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 ABSTRACT  

The use of data mining algorithms for applied practice is becoming 

commonplace in many industries. The application of these models to the domain 

of educational data and practice could provide significant gains in understanding 

and implementation of prediction in the classroom. The wealth of data collected 

from students as they progress through a traditional education track could 

benefit greatly from machine learning and data mining. The present dissertation 

is designed to examine the usefulness, when compared to Multilevel Logistic 

Regression, of Artificial Neural Networks and Gradient Boosted Decision Trees, 

at predicting college enrollment using data collected as students progressed 

through high school. Because of the immense amount of data that data mining 

algorithms can interact with, the emphasis is placed on, but not limited to, 

variables representing difficulty of coursework, advanced placement, STEM vs 

non-STEM, behavioral referrals, attendance, and any statewide standardized 

testing. The grade level data was analyzed independently for each model to 

determine at what pace model predictive consistency increased as new and more 

relevant information was collected. The comparison of model predictive 

capacity revealed that certain data mining algorithms could indeed be used in 

place of traditional statistical models, but the gains were not always consistent 

across all grade levels. Implications and future research are discussed. 
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CHAPTER I: INTRODUCTION 

In recent years, many academic and applied fields have seen an onset of data 

mining & machine learning techniques being implemented into standard protocol 

(Han & Kamer, 2011). The emergence of large-scale, automated data collection 

combined with the new methods of making large data available has established a 

need for machine learning algorithms to parse through vast amounts of data. This 

marriage of technological advancements and the operationalization of computers in 

most daily activities has not only created an abundance of data, but also allowed for 

a greater body of available data across most domains.  

Fields such as education, computer science, finance, health sciences, 

production, and business have found ways to utilize data mining techniques for data 

extraction, data cleaning, and pattern recognition ultimately leading to faster, more 

efficient decision making (Hastie, Tibshirani, & Friedman, 2009). With this 

abundance of large datasets, systems of analytic techniques and exploratory 

methods become a necessity to organize and display information in an intelligible, 

meaningful manner. This is the primary reason data mining has been extended 

beyond an available option and become a necessity in many instances. Many data 

mining implementations being used in large corporations also contain automated 

machine learning functions. These algorithms perform analytics and 

decision/solution recommendation, but also have the capability to continually re-

deploy analyses with every new data point gathered (Witten & Eibe, 2005). This 

allows the user to spend less time on optimization and maintenance of an analytic 

environment, while also permitting the machine component to continually 
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recalibrate weights for more optimized, relevant predictions. This continuous 

process also allows the models to adapt to the data as the data might change (Stoean, 

Pruess, Stoean, El-Darzi & Dumitrescu, 2009).  

The unique approach to model development when viewed with an 

abundance of data is also one of the primary contributors that differentiates classical 

statistics from data mining and machine learning. The massive amounts of data 

becoming available in modern day systems allows for a much more exploratory 

approach to be implemented. Many data mining models place an emphasis on 

utilizing large quantities of data that, in many cases, could not be handled easily by 

common statistical techniques. Due to this strength of data mining models, it is 

common in data mining methodology to emphasize greatly understanding the 

domain and data so to not generalize and over-fit a prediction model (Lavrac, 1999). 

Hastie et al. (2009) stated that the type of learning being done in data mining 

referred broadly "to approaches that take a more inductive approach to building a 

model, allowing the data a greater role in suggesting the correct relationship 

between variables rather than imposing them a priori." 

Specifically, in the realm of education, data mining is being implemented in 

unique situations, but not yet widespread in its application. One area of improved 

usage is in the measurement of unique student models for student classification 

(Ayala & Yano, 2009). The onset of data being gathered will now allow for unique 

models to be built at the student level, so learning systems can become more custom 

fit for individuals rather than clustered groups. Baker & Yacef (2009) anticipated 

that with the access and organization of large amounts of student level data, 
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machine learning algorithms can now be implemented to track and model students’ 

knowledge, motivation, disposition, as well as, many personality traits that impact a 

student’s educational journey. The move towards more machine-based assessments 

and computer adaptive measurement profiles is a by-product of a shift toward a 

more digital learning environment. Rupp, Nugent, & Nelson (2012) proposed that 

assessments are moving away from fixed-form stand-alone tests combined with 

short-form responses to robust adaptive assessment suites composed of 

performance-based tasks administered collaboratively in digital learning 

environments.  

 Given the large amount of data being collected throughout a students’ 

academic progress, along with the standardized testing batteries being implemented 

at many milestones in a student’s academic career, the field of educational research 

has become inundated with data that is either not being utilized to its full advantage 

or not being used in conjunction with other important fields (Murtaugh, Burns, & 

Schuster, 1999). By adapting the machine learning algorithms developed for data 

mining in other domains to the realm of educational research, new pattern detection 

approaches can assist in sifting through large amounts of data (Cristianini & Shawe-

Taylor, 200).  

The current study centers around taking advantage of a multitude of 

educational data and seeking out reproducible patterns to enrich prediction of 

college enrollment. This was achieved by examining large amounts of data covering 

many domains of a student’s life and experience, and programmatically parsing 
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through it for identifiers indicating a higher probability of involvement in higher 

education.  

The focus of this dissertation is not to prove machine learning algorithms 

have a place in educational research, because data mining has already impacted 

many facets of our national education system (Bhise, Thorat, & Supekar, 2013). The 

focus is instead to compare the predictive efficacy of the most commonly used 

machine learning algorithms when applied to the academic data commonly collected 

by state institutions. The uniqueness of this dissertation resides not only in the 

comparison of advanced methodology with more standardized statistical methods, 

but also the significance and breadth of the data collected for the analyses. A 

primary component of analysis will be a comparison to a more traditional statistical 

technique in use with most academic research. This measure is not intended to act as 

a baseline, but instead, one component of a general, unbiased comparison between 

prediction models.  

The data being utilized for these analyses are significant due to, not only, the 

extended duration in which data collection took place (high school grades through 

early college years), but also the collection of multiple cohort years (3 separate 

cohorts) to control for any dependencies that could exist due to events occurring in a 

single academic year. This primed the data for a suitable comparative study, 

examining the predictive accuracy of the three models that will be detailed in a later 

section. 
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CHAPTER II: LITERATURE REVIEW 

2.1 - Description of Data Mining 

Data mining carries many definitions based on what type of professional is 

using it, as well as, the reason in which it is being used. The realm of computer 

science would view data mining through a different lens than a marketing 

researcher. Many of the definitions vary in terms of the amount of computational 

prowess versus the statistical methodology (Quinlan, 1986; Quinlan, 1993). When 

data mining began, computer scientists would primarily label it pattern detection 

using a series of algorithms, while the market researcher would view it as an 

analytic tool based more heavily in statistics than computer science (Shute, 1993). 

Pregibon (1996) provides one of the most universal definitions of data mining by 

stating that it is composed of three parts: statistics, artificial intelligence, and 

database systems research. The extensiveness and generality of the definition is due, 

in part, to the many tools and techniques that all reside within the scope of data 

mining as a field. There are many data management and exploratory methods that 

would rely much more on the database research portion of the definition. In turn, 

there are classification tools that would rely much more heavily on the statistical 

portion of the definition. Overall, data mining is best described as a pseudo-

automatic process by which potentially hidden patterns and relationships in 

information are discovered (Dorian, 1999).  

Gorunescu (2011) states that data mining has three “generic roots” that make 

up the field. The first, and oldest, root is statistics. Statistics provides well-

researched techniques, such as exploratory data analysis (EDA), that identify 
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pattern-oriented relationships between bodies of variables when there is no 

information about the nature of the variables (Tukey, 1977).  The second “root”, 

artificial intelligence, is much more recent in origin than statistics. Artificial 

intelligence takes a heuristic approach to problem solving, contributing information 

processing techniques to the data mining procedure (Gorunescu, 2011). Artificial 

intelligence is commonly labeled as Machine Learning in most applied analytic 

environments. The third “root” is database systems research. This is made up of 

techniques such as data acquisition, data cleaning, and data management (sub-

setting, creation of new variables from multiple variables’ information, etc.), and 

provides the basis from which the information is mined (Witten & Eibe, 2005).   

Data mining can be dissected into two primary areas, similar to statistics, 

predictive objectives (e.g. continuous outcome prediction, classification, anomaly 

detection) and descriptive objectives (clustering, visual exploration, association rule 

development, sequential pattern detection). Within these two areas, many methods 

and practices exist surrounding key aspects of pattern detection and outcome 

prediction. The many models and algorithms available under the umbrella of data 

mining can be viewed as tools that the professional must implement based on the 

uniqueness of the data and desired outcome. One common trait in data mining, that 

spans across multiple concentrations and multiple theoretical backgrounds, is the 

idea of data mining as a series of very important steps that must be completed in a 

very strict order. Most institutions and organizations that utilize data mining 

recommend a specific methodology known as the Cross Industry Standard Process 
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for Data Mining (CRISP-DM), but many areas use a modified version of CRISP-

DM, usually merging or splitting the steps (Shearer, 2000).   

2.2 CRISP – DM Methodology  

CRISP-DM is constructed of six equally important steps. Business 

Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and 

Deployment. During the Business Understanding step, the primary goal is to 

identify the project objectives. These objectives could include, but are not limited 

to, success criteria for tools or techniques, risks and contingencies, and project plan 

outcomes (Chapman et al., 2000).  

The Data Understanding step involves collecting and reviewing the data. 

This could involve creating descriptive reports on data and reviewing the collection 

process, exploring the data, and data quality verification. The Data Preparation step 

includes selecting and cleaning the data. During this step, it is important to describe 

the rationale for including or excluding the data, creates reports describing the data 

cleaning methods utilized, create the analyzable datasets (subsetting, transposing, 

merging variables, etc.), and reformat variables to prepare for analysis (Chapman et 

al., 2000). This step is important to approach very carefully, because the orientation, 

format, and type of data might not be ready for the modeling step. If data cannot be 

analyzed properly, then the whole data mining process could provide improper or 

inaccurate results.  

The Modeling step contains most of the statistical techniques and 

assessments. The goal of this step is draw conclusions related to your goals set in 

the Business Understanding step. This could include, but is not limited to, creating 
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models, classifications, predictive measures, and assessment of the predictive 

measures implemented (Clifton & Thuraisingham, 2001). Model assessment is also 

a very important part of the Model step. Assessing the fit of parameters and revising 

parameters included in the model are both vital actions when building a model. This 

step usually consists of making judgments on the success of models when compared 

with each other, basing model assessment on the accuracy and appropriateness of 

model fit (Chapman et al., 2000).  

The Evaluation step is similar to the assessment portion of the Model step. 

The model assessment being done in the previous step assessed the accuracy and 

generality of a model, while the Evaluation step assesses the degree to which the 

model meets the criteria established during the Business and Data understanding 

phases (Leaper, 2000). It is not until a model possesses good fit, and satisfies the 

standards and goals set forth by the researcher that it is accepted as an appropriate 

model. The final step is the Deployment step. This step is vital when utilizing data 

mining for the development of solutions in an applied setting. It involves applying 

the results of the data mining procedures and monitoring these changes to ensure 

that the proper decisions were made (Chapman et al., 2000). This study will not 

involve the use of the Deployment step. A future direction component will follow 

the final evaluation step, as this study is not designed in a way in which the 

conclusions could be brought into action.   

These steps outline the basis for data mining and its ability to be 

implemented. Although the exact structure of CRISP-DM cannot be fully 

implemented in this analysis, due to the nature of the project, the framework was 
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utilized as closely as possible. The primary component that will guide this study is 

the utilization of supervised learning. Supervised learning is required in situations 

where there is no unique fit measure or acceptance test available for the utilized 

models. Supervised learning techniques incorporate every input variable into the 

initial analysis called the training model. This model is developed on only a portion 

of the data and done in such a way that the learning algorithm being used seeks 

suitable functions that relate the input variables and output variables. This allows 

the algorithm to see the input and output data simultaneously to develop a model 

that represents the relationship between the two. Where this practice differs from 

methods incorporated in traditional statistics is the model selection, error reduction, 

and input removal that takes place. Most data mining algorithms will train their 

model by creating hundreds, if not thousands, of unique models, testing them all, 

then selecting the model or models that recreate the data the best. Machine learning 

algorithms like artificial neural networks even back propagate during the modeling 

phase (Han, Kamber, & Pei, 2012). This allows the algorithm to move forwards and 

backwards through the series of input and output variables to iteratively test and 

retest weights applied, thus removing error with each estimate (Rumelhart, Hinton, 

& Williams, 1986). This will be discussed in greater detail at a later point in the 

study. 

2.3 Data Mining in Education 

Educational measurement has experienced a shift in focus from traditional 

graduation rates, to more attention focused on college readiness (Strauss & 

Volkwein, 2004). As the reality of an increase in students attending college or 
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university becomes more evident, it is vital to accurately measure how prepared 

students are for attending post-secondary school (Birnie-Lefcovitch & 2000). 

Although consensus agrees that college readiness is vital to understand, there still 

exists many opinions as to what factors actually contribute to college readiness 

(Conley, 2007). Desjardins & Lindsay (2008) state that in most cases, some 

combination of actual quantitative measurables (e.g. GPA, count of advanced 

courses taken, etc.) and designed assessments geared toward post-secondary school 

achievement provide valuable information for predicting college readiness. Data 

mining models provide a new set of tools to better investigate the many patterns that 

exist within educational data.  

Due to the financial implications involved, data mining models are more 

commonly being implemented for predicting student enrollment in college, attrition 

due to intermittent circumstances, and key motivators university administration can 

control concerning enrollment expectations (Luan & Zhao, 2006; Brewe, Kramer & 

O’Brein, 2009; Delen, 2010; Herzog, 2006). There is also research taking place in 

areas with less financial impact on institutions. predicting academic differences that 

exist for distance learning students, focusing resources towards non-traditional 

students to lessen academic churn, and locating trends in drop-out and retention 

fluctuations of specific student type (Kotsiantis, Pierrakeas, & Pintelas 2004; Siraj 

& Abdoulah, 2009; Herrera, 2006). 

It has not taken long for the practice of data mining and machine learning to 

become functional in the field of education, and this trend will only grow as more 

methodology and application become proven with research and practice. The 



11 

 

overarching methodology of data mining and the practices of data mining within the 

realm of education have been described. The primary focus of this study is to 

provide a framework and comparison for how these models interact with a 

traditional statistical model when viewing large-scale educational data. The focus 

will now turn to the specific models being implemented within the practice of data 

mining and machine learning.   
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CHAPTER III: METHODOLOGICAL REVIEW 

3.1 Classification vs Prediction 

Modeling with predictive data mining models can generate two primary 

outcomes, classification and prediction, principally determined by the data being 

analyzed and the model being implemented (Weiss, Kulikowski, 1991). The 

identification and purpose of the two model types is based on the format of the 

outcome variable being predicted and the unique needs that accompany the data 

being investigated. Classification describes the process of creating a function 

distinguishing data into various classes or levels. The outcome variable for a 

classification model is always discrete and unordered. In contrast, prediction models 

do not classify into levels or categories, but instead model outputs made up of 

continuous outcomes, similar to multiple regression (Han, Kamber, and Pei, 2012).  

Prediction models are implemented to predict numerical data values rather than the 

discrete categories present in the classification output. Data mining in applied 

applications even allows the model to decide the proper outcome for prediction and 

form fit the model to best represent patterns accompanying that prediction.  

Many types of data mining models (e.g. Classification and Regression Trees 

& Artificial Neural Networks) have the ability to perform as classification models 

and regressions models, with most models also allowing for both types of variable 

to be present as predictors (Alpaydin, 2011). Since one of the primary purposes of 

data mining as a practice is to detect reproducible patterns in data large enough that 

the signal is hardly detectable when compared to the noise, it is vital that the 

appropriate tool from the data mining toolbox is selected for the data.  
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The models selected for comparison in this study were selected based on the 

following criteria: presence in current research and experimentation, availability of 

software required for implementation, and the models most utilized in current 

applied practice. The two primary machine learning models selected to characterize 

data mining are Artificial Neural Networks and Boosted Trees (Gradient Boosted 

Regression Trees). To provide a baseline for comparison with more classically 

utilized statistics, Multilevel Logistic Regression will also be utilized to analyze the 

data. 

3.2 Artificial Neural Networks 

Cheng and Titterington (1994) summarized Artificial Neural Networks 

(ANNs) as “the mathematical models represented by a collection of simple 

computational units interlinked by a system of connections.”  ANNs can be viewed 

as a complex system of nonlinear relationships composed of hidden layers and 

intuitive learning mechanisms (Taylor, 1999). Hastie, et al. (1999) described ANNs 

as “A two-stage regression or classification model… [in which] the central idea is to 

extract linear combinations of the inputs as derived features, and then model the 

target as a nonlinear function of these features.” The use of ANN models allows for 

processing of many units of data that, when viewed together, seek out trends and 

relationships between input and output variables (Sibanda & Pretorius, 2012). 

Haykin (2008) described ANNS as a “biologically inspired analytical technique, 

capable of modeling extremely complex non-linear functions.” The biologically 

inspired component that Haykin mentioned comes from the architecture of the 

network when viewed from input to outcome. The ANN structure consists of 
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processing nodes that exist as inputs for the model, joined with “neurons” that are 

interconnected through groups of weights, similar to the synaptic connections 

located throughout the nervous system (Mehrotra, Mohan & Ranka, 1997). This 

architecture allows for a “signal” to flow from input to weights to output and in 

reverse order. In between each layer of the ANN, a complex set of nonlinear models 

communicate information through the layers until convergence occurs in the output 

layer (Bishop, 1995; Bishop, 2006). An image representing a sample ANN is 

presented in Figure 1 to show the structure of nodes and their relationships.  

Figure 1: Artificial Neural Network Sample Structure 

 

Within the ANN portrayed above, the input layer consists of the input 

variables included in the dataset, with each input variable representing a separate 

input neuron (Haykin, 2005). The hidden layers are created by the model to apply 

parameter weights to the layers of inputs (Singh, Parhar & Malla, 2015). Each input 

neuron can communicate with each hidden layer in a unique way, and any number 
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of input neurons can impact any number of hidden nodes within the hidden layers 

(Bishop, 1995; Funahashi & Nakamura, 1993; Webb, 1994).  

