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PREFACE 

The goal of this thesis is to write a segment of mathematics that 

would fit between a first course in elementary number theory and a 

course in algebraic number theory. Current books titled algebraic 

number theory are an abstract generalization of the material presented 

in this thesis. The transition from elementary number theory to such 

abstract treatments of algebraic number theory is too difficult for the 

average undergraduate student. This thesis provides an intermediate 

step discussing algebraic number fields and the domain of algebraic 

integers therein. All the fields discussed are finite algebraic exten­

sions of the rationc,tl numbers. Examples are used to demonstrate the 

theory. 

The level of this material is for a senior mathematics major. 

In addition to a course in elementary number theory he should have had 

a course in linear algebra. Abstract algebra would be helpful but not 

necessary if the linear algebra course was fairly sophistiGated and 

complete. A student could not, of course, go on to a complete study of 

algebraic number theory without a thorough knowledge of abstract 

algebra. 

The thesis is divided into five chapters. The first chapter 

introduces the concept of an algebraic integer. Then some elementary 

facts concerning algebraic integers and their minimal polynomials are 

proved. The second chapter deals with finite algebraic extensions of 
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the rational numbers. The norm and trace of a number in a finite 

algebraic extension are defined. The properties of norm and trace, 

used frequently in Chapters III and IV, are developed. Chapter III 

derives the integral basis theorem and develops some techniques for 

computing such a basis. Examples are given demonstrating how the 

various concepts can be used as aids for calculating an integral basis 

of a finite algebraic extension. The main topic in Chapter IV is the 

proof of Dirichlet's theorem on the structure of the group of unit13 in a 

finite algebraic extension. This theorem is usually proved using 

results from the theory of ideals. The proof in this paper does not use 

these results but uses only the concepts already developed and some 

elementary counting techniques. Dirichlet's theorem is demonstrated 

by an example in which a fundamental unit is calculated for a cubic 

extension. The final chapter presents some examples of how algebraic 

number theory can be used to find solutions to Diophantine equations. 

The paper concludes with some remarks about related topics and 

current developments. 

Items such as theorems, definitions or examples are numbered 

consecutively throughout the paper. 

I would like to take this opportunity to express my thanks for the 

assistance, guidance and time given to me by the members of my 

committee: Dr. Jeanne L. Agnew, my thesis advisor, Dr. E. K. 

McLachlan, my committee chairman, and Dr. W. Ware Marsden. 

In addition I would like to thank the University of Wisconsin, 

Superior, for giving me time and financial support for this project. 

Finally, I would like to express my appreciation and gratitude to 

my wife, Priscilla, and our children, Peter, Mark and Rachel, for 
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their understanding, patience, and the sacrifices they made that I might 

write this dissertation. 
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CHAPTER I 

INTRODUCTION 

The Diophantine equation 

2 2 
x y = 17 

might be solved by the following method: 

2 2 
x - y = (x + y)(x - y) . 

Since x and y are integers x + y .and x - y must be factors of 17. 

A solution may be obtained by setting 

x+y = 17 

x -y = 1 

or :x: = 9 and y = 8. Three other solutions may be achieved by 

changing the signs or order of the factors of 17. Since the only factors 

of 17 are ±1 and ±17 there cannot be any other solutions. 

A similar approach to the Diophantine equation 

x 2 - 2y2 = 17 

fails. Since 

x 2 - 2y2 = (x + .../2 y)(x - .J2 y) 

The factors (x+ ,J'zy) and (x - ,J'zy) are not integers, when x and 
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y are integers, unless y=O. Example 91 will show that this equation 

not only has a solution, but has infinitely many solutions. One can see 

that a solution to this equation is x = 7 and y = 4. Thus one might 

say that 

17 = (7+4"'2)(7-4"'2) 

is a factorization of 17 . What is needed is a set of numbers which 

contain the integers and numbers such as 7 ± 4"'2. 

Definition 1. Let 8 be a root of the polynomial 

n n-1 n-2 
x +an_ 1 x +an_2 x + ... +a 1x+a0 . 

When an- l' an-Z' •.•. , a 1, a 0 are integers, 8 is called an algebraic 

integer. When the coefficients are rational, 8 is called ar;i. algebraic 

number. 

Algebraic numbers can be real or complex. The purpose of this 

dissertation is to present methods of representing algebraic integers 

and computing with these integers. Throughout this material Z will 

stand for the integers and Q the rationals. Since the integers are 

themselves algebraic integers they will be referred to as the rational 

integers to distinguish them from the other algebraic integers. The 

set of polynomials in x with rational coefficients will be denoted by 

Q[x]. The subset of Q[x] that consists of polynomials with 

c:;oefficients that are rational integers is denoted by Z[x]. Consider 

the polynomial 

n n-1 ax+a 1 x + 
n n- a # 0 . 

n 
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The degree of this polynomial is n, an is the leading coefficient, and 

when a = 1 the polynomial is called monic. Note that the constant 
n 

polynomial a 0 has degree zero except when a 0 = 0 . Degree is not 

defined for the zero polynomial. The rules for working with poly-

nomials that one learns in a high school or coHege algebra course will 

be assumed. The following theorem is a formal statement of the usual 

division process one learns for polynomials. 

Theorem 2. If p(x) and f(x) 1 0 are polynomials in Q[x] 

there exist unique polynomials q(x) and r(x) in Q[x] such that 

p(x) = q(x) f(x) + r(x). where either the degree of r(x) is less than the 

degree of f(x), or r(x) is the zero polynomial. 

When the polynomial r(x) in Theorem 2 is the zero polynomial 

then f(x) is said to divide p(x). A polynomial in Q[x] is called 

irreducible in Q[x] if it cannot be expressed as the product of two - ---
polynomials in Q[x] each with degree greater than zero. Note, 

constant multiples of irreducible polynomials are irreducible. 

Irreducible polynomials in Q[x] have many properties that are 

similar to prime numbers in Z, The following theorem is an example 

of this. 

Theorem 3. If f(x) and g(x) in Q[x] have no common 

divisors other than constants, then there exist h(x) and k(x) in 

Q[x] such that 

h(x) f(x) + k(x) g(x) = 1 . 

A detailed account of Theorems 2 and 3 as well as their proofs 

can be found in most theory of equation texts. The proofs of these 
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theorems rely on the fact that the coefficients are members of a field. 

No other properties of Q are used, thus Q could be replaced by the 

real numbers, the complex numbers or any other field. There will be 

occasions when other fields are used. Since Z is not a field Theorems 

2 and 3 do not hold for polynomials in Z [x] 1 However, polynomials 

in Z[x] are also polynomials in Q[x], so that, with care these 

theorems can be used. The following example illustrates the fact that 

given a polynomial f(x) in Q[x] the re is a rational integer k such 

that kf(x) is in Z[x]. 

Example 4. Consider the following polynomial in Q[x] 

f(x) 

then 

' 45 f(x) 
. 3 2 

= 3 Ox + 6 Ox + 2 7 x + -10 •• 

Note that 45 is simply the least common multiple of 3,3,5, and 9; 

the denominators of the coeffidents. Another fact is that the greatest 

common divisor of the numerators 2, 4, 2 and 2 is equal to the 

greatest common divisor of 30, 60 , 27 and 10 , the coefficients of 

45 f(x) .. 

It is easily seen that in general any polynomial in Q[x] can be 

multiplied by a rational integer to obtain a new polynomial in Z [x]. 

In addition the greatest common divisor of numerators of the rational 

coefficients is equal to the greatest common divisor of the integral 

coefficients. This fact is assumed in the proof of Theorem 7. The 

following lemma is needed in the proof of Theorem 6. 
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Lemma 5. Let f(x) = g(x) h(x) with all the coefficients rational 

integers. If p is a rational prime that divides all the coefficients of 

f(x) then p must divide all the coefficients of g(x) or of h(x). 

Proof. Let 

g(x) 

then the coefficient of 

n 
= ~ a.xj 

j=O J 
h(x) 

r 
x in f(x) is 

r 
:E a b 

O r-s s 
s= 

m . 
1 = ~ b.x 

i=O 1 

where a. = 0 when j > n and b. = 0 when i > m. Suppose the 
J 1 

conclusion of the lemma is false. Let k be the smallest subscript 

such that p 1 ak and t be the smallest subscript such that p 1 bt. 

Consider the coefficient of xt+k in f(x), 

By the choice of k and t, p I at+k-sb s for every s from O to t + k 

except for s = t, p 1 akbt. Thus p cannot divide the coefficient of 

t+k . f( ) x 1n x • The hypothesis of the lemma is contradicted, so the 

lemma is proved by contraposition. 

The next theorems will show that Definition 1 is not inconsistent, 

that iei, it is not possible, by considering different polynomials for 

which e is a root, to say that sometimes e is an algebraic integer and 

sometimes it is not. 
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Theorem 6. If a monic polynomial f(x) with rational integral 

coefficients can be factored into two monic polynomials g(x) and 

h(x) in Q[x], then the coefficients of h(x) and g(x) are rational 

integers. 

Proof, Let 

a n-1 n-1 a n-2 n-2 al ao 
g(x) = xn + --x + --x + ..• + -x+ 

bo b b bl n-1 n-2 

and 

c 
n-1 c n.,2 n-2 cl co 

h(x) xn + n-1 
+ + ... + = --x --x -x+ 

do d d dl n-1 n-2 

where a. I b. I Ci I d. are in z and (a.,b.) = 1 = (c.,d.), Let s be 
1 1 l l 1 J J 

the least common multiple of bo· bl .. ' bn-1 and t be the least common 

multiple of d 0 , d 1, ... , dn-l . Then as in Example 4 sg(x) and th(x) 

are in Z[x] also the greatest common divisor of the coefficients of 

sg(x) is 1 and th(x) is 1 . The proof will be completed when it is 

shown that s = t = 1. Since f(x) = g(x) h(x) then stf(x) = (sg(x)) (th(x)). 

Suppose p is prime and p I st then p divides all the coefficients of 

stf(x). From Lemma 5, p n;iust divide all the coefficients of sg(x) 

or th(x), but this is impossible, thus there is no prime that divides 

st. Since st is not divisible by a prime and s and t are positive 

rational integers s = t = 1 . 

It is possible to prove a more general theorem than Theorem 6. 

The restriction that f(x), g(x) and h(x) are monic can be omi~ted 

and the same conclusion obtained, Such generality is not needed. here, 

so the theorem is not included. 



The next theorem is very important. The results are used 

extensively throughout the remainder of the paper. 
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Theorem 7. An algebraic number 0 is the root of an unique 

irreducible monic polynomial f(x) in Q[x]. All other polynomials in 

Q[x] for which 0 is a root are divisible by f(x). 

Proof. Since any polynomial in Q[x] may be divided by its leading 

coefficient without affecting the roots only monic polynomials need be 

considered. From all the (monic) polynomials for which 0 is a root, 

pick f(x) such that the degree of f(x) is less than or equal to the 

degree of any of the others. Suppose f(x) is not irreducible, then 

f(x) = g(x) h(x) where the degrees of g(x) and h(x) are less than 

the degree of f(x). Now f(0) = g(0) h(0) = 0 implies 0 is a root of 

g(x) or h(x) contradicting the choice of f(x). Thus f(x) is 

irreducible. Consider any polynomial g(x) in Q[x] with 0 as a 

root. From Theorem 2 g(x) = f(x) k(x) + r(x) where the degree of 

r(x) is less than the degree of f(x) or r(x) is zero. Now 

g(0) = f(0) k(0) + r(0) implies r(0) = 0. The choice of f(x) implies 

r(x) is the zero polynomial, thus f(x) divides g(x). Since f(x) 

divides all other polynomials with 0 as a root, the only irreducible 

polynomials with 0 as a root are constant multiples of f(x). Thus 

f(x) is the unique monic polynomial satisfying the conclusion of the 

theorem. 

Definition 8. The polynomial f(x) in Theorem 6 is called the 

minimal polynomial of 0, and the degree of f(x) is called the degree 

of 0. 



Theorem 6 implies the minimal polynomial of an algebraic 

integer is in Z[x]. If a is a rational number then x - a is the 

minimal polynomial of a. Thus the only rational numbers that are 

algebraic integers are the rational integers. 

The next few theorems will reveal some facts about the roots of 

polynomials and how the roots and coefficients of a polynomial are 

related. 

Definition 9. If 

f(x) 
n 

i = ~ a.x 
i=O 1 

then the derivative, f' (x), is defined as 

f' (x) 
n 
"""' . i-1 = ~ 1 a.x 

i= 1 1 

Although no use of limits was made to define the derivative, all 

8 

the results from elementary calculus regarding the derivatives of poly-

nomials can be obtained, and they will be used freely. 

Theorem 10. If 8 is a root of f(x) then f(x) = (x - 8) g(x). The 

coefficients of g(x) may be complex numbers. 

Prdof. Theorem 2 with Q replaced by the field of complex numbers 

gives 

f(x) = (x - 8) g(x) + r 

where r is a constant. Now r = f(8) - (8 - 8) g(8) = 0 and the theorem 

is proved. 
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Definition 11. A root 8 of f(x) has multiplicity k if 

f(x) = (x - 8)kg(x) and 8 is not a root of g(x). If k = 1 the root is 

simple. 

Theorem 12. If 8 is a root of multiplicity k for f(x) and 

k > 1 , then 8 is a root of f' (x) • 

Proof. From the definition 

f(x) = (x - 0/g(x) 

thus 

f' (x) 
k-1 k 

= (x - 8) g(x) + (x - 9) g'(x) 

so 

f 1 (8) = 0 and the theorem is proved. 

Theorem 13. If f(x) is an irreducible polynomial in Q[x] then 

all the roots of f(x) are simple. 

Proof. Again, as in Theorem 7, only manic polynomials need be 

considered. If 9 is a root of f(x) then f(x) is the minimal poly-

nomial of 8. The degree of f'(x) is less than the degree of f(x) so 

that 8 is not a root of f' (x). Thus by Theorem 12, 9 is a simple 

root. 

