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PREFACE

The goal of this thesis is to write a segment of mathematics that
would fit between a first course in elementary number theory and a
course in algebraic number theory. Current books titled algebraic
number theory are an abstract generalization of the material presented
in this thesis. The transition from elementary number theory to such
abstract treatments of algebraic number theory is too difficult for the
average undergraduate student. This thesis provides an intermediate
step discussing algebraic number fields and the domain of algebraic
integers therein. All the fields discussed are finite algebraic exten-
sions of the rational numbers. Examples are used to demonstrate the
theory.

The level of this material is for a senior mathematics major.

In addition to a course in elementary number theory he should have had
a course in linear algebra. Abstract algebra would be helpful but not
necessary if the linear algebra course was fairly sophisticated and
complete. A student could not, of course, go on to a complete study of
algebraic number theory without a thorough knowledge of abstract
algebra,.

The thesis is divided into five chapters. The first chapter
introduces the concept of an algebraic integer. Then some elementary
facts concerning algebraic integers and their minimal polynomials are

proved. The second chapter deals with finite algebraic extensions of

it



the rational numbers, The norm and trace of a number in a finite
algebraic extension are defined. The properties of norm and trace,
used frequently in Chapters III and IV, are developed. Chapter III
derives the integral basis theorem and develops some techniques for
computing such a basis. Examples are given demonstrating how the
various concepts can be used as aids for calculating an integral basis
of a finite algebraic extension., The main topic in Chapter IV is the
proof of Dirichlet's theorem on the structure of the group of units in a
finite algebraic extension. This theorem is usually proved using
results from the theory of ideals. The proof in this paper does not use
these results but uses only the concepts already developed and some
elementary counting techniques, Dirichlet's theorem is demonstrated
by an example in which a fundamental unit is calculated for a cubic
extension. The final chapter presents some examples of how algebraic
number theory can be used to find solutions to Diophantine equations.
The paper concludes with some remarks about related topics and
current developments.

Items such as theorems, definitions or examples are numbered
consecutively throughout the paper.

I would like to take this opportunity to express my thanks for the
assistance, guidance and time given to me by the members of my
committee: Dr. Jeanne L. Agnew, my thesis advisor, Dr. E. K.
McLachlan, my committee chairman, and Dr. W. Ware Marsden.

In addition I would like to thank the University of Wisconsin,
Superior, for giving r1;1e time and financial support for this project.

Finally, I would like to express my appreciation and gratitude to

my wife, Priscilla, and our children, Peter, Mark and Rachel, for
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CHAPTER 1
INTRODUCTION
The Diophantine equation
x% - g% =17
might be solved by the following method:

X - Yz = (x+ty)x-y) .

Since x and y are integers x+y .and x-y must be factors of 17,

A solution may be obtained by setting

x+y =17

§
—

X-Yy

or x=9 and y=8. Three other solutions may be achieved by
changing the signs or order of the factors of 17. Since the only factors
of 17 are 1 and 17 there cannot be any other solutions.

A similar approach to the Diophantine equation

fails. Since
2
x" -2y = (x+ N2 y)x-~N2Zy) .

The factors (x+ A2 y) and (x-2y) are not integers, when x and



y are integers, unless y=0. Example 91 will show that this equation
not only has a solution, but has infinitely many solutions. One can see
that a solution to this equation is x=7 and y=4. Thus one might

say that
17 = (7 + 42 N7 - 4/2)

is a factorization of 17. What is needed is a set of numbers which

contain the integers and numbers suchas 7 +£4+2 .

Definition 1. Let 6 be a root of the polynomial

When a -y @,y are integers, 6 is called an algebraic

n-1"%n-27+"
integer. When the coefficients are rational, 8 is called an algebraic

number,

Algebraic numbers can be real or complex. The purpose of this
dissertation is to present methods of representing algebraic integers
and computing with these integers. Throughout this material Z will
stand for the integers and Q the rationals. Since the integers are
themselves algebraic integers they will be referred to as the rational
integers to distinguish them from the other algebraic integers. The
set of polynomials in x with rational coefficients will be denoted by
Q[x]. The subset of Q[x] that consists of polynomials with
coefficients that are rational integers is denoted by Z[x]. Consider

the polynomial

xn_1+...+a x2+a x+a a.n#O.

a n+ a
n* n-1 2 1 0



The degree of this polynomial is n, a is the leading coefficient, and
when a =1 the polynomial is called monic. Note that the constant

polynomial a, has degree zero except when ag = 0. Degree is not

0
defined for the zero polynomial. The rules for working with poly-
nomials that one learns in a high school or college algebra course will

be assumed. The following theorem is a formal statement of the usual

division process one learns for polynomials.

Theorem 2. If p(x) and f(x) # 0 are polynomials in Q[x]
there exist unique polynomials q(x) and r(x) in Q[x] such that
p(x) = q(x) f(x) + r(x), where either the degree of r(x) is less than the

degree of f(x), or r(x) 1is the zero polynomial.

When the polynomial r(x) in Theorem 2 is the zero polynomial
then f(x) is said to divide p(x). A polynomial in Q[x] is called

irreducible ﬁ Q[x] if it cannot be expressed as the product of two

polynomials in Q[x] each with degree greater than zero. Note,
constant multiples of irreducible polynomials are irreducible.
Irreducible polynomials in - Q[x] have many properties that are
similar to prime numbers in Z, The following theorem is an example

of this.

Theorem 3. If f{(x) and g(x) in Q[x] have no common
divisors other than constants, then there exist h(x) and k(x) in

Q[x] such that

hix) f(x) + k(x) g(x)=1 .

A detailed account of Theorems 2 and 3 as well as their proofs

can be found in most theory of equation texts. The proofs of these



theorems rely on the fact that the coefficients are members of a field.
No other properties of Q are used, thus Q could be replaced by the
real numbers, the complex numbers or any other field., There will be
occasions when other fields are used. Since Z is not a field Theorems
2 and 3 do not hold for polynomials in Z[x], However, polynomials

in Z[x] are also polynomials in Q[x], so that, with care these
theorems can be used. The following example illustrates the fact that
given a polynomial f(x) in Q[x] there is a rational integer k such

that kf(x) isin Z[x].

Example 4. Consider the following polynomial in Qx]

f(x) = %x +

then

© 45 f{x) = 30x° + 60x% + 27x +°10. .

Note that 45 is simply the least common multiple of 3,3,5, and 9;
the denominators of the coefficients. Another fact is that the greatest
common divisor of the numerators 2,4,2 and 2 is equal to the
greatest common divisor of 30, 60, 27 and 10, the coefficients of
45 f(x) ..

It is easily seen that in general any polynomial in Q[x] can be
multiplied by a rational integer to obtain a new polynomial in Z[x].
In addition the greatest common divisor of numerators of the rational
coefficients is equal to the greatest common divisor of the integral
coefficients. This fact is assumed in the proof of Theorem 7. The

following lemma is needed in the proof of Theorem 6.



Lemma 5. Let f{(x) = g(x)h(x) with all the coefficients rational
integers. If p is a rational prime that divides all the coefficients of

f(x) then p must divide all the coefficients of g(x) or of h(x).

Proof. Let

then the coefficient of x' in f(x) is

where aj =0 when j>n and bi: 0 when i>m. Suppose the
conclusion of the lemma is false. Let k be the smallest subscript

such that p { a, and t be the smallest subscript such that p{b

¢
. . . t+k .
Consider the coefficient of x in f(x),
t+k
a b .
+k -
6=0 ttk-s s

By the choice of k and t, p t at+k~sbs for every s from 0 to t+k

except for s=t, p {akbt . Thus p cannot divide the coefficient of
xH_k in f(x). The hypothesis of the lemma is contradicted, so the

lemma is proved by contraposition.

The next theorems will show that Definition 1 is not inconsistent,
that is, it is not possible, by considering different polynomials for
which 6 is a root, to say that sometimes 6 is an algebraic integer and

sometimes it is not.



Theorem 6. If a monic polynomial f(x) with rational integral
coefficients can be factored into two monic polynomials g(x) and
h(x) in Q[x], then the coefficients of h(x) and g(x) are rational

integers.

Proof, Let

a a
g(x) = <0 4 bn-l xn-l " bn-Z xn-Z .+ Eix+ b_O_
n-1 n-2 1 0
and
c c c c
hix) = x" + dn'l s dn“z e+ a-l-x + 59
n-1 n-2 1 0
where a,, b,, ¢., d, arein Z and (a,,b,) =1 = (c.,d.), Let s be
i i i i i’ i’
the least common multiple of bo, b1 oo bn-l and t be the least common

multiple of do, TREE ’dn-l . Then as in Example 4 sg(x) and th(x)
are in Z[x] also the greatest common divisor of the coefficients of
sg(x) is 1 and th(x) is 1. The proof will be completed when it is
shown that s=t=1. Since f(x) = g(x)h(x) then stf(x) = (sg(x))(th(x)).
Suppose p is prime and p'st then p divides all the coefficients of
stf(x). From Lemma 5, p must divide all the coefficients of sg(x)

or th(x), but this is impossible, thus there is no prime that divides
st. Since st 1is not divisible by a prime and s and t are positive

rational integers s=t=1,

It is possible to prove a more general theorem than Theorem 6.
The restriction that f(x), g(x) and h(x) are monic can be omitted
and the same conclusion obtained. Such generality is not needed here,

so the theorem is not included,



The next theorem is very important. The results are used

extensively throughout the remainder of the paper,

Theorem 7. An algebraic number 6 is the root of an unique
irreducible monic polynomial f(x) 1in Q[x]. All other polynomials in

Q[x] for which 6 is a root are divisible by f(x).

Proof. Since any polynomial in Q[x] may be divided by its leading
coefficient without affecting the roots only monic polynomials need be
considered. From all the (monic) polynomials for which 0 is a root,
pick f(x) such that the degree of f(x) is less than or equal to the
degree of any of the others. Suppose f(x) 1is not irreducible, then
f(x) = g(x) h(x) where the degrees of g(x) and h(x) are less than
the degree of f(kx). Now f£(8) = g(6)h(8) = 0 implies 6 is a root of
g(x) or h(x) contradicting the choice of f(x). Thus f£(x) is
irreducible. Consider any polynomial g(x) in Q[x] with 6 as a
root. From Theorem 2 g(x) = f(x)k(x) + r(x) where the degree of
r(x) 1is less than the degree of f(x) or r(x) is zero. Now

g(0) = £(6) k(0) + r(6) implies r(6) = 0. The choice of f(x) implies
r(x) 1is the zero polynomial, thus f£(x) divides g(x). Since {(x)
divides all other polynomials with 6 as a root, the only irreducible
polynomials with 6 as a root are constant multiples of f(x). Thus
f(x) is the unique monic polynomial satisfying the conclusion of the

theorem.

Definition 8. The polynomial f(x) in Theorem 6 is called the

minimal polynomial of 6, and the degree of f(x) is called the degree

of 6.



Theorem 6 implies the minimal polynomial of an algebraic
integer is in Z[x]. If a is a rational number then x-a is the
minimal polynomial of a. Thus the only rational numbers that are
algebraic integers are the rational integers.

The next few theorems will reveal some facts about the roots of
polynomials and how the roots and coefficients of a polynomial are

related.

Definition 9. If

then the derivative, f'(x), is defined as

n .
fiilx) = Z ia.,x
i=1

Although no use of limits was made to define the derivative, all
the results from elementary calculus regarding the derivatives of poly-

nomials can be obtained, and they will be used freely.

Theorem 10. If 6 is a root of f(x) then f(x)= (x-~0)g(x). The

coefficients of g(x) may be complex numbers.

Proof. Theorem 2 with Q replaced by the field of complex numbers
gives
flx) = (x-0)gx)+r

where r is a constant., Now r = f(0) - (6-06)g(0) = 0 and the theorem

is proved. ,v.'.‘:\



Definition 11. A root 6 of f(x) has multiplicity k if

f(x) = (x-e)kg(x) and 0 is not a root of g(x). If k=1 the root is

simple.

Theorem 12. If 6 is a root of multiplicity k for £(x) and

k>1, then 0 is a root of f'(x).

Proof. From the definition

f(x) = (x - 0)%g(x)

thus

f1(x) = (x-0)"Tgx) + (x-0)5g x)

SO
£1(8)

0 and the theorem is proved.

Theorem 13. If f(x) is an irreducible polynomial in Q[x] then

all the roots of f(x) are simple.

