpvp + abpvg, T
r1.0(wr) = a(xy.v7) = ahrvr + abrvg, 7.

2) When wy has the opposite parity as vy, ¢ is an odd map, and x;.vp =
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hTUT — bTUso.T n HD/\

d(z1.wr) = ¢(hrwr + brws, )

= ahTUT — abTUso.T

x1.0(wr) = a(xy.v7) = ahrvr — abrug, 7.

The other tableaux can be checked inductively. O

For the moment let us distinguish the two algebras Hj ., and H} 44, in

even

the case when n is even or odd. Recall in Section 4.1 we defined H .,

to
be a quotient of H}" and Hj 44 a quotient of H}'™, under the same relations
involving generators and parameters of the same name. Also in Section 3.3 we
defined H}'N = H}' ® ClLi. As a consequence, HY 44 = H} yon ® Cl1.

In [9], Kang-Kashiwara-Tsuchioka introduced the notion of a supercategory
and its Clifford twist. As pointed out in [3] by Brundan-Davidson, this implies
that the supercategory of Hy ,;4-modules is a Clifford twist of the supercategory
of Hj ..,-modules, hence the two supercategories are closely related to each
other. Moreover, the relation is given by a specific functor, which is compatible

with our construction of D}‘ in the two cases. We therefore expect a similar

result to be true for Proposition 6.2, in the case when n is odd.

6.2. Centralizer Algebras for q(n)

Recall in Section 4.3 we defined the action

¢ : HY — Endgy(L(a) @ L(B) @ V).
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Hence ¢(H}) is a subalgebra of the centralizer
Z4 = Endy)(L(a) ® L(B) @ V7).

In this section we will study Hh-modules that are restrictions of Z;-modules.
As explained in [17, Section 3.1.3], if A, B are semisimple superalgebras, W
is an A-module, U is a B-module, then W ® U naturally admits a module
structure for the superalgebra A ® B defined in Section 3.3. Moreover, if W
and U are both of Type Q, then W ® U decomposes into two isomorphic copies
of a simple module of Type M, denoted as 2711 ® U. As a consequence we
have dim(27'W @ U) =271 dim W ® U. In the other cases W @ U is a simple
A ® B-module. There is a super version of the well-known double centralizer

theorem.

Theorem 6.4. Double Centralizer Theorem, [17, Proposition 3.5] Let W be a
finite dimensional vector superspace, A a semisimple subalgebra of Endc(W).
Let B be the centralizer of A in Endc(W), then A is the full centralizer of B

in Endc(W), and W admits a decomposition into irreducible (A, B)-bimodules
W~ @2V o wh (6.2.1)
A

where W(X) is an irreducible A-module, W an irreducible B-module, and
W () is of Type M if and only if W* is of Type M. Here, 5(\) = 0 if W () is
of Type M, and 6(A) =1 if W(X) is of Type Q. In particular, the multiplicity
of W(N), is equal to 279N dim WA,

In the case when n is even, we apply the above theorem to the representation

p:U(q(n)) = End(L(a) ® L(B) @ V&), where A = p(U(q(n))) and B = Z,.
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All irreducible summands L(\) as q(n)-modules have ¢(\) = n which is even

by assumption, therefore L(\) is of Type M. We obtain the decomposition

L)@ LB)eV®ei~ @ L)L (6.2.2)
AePq(a,B)
where £ is an irreducible Z4-module, Py(c, 3) is the set of partitions defined
in Definition 5.2.

In particular, the summand L(\) ® £* is the L(\)-isotypic component of
L(a) ® L(B) ® V¥ as a q(n)-module, and at the same time, the £ -isotypic
component of L(a) ® L(B) ® V& as a Z4-module.

By the argument in Section 2.4, if L(+y) is a direct summand of L(u)®V', then
it has multiplicity 2, and similarly, if L(y) is a direct summand of L(a) @ L(f),
it also has multiplicity 2. Therefore each path in I'* corresponds to obtaining
the summand L(\) with the multiplicity 2¢™!, and the total multiplicity of
L()\) is 2471412, As a consequence of the double centralizer theorem, this

implies that when n is even, dim £* = 24F1 4T,

Z4

Theorem 6.5. When n is even, the HY-modules Resd)mp) L> are isomorphic
d

to D}‘ for some f :T? — C and therefore irreducible.