A polynomial in n variables is said to be symmetric if the 

variables can be permuted without changing the polynomial. For 

example 

h(x, y, z) 2 2 2 = 3x y z + xy + yz + xz + x + y + z 

is symmetric since 



But 

h(x, y, z) = h(y, x, z) = h(y, z, x) = h(z, x, y) 

= h(z, y, x) = h(x, z, y). 

2 
g(x, y, z) = x + y + z is not symmetric since 

g(x, y, z) -! g(z, x, y) 
2 

= z+x+y 

The polynomials 

x 
n 

are called the elementary symmetric functions in n variables. If 

x 1,x2 , .•. ,xn are roots of the polynomial 

then f(x) can be factored 

n-1 + xn + a 1x 
n-

Multiplying out the second form and equating the coefficients gives 

n = (-1) s n 

a = 1 

a 
n-1 = -s I . 

This simple relation between the elementary symmetric functions of 

10 
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the roots and the coefficients of a polynomial is very useful. If the roots 

of f(x) are bounded by M then / ai / ~ (~)Mi, where ( ~) is the 

binomial coefficient. 

Theorem 14. A symmetric polynomial in n variables with 

coefficients in a ring R can be written as a polynomial in the n 

elementary symmetric functions with coefficients in R, 

The proof can be found in Clark [6], The usual proof of this 

theorem yields a method of finding the polynomial. The theorem can 

also be proved by double induction on n and the degree of the poly-

nomial. The following example demonstrates another method and also 

gives a result to be used later. 

Example 15. Consider the square of the Vandermonde determin-

ant 

2 2 
1 x x 

.6.(x, y, x) 1 
2 2 2 2 

= y y = (x-y) (x-z) (y-z) . 

1 
2 z z 

This function is symmetric in :x., y and z. Let the elementary 

symmetric functions of x, y and z be 

a=x+y+z 

b = xy + xz + yz 

c = xyz . 

.6.(x, y, z) is homogeneous of degree six, that is, each term has degree 

six. The combinations of a, b, and c which give degree six are 

2 b3 6 b b2 2 ba4 d 3 c , , a , a c , a , an ca . 
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Assume 

It would be possible to find the values of A, B, C, D, E, F, and G 

by expanding the equation in terms of x, y, and z and equating coeffi­

cients of like x, y, z terms. Since this is very tedious seven 

different values of (x, y, z) are chosen to determine a set of linear 

equations for A, B, C , D , E , F and G . The values are tabulated: 

x y z a b c -6 

1 0 0 1 0 0 0 

1 1 0 2 1 0 0 

1 -1 0 0 -1 0 4 

2 -1 - 1 0 -3 2 0 

2 1 0 3 2 0 4 

1 2 3 6 11 6 4 

1 -1 2 2 -1 -2 36 

This gives the equations 

0 = c 

0 = B + 64C + 4E + 16F 

4 = -B 

0 = 4A - 27B 

4 = 8B + 279C + 36E + 162F 

4 = 36A + 133 lB + 46656C + 396D + 4356E + 14255F + 1296G 

36 = 4A - B + 64C + 4D + 4E - 16F - 16G . 

Solving the equations gives 
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A= -27, B = -4, C = 0, D = 18, E = 1, F = 0, G = .. 4 

or 

This chapter concludes with the theorem that demonstrates that 

the set of algebraic numbers and the set of algebraic integers are 

closed with respect to the arithmetic operations of addition and multi-

plication. 

Theorem 16. The product, sum or difference of algebraic 

numbers is an algebraic number. If the numbers are algebraic 

integers then the results are algebraic integers. 

Proof. Let a and 13 be algebraic -numbers with minimal polynomials 

h(:x) and k(x). Let a = a 1, ... , an be the n distinct roots of h(x) 

and 13 = 13 1, .•• , 13m be the m distinct roots of k(x). Form the poly-

nomials 

s (x) = II (x - a. - 13.) 
J l 

d(x) = II (x -a.+ l3.) 
J 1 

p(x) - II (x - a .13.) . 
J 1 

Where i = 1, 2, .•. , m, and j = 1, 2, ... , n. These polynomials are 

symmetric in and in Theorem 14 implies 

that s(x), d(x) and p(x) can be expressed as polynomials in the 

elementary symmetric functions of and 

these are the coefficients of h(x) and k(x). Thus s(x), d(x) and 

p(x) are polynomials with coefficients from the same domain aE? h(x) 

and k(x). The·roots of s(x), d(x) and p(x) are thus algebraic 



numbers or algebraic integers depending on whether a and f3 are 

algebraic numbers or algebraic integers. Finally a+ f3 is a root of 

14 

s (x) , a - f3 is a root of d (x) and a f3 is a root of p(x) . Note 

however, that these three polynomials are not necessarily the minimal 

polynomial of the sum, difference and produc;:t of a and f3 • 

Theorem 16 implies that the set of algebraic numbers and the 

set of algebraic integers form a subring of the complex numbers. One 

could show that the inverse of an algebraic number is an algebraic 

number and thus the set of algebraic numbers forms a subfield of the 

complex numbers. This result will appear in the next chapter where 

certain algebraic number fields will be studied. 



CHAPTER II 

ALGEBRAIC NUMBER FIELDS 

The object of this chapter is to pre sent some basic facts about 

fields of algebraic numbers. Consider two fields H and K where H 

is a subfield of K. Then K can be thought of as a vector space over 

H, with vector addition ordinary addition in K and scalar multiplica-

tion ordinary multiplication in K. The field K is called an extension 

of H. The dimension of the vector space K over H is the degree of 

the extension K over H. 

Example 17. The set of numbers 

{a+ b ...r=T : a, b e Q} 

forms an extension of Q. The numbers I and ..r::f form a basis, 

thus the degree of the extension is two. 

Theorem 18. Ii K is an extension of Q and the degree of the 

extension is finite, then the members of K are algebraic numbers, 

Proof. Let the degree of K over Q be n and let a be in K, Then 

2 n l, a, a , ... , 0 are n + l vectors in K and must be dependent. 

This means there exist 

such that 

l c: 

in Q not all of which are zero 

+ a en = 0 • 
n 
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Thus e is a root of 

a polynomial in Q[x], which implies e is an algebraic number. 

Because of this theorem finite extensions are often called 

algebraic extensions. The next theorem is quite useful later. It is 

proved here in a general setting. 

Theorem 19. Let H, B and K be fields such that HC BC K, 

the degree of B over H is m, and the degree of K over B is n. 

Then the degree of K over H is mn. 

Proof. Let b 1, b2 , •.. , bm be a basis of the vector space B over H 

and k 1, k 2 , ... , kn be a basis of the vector space K over B. The 

products b.k. 
l J 

i=l,2, •.• ,m; j=l, ... ,n form a set of mn vectors 

in K. The theorem will be proved if this set can be shown to be a 

basis of the vector space K over H. Consider 

Then 

n m 
~ ~ h .. b.k. = 0 

j = I i= 1 1J 1 J 

m 
~ h .. b. 

i= 1 lJ l 

h .. EH 
lJ 

j=l,2, ... ,n. 

is in B. Since k 1, k2 , ... ,kn is a basis of Kover B 

n 
~ 

j=l 
(~ h .. b~ k.=O \i-1 lJ / J 



implies 

This last equation implies 

m 
~ h .. b. = 0 

i= 1 lJ l 
j = 1, 2, ... , n • 

h .. = 0 
lJ 

for i = 1, 2, •.• , m and 

17 

j = 1, 2, .•. , n since b 1, b2 , ••. , bm is a basis for B over H. Thus 

the set of vectors b.k. is independent. Let x be in K. There exist 
l J 

y. in B for j=l,2, ... ,n such that 
J 

n 
x = ~ y.k. 

j = 1 J J 

For eac;h y. in B there exist h .. in H, i = 1, 2, ..• , m such that 
J ~ 

m 
y. = ~ h .. b. 

J i= 1 lJ J 
j = 1, 2, ... , n . 

Thus 

n m 
x = ~ ~ h .. b.k. 

j = 1 i= 1 lJ 1 J 

Hence the set of vectors b.k. form a basis for K over H. 
l J 

Let e be an algebraic number with minimal polynomial f{x). 

For any g(x) in Q[x], g(S) is the value of g(x) at e. From 

Theorem 16, g(0) is an algebraic number. Let Q[e] be the set of 

values at e for the polynomials in Q[x]. The numbers in Q[e] can 

be thought of as polynomials in e. 

Theorem 20. Let e be an algebraic number. Then Q[e] is a 

field. 
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Proof. Q[e] is a subset of the complex numbers (including Q), thus 

all that is needed to complete the proof is closure and inverses under 

addition and multiplication. Let g(0) and h(0) be in Q[e] where 

g(x) and h(x) are in Q[x]. Then g(x) + h(x), g(x) h(x) and -g(x) 

are in Q[x] so g(0) + h(0), g(0) h(0) and -g(0) are in Q[e]. All 

that remains to be shown is that if g(0) 'f, 0, then g(0) has a multipli­

~ative inverse in Q[e]. If f(x) is the minimal polynomial of 0, it 

follows from Theorem 2 and the fact that f(x) is irreducible that f(x) 

and g(x) have no common factor. Theorem 3 implies there exists 

k(x) and r(x) in Q[x] such that g(x) k(x) + h{x) f(x) = 1. Thus 

1 = g(0) k(0) + h(0) f{0) = g(0) k(0) since f(0) = 0. So k{0) is the 

multiplicative inverse of g{0). 

Different polynomials in Q[x] may have the same value at e. 

The following theorem will pick out one polynomial for each number in 

o[e]. 

Theorem 21. Let e be an algebraic number of degree n. Then 

Q[e] = { g(0): g(x) is in Q[x] and either the degree of g(x) is less 

than n or g(x) is the zero polynomial} 

For each element of Q[e] this polynomial is unique. 

Proof. Let f(x) be the minimal polynomial of e. The degree of f(x) 

is n, the degree of 0. Let h{x) be in Q[x]. Then from Theorem 2 

h(x) = f{x) q{x) + r(x) where the degree of r(x) is less than n or r{x) 

is the zero polynomial. The value of h{x) at e is then 

h(0) = f{0)q{0) + r(0) = r{0), This proves the first part of the theorem. 

If h(x) and k{x) have the same value at e and both have degree less 
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than n, then k(x) - h(x) has e as a root. The degree of h(x) - k(x) 

is less than n. This contradicts the degree of e being n unless 

h(x) = k(x) . 

Corollary 22, The numbers 2 n-1 
1,e,e , ... ,e form a basis for 

Q[e] over Q. The degree of e is the degree of the extension Q[e] 

over Q. 

Proof. From the theorem each element of Q[e] is a unique linear 

combination of 1, e, .•. , en- l, with coefficients in Q, thus 

n-1 [ ] 1, e, ... , 8 is a basis for Q e over Q and the dimension of the 

vector space is n. 

Example 23. Consider 

f(x) 

If f(x) is reducible one of the factors must be linear since f(x) is 

cubic. The root of a linear factor must be rational. Thus to show that 

f(x) is irreducible one must show f(x) does not have a rational root. 

From elementary theory of equations if f(x) has a rational root the 

numerator of that root divides 27 and the denominator divides 8. 

Testing all of the possibilities shows f(x) has no rational roots thus 

f(x) is irreducible. Let a be a root of f(x), then f(x) is the minimal 

polynomial of a and a is an algebraic number of degree 3 . The 

numbers in Q[a] can all be expressed in the form 

2 
a + ba + ca a, b, CE Q , 
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Corollary 22 and Theorem 18 imply all the elements of Q[e] 

are algebraic numbers. Thus Q[e] is referred to as an algebraic 

number field. Let '¥ be in Q[e] and consider the set 2 k 
l,'i','f , ..• ,'¥ 

For some k > 0 this set is dependent while 2 k-1 
l,'i','f , .•• ,'¥ is 

independent over Q. Just as in the proof of Theorem 18.the minimal 

polynomial of '¥ must have degree k. This leads to the following 

result. 

Theorem 24. Let '¥ be in Q[e]. If the degree of '¥ equals the 

degree of a then Q['f] = Q[e]. 

Proof, Let the degree of a be n. The numbers 2 n-1 
l,'f,'f , •.. ,'¥ 

form a basis for Q[e] since they are n independent elements. They 

are also a basis for Q['f]. Thus Q['f] = Q[e]. 

Let C be the root of a polynomial with coefficients in Q[e]. 

Then a new field Q[e] [c] can be formed in the same manner Q[e] 

was formed. It can be shown that there is an algebraic number '¥ such 

that Q['f] = Q[e][c]. A proof can be found in Clark [6]. This result 

implies the numbers in Q[e] [c] are also algebraic numbers. 

Theorem 25. If a is an algebraic number there is a rational 

integer m f. 0 such that me is an algebraic integer, and 

Q[me] = Q[e]. 

Proof. Let the minimal polynomial of 0 be 

f(x) a.,b.eZ 
J J 
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where (a., b.) = 1 j = 0, 1, ... , n-1 . Let m be the least common 
J J 

multiple of b 0, b 1, •.. , bn-l. Define g(x) = mnf(x/m). Clearly g(x) 

is manic and g(x) is in Z[x]. If g(x) is reducible then f{x) is. 

Since f(x) is irreducible g{x) is irredµdble. Finally 

n 
g(m9) = m f(9) = 0 so g(x) is the minimal polynomial of me and 

me is an algebraic integer of degree n in Q[a]. Thus Theorem 24 

implies Q[me] = Q[a]. 

Thus an algebraic field extension Q[a] may always be defined 

· in terms of an algebraic integer. 