When referring to the components of an ANN, the input variable or “input 

layer” is anything that is bringing some data or information into the model (Nowlan 

& Hinton, 1992). On the opposite end of the model, anything that holds a predicted 

value or weight is considered an “output layer.” There are also transformation 

functions nested in between the input and output layers that are called “hidden 

layers” (Luger & Stubblefield, 1993). As data flows from the input layer, through 

the hidden layers, and then continues on through the output layers, weights are 

assigned to each interconnecting line between two nodes (Sietsma & Dow, 1991). 

When the data reaches a hidden layer, the node (neuron) aggregates all values 

arriving from the input layer and the overall input values are applied to the model. 

Then the information is output to the next layer, where new weights are calculated 

and the process starts again (Sibanda & Pretorius, 2012; Neal, 1996).  

Most applied ANN models are multi-layer network, which allow multiple 

inputs to be mapped to hidden nodes and output nodes with a series of complex non-

linear relationships (Hastie et al., 2009). The basic function for a multi-layer ANN 

is: 

𝑎𝑘 = 𝑔𝑘 (𝑏𝑘 + ∑ 𝑔𝑗 ( 𝑏𝑗 + ∑ 𝑎𝑖𝑤𝑖𝑗

𝑖

) 𝑤𝑗𝑘

𝑗

) 

                   Equation 1 

where 𝑎𝑘is the output node, 𝑔𝑘 and 𝑔𝑗 are the activation functions that will change 

based on type of prediction being made (regression or classification), and 𝑏 is the 

bias (and weight decay if chosen to be included in the model). Bishop (1995) 
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recommends usage of nonlinear transformations in the hidden layers (e.g. tanh, 

sigmoid, logistic), due to the fact that multiple layers of linear transformations can 

be formulated in a single layer of computation fairly easily, and the primary goal is 

to take full advantage of the computational strengths of the network.  

It is not a requirement that an ANN model only have one layer of hidden 

nodes (Bishop, 2006). The more layers within a network that exist allow for more 

levels of unique analysis containing the information carried from the previous layer. 

The issue of overfitting arises if networks become too complex and contain many 

levels of hidden nodes (Bishop, 1995; Ripley, 1996). When information is processed 

using an ANN, the network pushes the weights and bias obtained from the previous 

layer into the next node, allowing the algorithmic learning process to begin using 

the information processed in the previous layer (Mackay, 1995). This leads to very 

complex learning processes, especially once back-propagation is introduced and the 

data can flow back through the layers of the network (Neal, 1996). Models can be 

built with thresholds called weight decays from a programmatic standpoint, these 

will be discussed more at a later point. Back propagation and the bi-directional 

application in neural networks will be discussed in the next paragraph (Opper & 

Winther, 2000; Haykin, 2005).  

The most commonly used ANNs can be classified into two categories, Feed 

Forward Neural Networks & Recurrent Neural Networks (Van de Cruys, 2014; 

Bishop, 2006). The main difference between how these two types of ANNs view 

data, is that Feed Forward Networks are not bi-directional, indicating a linear flow 

of data propagation from input variable to output variable. Recurrent Neural 
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Networks are bi-directional and allow for propagation of networks from later stages 

to earlier stages (Bitzer & Kiebel, 2012). When viewing Recurrent Neural 

Networks, the most common estimation method is the Multi-Layer Perceptron 

(MLP) network. This network consists of at least 2 layers of nodes (neurons), input 

layer, output layer, and possibly hidden layers.  MLPs are unique due to the way the 

model compares the output variables with known outcome values to calculate and 

apply a more accurate value of predefined error (Olden & Jackson, 2002). This error 

for the most basic neural network can be viewed as the following: 

𝐸 = 0.5(𝑜 − 𝑡)2 

                   Equation 2 

where the error, E, is a function of the output value, o, and the target value, t.  Once 

calculated, this error value is passed back through the network and adjusts the 

weights that have been applied to the models accordingly. This iterative process, 

called back-propagation, continues until a reduction in the overall error function is 

detected (Calcagno et. al. 2010). MLP is commonly accepted as the most functional 

and utilized ANN model due to the model’s ability to learn and re-estimate very 

quickly on large bodies of data. Research done by Hornik (1990) revealed that when 

presented with an appropriate amount of arbitrary data, MLP models are capable of 

deriving highly unique non-linear arbitrary models at very high accuracy levels.  

Similar to other data mining algorithms that exist within a supervised 

learning environment, ANNs must be trained during use and implementation 

(Nilsson, 1990). Supervised learning is the practice of splitting the data to train the 

model being developed on one portion of the data and test the model parameters to 

determine successful classification using the other portion of data (Hastie, 
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Tibshirani, & Friedman, 2009).  Mentioned briefly in the last section, the most 

commonly used training method in ANNs is back-propagation. During the process 

of information flowing from the input layer to the output layer, back propagation 

occurs to enhance predictive accuracy. Back propagation allows for information to 

pass back through the ANN with an adjusted expectancy of the error function. This 

allows for the weights being applied to the data to be adjusted as the models learns 

more about how the various layers relate (Weir, 1991). The primary goal of utilizing 

ANNs with this approach is to train a network that will find the best combination of 

variables and weights that produce the least amount of error when validated against 

similar data (Han et al., 2012). Validation is typically performed by randomly 

splitting the data and testing the model outcome on a portion of the data that wasn’t 

utilized for learning (Bishop, 1995). This validation method is also the most feasible 

method to use during this study due to the various types of models being 

implemented. When implementing non-comparable modeling techniques fit 

statistics commonly used in classical statistical theory are not applicable (Sietsma & 

Dow, 1991; Cawley & Talbot, 2007). This will be discussed in greater lengths 

during the methods section.  

3.3 Boosted Decision Trees & Gradient Boosting 

The second type of model that will be implemented in this study is the 

Boosted Tree model. The Boosted Tree model is a specific variation of the 

Classification & Regression Tree (CART) model, which is typically the basis used 

for comparison for all decision trees (King & Resick, 2014). CART is the body of 

algorithms utilized within the field of decision tree. Decision tree will be explored 
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first, followed by an explanation of boosting and various optimizations that can be 

deployed with CART.  

Decision trees are non-parametric, supervised modeling algorithms that can 

repeatedly run checks to extract the highest valued information from a dataset, 

without manual intervention, when presented with a model containing some 

predictors (Crockett, Latham, & Whitton, 2017).  As stated is the case with many 

data mining models, decision trees can exist with categorical predictors 

(classification trees) and continuous predictors (regression trees). Within the 

structure of the tree, there are root nodes, daughter nodes, and terminal nodes. The 

root nodes exist at the top of the tree and contain all of the data being used to build 

the model, the daughter nodes are the nodes that exist throughout the middle of the 

tree containing the algorithmically determined splits in the data, and the terminal 

nodes are the nodes at the bottom of the tree representing partitions in the data that 

cannot be split anymore (Breiman Friedman, Olshen, & Stone, 1984; Gorunescu, 

2011).  

CART models utilize recursive partitioning to fit non-linear relationships 

without any pre-processing or preparation of the data (Quinlan, 1986). Recursive 

partitioning collects all of the data in one node at the top of the tree and proceeds 

down creating splits in the data with additional nodes until the tree is fully formed 

(Strobl, Malley, & Tutz, 2009). The primary reasons that the partitioning ceases is 

either a lack of data or one of the stopping rules has been triggered. The splitting 

algorithm utilized in decision trees iterates through all predictor variables until the 

variable that creates the most unique separation in the sample is located (Friedman, 
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2001). The minimization function utilized to select which variable will be used for 

the split can be viewed as 

𝑚𝑖𝑛 [𝑚𝑖𝑛 ∑(𝑦𝑖1 − 𝑐1)2 + 𝑚𝑖𝑛 ∑(𝑦𝑖2 − 𝑐2)2] 

                   Equation 3 

where 𝑦𝑖1 is the value of the outcome variable in node 1, 𝑦𝑖2 is the value of the 

outcome variable for node 2, 𝑐1 is the predictor variable value of observation with 

membership to node 1, and 𝑐2 is the predictor variable value of observation with 

membership to node 2 (Hastie et al., 2009; Quinlan, 1986).  

The model attempts to locate splits that minimize the sum of squared 

difference between the values and the within node averages, then being summed 

across nodes that share a common parent node (Breiman, 2006). The greater the 

similarity two nodes’ values have leads to smaller sum of squared difference values. 

The most common measure for this heterogenous, within-node value is expressed 

with the following deviance value: 

𝐷𝑚 = −2 ∑ 𝑛𝑖𝑗𝐿𝑁𝑝𝑖𝑗  

                   Equation 4 

where 𝑛𝑖𝑗represents the total number of subjects from group I in node J, and 𝑝𝑖𝑗 

represents the proportion of subjects from group I in node J (Elith, Leathwick, & 

Hastie, 2008). This deviance value will increase as within-node heterogeneity 

increases, thus indicating a lower level of strength in the prediction of the split 

(Breiman et al, 1986). One common representation of fit for all decision trees is: 

𝐷 =  ∑ 𝐷𝑚 

                   Equation 5 
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The iterative process of analyzing the impact of each variable continues once 

the resulting nodes are as homogenous as achievable when speaking of membership 

to one group or another. This node creation and “splitting” of the data continues 

until the within-node heterogeneity of the outcome cannot experience any greater 

reduction in the deviance of the data. As mentioned above, one of the reasons trees 

discontinue splitting into additional nodes are stopping rules that are deployed to 

stop the model from growing too large and losing too much accuracy (Dorian, 

1999). As the tree grows too deep, there could exist too many splits in the data 

disallowing a justified amount of data to exist in each terminal node. While a 

shallower tree will lead to outcomes that are too heterogeneous (Han, Kamber, & 

Pei, 2012). These two instances are examples of the need for stopping rules such as 

pruning. Pruning is an integral component of CART modeling and allows for the 

tree to maintain accuracy and generalizability (Alpaydin, 2011). There are many 

pruning mechanisms in place based on what software is utilized for calculation, but 

at their root they all perform the same task and that is overgrowing the tree, then 

pruning the terminal nodes back to an optimal size. 

Classically developed decision trees offer one rigid path of decisions that 

can be limiting in scope due to the focus being decided earlier in the model 

development process (Breiman et al., 1984). Due to increases in available software 

algorithms and computing power, decision trees have become much more versatile 

and less likely to hone in on one specific node split, causing the model to lose 

generalizability.  
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When Gradient Boosting is applied to the tree, creating a Boosted Tree, the 

concern of relying on a single rigid path is dissipated. The Gradient Boosting 

technique is an optimization technique that can be implemented for classification, 

regression, or rankings solutions (Brieman, 1998). Gradient Boosting leverages 

elements of Gradient Descent as well as Model Boosting. Gradient Descent being 

the process of minimizing an error function by moving in the opposite direction of 

the negative gradient (or residual), and Model Boosting being the process of 

adapting to a number of different loss functions with varying robustness to outliers 

(Freund & Schapire, 1996; Schapire & Freund, 2012).  During this process, an 

ensemble, or additive, model is fitted in a forward step-wise progression. During 

each step, the model introduces what is called a “weak learner” that exists as a new 

weight that is meant to slightly improve on the weakest existing model component 

(Elith et al., 2012; Brieman, 1999).  

The first successful boosting technique, Invent Adaboost, was implemented 

by Freund and Schapire (1997), but with a greater body of research, computational 

power, and data Gradient Boosting began to be developed in work by Friedman 

(2000). The “Gradient” component added to the algorithm was implemented to 

account for a large variety of loss functions (Friedman, Hastie, & Tibshirani, 2001). 

Gradient Boosting algorithms as they are used today, primarily compensate for 

residuals in a step-wise fashion so to continue reducing error by creating new nested 

regression or classification trees in ensemble models as the training data is analyzed 

(Friedman, 2002; Brieman, 1996).  
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3.4 Multilevel Logistic Regression 

 Multilevel modeling has historically been utilized to better predict outcomes 

in education related domains. This is due to the very natural hierarchy that comes 

about through the designation of students, schools, districts, regions, states, etc 

(Raudenbush & Byrk, 2012). The outcomes predicted by multilevel models can be 

oriented to focus on high levels and low levels within the data structure. When 

viewing the structure of a hierarchy, all levels that exist below a given level of the 

hierarchy are, by design, nested (Rocconi, 2013; Baeck & Van den Poel, 2012). 

These nested data structures will maintain high correlation with the structure that 

they are nested within. Due to this high correlation, regression models that assume 

independence of error and random sampling techniques are not appropriate (Singer, 

1998). Standard errors can also be misestimated due to a failure to account for any 

dependence data might have on a higher-level structure within the hierarchy in 

which it is nested (Roberts, 2004).  The assumptions that follow multilevel models 

account for the implicit relationship that exists between the levels of a nested 

hierarchy (Tabachnick & Fiddell, 2012).  

 Singer (1998) stated that one of the primary goals of utilizing multilevel 

modeling is to create functions of value at multiple levels of interest. When 

considering the current data set being analyzed, this would encompass functions 

directed at the school level, or second level, as well as, the student level, or first 

level. The data being utilized is limited to one school district, so there will be no 

need for a third level of hierarchy in the model implemented in this study.  
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The subsequent description of a use-case on the data collected for this study 

will aid in describing the relationship the levels of hierarchy have with the overall 

model. When examining the school level, one area of interest when utilizing 

multilevel modeling could be a categorical predictor for the academic level of a 

specific subject area offered at the school. In the data used for this study, 

consultation took place with the subject matter experts to grade, quantify, and 

standardize the “academic level” of the math, reading, and science courses offered 

at the various schools in the data set. After cleaning, this academic level field 

indicated if the math, science, or reading course being taken by the student (or 

offered at the school) was below the desired grade level, at the desired grade level, 

or above the desired grade level for the given school district.  

If there is interest in modeling this at the school level to determine 

probability of college enrollment, the mean predicted probability can be portrayed 

as a combination of the grand mean predictor (ϒ00), the selected impact the 

aggregate academic level course taken at the school (ϒ01) has on the predict 

probability, the error associated with each individual school in the dataset (μ0j), and 

the error associated with the individual students in each classroom (rij). 

ϒij = ϒ00 + ϒ01(Level) + μ0j + rij 

                    Equation 6 

 The model above represents the school level function. If there was interest in 

adding to the overall model by examining the impact of total AP credits earned on 

the predicted probability of college enrollment, the student level model would be 

viewed as: 
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ϒij = B0j + B1j(APCREDITHOURS)ij + rij 

                   Equation 7 

with Β0j = ϒ00 + μ0j and Β1j = ϒ10 + μ1j.  Once all of the functions are combined, the 

overall model would allow for better understanding of the influence of variables at 

both levels of the hierarchy, along with the errors unique to school and students 

levels of the model.  Along with the unique errors represented in each level of the 

model, it is also of interest to explain the variance captured in the slopes (τ11), the 

variance captured in the intercepts (τ00), and the covariance between the two (τ01).  

 Multilevel modeling is not restricted to only prediction of continuous 

outcomes. This study is focused on predicting college enrollment, so the model will 

be applied to a dichotomous outcome. The basic principles of the model and its 

construction will still follow what was described above. 

3.5 Model Comparison 

 The primary goal of this dissertation is to provide a comparison of the three 

models of interest within the context of large behavioral/educational datasets. The 

primary issue that arises when comparing the models’ ability to properly select 

college enrollment is the method of which each model uses to depict optimization or 

success. Logistic regression computationally follows the primary constructs of 

traditional statistics, while the data mining algorithms both utilize supervised 

learning to measure model accuracy, sensitivity, specificity, and precision (Breiman 

et al., 1984). Due to there being no common ground between how these two models 

are traditionally interpreted, all three models will be compared using a supervised 

learning environment (Ludbrook, 2002; Suleiman, Tight, & Quinn, 2016).  
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 As mention before, supervised learning takes place when a smaller portion 

of the data set is randomly sampled to “train” the model and decide parameters, then 

the model with updated parameters is applied to the rest of the data to assess how 

well it predicted the known outcomes (Fay, 2005). Since this is the natural process 

that would take place for artificial neural networks and gradient boosted tree 

algorithms, the primary modification will take place with the multilevel logistic 

regression models. The multilevel logistic regression models will be trained on the 

same subsample as the other two models, then tested against the remaining data to 

assess model fit.  

 The four major components of model fit, when working within supervised 

learning states, are model accuracy, model sensitivity, model specificity, and model 

precision (Brieman et al., 1984). To understand these three metrics, it is important to 

first understand the four possible outcomes that can occur with a categorical 

outcome. When trying to predict a dichotomous outcome like college enrollment, 

each observation of the test dataset can result in a True Positive (TP), False Positive 

(FP), True Negative (TN), or a False Negative (FN) (Jain & Zongker, 1997; Guyon 

& Elisseeff, 2003). A true positive would occur when the model correctly predicts a 

student enrolled in college. A false positive would occur when the model predicts a 

student will enroll in college, but that was not the outcome. A true negative would 

occur when the model correctly predicts a student not enrolling in college. A false 

negative would occur when the model predicts a student will not enroll in college, 

but that was not the outcome.  
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 In gauging the overall Model Accuracy, or the model’s ability to 

differentiate between students who would enroll and students who would not enroll, 

the proportion of true positives (TP) and true negatives (TN) from all evaluated 

observations must be calculated.  

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

                   Equation 8 

In gauging the overall Model Sensitivity, or the model’s ability to determine 

college enrollment properly (ignoring successful prediction of students not enrolling 

in college), the proportion of students who were correctly predicted as enrolled, true 

positives (TP), from the total number of students who did enroll, true positive (TP) 

and false negative (FN) is calculated. 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

                   Equation 9 

In gauging the overall Model Specificity, or the model’s ability to properly 

predict students’ who did not enroll in college (ignoring successful prediction of 

students enrolling in college), the proportion of students who were correctly 

predicted as not enrolling in college, true negative (TN), from the total number of 

students who did not enroll in college, true negative (TN) and false positive (FP), is 

calculated. 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

                   Equation 10 

 Additional to the measure honing in on true positive rate (sensitivity) and 

true negative rate (specificity), it is important to also keep a measure of positive 
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predicted value, or Precision. This measure is captured as a ratio of true positives 

(TP) to true positives and false positives (FP).  

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

                   Equation 11 

The final metric to consider when gauging the success of data mining 

algorithms is the Matthews Correlation Coefficient, or phi coefficient in some 

literature (Boughorbel, Jarray, & El-Anbari, 2017). This metric is commonly 

deployed when a machine learning model is attempting to measure the quality of a 

binary classification predicted from a supervised learning environment and is widely 

accepted as one of the supervised learning measures of fit that is least altered by an 

inconsistent classification ratio (Matthews, 1975). It gains value because of its 

ability to maintain balanced outcomes when the class sizes in the data are of 

drastically different sizes (Powers, 2011). On occasion, it becomes less valuable to 

only view accuracy, or the proportion of correct predictions, because the size 

difference between the two outcomes is drastically different (Perruchet & Peereman, 

2004).  