Proof. Let W = L(\) @ L£* as in the decomposition (6.2.2). We argue that a
few claims are true:

1) We claim that for each T' € T'*, there exists wy € W such that z;.wp =
kr(iwr, 0 <i < d.

Given T € I'*, the sequence of partitions in T' corresponds to a (potentially
nonunique) choice of irreducible summand at each level of the decomposition.

By Lemma 4.9, the resulting summand L(\) at level d has the property that for
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any up € L(N), zi.ur = kp(i) or zi.upr = —kp(i)up, 0 < i < d. In particular,
choose ur to be a homogeneous nonzero vector. Since up € L(\) C W and W
is an Hh-module, one can choose a suitable o = (ay, ..., 04) € {0,1}4 such
that wr = cup = ¢§° - - - ¢ ur is again homogeneous and has the eigenvalues
kr(0), ..., kr(d) for 2o, ..., z4.

2) Fix an irreducible summand £* C W. We claim that for each T € ',
there exists homogeneous vy € £* such that z;.vr = kp(i)vy, 0 < i < d.

Since W is a direct sum of £*’s, there exists a grade preserving isomorphism
W ~ (LM% @ (TILY)®, for some a,b € Z. Given T, let wr be the vector
chosen in Claim 1. Let wp = wy + - -+ + w4y be the direct sum decomposition

of the vector wr under the previous isomorphism. We have

Zi.wr = /ﬁJT(i)wl + -+ /ﬁl{r(i)u}mA

= Zjwy + 0+ ZiWaqtp-

Since the decomposition is unique, and z;wy, is in the k-th copy of £* (or I1£*),
it follows that z;wy = kr(i)wy for all 1 < k < a+b. Since wr # 0, there exists
some j such that w; # 0, and w; is homogeneous. Denote by E;‘ the j-th copy
of £* or IIL*. Thus, via the isomorphism £} ~ L, there is a vector vy as
claimed.

3) We claim that £* ~ @ Clg1vr as superspaces.

A

In Lemma 4.9, we showegetrhat k(i) is never zero for any 0 <i < d, T € T
Therefore, for all o € {0,1}%+! each ¢”vr has a distinct list of eigenvalues for
2o, ..., 29. Moreover, we showed in Lemma 5.7 that the lists of eigenvalues for

vy and vg are different for T',.S € I'*, whenever T'# S, and each r7(i) or kg(i)

is positive. Therefore, {c7vr}yeo,134+1 rers all have distinct lists of eigenvalues,
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and so are linearly independent. Since £* is an H4-module, EB Clgvr C L,
Tel*
and since both have dimension 297 4T, our claim follows.

By showing Claims 1,2 and 3, we have shown that £* satisfies the conditions

in Propositions 6.1 and 6.2, and the conclusion follows.
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Appendix: Code for Lemma 5.14

We include the MAGMA computation in the proof of Lemma 5.14. We organize
it according to the various coefficients in the same sequence as that in the
proof. The following code is for a given tableau 7', and one needs to manually
change the values for various x; and «f, based on the chart given in the proof

of Lemma 5.14, for all other tableaux.

1) The coefficient for vy was checked by hand.

2) Coefficient for vy, r:

The code for checking My, = 0 for the tableau T' = L, is as follows

C:=IntegerRing();
R<m,N,p>:=PolynomialRing(C,3);
kO :=m*p* (m-p) ;

kl:=m*(m+1) ;

k2:=N;

kOp:=(m+1) *p* (m+1-p) ;
kip:=(m-p)* (m-p+1) ;

kOp_p:=(m+1)*(m+1-p);

L:=klp-k2;
M:=k1-k2;
K:=k0-kOp;
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Q:=kO+p*k1l;

R:=k0+p*k2;

S:=kOp+p*k2;

X:=N*p+kO;

Y :=N*xp+kOp;

Y_p:=kOp_p+N;
D:=-2*M*L*L*xQ*R*S*K
+2*M*M*L*xQ*xR*S*K

—4xk0x*Y _p*xM*xM*R*xS*xK
+2xM*LkR*S*K* (-X*k1+k0*Y_p)
+2% (k1p-k1) *L*xM*R*S* (p*xk1* (-N+k1p) -kO* (-N+k1) ) +4*k1*X*L*L*xR*S*K
+ (M*M-2* (k1+k2) ) *X*L*xL*Q*S*K
- (L*¥L-2% (k1p+k2) ) *Y*MxM*xQ*R*K;

D;

The code for checking M;; = 0 for the tableau T' = L, is as follows.