Example 26. Consider the algebraic field extension Q[a] from 

Example 23. The least common multiple of the denominators of the 

minimal polynomial of a is 8. Let f3 = 8 a then the minimal poly-

nomial of f3 is 

( x 3 3x2 15x 27) 
g(x) = 512 fil .. 128 + 32 + 8 

= x 3 - 12x2 + 240x + 1728. 

Each of the roots of g(x) is 8 times a root of the minimal polynomial 

of a. 

When Q[a] is regarded as a vector space over Q a linear trans-

formation from Q[a] to Q[0] can be defined for each element of 

Q[0] in the following way: Let '!' be in Q[a], define F'!': Q[0] - Q[e] 

by F'!'(') = '!'' for each , in Q[a]. Then, for , 1, , 2 in Q[a] and 

a in Q, 
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For each basis of Q[S] there is a matrix representation of F'Y. 

Although changing the basis changes the matrix representation of F'Y, 

there are some quantities which are independent of which matrix 

represents F'Y. Three of these quantities are the trace, the determin­

ant and the characteristic polynomial of the matrix. These facts are 

proved in Zelinsky [19]. 

Definition 27. Let '¥ be in Q[S] and F'Y the corresponding 

linear transformation. The trace, determinant and characteristic 

polynomial of a matrix representation of F'Y are called the trace, 

norm and characteristic polynomial of '¥ respectively. The norm will 

be denoted by N('Y) and the trace by T('Y). 

It is important to note the linear transformation F'Y depends on 

the algebraic number field from which '¥ is chosen. The following 

examples and theorems demonstrate how the norm, trace and 

characteristic polynomial of an algebraic number are related to the 

field from which '¥ is chosen. 

Example 28. Let a be the algebraic number of Examples 23 and 

24. Then 

3 
a = 27 

8 

With 1 , a , a 2 a s a ba sis for Q[a] a matrix representation of F 
a 

and 13 = 8 a can be calculated in the following manner: 

F (1) = a = 0 + a + 0 
a 

F (a) = a 2 - 0 + 0 + a 2 
a 

3 
a 

27 
8 



The values for Fl3 are simply 8 times the values for 

matrix for F is 

F . 
a 

a 

0 0 

A = 1 0 

0 1 

is SA. Thus 

27 
8 
15 

-4 

3 
2 

27 
N(a) = detA = - 8 , 

23 

The 

3 
T(a) = z , and the matrix for Fl3 

3 
N(l3) = 8 detA = -1728 and T(l3) = 8T{a) = 12. Note the characteristic 

polynomial of 13 is 

x 0 27 

det(xI - SA) ;;: -8 x 30 

0 -8 x-12 

= x 3 - 12x2 + 240x + 1728 

where I is the identity matrix, From Example 24 det(xI - SA) = g(x) 

the minimal polynomial of 13. The exact relationship between the 

characteristic polynomial and the minimal polynomial of an algebraic 

number will be shown in Theorem 31. 

If a, '±' and , are numbers from an algebraic number field then 

From the properties of matrices and their relationships to linear 

transformations the following theorem can be established. 
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Theorem 29. Let 'i' and , be in Q[a], then N('i'') = N('i')N(') 

and T('i'+,)=T('i')+T(,). 

The next two theorems use Theorem 19 to show how the degree of 

an algebraic number in Q[a] is related to the degree of 9 and how the 

minimal polynomial of a number is related to its characteristic poly-

nomial. 

Theorem 30. Let 'i' be in Q[9]. Then the degree of 'i' divides 

the degree of a. 

Proof. The set 
2 m-1 

1, 'i', 'i' , ... , 'i' where m is the degree of 'i' is a 

set of independent vectors in Q[a]. Thus Q[ 'f] is a subspace of 

Q[a]. Now QC Q['f ]C Q[a] are fields satisfying the hypothesis of 

Theorem 19. The degree of Q['f] over Q is m the degree of 'f and 

the degree of Q[a] over Q is the degree of 9. Theorem 19 implies 

the degree of 'i' divides the degree of 9. 

Theorem 31. Let 'i' be in Q[a] and the degrees of 'f and a be 

m and n. Then the characteristic polynomial of 'i' is the minimal 

polynomial of 'i' raised to the power k = n/m. 

Proof. The fields QC 'Q[ 'f] C Q[a] satisfy the hypotheses of 

Theorem 19. The numbers 
2 m-1 

1, 'f, 'i' , •.• , 1.1' form a basis for 

Q[ 'i'] over Q. Let , 1, , 2 , ..• , ,k be a basis for Q[a] over Q[ 'f]. 

Note that the scalars for Q[9] over Q['f] are members of Q['f], 

not Q, From Theorem 19 the numbers 

j = 0, 1, 2, •.. , m-1 form a basis for Q[9] over Q. Let the minimal 

polynomial for 'i' be 



( ) m + b m-1 m-2 
f x = x m- lx + bm-2x + ... + bo 

then 

m 2 
'!' = - b O - b 1 '!' - b2 '!' -

Now 

F'!'( Cl) = 0 + Cl'!' + 0 + ... + 0 

2 
F'!'(C 1'!')=0+o+c 1'!' +o+ ••. +o 

_ b '!'m-1 • 
m-1 
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where each equation has enough zeros to make n terms. The matrix 

A of F'!' contains k copies of the matrix 

0 0 0 . . . 0 -bo 

1 0 0 0 -bl 

0 1 0 0 -b2 
B = 

0 0 1 0 -b3 

0 0 0 1 -b 
m-1 

down the main diagonal with zeros elsewhere. The characteristic 

polynomial of '!' is thus 

Corollary 32. Let '!' be in Q[e] where the degree of e is n 

and the chari:l,cteristic polynomial of '!' is 
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n 
Then N('±') = (-1) a 0 and T{'±') = -a l . n-

Let 

the roots of the minimal polynomial of '!', then 

and T('!')=k(t 1 +'!'2 + ... +tm) where k=n/m. 

Proof. The first conclusion follows from the rules for computing 

determinants. The second from the relations between the roots of a 

polynomial and its coefficients. 

The next corollary will be a very useful tool. 

Corollary 33. Let 1' be in Q[e] •. · If '!' is an algebraic integer 

then the norm and trace of '±' are rational integers. 

Proof. If '±' is an algebraic integer then -a and 
n-1 

n 
(-1) ao in 

Corollary 32 are rational integers. 

The results of Theorem 31 and the two corollaries were 

demonstrated in Example 28. 

Let a = a 1, e 2 , .•. , en be all the roots of the minimal polynomial 

of a. Then each root defines an algebraic number field o[e.] 
J 

j = 1, 2, ..• , n. These fields are not necessarily distinct. Let '±' be in 

Q[0] and let g(x) be the unique polynomial of Theorem 21 that 

corresponds to 1'. Then there is a correspondence between elements 

of Q[e] and Q[e.] given by '!' = g(S) - 'f. = g(S.). 
J J J 

This corres-

pondence clearly preserves arithmetic operations. That is, if 

'±'+; = ' 

Q[e.] 
J 

then '±'. + ; . = , . 
J J J 

and if ts = X. then 'f .; . = x. .• 
J J J 

The fields 

j = 1, 2, •.• , n are called the conjugate fields and the numbers 

'!' 1, t 2 , .•. , '!'n are ~alled the conjugates of '±' with respect to those 

fields. 
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Theorem 34. Let '±' be in Q[e]. Then the conjugates of '±' are 

the roots of the minimal polynomial of '±'. 

Proof. Let '±'. = g(9,) and let f(x) and h(x) be the minimal poly-
J J 

nomials of 9 and '±' respectively. Now h('±') = h(g(e)) = 0. Thus f(x) 

divides h (g(x)) . Therefore h('±'} = h(g(ej )) = 0. 

It follows from Theorems 31 and 34 that the conjugates of '±' are 

the roots of the minimal polynomial of '±' repeated enough times to 

make n numbers where n is the number of conjugate fields. 

Exam:ele · 3 5. f(x) 4 
and 

4 
The conjugates Let =x - 3 er=\{?;. 

of CT 
4 

cr2=-~, '1-1 ~ and CT4=-..J:T ~-are {Tl = '13' CT 3 = 

A basis for Q[cr] is l,CT,CT 
2 3 4 4 2 

'CT or 1,~,"13,IB. Let T.= ltCT. 
l 

or Tl= 1 + .../3, T2 = 1 - .../3, T3 = 1 + .../3, T4 = 1 - .../3. The minimal 

2 
polynomial of T is clearly x - 2x - 2 , As another example of 

Theorem 31 a matrix representation for 

cr4 =3. 

F is determined. 
T 

F (1) - T = l + 0 + er2 + 0 
T 

F (er) 0 + 1 + 0 + er 
3 

= Ter -T 

F (er2 ) 
2 

3 + 0 + ler2 + 0 = Ter = T 

F (er 3 ) 
·3 

0 + 3er + 0 + ler 
3 

= Ter = T 

Note 

The basis used in Theorem 31 is not the basis used here. The basis 

used in the proof of the theorem demonstrated the de sired result, but, 

from a computational point of view, it is difficult to discover and use 

that particular basis. The matrix of F is 
T 

l 
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1 0 3 0 

0 1 0 3 
A = 

1 0 1 0 

0 1 0 1 

The characteristic polynomial of Tis det(xl -A) 

x-1 0 -3 0 

0 x-1 0 -3 2 2 
= (x .. 2x - 2) , 

-1 0 x-1 0 

0 -1 0 x-1 

are the distinct roots of the minimal polynomial of T. 

There is one concept left to be discussed in tpis chapter. 

Definition 36. Let Q[ 0] be an algebraic number field of degree 

n over Q. Let be in Q[a] and let '±'· 1· '±'·2· .•. , '±', 
1 1 1n 

be the conjugates of '±'.. The number 
l 

'±'11 '±'21 

'±'12 '±'22 

~('±'1' '±'2, · · · • '±'n) = ... 

'±' ln '±'2n 

'±'31 

'±'32 

'±'3n 

is called the discriminant of '±' 1, '±'2 , •. ,, '±'n · 

The discriminant is a symmetric function in each of the conjugates 

of '±'.. Theorem 14 implies the discriminant is a rational number. If 
l 



all the 'JI. are algebraic integers then the discriminant is a rational 
l 
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integer. 
2 n-1 

The discriminant of 1, e, e , ... , e will be used frequently 

in Chapter II.I . 

Example 37. Consider the algebraic number field Q[a] of 

E 1 23 h . t f 3 3 2 + 15 + 27 xamp e w ere a 1 s a roo o x - 2 x 4 x 8 . 

2 2 
1 al al 

2 
1 

2 
.6.(l,a,a ) = a2 a2 

1 
2 

a a3 3 

where a 1,a2 ,a3 are the conjugates of a. From Example 15 

2 2 2 2 3 3 
.6.(1,a,a ) = b a + 18abc - 27c - 4b - 4ca where 

Thus 

3 
a = a 1 + a 2 + a 3 = T (a ) = 2 

= N(a) 

2 
.6.(1,a,a ) = -783. The discriminant of 

2 
1 ' (3. (3 where (3= Sa 

can be computed in the same manner using results of Example 26 

.6.(1, (3. r32 ) = -205258752. 
2 

Note that .6.(1,a,a ) is in Z but not all of 

the algebraic numbers 
2 I,a,a are algebraic integers. 

Theorem38. Let '1:' 1,'1'2 , ... ,'fn bein Q[e] wherethedegree 

of e is n. If 

;. -
l 

n 
:E a .. '¥. 

j = 1 lJ J 
a .. E Q 

lJ 



is det(a .. ). 
lJ 

P f L b th .th · t f d t; • 1 roo • et 'f.. e e J conJuga es o 'f. an ':>. respective y. 
~ l l 
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Let B and C be the matrices with entries 'Y.. and 5 .. 
lJ lJ 

respectively. 

Then C = AB and 

= jABj 2 = jAj 2 jBj 2 = jAj 2 A(w \II \II) L...i.11,121•••>ln 

Example 39. The matrix relating 

Example 37 is 

1 0 

A = 0 8 

0 0 

jAj 2 = (512) 2 = 272144 and 

2 
1, a, a and 

0 

0 

64 

2 
1, ~. ~ in 

A(l, ~. ~2 ) = -205258752 = (272144)(-783) = (512) 2A(l,a,a2 ). 

Theorem 40. The discriminant of any basis of Q[e] is never 

zero. 

Proof. Given any two bases of Q[e] there exists a matrix A relating 

them as in Theorem 38. Furthermore A is nonsingular. Thus if one 

basis with a nonzero discriminant can be found, Theorem 38 will imply 

that the discriminant of every other basis is not zero. Consider the 

2 n-l 9 be the J0 th . f 9 h basis 1, e, e .... , e . Let . COnJugate O t en 
J 



1 a1 a z 
1 

2 n-1 1 02 a z 
A(1,a,a , ... ,a )= 

2 

1 a a z 
n n 

This is the square of the Vandermonde determinant thus 

a n-1 
n 

Since all the a. are distinct the discriminant is not zero. 
J 
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Note also that all the'. discriminants of bases of Q[a] have the 

same sign. If all the conj~gate fields of Q[a] are real fields then all 

the a. are real ahd the discriminant is the square of a real number. 
J 

Thus the discriminant of a basis must be positive if all the conjugate 

fields are real, 

Theorem 41. Let Q[a] be an algebraic number field and f(x) 

the minimal polynomial of a. Then 

n(n-1) 

( 2 ; n-1 _ ( ) 2 l,( )) A 1, a, a , •.. , a ) - - 1 N \f a . 

Where n is the degree of f(x) and f'(x) is the derivative of f(x). 

Proof. Let a. be the /h conjugate of a, then 
J 

n 
f(x) = II (x - 9.) 

j = 1 J 

and 



f' (x) =; (II (x-0.)). 
i= 1 j h J 

Now from Corollary 32 

N(f'(0)) 
n 

= II f'(0k) 
k=l 

n 

( i;l {iJi (Bk- e}}) = II 
k=l 

n 
= II (II (0k-0.)) 

k=l j#k J 

n(n-1) 

= (-1) 2 

n(n-1) 

= (-1) 2 

II 
k<j 

(0 - 0.)2 
k J 

2 n-1 
L:>.(1,0,0 , •.. ,0 ). 