Proof. Again, as in Theorem 7, only monic polynomials need be
considered. If © is a root of f(x) then f(x) is the minimal poly-
nomial of 6. The degree of f'(x) is less than the degree of f(x) so
that © is not a root of f'(x). Thus by Theorem 12, 6 is a simple

root.

A polynomial in n variables is said to be symmetric if the
variables can be permuted without changing the polynomial. For

example

h(x,y, z) = 3X2y222+xy+yz txz+x+ty+z

is symmetric since



h(x,y,z) = h(y,x,z) = h(y,z,x) = h(z,x,y)

n
H

h(z, vy, x) hix, z,y).
2 . L
But g(x,vy,2z) =x+y+z is not symmetric since

2
gx,y,z) # glz,x,y) = z+x+y

The polynomials

Sl: xl-i--x2+x3+...+xrl
Sp T et EX ... Xy 4%,
s3 = x1x2x3 + xlxzx4 +.., t xn-an—lxn

are called the elementary symmetric functions in n variables. If

X{,X5,.0.,X ~are roots of the polynomial
- 2 n-1 n
f(x)—a0+alx+a2x +...+an_1x + x
then {(x) can be factored

f(x) = (x~x1)(x-x2)(x-x3) (x—xn) .

Multiplying out the second form and equating the coefficients gives

_ n
ag = (-1) s,

nel
ap= (D7 Tsy
a 1% -8y-

This simple relation between the elementary symmetric functions of
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the roots and the coefficients of a polynomial is very useful. If the roots
of f(x) are bounded by M then lail < <?>Ml, where (?) is the

binomial coefficient.

Theorem 14. A symmetric polynomial in n variables with

coefficients in a ring R can be written as a polynomial in the n

elementary symmetric functions with coefficients in R,

The proof can be found in Clark [6], The usual proof of this
theorem yields a method of finding the polynomial, The theorem can
also be proved by double induction on n and the degree of the poly-
nomial. The following example demonstrates another method and also

gives a result to be used later,

Example 15, Consider the square of the Vandermonde determin-

ant
2
l x x2
2 2 2 2
A(X,Y;X) = 1 Y Y = (X_Y) (X—Z) (Y‘Z)
l =z z2

This function is symmetric in x, y and z. Let the elementary

symmetric functions of x, y and z be

a =xty+z

o
1

Xy + xz + yz

c = Xyz .

A(x,y,z) is homogeneous of degree six, that is, each term has degree

six. The combinations of a, b, and ¢ which give degree six are

cz, b3, a6, abc , bzaz, ba4 and ca3



12

Assume

A = Ac2+ Bb3+ Ca6+ Dabc + Eb2a2.+ Fba4+ Gca3

It would be possible to find the values of A, B, C, D, E, F, and G
by expanding the equation in terms of x, y, and z and equating coeffi-
cients of like x, y, z terms. Since this is very tedious seven
different values of (x,y,z) are chosen to determine a set of linear

equations for A, B, C, D, E, F and G. The values are tabulated:

X y z a | b C A
1 0 0 1 0 0 0
1 1 0 2 1 0 0
1 -1 0 0 -1 0 4
2 -1 -1 0 -3 2 0
2 1 0 3 2 0 4
1 2 3 6 11 6 4
1 -1 2 2 -1 -2 36

This gives the equations

0=2C

0 = B+ 64C + 4E + 16F

4 = -B

0 = 4A - 27B

4 = 8B +279C + 36E + 162F

4 = 36A + 1331B + 46656C + 396D + 4356E + 14255F + 1296G

36 = 4A - B + 64C + 4D + 4E - 16F - 16G .

Solving the equations gives
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or

2

A = b%a®+ 18abc - 27c¢% - 4b° - 4ca” .

This chapter concludes with the theorem that demonstrates that
the set of algebraic numbers and the set of algebraic integers are
closed with respect to the arithmetic operations of addition and multi-

plication.

Theorem 16. The product, sum or difference of algebraic

numbers is an algebraic number. If the numbers are algebraic

integers then the results are algebraic integers.

Proof. Let o and § be algebraic numbers with minimal polynomials
h(x) and k(x). Let a = Apseees be the n distinct roots of h{x)

and P = Bl’ cees Bm be the m distinct roots of k(x). Form the poly-

nomials

s(x) = II (X~aj - B;)

di{x) = II (x-aj+ﬁi)

p(x) = II (x-ajﬁi) .
Where i=1,2,.,.,m, and j=1,2,...,n. These polynomials are
symmetric in A 9@y @ and in Bl, . ,ﬁm . Theorem 14 implies

that s(x), d(x) and p(x) can be expressed as polynomials in the

elementary symmetric functions of « Sy and Bl’ ce ,Bn , but

17"
these are the coefficients of h(x) and k(x). Thus s(x), d{x) and

p(x) are polynomials with coefficients from the same domain as h(x)

and k(x). The'roots of s(x), d(x) and p(x) are thus algebraic
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numbers or algebraic integers depending on whether ¢ and B are
algebraic numbers or algebraic integers. Finally o+ is a root of
s(x), a-pP is a rootof d(x) and aP 1is a root of p(x). Note
however, that these three polynomials are not necessarily the minimal
polynomial of the sum, difference and product of o and B .

Theorem 16 implies that the set of algebraic numbers and the
set of algebraic integers form a subring of the complex numbers, One
could show that the inverse of an algebraic number is an algebraic
number and thus the set of algebraic numbers forms a subfield of the
complex numbers. This result will appear in the next chapter where

certain algebraic number fields will be studied,



CHAPTER 1II
ALGEBRAIC NUMBER FIELDS

The object of this chapter is to present some basic facts about
fields of algebraic numbers. Consider two fields H and K where H
is a subfield of K. Then K can be thought of as a vector space over
H, with vector addition ordinary addition in K and scalar multiplica-
tion ordinary multiplication in K. The field K is called an extension
of H. The dimension of the vector space K over H is the degree of

the extension K over H.
Examgle 17. The set of numbers

{a+bnN-1 :a,beQ}

forms an extensionof Q. The numbers 1 and /.1 form a basis,

thus the degree of the extension is two.

Theorem 18. If K is an extension of Q and the degree of the

extension is finite, then the members of K are algebraic numbers.

Proof. Let the degree of K over Q be n and let 6 be in K, Then
1,6,07,...,8" are n+1l vectors in K and must be dependent.
This means there exist ags gy, in Q not all of which are zero
such that

2 n _
a0+a19+a29 +...+an9 = 0.
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Thus © is a root of

2 n
a0+a1x+a2x +,..+anx

a polynomial in Q[x], which implies © is an algebraic number.

Because of this theorem finite extensions are often called
algebraic extensions. The next theorem is quite useful later. It is

proved here in a general setting.

Theorem 19. Let H, B and K be fields such that H(C B(C K,

the degree of B over H is m, and the degree of K over B is n.

Then the degree of K over H is mn.

Proof. Let bl’ b2’ ... ,brn be a basis of the vector space B over H
and kl’ kZ’ .oy kn be a basis of the vector space K over B. The
products bikj i=1l,2,...,m; j=1,...,n form a set of mn vectors

in K. The theorem will be proved if this set can be shown to be a

basis of the vector space K over H. Consider

n m
= 2 h..bk. =0 h..eH
j=1 i=1 N 1) H
Then
m
2 h..b. i=1,2,...,n,.
ji=1 Y !
is in B. Since kl,kz,...,kn is a basis of K over B
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implies

Z h.b, =0 j=1,2,...,n.

This last equation implies hij =0 for i=1,2,...,m and
j=1,2,...,n since b ,b,,...,b is a basis for B over H, Thus
1’72 m

the set of vectors bikj is independent. Let x be in K. There exist

yJ. in B for j=1,2,...,n such that
n
x = Z y.k. .
j=1 JJ
For each yJ. in B there exist hij in H, i=1,2,...,m such that
m
y. = Z h..b. ji=1,2, , h
J i=1 W
Thus
n m
x= 2z Z h..b.lk. .
j=1 i=1 ¥ *J

Hence the set of vectors bikj form a basis for K over H.

Let 6 be an algebraic number with minimal polynomial f(x).
For any g(x) in Q[x], g(0) is the value of g(x) at 6. From
Theorem 16, g(0) is an algebraic number. Let Q[e] be the set of
values at 6 for the polynomials in Q[x]. The numbers in Q[6] can

be thought of as polynomials in ©.

Theorem 20. Let 6 be an algebraic number. Then Q[G] is a

field.
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Proof, Qf6] is a subset of the complex numbers (including Q), thus
all that is needed to complete the proof is closure and inverses under
addition and multiplication. Let g(8) and h(8) be in Q[8] where
g(x) and h(x) are in Q[x]. Then g(x)+ h(x), g(x)h(x) and -g(x)
are in Q[x] so g(8) + h(8), g(6)h(6) and -g(B) are in Q[6]. All
that remains to be shown is that if g(8) # 0, then g(8) has a multipli-
gative inverse in Q[0]. If f(x) is the minimal polynomial of 8, it
follows from Theorem 2 and the fact that f(x) is irreducible that f(x)
and g(x) have no common factor. Theorem 3 implies there exists
k(x) and r(x) in Q[x] such that g(x)k(x) + h(x)f(x) = 1. Thus

1 =g(0)k(6) + h(6) f(0) = g(0) k(6) since £f(6) = 0. So k(B) is the

multiplicative inverse of g(9).

Different polynomials in Q[x] may have the same value at 0.
The following theorem will pick out one polynomial for each number in

Qfe].

Theorem 21. Let 6 be an algebraic number of degree n. Then

Qfe] = {g(®) :g(x) is in Q[x] and either the degree of g(x) is less

than n or g(x) is the zero polynomial} .
For each element of Q[8] this polynomial is unique.

Proof. Let f(x) be the minimal polynomial of 8. The degree of f(x)
is n, the degree of 6. Let h(x) be in Q[x]. Then from Theorem 2
h(x) = {(x)q(x) + r(x) where the degree of r(x) is less than n or r(x)
is the zero polynomial. The value of h(x) at 6 is then

h(0) = £(8)q(0) + r(0) = r(6). This proves the first part of the theorem.

If h(x) and k(x) have the same value at 6 and both have degree less
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than n, then k(x)-h(x) has 0 as a root. The degree of h(x) - k(x)

is less than n. This contradicts the degree of 6 being n unless

Corollary 22, The numbers 1,80, 92, e Gn-l form a basis for

Q[6] over Q. The degree of 0 is the degree of the extension Q[6]

over Q.

Proof. From the theorem each element of Q[6] is a unique linear

combination of 1,0,..., o™~ 1 , with coefficients in Q, thus

1,0,..., 0" ! isa basis for Q[6] over Q and the dimension of the

vector space is n.

Example 23, Consider

If f(x) is reducible one of the factors must be linear since f(x) is
cubic. The root of a linear factor must be rational. Thus to show that
f(x) is irreducible one must show f(x) does not have a rational root.
From elementary theory of equations if f(x) has a rational root the
numerator of that root divides 27 and the denominator divides 8.
Testing all of the possibilities shows f(x) has no rational roots thus
f(x) is irreducible. Let @ be a root of f(x), then f(x) is the minimal
polynomial of @ and @ is an algebraic number of degree 3, The

numbers in Q[a] can all be expressed in the form

a+ba+ca2 a,b,ceQ.
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Corollary 22 and Theorem 18 imply all the elements of Q[6]
are algebraic numbers, Thus Q[6] is referred to as an algebraic

number field. Let ¥ be in Q[0] and consider the set 1, YV, Yz, e ‘i’k.

For some k >0 this set is dependent while 1, Y, \yz, ces \yk'l is
independent over Q. Just as in the proof of Theorem 18.the minimal

polynomial of ¥ must have degree k. This leads to the following

result.

Theorem 24. Let ¥ be in Q[68]. If the degree of ¥ equals the

degree of 6 then Q[v] = Q[6].

Proof, Let the degree of 6 be n, The numbers 1,V, \yz, ces Yn-1

form a basis for Q[G] since they are n independent elements, They

are also a basis for Q[v]. Thus Q[v] = Q[e].

Let [ be the root of a polynomial with coefficients in Qle].
Then a new field Q[G][g] can be formed in the same manner Q[6]
was formed. It can be shown that there is an algebraic number ¥ such
that Q[v] = Q[6] [g] A proof can be found in Clark [6]. This result

implies the numbers in Q[6][¢] are also algebraic numbers.