C:=IntegerRing();
R<m,N,p>:=PolynomialRing(C,3);
kO :=m*p* (m-p) ;

kOp_p:=(m+1) *(m+1-p);
k1:=m*(m+1);

k2:=N;

kOp:=(m+1) *p* (m+1-p);
kip:=(m-p)* (m-p+1);
M:=(k0+p*k2) * (kOp+p*k2) ;

K:=kO+pxkl;
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L:=k1-k2;

Q:=klp-k2;

D : =-2*L*xQ*Q*M*xK+2*LxL*xQ*M*xK

—kO*M* (N+kOp_p) * (4*L*L-2*L*Q)

—2*%M*L*Q* (kO* (-N+k1) -p*k1* (-N+kip))

+M* (N*p+k0) * (4xk1*xQ*Q-2*k1*L*Q)

+K*x (L*xL-2% (k1+k2) ) * (N*xp+k0) * (kOp+p*k2) *Q*Q
-K* (Q*Q-2% (k1p+k2) ) * (N*p+kOp) *L*L* (kO+p*k2) ;

D;

Code for checking My = Moy = 0, for T' = Lo:

C:=IntegerRing();
R<m,N,p>:=PolynomialRing(C,3);
kO :=m*p* (m-p) ;
k1:=m*(m+1);

k2:=N;
kOp:=(m+1) *p* (m+1-p) ;
kip:=(m-p)* (m-p+1);
L:=kO+px*k1;
M:=kOp+p*klp;
Q:=k1-k2;

R:=klp-k2;
S:=k0+p*k2;
T:=kOp+p*k2;

D:=4x (-kO*k1+N*kO-p*Nxkl+p*k1*klp) *M*S*T
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+2% (N*p+kOp) *p* (k1p+k2) *L*Q*S
-2%p* (N*p+k0) * (k1+k2) *M*R*T
+2*p* (N-k1) *M*xR*S*T

=2% (N*p-p*k1p) *L*Q*S*T

—p* (N-k2) * (k0-kOp) *L*xM*Q*R ;

D;

F:=4x (Nxk0*k1-N*pxklxklp+kl*p*k1*k1p-kO*k1*klp)*M*T*S
—-2%k0p* (N*p+kOp) * (k1p+k2) *L*Q*S
+2xk0* (N*p+k0) * (k1+k2) *R*xM*T

- (k0-kOp) *p*k2* (N-k2) *L*Q*R*M
+2*p*xk1* (N-k1) *R*xM*T*S

-2%k1p* (N-k1p) *p*LkQ*T*S;

F;
Code for checking M3y = M3y = 0, for T' = Ls:

C:=IntegerRing();
R<m,N,p>:=PolynomialRing(C,3);
kO :=m*p* (m-p) ;

k1:=m*(m+1) ;

k2:=N;

kOp:=(m+1) *p* (m+1-p) ;
kip:=(m-p)* (m-p+1);
kOp_p:=(m+1) *(m+1-p);
L:=k1-k2;

M:=klp-k2;

K:=k0+p*xkl;
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J:=kOp+p*klp;

:=k0+p*k2;

f=c R =

:=kOp+p*k2;

X:=k0-kOp;

Y:=kl-klp;

W: =kOxk1+p*Nkk1-N*kO-p*k1xkip;
V:=N*xkOxk1-N*pxk1lxk1p-k0*kl*klp+p*kl*klxklp;
D:=4*WxX*xJ*Q*R

—2%X*x (N-k1) *pxM* J*xQ*R

+2x (N-k1p) *p*xX*L*¥K*Q*R

-X*Y*p* (N-k2) *L*M* J*K

2% (k1+k2) *p*Y* (N*xp+k0) *M* J*R

+2x (k1p+k?2) *Y*p* (N*xp+kOp) *L*xK*Q ;
D;