In the next to the last step half of the n(n-1) terms are reversed in 

order. 

Example 42. Let p be a prime number. It can be shown that 

f(x) = xp-l + xP- 2 + xp- 3 + .•. + x + 1 

32 

is irreducible [6]. This polynomial is called the pth cyclotomic poly-

nomial. Let w be a root of f(x) then 

P.:l 
2 p-2 _ 2 ( I ) 6.(1,w,w , .•. ,w ) - (-1) N f {w) 

The norm of f'{w) is computed in the same manner as in Example 28. 

Let F be the linear transformation of Q[w] determined by f 1 {w). 

Note that 



f' (w) = 1 + 2w + 3c.} + ..• + (p - 1) wP-2 

and 

p-1 2 w = -1-w-w - ... p-2 
- w . 

Now 

F(l) = f'-(w) = 1 + 2w + 3w2 + , .. + (p - l~wP- 2 

F(w) = f'(w)w= l-p+(2-p)w+(3-p)w2 + ... -wP-2 

F(w2 ) = f 1(w)w2 = 1 + (2-p)w+ (3-p)w2 + ., ... wP- 2 

F(wp-2) p-2 2 p-2 = f'(w)w . = 1 + w + w + . , • - w • 

So the matrix of F is 

1 2 3 p-1 

1-p 2-p 3-p -1 

1 2-p 3-p -1 
A = 

1 2 3-p -1 

1 2 3 -1 

The determinant of A is the norm of f'(w). It can be shown that the 

determinant of A is pP- 2 thus 

E..:..!. 
2 p-2 _ 2 (. I ) -C\(l,w,w , •.• ,w ) - (-1) N\f (w) 

E..:..!. 
= (-1) 2 pp-2 

33 



CHAPTER III 

RINGS OF ALGEBRAIC INTEGERS 

The main theme of this chapter is to develop some theorems 

regarding the structure of the set of algebraic integers contained in 

some algebraic number field. It follows from Theorem 16 that the set 

of all algebraic integers in a given algebraic number field forms a 

ring, in fact it forms an integral domain. An algebraic number field 

is quadratic or cubic if the degree of the extension is two or three 

respectively. Many of the results in this chapter will pertain to 

quadratic and cubic extensions, although Theorem 47, the main 

theorem of the chapter, relates to extensions of arbitrary degree. 

More exhaustive results on quadratic extensions can be found in Reid 

[14], and on cubic extensions in Delone and Faddeev [7]. 

Example 43. Consider Q[,{6] where 
2 

x -6 is the minimal 

polynomial of ,{6 . The numbers in Q[ ,{6] are of the form a+ b ,.f6 

a, b in Q. Suppose e = a+ b .,[{; is an algebraic integer. If b = 0 

then e = a is in Z, or e is a rational integer. If b # 0 then e has 

degree two and the characteristic polynomial of 0 is the minimal 

polynomial of e. Computing F 0 

"> A 



Thus the minimal polynomial of e is 

x-a -b 
= x 2 - 2ax + a 2 - 6b2 

-6b x-a 

For 0 to be an algebraic integer 2a and a 2 - 6b 2 must be in Z. 

Clearly if a is in Z then b must be in Z. 
r 

If a = 2 for an odd 

rational integer r then 

is in Z. This implies 

2 
= .!'.. - 6b2 = 

4 

Omod4 

or r 2 = 0 mod4. Since r is odd this is impossible. Thus the 

algebraic integers in Q["6] are all numbers of the form a+b,J'l; 

with a and b in Z . 

If Q[e] is a quadratic extension of Q then 0 is the root of a 

quadratic equation. Thus there are a, b, c and d in Z such that 
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e = a+ b ..Jo where b-/. 0, c-/. 0 and d is square free. The numbers 
c 

1 and 0 form a basis for Q[e], thus ,Jd = ... b 1 + ~ 0 e Q[e]. Since 

the degree of .,[cf is two, Theorem 24 implies Q[e] = Q[ 'IJcf]. Thus 

all quadratic extensions can be expressed in the form Q[ .Jd] where 

d is a square free rational integer. 

Theorem 44. The algebraic integers in Q[ .Jd] where d is a 

square free rational integer are of the form 

a+ b 'IJcf if d = 2, 3 mod 4 
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or 

if d = 1 mod4 

where a,beZ. 

Proof. Let a = r + s ../d be in Q[ ../d]. As in Example 43. The 

minimal polynomial of a (sf 0) is 

If a is an algebraic integer 2r and r 2+ s 2d are in Z. If d = 2 or 

3 mod 4 then r and s are in Z by the same reasoning as in Example 

43. If d = 1 mod 4 then 2 r and 2 s are both odd or both even 

rational integers. Thus a = r + s ..Jd = (r - s) + (2 s) 1 \"'7:I where 

r - s and 2 s are in Z . 

This theorem states that the ring of integers in a quadratic 

extension forms a free Z module with two generators. The next 

theorems generalize this result to extensions of arbitrary degree. 

Theorem 45. Let a be an algebraic integer of degree n and let 

n-1 [ ] ~ = ~(l, a, ... , a ) . Then all the algebraic integers in Q a can be 

expressed in the form 

1 n-1 . 
- ~ a.eJ 
~ . 0 J J= 

a, E Z 
J 

Proof. Let a. be the ith conjugate of a. Consider an algebraic 
l 

integer '¥ in Q[ '¥] then 

'¥ = 
n-1 
~ r.ej 

j =O J 
r. E Q. 
J 
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Now the object is to show the r. can be written as a rational number 
J 

with denominator b... This is done by setting up a system of n 

equations for r 0 , r 1, ... , r n- l with coefficients in Z . From 

Corollary 33 the trace of an algebraic integer is in Z. Calculating 

the traces of '±" ej from Corollary 32 gives 

n (n-1 ·) n-1 (n ·) T ('±") = ~ ~ r. eJ = ~ ~ eJ r. 
i=l j=O Ji j=O i=l i J 

n ( n-1 .+!) n-1 
( n +I) T('±"9) = ~ ~ r. eJ = ~ ~· 9J 

i= 1 j=O J i j=O i= 1 i r. 
J 

The coefficients of the rj are symmetric functions in 9 1, e 2 , .•. , en. 

Theorem 14 states that these coefficients can be written as polynomials 

in the elementary symmetric functions of e 1, e2 , •.. , en. Since e is 

an algebraic integer, the elementary symmetric function of 

91,82····,en arein z. Thus the coefficients of r. are rational 
J 

integers. The r. 1 s can be expressed as the ratio of determinants 
J 

according to Cramer 1 s rule if the determinant of coefficients is not 

zero. The determinant of the coefficients is 



n 

n 
E 0. 

i= 1 1 

n 
E e.n-1 

i= 1 1 

1 

e1 

02 = 1 

1 

1 

= _J 

el 

02 

03 

n 
E 0. 

i= 1 1 

n 
E e.2 

i= 1 i. 

n 
E e.n 

i= 1 1 

1 

02 

02 
2 

02 
1 

02 
2 

02 
3 

1 e e 2 
n n 

1 

03 

02 
3 

n 
E e.2 

i= 1 1 

n 
E e.3 

i= 1 1 

n 
E e.n+l 

i= 1 1 

1 

e n 

02 
n 

n-1 
2 

e1 

n-1 
02 

e n-1 
3 = 

38 

n 
E e.n-1 

i= 1 1 

n 
E 0.n 

i= 1 1 

n 
E 0 _2n-2 

i= 1 1 

1 e1 
02 n-1 

1 el 

1 02 02 n-1 
2 02 

1 03 02 n-1 
03 3 

1 e e 2 
n n 

2 n-1 .6.(1,e,e , .•. ,e ) = .6. . 
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Theorem 40 implies A if. 0. Thus from Cramer's rule the r. can be 
J 

expressed as the ratio of determinants, The denominator determinant 

is A, The numerator determinant has only numbers from Z as 

entries thus the value of that determinant is in Z. Thus r. has the 
J 

desired form. 

Note that the theorem did not say that numbers of the_ form 

1 
A 

are always algebraic integers. 

n-1 .. 
~ a. eJ 

j =O J 
a. E Z 

J 

Example 46. From Example 37 with A = -2052587 52 let 

and a 1 = a 2 = •.• = an- l = 0. Then ; is a number of the form in 

Theorem 45 that is not an algebraic integer. 

Theorem 4 7. Let Q[e] be an algebraic number field where e 

has degree n. There exist algebraic integers p1, p2 , .•. , Pn in Q[e] 

such that any algebraic integer 'f in Q[e] can be exressed uniquely in 

the form 

'¥ = 
n 
~ z.p. 

j = 1 J J 
Z E Z, 

m 

Proof. Theorem 25 implies that 0 can be assumed to be an algebraic 

integer without any loss of generality. Let 2 n-1 
l:i. = 6.(1,e,e , ..• ,e ) 

as in Theorem 45. Consider algebraic integers in Q[e] of the form 
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alO 
P1 = ~ 

a20 + a2 le 
Pz = ,::'.). 

(48) 

+ a en-1 
n, n-1 

where a.. is in Z. 
lJ 

Since there is an algebraic integer 

p. for each j in Equation 48 with a .. 1 f. 0. Choose p. from the J J,J- J . . . . 

I a .. i I 
J' J - . 

is algebraic integers of the form in Equation 48 such that 

the smallest positive rational integer, j =), 2,\>i: • ., ... ,.n,, The theorem 

will be proved when it is shown that p 1 , Pz, •.. , pn satisfy the . 

conclusion of the theorem. Let '¥ be an algebraic integer in Q[e] 

then Theorem 45 implies 

'¥ = 

From the division algorithm 

+ b en-1 
n-1 

b =z a +r 
n-1 n n,n-1 n-1 

b. E Z, 
J 

where 

Now '¥ - z p is an algebraic integer and 
n n 

n-1 
'¥ - z p = l ~ (b. - z a . ) ej 

n n D. j=O J n nJ 

Thus the coefficient of en- l is Since rn-l < Ian, n-l' it 

must be that r = 0 n-1 because p was the algebraic integer of this 
n 

form with the coefficient of en- l least in numerical value. This 

process is now repeated, that is (b 2 -z a 2 ) = z 1a 1 2 +r 2 n- n n,n.,. n- n- ,n- n-
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where 0 < r < I a I Examination of the algebraic integer - n-2 n-1,n-2 • 

'f-Z p - Z p n n n-1 n-.1 shows r 2 = 0. This process is repeated until 
n-

'!' = 
n 
I: z. p. 

j = 1 J J 
Z. E Z. 

J 

Thus all the algebraic integers in Q[e] can be expressed in the desired 

2 n-1 
form. In particular 1, 0, 0 , •.. , 0 can be, thus pl' Pz, ... , Pn 

must be a basis for Q[e]. This implies that the z. zre unique. 
J 

Definition 49. Let Q[S] be an algebraic number field and have 

degree n. The algebraic integers p1, p2 , •.• , pn are called an 

integral basis for Q[S] if they are a basis for Q[e] and every 

algebraic integer '!' in Q[S] can be expressed in the form 

'!' = 
n 
I: z. P· 

i= 1 l l 
Z. E Z. 

l 

Every algebraic: number field Q[e·] has an integral basis 

(Theore.m 47). · For a quadratic extension The·orem 44 completely 

describes. the situation, In general·finding an integral basis for a given 

extension· is a c;lifficult task. However it can be shown that the di scrim-

inant of an integral basis is minimal. 

Theorem 50. Let '!' 1, ,y2 , ... , '1' n be algebraic integers that 

form a basis for Q[e], and let p 1, p2 , .•. , Pn be an integral basis 

for Q[e]. Then 1~('1'1''1'2 , •.. ,'l'n)I > l~(p 1,p2 , .•. ,pn)I. Equality 

occurs if and only if '1' 1, '1' 2 , •.. , 'l'n is an integral basis for Q[S]. 



42 

Proof. Since p 1, p2 , ••. , Pn is an integral basis there exists z .. in 
lJ 

Z such that 

n 
'¥. = ~ z .. p. 

1 j = 1 lJ J 
i=l,2, ... ,n. 

Let A be the matrix with z.. as entries. From Theorem 38 
lJ 

Since the z.. are in Z det A is in Z . Theorem 40 implies 
lJ 

detA f; 0. Thus (detA/::::,, 1 which implies 

The numbers ':1' 1, '¥ 2, ..• , 'l'n are an integral basis if and only if A -l 

has entries in Z. This is true if and only if det A and detA - l are 

both in Z, Since 
-1 -1 

det A = (det A) it follows that I detA I = 1 

The number 6.(p 1, p2, •.. , pn) is called the discriminant of 

Q[8]. 

Example 51. Consider Q[ ,Ja]. If d = 2 or 3 mod 4 then 

l, ,Ja form an integral basis and the discriminant of Q[ ..Jd] is 

6.(1, ,Ja) = 
,Ja 2 

= ( -2 ,Ja / = 4d • 
1 

1 -..fa 

If d = 1 mod 4 then 
1 +,Ja 

1, 2 forms an integral basis and the 

discriminant is 

and 



1 + \/cl 2 
1 

A( 1, l + {<l ) 2 
(-,Jd)2 = ;:: = d. 

1 1 - \/cl 
2 

Thus the discriminant of Q[ \/cl] is 4d when d = 2, 3 mod 4 , or is 

d if d = 1 mod 4 • 

Let ; be an algebraic integer in Q[e] with representation 

according to Theorem 45 

1 ; = A 

s-1 . 
~ a.eJ 

j =O J 
a. E Z 

J 
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where s - 1 < n - 1, That is assume as = as+ 1 = ... = an-l = 0. 