Theorem 25, If 6 is an algebraic number there is a rational

integer m#0 such that m6 is an algebraic integer, and

Q[me] = Q[e].

x

Proof. Let the minimal polynomial of 6 be

f(x) = x" +
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where (aj, bj) =1 j=0,1,...,n-1. Let m be the least common
multiple of bo, bl’ oo bn—l . Define g(x) = mnf(x/m) . Clearly g(x)
is monic and g(x) is in Z[x]. If g(x) is reducible then f(x) is.
Since f(x) 1is irreducible g(x) is irreducible. Finally
g(m®) = mnf(e) = 0 so g(x) is the minimal polynomial of m®6 and
m6 is an algebraic integer of degree n in Q[6]. Thus Theorem 24
implies Q[m6] = Q[6].

Thus an algebraic field extension Qle] may always be defined

‘in terms of an algebraic integer.

Example 26. Consider the algebraic field extension Qo] from
Example 23. The least common multiple of the denominators of the
minimal polynomial of ¢ is 8. Let f = 8a then the minimal poly-

nomial of B is

3

2
X 3x 15x 27
= 512(512 -T2 2t T)

(10}
X
!

x> - 12x% + 240% + 1728,

Each of the root‘s of g(x) is 8 times a root of the minimal polynomial
of .

When Q[6] is regarded as a vector space over Q a linear trans-
formation from Q[0] to Q[6] can be defined for each element of
Q[6] in the following way: Let ¥ be in Q[6], define FY:Q[G]—» Qo]
by FY(C) = ¥¢ for each ( in Q[e]. Then, for Cl’ ¢ in Q[6] and

a in Q,
F 0+ G) = (C + 0¥ = ¢ ¥+ 0¥ = Fyle)) + Fy(cy)

F,(agy) = (ag)¥ = a(g¥) = aF,(gy) -
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For each basis of Q[0] there is a matrix representation of F‘i"

Although changing the basis changes the matrix representation of F‘i”
there are some quantities which are independent of which matrix
represents F‘i" ‘Three of these quantities are the trace, the determin-

ant and the characteristic polynomial of the matrix. These facts are

proved in Zelinsky [19].

Definition 27, Let ¥ be in Q[6] and F‘l’ the corresponding
linear transformation. The trace, determinant and characteristic
polynomial of a matrix representation of F‘F are called the trace,

norm and characteristic polynomial of ¥ respectively. The norm will

be denoted by N(¥) and the trace by T(y).

It is important to note the linear transformation F‘i’ depends on
the algebraic number field from which ¥ is chosen. The following
examples and theorems demonstrate how the norm, trace and
characteristic polynomial of an algebraic number are related to the

field from which ¥ is chosen.

Example 28. Let o be the algebraic number of Examples 23 and

24, Then

3 27

a —-8'4 za .

With 1, «, az as a basis for Qo] a matrix representation of Fa

and F, where f = 8« can be calculated in the following manner:

B
F(l)=a =0+a+0
a
F‘a(a)=aZ:0+0+a2
20 3. .21 15 .3 2
Fa(a)—a-—8—4a+2a
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The values for F, are simply 8 times the values for Fa . The

B

matrix for Fa is

27
0 0 "8
3 15
A =11 0 -
3
0 1 >
. . 27 3
and the matrix for F‘3 is 8A. Thus N(z) = detA = - g T{a) = 3

N(B) = 83 detA = -1728 and T(B) = 8T(a) = 12. Note the characteristic

polynomial of f is

X 0 27
det(xI-8A) = | -8 x 30
0 -8 x-12

x3 - 12x2 + 240x + 1728

where I is the idenfity matrix, From Example 24 det(xI-8A) = g(x)
the minimal polynomial of 8. The exact relationship between the
characteristic polynomial and the minimal polynomial of an algebraic
number will be shown in Theorem 31.

If ©, ¥ and { are numbers from an algebraic number field then

I

Foy(C) = C(0Y) = ((O)Y = F\((®) = F,(Fy(g) and

b

Fgoyl0) = C(BFY) = (8 + (¥ = F(Q) + Fy(0) = (Fg+FY(Q) -

From the properties of matrices and their relationships to linear

transformations the following theorem can be established.
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Theorem 29. Let ¥ and { bein Q[6], then N(vg) = N(y)N(¢)

and T(v+() = T(¥)+T().

The next two theorems use Theorem 19 to show how the degree of
an algebraic number in Q[8] is related to the degree of 8 and how the
minimal polynomial of a number is related to its characteristic poly-

nomial.

Theorem 30. Let ¥ be in Q[8]. Then the degree of ¥ divides

the degree of 6.

Proof, The set 1,v, ‘i’z, .. ’Ym-l where m is the degree of V¥ is a

set of independent vectors in Q[8]. Thus Q[vy] is a subspace of
Qle]. Now QC Q[v]C Q[6] are fields satisfying the hypothesis of
Theorem 19. The degree of Q[y] over Q is m the degree of ¥ and
the degree of Q[8] over Q is the degree of 8. Theorem 19 implies

the degree of ¥ divides the degree of 9.

Theorem 31. Let ¥ be in Q[B] and the degrees of ¥ and 6 be

m and n. Then the characteristic polynomial of ¥ is the minimal

polynomial of V¥ raised to the power k=n/m.

Proof. The fields QC Q[v] C Q[6] satisfy the hypotheses of
Theorem 19. The numbers 1, v, ‘yz, ey ’Ymd form a basis for
Q[y] over Q. Let Cl’ Cprv-ea by be a basis for Q[6] over Q[y.
Note that the scalars for Q[6] over Q[\y] are members of Q[‘i’],
not Q, From Theorem 19 the numbers gi‘yj i=1,2,...,k

j=0,1,2,...,m-1 form a basis for Q[6] over Q. Let the minimal

polynomial for V¥ be
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then

Now

F(g) =0+ g¥+0+...40

_ 2
Fy((¥) =0+ 0+ ¥  +0+...+0

1 1

m -~ _ m _ m -~
Fw(gk\y ) =g Y =0+...+0-byg-big ¥ - b (Y

where each equation has enough zeros to make n terms. The matrix

A of F_ contains k copies of the matrix

Y

0 0 0 . 0 -bo
1 0 0 0 —b1
0 1 0 0 -b

B = 2
0 0 1 0 -b3
0 0 0 1 ~b

m-1

down the main diagonal with zeros elsewhere. The characteristic

polynomial of ¥ is thus
det(xI-A) = (det(xI - B)>k - (f(x))k .

Corollary 32, Let ¥ be in Q[O] where the degree of 6 is n

and the characteristic polynomial of ¥ is
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n
Then N(¥) =(-1)"a, and T(y) = -a Let V= \yl,\yz, ""Ym be

k

0

the roots of the minimal polynomial of ¥, then N(Y¥) = (\ylwz R \ym)

n-1"

and T(vy) = k(\y1+ Y, + ...+ \ym) where k=n/m.

Proof, The first conclusion follows from the rules for computing
determinants. The second from the relations between the roots of a

polynomial and its coefficients.
The next corollary will be a very useful tool.

Corollary 33. Let ¥ be in Q[8]. If ¥ is an algebraic integer

then the norm and trace of ¥ are rational integers.

Proof. If ¥ is an algebraic integer then -a and (—l)na

in
n-1

0

Corollary 32 are rational integers,

The results of Theorem 31 and the two corollaries were
demonstrated in Example 28.

Let 6 = 91, 92, e Gn be all the roots of the minimal polynomial
of 8. Then each root defines an algebraic number field Q[Oj]
j=1,2,...,n. These fields are not necessarily distinct, Let V¥ be in
Q[e] and let g(x) be the unique polynomial of Theorem 21 that
corresponds to ¥. Then there is a correspondence between elements
of Q[6] and Q[Oj] given by v = g(0) — \yj = g(ej). This corres-
pondence clearly preserves arithmetic operations. That is, if
v+£=( then \yj+ §j = gj and if V€ = X then ngj = 7\j . The fields
Q[GJ.] j=1,2,...,n are called the conjugate fields and the numbers
Yl’ YZ’ ey \yn are called the conjugates of y with respect to those

fields.
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Theorem 34. Let ¥ be in Q[6]. Then the conjugates of y are

the roots of the minimal polynomial of v,

Proof. Let \yj = g(ej) and let f(x) and h(x) be the minimal poly-
nomials of 8 and Yy respectively. Now h(y) = h(g(e)) = 0. Thus f{(x)

divides h(g(x)) . Therefore h(\yj) = h(g'(ej)) =0,

It follows from Theorems 31 and 34 that the conjugates of ¥ are
the roots of the minimal polynomial of ¥ repeated enough times to

make n numbers where n is the number of conjugate fields.

Example 35. Let f(x)=x4—3 and ¢ = é/‘?;— The conjugates
of ¢ are crlzé/?,—, 02=—f7—§,cr3=\/jf7'§ and cr4=—\/TT é/?
A basis for Qo] is 1,0,02,03 or 1,%/’3—,\/—?;,%/-2—7. Let 'ri=l+o-?
or T, =1+43, T, = 1-+3, Ty = 1+ 43, T4 T 1 -+3. The minimal

polynomial of T is clearly xz- 2x -2, As another example of

Theorem 31 a matrix representation for F'r is determined. Note

4

o =3,
2
F’r(l) =T =14+0+c +0
FT(O') =T0'“—'O+l'+0+0'3
FT(0'2)21"0'2=3+0+10'2+0
FT(0'3) s 700 = 0+ 30+ 0+ 10>

The basis used in Theorem 31 is not the basis used here. The basis
used in the proof of the theorem demonstrated the desired result, but,
from a computational point of view, it is difficult to discover and use

that particular basis. The matrix of FT is
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The characteristic polynomial of v is det(xI-A)

x-1 0 -3 0
0 x-1 0 -3
= (xz— 2x-2)2 .
-1 0 x-1 0
0 -1 0 x-1

Also T(r)=4=2(r +7,) and N(r)=4=(r7,)° where 7, and ~

1 2

are the distinct roots of the minimal polynomial of .

There is one concept left to be discussed in this chapter.

Definition 36. Let Q[6] be an algebraic number field of degree

n over Q. Let \yl,wz,...,wn be in Q[6] and let \yil,\yiz,...,\yin

be the conjugates of Y. The number

AY ¥y -en ¥ ) =

is called the discriminant of Yl’ \yz, v \yn .

The discriminant is a symmetric function in each of the conjugates

of Y. Theorem 14 implies the discriminant is a rational number. If
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all the Y, are algebraic integers then the discriminant is a rational
integer. The discriminant of 1, 8, 62, ce ey Gn_l will be used frequently

in Chapter III.

Example 37. Consider the algebraic number field Q[a] of

Example 23 where o is a root of x3 - %—xz + —14ix + ESZ .
1 2 |
a; @
A(l,a,az) = 1 as azz
2
1 oz3 ag

where ap,a are the conjugates of . From Example 15

2°%3
A(l,a,az) = b2a2+ 18abc - 27c2 - -’J:b3 - 4ca3 where

_ - -3
a—a1+a2+a3—T(a)-2

Thus A(l,a,az) = -783. The discriminant of 1, B, ﬁz where B = 8a
can be computed in the same manner using results of Example 26
Al B, ﬁz) = -205258752. Note that A(l,a,az) is in Z but not all of

the algebraic numbers l,oz,cz2 are algebraic integers.

Theorem 38, Let Yl’ YZ’ N Yn be in Q[6] where the degree

of 8 is n. If

AR ij
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. 2
121,2,...,1'1 then A(gl’gz,...,gn): 'Al A(‘i’l,‘i’z,-..,‘i’n)- Where

[A] is det(aij).

Proof. Let Yij be the jth conjugates of ¥ and §i respectively.
Let B and C be the matrices with entries Yij and gij respectively,

Then C = AB and

21B1% = [al%Aty), vy .0,y

A€ €y ... 6 ) = |CI% = [AB]? = A .