F: =4%V*X*J*R*Q
+2xk1xp*X*k (N-k1) *M*x J*Q*R

2%k 1p* (N-k1p) *p*X*L*xK*Q*R

+p*k2* (N-k2) *X*Y*LkM*K* J

-2 (k1+k2) xk0* (N*p+k0) *Y*M* J*R

+2% (k1p+k2) *Y*kOp* (N*p+kOp) *L*K*Q;

F;

3) The coefficient for vs, 7 = 0. We check that the constant and the coefficients

for cocq, coca, crco are zeros. The code for T' = L, is as follows

C := IntegerRing(Q);

R<m,p,mmp,mpl,n,npl,mmppl,mmpml,mmi>
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:= PolynomialRing(C,9);

Ideal := ideal<R|m"2-1-mm1°2, m~2-1-p~2-mmpml~2,
m"2+1-mpl°2, n"2+1-npl”2, m"2+1-p"2-mmppl~2,
m~2-p~2-mmp~2>;

N:=n*np1l;

kO :=(m*p* (mmp) ) ;

k1:=(n*(npl));

k2:=(m* (mpl)) ;

kOp:=kO0;

kip:=ki;

kOpp:=((mp1) *p* (mmpp1)) ;
k2pp:=((mmp) * (mmpp1)) ;

alpha:=-1/(k1-k2);

beta:=1/(k1+k2);

alphal:=-1/(k2-k1);

betal:=1/(k1+k2);

alpha2:=-1/(k2pp-k1);

beta2:=1/(k2pp+kl) ;

alphap:=-1/(klp-k2);

betap:=1/(klp+k2);

A:=k0-kOp;

B:=kl+klp;

F:=k0-kOpp;

G:=k2+k2pp;

delta:=(-N"2+k1xkl)*k0/ (k0*k0+p~2xk1xk1) ;

deltal:=(-N"2+k2xk2) *k0/ (kO*xkO+p~2*k2xk?2) ;
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gamma:=(N"2*xp~2+k0*k0) *k1/ (kO*kO+p~2*k1x*k1) ;
gammal:=(N"2*p~2+k0*k0) xk2/ (k0*xk0+p~2+k2xk2) ;
M:=-(kO*k0+p~2%p~2xk2*k2) * (N~ 2-k2+k2) * (N~ 2-k2pp*k2pp) /
((kOxkO0+p~2xk2xk2) * (kO*k0+p~2%k2%k2) * ( (kO-kOpp) * (kO-kOpp) +
(k2+k2pp) * (k2+k2pp)) ) ;

K:=-(k0*k0+p~2*p~2xk1xk1) * (N"2-k1xkl)* (N"2-kip*klp)/
((kO*kO+p~2xk1xk1) * (kO*¥k0+p~2%k1xk1)* ((k0-kOp) * (k0O-kOp) +
(k1+k1p) * (k1+k1p)));
CO:=-beta*xgamma*xgammal-alpha*delta*xdeltal-deltal*deltal*alphal
-gammal*gammal*betal-gamma*gamma*beta-deltaxdelta*alpha
—-delta*deltal*alphal-gamma*gammal*betal

+M* (-F*Fxbeta2-G*G*alpha2)
-K* (AxAxbetap+B*Bxalphap) +gammal+gamma;

C3:=M* (-F~2*beta2-G"2*alpha2)-K* (A~ 2*betap+B~2*alphap)
-gammaxbetaxgammal-alphaxdelta*deltal-gammal~2*betal
-deltal”2*alphal-gamma”2*beta-delta”2*alpha
-delta*deltal*alphal-gamma*gammal*betal+gammal+gamma;
C2:=Mx* (-G*Fxbeta2+G*F*alpha?2)-K* (BxA*alphap-A*B*betap)
+betax*delta*gammal+alpha*gamma*xdeltal
-deltal*betal*gammal+gammal+*alphal*deltal
—-delta*alpha*gamma+gamma*beta*delta-delta*gammal*alphal
-gamma*xdeltal*betal+deltal-delta;
C1:=Mx*(G*F*alpha2-G*Fxbeta2)-K* (-A*B*betap+B*A*alphap)
+alphaxdelta*gammal-gammaxbeta*xdeltal
+deltal*alphal*xgammal-gammal*betal*xdeltal