The MCC has a range of -1 to 1 where -1 indicates a fully incorrect binary 

classification, and 1 indicates a fully correct binary classification. The use of the 

MCC provides the most balanced gauge for how well classification models are 

performing. To calculate the MCC, it is necessary to utilize the prior calculations for 

true positive (TP), false positive (FP), true negative (TN), and false negative (FN). 

MCC=
𝑇𝑃 × 𝑇𝑁−𝐹𝑃 × 𝐹𝑁 

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 

                    Equation 12 
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It is common, when working with data mining algorithms, for the above 

described metrics to be included in a table referenced as a confusion matrix (Kohavi 

and Provost, 1998; Caelen, 2017).  Many advanced models include components 

called confusion-matrix based attribute selection, which allows the model to 

automatically adapt model weights and continue calibration on new data based on 

values derived from the confusion matrix (Ming, 2011; Ruuska, Hämäläinen, 

Kajava, Mughal, Matilainen, & Mononen, 2018). For the purpose of this 

dissertation, the metrics will be utilized for reporting the best fitting models during 

the model comparison phase. 

3.6 Summary 

 This section has provided an appropriate introduction to theories behind each 

of the three modeling techniques utilized in this dissertation. The section began by 

explaining classification versus prediction from a data mining stance. Next, the 

processes involved in the implementation of an artificial neural network, gradient 

boosted tree algorithm, and multilevel logistic regression model were described. 

Lastly, the metrics used to compare the models and the process for which they will 

be compared is described.  

Now that the use and theory of the data mining algorithms and multilevel 

models have been described, a greater emphasis will be placed on explaining the 

primary methods employed for data acquisition and data preparation/cleaning. 
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CHAPTER IV: EXPLANATION OF DATA AND 

VARIABLES 

4.1 Data Procurement 

The data used for this study was acquired through and approved by work 

done with the University of Oklahoma. The high school level data, representing a 

large midwestern school system, was provided by the State Department of 

Education and was combined with the appropriate college level data from the 

corresponding state’s higher education institutions. The joining of these datasets 

was completed by specialists designated through and approved by the University of 

Oklahoma, and multiple checks were put in place during the joining of the data so 

that purity was maintained. Required fields for matching were extended beyond just 

unique student ID, into such things as social security number, birthdate, birth year, 

and complete name. It was required that the two data files match on at least 80% of 

the matching fields or the observation was excluded.  

The master dataset originally obtained for this study contained 32,435 

variables and 19,728 observations, totaling approximately 640 million data points. 

This initial dataset was made up of 3 cohorts of students who attended school in the 

large midwestern school system. The data spans from 6th grade through 12th grade at 

the individual student level with fields for every recordable action throughout the 

students’ academic career. The data also includes all alternative schools, magnet 

schools, and behavioral schools. Once the three cohorts were merged, the dataset 

was then combined with the corresponding college level dataset collected by the 

State Regents for Higher Education.  
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The methods implemented for matching the school level data with the 

college level data were validated internally by the State Regents for Higher 

Education and any non-matching cases were removed from the sample. The criteria 

for matching included social security number, first name, middle initial, last name, 

and date of birth. To be included in the dataset, each observation (student) was 

required to match on an established number of these criteria, all of which were set 

and validated by the State Regents for Higher Education before delivery of the data. 

4.2 Data & Variables 

As mentioned above, the dataset contained 32,435 variables, so each 

variable will not be explained in detail. This was due in part to how the data was 

collected and stored, creating a new variable for every possible grade level – record 

– student combination. The format of the variables and what was done to clean and 

process the data are discussed below in the Data Preparation section. Within the 

data, there were a number of naturally occurring subgroups. These subgroups were 

composed of Demographic fields, Academic fields, Behavioral fields, Social fields, 

and Enrollment/Attendance. The primary fields of interest from each of these 

subgroups will be explained below.  

The Demographic subgroup contained sex, ethnicity, English as a Second 

Language (ESL), English Language Learners (ELL) resident status, homeless status, 

free/reduced lunch, special education classifications, physical impairment, other 

disability, and gifted & talented.  

The Academic subgroup contained test scores such as EOI, CRT, OCCT, 

ACT, SAT, EXPLORE, and WIDA. Other Academic variables are GPA, Advanced 
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Placement courses taken, Advanced Placement credits earned, promotion, retention, 

benchmark test scores by subject, and credits earned. The EOI/OCCT variables 

were such things as content area of exam, raw and scaled scores, performance level, 

duration of student enrollment, English proficiency, and a flag for students taking 

the exam a second time due to unsatisfactory scores the first administration. Specific 

Academic variables were then created to add special focus to the analyses. A 

variable representing Cumulative Math GPA was calculated by coding GPA at the 

course level and only keeping math courses.  

There was also a detailed effort to create and code variables representing the 

course level of the math and science courses offered. Subject matter experts 

associated with and approved by the University of Oklahoma, specializing in the 

courses being viewed, contributed information to this classification process based 

on course number at each respective school, as well as, the expected prerequisites 

for each course. They were classified as below expected course level (remedial), at 

expected course level, or above expected course level (AP, Honors, higher level 

math and science, concurrent enrollment) for each grade in the data. These variables 

were used to conceptualize the difficulty of the given math or science course in 

relationship to what the expected difficulty would be. These variables were created 

by first creating a list of every possible course name and course number from any 

public school included in the dataset (6th-12th grade). After the compilation of the 

course information, each course on the lists (one list for math courses and one for 

science courses) were coded in the given subject. The codes given represented one 

of the three groups mentioned above: below grade level, at grade level, or above 
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grade level, for each grade in the dataset. This information was then entered into the 

master dataset.  

In calculating the STEM course GPA, a list of STEM course numbers were 

collected from the OSRHE. This list contained 109 courses that were deemed 

STEM courses by OSHRE. OSHRE was also responsible for denoting the coding 

scheme for Institution Type. This included Large State Research Universities (e.g. 

OU, OSU), Small State Colleges (e.g. UCO, SWOSU), and Community Colleges 

(e.g. OCCC, TCC). The calculation of the non-stem course GPA utilized the same 

list but controlled for the STEM courses and removed them from the aggregation. 

The variables included in the Behavioral subgroup included things such as 

items from the EXPLORE test, items from the PLAN test, and items from the 

ENGAGE test. These items gauged things such as academic interest, willingness to 

put forth effort in school, details about post-high school plans, homework, family 

involvement in education, and perceived success. The Behavioral dataset also 

included variables on disciplinary action taken against the student. These variables 

included total number of referrals, type of referrals, total days suspended, reason for 

suspension, and number of truancies.  

The variables included in the Social subgroup included primarily items 

collected from the ENGAGE test. This included items such as social connection 

with school personnel, managing goals, motivation, self-confidence, and 

determination to succeed. The variables in the Enrollment/Attendance subgroup 

included school attended, number of times primarily school changed during year, 

school at which state test was taken, time of entry at each school, time of exit at 
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each school, reason for exit, absences per school, total absences, days enrolled per 

school, total days enrolled, and attendance ratio per entire grade year. There were a 

number of higher-education variables that were included in the predictor side of the 

dataset, primarily as controls. Examples of these variables are type of higher-

education institution, student status (full time or part time), and STEM GPA. The 

primary outcome variable of interest that was included with the higher-education 

data set was enrollment/retention within a higher education institution.  

There was also a school level dataset created from the aggregation of student 

level data with the associated school code. This school level dataset was matched 

against statistics provided by the State Department of Education for each school for 

validation purposes. The aggregate values matched with a minimal expected amount 

of error due to uncontrollable factors such as students transferring to other schools 

during the school year, students being relocated to behaviorally centered programs 

during the year, and students experiencing multiple instances of extended out of 

school suspension or expulsion. It was determined that, for the purpose of this study, 

there was an acceptable amount of variance between the values reported on the state 

documentation and the actual aggregate values. Since the purpose of the study is 

predicting college enrollment, school level data that was negatively affected by 

students primarily experiencing behavioral interventions would be discernable in the 

Specificity metric of each model.  

The second level dataset contained predominately academic, behavioral, and 

demographic variables representing the schools captured within the dataset. 

Examples of the variables that were included in this dataset are average student 
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GPA, average student test performance (e.g. EOI, ACT, SAT), average number of 

AP courses taken, average promotion/retention rate, average graduation rate, 

average attendance ratio, average number of suspensions, and average number of 

disciplinary referrals.  

4.3 Data Preparation 

The data preparation portion of the study was difficult due to the orientation 

of the dataset. The data was combined so that one student was represented by one 

observation line in the dataset. This was difficult primarily because grade level data 

were not separated into grade subgroups. Each student had a year of entry for each 

school and a numeric coding scheme made up of underscores and numbers that 

would place each test score, behavioral instance, course taken, etc. into a specific 

year within the student’s academic career. Because of this coding scheme, a 

student’s data under the variable titled GPA_2_2 (the first numeral representing the 

year and the second numeral representing the semester) that represented the 

students’ cumulative GPA taken at the second semester of the 7th grade (because the 

6th grade was the first grade in the dataset and the _2 represents the second year). 

Another student’s data under the variable GPA_2_2 could represent the student’s 

cumulative GPA taken at the second semester of the 11th grade (because the student 

transferred into the school system in the 10th grade and the _2 represents the 

student’s second year in the dataset). This caused for additional coding to be written 

for each combination of every variable type and every grade/year combination.  

Another aspect of the data cleaning effort was computing descriptive 

statistics and creating flags for variables containing cases that fell outside of the 
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defined range. There were 33 cases that contained variables with data that was out 

of range. Due to the importance of the variables that were out of range, the entire 

case was removed from analysis for each of these observations. After coding to 

recognize which variables placed students in grades, the primary dataset was split 

into seven grade level datasets. Each of these seven datasets contained one 

observation for each student who recorded data in that grade. Students who did not 

have recorded academic, behavioral, or higher education data were removed from 

the dataset. Due to how the datasets were constructed, students who did not have 

grade level data but still had an identifying number were removed from the dataset. 

Duplicate case filters were added to each grade to ensure each student was not 

improperly represented in a grade more than once. This process will be discussed at 

greater length during the next section. 

Data reduction methods were also used to improve the analysis phase of the 

study. There were groups of variables removed that did not pertain to every dataset. 

The variables were mainly characterized by complete blocks of missing data, but the 

data dictionary was used to validate the removal. These variables were checked to 

ensure no data existed for the irrelevant grade level datasets, and then removed from 

the datasets. An example of this type of variable would be one containing an item 

from a standardized test administered in the 8th grade, but due to the structure of the 

dataset, the variable existed at each grade level. These variables would appear 

completely missing for a student in the 12th grade, because 12th grade students did 

not take a test administered to 8th grade students.  
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Additional data preparation tasks were creating dichotomous variables for 

outcomes of interest. A dichotomous code for whether or not the student enrolled in 

a higher education institution was created. This became the primary classification 

variable for all of the models. Another group of variables were created to represent 

whether or not a student had taken an AP course, as well as whether or not they 

obtained AP credit before graduation. The dataset already contained a variable for 

each AP test at each grade level, but there were so few data points in some of the 

AP testing groups, that the new variables represented whether or not the student 

received credit from any AP test, as well as a continuous variable representing how 

many AP courses they completed before graduation.  

 One of the largest blocks of data removed during the variable reduction 

phase was the ENGAGE test data. It was observed during the cleaning process that 

less than 0.7% of all observations contained any ENGAGE data at all. It was also 

discovered that only 0.5% of observations contained a complete ENGAGE test 

without missing observations. This was the case because the battery was only 

administered to a small number of students in one cohort. This was far too much 

missing data to include these variables in any analyses, so the blocks of variables 

representing the ENGAGE battery were removed.  

4.4 Data Usage 

The primary value being added by the dataset in use is its inclusiveness of all 

data collected from one entire large school district, joined together with all college 

enrollment data for the students. This allows for a complete representation of every 

student in the district from high school through the first year of higher education. 
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One of the leading strengths of most data mining models are their ability to adapt to, 

and gain value from, large datasets. The interest of this model comparison was 

rooted in the question of whether or not larger datasets lend more productivity to 

data mining algorithms over traditional statistical methods. Multilevel modeling has 

traditionally been a favored approach for analyzing educational data, but this study 

aims to investigate if predictive value gained from data mining models is greater 

than that of multilevel models with a large dataset.  
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CHAPTER V: METHODOLOGY 

5.1 Overview 

 This chapter describes the data processing, modeling techniques, and model 

comparison methods that were utilized to compare the successfulness of models in 

predicting college enrollment. The following sections will discuss the process and 

justification of the participants, data processing method, and analytic 

implementations.  

5.2 Participants 

 The data acquired for this dissertation contained three cohorts of students 

from a large Midwestern school district, with measures collected from the 6th grade 

through the 12th grade for each cohort. Upon receiving the master datafile, there 

were 32,435 variables and 19,728 observations. Once data was cleaned and merged, 

the final dataset contained 17,877 observations, with one observation matching each 

unique student ID. This data included students from any public school in the district, 

including magnet schools, behaviorally focused schools, alternative schools, and 

schools with focused special education programs. There are a total of 27 high 

schools in the data after magnet and alternative schools were included, although five 

of the schools recorded below 5 students per grade. The demographic nature of the 

school district is 51% Hispanic, 25% African-American, 15% Caucasian, 3% Native 

American, 2% Asian, and 4% who selected two or more racial/ethnic categories. 

Throughout all grades, approximately 1 in every 3 students are ESL/ELL with 

Spanish listed as their primary language.  
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5.3 Data Processing 

 The dataset used in this dissertation was created in the phases mentioned 

earlier during the Data Preparation section. Additional detail will be added in this 

section to describe the process utilized during some data processing decisions. SAS 

and SQL were utilized to manage the datafile in the earliest stages of the data 

processing phase. This was done to accommodate for the size of the file and it’s 

need to be managed in an analytic environment. All fields and grades were managed 

at the student level to complete data cleaning and validation efforts. Once all data 

was cleaned, validated, and grades were joined across like unique student ID, a 

school level dataset was created via aggregation methods and validated against state 

reported data. 

Due to the size of the master dataset, the data dictionary was used in place of 

descriptive analysis to initially partition the dataset into multiple portions. The data 

dictionary contained a brief description of name, variable type, and purpose for each 

of the 32,435 variables, along with a listing of each of the categorical response types 

for the appropriately structured variables. This was utilized to parse out variables of 

each type and begin sub-setting them into appropriate groups for easier consumption 

during the analysis. Partitioning of the data was done for a number of reasons, but 

primarily it was done to better allow the handling and cleaning of the data. The 

computers and software utilized during this dissertation could not process all of the 

raw data simultaneously, so two partitioning methods were used. First, data were 

separated by grade level after all cohorts were merged. This allowed for one master 

file per each grade across all of the data. The unique student ID’s were analyzed for 
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duplicates within one grade, existing because a student was held back or required to 

take a specific grade over. When duplicate unique ID’s existed, the observation with 

the most complete data fields, including fields indicating that the academic year was 

completed, were kept.  

The amount of missing data that was compromised when student level data 

was aggregated across grades did not allow for analysis to take place at the level. 

The frequency of students transferring between schools, leaving the district, 

dropping out of school, and being dismissed from normal school activity via 

suspension, expulsion, or alternative school created a large number of missing 

fields. Students also, more frequently than expected, had demographic, school, and 

behavioral records, but no academic records. After examining the data dictionary, it 

was discovered that students who were enrolled in a grade level for an entire year, 

but were absent more than the allowed limit, failed the course, thus did not receive 

credit or a recorded grade point average. As with many models, if an observation 

has insufficient non-missing data, it will be removed. It was observed that the large 

number of missing fields that would be removed before analysis would weight the 

sample more in favor of those students enrolling in college, thus misestimating the 

weights for classification and altering the fit of the overall model. Due to this issue, 

the grades are being analyzed as snapshots.  

While creating the school level dataset, all observations included in schools 

that had an insufficient number of data points to represent the school during 

multilevel modeling were removed from all models. This was done so that the data 

being trained and tested during the supervised learning process was the same for all 
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three models. There were four high schools removed from the data due to total 

student counts being below 5, with most of the schools reporting student body size 

as 1. Since the schools were coded with a numeric classifier rather than a school 

name, it was impossible to tell if these were behavioral programs/alternative schools 

or simply dirty data. More than half of the fields removed were also missing enough 

academic records that the student data would be removed from the model during 

processing. After the school level dataset was created for each grade, it was joined 

to the corresponding student level data.  

Prior to the analysis, there were procedures in place to adequately split and 

validate the training dataset and the test dataset so the supervised learning model 

comparison could take place. This process will be better described at a later point in 

this section.  

5.4 Descriptive Statistics 

 As mentioned in a previous section, the following metrics were calculated 

after data had been cleaned and duplicate unique student ID numbers had been 

removed. It is important to note that the variables displayed in this section were 

measured after aggregation had taken place across three cohorts, so there are not 

descriptive tables for each cohort included in the original data. 

 Table 1 displays the descriptive statistics for the grade point average 

variables calculated from the data. As explained in a previous section, each course 

number available at every High School was coded for its level in correspondence to 

the grade level of the student, as well as, the core subject area. During the 

preliminary research for the study, it was deemed useful to parse out STEM or 
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Science/Math course involvement from the total grade point average. Table 1 

contains the observation count, mean, and standard deviation of standard grade 

point average at each grade level, and the observation count, mean, and standard 

deviation of math/science grade point average at each grade level. Since the analysis 

is being done by grade, each of the grades will be separated when descriptive values 

are provided.  