Example 39. The matrix relating l,oz,oz2 and 1, B, BZ in

Example 37 is

1 0 0
A = 0 8 0
0 0 64
1A% = (512)% = 272144 and
2 2 2
A(l,B,P) = -205258752 = (272144)(-783) = (512)"A(l,a,a ) .
T'heorem 40. The discriminant of any basis of Q[6] is never
zZero.,

Proof. Given any two bases of Q[6] there exists a matrix A relating
them as in Theorem 38. Furthermore A is nonsingular, Thus if one
basis with a nonzero discriminant can be found, Theorem 38 will imply
that the discriminant of every other basis is not zero. Consider the

2 n-1

basis 1,6,6,...,6 Let Gj be the jth conjugate of 6 then
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2

2 n-1

1 e, 6 ) 0,
2 n-1

1 o 6 0

A(l,8,0%, ..., 0% Y= 2 2 2
1 6 6 2 g n-1

n n n

This is the square of the Vandermonde determinant thus

A1, 0,0%,...,08%" 1) = (6, - 0,)%(6, - 0 Z .. 2,

Since all the GJ. are distinct the discriminant is not zero.

Note also that all the discriminants of bases of Q[6] have the
same sign. If all the conjugate fields of Q[8] are real fields then all
the ©. are real and the discriminant is the square of a real number,
Thus the discriminant of a basis must be positive if all the conjugate

fields are real,

Theorem 41, Let Q[6] be an algebraic number field and f(x)

the minimal polynomial of 8. Then

‘ n(n-1)
a(1,0,0%,..., 0%y = 1) 2 N(f'(e)).

Where n is the degree of f(x) and f'(x) is the derivative of f(x).

Proof. Let Gj be the jth conjugate of 6, then

and
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n n
= I = o (e, -86.)
k=1 | i=1 |j#i
n
= I o (6 -e))
k=1 (j#k k
n(n-1)
2 2
= (-1) I (e, -6.)
k<j < J
n(n-1)
= (-1) % a@,e,0%,.. ., 0%,

In the next to the last step half of the n(n-1) terms are reversed in

order.

Example 42. Let p be a prime number. It can be shown that

fx) = =Pl xPl kP 3 rx4

is irreducible [6]. This polynomial is called the pth cyclotomic poly-

nomial. Let w be a root of f(x) then

p-1
Al w02, ..., wP%) = (-1) 2 N(‘(w))
The norm of f'(w) is computed in the same manner as in Example 28,
Let F be the linear transformation of Q[w] determined by f'({w).

Note that
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f'lw) = 1 +2w+3w2 +...+ (p--l)cop.2
and
p-1_

w ——l—w—wz-...-w .

Now

'Tj .
—_

—

i

fHw) = 1 + 2w + 3w2 + ...+ (p- l:)(_op-z

Hy
&
i

fllw)w = 1-p+(2-p)w+(3—p)w2+... -w

F(wz) = f’(oo)oo2 =1+ (2-plw+t (3—p)w2 + .. _wp—Z

F(wp-z) = f‘(w)wptz.: l+w+w2+... _wp-Z .
So the matrix of F is
1 2 3 . p-1
l-p 2-p 3-p -1
1 2-p 3-p -1
A =
1 2 3-p -1
1 2 3 -1

The determinant of A is the norm of f'(w). It can be shown that the

determinant of A is pp_2 thus



CHAPTER III
RINGS OF ALGEBRAIC INTEGERS

The main theme of this chapter is to develop some theorems
regarding the structure of the set of algebraic integers contained in
some algebraic number field. It follows from Theorem 16 that the set
of all algebraic integers in a given algebraic number field forms a
ring, in fact it forms an integral domain. An algebraic number field
is quadratic or cubic if the degree of the extension is two or three
respectively. Many of the results in this chapter will pertain to
quadratic and cubic extensions, although Theorem 47, the main
theorem of the chapter, relates to extensions of arbitrary degree.
More exhaustive results on quadratic extensions can be found in Reid

[14], and on cubic extensions in Delone and Faddeev [7]

Example 43. Consider Q[NV6] where x2-6 is the minimal
polynomial of A& . The numbers in Q[+ ] are of the form a+b~%
a,b in Q. Suppose 6 =a+bn6 is an algebraic integer. If b=0
then 6 =a isin Z, or 0 is a rational integer. If b#0 then 6 has
degree two and the characteristic polynomial of 6 is the minimal

polynomial of 6. Computing Fe

by

—~——
=

et
1

0 = a+bAN6

by

x

et
I

N6O = 6b+an6 .
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Thus the minimal polynomial of 0 is

:xZ-Zax+a2—6b2.

For 6 te be an algebraic integer 2a and az - 6b2 must be in Z.
Clearly if a is:in Z then b must be in Z. If a=§- for an odd

rational integer r then

is in Z, This implies

r? - 24b% = 0mod4

or r2 Z0mod4. Since r is odd this is impossible. Thus the

algebraic integers in Q[«% ] are all numbers of the form a+by%
with a and b in Z.

If Q[6] isa quadratic extension of Q then_ 0 is the root of a
quadratic equation. Thus there are a, b, ¢ and d in  Z such that
0 = ﬂg——@ where b#0, c#0 and d is square free. The numbers
1 and 6 form a basis for Q[6], thus «d = -—;—'1 + %960[9]. Since
the degree of A/d is two, Theorem 24 implies Q[0] = Q[Nd]. Thus

all quadratic extensions can be expressed in the form Q[-\/_d—] where

d is a square free rational integer.

Theorem 44. The algebraic integers in Q[\/E] where d is a

square free rational integer are of the form

a+bnNg if d =2,3mod4
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or . <

a+b _1_%@__ if d=1mod4

where a,beZ.

Proof. Let 06 =r+syd bein Q[vd]. Asin Example 43. The

minimal polynomial of 6 (s#0) is
x2 - 2rx + r2+ szd

If 6 is an algebraic integer 2r and r2+ de arein Z. If d=2 or

3 mod4 then r and s are in Z by the same reasoning as in Example

43, If d=1mod4 then 2r and 2s are both odd or both even
rational integers. Thus 6 = r+safd = (r-s) + (2s) -l——tz—\/—ﬁ— where

r-s and 2s arein Z.

This theorem states that the ring of integers in a quadratic
extension forms a free Z module with two generators. The next

theorems generalize this result to extensions of arbitrary degree.

Theorem 45. Let 6 be an algebraic integer of degree n and let

A=A(1,8,..., e““l) . Then all the algebraic integers in Q[6] can be

expressed in the form
n-1

vZ‘, a.o a,eZ .,

L
A 5zp J

Proof. Let Gi be the ith conjugate of 6. Consider an algebraic

integer v in Q[y] then
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Now the object is to show the rj can be written as a rational number
with denominator A. This is done by setting up a system of n

equations for r , T with coefficients in Z. From

0,1‘1,... n-1

Corollary 33 the trace of an algebraic integer is in Z. Calculating

the traces of ¥© from Corollary 32 gives

n {n-1 . n-1 .
T(y) = zrdl= = {2 o|r
i=1|j=0 J1i j=0 \i=1 i | )
n n-1 . n-1 n .
+1 +
T(¥0) = = | = r. & =z |z &t N
i=1 | j=0 J i j=0 \i=1 1 j
n n-1 . n-1 n .
T(Yen-'l) = 5 5 r.QJ+n_1 5 - QJ+n_1 .
i=1| j=0 11 j=0{i=1 1 )

The coefficients of the rJ. are symmetric functions in 91, 92, v e Gn .
Theorem 14 states that these coefficients can be written as polynomials
in the elementary symmetric functions of 91, 92, N On . Since 0 is
an algebraic integer, the elementary symmetric function of

91, 92, e ey Gn are in Z. Thus the coefficients of rJ. are rational
integers. The rj‘s can be expressed as the ratio of determinants

according to Cramer's rule if the determinant of coefficients is not

zero. The determinant of the coefficients is
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Theorem 40 implies A#0. Thus from Cramer's rule the r. can be
expressed as the ratio of determinants, The denominator determinant
is A, The numerator determinant has only numbers from Z as
entries thus the value of that determinant is in Z, Thus rj has the
desired form.
Note that the theorem did not say that numbers of the form
1 n-1

-—  Z a.ej. a.e’Z
A j=0 J J

are always algebraic integers.

Example 46. From Example 37 with A = -205258752 let ag= 1

0 Then L is a number of the form in

and a=a=...=an_l= . A

1 2

Theorem 45 that is not an algebraic integer.

Theorem 47. Let Q[6] " be an algebraic number field where 6

has degree n. There exist algebraic integers P2 Poscees Py in Q[6]
such that any algebraic integer v in Q[6] can be exressed uniquely in

the form

Proof. Theorem 25 implies that 6 can be assumed to be an algebraic

integer without any loss of generality. Let A = A(l,6, 92, e Gn-l)

as in Theorem 45. Consider algebraic integers in Q[e] of the form
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_ 10
Pl A
) a20+ a1 0
P2 ~ A
(48)
n-1
) an0+ an16+...+an’n_16
Pa = A
where aij is in Z. Since © = —2—93 there is an algebraic integer

. for each j in Equation 48 with a, . . # 0. Choose p. from the
i ! d Jsj-1 J -

algebraic integers of the form in Equation 48 such that la

i, 3-1 [ is
the smallest positive rational integer, j =1,2,%u..,n .. The theorem
will be proved when it is shown that Pl Pyreees Py satisfy the

conclusion of the theorem. Let V¥ be an algebraic integer in Q[8]

then Theorem 45 implies

botb 0+...+b 6"}
_ 0 1 n-1 b.eZ
Y = A j
From the division algorithm b =z a +r where
n-1 n n,n-1 n-1
0 < r 1< lan,n-ll . Now Y-z p, 1isan algebraic integer and
1 n-1 j
Y-2p= A ? (bj - Znanj)e :
j=0
. . n-1 . Tn-1 . .
Thus the coefficient of 6 is , Since r < [a [ it
A n-1 n,n-1

must be that r o= 0 because p, was the algebraic integer of this
1

form with the coefficient of Gn_ least in numerical value, This

process is now repeated, that is (b

n-2"Zn?n,n-2) ~ #n-1®n-1,n-2 T Tn-2
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where 0 < r .2 < [an-l,n—Z . Examination of the algebraic integer
Y-z p -2, 1P .1 shows r.o.2° 0. This process is repeated until
¥=-2 p =2 1Py_1] " " 2P 0 or
n
\yzjflszj szZ.

Thus all the algebraic integers in Q[6] can be expressed in the desired

form. In particular 1,80, 92, e ooy On-l can be, thus P12 PsecesPy

must be a basis for Q[8]. This implies that the Zj zre unique,

Definition 49. Let Q[B] be an algebraic number field and have

degree n. The algebraic integers P2 Pprecesp, are called an

integral basis for Q[B] if they are a basis for Q[B] and every

algebraic integer V¥ in Q[8] can be expressed in the form

Every algebraic:number field Q[e] has an integral basis
(Theorem 47). For a quadratic extension Theorem 44 completely
describes. the situation, In general-finding an integral basis for a given
extension is a difficult task, However it can-be shown that the discrim-

inant of an integral basis is minimal.

Theorem 50. Let V.,V¥,,...,YV be algebraic integers that
1’ %2 n g

form a basis for Q[O], and let PpaPps-ees Py be an integral basis
for Q[6]. Then |AY ], ¥, ...,\yn)[ > IA(pl, Pys - ..,pn){ . Equality

occurs if and only if V., V¥,,...,¥ is an integral basis for Qle].
y 1’12 n
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Proof. Since PlsPpreess Py is an integral basis there exists zij in

Z such that

n
y = Zz,.p. i=1,2,...,n.

IL,et A be the matrix with zij as entries. From Theorem 38

2
ALY ¥ys e es ) = (detA)*Alp), pysennsp )

Since the Zij are in Z detA is in Z. Theorem 40 implies

detA # 0. Thus (detA)2 > 1 which implies

Aty vy v )] > [Alpyapyseeenp)] -

The numbers V¥.,¥.,,...,¥% are an integral basis if and only if A"1
1772 n g

has entries in Z, This is true if and only if detA and detA"1 are

both in Z. Since detA™’ = (detA) ' it follows that |detA] =1 and

A(Yly YZ’-- -’Yn) = A(plp pz:- v ey Pn)-

The number A(pl, Ppsees pn) is called the discriminant of

Qfe].