+deltax*beta*gamma-gamma*alpha*delta
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-gamma*deltal*alphal+delta*gammal*betal+deltal-delta;
Numerator(CO) in Ideal;
Numerator(C1) in Ideal;
Numerator(C2) in Ideal;

Numerator(C3) in Ideal;

We change the eigenvalues for other tableaux as follows:

T:LQI

k0 :=(m*p* (mmp) ) ;
k1:=(m*(mpl));
k2:=(n*(npl));
KOpp : =k0;

k2pp:=k2;
kOp:=((mp1) *p* (mmpp1)) ;

kip:=((mmp)* (mmppl)) ;

T = Ls: switch the values for kg, k, and k1, K} above.
3 0, vo y vq

T:L4I

k2:=((mmp) * (mmpp1)) ;
k0:=((mp1) *p* (mmpp1)) ;
k1:=(N);

kOpp : = (m*p* (mmp) ) ;
k2pp:=(m* (mpl));
kOp:=k0;

kilp:=ki;
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k2 :=(m* (mp1)) ;

kO :=((m)*p* (mmp) ) ;
k1:=((mmpm1) * (mmp)) ;

kOp :=((mm1) *p* (mmpm1) ) ;
kip:=(m*(mm1));
kOpp:=((mp1) *p* (mmpp1)) ;

k2pp:=((mmp) * (mmpp1)) ;
T:T3Z

k2:=((mmp) * (mmpm1)) ;
kOp:=((mp1) *p* (mmpp1)) ;
kip:=((mmpp1l)* (mmp)) ;

kO :=(m*p* (mmp) ) ;
k1:=(m*(mp1));

kOpp : =((mm1) *p* (mmpm1) ) ;

k2pp:=((m)*(mm1)) ;

4) Coefficient for vg,s, -

We check that the coefficients for cg, ¢1, co, cocico are zero.

C := IntegerRing();
R<m,p,mmp,mpl,n,npl,mmppl,mmpml,mmi>

:= PolynomialRing(C,9);

Ideal := ideal<R|m"2-1-mm1°2, m~2-1-p~2-mmpml~2,
m~2+1-mpl1°2, n"2+1-npl”2, m"2+1-p~2-mmppl~2,
m~2-p~2-mmp~2>;

N:=n*npl;
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k0 : = (m*p* (mmp) ) ;

k1:=((mmpm1)* (mmp)) ;

k2:=(m*(mpl));

kOp :=((mm1) *p* (mmpm1) ) ;

kip:=(m*(mm1)) ;

kOpp:=((mp1) *p* (mmpp1)) ;

k2pp :=((mmp) * (mmpp1)) ;

alpha:=-1/(k1-k2);

beta:=1/(k1+k2);

alphal:=-1/(k2-k1);

betal:=1/(k2+k1l);

alpha2:=-1/(k2pp-k1);

beta2:=1/(k2pp+kl) ;

A1:=k0-kOpp;

B1:=k2+k2pp;

delta:=(-N"2+k1xk1l)*k0/ (k0*k0+p~2xk1xk1) ;
deltal:=(-N"2+k2xk2)*k0/ (kO*xk0+p~2*xk2*k2) ;
delta2:=(-N"2+k2pp*k2pp) *kOpp/ (kOpp*kOpp+p~2*k2pp*k2pp) ;
gamma:=(N"2*xp~2+k0*k0) *k1/ (kO*kO+p~2*k1x*k1) ;

gammal :=(N"2*xp~2+k0*k0) *k2/ (k0*k0+p~2xk2xk2) ;

gamma?2: = (N"2*p~2+k0pp*kOpp) *k2pp/ (kOpp*kOpp+p ~2*k2pp*k2pp) ;
D1:=alpha*gammaxAl-beta*delta*Bl+gammal*alphal*xAl+deltal*betal*B1
+Alxalpha2*xgamma2-Bl*beta2*delta2-gammaxAl*xalpha2+Bl*delta*beta2+Al;
Numerator(D1) in Ideal;