Table 1: Descriptive Statistics for Grade Point Average by Grade 

Variable N Mean (SD)  

Overall GPA 

             9th Grade 

             10th Grade 

             11th Grade 

             12th Grade 

Math & Science GPA 

             9th Grade 

             10th Grade 

             11th Grade 

             12th Grade 

 

14,011 

11,743 

10,013 

8,388 

 

11,690 

7,988 

6,149 

4,746 

 

1.95 (1.16) 

1.79 (1.39) 

1.83 (1.26) 

1.99 (1.24) 

 

2.05 (1.09) 

2.07 (1.11) 

2.19 (1.08) 

2.33 (1.01) 

 

 

Table 2 displays the descriptive statistics for variables associated with the 

attendance metrics collected throughout the students’ career. The average Days on 

Roll metric was calculated using start and end dates from each students’ academic 

career by school/district code. These figures represent the disparity between days 

attended within the district and a full school year.  The attendance rate was 

calculated using the total days on roll as a weight.  
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Table 2: Descriptive Statistics for Attendance Variables by Grade 

Variable N Mean (SD) 

Attendance Rate (Perfect Attendance = 1) 

             9th Grade 

             10th Grade 

             11th Grade 

             12th Grade 

Average Days on Roll (Max = 180) 

             9th Grade 

             10th Grade 

             11th Grade 

             12th Grade 

 

14,011 

11,743 

10,013 

8,388 

 

14,011 

11,743 

10,013 

8,388 

 

.854 (.134) 

.859 (.144) 

.868 (.117) 

.864 (.116) 

 

136.76 (52.64) 

137.89 (50.42) 

139.62 (47.33) 

145.26 (41.56) 

 

Table 3 displays the descriptive statistics for variables associated with the 

behavioral metrics collected on the students.  These variables were created using 

disciplinary codes for each possible infraction that could take place on school 

grounds. The field representing referrals is measuring the number of reprimands the 

average student received during the grade listed. These referrals were filtered down 

to only series infractions leading to short-term or long-term suspension/expulsion. 

The average days suspended variable was created to represent the average length of 

punishment served for the referenced behavioral infractions. The average days 

suspended variable does include students who were expelled for an entire 

semester/year. This field represent all students receiving in-school/out-of-school 

suspension, or expulsion with a calculated, exact day count. If a student was 

removed from a school and did not record credits earned or a GPA, his/her record 

was removed from the analysis during the data cleaning phase.  
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Table 3: Descriptive Statistics for Behavioral Variables by Grade 

Variable N Mean (SD) Max 

Average Number of Referrals per Student 

             9th Grade 

             10th Grade 

             11th Grade 

             12th Grade 

Average Days Suspended per Student 

             9th Grade 

             10th Grade 

             11th Grade 

             12th Grade 

 

14,011 

11,743 

10,013 

8,388 

 

14,011 

11,743 

10,013 

8,388 

 

1.29 (2.67) 

.987 (2.26) 

.778 (1.99) 

.536 (1.37) 

 

1.77 (7.76) 

1.49 (8.03) 

1.07 (5.84) 

0.87 (7.58) 

 

34 

22 

20 

15 

 

155 

162 

160 

160 

 

 Table 4 displays the descriptive statistics for the district wide characteristics 

pulled from the aggregated data of 12th grade students. These variables were limited 

to reporting at the 12th grade due to the typical point in a student’s career in which 

this information is collected. For all students completing the 12th grade, average 

ACT and SAT scores, average Advanced Placement credits earned, and remediation 

/ Gifted & Talented statistics were calculated. A decimal value representing a ratio 

was utilized to depict the proportion or students requiring remedial math courses, 

requiring remedial science courses, and being involved in a gifted and talented 

program within the school. These were calculated utilizing flags created in the data 

that represented a student’s involvement in a course number that was designated as 

remedial math, remedial science, or gifted and talented. Demographic variables 

were not reported on in this study because they were not utilized in the modelling of 

student’s enrollment in higher education. 
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Table 4: Descriptive Statistics for Aggregated Grade 12 Data 

Item N Mean (SD) Min Max 

ACT Composite Score 2948 16.11 (3.78) 8.00 35.00 

SAT Scores 

             Reading 

             Math 

             Writing 

 

217 

217 

217 

  

542.18 (101.55) 

516.93 (111.83) 

520.56 (103.66) 

 

300.00 

290.00 

200.00 

 

790.00 

760.00 

800.00 

AP Credits Earned 8388 0.04 (0.26) 0.00 5.00 

Ratio of Students Requiring 

Remedial Math Course(s) 

8388 0.79 (0.37) 0.00 1.00 

Ratio of Students Requiring 

Remedial Science Course(s) 

8388 0.62 (0.22) 0.00 1.00 

Ratio of Students Involved 

in a Gifted & Talented 

Program 

8388 0.06 (0.01) 0.00 1.00 

 

Table 5 presents the descriptive statistics, aggregating across all schools, for 

variables describing average percent of students who are homeless, average percent 

of students requiring special education programs, and average percentage of 

students qualifying for free or reduced lunch at the per school level.  These metrics 

were calculated after the data aggregation method took place to compile and 

validate the school level dataset.  

Table 5: Descriptive Statistics for School Level Homeless, Special Education, 

and Free/Reduced Lunch Variables 

 

 

Variable N Mean% (SD) Min% Max% 

Percent of Homeless School 

Population  

20 2.65 (3.01) 0.40 11.70 

Percent of Students Requiring 

Special Education Programs 

20 18.82 (2.3) 4.20 33.10 

Percent of Students Qualifying for 

Free or Reduced Lunch 

20 89.34 (9.69) 34.00 100.00 
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5.5 Procedure 

 Data analysis occurred in five unique phases. The first phase consisted of the 

data cleaning, data processing, and master data file aggregation that has been written 

about in detail above. During this phase, standard practices were taken to monitor 

the validity of the joins and aggregation.  

The second phase consisted of exploratory descriptive analysis that was used 

to justify the use of, not only the dataset as a whole, but the individual grades and 

schools within this dataset. The results of the phase have been detailed in the 

previous section. The goals of this phase were to analyze the data, post-cleaning, to 

ensure the removal of certain components of dirty or missing data did not 

compromise the overall generalizability of the dataset. During this phase, it was also 

discovered that the data did not support analysis using a student’s “academic career” 

as one observation. To utilize the data in such a way, all of the student’s data from 

each school/grade would have to exist as one unique observation. The issues that 

arose from attempting to utilize the data in such a way came from how the data was 

collected and stored prior to data acquisition.  

In table 6, descriptive statistics at the school level describing patterns of 

student turnover (transfer out of district), student transfer within district, and student 

dropout are presented. These variables either existed in the dataset as flags or were 

created from data representative of a student’s arrival into or departure from a 

specific school code.  
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Table 6: Descriptive Statistics for School Level Turnover, Transfer within 

District, and Dropout Variables 

 

After viewing the amount of data that would have to be removed due to 

significant portions missing at the student level, or inequalities at the school level, it 

was decided to analyze each grade level as a snapshot. This is beneficial for a 

number of reasons, primarily because it allows for the use of a more natural 

proportion of the data. The students that would be removed due to missing or 

inconsistent data patterns represented a large portion of the categorical outcome that 

did not attend higher education. By removing these students, it misrepresents the 

two samples and allows for the development of a model that is not generalizable on 

any other data. This would greatly hinder the purpose of this dissertation, due to the 

premise that supervised learning and data mining algorithms reliant on whole data 

sets are being utilized for model comparison against a portion of the data derived as 

a test/validation dataset.  

A second reason this structure is beneficial for this dissertation is that it 

allows the comparison to be iterative, viewing each static grade level snapshot 

individually. From a model comparison approach, this allows for models to be 

compared on unique data at four different instances. When 9th, 10th, 11th, and 12th 

grade are analyzed individually, it reveals if any modeling techniques have 

Variable N Mean% (SD) Min% Max% 

Percent of Student Turnover 

(Transfer Out of District)  

20 28.48 (6.94) 8.10 61.00 

Percent of Students that Transfer 

within District 

20 49.87 (7.10) 6.40 71.00 

Percent of Students that Dropout 20 4.40 (0.89) 0.00 17.30 
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advantages when analyzing data with a greater portion of noise (considering 

academic performance is observed to be less polarizing at certain grade levels).  

The third phase consisted of splitting the clean data into a train dataset and a 

test dataset. The purpose of splitting the master dataset into two validation sets is to 

fulfill the requirements for the supervised learning component of model comparison. 

The models were calibrated and weighted based on the input data contained in the 

train dataset. Then the calibrated models were used to analyze test dataset, treating 

the outcome variable as if it were unknown. Once the predicted outcome variable 

was collected, it was then compared to the known outcome variable allowing for the 

creation of the confusion matrix. The two datasets would be near exact in size (50% 

train / 50% test) to maintain the likelihood of proper school level sample sizes for 

the models requiring nested model structures. To accomplish this data manipulation, 

a Statistica data mining workspace was built for two subsets with the approximate 

split percentage set to 50. Once this was done, the datasets were imported into SAS 

for the multilevel logistic model and stored in an in-memory Statistica workspace 

for the gradient boosted trees and artificial neural networks.  

The datasets would also be identical across all models; therefore, no 

resampling would be done between model development. The data splitting process 

only take place once per grade level. This helped to maintain the most appropriate 

comparison across models, allowing for improper sampling to be ruled out as a 

potential detractor.  The process of splitting the data would take place at the grade 

level, so the final outcome contained a train dataset and a test dataset for 9th, 10th, 

11th, and 12th grade.   
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The fourth phase consisted of model building. During this phase multilevel 

logistic regression models, gradient boosted decision trees, and artificial neural 

networks were created with the focus of predicting the enrollment behavior of a set 

of students. This was performed on each grade level included in high school, 9th – 

12th grade, individually using the data that was cleaned, processed, and split during 

the previous three phases. The development of these three models will be detailed in 

subsections dedicated to each modeling type. 

5.5.1 Gradient Boosted Decision Trees 

 Boosted Tree Models were developed for each grade level from 9th grade 

through 12th grade. These models, unlike the multilevel logistic regression models, 

are iterative during the model development, allowing the gradient component to 

continue recalibrating the model with prior information gained from the previous 

complete iteration. Due to this process, computation time can take longer, but less 

time is spent validating variable selection because that process is implicit in the 

model development. These models were developed in Visual Basic (SVB) using the 

Statistica Data Mining platform. Model outputs were stored as Predictive Model 

Markup Language (PMML), which is an XML based language that is used to store 

and exchange model information between multiple datasets. SVB was also used to 

analyze test dataset for each grade using the calibrated models PMML code derived 

from the training dataset. All fit measures and confusion matrices were created in 

Statistica. 

In developing the gradient boosted decision tree for each grade, the model 

was created with a learning rate of 0.100. The learning rate of a gradient boosted 
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decision tree acts as an additive shrinkage parameter that is applied to the 

consecutive model estimates occurring with each additional iteration through the 

model. Friedman (1999) stated that learning rates of 0.100 and lower provide the 

best predictive accuracy. The most conservative value on the range suggested by 

Friedman was selected for this model. After the additive modifier (learning rate) is 

applied to the model, the boosting step occurs. During this step of development, the 

prediction residuals for an independently drawn sample of observations are 

computed and that information is used to better model the data during the next 

iteration (Blagus & Lusa, 2017; Mayr, Binder, Gefeller, & Schmid, 2014).  

This gradient boosted decision model was allocated 200 additive terms 

selected for processing. This allows the algorithm to compute 200 simple decision 

trees using successive bootstrapping.  Once these 200 successive trees are created 

and tested, the model is designed to create another 200 trees if it detects that the 

final tree in the sequence is the best fit. This allows the algorithm to ensure future 

iterations of the model won't provide better estimates. This value was chosen 

because it should provide most models with enough iterations to aptly understand 

the relationships between each variable in the model. More successions could 

always be added to the default, but the trade-off is that addition of strenuous 

computation power and time requirements. It is quite possible that the models best 

performing iteration won’t occur at the end of the additive steps, but instead the 

model performance will produce higher error rates as it approaches the 200th step. 

This is common practice in machine learning model, and helps the researcher 

identify that the model does not need any additional iterations.  
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The gradient boosted decision tree model was created with a minimum child 

node value of 1 and maximum child node value of 3. These means that at each split 

in each decision tree, the maximum number tree size will be one root node with 

three child nodes. These values were selected because a larger number of splits in 

the parent nodes leads to overfitting a model and losing generalizability (Hausman, 

Abrevaya, & Scott-Morton, 1998). Overfitting occurs when the model development 

is too precise and replicates the training data too closely. Without controlling for it 

with proper modeling practice, overfitting can occur anytime large bodies of 

variables are presented to a training model (Cawley & Talbot, 2007).   

With each iteration, the training data is analyzed and the corresponding 

model is evaluated using the test data. The prediction results are utilized to calculate 

the average deviance at each iteration. This metric is useful in identifying the best 

fitting model throughout all iterations.  The average multinomial deviance is 

comparable to the -2loglikelihood fit statistic, but when pertaining to decision trees, 

the saturated model assigns a probability of one to each observation, since the test 

dataset contains full information of the actual outcomes being used to determine fit. 

The function in use to determine this fit is: 

−2 ∑ ∑ 𝑦𝑖𝑗 𝑙𝑜𝑔 (
𝑝̂𝑗(𝑥𝑖)

𝑦𝑖𝑗
)

𝑘

𝑗=1

𝑛

𝑖=1

 

Equation 13 

Where 𝑦𝑖is a 𝑘-vector indicating which class observations i belong in the training 

dataset, and 𝑝̂𝑗(𝑥) is a vector of probabilities estimated by the model.  

During the tree calibration, the model is also iteratively measuring relative 

and global variable importance. This is done by measuring the number of times a 
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variable is used as the decision component in a node split. The function 

implemented in the gradient boosted decision trees in this study was: 

 

𝑖̂𝑡
2(𝑇) = ∑ 𝑖̂𝑡

21(𝑣𝑡 = 𝑗)

𝐽−1

𝑡=1

 

Equation 14 

 

Where t represents the nonterminal nodes and J represents the terminal nodes in the 

terminal node tree, T. vt is the splitting variable for the parent node (t), and 𝑖𝑡̂
2 is the 

observed improvement across the iterations in squared error due to the parent node 

split (Friedman, 2001). This function allows for the measure of the overall 

importance a variable maintains when viewed with all other variables in the data. As 

stated above, the expected importance score is directly related to the number of 

times a variable was used to split the data, or ‘make a decision’. This split was 

decided on by the algorithm because it improved the performance of the measure 

when weighted by all other nodes that fall under the split (Elith, Leathwick & 

Hastie, 2008).  

The risk estimate produced from the model development represents the 

proportion of cases incorrectly classified from the sample of data adjusted by the 

unequal misclassification costs.  This correction must exist because, due to the 

supervised learning procedure used for model validation, the empirical distribution 

is defined by the training set sampled from the full data prior to the analysis. The 

function in place to determine this estimate is: 

𝑅̂(𝑓) =  ∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))

𝑛

𝑖=1

 

Equation 15 
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This metric is output with the final model results after tree selection and variable 

selection has taken place. 

5.5.2 Artificial Neural Networks 

 Artificial neural networks were developed for each grade level from grade 9 

through grade 12. In the same way as decision trees, these models are developed 

iteratively through algorithmic functions. Due to this component of the model 

development, manual checks were not required for variable selection. The training 

data is processed during the neural network development, and the variables are 

ranked by importance, those deemed unimportant removed from the model.  

Similar to the variable importance metric created for the gradient boosted 

decision trees, artificial neural networks utilize Global Sensitivity Analysis (GSA) 

to determine the optimal variables used in the network model. This function is 

similar to the variable importance calculation, except the scale for global sensitivity 

is reversed. Pianosi, Sarrazin & Wagener (2015) defined GSA as a set of 

mathematical procedures implemented to investigate how variance in model output 

can be credited to model inputs. 

 By design, neural networks create bundles of smaller relationships, with 

unique weights between nodes (input or hidden), calibrate the individual models 

iteratively with weighted paths, and test whether or not the presence of a variable 

increases or decreases error in estimation. During this process of node assignment 

and path weighting, reduction of variance tests are applied at every level to 

determine which variable should be utilized. The deviance of each node in any 

given model is defined as: 
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𝐷𝑖 =  −2 ∑ 𝑛𝑖𝑘ln (𝑝𝑖𝑘)

𝑘

 

Equation 16 

where 𝑝𝑖𝑘 represents the probability distribution (probabilities are unknown at this 

time and will be estimated from the proportional classifications at the individual 

node), i represents the iteration in the process, k is the class, and 𝑛𝑖𝑘 is the total 

number of classes used for calculation (Breiman et al, 1998). With the above 

function representing deviance at a given node, the function for the reduction of 

deviance from parent node (t) into child nodes (u and v) is defined as: 

𝐷𝑡 − 𝐷𝑢 − 𝐷𝑣  = 2 ∑ [𝑛𝑢𝑘 ln (
𝑛𝑢𝑘𝑛𝑡

𝑛𝑡𝑘𝑛𝑢
) + 𝑛𝑣𝑘 ln (

𝑛𝑣𝑘𝑛𝑡

𝑛𝑡𝑘𝑛𝑣
)]

𝑘

 

Equation 17 

 The calculation of the GSA takes into account the node paths that were 

selected for the model, as well as, those that were tested and not accepted for the 

model (Venables & Ripley, 1997). The reduction of deviance for each node is 

summed over the entire network, then the variable sensitivity, or GSA, can be 

calculated as (Brieman et al., 1998): 

𝑀(𝑥𝑚) = ∑ ∆𝐼

𝑡∈𝑇

(𝑆𝑚 , 𝑡) 

Equation 18 

Where I represents the deviance for a split, t represents a specific node, T represents 

the set of all nodes, and 𝑠𝑚 is the competing node. The competing node was the 

node that was iteratively calculated during the calibration process, but not selected 

for the final model.  
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 For the models developed during this study, a GSA threshold of 0.9 or 

greater was implemented for variable selection. This was decided on due to the 

steep drop off in GSA scores after the 0.9 value.   

 For inter-model comparison across grade level, the ROC Area will also be 

reported and calculated. Every model produces an Receiver Operating Characteristic 

(ROC) Curve (Fawcett, 2006). This curve represents a measure of both specificity 

and sensitivity (King, 2003). The ROC Area represents the area under the curve, 

with a higher area characterizing a better model (Hastie, Tibshirani, & Friedman, 

2009).  

These models were developed in SVB using the Statistica Data Mining 

platform. Model outputs were stored as PMML, so they could be utilized on the test 

dataset. All fit measures and confusion matrices were created in Statistica. Due to 

excessive length, the PMML code output was not appended to the study.  

5.5.3 Multilevel Logistic Regression 

 One multilevel logistic regression model was created for each grade level 

from 9th grade through 12th grade. These models were all created with the college 

enrollment as the predicted outcome. During the modeling process, the SAS 

procedures PROC QUANTSELECT, PROC GLMSELECT, and PROC PLM were 

utilized to validate the variable selection in the training data. PROC 

QUANTSELECT was used to split the data into two similar datasets, PROC 

GLMSELECT was used to automate the variable selection process, and PROC PLM 

was used to score the test data set using the model developed from the training 

dataset, allowing for the creation of a confusion matrix. This process allowed the 
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comparison of fit across all models, since the two data mining models do not 

support a p-value by design. 