Example 51. Consider Q[~d]. If d =2 or 3 mod4 then

1,7d form an integral basis and the discriminant of Q[~d] is

If d=1 mod4 then 1, 1+2\/—CT forms an integral basis and the

discriminant is
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2
1+4/d
1 —_—
2
an, 184 . SN
4

Thus the discriminant of Q[«d] is 4d when d =2,3 mod4 , or is
d if d=1mod4.
Let £ be an algebraic integer in Q[8] with representation

according to Theorem 45

s-1 j
= = > a.b a.eZ
- j=0 ]

= a =0.

where s-1<n-1, Thatis assume a n-1-

s Zs+l
Then the correspomding representation of § according to Theorem 47

is

In other words =z =...=z = 0. This follows from the way

s+l ~ Zs42
the Zj were calculated in the proof of Theorem 47. This fact will be
used to discover many relations among the a.lj‘s of Equation 48 when

PpsPyre--s Py is an integral basis. Note that Py in Equation 48 is in

Q thus if py isto be an algebraic integer Alalo. Thus the smallest

non zero ,alol is Avso p; can always be chosen as 1. Now
. . jtl
J o Bgls = -
6 = AG —ii?lz.lp.1 j=1,2,...,n-1,

Calculating Zj+1 as in the proof of Theorem 47 gives A = Zj+1aj+1,j .
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The number

Thus aj+l,j,A for j=1,2,...,n-1. Let A, =

Gpj is an algebraic integer for j=1,...,n. Now

a..0+a. 62+...+a g’
6o, = —i9 1 .j=1
PJ A
and
jt1
B8p. = Z z.p.
S 5
Thus a. . =z, ,a, . or a. .la. . for j=1,2,...,n-1,
Joj-1 1+, J+1sJ‘ Joi-1 J

Since A = A.a. . the fact that a

535,51 :Aj+1aj+l,j implies

+1,51%5,5-1
Aj IAj+l . Induction on j will be used to show that for 1 <j<n

aj,j-l‘ajk k=0,1,2,.,..,j-1. For j=1 alO[aIO' Suppose the
statement is true for j=1,2,...,s. Now
s+1
Opg = 2 %P
i=1
or
s
Zs+1Ps+1 ~ eps = ? 2iPy
i=1
25,s-1
Then since =z 41 = ;—’-——-——-
S stl,s
A AQ S A
—_— [ S o] + = =z, ™ P .
a's+1,s stl a's,s—l S q=1 ? a's,s—-l !

Using Equation 48 to write this equation as a polynomial in 0, the left

side is
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a a a a
a's+l,0 + a’s+1,l 0 + s+1,2 e2 +.t s+l,s 6° ’
st+l,s s+1l,s a's+l,s a's+1,s
while the right hand side is
a a a
- 50 g+ 8L g2, 4 as’s‘les
s,s~1 s,s-1 s,s-1
. o3 A%ic1 [ F00 ), iyl o4 4 hi-l il
i=1 %s,s-1 \%i,i-1  3i,i-1 3i,i-1

The coefficients of 8" on the left side must equal the right side since
1,0, 62, ce s 0" ! isa basis. All the coefficients on the right hand
side are rational integers by the induction hypothesis. Thus the

coefficients on the left hand side are also in Z, and the induction is

completed. Summing up, Q[6] has an integral basis of the form

where hj (x) is a monic polynomial in Z[x] of degree j-1. Also
AJ. lAj+1 and
no 2
A(pl,pz,...,pn) 1:I Aj:A(l,B,B,...,G ).
Since la.j j~1l is picked to be smallest, then 'A_]‘ must be picked
largest. Finally Py = 1.

Example 52. Consider Q[w] where w is a root of the pth

cyclotomic polynomial as in Example 42. Now

xP .1 = (x-i)(xp-1+xp-2+...+x+l) .
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Since the second factor on the right hand side is the minimal polynomial

of w it follows that wP=1. Thus (co‘])pz WPz (wp)J =1 so « isa

P_1. The only root of x~1 is 1 thus w,wz,w3,...,wp—l

root of x
must be the p-~1 roots of the minimal polynomial of w. No two of
those powers of w are equal because of the properties of the minimal

polynomial. Thus N(wJ)z-l and T(coJ)=-l for j=1,2,...,p-1.

Consider the number X =1-w. The matrix of F for the basis

A
10,40, ’wp-Z is found from
F)\(l) = l-w
F)\(co) = 0tw-w
F)\(cop-3) = 0+0+...+ 0+uP 3 P2
F)\(wp“z) = 1twtel ... +oP 24 20P72

Thus N(A)=p and T(A)=p. The next two lemmas will be used to

prove that l,w,wz, ces ,wp—Z form an integral basis for Q[w].

Lemma. Let ¥ be an algebraic integer in Qlw]. If ¥\ isin Z

then pl\y)\.

Proof. The matrix of F‘i’)\ with respect to the basis l,w,coz, ..o ’wp~2

is a diagonal matrix since F )\(coJ) =y Ao , j=0,1,,..,p=2 and ¥\

¥
is in Z. Thus

Ny A = (vMP L= Nw)NOY = Nw)p .

Since N(y) is in Z it follows that p|yX.



47

Lemma. Let £ be an algebraic integer in Q[w], then p|T(EN).

Proof. Since £\ 1is an algebraic integer T(EN) is in Z. The
previous lemma can be applied if T(EN) can be shown to be the
product of A and some algebraic integer in Olw]. Let the conjugates
of £ be §l,§2, cee ’gp—l . The conjugates of \ are

1-w, l-wz, e l—wp_l . Note that

. j-1 j-1
1 - = (1l-w) = wk= Az wk
k=1 k=1
Thus
-1 . -1 -1 K
TEN = = £.(1-w) = A Z £, 2 o
j=1 j=1 k=1
Since
p-1 -1
zZ § = wk
j=1 k=1

is an algebraic integer in Qlw] the proof is complete.
p-2

Now to show that 1,w,...,w forms an integral basis for

Qlw] consider an algebraic integer £ in Qw]. Then

The proof will be complete when it is shown that the a, are in Z. Now
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p"z' i

Tl Z a.w (1 -~w)
. i
i=0

=
—
ure
z

n

p-2 i i+l

I
—
™
)

Bl

]

€

)

i=0
p-2 .
- ' % a (T(wl)~T( 1“))
i=0
= aoT()\) = a,p

is in Z, Now wP=1 sO

So aO:—T—%)Ql but p|T(EN) thus a

0
p-1_ -1 . .. . .
w = w is an algebraic integer in Q[w]. Consider

-1 _ P2
(§—ao)w L. s a.w 1

The trace of (§ —ao)w'l)\ and the second lemma can be used to show

a, is in Z just as ag is. This process can be repeated to show all

a, are in Z. Thus l,w,wz, . ’wp-Z is an integral basis for Qfw].
The rest of the chapter is one long example demonstrating a

method for finding an integral basis,

Example 53. Consider Qle] from Example 23. The number
@ is not an algebraic integer. In Example 26 the number B =8« is

an algebraic integer and 1, B, ﬁz form a basis for Q[a]. From

18

Example 37 A(l, 8, B°) = -205258752 = -(2)'8(3)3(29) = A. The

minimal polynomial of B is g(x) = x3 - 12x2+ 240x + 1728, Basis

elements exist with the form of Equation 51, that is
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Py =1
Py = a_A-{-_E a,b,ceZz
2
btcf+ @2
P3 Ay

Since A(l,pz,p3)=A(1,p2+h,p3+klvp2+k2) for h,]:c1 and kZ in Z

1p2+ k2 is an integral

basis if 1, Pos P3 is an integral basis. By making the appropriate

it follows from Theorem 50 that 1, p2+h, p3+k

choice for h,k1 and k2 the numbers a, b and ¢ can be chosen such

that

la] <fa,] bl <]ag] le] <]ag] (54)
without loss of generality. Since
1 =1
Py = -Aa—z + -Al—zﬁ
2 2 2

6.
Theorem 38 implies A(l,pz,pzz) - (—1—-) A(l,8, %) . Hence

A
6(,18,3 2
A, 2773729, Since A, is to be as large as possible the first
candidate for A, is 23 = 8. Let FZ be the linear transformation

corresponding to ‘32 then

1
F,(l) = o= + =8
2 2 A
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_ a 1 .2
Falf) = 0+ B+ 26

2 2
2 1728 240 +12 2
89 = - 5 -A25+aA c
2

The characteristic polynomial of Py is

a 1
X -=" - 0
) A,
a 1
0 X - — ———
Az AZ
1728 240 - a+12
A, A 2
2 3 2
3 3a+12 2 3a " +24a+240 a“+12a " +240a -1728
- - A x 7 2 x - 3
2 Az AZ

The coefficients of this polynomial must be in Z if Py is to be an
algebraic integer. Thus
3a+12=0 modAz

3a2 + 24a + 240 =0 modAZ2 (55)

ad+ 12a%+240a - 1728 =0 modA; .

A solution can be found with A2 = 8 namely a=4. Thus

. 4+p
P2 = 78

and the minimal polynomial of p, 1is
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x> - 24x% + 384x - 512 .
. 2 3
Finally, A(l, P pz) = -3729. Now f= —4+8p2 s0

b+ c(-4+8p,) + 6

P3 = A

Expressing 1, 8, BZ in terms of 1, P Pa gives

o) —4+8p2

2
B = 4C-b-8p2+ A3p3 .

18

From Theorem 38 A(l, B, BZ) = -2 33 29 = (8 A3)2A(1, P p3) . Thus

A3 ]263 . The largest candidate for A, is therefore 263 = 192, Let

3

F3 be the linear transformation corresponding to P3 then

b c 1 .2
F,(1) = v+ Sp+ —Lp
3 A, T aPTA,
1728 . b-240, , c+12 2
F,(@) = - + B+ —x—F
3 A, A, A,
2, 1728(c+12)  240(c+12) + 1728 , . b -240 + 12(c +12) ;2
Fal) = -—x - A, Pt = A, B

The characteristic polynomial of P3 is
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x - 2 .S - L
Ag Ay Ay
1728 b -240 _c+12
B3 Ay Ag
1728¢ +20736 240c + 4608 . b+12c-96
Ay Ag i Ay

3 3b+12c - 336 2
X X

Ay

3b2 - 672b + 99072 + 24bc + 8064c + 240c2 x

+
77
As
N -b> 4 336b% - 12b%c - 99072b - 240c%b + 1728c>
A3 |
3

, 414720c - 8064bc - 2985964
N '
3

Since these coefficients must be in Z for P3 to be an algebraic integer

three congruences are obtained. The first is

3b + 12c - 336 = 0 modA3 .

For A3 = 192 this congruence becomes

b+ 4c = 112 mod 64 or b = 48 ~ 4c mod 64 .

The general solution to this congruence is
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b = 4s

[¢]
"

16t - s + 12 (55)

for any s and t in Z, Inequality 54 implies that b and ¢ are bounded
by 192. Two possibilities arise: either there is a b and c given by
Equation 55 that makes all the coefficients of the characteristic
equation of Pa rational integers‘or A3 ;é 192. Trial and error shows

that b=48 and c¢=0 makes all the coefficients in Z. Thus

_ 48+p°
P3 = 71927 -

3
The minimal polynomial of P3 is x + x2+ 2x -1, From Theorem 38

2 1 1 \2 .
A(l, ﬁ, ﬁ ) =(§' . T'(;'é') A(l, pz, p3). Thus A(l, pza 93) = 3. 29 18

the discriminant of Q[a]. Finally the integral basis can be given in

terms of o where o= 8f

Pl =1

_ 1+2¢c
P2 = T2

. 3+40z2
P3 = 712

The methods used in this example could, in principle, be applied
to any algebraic extension. For some special types of extensions,
simultaneous congruences have been found that give an integral basis.
None of these systems have led to methods of attacking the general case
different from the one used in the example, Two of these special cases
are the cubic extension done in 1894 [7] and the pure extension done in

1930 [4].



CHAPTER IV
UNITS

The main goal of this chapter is to develop Dirichlet's fundamental
theorem on units. This is an existénce theorem concerning the
structure of the set of units in the ring of algebraic integers contained
in an algebraic number field. The theorem only proves the existence
of certain numbers; it does not say how to find these numbers. As
with integral bases, algorithms for units have been worked out for
quadratic and cubic extensions, The chapter begins with the definition

of a unit and some elementary properties.

Definition 56. An algebraic integer is called a unit if its multi-

plicative inverse is also an algebraic integer.

From the definition it is clear that the inverse of a unit is a unit.

If u, and u, are units in Q[6] then HqM, and P~1—1P~2‘1 are

algebraic integers in Q[6]. Now (plpz)(pflpz—l) =1 thus pp, is
a unit in Q[6]. So the set of units in Q[8] forms a group under

multiplication.