D2:=beta*delta*Al+alpha*gamma*B1

—-deltal*betal*Al+gammal*alphal*Bl-Bl*beta2*xgamma2
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-Alxalpha2*delta2-deltaxAl*alpha2
-Blxgammaxbeta2+B1;

Numerator(D2) in Ideal;
D3:=alpha*delta*Al-beta*gamma*Bl+deltal*alphal=*Al
-gammal*betalx*B1
+Blxalpha2*gamma2+Alxbeta2*xdelta2-Bl*gamma*alpha2+deltaxAl*beta2+B1;
Numerator (D3) in Ideal;
D4:=-beta*gamma*Al-alpha*delta*Bl-gammal*betal*Al
-deltal*alphal*B1
-Alxbeta2*gamma2+Bl*alpha2*delta2-Bl*delta*alpha2
-gammax*xAlxbeta2+Al;

Numerator (D4) in Ideal;

For other paths, one can switch out the code for defining various  values

as follows:

When T = T3:

kO :=(m*p* (mmp) ) ;
k2:=((mmpm1) * (mmp) ) ;
k1:=(m*(mp1));
kOpp:=((mm1) *p* (mmpm1) ) ;
k2pp: = (m* (mm1)) ;
kOp:=((mp1)*p* (mmppl) ) ;

kip:=((mmp)* (mmppl)) ;
When T = Lq:

kO : = (m*p* (mmp) ) ;
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k2 :=(m* (mp1)) ;

k1:=(N);
kOpp:=((mp1) *p* (mmpp1)) ;
k2pp : =((mmp) * (mmpp1)) ;
kOp: =kO;

kilp:=ki;
When T = Ly:

kOpp:=SquareRoot (m*p* (m-p)) ;
k2pp:=SquareRoot (m* (m+1)) ;
k1:=SquareRoot (N) ;
k0:=SquareRoot ((m+1) *p* (m+1-p)) ;
k2:=SquareRoot ((m-p) * (m-p+1)) ;
kOp:=kO0;

kilp:=ki;

For other paths either vy, 7 or vs s, 7 =0

5) The coefficient for v, s, 1.

When T = L, the code is as follows:

C := IntegerRing(Q);
R<m,p,mmp,mpl,n,npl,mmppl,mmpml,mmi>

:= PolynomialRing(C,9);

Ideal := ideal<R|m"2-1-mm17°2, m~2-1-p~2-mmpml~2,
m"2+1-mpl1°2, n"2+1-npl1”2, m"2+1-p~2-mmppl~2,

m~2-p~2-mmp~2>;

186



N:=n*np1l;

k0 :=(m*p* (mmp) ) ;

k1:=(m*(mpl));

k2:=(N);

kOp:=((mp1) *p* (mmpp1) ) ;

kip:=((mmp)* (mmpp1)) ;

gamma : = (N~ 2xp~2+k0*k0) xk1/ (kO*kO+p~2*k1x*k1) ;

gammap : =(N"2%p~2+kO0p*kOp) *k1p/ (kOp*kOp+p~2xk1pxklp) ;;
gammapp : = (N~ 2*p~2+k0p*k0p) *k2/ (kOp*kOp+p~2*k2*k2) ;
delta:=(-N"2+k1xk1)*k0/(k0*k0+p~2*xk1xk1l) ;
deltap:=(-N"2+k1p*k1p)*kOp/ (kOp*kOp+p~2*k1p*kip) ;
deltapp:=(-N"2+k2*k2) *kOp/ (kOp*kOp+p~2xk2*k2) ;
Ap:=k0-kOp;

Bp:=kl+klp;

alpha:=-1/(k1-k2);

alphap:=-1/(klp-k2);

alphapp:=-1/(k2-klp);

beta:=1/(k1+k2);

betap:=1/(klp+k2);

betapp:=1/(k2+klp) ;
EO:=Ap*alphap*gammap-Bp*betap*deltap+Ap*gammapp*alphapp
+Bp*deltapp*betapp-alpha*Ap*gammapp-beta*Bp*deltapp
+deltaxbeta*xBp+gamma*alpha*Ap+Ap;

Numerator (EO) in Ideal;
E1l:=Bp*alphap*gammap+Ap*betap*deltap+Bp*gammapp*alphapp