PROC GLMSELECT was utilized so that the variable selection 

methodology would always reside on the machine side for each model. To 

implement this procedure, a GLMSELECT was deployed on the data using a ridge 

regression decision function, as well as a second implementation on the same data 

using LASSO regression (Tibshirani, 1996). This was done because LASSO models 

produce less consistent results if there are issues with collinearity (Byon, 

Shrivastava, & Ding, 2010). The results of both models were compared to diagnose 

differences and choose the best variable pool.  

PROC GLIMMIX, was utilized to build the models with student level 

variables at level-1 and aggregated school level variables at level-2. The STORE 

function of PROC GLIMMIX was utilized as the training data was analyzed, so that 

the model could be recalled and the weights could be applied to the test data. As 

stated previously, PROC PLM was used to call the stored scoring model from 

PROC GLIMMIX and calculate the confusion matrix. 

5.5.4 Model Comparison  

The final phase of the analysis was the model comparison phase. During this 

phase, fit statistics and confusion matrix outputs were compiled for all grades and 

models. The interest was in, not only, how each compared across one specific grade, 

but also how an individual model type faired at predicting similar outcomes at every 

grade.  
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5.6 Summary 

 This chapter provided a summary of the sample descriptive statistics and 

methodology that went into data processing, model development, and model 

comparison to determine which model best estimates college enrollment using high 

school data. A description of the methodology behind each model type, multilevel 

logistic regression, gradient boosted decision trees, and artificial neural networks, 

created a foundation for understanding how each model was implemented.  Data 

backed justification was provided as to why the grade levels would be analyzed 

independently, and additional interest was expressed in individual model 

performance as grade level changes. After the modeling summary, an explanation of 

the model comparison outlined how the models would compared. The following 

chapter presents the results from the models outlined above. 
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CHAPTER VI: RESULTS 

6.1 Overview 

 This chapter presents the results of the multilevel logistic regression, 

gradient boosted decision trees, and artificial neural networks, at each grade level, 

9th, 10th, 11th, and 12th. The goal of this model comparison is to answer the question 

presented in chapter three; which model will most adequately predict college 

enrollment using data collected throughout the students’ time in high school. A 

secondary interest in this study is not only which model performs the best under a 

supervised learning environment, but also which performs the most consistently 

across independently evaluated grade levels.  

6.2 Gradient Boosted Decision Tree Model Results  

6.2.1 Gradient Boosted Decision Trees – Grade 9 

 The optimal gradient boosted decision tree for the 9th grade dataset was 

located in the 195th additive tree created. The average error rate of correctly 

classified cases from the model based on comparison of training and test was 

decreased to 0.2359 with this tree. The selection rate was set to 200, which caps the 

number of trees created to 200.  

After the model was optimized on the training data, the predictor importance 

algorithm selected 14 variables to be utilized. This selection was done by the 

variable importance calculations explained above. Table 7 below presents the 

variables used for the 9th grade model along with the corresponding Predictor 

Importance score. For a list of variables and corresponding descriptions, reference 

Table 8 in the appendix. 
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Table 1: Grade 9 Gradient Boosted Decision Tree Predictor Importance 

Variable Predictor Importance Score 

STEMCourseGPA 1.000 

TotalDaysOnRoll 0.953 

NonSTEMCourseGPA 0.828 

AttendanceRate 0.786 

AboveGradeLevelMathCourse 0.431 

RemedialScience 0.326 

AboveGradeLevelScienceCourse 0.283 

RemedialMath 0.276 

TotalDaysSuspended 0.123 

EOIBiologyScore 0.098 

ACTComp 0.091 

TotalReferrals 0.086 

EOIAlgebraIScore 0.067 

 

The overall model risk estimate was 0.2471, which is the inverse of the 

model accuracy calculated with the confusion matrix. Table 9 below presents the 

primary model fit statistics being used for the overall comparison. This table 

contains the Sensitivity, Specificity, Precision, Accuracy, and Matthew’s 

Correlation Coefficient (MCC) metrics.  For the introduction to how the fit 

measures are calculated, and what they represent in the model, please reference 

Chapter Three.  

Table 9: Grade 9 Gradient Boosted Decision Tree Model Performance Metrics 

Fit Measure Model Performance Score 

Sensitivity 0.8104 

Specificity 0.7491 

Precision 0.5107 

Accuracy 0.7641 

MCC 0.4934 

 

6.2.2 Gradient Boosted Decision Trees – Grade 10 

The optimal gradient boosted decision tree for the grade 10 dataset was 

located in the 188th additive tree created. The average error rate of correctly 
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classified cases from the model based on comparison of training and test was 

decreased to 0.2146 with this tree, which was slightly better than the grade 9 model.    

After the model was optimized on the training data, the predictor importance 

algorithm selected 12 variables to be utilized. This selection was done by the 

variable importance calculations explained above. The number of variables utilized 

was likely smaller than the grade 9 model, due to a lessened number of standardized 

tests that took place in grade 10.  The standardized testing variables, representing 

individual EOI exams, utilized in the Grade 9 model were not highly rated on the 

predictor importance output, so the lack of standardized test data for certain grades 

is not a concern. Table 10 below presents the variables used for the 10th grade model 

along with the corresponding Predictor Importance score. For a list of variables and 

corresponding descriptions, reference Table 8 in the appendix. 

Table 10: Grade 10 Gradient Boosted Decision Tree Predictor Importance 

Variable Predictor Importance Score 

TotalDaysOnRoll 1.000 

STEMCourseGPA 0.971 

NonSTEMCourseGPA 0.768 

AttendanceRate 0.647 

AboveGradeLevelMathCourse 0.397 

AboveGradeLevelScienceCourse 0.377 

ACTComp 0.238 

RemedialScience  

RemedialMath 

0.171 

0.158 

TotalReferrals 0.075 

TotalDaysSuspended 0.069 

TotalAPCoursesTaken 0.062 

 

The overall model risk estimate was 0.2372, which shows a minor 

improvement over the grade 9 model. Table 11 contains the Sensitivity, Specificity, 
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Precision, Accuracy, and Matthew’s Correlation Coefficient (MCC) metrics for the 

grade 10 Gradient Boosted Decision Tree Model.    

Table 11: Grade 10 Gradient Boosted Decision Tree Model Performance 

Metrics 

Fit Measure Model Performance Score 

Sensitivity 0.8092 

Specificity 0.7770 

Precision 0.5602 

Accuracy 0.7854 

MCC 0.5310 

 

6.2.3 Gradient Boosted Decision Trees – Grade 11 

The optimal gradient boosted decision tree for the grade 11 dataset was 

located in the 573rd additive tree created. This model displayed the final additive 

iteration to be the most accurate predictor, thus triggering the addition of 200 more 

trees to further optimize the model. This occurred twice for a total of 600 additive 

trees. The process took longer computationally, but significantly increased the 

prediction precision by adding the additional trees. The average error rate of 

correctly classified cases from the model based on comparison of training and test 

was decreased to 0.2016 with this tree, once again decreasing error when compared 

to the previous grade level.    

After the model was optimized on the training data, the predictor importance 

algorithm selected 13 variables to be utilized. This selection was done by the 

variable importance calculations explained above. Similar to the grade 10 model, 

the presence of EOI variables were not as frequent in the data, but ACT scores 

became much more common in the Grade 11 data. The number of variables utilized 

was very close to the grade 10 model, but still smaller than the grade 9 model.  
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Table 12 below presents the variables used for the 11th grade model along with the 

corresponding Predictor Importance score.  

Table 12: Grade 11 Gradient Boosted Decision Tree Predictor Importance 

Variable Predictor Importance Score 

TotalDaysOnRoll 1.000 

STEMCourseGPA 0.871 

AttendanceRate 0.845 

AboveGradeLevelMathCourse 0.662 

AboveGradeLevelScienceCourse 0.589 

NonSTEMCourseGPA 0.421 

ACTComp 0.299 

RemedialMath 0.296 

RemedialScience 

TotalReferrals 

EOIAlgebraIIScore 

0.247 

0.224 

0.197 

TotalDaysSuspended 0.167 

TotalAPCoursesTaken 0.082 

 

The overall model risk estimate was 0.2053, which shows a minor 

improvement over the grade 10 model. Table 13 contains the Sensitivity, 

Specificity, Precision, Accuracy, and Matthew’s Correlation Coefficient (MCC) 

metrics for the grade 11 Gradient Boosted Decision Tree Model. For a list of 

variables and corresponding descriptions, reference Table 8 in the appendix.   

Table 13: Grade 11 Gradient Boosted Decision Tree Model Performance 

Metrics 

Fit Measure Model Performance Score 

Sensitivity 0.8210 

Specificity 0.7830 

Precision 0.6212 

Accuracy 0.7945 

MCC 0.5664 

 

6.2.4 Gradient Boosted Decision Trees – Grade 12 

The optimal gradient boosted decision tree for the grade 12 dataset was 

located in the 683rd additive tree created. This model displayed the final additive 
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iteration to be the most accurate predictor, thus triggering the addition of 200 more 

trees to further optimize the model. This occurred three time for a total of 800 

additive trees. Similar to the grade 11 model, the process took longer 

computationally, but yielded better results. The increase in required trees resulted in 

a decrease in average error rate of correctly classified cases from the model based 

on comparison of training and test to a value of 0.1522  

After the model was optimized on the training data, the predictor importance 

algorithm selected 13 variables to be utilized. This selection was done by the 

variable importance calculations explained above. Similar to the grade 11 model, 

the presence of EOI and EXPLORE variables were not adequately distributed 

within the data, but ACT scores became much more common in the Grade 12 data. 

The number of variables utilized were the same as the grade 11 model, but, once 

again, smaller than the grade 9 model.  Table 14 below presents the variables used 

for the 12th grade model along with the corresponding Predictor Importance score.  

Table 14: Grade 12 Gradient Boosted Decision Tree Predictor Importance 

Variable Predictor Importance Score 

STEMCourseGPA 

TotalDaysOnRoll 

1.000 

0.839 

AttendanceRate 0.777 

NonSTEMCourseGPA 

ACTComp 

0.651 

0.637 

AboveGradeLevelScienceCourse 0.525 

TotalAPCoursesTaken 0.391 

AboveGradeLevelMathCourse 0.378 

RemedialMath 0.325 

DaysSuspended 

TotalReferrals 

EOIAlgebraIIScore 

0.229 

0.158 

0.151 

RemedialScience 0.150 
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The overall model risk estimate was 0.1823, which is slightly smaller than 

the grade 11 model. Table 15 contains the Sensitivity, Specificity, Precision, 

Accuracy, and Matthew’s Correlation Coefficient (MCC) metrics for the grade 12 

Gradient Boosted Decision Tree Model. For a list of variables and corresponding 

descriptions, reference Table 8 in the appendix.   

Table 15: Grade 12 Gradient Boosted Decision Tree Model Performance 

Metrics 

Fit Measure Model Performance Score 

Sensitivity 0.8475 

Specificity 0.8480 

Precision 0.7414 

Accuracy 0.8478 

MCC 0.6759 

 

6.3 Artificial Neural Networks Model Results  

6.3.1 Artificial Neural Networks – Grade 9 

 The artificial neural network developed for Grade 9 data contained an ROC 

Area value of 0.8688. The program in use was written to develop 200 artificial 

neural networks, select the five best models, and resample to test and identify the 

best remaining model. The primary model selected was then used to analyze the test 

data set in the supervised learning environment, similar to the other two models in 

the study. The multi-layer perceptron (MLP) network developed using a softmax 

activation function and the error function set to cross-entropy. Cross entropy was 

selected in the training phase of the model due to it’s enhanced performance with 

classification outcomes in neural networks (Bishop, 1995). Weight decay with a 

maximum value of 0.01 and minimum value of 0.001 was applied to the hidden 

layer nodes created during calibration of the model. The application of weight decay 
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to the hidden layer nodes modifies the model’s error function to penalize larger 

weights. This is implemented to maintain smaller weights and reduce the chances of 

overfitting the model (Byon, Shrivastava, & Ding, 2010). The activation function 

was set to softmax by default because of the restraint applied when selecting cross 

entropy as the error function. As mentioned previously, MLP was selected as the 

calibration framework to better enhance the use of back-propagation.  

Similar to the Grade 9 gradient boosted decision tree model, the inclusion of 

more standardized testing data in the form of EOI exams, allowed for easier use in 

the model. The GSA selected 10 variables to be used for the model, which is 

significantly less than the gradient boosted decision tree for the grade 9 model. 

Table 16 below presents the variables used for the grade 9 model along with the 

corresponding GSA values. The weights assigned to node relationships and hidden 

nodes created for the final model are presented in Appendix  

Table 16: Grade 9 Artificial Neural Network Global Sensitivity Analysis 

Variable Global Sensitivity Analysis Score 

STEMCourseGPA 

NonSTEMCourseGPA 

0.939 

0.995 

TotalDaysOnRoll 1.023 

AttendanceRate  

AboveGradeLevelMathCourse 

1.024 

1.047 

TotalReferrals 1.071 

DaysSuspended 1.107 

EOIAlgebraIScore 1.320 

ACTComp 1.364 

AboveGradeLevelScienceCourse  2.941 

 

Table 17 contains the Sensitivity, Specificity, Precision, Accuracy, and 

Matthew’s Correlation Coefficient (MCC) metrics for the grade 9 Artificial Neural 
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Network Model. For a list of variables and corresponding descriptions, reference 

Table 8 in the appendix.   

Table 17: Grade 9 Artificial Neural Network Performance Metrics 

Fit Measure Model Performance Score 

Sensitivity 0.7707 

Specificity 0.7712 

Precision 0.8180 

Accuracy 0.7709 

MCC 0.5379 

 

6.3.2 Artificial Neural Networks – Grade 10 

 The artificial neural network developed for the Grade 10 data had an ROC 

area of 0.8784, slightly better than that of the Grade 9 artificial neural network 

model. The program in use was written to develop 200 artificial neural networks, 

select the five best models, and resample to test and identify the best remaining 

model. The primary model selected was then used to analyze the test data set in the 

supervised learning environment, analogous to the other two models in the study. 

Similar to the grade 9 model, the MLP network was developed using a softmax 

activation function and the error function was set to cross-entropy. Weight decay 

with a maximum value of 0.01 and minimum value of 0.001 was applied to the 

hidden layer nodes created during calibration of the model.  The GSA variable 

selection kept 14 variables, which is more than existed in the grade 9 model. Table 

18 below presents the variables used for the grade 10 model along with the 

corresponding GSA values. 
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Table 18: Grade 10 Artificial Neural Network Global Sensitivity Analysis 

Variable Global Sensitivity Analysis Score 

STEMCourseGPA 

TotalDaysOnRoll 

0.996 

0.998 

NonSTEMCourseGPA 1.020 

DaysSuspended 

AboveGradeLevelMathCourse 

1.033 

1.041 

TotalReferrals 1.047 

AttendanceRate 1.064 

RemedialMath 1.125 

EOIAlgebraIScore 

EOIReadingLA2Score 

1.189 

2.885 

TotalAPCoursesTaken 

AboveGradeLevelMathCourse 

ACTComp 

RemedialScience 

2.899 

2.902 

3.003 

3.981 

 

Table 19 contains the Sensitivity, Specificity, Precision, Accuracy, and 

Matthew’s Correlation Coefficient (MCC) metrics for the grade 10 Artificial Neural 

Network Model. For a list of variables and corresponding descriptions, reference 

Table 8 in the appendix.   

Table 19: Grade 10 Artificial Neural Network Performance Metrics 

Fit Measure Model Performance Score 

Sensitivity 0.8182 

Specificity 0.7791 

Precision 0.8182 

Accuracy 0.8005 

MCC 0.5973 

 

6.3.3 Artificial Neural Networks – Grade 11 

 The artificial neural network developed for the Grade 11 data had an ROC 

area of 0.887, which is still an increase over the grade 10 ROC area value, but not 

quite as large of a jump as experienced from the Grade 9 model. The program in use 

was written to develop 200 artificial neural networks, select the five best models, 

and resample to test and identify the best remaining model. The primary model 
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selected was then used to analyze the test data set in the supervised learning 

environment, analogous to the other two models in the study. Similar to the other 

artificial neural network models developed, the MLP network was implemented 

using a softmax activation function and the error function was set to cross-entropy. 

Weight decay with a maximum value of 0.01 and minimum value of 0.001 was 

applied to the hidden layer nodes created during calibration of the model.  The GSA 

variable selection kept 13 variables in the model. Table 20 below presents the 

variables used for the grade 11 model along with the corresponding GSA values. 

Table 20: Grade 11 Artificial Neural Network Global Sensitivity Analysis 

Variable Global Sensitivity Analysis Score 

TotalDaysOnRoll 

STEMCourseGPA 

TotalReferrals 

0.992 

0.996 

1.001 

NonSTEMCourseGPA 1.002 

DaysSuspended  

AttendanceRate 

AboveGradeLevelMathCourse 

1.009 

1.012 

1.035 

TotalAPCoursesTaken 

ACTComp 

RemedialMath 

1.047 

1.126 

1.200 

AboveGradeLevelScienceCourse 

RemedialScience 

1.321 

1.878 

EOIAlgebraIIScore 1.975 

 

Table 21 contains the Sensitivity, Specificity, Precision, Accuracy, and 

Matthew’s Correlation Coefficient (MCC) metrics for the grade 11 Artificial Neural 

Network Model. For a list of variables and corresponding descriptions, reference 

Table 8 in the appendix.   
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Table 21: Grade 11 Artificial Neural Network Performance Metrics 

Fit Measure Model Performance Score 

Sensitivity 0.8255 

Specificity 0.7927 

Precision 0.7834 

Accuracy 0.8083 

MCC 0.6175 

 

6.3.4 Artificial Neural Networks – Grade 12 

 The artificial neural network developed for the Grade 12 data had an ROC 

area of 0.8926, which is still maintaining the trend of increasing as grade level 

increases. The program in use was written to develop 200 artificial neural networks, 

select the five best models, and resample to test and identify the best remaining 

model. The primary model selected was then used to analyze the test data set in the 

supervised learning environment, analogous to the other two models in the study. 