Theorem 57, Let p be an algebraic integer in Q[e]. Then p

is a unit if and only if N(u) = £1.

Proof. If p is a unit then p.~1 is a unit. Now by Corollary 33, N{(u)

and N(ppl) are in Z since p and p.—l are algebraic integers. The

RA
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number 1 in Q[8] corresponds to the identity transformation thus

N(1) = 1. Now

NN = Npp™) = N1 =1

Thus N(|.L)|1 or N(u) = xl1. Conversely, suppose N(u) = +l. Let

the conjugates of p be = HpsMoseer s by then 1 = N(p) = Mykp ol

OT M = = Epyphg "t - Since Hosbgseeespy are roots of the minimal
polynomial of p they are also algebraic integers hence their, product,

p—l', ~is an algebraic integer. Thus W is a unit.

Theorem 58. Let f(x) be a monic polynomial in Z[x] with

constant term +1. Then the roots of f(x) are units.

Proof. If f(x) is irreducible then f(x) is the minimal polynomial of
its roots and the theorem follows from Corolla.r‘y 32, If f(x) is
reducible theﬁ by Theorem 6 the irreducible factors are monic with
constant term 1. Now Corollary 32 may be applied to the irreducible

factors of f(x) and the theorem is proved.

Defininition 59. A root of the polynomial x".1 s called an

nth root of unity, If w is an nth root of unity but not a kth root of

unity for k <n then w is a primitive nth root of unity.

Theorem 58 implies that roots of unity are units, De Moivre's

theorem gives an expression for the nth roots of unity:

exp{—z—lr—k—;l——-——- “_1} = cos —2%15 + &/-1 sin Eg-l-i (60)

where k=1,2,...,n,
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Let ¢(n) be the Euler totient. Then the definition of roots of

unity and De Moivre's theorem imply the following theorem.

Theorem 61. There are ¢(n) primitive nthroots of unity. If

(k,n) =d then exp {—gll—(;l———- “'1} is a primitive n/dth root of unity. If

h|n then an hth root of unity is an nth root of unity.

s s th .
Let Wiy Wy ,w¢(n) be the primitive n™" roots of unity. Then

p(n)
¢ (x) = jill (X~wj)

is called the nth cyclotomic polynomial. It can be shown that ¢n(x)

is the minimal polynomial for the primitive nth roots of unity,
Examples 42 and 52 dealt with roots of pth cyclotomic pelynomials
where p is a prime number. A more detailed discussion of cyclotomic
polynomials can be found in Clark [6].

The next theorem is one of many in this chapter that makes use

of counting techniques in the proof.

Theorem 62. Let M be a positive number. Then there are only

finitely many algebraic integers ¥ of degree n or less such that

]\yj[ <M where \yj are the conjugates of V.

Proof. Let
k i
flx) = Z a.x a.eZ
i=0 '
be the minimal polynomial of \yl, \yz, e Yk' Where k<n and

]\yj] <M j=12,...,k. The [ai' are the elementary symmetric
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functions of \yl, YZ’ ce ey ‘i’k. Thus

[a.|<(k>M1 i=0,1,2,...,k
1" —\1

where (?) is the binomial coefficient. Since the a, are bounded and
in Z there are only finitely many numbers that a;, can be. Thus there
can only be finitely many polynomials with roots bounded by M. Since

there are only finitely many polynomials there are only finitely many

¥ as in the theorem.

Theorem 63, Let ¥ be an algebraic integer. Then V¥ is a root

of unity if and only if all the conjugates of ¥ have absolute value one,

Proof, Equation 60 implies that all the roots of unity have absolute
value one., Since the conjugates of roots of unity are also roots of
unity it follows that all the conjugates of a root of unity have absolute
value one. Conversely let ¥ be an algebraic integer such that all its
conjugates have absolute value one. Now V¢ is in Q[y] and since
Q[v] is closed under multiplication the algebraic integers Yk are in
Q[W] for k=1,2,... . From Theorem 30 the degree of \yk is less
than or equal to the degree of y. If ‘yj is a conjugate of ¥ then \yjk
is a conjugate of ‘i’k. Since ]YJ[ =1, Iij[ = 1. Thus from
Theorem 62 the sequence VY, YZ, YS, .+«. can have only finitely many

distinct values. Therefore for some u and v with u>v \yuz \yv.

Thus v V=1 or v isa a-v? root of unity.

These last two theorems imply that the number of roots of unity

in a given algebraic number field is finite.
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Theorem 64. The set of roots of unity in Q[8] forms a cyclic

group. That is, there is a root of unity « in Q[8] such that

w,wz, cee ,wk= 1 is the complete set of roots of unity in Q[6].

Proof. Since there are only finitely many roots of unity in Q[8] there
is a maximum n for which there is an nth root of unity in Q[e]. Let
that maximum value be k. From Equation 60 all the kth roots of unity
are in Q[8]. That is, if w is a primitive kth root of unity in Q[G],
then co,(.oz, v ,wk= 1 are all in Q[6]. The theorem will be proved

if it is shown that there can not be any other roots of unity other than
kth roots of unity in Q[6]. Suppose v is a root of unity in Q[6] and
v is not a kth root of unity. Then v is an hth primitive root of unity
where h‘rk and h <k. Then wv isan mth root of unity in Q[6]
where m is the least common multiple of h and k. Thus m >k

contradicting the maximum property of k. Therefore there is no other

roots of unity in Q[8] other than the k™ roots.

Theorem 65, Let Q[6] be an algebraic number field. If 6 has

a real conjugate then the only roots of unity in Q[6] are +1 and -1.

[
Proof. Let w be a root of unity in Q[68]. Let GJ. be a real conjugate

of 6 then Q[Gj] is a field of real numbers, If wj is the conjugate of
w in Q[6.] then «., is real. The conjugates of roots of unity are
roots of unity. Thus wj is a real root of unity that is wJ. = +l. Since

the minimal polynomial of %1 is x F1 it follows that w = 1.

Corollary 66. If the degree of 6 is odd then ! and -1 are the

only roots of unity in Q[G].
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Proof. The degree of 0 is odd implies 6 has a real conjugate.

There is one more result before beginning a long sequence of
theorems leading to Dirichlet’s theorem, This theorem proves one

case not covered in the proof of Dirichlet's theorem.

Theorem 67. Let -d be square free and d < 0 then all the

units in Q[~d] consist of:

i) the 4th roots of unity if d=-1
ii) the 6th roots of unity if d=-3

iii}) 1 and -1 otherwise,.

Proof. From Theorem 57 the units of Q[«/d] are those algebraic
integers with norm 1. An integral basis for Q[Nd] is given in

Theorem 44, If d=-1 an algebraic integer in Q[\/—J] has the form
a + baf-1 a,beZ.

Thus N(a+b\/-1)=a2+b2=:|:l implies only 1, -1, Vo1 and -ANZ1

are units in Q[«-1]. If d=-3 the algebraic integers have the form

a+b(—1—+—2——— "3) a,be Z,

Now

N(a+b( 1+\2/_:3——)> = a2+ ab + b2 = 1

has six solutions giving the sixth roots of unity. If d =2,3 mod4

then the integers of Q[Nd ] have the form

a + brd a,be Z.
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Then

N(a+bnd) = a - b%d = &1

has no solutions for d < -1 except a=+1 b=0. If d=1mod4

then the integers have the form

a+b(—1—iz\j—_d——-) a,be Z,

Now

NEwb(-l—’L—gE—ﬂ = a%+ab + 1—;9— .

implies b=0 since d < -3. So the only units are =+1.

Note that if a+ba-1 1is a root of a polynomial in Q[x] then
a-bafC1 1is also a root of that polynomial. For the remainder of this
chapter let 6 be an algebraic number and let the degree of © be
n=r+2s where r is the number of real conjugates and 2s the
number of complex conjugates. When r=1 and s=0 then Q[6]=Q
and when r=0 and s=1 the units are described in Theorem 67,
thus it is also assumed that r+s > 1., When the conjugates are
numbered they shall always be numbered such that the last s conjugates
shall consist of one member from each pair of complex conjugates.
That is, if a+bs/-1 is among the last s conjugate then a-bx-1
will be among the first r+s conjugates. Instead of the n conjugates
sometimes n real numbers consisting of the r real conjugates the s
real parts and s imaginary parts of the complex conjugates will be
used.

The following lemma will be needed in the proof of Theorem 70.
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Lemma 68. If k, m and n are positive rational integers such

that n>m then there is an h in Z such that h> 0 and

(k+ 1) > n™> k"

Proof, Consider the real function

f(x) = (X+1)n/m - Xn/m.

It follows from elementary calculus that f(x) is increasing for x> 0.
Since f(0)=1 it follows that f(k) > 1. Therefore there is an h in Z
such that (k+ l)n/m > h > kn/m so there exists an h as in

Equation 69.

In Theorem 70 and the following corollaries the order of the first

r+s conjugates is arbitrary.

Theorem 70. Let A and B be real numbers such that B> A >0

and let t be in Z such that 1<t<r+s. Then thereisa § in Qle]

and a real number C such that

IN(@E)| <C
]§.1|<A for i =1,2, , £
lgi[ >B for i=t+l,...,r+s
where §i i=1,2,...,n are the conjugatesof §. The number C does

not depend on the choice of A, B or t.

Proof. Let PyrPos s Py be an integral basis for Q[6] and let

pij be the jth conjugate of P;- Set
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n
M= max 2 [p ]
J o i=1
and for each j, j=1,2,...,n define n real numbers

the real part of pij i=1,2,...,r+s
i

the imaginary part of pij i=r+s+1,...,n,

Consider for j=1,2,...,n

n
v, = 2 X.u.. x.eZ,

Let 0 < x, < k then there are (k+ )" possible values for vj for

each j. Now

n n
|v.| = [ z xu..l < Z Ixu..|
j =1 T T UL
n n
<k Z |u,.| < s
<k = s | 2 N
<k M j=1,2,...,n
Consider Vj for the following values of j: j=1,2,...,t and those j

from r+s+1,...,n which have a complex conjugate among the first
t conjugates. That is if eg and Gi are a complex pair of conjugate
such that 1< g<t then r+s<i<n and g and i are both
acceptable values for j. Let J be the set of acceptable values for j |
and let m be the number of elements in J. Then
t<m<t+s<r+s+s =n.since t<r+s. Note that m, n and k
satisfy the hypotheses of L.ermma 68 thus there is an h >0 as in

Inequality 69. Partition the closed interval [-Mk, Mk] into h
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subintervals in the following way

l:Mk Mk+21‘1fk) , EMk-&-ZI\I;Ik Mk + ‘H.‘.’I_li) [Mk_EM_k_ Mk:l

For the numbers vj in [-Mk, Mk], consider those 'Vj such that j is
in J. The set of m values for Vj can belong to the h subintervals of
[-Mk, Mk] in h™ different ways., Now for each j in J there are

(k+ 1)n values Vj . From Equation 69 (k+ l)r1 h™. Thus there

must be two sets of values for the vj that belong to the h subintervals

in the same way. Let these two sets be given by
n

v.,! = Z x 'u,,
—y bij

and

Summarizing the properties of vj' and vj”:

x
1
M

IA
e

—
i
Pt
o
=]

Ivjl_vjllli_g_]%l\_/.l_ jelJ.

The xi' and x,l” will be used to define a number §. Then it
will be shown that for a suitable k the number § will have the desired
properties. Let

n
- r "
§ = B (g -y

For the j in J .such that Q[Oj] is a real extension, Pi5 = By and



€. |

il
M B
¥
I
»
<

ti
X
‘:_.