—-Ap*deltapp*betapp-beta*Bp*gammapp+alpha*Ap*deltapp
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+deltax*alpha*Ap-gammaxbeta*xBp+Bp;

Numerator (E1) in Ideal;
E2:=-Bp*betap*gammap-Ap*alphap*deltap-Ap*deltapp*alphapp
-Bp*gammapp*betapp-alpha*Bp*gammapp-beta*Ap*deltapp
—-deltaxbetaxAp+gamma*alpha*Bp+Bp;

Numerator (E2) in Ideal;
E3:=Ap*betap*gammap-Bp*alphap*deltap-Bp*deltapp*alphapp
+Ap*xgammapp*betapp+beta*Ap*gammapp-alpha*Bp*deltapp
+gammaxbeta*Ap+deltaxalpha*xBp-Ap;

Numerator (E3) in Ideal;

When T' = T3, switch the values for kg, k{ and k1, k]. When T' = T}, set

the eigenvalues to be the following

kOp : = (m*p* (mmp) ) ;
kip:=((mmpml)* (mmp) ) ;
k2:=(m*(mp1));
kO:=((mm1) *p* (mmpm1)) ;

k1:=((m)*(mm1));
When T' = T}, set the eigenvalues to be the following

kOp: = (m*p* (mmp) ) ;
kip:=((m)*(mpl));
k2:=((mmpm1)* (mmp)) ;
k0:=((mp1) *p* (mmpp1)) ;

k1:=((mmp) * (mmpp1)) ;

For all other tableaux, either v,, 7 = 0 or vy 5,7 = 0.

188



6) The coefficient for vg,s,s,.7-

When T = T;:

C := IntegerRing();
R<m,p,mmp,mpl,n,npl,mpl,p,mmppl,mmimp,mm1> := PolynomialRing(C,11);
Ideal := ideal<R|m"2-1-mm17°2, m~2-1-p~2-mmimp~2,
m"2+1-mpl°2, m"2-p"2-mmp~2, n"2+1-npl~2,
m"2+1-p”2-mmppl~2, m"2-p~2-mmp~2>;

N:=n*np1l;

k0:=((mm1) *p* (mmimp)) ;

k1:=(m*(mml));

k2:=(m*(mp1));

kOp: = (m*p* (mmp) ) ;

kip:=((mmlmp) * (mmp)) ;

kOpp :=((mp1) *p* (mmpp1)) ;

k2pp : = ( (mmp) * (mmpp1)) ;

alphai:=-(k1-k2);

alpha3i:=-(k2pp-kip);

betai:=(k1+k2);

beta3i:=(k2pp+kip);

Ap:=k0-kOp;

Bp:=kl+klp;

H:=kOp-kOpp;

I:=k2+k2pp;
EO:=alphai*alpha3i*beta3i*Ap*H-betai*alpha3i*xbeta3i*Bp*I

-Bp*I*alphai*betai*beta3i+Ap*H*alpha3i*alphai*betai;
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El:=-betai*alpha3ix*beta3i*Bp*H-alphai*alpha3ix*beta3ixAp*I
—-Ap*I*alphai*betaix*beta3i-Bp*H*betai*alphai*alpha3i;
E2:=-alpha3i*beta3i*alphai*Bp*H+alpha3i*beta3i*betai*Ap*I
+Bp*H*alphai*alpha3i*beta3i-Ap*I*betai*alpha3ixbeta3i;
E3:= -betai*alpha3i*beta3i*Ap*H-alphai*alpha3i*beta3i*Bp*I
+ApxH*alphai*betai*beta3i+Bp*I*alpha3i*alphai*betai;

EO in Ideal; E1 in Ideal; E2 in Ideal; E3 in Ideal;
When T = Ty, part of the code is modified as

kOpp :=((mm1) *p* (mmpm1) ) ;
k2pp : = (m* (mm1)) ;
kip:=(m*(mp1));

kOp : = (m*p* (mmp) ) ;
k2:=((mmpm1) * (mmp) ) ;
k0:=((mpl) *p* (mmppl)) ;

k1:=((mmp) * (mmpp1)) ;

For all other tableaux, one of vs, 1, Vs, 507, Vsysyso.T 1S Z€TO.
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