Similar to the other artificial neural network models developed, the MLP network 

was implemented using a softmax activation function and the error function was set 

to cross-entropy. Weight decay with a maximum value of 0.01 and minimum value 

of 0.001 was applied to the hidden layer nodes created during calibration of the 

model.  The GSA variable selection kept 13 variables in the model. Table 22 below 

presents the variables used for the grade 12 model along with the corresponding 

GSA values. 
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Table 22: Grade 12 Artificial Neural Network Global Sensitivity Analysis 

Variable Global Sensitivity Analysis Score 

STEMCourseGPA 

AttendanceRate 

NonSTEMCourseGPA 

TotalDaysOnRoll 

TotalReferrals 

ACTComp 

RemedialMath 

DaysSuspended 

AboveGradeLevelMathCourse 

0.993 

0.997 

1.001 

1.009 

1.012 

1.044 

1.090 

1.101 

1.167 

TotalAPCoursesTaken 

RemedialScience 

AboveGradeLevelScienceCourse 

1.209 

1.231 

1.806 

EOIAlgebraIIScore 1.875 

 

Table 23 contains the Sensitivity, Specificity, Precision, Accuracy, and 

Matthew’s Correlation Coefficient (MCC) metrics for the grade 12 Artificial Neural 

Network Model. For a list of variables and corresponding descriptions, reference 

Table 8 in the appendix.   

Table 23: Grade 12 Artificial Neural Network Performance Metrics 

Fit Measure Model Performance Score 

Sensitivity 0.8293 

Specificity 0.8077 

Precision 0.8095 

Accuracy 0.8184 

MCC 0.6370 

 

6.4 Multilevel Logistic Regression Model Results 

6.4.1 Multilevel Logistic Regression Models – Grade 9 

 The model output from PROC GLMSELECT revealed that the optimal 

variables for the grade 9 model were STEMCourseGPA, AttendanceRate, 

NonSTEMCourseGPA, TotalReferrals, TotalDaysonRoll, and DaysSuspended.  

There were fewer variables identified when compared to the two data mining 
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models. This is most likely due to the pre-processing that takes when the networks 

are developed. The package used for analysis approximates non-random missing 

data using Gausian Basis Function Networks (Tresp, Ahmad, & Neuneier, 1994). 

The grade 9 multilevel logistic model can be viewed as: 

𝑌𝑖𝑗 = 𝐵00 + 𝐵1𝑗(𝑆𝑇𝐸𝑀𝐶𝑜𝑢𝑟𝑠𝑒𝐺𝑃𝐴)𝑖𝑗 +  𝐵2𝑗(𝐴𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒)𝑖𝑗 +

 𝐵3𝑗(𝑁𝑜𝑛𝑆𝑇𝐸𝑀𝐶𝑜𝑢𝑟𝑠𝑒𝐺𝑃𝐴)𝑖𝑗 + 𝐵4𝑗(𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑓𝑒𝑟𝑟𝑎𝑙𝑠)𝑖𝑗 +

 𝐵5𝑗(𝑇𝑜𝑡𝑎𝑙𝐷𝑎𝑦𝑠𝑂𝑛𝑅𝑜𝑙𝑙)𝑖𝑗 + 𝐵6𝑗(𝐷𝑎𝑦𝑠𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑)𝑖𝑗 +  𝑟𝑖𝑗  

where         

𝐵00 = 𝛶00 + 𝛼0𝑗 + 𝑢0𝑗 

Equation 19 

𝛶00 is the model grand mean, 𝛼0𝑗 represents the effect unique to the school the 

student comes from the corresponding variable, and 𝑢0𝑗 is the error associated with 

any predictions made at level-2 of the model. Results from the grade 10 model are 

located in Table 24. 

Table 24: Grade 9 Multilevel Logistic Regression Results 

Effect Estimate Standard Error Df t value  pr |t| 

Intercept -7.1124 0.1267 3027 -6.57 < .0001 

STEMCourseGPA 0.6815 0.0028 13977 7.57 < .0001 

AttendanceRate 2.5734 0.1924 13977 8.80 < .0001 

TotalReferrals -0.0414 0.0164 13977 -3.28 < .001 

NonStemCourseGPA 0.2044 0.0265 13977 2.31 < .0001 

TotalDaysOnRoll 0.0185 0.0008 13977 5.39 < .0001 

DaysSuspended -0.0001 0.0049 13977 -0.03 NS 

 

Fit statistics reported -2 Res Log-Likelihood = 13852.69, AIC = 13856.69, 

and BIC = 13859.48. Table 25 contains the Sensitivity, Specificity, Precision, 

Accuracy, and Matthew’s Correlation Coefficient (MCC) metrics for the grade 9 

multilevel logistic regression model.   
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Table 25: Grade 9 Multilevel Logistic Regression Performance Metrics 

Fit Measure Model Performance Score 

Sensitivity 0.7769 

Specificity 0.7745 

Precision 0.7426 

Accuracy 0.7603 

MCC 0.5214 

 

6.4.2 Multilevel Logistic Regression Models – Grade 10 

 The model output from PROC GLMSELECT revealed that the optimal 

variables for the grade 10 model were STEMCourseGPA, AttendanceRate, 

NonSTEMCourseGPA, TotalReferrals, TotalDaysonRoll, and DaysSuspended. As 

with the grade 9 multilevel model, there are fewer variables included in the model 

than the comparable data mining models. The grade 10 multilevel logistic model 

can be viewed as: 

𝑌𝑖𝑗 = 𝐵00 + 𝐵1𝑗(𝑆𝑇𝐸𝑀𝐶𝑜𝑢𝑟𝑠𝑒𝐺𝑃𝐴)𝑖𝑗 +  𝐵2𝑗(𝐴𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒)𝑖𝑗 +

 𝐵3𝑗(𝑁𝑜𝑛𝑆𝑇𝐸𝑀𝐶𝑜𝑢𝑟𝑠𝑒𝐺𝑃𝐴)𝑖𝑗 + 𝐵4𝑗(𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑓𝑒𝑟𝑟𝑎𝑙𝑠)𝑖𝑗 +

 𝐵5𝑗(𝑇𝑜𝑡𝑎𝑙𝐷𝑎𝑦𝑠𝑂𝑛𝑅𝑜𝑙𝑙)𝑖𝑗 + 𝐵6𝑗(𝐷𝑎𝑦𝑠𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑)𝑖𝑗 +  𝑟𝑖𝑗  

where     

𝐵00 = 𝛶00 + 𝛼0𝑗 + 𝑢0𝑗 

Equation 20 

𝛶00 is the model grand mean, 𝛼0𝑗 represents the effect unique to the school the 

student comes from the corresponding variable, and 𝑢0𝑗 is the error associated with 

any predictions made at level-2 of the model. Results from the grade 10 model are 

located in Table 26. 
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Table 26: Grade 10 Multilevel Logistic Regression Results 

Effect Estimate Standard Error Df t value  pr |t| 

Intercept -7.4988 0.0364 2158 -9.47 < .0001 

STEMCourseGPA 0.5632 0.0036 5843 5.73 < .0001 

AttendanceRate 

TotalReferrals 

1.5781 

-0.1126 

0.0061 

0.0958 

5843 

5843 

7.01 

-2.11 

< .0001 

< .001 

NonStemCourseGPA 0.0954 0.1390 5843 3.99 < .0001 

TotalDaysOnRoll 0.0236 0.0949 5843 3.81 < .0001 

DaysSuspended -0.0017 0.9016 5843 -0.355 NS 

 

Fit statistics reported -2 Res Log-Likelihood = 13993.17, AIC = 13996.17, 

and BIC = 13997.80. Table 27 contains the Sensitivity, Specificity, Precision, 

Accuracy, and Matthew’s Correlation Coefficient (MCC) metrics for the grade 10 

multilevel logistic regression model.   

Table 27: Grade 10 Multilevel Logistic Regression Performance Metrics 

Fit Measure Model Performance Score 

Sensitivity 0.7972 

Specificity 0.7971 

Precision 0.8028 

Accuracy 0.7972 

MCC 0.5942 

 

6.4.3 Multilevel Logistic Regression Models – Grade 11 

 The model output from PROC GLMSELECT revealed that the optimal 

variables for the grade 11 model were STEMCourseGPA, AttendanceRate, 

TotalReferrals, NonSTEMCourseGPA, TotalDaysonRoll, RemedialMath, and 

ACTComp. As with the previous multilevel models, there are fewer variables 

included in the model than the comparable data mining models. The grade 11 

multilevel logistic model can be viewed as: 
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𝑌𝑖𝑗 = 𝐵00 + 𝐵1𝑗(𝑆𝑇𝐸𝑀𝐶𝑜𝑢𝑟𝑠𝑒𝐺𝑃𝐴)𝑖𝑗 +  𝐵2𝑗(𝐴𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒)𝑖𝑗 +

 𝐵3𝑗(𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑓𝑒𝑟𝑟𝑎𝑙𝑠)𝑖𝑗 + 𝐵4𝑗(𝑁𝑜𝑛𝑆𝑇𝐸𝑀𝐶𝑜𝑢𝑟𝑠𝑒𝐺𝑃𝐴)𝑖𝑗 +

 𝐵5𝑗(𝑇𝑜𝑡𝑎𝑙𝐷𝑎𝑦𝑠𝑂𝑛𝑅𝑜𝑙𝑙)𝑖𝑗 + 𝐵6𝑗(𝑅𝑒𝑚𝑒𝑑𝑖𝑎𝑙𝑀𝑎𝑡ℎ)𝑖𝑗 + 𝐵7𝑗(𝐴𝐶𝑇𝐶𝑜𝑚𝑝)𝑖𝑗 + 𝑟𝑖𝑗  

where      𝐵00 = 𝛶00 + 𝛼0𝑗 + 𝑢0𝑗 

Equation 21 

𝛶00 is the model grand mean, 𝛼0𝑗 represents the effect unique to the school the 

student comes from the corresponding variable, and 𝑢0𝑗 is the error associated with 

any predictions made at level-2 of the model. Results from the grade 11 model are 

located in Table 28. 

Table 28: Grade 11 Multilevel Logistic Regression Results 

Effect Estimate Standard Error Df t value  pr |t| 

Intercept -8.6669 0.1780 1539 -6.10 < .001 

STEMCourseGPA 0.5632 0.0034 5002 4.96 < .0001 

AttendanceRate 3.7289 0.0015 5002 8.94 < .0001 

TotalReferrals -0.0291 0.0164 5002 -1.30 < .001 

NonStemCourseGPA -0.0439 1.0516 5002 -0.26 NS 

TotalDaysOnRoll 0.0122 0.0019 5002 9.81 < .0001 

RemedialMath -0.0963 0.0383 5002 -3.55 < .001 

ACTComp 0.2845 0.0101 5002 3.98 < .001 

 

Fit statistics reported -2 Res Log-Likelihood = 13901.10, AIC = 13905.10, 

and BIC = 13907.40. Table 29 contains the Sensitivity, Specificity, Precision, 

Accuracy, and Matthew’s Correlation Coefficient (MCC) metrics for the grade 11 

multilevel logistic regression model.   

Table 29: Grade 11 Multilevel Logistic Regression Performance Metrics 

Fit Measure Model Performance Score 

Sensitivity 0.7795 

Specificity 0.8210 

Precision 0.7830 

Accuracy 0.8022 

MCC 0.6008 
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6.4.4 Multilevel Logistic Regression Models – Grade 12 

The grade 12 data was analyzed using PROC GLMSELECT to determine 

the variables most suited for the grade level multilevel logistic regression model. 

The model output revealed that STEMCourseGPA, AttendanceRate, TotalReferrals, 

NonSTEMCourseGPA, TotalAPCoursesTaken, ACTComp, and TotalDaysOnRoll 

were the most suited variables to use for the GLIMMIX model development. The 

grade 12 model can be viewed as: 

𝑌𝑖𝑗 = 𝐵00 + 𝐵1𝑗(𝑆𝑇𝐸𝑀𝐶𝑜𝑢𝑟𝑠𝑒𝐺𝑃𝐴)𝑖𝑗 +  𝐵2𝑗(𝐴𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒)𝑖𝑗 +

 𝐵3𝑗(𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑓𝑒𝑟𝑟𝑎𝑙𝑠) + 𝐵4𝑗(𝑁𝑜𝑛𝑆𝑇𝐸𝑀𝐶𝑜𝑢𝑟𝑠𝑒𝐺𝑃𝐴)𝑖𝑗 +

 𝐵5𝑗(𝑇𝑜𝑡𝑎𝑙𝐴𝑃𝐶𝑜𝑢𝑟𝑠𝑒𝑠𝑇𝑎𝑘𝑒𝑛)𝑖𝑗 + 𝐵6𝑗(𝐴𝐶𝑇𝐶𝑜𝑚𝑝)𝑖𝑗 +

 𝛶07(𝑇𝑜𝑡𝑎𝑙𝐷𝑎𝑦𝑠𝑂𝑛𝑅𝑜𝑙𝑙) + 𝑟𝑖𝑗  

where     

𝐵00 = 𝛶00 + 𝛼0𝑗 + 𝑢0𝑗 

Equation 22 

𝛶00 is the model grand mean, 𝛼0𝑗 represents the effect unique the school has on the 

student data, and 𝑢0𝑗 is the error associated with any predictions made at level-2 of 

the model. Results from the grade 12 model are located in Table 30. 

Table 30: Grade 12 Multilevel Logistic Regression Results 

Effect Estimate Standard Error Df t value  pr |t| 

Intercept -5.9353 0.1672 2139 -11.34 < .0001 

STEMCourseGPA 0.5812 0.0049 4041 3.63 < .0001 

AttendanceRate 1.8379 0.0071 4041 3.01 < .0001 

TotalReferrals -0.1195 0.0326 4041 -3.85 < .001 

NonStemCourseGPA 0.2351 0.0959 4041 6.69 < .001 

TotalAPCoursesTaken 0.0599 0.7679 4041 0.81 NS 

ACTComp 0.2447 0.0094 4041 3.17 < .0001 

TotalDaysOnRoll 0.0172 0.0499 4041 2.32 < .001 
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Fit statistics reported -2 Res Log-Likelihood = 13643.80, AIC = 13645.80, 

and BIC = 13646.74. Table 31 contains the Sensitivity, Specificity, Precision, 

Accuracy, and Matthew’s Correlation Coefficient (MCC) metrics for the grade 12 

multilevel logistic regression model.   

Table 31: Grade 12 Multilevel Logistic Regression Performance Metrics 

Fit Measure Model Performance Score 

Sensitivity 0.8249 

Specificity 0.8153 

Precision 0.8085 

Accuracy 0.8200 

MCC 0.6400 

 

6.5 Model Comparison 

 By design, this study had two areas of focus, one being which model 

performed better at predicting college enrollment, and the second, which model was 

most successful at consistently estimating correct outcomes across grade level data. 

The across grade interest was, in part, due to the differences in estimation method, 

data processing, and implicit missing data correction when viewing the three 

models. The following sections will present a comparative analysis of the fit 

statistics produced by the models in the supervised learning scenario across grade 

within model and across model within grade.  

 The model fit statistics produced by the confusion matrix were used to create 

a grade level comparison across each model. Below, in Table 32, you will find the 

results from all models and grades.  
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Table 32: Grade & Model Level Performance Metrics 

Variable Model Sensitivity Specificity Precision Accuracy MCC 

Grade 9 GBDT 0.8104 0.7491 0.5107 0.7641 0.4934 

 ANN 0.7707 0.7712 0.8180 0.7709 0.5379 

 MLR 0.7769 0.7445 0.7426 0.7603 0.5214 

       

Grade 10 GBDT 0.8092 0.7777 0.5602 0.7854 0.5310 

 ANN 0.8182 0.7791 0.8182 0.8005 0.5973 

 MLR 0.7945 0.7971 0.8056 0.7958 0.5914 

       

Grade 11 GBDT 0.7907 0.8019 0.7577 0.7970 0.5903 

 ANN 0.8255 0.7927 0.7834 0.8083 0.6175 

 MLR 0.7795 0.8210 0.7830 0.8022 0.6008 

       

Grade 12 GBDT 0.8475 0.8480 0.7414 0.8478 0.6750 

 ANN 0.8293 0.8077 0.8095 0.8184 0.6370 

 MLR 0.8249 0.8153 0.8085 0.8200 0.6400 

 

GBDT represents the gradient boosted decision tree models, ANN represents 

the artificial neural network models, and MLR represents the multilevel logistic 

regression models. Accuracy and MCC are the most important performance metrics 

for model comparison in this study. As mentioned earlier, the Sensitivity metric, 

also referred to as the True Positive Rate, represents how often the prediction of an 

event happening is correct out of all predictions that the event happened. The 

Specificity metric represents the False Positive Rate, or how often the prediction of 

an event not happening is mistakenly predicted as the event happening. The 

Precision metric represents how often a correct even prediction occurs out of all 

instances the model says an event occurred. The Accuracy metric represents how 

often the classifier predicted correctly across all classifications. Lastly, the MCC 

(Matthew’s Correlation Coefficient), or mean square contingency coefficient, exists 

on a -1 to 1 scale. This metric does the best job of representing the entire confusion 

matrix, and how well the overall classification model is doing. This stability is due 
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to the MCC’s ability to control for unbalanced cell sizes in the matrix (Lin & Chen, 

2012; Brodley & Friedl, 1999). A value of -1 represents a completely wrong 

classification model, while a 1 represents a perfect classification model.  

6.5.1 Detailed Model Results 

 At the grade 9 level the GBDT performed the poorest overall (MCC = 

0.4934), while the ANN (MCC = 0.5379) and MLR (MCC = 0.5214) experienced a 

similar level of classification success. The Accuracy metrics were all very close in 

grade 9. The most glaring deficit was the Precision score of 0.5107 experienced by 

the GBDT model. This is experienced when the model has successful predictions 

but predicts more non-occurrences correctly than actual occurrences.   

 At the grade 10 level, the same relationship was evident with ANN (MCC = 

0.5973) and MLR (MCC = 0.5914), and GBDT performing significantly worse 

(MCC = 0.5310). Similar to the grade 9 models, the Accuracy metrics indicated 

ANN (0.8005) and MLR (0.7958) were the most accurate models, with ANN being 

the highest level of overall classification accuracy. Once again, the GBDT model 

experienced a very low Precision score of 0.5602 when compared to the other two 

models.  

 The grade 11 models showed the three models getting much closer in 

performance. The ANN model (MCC = 0.6175) had the best overall classification 

score, but the MLR model (MCC = 0.6008) and GBDT model (MCC = 0.5310) 

were very close. The separation between the models became even less apparent in 

the Accuracy scores, with the range between the worst and best models being 
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0.0113. The GBDT model Precision score (0.7577) is still less than the other two 

models, but now by the same margin. 