- T ox, "u|
i=1 * Y q=p Y

2kM
h

1

[v.' = v.'"| <
J J

If Q[Gj] is a complex extension,then pij = u..lj - uik\/_l where k is

such that Q[Gk] is the complex conjugate extension of Q[Gj]. Note

that if j is in J then k is in J. Now

lﬁjl = li;:l:l (x;' xl”)Pijl
n
SRR AL TR DR E CTRANE]
< lvj' - vj”l + N1 (Vk' - Vk”)l
< M, ZiM
thus
NESS jEl2, ..t

whether the jth extension is real or complex. From Inequality 69,

K™ > k™. Thus

(1-—)
lgj[ < 4Mk , jed
1 --2
Since n>m k T >0 as k - o, there is a k., such that

1

1 -—
]gj]_<_4Mk ™ <A §j=1,2,...,¢

64
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for all k>kl' Now for j not in J

n n
|§jl = Iifl (xl"xi”)Pijl < ifl EAREN lpijl
n
< Z kip.. kM
<z loy;] <
Thus
n n
INE) = | @ E] = @ [£]
j=1 " j=1

which can be written in the form

N@E)| = m [g, | m |& |
' l jeJ kl qé¢J I q

n

—-— m -
< (aMkl T (kM)PTT

4MM" < (aM)”

IA

Let C = (4M)” then C depends only on the basis PysPps-evs Py

chosen for Q[6]. To obtain a better estimate for ]gJ[ for

j=t+l,t+2,...,s+r consider

NG| = 5 841 ] 18]
q#j
-2\ ™
< [amx ™) Ml

Since N(§) isin Z, N(§)>1 thus
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le.| > @y

J
Thus there is a k2 such that for k>k2
m, n-1 -1
[gj] > (4°M ") k>B j=t+l,...,r+s.
Nowif'k>k1+kz then for j=1,2,...,n
&1 < A jel
€51 > B idT.

Thus the desired § exists and the theorem is finally proved,

Corollary 71. There exists a sequence of algebraic integers

<§i> in Q[6] such that

,gijl > Ig1+1j' j=1,2,...,t

]gijl < ng_ljj j=t+l,t+2,...,r+s

and lN(gi)[ < C, Where t and C are as in Theorem 70 and gij is

the jth conjugate of §i .

Proof. Let §1 = § from Theorem 70. Then define §i+l inductively

by Theorem 70 where

Ai+1=m§rl €551 i=1,2,.,.,t
By, = max félJ[ j=t+lLt+2,...,r+s.

Note that it is not possible for any of the A.1 to be zero since Ai: 0

implies some gi-—lj = 0 but the only conjugates of zero are zero and
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lgi-lt+1, > B, is contradicted. It follows from Theorem 70 that the

sequence <§1> has the desired properties.

Corollary 72, There exists a sequence of algebraic integers

<\yi> in Q[6] such that

1]

lWijl > IY1+1J'| j=1,2,...,t

lxyijl < “’i+1j, j=t+l,t4+2,...,r+s

where t is as in Theorem 70 and for all positive i,k in Z

N(¥,) = N(¥,) .

Proof. Consider the sequence <§1> of Corollary 71.  The norms of
gi are in Z and bounded by C, Thus there are only finitely many
values the norm can have. Thus there is a subsequence <\yi> of

<§1> where all the norms are equal,

Theorem 73. There is a unit in Q[8] other than a root of unity.

Proof. Consider the sequence <y1> of Corollary 72. Let

g = 'N(\yi)l and P12 Pps-es Py be an-integral basis of. Q[8]. Now

p b7 i
for i=1,2,3,... . Partition the set of ¥ by the following rule:

\yi and \yk are in the same class if

= a

aij kjmodg i=lL,2,...,n.
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The partition has at most gn classes. Thus some class has at least

two elements. Let Yi and Yk be in the same class then

a..= a,.+b. i=1,2,...,n.,
ij kj© 38 )

Since N(Yk) = +g there is an algebraic integer vy in Q[6] such that

Y v =8 Now

= ¥t ¥y j?l bjp.

n
1+Y Z b.p.

¥
k j=1 49

Since 1, vy, bj and pj are algebraic integers
n
e = 1+y Z b.p.
j=1 N
is also an algebraic integer. Now N(Yi) = N(e Yk) = N(E)N(Yk) . Since
N(Yi) = N(Yk) it follows that N() = 1. Thus by Theorem 57 ¢ is a

unit. From Corollary 72 it follows that norne of the corresponding

conjugates of ¥, and ¥y have the same absolute values. Since

£ = Yi/Yk none of the conjugates of ¢ have absolute value one. It

follows from Theorem 63 that ¢ is not a root of unity.
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Corollary 74, For any t of the first r+s conjugate fields

Q[Gj] there is a unit ¢ in Q[6] such that ]ej] <1 for those t
conjugate fields, and lejf > 1 for the remaining r+s-t conjugate

fields. Here 1<t<r+s.

Proof. Without loss of generality let the conjugate fields Q[ej] be
numbered so the first t are the fields such that Iej, <1 is desired.
Consider the ¢ = ‘i’i/‘i’k of Theorem 73. If i>k then from

Corollary 72

lwijl<lwkjl j=1,2,...,t

lwijl>|wkjl j=t+l,t+2,...,r+s .

Then ¢ = ‘i’i/‘i’k satisfies the conclusion of the corollary, If k>1i

then eul is also a unit and it satisfies the conclusion of the corollary.

Defin_ition 75. A set of units €1s€ns e s € in Q[G] is said to

be independent if

implies a, = 0 i=1,2,...,k. If the set is not independent then it is

dependent.

The next few theorems develop some methods of determining
independence for a set of units. Clearly a set of one unit is dependent
if and only if that unit is a root of unity. Thus any set of units

containing a root of unity is a dependent set.
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The following discussion gives an equivalent form for independ-
ence that will be used frequently, Consider the set of units

€11Exs - o s € such that

Let m be the least common multiple of the bi' Then mqi/bi is in

Z and
mgq. /b,
Oe, ' '=1M=1,
i
If SELTYRRRTLIN is an independent set then mai/b.1= 0 implies qi= 0

for i=1,2,...,k. Conversely if there is some qj # 0 then
mqj/bj # 0 and the set is dependent. Thus in Definition 75 a, in Z
could be replaced by a, in Q.

The following lemma is needed in the proof of the next theorem.

The greatest integer function is denoted by [x] .

Lemma 76. Let ¢ be an irrational real number and h and k be

in Z. If hc-[he]=kec-[kc] then h=k.

Proof. If hc -[hc] = ke - [ke] then [hc]- [ke] = he ~ke = (h-k)c. Now
[he] - [ke] and (h-k) arein Z. Thus c must be rational unless

h-k=0 or h=k.

Note this lemma implies for fixed c the set {hc - [he]:he Z} is

infinite if ¢ is irrational and finite if ¢ is rational,
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Theorem 77. Let

€12€ps - € be units in Q[G] and eij the

jth conjugate of € - If

TEVE:

ailog,eijl=0 ji=lL,2,...,r+s

i=1

for nontrivial real a; then E1r €00 cr 1€ is a dependent set.

Proof, Since any set of units containing roots of unity is a dependent
set, assume that none of the units are roots of unity. One unit forms
an independent set. Suppose that for 2 <q

q-1

= b, logle..| =0 j=1,2,...,r+s (78)
i=1 * 1

has only the trivial solution for the bi' Also suppose that

TR

ailog]eij|=0 i=l,2,...,r+s (79)

i=1

has a nontrivial solution for the a; . Now aq# 0 otherwise the
assumption of Equation 78 is contradicted. Then
q-1l a,
logle ,| = - = a—lloglei.l j=l,2,...,r+s
q] i=1 2q J
Consider the set S of units in Q[e] such that n is in S if and only if
there are real ¢, such that
q-1

log|n.| = =
ogln,| =

1:1ciloglsij| i=L2,...,rts .,

The set S is not empty since Eq is in S. The object now is to show
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that for all n in S the c, are rational. If cy is irrational then

0<mci-[mci]<1 for all m in Z. For j=1,2,...,r+s

"2 fme, - lmeltogle, | = B meogle. | - B [me,Jogle,|
Z (mc.-lmec.j)log(e..| = mec,logle,.| - Z [mec, logls..
i=1 i i ij i=1 i i i=1 i ij
-1 [mci]
= mlo .| - Z lo ..
glnyl - 2 togle, |
q-1 [mec,]
m i
= lo . - lo I e,. .
gln;"| - log | I e I
q-1 [mc]
Now II Eij ' is a unit and so is its inverse. Let
i=1
1 q-1 [mci]
V8 = 1II € s
i=1
then for j=1,2,...,r+s
m Q-1 ]
log[nj w| = if)l (mci--[mci )logleijl .

Thus if 1 is in S so is T]mp, for all m in Z. If the ¢, corres-
ponding to m are irra;tional then for each m in Z the unit nmp, has
a distinct representation according to Lemma 76. Each distinct
representation gives a distinct unit otherwise the assumption for
Equation 78 is contradicted. Now 0 < mec, - [mcl <1 implies

q-1

m f -
10glnj IJ'JIS logleijl j=1,2,...,r*s

i=1

< logM
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where

Since log is a monotone function the first r+s conjugates of nmp
are bounded by M. Since each of the last s conjugates with one of the
first r+s conjugates forms acomplex conjugate pair, the last s
conjugates are also bounded by M. Theorem 62 implies there cannot
be an infinite number of elements of the form nmp with conjugates
bounded by M. Thus the c; cannot be irrational. So the a; in

Equation 79 are rational which implies

q |
| T e ' =1 i=1,2,...,n.

Note that the last s equations are repititions of some s of the first
a.

q
r+s. Theorem 63 implies _II1 €, ' is a root of unity. Thus there is

1=
a positive b in Z such that

q a.b

Me, = =1

i=1
Since aqb £0, €12€5s - - 'Eq is a dependent set. Thus the theorem is

proved by induction.

Theorem 80, Any r+s units in Q[G] are dependent,

Proof. Let be any r+s units in Q[6] and aij the

Es€pre e s €y

jth conjugate of g - Then
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| | =] I | = T
N(e.)| = IHIe..|l = 1O
A A

=1 i=1,2,...,r+s.

Each of the last s conjugates has its corresponding complex conjugate
among the first r+s conjugates. Since the members of a complex

conjugate pair have the same absolute value
IN@e.,)| = m Je..)] =1 i=1,2,...,r+s

where aj is one if Eij is a real conjugate and two if complex. Thus

r+s
= a.logle..| =0 i=1,2,...,r+s .
=1 J 1
J
This is a system of r+s equations inthe r+s aj which has a

nontrivial solution. This implies the system with the coefficient matrix

transposed also has a nontrivial solution. Thus there is a nontrivial

solution cl’CZ""’cr+s to
r+s
.Z cilogleij|=0 ji=lL,2,...,r+ts

i=1

Theorem 77 implies that €1s€ps - sk is a dependent set.

r+s

Theorem 81. There exist r+s-1 independent units in Q[6].

Proof, The method of proof will be to show that given k independent
units where k is less than r+s -1 it is possible to find another unit
to add to the set and still have an independent set. Theorem 73 proved

there is one independent unit. Consider k independent units

TLPORINE From Theorem 77



k
iflailoglsﬁl =0

75

i=1,2,...,r+s

has only the trivial solution. Thus there must be k of those r+s

equations which have only the trivial solution for the a;. Suppose they

are the first k, then

logle, ;| logle,, | logfe ., |
1°g,921| 1°gl€22' 1°gl52k’
loglekll loglskz , loglekk'
- Consider the following determinant
loglalll 1og|elzl loglsl,k+ll
log|521, log|szzl 10gl£2,k+1|
loglskll loglekzl loglek,k+1|
by b2 P+l
R S i L R W L N

#0. (82)

(83)

where A.1 is the cofactor of bi' Equation &2 implies A #0

Since k< r+s-1 Corollary 74 implies there is a unit

such that | <1 if Aj < 0 and

,Ek+1j

|Ek+1j

| >1 if

k+1 :

€1l in Qo]

A >0.
J
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Substituting ]‘Oglski-l,j' for bj in equation 83 gives
k+1 k+1 ] ]
Z Ab.= Z A logle .
j=1 31 =1 ) ktl,j

Now log[ek+1,j |

has the same sign as Aj when Aj # 0. Since
Ak<l-1 #0
k+1
jfl AJ_ log]sk+1,j[ > 0.

Thus the determinant in equation 83 with bj = log|e is not zero.

k+1,j,

From Theorem 77 the units are independent. When

£17%20 0 Bl
k =r+s-1 Corollary 74 cannot be applied to find an additional unit.

Thus up to r+s -1 independent units can be found

Theorem 84. Let be a set of independent

81,82, e ,Er+s_1

units in Q[G]. Then there is an m in Z such that every unit n in

Q[6] can be written in the form

rt+s-1 b'/m
n=w o e’ b. e Z

j=1 J J
and w is a root of unity.