Then the correspoo.ding representation of ; according to Theorem 47 

is 

; = 

In other words 

s 
~ z.p. 

j = 1 J J 

... =z =O. 
n 

Z. E Z. 
J 

This follows from the way 

the z. were calculated in the proof of Theorem 4 7. This fact will be 
J 

used to discover many relations among the a .. 1s of Equation 48 when 
lJ 

p 1, Pz• •.. , pn is an integrc).l basis. Note that p 1 in Equation 48 is in 

Q thus if p 1 is to be an algebraic integer Aja 10 . Thus the smallest 

non zero I a 10 I is A~ so p 1 can. always be chosen as 1. Now 

j=l,2, ..• ,n-1. 

Calculating zj+l as in the proof of Theorem 47 gives A = zj+l aj+l,j • 
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Thus a.+l .16 for j=l,2, •.. ,n-1. Let 6. = 
J 

The number 
J ,J 

0p. is an algebraic integer fo3: 
J 

j=l, •.. ,n. 

and 

0p. = 
J 

j+l 
0p. = ~ z p 

J i i . 
i= 1 

Now 

a .. 1 
J ,J -

Thus aj,j-l = zj+laj+l,j or aj+l,j jaj,j-l for j = 1, 2, ..• , n-1. 

Since 6 = 6jaj,j-l = ~j+laj+l,j the fact that aj+l,j jaj,j-l implies 

6j l6j+l · Indu<;:tion on j will be used to show that for 1 .:'.:_j < n 

a .. 1 la.k k = 0, 1, 2, ..• , j-1. For j ::: 1 a1ola10· Suppose the 
J ,J - J 

statement is true for j=l,2, ... ,s. Now 

s+l 
0p = 2:: zi pi s 

i= 1 

or 

s 
z s+lPs+l - 0p = 2:: zip i • s i= 1 

a s, s-1 
Then since z = s+l a s+l,s 

6 60 s 6 
Ps+l = Ps + 2:: z. p .. a 

s+ 1, s 
a s, s-1 i= 1 

1 a 
s, s -1 

1 

Using Equation 48 to write this equation as a polynomial in a, the left 

side is 



a a 
s+l,O + s+l,l e + 

a s+l,s a s+l,s 

a 
s+l,2 2 ---'-0 + .•. + a s+l,s 

a 
s+l,s es 

a , 
s+l,s 

while the right hand side is 

a __ s..:.,,_o_ e + a a 
s,l 02 + s,s-1 0 s -~- ... + a 

s, s-1 
a s, s-1 

s 
+ ~ 

i=l 

z.a .. 1 1 1, l-

a s, s -1 

a s,s-1 

_ 1, + 1, e + ' . ' + 1, 1- el w ' ( 
a.· O a. l a .. · 1 · 1) 

a. ·. 1 a .. 1 a .. 1 
1,1- 1,1- 1,1-
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The coefficients of ei on the left side must equal the right side since 

2 n-1 
1, e, e , .•. , e is a basis. All the coefficients on the right hand 

side are rational integers by the induction hypothesis. Thus the 

coefficients on the left hand side are also in Z, and the induction is 

completed. Summing up, Q[e] has an integral basis of the form 

h. (0) 
P· =~ 
J A. 

J 
j=l,2,. .. ,n ( 51) 

where h. (x) is a manic polynomial in Z[x] of degree j - l . Also 
J 

Aj I Aj+l and 

Since 

n 2 2 n-1 
A(p 1• p2 , ... , pn) rr AJ. = A(l, e, e , ... , e ) . 

j=l 

la .. 1 I J ,J -
is picked to be smallest, then I A. I must be picked 

J 

large st. Finally p 1 = 1 . 

Example 52. Consider Q[w] where w is a root of the pth 

cyclotomic polynomial as in Example 42. Now 

p . p-1 p-2 
x - l = (x - 1) (x + x + , • • + x + 1) • 
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Since the second factor on the right hand side is the minimal polynomial 

of w it follows that wp = 1 . Thus (wj )p = wjp = (wp)j = 1 so wj is a 

p . 2 3 p-1 
root of x -1. The only root of x -1 1s 1 thus w,w ,w , ••• ,w 

must be the p - 1 roots of the minimal polynomial of w. No two of 

those powers of w are equal because of the properties of the minimal 

polynomial. Thus N(wj)=-1 and T(wj)=-1 for j=l,2, ..• ,p-1. 

Consider the number A = 1 - w. The matrix of FA for the basis 

p-2 
1, w, ••• , w is found from 

2 = O+w-w 

p-3 p-3 p-2 
FA (w ) = 0 + 0 + ... + 0 + w - w 

p-2 2 p-3 p-2 
FA (w ) = 1 + w + w + .•. + w + 2w 

Thus N(A) = p and T(A) = p. The next two lemmas will be used to 

prove that 
2 p-2 

1, w, w , .•• , w form an integral basis for Q[w]. 

Lemma. Let '±' be an algebraic integer in Q[w]. If '±' A is in Z 

then p I'±' A. 

2 p-2 
Proof. The matrix of F '±' A with respect to the basis 1, w, w , •.• , w 

is a diagonal matrix since F '±' A (wj) = '±' AWj, j = 0, 1,, .. , p.,.2 and '±' A 

is in Z . Thus 

N('i' A) = ('±' Al- l = N('±') N(A) = N('f)p . 

Since N('±') is in Z it follows that p /'±'A . 
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Lemma. Let ; be an algebraic integer in Q[w], then p IT(;>-..), 

Proof. Since ;>-.. is an algebraic integer T(;>-..) is in Z. The 

previous lemma can be applied if T(; >-..) can be shown to be the 

product of A and some algebraic integer in Q[w]. Let the conjugates 

of ; be ; 1, ; 2, ••• , ;p-l. The conjugates of A are 

2 p-1 
1-w, 1 -w , ••. , 1-w • Note that 

Thus 

Since 

. j-1 k 
1 - WJ = ( 1 - W ) 2: W = 

k=l 

T (; >-..) = 

j-1 k 
>-.. 2: w 

k=l 

p-1 j-1 k 
2: ;. 2: w 

j=l J k=l 

is an algebraic integer in Q[w] the proof is complete . . , 

Now to show that 
p-2 

1, w, •.• , w forms an integral bas is for 

Q[w] consider an algebraic integer ; in Q[w]. Then 

; = 
p-2 . 

l 
2: a.w 

i=O 1 
a. e Q. 

1 

The proof will be complete when it is shown that the a. are in Z. Now 
l 



= T (Pi} a.c}( 1 -w)) 
. 0 1 
1.= 

= T ~ a. (w1 - w1 ) (
p-2 . ·+1) 
i=O 1 

So a 0 = T~X.) but p I T(;X.) thus a 0 is in Z. Now wp = 1 so 

wp-l = w - l is an algebraic integer in Q[w]. Consider 

= 
p-2 . 1 

1-
~ a.w 

i= 1 1 

The trace of (; - a 0 )w" 1>-.. and the second lemma can be used to show 

a 1 is in Z just as a 0 is. This process can be repeated to show all 

48 

a. are in Z. 
1 

Thus 2 p-2 l,w,w , ... ,w is an integral basis for Q[w]. 

The rest of the chapter is one long example demonstrating .a 

method for finding an integral basis. 

Example 53. Consider Q[a] from Example 23. The number 

a is not an algebraic integer. In Example 26 the number 13 = Ba is 

an algebraic integer and 1, 13, 132 form a basis for Q[a]. From 

Example 37 ~(l, 13, 132 ) = -205258752 = -(2) 18 (3)3 (29) = ~. The 

minimal polynomial of 13 is 
3 2 g(x) = x - 12x + 240x + 1728. Basis 

elements exist with the form of Equation 51, · that is 
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P1 = 1 

P2 = ~ a, b, CE Z 
62 

P3 = b + c~+ ~2 

63 

Since 6(1,p2 ,p3 ) = 6(1,p2+h,p3+kpp2 +k2 ) for h,k 1 and k2 in Z 

it follows from Theorem 50 that 1, p2+h, p3+k 1 p2+k2 is an integral 

basis if 1, p2 , p3 is an integral basis. By making the appropriate 

choice for h, k 1 and k2 the numbers a, b and c can be chosen such 

that 

I c I < / 6~ I (54) 

without loss of generality. Since 

1 = 1 

a 
+ _1_13 

P2 = 62 62 

2 
2 

~13 _1_132 a 
+ + P2 = 

6 2 62 6 2 
2 2 2 

Theorem 38 implies 
2 

Hence 6(1,p2,p2) = . (It 2 62 .6.(1,13, 13 ,) 6: / 2 183 329. Since 6 2 is to be as large as possible the first 

candidate for 6 2 is 23 = 8. Let F 2 be the linear transformation 

corresponding to 132 then 

F (1) = a + _1_13 
2 62 62 



F 2 (~) 

The characteristic polynomial of p2 is 

0 

1728 

~ 

1 
- A2 

0 

1 
- A2 

3 3a+ 12 2 + 3a2 +24a+240 
3 2 

a + 12a +240a -1728 = x A x 2 
2 A 

2 

x -
A3 

2 

The coefficients of this polynomial must be in Z if p2 is to be an 

algebraic integer. Thus 

3 a + 12 = 0 mod A 2 

3a2 + 24a + 240 = 0 mod Ai 

3 2 _ 3 
a + 12a + 240a - 1728 = 0 modA2 . 

A solution can be found with A 2 = 8 namely a= 4. Thus 

P2 = 4 ~@ 

and the minimal polynomial of p2 is 

50 

(55) 



3 2 
x - 2 4x + 3 84x - 5 12 • 

2 3 
Finally, A{l, Pz• p2 ) = -3 29. Now ~ = -4 + 8p2 so 

Expressing 1, ~. ~2 in terms of 1, p2 , p3 gives 

1 = 1 

~ = -4+8p2 

2 
~ = 4c - b - 8p2 + A 3 p3 • 

51 

2 18 3 2 
From Theorem 38 A{l, ~. ~ ) ::;: -2 3 29 = (8 A3 ) A(l, Pz• p3 ). Thus 

A 3 j26 3. The largest candidate for A3 i$ therefore 2 6 3 = 192. Let 

F 3 be the linear transformation corresponding to p3 then 

F3(1) = b + _£...~ + _1_~2 
A3 A3 ~3 

l 728(c + 12) 

~3 
240(ctl2) + 1728 ~+ b-240 + 12(c+l2)~2 

~3 ~3 

The characteristic polynomial of p3 is 



b c l 
x 

- A3 - A3 - A3 

1728 b -240 c + 12 

A3 
x -

A3 A3 

l 728c + 20736 240c +4608 b+l2c-96 
A3 A3 

x -
A3 

3 = x 
3b+l2c-336 

A3 

2 
x 

3b2 - 672b + 99072 + 24bc + 8064c + 240c 2 
+ 2u· x 

A3 

2 2 3 
12b c - 99072b - 240c b + l 728c 

A3 
3 

+ 414720c - 8064bc - 2985964 

A3 
3 

52 

Since these coefficients must be in Z for p3 to be an algebraic integer 

three congruences are obtained. The first is 

3b + 12c - 336 = 0 modA3 . 

For A3 = 192 this c·ongruence becomes 

b + 4c 112 mod 64 or b = 4 8 - 4c mod 64 , 

The general solution to this congruence is 
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b = 4s 

c = 16t - s + 12 (55) 

for any s and t in Z, Inequality 54 implies that b and c are bounded 

by 192. Two possibilities arise: either there is a b and c given by 

Equation 55 that makes all the coefficients of the characteristic 

equation of p3 rational integers or t!. 3 :f. 192. Trial and error shows 

that b = 48 and c = 0 makes all the coefficients in Z, Thus 

3 2 
The minimal polynomial of p3 is x + x + 2x - 1 • From Theorem 38 

2 ( 1 1 )2 D-(1, 13, j3 ) = S • 192 D-(1, p2 • p3 ). Thus D.(l, p2 , p3 ) = -3 · 29 is 

the discriminant of Q[a]. Finally the integral basis can be given in 

terms of a where a= 8j3 

P1 = 1 

1 + 2a 
P2 = 2 

3 +4a 2 
P3 = 12 

The methods used in this example could, in principle, be applied 

to any algebraic extension. For some special types of extensions, 

simultaneous congruences have been found that give an integral basis. 

None of these systems have led to methods ofattacking the general case 

different from the one used in the example. Two of these special cases 

are the cubic extension done in 1894 [7] and the pure extension done in 

1930 [4]. 



CHAPTER IV 

UNITS 

The main goal of this chapter is to develop Dirichlet's fundamental 

theorem on units. This is an existence theorem concerning the 

structure of the set of units in the ring of algebraic integers contained 

in an algebraic number field. The theorem only proves the existence 

of certain numbers; it does not say how to find these numbers. As 

with integral bases, algorithms for units have been worked out for 

quadratic and cubic extensions. The chapter begins with the definition 

of a unit and some elementary properties. 

Definition 56. A.n algebraic integer is called a unit if its multi-

plicative inverse is also an algebraic integer. 

From the definition it is clear that the inverse of a unit is a unit. 

If µ 1 and µ 2 are units in 

algebraic integers in Q[e]. 

Q[8] 

Now 

are 

a unit in Q[8]. So the set of units in Q[e] forms a group under 

multiplication. 

Theorem 57. Let µ be an algebraic integer in Q[e]. Then µ 

is a unit if and only if N(µ) :; ±1 . 