 The grade 12 model results were quite different when compared to the other 

three grades. The ANN (MCC = 0.6370) and MLR (MCC = 0.6400) models were 

still very close in performance, but the GBDT (MCC = 0.6750) model outperformed 

both on almost every category. The model accuracy of the GBDT model was 

especially high at 0.8478. The only category the GBDT model was not the highest 

in was the Precision score (0.7414).  

 The ANN and MLR models maintained consistency in prediction success 

across all grades, with the ANN slightly higher than the MLR.  The GBDT model 

performed at a less significant level by overpredicting non-occurrence events for the 

first three grades. Although, it was the worst performing model at the first three 

grade levels, the grade 12 data showed the GBDT model out-predicting both other 

models in predictive accuracy and the overall classification model by a large 

margin. This shows that the GBDT is more susceptible to overfitting and hurting 

generalizability when being applied to a test data set, but also showing significantly 

higher success when fitting the data appropriately.  

The grade 12 data was the most representative of a student’s profile before 

enrolling in higher education. There were also more variables for the model to 

choose from. The results show that the GBDT model is the best predictor of college 

enrollment based on the grade 12 data. It can be assumed that since the model relies 

heavily on node selection for splitting the data, the difference in unique academic 

variables from the grade 9 data to the grade 12 data caused improper node selection 
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for the split earlier in the trees. The analysis also supports the claim that if there are 

not checks in place to lessen the likelihood of overfitting, an ANN or MLR model 

might be more suitable.  

Figure 2: GBDT Performance Metrics by Grade Level 

 

 As can be seen in Figure 2, the GBDT experienced noticeable 

inconsistencies with the Precision metric. The overall growth of the other three 

performance metrics increased, with Accuracy and Specificity increasing 

approximately 0.10. The MCC was withheld from Figure 2 due to the measurement 

scale being -1 to 1, rather than 0 to 1, like to the rest of the performance metrics. 
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Figure 3: ANN Performance Metrics by Grade Level 

 

 Figure 3 above displays the performance metrics across grade level for the 

ANN model. Once again, MCC was withheld from this figure. The ANN model, did 

not achieve high scores comparable with the GBDT model, but stayed much more 

consistent across all grade levels. Similar to Figure 2, the Precision metric was more 

erratic than the other metrics. Sensitivity, Specificity, and Accuracy all increased 

consistently from approximately 0.77 to approximately 0.83, a margin of only 0.5. 
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Figure 4: MLR Performance Metrics by Grade Level 

 

 Figure 4 reveals that the MLR models conveyed much more consistency in 

growth. This is especially noticeable with the Precision metric that was much less 

predictable with the other models. This indicates that MLR models are less likely to 

overclassify as a non-event when modeling with data similar to the data used in this 

study. On average, the MLR models had lower Grade 9 scores than the ANN 

models, and they did not quite reach the ceiling that the ANN models achieved. This 

indicates that although the MLR models are less likely to overclassify a non-event, 

they are also less consistent with prediction across grade level. 
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Figure 5: MCC Performance Scores Across Grade and Model 

 

 Figure 5 displays the MCC performance scores for all three models across 

all grade levels. This metric was the primary indicator of a successful classification 

model. Although the GBDT model performed poorer than the other models at the 

grade 9 level, it outgained both models very steadily as grade level progressed. It is 

also evident that the Grade 9 models were inferior across all models types.  

6.5.2 Summary 

 The current chapter has provided results from multiple grade level models 

across three different analysis types, with comparable predictive accuracy measures 

in the style of supervised learning. This style of model comparison is typically not 

performed on traditional statistical measures, but due to lack of comparable 
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estimation method between the models, this was the most accurate way to show the 

efficacy of the classification models.  

The chapter started with four unique grade level analyses using gradient 

boosted decision tree models. This was done with an emphasis placed upon 

variables selected for the model, the importance of the variables in terms of 

predictive value added, and the results displayed as fit statistics calculated from a 

confusion matrix. The following two sections mimicked the same format but 

displayed model selection, variable importance and fit statistics for grade level 

artificial neural networks, as well as, variable selection, parameter tables, and fit 

statistics for grade level multilevel logistic regression models.  

The final section of this chapter revisited the interpretation of the fit statistics 

being used for model comparison and provided an interpretation of the models' 

predictive success. During this process, an emphasis was placed on classification 

model accuracy and overall model quality (MCC). The more specific performance 

metrics (sensitivity, specificity, and precision) were reported as well. Model success 

was viewed across models / within grades, as well as, across grades / within models. 

In summation, it was shown that if there is a concern for overfitting of the data, 

artificial neural networks or multilevel logistic regression are both suitable model 

choices, but with the proper checks in place to stop overfitting, gradient boosted 

decision trees are very powerful models for successful classification.  Discussions of 

these findings are presented in the following chapter. 
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CHAPTER VII: DISCUSSION 

7.1 Overview 

This chapter acts as a summary of the research findings, while also examining 

the impact they have on the field of educational analytics. Future directions for 

similar research are also discussed. Topics covered include the findings of the 

primary model comparison, secondary findings related to variables consistently 

predicting college enrollment across all models, solutions to data related issues like 

overfitting the model, and how the findings of this study can be used to guide future 

research. 

7.2 Discussion of Primary Findings 

 The primary findings of the dissertation indicate that model selection should 

be heavily reliant on the data being analyzed. The sample that was utilized presented 

a lower percentage of the students enrolling in college when compared to the state 

average. This left the levels of classification unbalanced due to a greater number of 

non-event (not enrolling in college) outcomes in the training dataset. When 

implementing data mining models, a common downside is overfitting the model 

using a large number of variables, and, in turn, losing generalizability or 

reproducibility (Hausman, Abrevaya, & Scott-Morton, 1998). It was evident that the 

artificial neural networks and multilevel logistic regression did not succumb to 

overfitting the dataset. The gradient boosted tree model misclassified more cases 

than the other models on the early grades due to this issue, but once the model was 

trained properly, it exceeded the classification success of the other two models.  
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7.3 Discussion of Additional Findings 

The secondary findings in this study were the discovery of variables holding 

high predictive value unanimously across all models and grades. The model results 

showed that DaysOnRoll and AttendanceRate were present on all models and highly 

valued. These findings, specifically the DaysOnRoll, act as a proxy for behavioral 

and social variables that were investigated prior to the analysis. The primary issue 

with the data that disallowed collapsing across all grade levels for one analysis was 

the inconsistency in student enrollment behavior data. The data contained an above 

average level of students entering and leaving the school system, entering and 

leaving the individual schools, receiving long term suspensions or expulsions, and 

dropping out during the school years. All of these behaviors can be captured when 

looking at DaysOnRoll. This assumption is supported by the fact that most models 

heavily favored DaysOnRoll as an important predictor. 

During the initial exploration, it was discovered that combining all the grades 

would remove enough of the student level data representing the ‘no higher 

education enrollment’, it would improperly weight the data in favor of college 

enrollment. By removing a larger portion of the sample that almost exclusively 

exhibited a non-event, the certainty of training a poor model would greatly increase 

leading to higher rates of misclassification. The DaysOnRoll variable created a 

valuable snapshot of a student’s overall likelihood of successfully enrolling in 

college simply by acting as a proxy for the underlying sources causing students to 

leave schools.   
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 It was also apparent by the separation of GPA into STEM and non-STEM, 

that students maintaining a high STEM GPA were more likely to enter higher 

education than those with a low STEM GPA and high non-STEM GPA. The study 

also provided valuable insight into the use of the standardized tests administered by 

the school system like the EOI. It was also recognizable that STEM GPA was more 

important predictor for the data mining models than Non-STEM GPA.  

 The use of flag variables measuring academic intensity for STEM related 

courses also provided valuable binary splits for the GBDT models. These variables 

were not included in the HLM models due to the PROC GLMSELECT output. One 

primary benefit of using data mining models like GBDT or ANN is the ease at 

which they handle variables of any format. It became evident that the HLM models 

did not gain benefit when these variables were included.  

 In summary, the focus on variable creation focusing on specific academic 

behavior representing both participation in specific STEM courses and success in 

specific STEM courses created new and useful data that is not commonly included 

in statistical models. The tree structure present in a gradient boosted decision tree 

could successfully implement these flags and performance metrics to create more 

detailed splits helping predict college enrollment.  

7.4 Ensemble Models  

As more data is collected and utilized simultaneously, the need for models 

that can adequately measure outcomes and provide solutions will grow. Education is 

not the only domain where data creation is growing faster than data analysis. It is 
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important to understand that with more data, comes more potential issues with 

model development.  

A widely used method for model development to help avoid overfitting is 

the use of an ensemble model. Ensemble models train many models using the same 

training data, but different subsets of features within the data (Oza & Tumer, 2001). 

These models use weighted averaging methods to combine model components and 

better understand the data as a whole. Mixtures of Experts methodology (Jordan & 

Jacobs, 1994) uses the same inputs the models were calibrated on to return an 

aggregate weight for each model included in the ensemble model. The weights on 

each model determine how much certainty the modeler has on that specific base 

model estimating properly (Tumer & Ghosh, 1996). The methodology is based on 

the assumption that if you overfit a series of models, each to a different specific 

subsection of the data, the models will act as a committee and properly estimate 

outcomes by leveraging strengths from many estimation and optimization 

techniques.  

7.5 Future Direction 

 It is also important to point out that as the number of variables collected 

grows, it becomes increasingly difficult to rely on standard statistical methodology 

for applied analytic practices. The usefulness of data mining algorithms and fast, 

approachable ways to determine variable selection and importance will become 

paramount as hindrances in the field rely less on computational power and more on 

time. The slow adoption of data mining methodology has been due in part to the 

dedicated resources required to successfully store, analyze, and report on large 
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datasets. As technology catches up with the modeling practices and algorithms used, 

the value of data mining models will become more and more obvious.  

Directions for future research in this area should focus on adaptive data 

management practice to help create streaming data inputs for data mining 

algorithms to calibrate to as new data is included. Automated recalibration using 

data as it is being collected would allow for real-time prediction and student 

behavior. Another area that could be investigated is the development and 

implementation of ensemble models to accurately predict without overfitting.  

Examination of other meta-algorithms (e.g. bagging and stacking) similar to the 

boosting algorithm used with the decision trees in this dissertation would also shed 

more light on what could be done to stop overfitting with educational data.  Data 

mining models are also being trained on text data to create analyzable data out of 

qualitative responses. Overall, the field of data mining and machine learning is 

growing very fast, and it seems worthwhile to allow these models to guide the future 

of educational analytics.  

 

 

 

 

 

 

 

 



91 

 

REFERENCES 

Alpaydin, E. (2011). Introduction to machine learning, 2nd ed. Cambridge, MA: 

MIT Press. 

Ayala, G. & Yano, Y. (1998). Collaborative learning environment based on 

intelligent agents. Expert Systems with Applications, 14(1), 129-137. 

Baeck, P. & Van den Poel, D. (2012). Including the salesperson effect in purchasing 

behavior using PROC GLIMMIX. Sas Global Forum 2012, (350- 2012). 

Baker, S. & Yacef, K. (2009). The state of educatinal data mining in 2009: A review 

of future visions. Journal of Educational Data Mining. 1 (1). 4-6.  

Bhise, R., Thorat, S., & Supekar, A. (2013). Importance of data mining in higher 

education systems. Journal of Humanities and Social Science. 6 (6). 18-20. 

Birnie-Lefcovitch, S. (2000). Student perceptions of the transition from high school  

to university: Implications for preventative programming. Journal of the 

First-Year Experience and Students in Transition, 12, 61-88. 

Bishop, C. (1995). Neural networks for pattern recognition. Clarendon Press, 

Advanced Texts in Econometrics. 

Bishop, C. (2006). Pattern recognition and machine learning. Vol. 1 Springer, New 

York. 

Blagus, R. & Lusa, L. (2017). Gradient boosting for high-dimensional prediction of 

rare events. Computational Statistics and Data Analysis, 113, 19-37. 

Boughorbel, S., Jarray, F., & El-Anbari, M. (2017). Optimal classifier for 

imbalanced data using matthews correlation coefficient metric. PLoS 

ONE, 12(6). 



92 

 

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. 

Breiman, L. (1998). Arcing classifier. The Annals of Statistics, 26(3), 801–849.  

Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computation, 

11(7):1493–1517.  

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and 

regression trees. New York, NY: Chapman & Hall. 

Brewe, E., Kramer, L., & O’Brien, G. (2009). Modeling instruction: Positive 

attitudinal shifts in introductory physics measured with CLASS. Physical 

Review Physics Education Research. 5. 

Brodley, C. & Friedl, M. (1999). Identifying mislabeled training data. Journal of 

Artificial Intelligence Research, 11, 131–167. 

Byon, E., Shrivastava, A., & Ding, Y. (2010). A classification procedure for highly 

imbalanced class sizes. IEEE Transactions on Computers. 42. 288-303 

Caelen, O. (2017). A Bayesian interpretation of the confusion matrix. Annals of 

Mathematics and Artificial Intelligence, 81(3), 429-450. 

Cawley, G. & Talbot, N. (2007). Preventing over-fitting during model selection via 

bayesian regularisation of the hyper-parameters. Machine Learning. 8, 841–

861. 

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. & 

Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guides. SPSS. 

The CRISP-DM Consortium, August 2000.  

Clifton, C. & Thuraisingham, B. (2001). Emerging standards for data mining. 

Computer Standards & Interfaces. 23 (2), 187-193.  



93 

 

Conley, D. (2007). Redefining college readiness. Eugene, OR: Education Policy 

Improvement Center. 

Cristianini, N., & Shawe-Taylor, J. 2000. An Introduction to Support Vector 

Machines. Cambridge, U.K.: Cambrige University Press.  

Crockett, K., Latham, A., & Whitton, N. (2017). On predicting learning styles in 

conversational intelligent tutoring systems using fuzzy decision trees. 

International Journal of Human-Computer Studies, 97, 98-115. 

D. Pregibon (1996). Data mining, statistical computing, & graphics, Vol. 8.  

Desjardins, S., & Lindsay, N. (2008). Adding a statistical wrench to the “toolbox.” 

Research in Higher Education, 49, 172–179. 

Dorian, P (1999). Data preparation for data-mining. San Francisco, Morgan 

Kaufmann.  

Elith, J., Leathwick, J., & Hastie, T. (2008). A working guide to boosted regression 

trees. Journal of Animal Ecology, 77(4), 802–813. 

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition, 27. 861-

874. 

Fay, M.  (2005). Random marginal agreement coefficients: Rethinking the 

adjustment for chance when measuring agreement. Biostatistics, 6, 171-180, 

10. 

Freund, Y. & Schapire, R. (1996). Experiments with a new boosting algorithm. 

International Conference on Machine Learning. vol. 96, 148–156. 



94 

 

Freund, Y. & Schapire, R. (1997). A decision-theoretic generalization of on-line 

learning and an application to boosting. Journal of Computer and System 

Sciences, 55(1):119–139.  

Friedman, J. (2001). Greedy function approximation: A gradient boosting 

machine. The Annals of Statistics, 29(5), 1189–1232 

Friedman, J. (2002). Stochastic gradient boosting. Computational Statistics and Data 

Analysis, 38, 367–378. 

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A 

statistical view of boosting. Annals of Statistics, 337–374.  

Funahashi, K & Nakamura, Y. (1993). Approximation of dynamical systems by 

continuous time recurrent neural networks. Neural Networks 6(6): 801-806. 

Gorunescu, F. (2011). Data mining: Concepts, models and techniques. Vol. 12. 

Springer. 

Guyon, I. & Elisseeff, A. (2003). An introduction to variable and feature selection. 

Journal of Machine Learning Research 3:1157–1182.  

Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques. 

Morgan Kaufmann, San Francisco. 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical 

learning: Data mining, inference and prediction, 2nd ed. Springer, New 

York. 

Hausman, J., Abrevaya, J., & Scott-Morton, F. (1998). Misclassification of the 

dependent variable in a discrete-response setting. Journal of 

Econometrics. 87(2), 239–269. 



95 

 

Haykin, S. (2005). Neural networks: A comprehensive foundation (2nd ed.) Pearson 

Printice Hall Publication. 

Haykin, S. (2008). Neural networks and learning machines. 3rd Ed. Prentice Hall 

Publishing, NJ.  

Herrera, O. (2006). Investigation of the role of pre- and post-admission variables in 

undergraduate institutional persistence, using a Markov student flow model. 

North Carolina State University. 

Hornik, K., Stinchcombe, M., & White, H. (1990). Universal approximation of an 

unknown mapping and its derivatives using multilayer feed-forward 

networks. Neural Networks, 3, 359-366. 

Jain, A. & Zongker, D. (1997). Feature selection: Evaluation, application, and small 

sample performance. IEEE Transactions on Pattern Analysis and Machine 

Intelligence.19(2):153-158. 

Jordan, M. & Jacobs, R. (1994). Hierarchical mixture of experts and the em 

algorithm. Neural Computation. 6, 181-214. 

King, M. & Resick, P. (2014). Data mining in psychological treatment research: A 

primer on classification and regression trees. Journal of Consulting and 

Clinical Psychology. 82(5). 895-905. 

King, S. (2003). Using roc curves to compare neural networks and logistic 

regression for modeling individual noncatastrophic tree mortality. 

Proceedings of the 13th Central Hardwood Forest Conference. 349-358. St. 

Paul, MN: U.S. Department of Agriculture. 



96 

 

Kohavi, R., & Provost, F. (1998). On applied research in machine learning. 

Applications of Machine Learning and the Knowledge Discovery Process. 

Vol. 30. Columbia University, New York. 

Kotsiantis, S., Pierrakeas, C., & Pintelas, P. (2004). Predicting students’ 

performance in distance learning using machine learning techniques. 

Applied Artificial Intelligence, 18, 411-426. 

Lavrac, N. (1999). Selected techniques for data mining in medicine. Artificial 

Intelligence in Medicine. 16(3) 23. 

Leaper, N. (2000). A visual guide to CRISP-DM methodology. CRISP-DM 1.0. 

http:// www.crisp-dm.org/download.htm.  

Lin, W., & Chen, J. (2012). Class-imbalanced classifiers for high-dimensional data. 

Briefings in Bioinformatics. 14(1), 13-26. 