Proof. Let S be the set of units in Q[6] of the form

r+s-1 a./c' a.

n=p I el =<1
2y c. ' —
J J

where p is a root of unity a.j and cj are in Z and (a.j, cj) = 1. Now

€; isin S thus S # @. Since |u]| =1 log|pu|=0 and
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r+s-1a _
loglnil = .21 j/?j 10glsjil i=1,2,,..,r+s
J:
r+s-1
< jfl logle;;||.= M

The conjugates of all m in S are bounded by M, thus S is finite by
Theorem 62. Theorem 77 implies the aj and Cj are unique. Let m

be the least common multiple of the cj . Let m be any unit in Qfe]

then M€Qs€ps-- sE o 152 dependent set, so there are
Zy27,25500-52 4 1 in Z such that
2 r+s-1 z.1
n II e " =1.
. i
i=1
Now
r+s-1 z./ z
mn II £ =1
i=1
Let
r+s-1 z,/
w=n I ¢
. 1
i=]

After the “i/z have been written in lowest terms let y be the least

common denominator and ' the appropriate numerator, then
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rt+s-1 vy,

n=w II e.l/
. i
i=1

y .

.
Now Yi/y - [Yi/yl<1, and [Yi/y] isin z so ei[ i/y] g in Qfe].

r+s-1y, r+s-1 y. r+s-1vy., _ry.
W II e.l/y II s._[ I/Y] = W II s.l/y [ 1/y]
. i . i . i
i=1 i=1 i=1

is the product of units and thus a unit. The exponents are bounded by
one thus this unit is in S. The least common multiple of the denomin-

ators of the exponents of e is y thus ylm . Let xy=m and

b.= y.x then
J YJ

The following theorem was first proved by Dirichlet in 1846,

Theorem 85, Let 6 be an algebraic number of degree

n=r+2s>1. Then there are units Hps Moo es By in Q[6] where
k =r+s-1 such that any unit 1 in Q6] can be represented in the
form
k z.
n=w I |.L.J z.eZ
j=1 J J

Where the Zj are unique and @ is a root of unity.

Proof. The cases when n=1 and n=2s=2 were done in Theorem

67. Consider r+s >1. Let be independent units and

51!82!"'581(

m the rational integer in Theorem 84. Consider units of the form
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bll/m
€

My 1

~ bPai/m P22/m
P2 = &) £2

(86)

bkj /m

=
=
1"
ne %
m

where bij are in Z. Clearly there are units with bii# 0 for each
equation in 86. Pick My with bi.l# 0 as in equation 86 such that
Ibiil is minimum for each i, i=1,2,...,k. Let n be a unit in

Q[6], from Theorem 84

n=wle.
J

From the division algorltlj;n a) = Zkbkk+ Ty and 0 < r, < lbkkl .
Now M is a unit so N is a unit in Q[68] also and
-7y . (aj- Zkbkj)/m :
MR = w II g, .
j=1
Thus r, = 0 otherwise the choice of W) is contradicted. Similarly
a1 - Zkbkj-l = Zk-lbk-lk—1+ Tl where 0 < req < 'bk_1k~1‘ .
Again Ty 1= 0 otherwise the choice of M1 is contradicted. This
process can be repeated until Zk’ Zk~ 1’ Zk—Z’ o e z1 are determined.
Then
k gz,
n=w I |.L.J
j=19
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To show the Zj are unique it is necessary to show that s boseres by

form an independent set. Let ¢ c, be in z such that

1’27 %k

k c.
I J =1
j=1
Now
k ¢, k d,
I p. J= me,
j=1 j=1"
where
1 k
d. = — X c.b.. ji=l,2,...,k
j m ._. i'ij
1=)
then dj=0, j=1,2,...,k since E1r€ps 0 v 1€ is an independent set

of units. Suppose h is the largest subscript such that cy # 0 then

k c,. b

d, = .
1:hhlh m

L
h m
Since dh= 0 and bhhaf 0, ch# 0 givesa contradiction., Thus cj: 0,
j=1,2,...,k and the set Hpskoseeesby 18 independent.
The units By Hose e e by of Theorem 85 are called a set of

fundamental units for Q[6].

Example 87. Consider Qla] from Example 23. From
Example 53 the discriminant of Q[a] is -3:29. This implies that
two of the three conjugate fields are complex and r+s-1=1. Thus
there is one fundamental unit in Q[a].. From Theorem 65 the roots of

unity in Q[e] are 1 and -1. From Example 53 P3 has minimal
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polynomial x>+ 5%+ 2x - 1. Thus N(pz)=1 and Py 1is a unit in
Q[e]. Now

n
P3:=EP~

for some n in Z where p is a fundamental unit. Since p?:l = ip—n

only positive n need be considered. Now the object will be to find an

nth root of £p4 in Q[a] for the largest possible value of n. This

process is done by extracting pth roots of Py s where p is prime,

until no more roots can be extracted. First consider Py = :|:p.2

)2 = :i:N(p.)Z only the plus sign

Since N{p,) =1 = N(:l:p.z) = N{x1)N(n

P3
needs to be considered. Suppose p has minimal polynomial
x + ax2 + bx + ¢. The elementary symmetric functions of the

conjugates of py are also symmetric functions of the conjugates of .

Thus if the conjugates of p are Mys Moo Hg and of P3 2Te pgy, Py

P33 then
L= ~pyy*pypteys) = <luy iy i)
2 = P31P3pt P3 P33T P3,P33 T pieg * H12“32+ H22“~32
-1 = =(pgP3pP33) = “(“12“22“32)'

Since

P~1+|~'~2+P~3 = -a
Bykptpypgtpuy,pg = b
HyMy by = -C

it follows that
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1 = —(az-Zb)
2 = b2 - 2ac
-1 = —c2
Eliminating ¢ and a:
bz»- 2 = 2ca
4 2 2_2

b " -4b -4 = 4c a = 4(2b-1)

b _ 4b®-8b+8 = 0 .

This has no rational solutions for b. Thus P3 has no square root in
Qla].

Suppose P3 = .:l:p.p for odd prime p. Again only the plus sign
needs to be considered, In fact N(p3) = N(H)p implies N(u) = 1.
Suppose p has minimal polynomial x3 + ax2+ bx + 1. Proceeding as

before

1 = -(pf+p§+p§))

_ PP, P, P. P P
2 = piky T HTRg T MRy
-1 = -1

The complete expansion of the right hand side in terms of a and b for
a general odd prime p is too complex to work with. The following
procedure will reduce the possibilities for p. Now

)P = MP

(hytpotpg L T M2p'+ p-3p+ Ph(jys oy g)

where h(p‘l’HZ’ p,3) is a symmetric polynomial in Bps Bos Mg and



hence in Z.

the expansion of (p.1+p,2+p,3)p. Thus

1 = -(-a)pE a mod p .,

Similarly
2 =bP = b modp.
Now
p.p +1 = Py * 1
Thus p3:|:1 is the product of algebraic integers in Q[a) one of
which is p £1. This implies N(p+xl) divides N(p3:1:1) in Z,

Computing norms as in Example 28 with 1, P3s p32 as a basis for

Qla]
+1 1 0
N(p3:l:1) = 0 ! 1 = +3,
1 -2 -1zl
The norm for pzxl is computed with 1,p, p.z as a basis

+1 1 0
N(p £1) = 0 +1 1 = 1l-azlxb,
1 -b -a 1

Summing up the conditions on a and b

83

The factor of p comes from the binomial coefficients in
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a = 1modp
b = 2 modp
2-a+bl3

-a-b|-3.

Now 2-a+b =3 modp and -a-b = -3 moedp. Thus the only solution
for these four conditions is a=1 and b=2, This solution gives p
the same minimal polynomial as Py - This is not possible since

p33 # P3 - Thus P3 is a fundamental unit for Q[a].



CHAPTER V
CONCLUSION

The concept of an algebraic integer arose in part as an aid to
solving certain Diophantine equations. The following examples give
some indication of how this is done. The first example is due to
Fermat and makes use of the properties of norm and conjugate.

»

Example 88, Consider the Diophantine equation y2+2 = x3 . Let

y + A/22 and a+by-Z be algebraic integers in Q[~N-2] such that

yHNTZ = (atbNTZ)o . (89)

Then

N(y +x7Z) = N(a+byZ)>

> 3
yo+2 = (N(a+b\/'~_2)) .

Thus x = N(a+bn-2) = a.2 + Zb2 gives an equation equivalent to the
original problem. The eqliation that corresponds to Equation 89 with

the conjugates of y+ 22 and a+bnl2 is

y- N2 = (a-by2)3 (90)

Eliminating y from Equations 89 and 90 gives
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1 = b(3a% - 2b%) .

Since 1 factors into 12 or (-1)2 there are two possible systems of

equations to solve for a and b. The system

-1 =b and -1 = 3a2— sz
has no solution in Z . The alternative choice
1 =05b and 1 = 3a2- sz

has the solution b=1 and a=x1. Thus x=1+2=3 and y=415.
This next example concludes the discussion begun on page 1 of
the thesis,

Example 91. Consider the Diophantine equation x‘2 - ZyZ =17,

This is equivalent to finding all the algebraic integers in Q[NZ ] with
norm 17. It has already been noted that the number 7+44+2 has

norm 17. If p is a unitin Q[«Z] then

N(p(7+4\/_2_)) = N(u)N(7+4+2) = 17.

Since there is an infinite number of units with norm 1 in Q[\/_Z—] there

is an infinite number of solutions to xz_, Zyz = 17. A fundamental unit

for QINZ] is 1+N2Z. Now N(1+a2)= -1 thus the units with norm

plus one are
H1+4Z)%" = 23 +242)" neZ.

So

+(7+4NZ)(3+22)" neZ
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are algebraic integers in Q[NZ ] with norm 17. If +(7+4\2)(3 +24Z)"
is expanded and written in the form a+by\2 then a,b is a solution
for xz- Zy2 =17.

Many Diophantine equations can be transformed into an equivalent
problem of finding all the algebraic integers in a given algebraic
number field with some fixed norm. This method is discussed in

Borevich and Shafarevich [5]. One of the earliest problems to be

approached through algebraic number theory was Fermat's conjecture:

x +y =z xyz # 0 n>2

has no solution in Z for x, y and z. The problem is still unsolved,
but many interesting facts and ideas came to light as a result of efforts
to solve Fermat's problem. One of these facts concerns the factoring
of algebraic integers,

If «, B and y are algebraic integers such that aoff =y then «
and B are called factors of y or o divides y. Just as in factoring in
Z, every algebraic integer v in Q[6] has as factors all the units in
Q[6] and numbers of the form ¥ where p is a unit in Qfe], 1If vy

has no other factors then V¥ is called prime.

Theorem 92. If ¥ is an algebraic integer in Q[6] and N{y)=p

where p is a prime in Z then V¥ is a prime in Q[6].

Proof. Suppowe af =Y where o and B are algebraic integers in

Q[e] then
N(@p) = N(oN(B) = N(¥) = p.

Since N(a) and N(B) are in Z one of them is 1. Suppose
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1

N(a) = +1 then « is a unit. Thus P=a "¢ where ! isa unit.

Example 93. Consider the algebraic integers in Q[\"5]. The
following discussion demonstrates a method for proving a number is a

prime in Q[\Z5]. Consider 1-15. Suppose

(a+bN-5)(c+dn-5) = 1 -5

Then
N(a +ba~5 )N(c+dA~5) = N(1 -4/~5)
or
a2+ 5b%)(c2+5d%) = 6
2 2 . 2 2 .
Thus a +5b~ is a factor of 6. If a"+5b"=1 then a+ba-5 isa
unit, If a2+ 5b2 = 6 the other number is a unit. Neither a2+ 5b2= 2
nor a2+5b2= 3 has a solution., Thus 1-4/.5 1is a prime. Similarly

1+45 , 2 and 3 can be shown to be prime in Q[vZ5 ]. Now

2.3 = (1-NTBEN1+5) = 6

Since x1 are the only units in Q[\~5] the number 6 has two distinct

factorizations into primes.

For a time some mathematicians thought they had solved Fermat's
problem. Then they discovered th#t factorization was not unique in the
algebraic number field they used, Attempts to repair proofs led to
ideal theory. Factoring algebraic integers is discussed in Koper [11].

The problem of finding units in algebraic number fields still
interests mathematicians. In 1969 Bernstein developed an algorithm

for finding independent units in certain types of algebraic number
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fields [3]. This algorithm gives a method for finding a complete set of
independent units for the given field. The algorithm is a variation of
the continued fraction algorithm used for finding units in quadratic and
cubic extensions. However Bernstein was not able to determine whether

the units obtained were fundamental.
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