Proof. If µ is a unit then µ-l is a unit. Now by Corollary 33, N(µ) 

and N(µ- 1) are in Z since µ and µ -l are algebraic integers. The 
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number 1 in Q[O] corresponds to the identity transformation thus 

N(l) = 1. Now 

-1 -1 
N(µ)N(µ ) - N(µµ ) = N(l} = 1 

Thus N(µ) j l or N(µ) = ±1. Conversely, suppose N(µ) = ±1. Let 

the conjugates of µ be µ = µ l' µ2' ' ' · ' µn then ±1 = N(µ) = µ µ , · ·µ 1 2 n 
-1 

µ = ± µ2µ3 ' ' • µn · or Since µ 2 , µ 3 , .. , , µn are roots of the minimal 

polynomial of µ they are also algebraic integers hence their .. product, 

-1. 
µ is an algebraic integer. Thus µ is a unit. 

Theorem 58. Let f(x) be a monic polynomial in Z[x] with 

constant term ±1. Then the roots of f(x) are units. 

Proof. If f(x) is irreducible then f(x) is the minimal polynomial of 

its roots and the theorem follows from Corollary 32. If f(x) is 

reducible then by Theorem 6 the irreducible factors are manic with 

constant term ±1 .. Now Corollary 32 may be applied to the irreducible 

factors of f(x) and the theorem is proved. 

Defininition 59. A root of the polynomial xn -1 is called an 

nth root of unity, If w is an nth root of unity but not a kth root of 

unity for k < n then w is a primitive nth root of unity. 

Theorem 58 implies that roots of unity are units, De Moivre 1s 

theorem gives an expression for the nth roots of unity: 

{ 2,rk\j-1} 2,rk . 11 exp n = COS n + "\J - l 

where k=l,2, .•. ,n. 

sin 
2,rk 

n 
(60) 
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Let <p(n) be the Euler totient. Then the definition of roots of 

unity and De Moivre 1 s theorem imply the following theorem. 

Th 6 1 Th ( ) . . t. th t f . If eorem . ere are <p n pr1m1 1ve n roo s o unity. 

(k, n) = d then { 2,rk..j:T} 
exp n . . 't" /dth f 1s a pnm1 1ve n root o unity. If 

hln then an hth root of unity is an nth root of unity. 

b th . •t• th f . e e pr1m1 1ve n roots o unity. 

cp (x) = 
n 

<p (n) 
IT 

j=l 
(x ~ w.) 

J 

Then 

· 11 d h th 1 t . 1 . 1 It b h h ( ) 1s ca e t e n eye o om1c po ynom1a . can e s own t at cp x 
n 

is the minimal polynomial for the primitive nth roots of unity. 

Examples 42 and 52 dealt with roots of pth cyclotomic polynomials 

where p is a prime number. A more detailed discussion of cyclotomic 

polynomials can be found in Clark [6]. 

The next theorem is one of many in this chapter that makes use 

of counting techniques in the proof. 

Theorem 62. Let M be a positive number. Then there are only 

finitely many algebraic integers '¥ of degree n or less such that 

I'¥- I < M where If. are the conjugates of '¥. 
J J 

Proof. Let 

f(x) = 
k i 
~ a.x 

l 
i=O 

a. e Z 
l 

be the minimal polynomial of '¥ 1, t 2 , •.• , 'fk. Where k < n and 

I t-1 < M 
J 

j = l , 2 , • . • , k . The I a. I are the elementary symmetric 
1 



functions of '¥ 1,'¥2 , .•. ,'fk. Thus 

where (r) is the binomial coefficient. 
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i=0,1,2, .•. ,k 

Since the a. are bounded and 
l 

in Z there are only finitely many numbers that a. can be. Thus there 
l 

can only be finitely many polynomials with roots bounded by M. Since 

there are only finitely many polynomials there are only finitely many 

'l' as in the theorem. 

Theorem 63. Let 'l' be an algebraic integer. Then 'l' is a root 

of unity if and only if all the conjugates of 'l' have absolute value one. 

Proof. Equation 60 implies that all the roots of unity have absolute 

value one. Since the conjugates of roots of unity are also roots of 

unity it follows that all the conjugates of a root of unity have absolute 

value one. Conversely let 'l' be an algebraic integer such that all its 

conjugates have absolute value one. Now 'l' is in Q['l'] and since 

Q[ '¥] is closed under multiplication the algebraic integers 
k 

'l' are in 

Q[t] for k=l,2, •.• From Theorem 30 the degree of 'l'k is less 

than or equal to the degree of 'l'. If 'f. is a conjugate of '¥ then 'f.k 
J J 

is a conjugate of 'l'k Since I'±'- I 
J 

2 3 
Theorem 62 the sequence 'l!, 'l' , 'l' 

= 1 ' 

J ••• 

I'±' .k I = 1 • Thus from 
J 

can have only finitely many 

distinct values. Therefore for some u and v with u > v 'flu= 'l'v. 

Thus 'l'u-v = 1 or '¥ is a u-vth root of unity. 

These last two theorems imply that the number of roots of unity 

in a given algebraic number field is finite. 
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Theorem 64. The set of rbots of unity in Q[e] forms a cyclic 

group. That is, there is a root of unity w in Q[e] such that 

2 k 
w, w , •.• , w :;: l is the cornplete set of roots of unity in Q[e]. 

Proof. Since there are only finitely many roots of unity in Q[0] there 

is a maximum n for which there is an nth root of unity in Q[0]. Let 

that maximum value be k. From Equation 60 all the kth roots of unity 

are in Q[e]. That is, if w is a primitive kth root of unity in Q[e], 

2 k 
then w, c)) , ••• , w ::: l are all in Q[e]. The theorem will be proved 

if it is shown that there can not be any other roots of unity other than 

k th f . . roots o unity 1n Q[e]. Suppose v is a root of unity in Q[e] and 

v is not a kth root of unity. Then v is an 

where h1k and h < k. Then wv is an 

h th . . t' t f . pr1m1 1ve roo o unity 

th f · t · o[e J m root o uni y 1n 

where m is the least common multiple of h and k. Thus m > k 

contradicting the maximum property of k. Therefore there is no other 

roots of unity in Q[0] other than the kth roots. 

Theorem 65. Let Q[e] be an algebraic number field. If 0 has 

a real conjugate then the only roots of unity in Q[e] are +l and -1 . 

Proof. Let w be a root of unity in Q[e]. 
• 
Let 0. be a real conjugate 

J 
of e then Q[0.] is a field of real numbers, If w. is the conjugate of 

J J 

w in Q[e.] then w. is real. The conjugates of roots of unity are 
J J 

roots of unity. Thus w. is a real root of unity that is w. = ±1. Since 
J J 

the minimal polynomial of ±1 is x =Fl it follows that w = ±1. 

Corollary 66. If the degree of 0 is odd then l and -1 are the 

only roots of unity in Q[ e]. 



Proof. The degree of 8 is odd implies 8 has a real conjugate. 

There is one more result before beginning a long sequence of 

theorems leading to Dirichlet's theorem. This theorem proves one 

case not covered in the proof of Dirichlet's theorem. 

Theorem 67. Let -d be square free and d < 0 then all the 

units in Q[ ,Jd] consist of: 

i) the th 4 roots of unity if d = -1 

ii) the th 6 roots of unity if d = -3 

iii) 1 and -1 otherwise. 

' Proof. From Theorem 57 the units of Q[ \/(].] are those algebraic 

integers with norm ±1 . An integral basis for Q[ ,Jd] is given in 
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Theorem 44, If d = -1 an algebraic integer in Q[ .Jd] has the form 

a+b.J=T a, b E Z. 

Thus 
2 2 

N (a + b '\j-1) = a + b = ±1 implies only I , -1 , ..j:1 and - ,[::[ 

are units in Q[ '\j-1]. If d = -3 the algebraic integers have the form 

a, b E Z . 

Now 

has six solutions giving the sixth roots of unity. If d = 2, 3 mod 4 

then the integers of Q[ .[cf] have the form 

a+b.[cf a, b E Z. 



Then 

has no solutions for d < -1 except a = ±1 

then the integers have the form 

Now 

b = 0 . If d = 1 mod 4 

a, b E Z. 

1-d 2 
-4-b = ±1 

implies b = 0 since d < -3. So the only units are ±1. 

Note that if a+ b .[:I is a root of a polynomial in Q[x] then 
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a - b ..r::f is also a root of that polynomial. For the remainder of this 

chapter let 0 be an algebraic number and let the degree of 0 be 

n = r + 2s where r is the number of real conjugates and 2s the 

number of complex conjugates. When r = 1 and s = 0 then Q[e] = Q 

and when r = 0 and s = l the units are described in Theorem 67, 

thus it is also assumed that r + s > 1. When the conjugates are 

numbered they shall always be numbered such that the last s conjugates 

shall consist of one member from each pair of complex conjugates. 

That is, if a+ b ._f-:i is amoni the last s conjugate then a - b ..r-:i 

will be among the first r + s conjugates. Instead of the n conjugates 

sometimes n real numbers consisting of the r real conjugates the s 

real parts and s imaginary parts of the complex conjugates will be 

used. 

The following lemma will be needed in the proof of Theorem 70. 
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Lemma 68. If k, m and n are positive rational integers such 

that n > m then there is an h in Z such that h > 0 and 

(69) 

Proof. Consider the real function 

f(x) = (x+ l)n/m - xn/m. 

It follows from elementary calculus that f(x) is increasing for x > 0. 

Since f(O) = 1 it follows that f(k) > 1 . Therefore there is an h in Z 

such that (k + l)n/m > h > kn/m so there exists an h as in 

Equation 69. 

In Theorem 70 and the following corollaries the order of the first 

r + s conjugates is arbitrary. 

Theorem 70. Let A and B be real numbers such that B >A> 0 

and let t be in Z such that 1 < t < r + s. Then there is a s in Q[e] 

and a real number C such that 

I N(s) 1 <C 

I s-1 <A for i = 1,2, .•. ,t 
l 

I s-1 >B for i = t+l, ... ,r+s 
l 

where 5. i = 1, 2, ... , n are the conjugates of s. The number C does 
l 

not depend on the choice of A, B or t. 

Proof. Let p 1,p2 , ... ,pn beanintegralbasisfor Q[e] andlet 

b th .th . f s t p.. e e J conJugate o p.. e 
~ l 



n 
M = max ~ Ip .. j 

j i= 1 lJ 

and for each j, j = 1, 2, ... , n define n real numbers 

u .. = lJ 
{ 

the real part of p .. 
lJ 

the imaginary part of 

i = 1,2, .•. ,r+s 

p .. i = r+s+l, ... ,n. 
lJ 

Consider for j = 1, 2, •.. , n 

Let 0 < x. < k 
1-

each j. Now 

n 
v. = ~ x.u .. 

J i= 1 1 lJ 
X. E Z, 

l 

then there arr (k+lt possiblevaluesfor v. for 
J 

jv. j 
J 

n 
= I ~ x.u .. I < 

i = 1 l lJ 

n 
~ 

i= 1 

n n 

jx.u .. I 
l lJ 

< k ~ I u .. I < k ~ IP .. I 
i=l lJ i=l lJ 

< k M j=l,2, ••. ,n. 
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Consider v. for the following values of j: j = 1, 2, ..• , t and those j 
J 

from r + s + 1, ... , n which have a complex conjugate among the first 

t conjugates. That is if 9 and 9. are a complex pair of conjugate g l 

such that 1 ~ g ~ t then r + s < i < n and g and i are both 

acceptable values for j . Let J be the set of acceptable values for j 

and let m be the number of elements in J, Then 

t < m < t+ s < r + s + s = n. since t < r + s. Note that m, n and k 

satisfy the hypotheses of Lemma 68 thus there is an h > 0 as in 

Inequality 69. Partition the closed interval [ ~Mk, Mk] into h 
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subintervals in the following way 

For the nu.inbers v. in [-Mk, Mk], consider those v. such that J. is 
J . J 

in J . The set of m values for v. can belong to the h subintervals of 
J 

[-Mk, Mk] in hm different ways. Now for each j in J there are 

(k+ l)n values v .. From Equation 69 (k+ l)n > hm. Thus there 
J 

must be two sets of values for the v. that belong to the h subintervals 
J 

in the same way. Let these two sets be given by 

n 
v. 1 = ::E x.'u .. 

J i= 1 1 lJ 

and 

n 
V, II =: ;E X. 11 U., 

J i= 1 1 lJ 

Summarizing the properties of v.' 
J 

and V • II : 

J 

Ix. I - x. JI I < k 
1 1 

lv.'-v."I < 2kM J J -h- j E J • 

The x. 1 and x. 11 will be used to define a number ~ . Then it 
1 1 '.:> 

will be shown that for· a suitable k the number ; will have the desired 

pr ope rtie s. Let 

For the j in J. such that 

n 
; = ::E (x. 1 - x. 11 )p .. 

1 1 1 
i= 1 

a[e.] 
J 

is a real extension, and 



n 

I s-1 = ~ (X. I -x.")p .. J 
J i= 1 

1 1 lJ 

n n 
= I ~ x.'u .. ~ x.' 1u .. J 

i= 1 
1 lJ i= l 1 lJ 

Jv.' ... v. II I < 2kM = -h-
J J 

If Q[e.] is a complex extension,then p .. = u .. - u.k\f-1 where k is 
J lJ lJ 1 

such that Q[ek] is the complex conjugate extension of Q[ej]. Note 

that if j is in J then le is in J. Now 

n 
1£.J =I~ (x.'-x.")p .. l 

J i= 1 1 1 lJ 

n 
= I ~ x. 1 (u .. - u.k..j:'f) - x. "{u .. - u.k.J:1) I 

i = 1 1 lJ 1 l lJ 1 

thus 

< Iv.' - v."J +I~ {vk' - vk")I 
-- J J 

< 2kM + 2kM 
- h -h-

IC I < 4kM 
"'j - h 

h h h . th . . 1 1 w et er t e J extension 1s rea or corrw ex. 

ls- I J 

{l - ~) 
< 4Mk m 

1-~ 

j=l,2, .•• ,t 

From Inequality 69, 

j E J ' 

Since n > m k m - 0 as k-+ ro I there is a k 1 such that 

I-~ 
I£. I < 4Mk m < A 

J -
j=l,2, ... ,t 
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for all k > k 1 • Now for j not in J 

n n 

ls-I= I~ (x.'-x.")p .. 1 < ~ lx.'.,.x."I IP--1 
J i= l 1 1 lJ i= l 1 1 lJ 

n 

< ~ klp .. l < kM. 
i=l lJ 

Thus 

n n 

=III s-1 = II ls-I 
j=l J j=l J 

which can be written in the form 

n 
Let C = (4M) then C depends only on the basis Pp p2 , ... , Pn 

chosen for Q[e]. To obtain a b:etterestimatefor ls-I for 
J 

j = t+l,t+2, ... ,s+r consider 

IN(S)I O (q;l ISql) ISjl 
q#J 

< (4M/ - :. ) m (kM)n-m-1 

= 4 mM.n -1 k - 1 I s . I 
J 

Since N(s) is in Z, N(s) ~ 1 thus 

I s-1 
J 
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Thus there is a k2 such that for k > k 2 

j=t+l 1 ••• ,r+s. 

Now if ·k>k1+k2 then for j=l,2, •.. ,n 

j E J 

jlJ. 

Thus the desired s exists and the theorem is finally proved, 

Corollary 71. The re exists a sequence of algebraic integers 

(si) in Q[e] suc;h that 

j = 1,2, ... ,t 

Is. -1 < Is ·+1 · I lJ l J 
j = t+l,t+2, •.. ,r+s 

and jN(;.) / < C. Wheit'e t and C are as in Theorem 70 and ; .. is 
l ~ 

h . th . f t t e J conJugate o <.:, •• 
l. 
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Proof. Let s l = ; from Theorem 70. Then define si+l inductively 

by Theorem 70 where 

Ai+l = min ls .. I 
j lJ 

j=l,2,.,.,t 

Bi+l = max Is .. / 
j lJ 

j = t+l,t+2, ... ,r+s. 

Note that it is not possible for any of the A. to be zero since A.= 0 
l l 

implies some s. 1. = 0 but the only conjugates of zero are zero and 
1- J 



67 

> B. is contradicted. It follows from Theorem 70 that the 
1 

sequence (si) has the desired properties. 

Corollary 72. There exists a sequence of algebraic integers 

(1t\) in Q[a] such that 

j=l,2, ... ,t 

i'f .. l < 1'¥·+ 1·1 lJ 1 J 
j = t+l,t+2, ... ,r+s 

where t is as in Theorem 70 and for all positive i, k in Z 

Proof. Consider the sequence <_;i) of Corollary 71. The norms of 

s. are in Z and bounded by C. Thus there are only finitely many 
1 

values the norm can have. Thus there is a subsequence (,i) of 

(si) where all the norms are equal. 

Theorem 73. There is a unit in Q[9] other than a root of unity. 

Proof. Consider the sequence ~i> of Corollary 72. Let 

g = jN('fi) I and p 1, p2 , .•. , pn be an·integral basis of Q(9]. Now 

for i=l,2,3, ... 

n 

'f. = ~ a .. p. 
1 j=l lJJ 

a .. E Z 
lJ 

Partition the set of 'f. by the following rule: 
1 

'1\ and 'fk are in the same class if 

a .. 
lJ akj mod g j=l,2, ..• ,n. 
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The partition has at most gn classes. Thus some class has at least 

two elements. Let '!\ and 'f k be in the same c;:las s then 

a .. = ak. + b.g 
lJ J J 

j=l,2, •.. ,n. 

Since N('fk) = ±g there is an algebraic integer '( in Q[e] such that 

'f k '( = g . Now 

n n 
'f. = ~ a .. p. = 

1 j = l lJ J 
~ (ak, + b,g)p. 

j=l J J J 

= 

n n 
= 

n 

= '±'k + '±'k'Y _E b.p. 
J = 1 J J 

= 'fk(l+'( ~ b.p.). 
j = 1 J J 

Since 1, '(, b. and p. are algebraic integers 
J J 

n 
E: = l+'( ~ b.p. 

j = 1 J J 

is also an algebraic integer. Now N('f i) = N(e: 'fk) = N(e:) N('fk). Since 

N('f i) = N('fk) it follows that N(e:) = 1 . Thus by Theorem 57 e: is a 

unit. From Corollary 72 it follows that norte of the corre spending 

conjugates of 'f i and 'fk have the same absolute values. Since 

e: = 'f /'fk none of the conjugates of e; have absolute value one, It 

follows from Theorem 63 that e; is not a root of unity. 



Corollary 74. For any t of the first r + s conjugate fields 

Q[e.] there is a unit e: in Q[e] such that 
J 

je:. j < 1 for those t 
J 

conjugate fields, and I e:. j > 1 for the remaining r + s - t conjugate 
J 

fields. Here 1 < t < r + s. 

Proof. Without loss of generality let the conjugate fields Q[e.] be 
J 
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numbered so the first t are the fields such that le:, I < 1 is desired. 
J 

Consider the e: = '±'/'±'k of Theorem 73. If i > k then from 

Corollary 72 

j = 1,2,, .. ,t 

I '±' .. I > I '±'k · I lJ - J 
j =t+l,t+2, ••. ,r+s, 

Then e: = '±'/'±'k satisfies the conclusion of the corollary. If k > i 

-1 then e: is also a unit and it satisfies the conclusion of the corollary. 

Definition 7 5. 

be independent if 

A set of units 

k a. 
II £, 1 = 1 

i= 1 1 

in 

a. e Z 
l 

a[e] is said to 

implies a.= 0 
l 

i=l,2, ... ,k. If the set is not independent then it is 

dependent. 

The next few theorems develop some methods of determining 

independence for a set of units. Clearly a set of one unit is dependent 

if and only if that unit is a root of unity. Thus any set of units 

containing a root of unity is a dependent set. 
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The following discussion gives an equivalent form for independ-

ence that will be used frequently. Consider the set of units 

such that 

k q ./b. 
II e. 1 1 = 1 

i= 1 1 
q., b. E Z . b. f. 0 . 

l l l 

Let m be the least common :multiple of the b. • Then m q. /b. is in 
l l l 

Z and 

· mq./b. 
II e. 1 1 = 1 m = 1 . 

l 

is an independent set then ma. /b. = 0 
l l 

for i=l,2, •.. ,k. Conversely if there is some q. I- 0 
J 

implies q. = 0 
l 

then 

m q. /b. I- 0 and the set is dependent. Thus in Definition 7 5 a. in Z 
J J l 

could be replaced by a. in Q. 
l 

The following lemma is needed in the proof of the next theorem. 

The greatest integer function is denoted by [x]. 

Lemma 76. Let c be an irrational real number and h and k be 

in Z. If hc-[hc]= kc-[kc] then h=k. 

Proof. IJ; he - [he]= kc - [kc] then [he]- [kc]= he - kc; = (h - k)c. Now 

[he] - [kc] and (h - k) are in Z . Thus e must be rational unless 

h-k = 0 or h=k. 

Note this lemma implies for fixed c the set {he - [he]: h E Z} is 

infinite if c is irrational and finite if e is rational. 



Theorem 77, Let 

. th . f J conJugate o e: .. 
l 

If 

be units in 

k 
~ a. log/e: .. / = 0 

i= 1 l lJ 

a[e] and 
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e.. the 
lJ 

j=l,2, ..• ,r+s 

for nontrivial real a 1 then e: 1, e: 2 , •. ,, e:k is a dependent set. 

Proof, Since any set of units containing roots of unity is a dependent 

set, assume that none of the units are roots of unity. One unit forms 

an independent set. Suppose that for 2 ~ q 

q-1 
~ b.log/e .. / =O j=l,2, .•. ,r+s (78) 

i= 1 l lJ 

has only the trivial solution for the b.. Also suppose that 
l 

q 
~ a.log/e: .. / =O j=l,2, •.• ,r+s (79) 

i= 1 l lJ 

has a nontrivial solution for the a. . Now a f:. 0 otherwise the 
l q 

assumption of Equation 78 is contradicted. Then 

log I e: . I 
qJ 

q-1 a. 
~ _l log/e: .. / 

i=l aq lJ 
j = l, 2, •.. , r + s 

Consider the set S of units in Q[e] such that 11 is in S if and only if 

the re are real c. such that 
l 

log/ 11. / = 
J 

q-1 
~ c.log/e: .. / 

i = 1 l lJ 

The set S is not empty since e:q is in S. 

j=l,2, .•. ,r+s. 

The object now is to show 



that for all 11 in S the c. are rational. If c. is irrational then 
l l 

O<mc.-[mc.]< 1 for all min Z. For j=l,2, ... ,r+s 
l l 

q-1 
I: ( m c. - [m c. ] ) log I e .. I = 

i= l 1 1 lJ 

q-1 
I: mc.logje .. j 

i= 1 l lJ 

q-1 
I: [mc.]logje .. j 

i= 1 l lJ 

= m log I Tl· I 
J 

q-1 [me.] 
I: logje .. l 1 

i= 1 lJ 

q-1 [m c.] 
= log I TJ~ I - log I II e.. 1 I 

J i= l lJ 

q-1 [m c.] 
Now II e.. 1 is a unit and so is its inverse. Let 

i= 1 lJ 

-1 
µ. = 

q-1 [m c.] 
II E.. l 

i= 1 lJ 

then for j = 1, 2, •.. , r + s 

q-1 
I: (m c. - [m c.]) log je:.J. I 

i= l 1 1 1 

Thus if Tl is in S so is 
m 

TJ µ. for all m in Z . If the c. corres-
1 

ponding to 11 are irrational then for each m in Z the unit 11mµ has 

a distinct representation according to Lemma 76. Each distinct 

representation gives a distinct unit otherwise the as sum pt ion for 

Equation 7 8 is contradicted. Now O < m c. - [me] < 1 
l 

implies 

log IT}~µ. I < 
J J 

q-1 
I: log jg.. j 

i= l lJ 
j = 1, 2, •.• , r + s 

< logM 
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where 

q-1 
M = max II 

i= 1 
k-1. lJ 

Since log is a monotone function the fir st r + s m 
conjugates of 11 µ 
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are bounded by M. Since each of the last s conjugates with one of the 

first r + s conjugates forms a complex conjugate pair, the last s 

conjugates are also bounded by M. Theorem 62 implies there cannot 

be an infinite number of elements of the form ,imµ with conjugates 

bounded by M . Thus the c. cannot be irrational. 
l 

Equation 79 are rational which implies 

q a. 
I II e: .. 1 1 = 1 

i= 1 lJ 

So the a. in 
l 

j=l,2, .•. ,n 

Note that the last s equations are repititions of some s of the first 

r + s. Theorem 63 implies 

a positive b in Z such that 

q ai 
II e:. is a root of unity. 

i= l l 

q a.b 
II e:. 1 = l . 

i=l l 

Thus there i$ 

Since aqb -.f:. 0, e: 1, e: 2 , ... ,Eq is a dependent set. Thus the theorem is 

proved by induction. 

Theorem 80. Any r + s units in Q[e] are dependent. 

Proof. Let e: 1,E2 , ... ,e:r+s be any r+s units in Q[e] and 

.th . t f Th J conJuga e o e:. • en 
l • . 

e: •. the 
lJ 



I N(e:.) I 
l 

n 
= I II e: .. I = 

·-1 lJ J-

n 
II le .. J = 1 

j = 1 lJ 
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i=l,2, •.• ,r+s. 

Each of the last s conjugates has its corresponding complex conjugate 

among the first r + s conjugates. Since the members of a complex 

conjugate pair have the same absolute value 

r+s 
II 

j= 1 
i=l,2, ..• ,r+s 

where a. is one if e.. is a real conjugate and two if complex. Thus 
J lJ 

r+s 
:E a. log Je: .. J = 0 

j= 1 J lJ 

This is a system of r + s equations in the 

i=l,2, .•.. ,r+s. 

r + s a. which has a 
J 

nontrivial solution. This implies the system with the coefficient matrix 

transposed also has a nontrivial solution. Thus there is a nontrivial 

solution to 

r+s 
:E c.logJe: .. J = 0 

i= 1 l lJ 
j=l,2, ... ,r+s 

Theorem 77 implies that e: 1, e: 2 , ... , e:r+s is a dependent set. 

Theorem 81. There exist r + s -1 independent units in Q[e]. 

Proof. The method of proof will be to show that given k independent 

units where k is less than r + s -1 it is possible to find another unit 

to add to the set and still have an independent set. Theorem .73 proved 

there is one independent unit. Consider k independent units 

e: 1, e: 2 , ... , e:k. From Theorem 77 
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k 
~ a. log/£ .. / = 0 

i= 1 l lJ 
i=l,2, •. ,,r+s 

has only the trivial solution. Thus there must be k of those r + s 

equations which have only the trivial solution for the a .• 
l 

Suppose they 

are the first k, then 

log/£ ik I 

log /£22 / log I £2k I 
-f; 0 • (82) 

log /£k2 / log /£kk I 

Consider the following determinant 

log /£12 / log /£1 k+l / 
' 

log I £22 I 

log /e:k2 / • I!' • log/£k,k+l/ 

where Ai is the cofactor of bi. Equation &e implies Ak+l -i 0. 

Since k < r + s -1 Corollary 74 implies there is a unit £k+l in Q[9] 

such that /£k+lj / < 1 if Aj ~ 0 and /£k+lj / > 1 if Aj > 0. 



Subs ti tu ting 

Now logjek+l,j j 

Ak+l -I O 

k+l 

for b. in equation 83 gives 
J 

k+l 
E A.b. = 

j = 1 J J 
~ A. 1 o g j e k+ 1 . j 

j= 1 J . ,J 

has the same sign as A. when A. f. 0, Since 
J J 

k+l 
~ A.logjek+l .j > 0 

j = 1 J ,J 
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Thus the determinant in equation 83 with bj = log j ek+ l ,j I is not zero. 

From Theorem 77 the units e 1 , e2 , . , . , ek+ 1 are independent. When 

k = r + s -1 Corollary 74 cannot be applied to find an additional unit. 

Thus up to r + s -1 independent units can be found 

Theorem 84. Let e 1, e2 , ... , er+s- l be a set of independent 

units in Q[e]. Then there is an m in Z such that every unit 11 in 

Q[e] can be written in the form 

r+s-1 b./ 
11 = w II e. J m 

j = 1 J 

and w is a root of unity. 

b. E Z 
J 

Proof. Let S be the set of units in Q[e] of the form 

11 = µ. 
r+s-1 a. 1 

II e.J cj 
j = 1 J 

a. 
1-11 < 1 c. 

J 

where µ. is a root of unity a. and c. are in Z and (a., c.) = 1. Now 
J J J J 

e. is in S thus Sf. 0. Since lµ.I = 1 loglµ.I = 0 and 
J 



r+s-1 
= :E aj/c.i"ogje:..j 

j= 1 J Jl 

r+s-1 
< :E 

j=l 
log IE .. j 

Jl 
= M 

i=l,2, •.• ,r+s 

The conjugates of all ri in S are bounded by M, thus S is finite by 
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Theorem 62. Theorem 77 implies the a. and c. are unique. Let m 
J J 

be the least common multi,.ple of the c., Let ri be any unit in Q[8] 
J 

then ri, E 1, Ez, •.. , e r+s _ 1 is a dependent set, so the re are 

Now 

Let 

in Z such that 

z ,, r+s-1 z. 
II E, 1 = 1 . 

i= 1 1 

r+s ~ 1 z. I 
W = II 1 z 'I'] E, 

i= l l 

Then w is a root of unity and 

,, = w 
r+s-1 

II 
i= 1 

-zi/z 
E, 

l 

After the -zi/z have been written in lowest terms let y be the least 

common denominator and y. the appropriate numerator, then 
l 
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r+s-1 y. I 
11 = w II e:. l y 

i= 1 1 

Now y i I y - [ Yi I y] < 1 , and is in z so E. 
l 

[ yi/y] 
is in Qfe]. 

w r+;-\/i/y r+;-\:[Yi/y] = w r+;-\:i/y-[Yi/y] 

i= 1 1 i= 1 1 i= 1 1 

is the product of units and thus a unit. The exponents are bounded by 

one thus this unit is in S. The least common multiple of the denomin-

ators of the exponents of e:. is y thus y /m . Let xy = m and 
l 

b. = y.x then 
J J 

r+s-1 b. I 
11 = w II .J m 

i= 1 J 

The following theorem was first proved by Dirichlet in 1846, 

Theorem 85, Let e be an algebraic number of degree 

n=r+2s>l. Thenthereareunits µ 1,µ 2 , ... ,µk in Q[e] where 

k = r + s -1 such that any unit 11 in Q[e] can be represented in the 

form 

k z. 
11 = w II µ. J 

j = 1 J 

Where the z. are unique and w is a root of unity. 
J 

Z. E Z. 
J 

Proof. The cases when n = 1 and n = 2s = 2 were done in Theorem 

6 7. Consider r + s > 1 • Let e: 1, e: 2 , .•. , e:k be independent units and 

m the rational integer in Theorem 84. Consider units of the form 
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µl = bl 1/m 
El 

= b21/m b22/m 
µ2 El E2 

(86) 

- Ilk bkj /m 
µk - E, 

j;::: 1 J 

where b.. are in Z. Clearly there are units with b .. f:. 0 for each 
~ 11 

equation in 86. Pick µ.. with b .. f:. 0 as in equation 86 such that 
l 11 

I b .. j is minimum for each i , i = I, 2, .•. , k: Let 11 be a unit in 
ll 

Q[e], from Theorem 84 

k a. I 
11 = w II e. J m 

j J 
a. E Z. 

J 

From the division algorithm 
-zk 

Now µk is a unit so 11 µk 

ak = zkbkk + rk and O < rk < jbkkl. 

is a unit in Q[e] also and 

Thus rk = 0 otherwise the choice of µk is contradicted. Similarly 

where 

Again rk-l = 0 otherwise the choice of µk..,.l is contradicted. This 

process can be repeated until zk' zk- l' zk-Z' •.. , z 1 are determined. 

Then 

k z. 
11 = w II µ. J 

j=l J 



To show the z. are unique it is necessary to show that 
J 

fa rm an independent set. Let c 1 , c 2 , ••. , ck be in z such that 

Now 

where 

k c. 
II µ. J = 1 

j=l J 

k c. 
II µ. J = 

j=l J 

k d. 
II e:. J 

j = 1 J 

d. = 
J 

k 
1 

E c.b .. 
m i=j 1 lJ 

j=l,2, •.• ,k 
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then d. = 0, 
J 

j=l,2, ... ,k since is an independent set 

of units. Suppose h is the largest subscript such that ch-/: 0 then 

Si.nee 

d -h -
k 
E Ch· b.h = 

m i=h 1 

1 
m 

and bhh-/: 0 , ch-/: 0 gives a contradiction. 

j = 1, 2,. ~., k and the set µ 1, µ 2 , .•. , µk is independent. 

Thus 

The units of Theorem 85 are called a set of 

fundamental units for Q[ e]. 

c. = 0, 
J 

Example 87. Consider Q[a] from Example 23. From 

Example 53 the discriminant of Q[a] is -3 • 29. This implies that 

two of the three conjugate fields are complex and r + s -1 = 1. Thus 

there is one fundamental unit in Q[a]., From Theorem 65 the roots of 

unity in Q[a] are 1 and -1. From Example 53 p3 has minimal 
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3 2 
polynomial x · + x + 2x - 1. Thus N( p3 ) = 1 and p3 is a unit in 

Q[a]. Now 

for some n in Z where µ is a fundamental unit. Since -1 -n 
P3 - ±µ 

only positive n need be considered. Now the object will be to find an 

nth root of ;±:p 3 in Q[a] for the largest possible value of n. This 

th 
process is done by extracting p roots of p3 , where p is prime, 

2 
until no more roots can be extracted. First consider P3 = ±µ . 

Since 
2 2 2 

N(p 3 ) = 1 = N(±µ ) = N(±l)N(µ) = ±N(µ) only the plus sign 

needs to be considered. Suppose µ has minimal polynomial 

3 2 
x + ax + bx + c. The elementary symmetric functions of the 

conjugc;ites of p3 are also symmetric functions of the conjugates of µ. 

Thus if the conjugates of µ are µ 1 , µ 2 , µ 3 and of p3 are p31 , p32 , 

p33 then 

Since 

= -c 

it follows that 
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1 -(a 2 
- 2b) = 

2 = b2 - 2ac 

-1 
2 = -c 

Eliminating c and a: 

b2 - 2 = 2ca 

b4 -4b2 -4 = 4c 2a 2 = 4(2b-l) 

4 2 
b - 4b - 8b + 8 = O . 

This has no rational solutions for b. Thus p3 has no square root in 

Q[a]. 

Suppose p3 = ±µp for odd prime p. Again only the plus sign 

needs to be considered. In fact N(p 3 ) = N(µ)p implies N(µ) = 1. 

Suppose µ. has minimal polynomial x 3 + ax2 + bx + 1 • Proceeding as 

before 

-1 = -1 

'!'he complete expansion of the right hand side in terms of a and b for 

a general odd prime p is too complex to work with. The following 

procedure will reduce the possibilities for p. Now 

where h(µ. 1, µ 2, µ 3 ) is a symmetric polynomial in µ 1 , µ 2 , µ 3 and 
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hence in Z. The factor of p comes from the binomial coefficients in 

the expansion of (µ l + µ 2 + µ 3 )p. Thus 

l -(-a)P = a modp, 

Similarly 

2 bp = b mod p. 

Now 

µp ± l = P3 ± 1 

Thus p3 ± 1 is the product of algebraic integers in Q[a] one of 

which is µ ± 1. This implies N(µ ±1) divides N(p 3 ± 1) in Z. 

2 
Computing norms as in Example 28 with 1, p3 , p3 as a basis for 

Q[a] 

±1 1 0 

N(p 3 ±1) = 0 ±1 1 = ±3 . 

1 -2 -1 ±1 

The norm fo"I; µ ±1 is computed with 
2 

I,µ,µ as a basis 

±1 1 0 

N(µ±l) = 0 ±1 1 = 1 - a ±1 ± b • 

1 -b 

Summing up the conditions on a and b 



a 1 mod p 

b 2 mod p 

2-a+bJ3 

-a-bJ-3 
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Now 2 - a+ b = 3 mod p and -a - b = -3 mod p. Thus the only solution 

for these four conditions is a= 1 and b = 2. This solution gives µ 

the same minimal polynomial as p3 • This is not possible since 

Pi I p3 , Thus p3 is a fundamental unit for Q[ a]. 



CHAPTER V 

CONCLUSION 

The concept of an algebraic integer arose in part as an aid to 

solving certain Diophantine equations. The following examples give 

some indication of how this is done. The first example is due to 

Fermat and makes use of the properties of norm and conjugate . 

Example 88. Consider the Diophantine equation 
• 3 = x . Let 

y + ,J-:z and a+ b ..j:z be algebraic integers in Q[ \f-2] such that 

y +..[:z 3 = (a+ b .J:2) . (89) 

Then 

Or 

Thus x = N(a+b,J:"2) = a 2 + 2b2 gives an equation equivalent to the 

original problem. The equation that corresponds to Equation 89 with 

the conjugates of y+ \f-2 and a+b\f-2 is 

(90) 

Eliminating y from Equations 89 and 90 gives 

O i: 
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Since 1 factors into 12 or (-1 / there are two possible systems of 

equations to solve for a and b. The system 

-1 = b and 
2 2 

-1 = 3a - 2b 

has no solution in Z: The alternative choice 

1 = b and 

has the solution b = 1 and a= ±1. Thus x = 1 + 2 = 3 and y = ± 5. 

This next example concludes the discussion begun on page 1 of 

the thesis, 

Example 91. Consider the Diophantine equation 
2 2 

x - 2y = 17. 

This is equivalent to finding all the algebraic integers in Q[ .[!] with 

norm 17, It has already been noted that the number 7 +4 .,fl has 

norm 1 7 . If µ is a unit in Q[ .,fl] then 

Since there is an infinite number of units with norm 1 in Q[ .J2] there 

is an infinite number of solutions to x 2 - 2y2 = 17. A fundamental unit 

for Q[..[2] is l+.[2 .. Now N(l+\[2)=-1 thustheunitswithnorm 

plus one are 

±( 1 + ,J2 )2n = ±(3 + 2 ,J2" t neZ. 

So 

±(7 + 4 .,fl )(3 + 2 "12 )n neZ 
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are algebraic integers in Q[ ,,J2] with norm 17. If ±(7 + 4,-.{2)(3 + 2.;/'2 )n 

is expanded and written in the form a+ b,-.[2 then a, b is a solution 

for 
2 2 

x - 2y = 17. 

Many Diophantine equations can be transformed into an equivalent 

problem of finding all the algebraic integers in a given algebraic 

number field with some fixed norm. This method is discussed in 

Borevich and Shafarevich [5]. One 0£ the earliest problems to be 

approached through algebraic number theory was Fermat's conjecture: 

n n n 
x + y = z xyz f. 0 n>2 

has no solution in Z for x, y and z. The problem is still unsolved, 

but many interesting facts and ideas came to light as a result of efforts 

to solve Fermat's problem. One of these facts concerns the factoring 

of algebraic integers. 

If a, 13 and y are algebraic integers such that a 13 = y then a 

and 13 are called factors of y or a divides y. Just as in factoring in 

Z, every algebraic integer '¥ in Q[e] has as factors all the units in 

Q[S] andnumbersoftheform µ'¥whereµ is a unit in Q[e]~ If'¥ 

has no other factors then '¥ is called prime. 

Theorem 92. If '±' is an algebraic integer in Q[S] and N('±') = p 

where p is a prime in Z then '±' is a prime in Q[e]. 

Proof. Suppowe a 13 = '¥ where a and 13 are algebraic integers in 

Q[e] then 

N(al3) = N(a)N(l3) = N('±') = p. 

Since N(a) and N(l3) are in Z one of them is ±1. Suppose 
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N( a) = ±1 then a is a unit. Thus -1 -1 13 = a '¥ where a is a unit. 

Example 93. Consider the algebraic integers in Q[~]. The 

following discussion demonstrates a method for proving a number is a 

primein Q['\f-5]. Consider 1-.../5. Suppose 

(a+b.[.:.s)(c+d~) = 1-.Js 

Then 

N(a+b~)N(c+d~) = N(l~~) 

or 

Thus a 2+sb2 isafactorof6. If a 2+sb2 =1 then a+b.,/"::s isa 

unit. If a 2+ Sb2 = 6 the other number is a unit. Neither a 2 + Sb2 = 2 

nor has a solution, Thus 1 - ,J"":5 is a prime. Similarly 

1 + .../5 , 2 and 3 can be shown to be prime in Q[ '\f-5]. Now 

Since ±1 are the only units in Q[ '\{:5'] the number 6 has two distinct 

factorizations into primes. 

For a time some mathematicians thought they had solved :Fermat's 

problem. Then they discovered that factorization was not unique in the 

algebraic number field they used, Attempts to repair proofs led to 

ideal theory. Factoring algebraic integers is discussed in Koper [ 11]. 

The problem of finding units in algebraic number fields still 

interests mathematicians. In 1969 Bernstein developed an algorithm 

for finding independent units in certain types of algebraic number 
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fields [3]. This algorithm gives a method for finding a complete set of 

independent units for the given field. The algorithm is a variation of 

the continued fraction algorithm used for finding units in quadratic and 

cubic extensions. However Bernstein was not able to determine whether 

the units obtained were fundamental. 
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