Luan, J., & Zhao, C.. (2006). Practicing data mining for enrollment management 

and beyond. New Directions for Institutional Research, 31(1), 117-122.  

Ludbrook, J. (2002). Statistical techniques for comparing measurers and methods of 

measurement: A critical review. Clinical and Experimental Pharmacology 

and Physiology. 29(7). 527-536. 

Mackay, D. (1995). Probable networks and plausible predictions: A review of 

practical Bayesian methods for supervised neural networks. Network: 

Computation in Neural Systems 6, 469–505. 

Matthews, B. (1975). Comparison of the predicted and observed secondary structure 

of T4 phage lysozyme. Biochimica et Biophysica Acta. 405 (2): 442–451. 



97 

 

Mayr, A., Binder, H., Gefeller, O., & Schmid, M. (2014). The evolution of boosting 

algorithms: Machine learning to statistical modelling. Methods of 

Information in Medicine. 53, 419-427. 

Mehrotra, K., Mohan, C. & Ranka, S. (1997). Elements of Artificial Neural 

Networks. Boston: MIT Press. 

Murtaugh, P., Burns, L., & Schuster, J. (1999). Predicting the retention of university 

students. Research in Higher Education, 40(3), 355-371.  

Neal, R. (1996). Bayesian learning for neural networks. Springer: Notes in 

Statistics, 118. 

Nilsson, N. (1990). Learning machines: The mathematical foundations of learning 

machine. McGrawHill. 

Nowlan, S. & Hinton, G. (1992). Simplifying neural networks by soft weight 

sharing. Neural Computation, 4(4), 473–493. 

Olden, J. & Jackson, D. (2002). Illuminating the “black box”: A randomization 

approach for understanding variable contributions in artificial neural 

networks. Ecological Modelling, 154(1), 135–150. 

Opper, M. & Winther, O. (2000). Gaussian processes for classification. Neural 

Computation. 12(11), 2655–2684. 

Oza, N. & Tumer, K. (2001). Input decimation ensembles: Decorrelation through 

dimensionality reduction. Second International Workshop on Multiple 

Classifier Systems. Springer-Verlag. Berlin. 

Perruchet, P. & Peereman, R. (2004). The exploitation of distributional information 

in syllable processing. Journal of Neurolinguistics. 17: 97–119. 



98 

 

Powers, D. (2011). Evaluation: From precision, recall and f-measure to roc, 

informedness, markedness & correlation. Journal of Machine Learning 

Technologies. 2 (1): 37–63. 

Quinlan, J. (1986). Induction of decision trees. Machine Learning 1(1), 81–106. 

Quinlan, J. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan 

Kaufmann;  

Raudenbush, S. & Bryk, A. (2012). Hierarchical linear models: Applications and 

data analysis methods (Advanced Quantitative Techniques in the Social  

Sciences). Thousand Oaks: Sage Publications. 

Ripley, B. (1996). Pattern recognition and neural networks. Cambridge University 

Press. 

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by 

back-propagation errors. Nature, 323. 

Rupp, A., Nugent, R., & Nelson, B. (2012). Evidence-centered design for diagnostic 

assessment within digital learning environment: Integrating modern 

psychometric and EDM. Journal of Educational Data Mining, 4(1), 1-10. 

Ruuska, S., Hämäläinen, W., Kajava, S., Mughal, M., Matilainen, P., & Mononen, J. 

(2018). Evaluation of the confusion matrix method in the validation of an 

automated system for measuring feeding behaviour of cattle. Behavioural 

Processes, 148, 56-62. 

Schapire, R. & Freund, Y. (2012). Boosting: Foundations and algorithms. MIT 

Press. 



99 

 

Shearer C. (2000). The CRISP-DM model: The new blueprint for data mining. 

Journal of Data Warehousing,(5) 13-22. 

Shute, V. (1993). A comparison of learning environments: All that glitters. Lajoie, 

S. & Derry, S. (Eds.), Computers as Cognitive Tools (47-73). Hillsdale, NJ. 

Sietsma, J. & Dow, R. (1991). Creating artificial neural networks that generalize. 

Neural Networks 4(1), 67–79. 

Singer, J. (1998). Using SAS PROC MIXED to fit multilevel models,  hierarchical 

models, and individual growth models. Journal of Educational and 

Behavioral Statistics, 24(4), 323-355. 

Singh, H., Parhar, T. & Malla, S. (2015). Gesture control interface using machine 

learning algorithms. International Journal of Advanced Research in 

Computer Science and Software Engineering. 5. 898. 

Siraj, F., & Abdoulha, M. (2009). Uncovering hidden information within 

university’s student enrolment data using data mining. Journal of 

Computing, 1(2), 337-342. 

Stoean, R., Preuss, M., Stoean, C., El-Darzi, E., & Dumitrescu, D. (2009) Support 

vector machine learning with an evolutionary engine. Journal of the 

Operational Research Society, Special Issue: Data Mining and Operational 

Research: Techniques and Applications 60(8), 1116–1122. 

Strauss, L., & Volkwein, J. (2004). Predictors of student commitment at two- year 

and four-year institutions. The Journal of Higher Education, 75(2),  203-227.  



100 

 

Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: 

Rationale, application, and characteristics of classification and regression 

trees, bagging, and random forests. Psychological Methods, 14(4), 323–348. 

Suleiman, A., Tight, R., & Quinn, A. (2016). Hybrid neural networks and boosted 

regression tree models for predicting roadside particulate matter. 

Environmental Model Assessment. 21: 731.  

Taylor, J. (1999). Neural networks and their applications. Wiley. 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of 

the Royal Statistical Society, 2(58), 267–288. 

Ting, K. (2011). Encyclopedia of machine learning. Springer. 

Tukey, J. (1977) Exploratory data analysis. Addison-Wesley: Reading. 

Tumer, K. & Ghosh, J. (1996). Error correlation and error reduction in ensemble 

classifiers. Connection Science. Special Issue on Combining Artificial 

Neural Networks: Ensemble Approaches, 8(3-4), 385-404. 

Van de Cruys, T. (2014). A neural network approach to selectional preference 

acquisition. In Proceedings of the 2014 Conference on Empirical Methods in 

Natural Language Processing, 26–35. 

Venables, W. & Ripley, B. (1997). Modern Applied Statistics with S-PLUS. New 

York: Springer. 

Webb, A. (1994). Functional approximation by feed-forward networks: A least-

squares approach to generalisation. IEEE Transactions on Neural Networks. 

5(3), 363–371. 



101 

 

Weiss, S. & Kulikowski, C. (1991) Computer systems that learn: classification and 

prediction methods from statistics, neural nets, machine learning, and expert 

systems. Morgan Kaufmann Publishers Inc: San Francisco. 

Witten, I. & Eibe, F. (2005) Data mining: Practical machine learning tools and 

techniques, (2nd ed.). San Francisco 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 

 

APPENDIX 1: Summary of Variables 
 

Table 8: Variables Used in Model Development 

Variable Name Variable Description  

ACTComp Composite score on the ACT. 

STEMCourseGPA Aggregate GPA weighted by course hours from 

STEM specific courses. STEM course list 

acquired from State Regents. 

NonStemCourseGPA Aggregate GPA weighted by course hours from 

non-STEM specific courses. 

TotalDaysOnRoll Total days enrolled at the school or record. If 

more than one school of record existed, longest 

duration was chosen as primary school for the 

year. 

AttendanceRate Ratio of total days on roll and total days not 

absent. If more than one school of record existed, 

longest duration was chosen as primary school 

for the year.  

TotalDaysSuspended Total days suspended based on referral record. 

TotalAPCoursesTaken Combined total number of Advanced Placement 

courses taken in a given school year. Data was 

not collected for Advanced Placement credit 

acquired from Advanced Placement exam. 

AboveGradeLevelMathCourse Flag representing completion of Math course 

deemed ‘Above Grade Level’ for a given school 

year.  

AboveGradeLevelScienceCourse Flag representing completion of Science course 

deemed ‘Above Grade Level’ for a given school 

year.  

RemedialMath Flag representing completion of Math course 

deemed ‘Below Grade Level’ for a given school 

year.  

RemedialScience Flag representing completion of Science course 

deemed ‘Below Grade Level’ for a given school 

year.  

TotalReferrals Sum of all recorded referrals for a given school 

year. 

EOIBiologyScore Achievement score for the Biology portion of the 

EOI. 

EOIAlgebraIScore 

 

EOIAlgebraIIScore 

 

EOIReadingLA2Score 

Achievement score for the Algebra I portion of 

the EOI. 

Achievement score for the Algebra II portion of 

the EOI. 

Achievement score for the Reading/Language 

Arts II portion of the EOI. 
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APPENDIX 2: Artificial Neural Network Grade 9 Node 

Weights 
 

Table 33: Grade 9 Artificial Neural Network Model Components 

Node Path Weights  

VAR10 --> hidden neuron 1 -3.7113 

VAR9 --> hidden neuron 1 0.9446 

VAR8 --> hidden neuron 1 2.1668 

VAR1 --> hidden neuron 1 -4.9830 

VAR4 --> hidden neuron 1 -1.0209 

VAR3(0) --> hidden neuron 1 5.4318 

VAR3(2) --> hidden neuron 1 -2.8062 

VAR3(3) --> hidden neuron 1 -1.4489 

VAR3(4) --> hidden neuron 1 0.9952 

VAR2(0) --> hidden neuron 1 0.0198 

VAR2(1) --> hidden neuron 1 0.6043 

VAR2(2) --> hidden neuron 1 4.4617 

VAR2(3) --> hidden neuron 1 -0.2255 

VAR2(4) --> hidden neuron 1 -2.6731 

VAR5 --> hidden neuron 2 1.1770 

VAR6 --> hidden neuron 2 1.6605 

VAR7 --> hidden neuron 2 -1.0112 

VAR10 --> hidden neuron 2 -2.2456 

VAR9 --> hidden neuron 2 -1.2559 

VAR8 --> hidden neuron 2 -0.0549 

VAR1 --> hidden neuron 2 -5.2647 

VAR4 --> hidden neuron 2 -0.6107 

VAR3(0) --> hidden neuron 2 5.5039 

VAR3(2) --> hidden neuron 2 -2.4222 

VAR3(3) --> hidden neuron 2 -0.9593 

VAR3(4) --> hidden neuron 2 0.5530 

VAR2(0) --> hidden neuron 2 1.0898 

VAR2(1) --> hidden neuron 2 0.4840 

VAR2(2) --> hidden neuron 2 2.3911 

VAR2(3) --> hidden neuron 2 -0.2891 

VAR2(4) --> hidden neuron 2 -0.9311 

VAR5 --> hidden neuron 3 4.6287 

VAR6 --> hidden neuron 3 3.0173 

VAR7 --> hidden neuron 3 0.9913 

VAR10 --> hidden neuron 3 -2.2171 

VAR9 --> hidden neuron 3 -11.0529 

VAR8 --> hidden neuron 3 -8.4179 

VAR1 --> hidden neuron 3 -1.4233 

VAR4 --> hidden neuron 3 0.9305 

VAR3(0) --> hidden neuron 3 3.5573 

VAR3(2) --> hidden neuron 3 -4.1479 
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VAR3(3) --> hidden neuron 3 1.3492 

VAR3(4) --> hidden neuron 3 1.4748 

VAR2(0) --> hidden neuron 3 1.3150 

VAR2(1) --> hidden neuron 3 1.2109 

VAR2(2) --> hidden neuron 3 -2.3407 

VAR2(3) --> hidden neuron 3 -0.6724 

VAR2(4) --> hidden neuron 3 2.8414 

VAR5 --> hidden neuron 4 -1.0090 

VAR6 --> hidden neuron 4 -0.9187 

VAR7 --> hidden neuron 4 -0.0018 

VAR10 --> hidden neuron 4 -0.2833 

VAR9 --> hidden neuron 4 3.5208 

VAR8 --> hidden neuron 4 3.0476 

VAR1 --> hidden neuron 4 -0.1764 

VAR4 --> hidden neuron 4 -0.3191 

VAR3(0) --> hidden neuron 4 0.6066 

VAR3(2) --> hidden neuron 4 0.0611 

VAR3(3) --> hidden neuron 4 -0.9371 

VAR3(4) --> hidden neuron 4 0.3557 

VAR2(0) --> hidden neuron 4 -0.7421 

VAR2(1) --> hidden neuron 4 -0.1522 

VAR2(2) --> hidden neuron 4 2.1423 

VAR2(3) --> hidden neuron 4 0.8676 

VAR2(4) --> hidden neuron 4 -1.9997 

VAR5 --> hidden neuron 5 0.0431 

VAR6 --> hidden neuron 5 -0.4162 

VAR7 --> hidden neuron 5 1.3334 

VAR10 --> hidden neuron 5 6.3835 

VAR9 --> hidden neuron 5 -2.9945 

VAR8 --> hidden neuron 5 -4.1668 

VAR1 --> hidden neuron 5 7.9278 

VAR4 --> hidden neuron 5 2.0900 

VAR3(0) --> hidden neuron 5 -8.9926 

VAR3(2) --> hidden neuron 5 4.6861 

VAR3(3) --> hidden neuron 5 2.7849 

VAR3(4) --> hidden neuron 5 -2.1977 

VAR2(0) --> hidden neuron 5 -0.3521 

VAR2(1) --> hidden neuron 5 -0.9894 

VAR2(2) --> hidden neuron 5 -8.9200 

VAR2(3) --> hidden neuron 5 0.4169 

VAR2(4) --> hidden neuron 5 6.2402 

VAR5 --> hidden neuron 6 -1.4563 

VAR6 --> hidden neuron 6 -0.8266 

VAR7 --> hidden neuron 6 0.2554 

VAR10 --> hidden neuron 6 0.8228 

VAR9 --> hidden neuron 6 1.7176 
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VAR8 --> hidden neuron 6 0.8930 

VAR1 --> hidden neuron 6 1.8700 

VAR4 --> hidden neuron 6 -0.0414 

VAR3(0) --> hidden neuron 6 -1.8241 

VAR3(2) --> hidden neuron 6 0.7321 

VAR3(3) --> hidden neuron 6 0.2022 

VAR3(4) --> hidden neuron 6 -0.1554 

VAR2(0) --> hidden neuron 6 -0.1472 

VAR2(1) --> hidden neuron 6 -0.1927 

VAR2(2) --> hidden neuron 6 -0.4097 

VAR2(3) --> hidden neuron 6 -0.3476 

VAR2(4) --> hidden neuron 6 0.0414 

VAR5 --> hidden neuron 7 4.9361 

VAR6 --> hidden neuron 7 -0.4212 

VAR7 --> hidden neuron 7 -2.5747 

VAR10 --> hidden neuron 7 9.0361 

VAR9 --> hidden neuron 7 -8.5620 

VAR8 --> hidden neuron 7 -9.0929 

VAR1 --> hidden neuron 7 9.7515 

VAR4 --> hidden neuron 7 1.0257 

VAR3(0) --> hidden neuron 7 -10.7926 

VAR3(2) --> hidden neuron 7 -1.1444 

VAR3(3) --> hidden neuron 7 5.0194 

VAR3(4) --> hidden neuron 7 2.3863 

VAR2(0) --> hidden neuron 7 4.5527 

VAR2(1) --> hidden neuron 7 -0.2331 

VAR2(2) --> hidden neuron 7 -2.7881 

VAR2(3) --> hidden neuron 7 -16.5360 

VAR2(4) --> hidden neuron 7 10.3423 

VAR5 --> hidden neuron 8 0.6337 

VAR6 --> hidden neuron 8 0.5663 

VAR7 --> hidden neuron 8 -0.0949 

VAR10 --> hidden neuron 8 0.1550 

VAR9 --> hidden neuron 8 -1.9599 

VAR8 --> hidden neuron 8 -1.6785 

VAR1 --> hidden neuron 8 0.0807 

VAR4 --> hidden neuron 8 0.2130 

VAR3(0) --> hidden neuron 8 -0.2620 

VAR3(2) --> hidden neuron 8 -0.2480 

VAR3(3) --> hidden neuron 8 0.5289 

VAR3(4) --> hidden neuron 8 -0.0781 

VAR2(0) --> hidden neuron 8 0.4540 

VAR2(1) --> hidden neuron 8 0.0970 

VAR2(2) --> hidden neuron 8 -1.0983 

VAR2(3) --> hidden neuron 8 -0.6392 

VAR2(4) --> hidden neuron 8 1.1927 
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VAR5 --> hidden neuron 9 1.2173 

VAR6 --> hidden neuron 9 0.3801 

VAR7 --> hidden neuron 9 0.7556 

VAR10 --> hidden neuron 9 -2.0989 

VAR9 --> hidden neuron 9 0.0231 

VAR8 --> hidden neuron 9 1.2346 

VAR1 --> hidden neuron 9 -4.2519 

VAR4 --> hidden neuron 9 -0.7552 

VAR3(0) --> hidden neuron 9 4.5986 

VAR3(2) --> hidden neuron 9 -0.2606 

VAR3(3) --> hidden neuron 9 -1.7844 

VAR3(4) --> hidden neuron 9 -0.5119 

VAR2(0) --> hidden neuron 9 -0.9145 

VAR2(1) --> hidden neuron 9 0.3085 

VAR2(2) --> hidden neuron 9 3.0383 

VAR2(3) --> hidden neuron 9 3.0809 

VAR2(4) --> hidden neuron 9 -3.4706 

VAR5 --> hidden neuron 10 0.5845 

VAR6 --> hidden neuron 10 -0.4062 

VAR7 --> hidden neuron 10 0.3643 

VAR10 --> hidden neuron 10 -2.2177 

VAR9 --> hidden neuron 10 1.3231 

VAR8 --> hidden neuron 10 2.1932 

VAR1 --> hidden neuron 10 -3.8160 

VAR4 --> hidden neuron 10 -1.0039 

VAR3(0) --> hidden neuron 10 4.0971 

VAR3(2) --> hidden neuron 10 -0.2545 

VAR3(3) --> hidden neuron 10 -1.8516 

VAR3(4) --> hidden neuron 10 -0.5595 

VAR2(0) --> hidden neuron 10 -1.0369 

VAR2(1) --> hidden neuron 10 0.1794 

VAR2(2) --> hidden neuron 10 2.6109 

VAR2(3) --> hidden neuron 10 3.3441 

VAR2(4) --> hidden neuron 10 -3.7763 

input bias --> hidden neuron 1 2.1634 

input bias --> hidden neuron 2 2.7507 

input bias --> hidden neuron 3 2.2534 

input bias --> hidden neuron 4 0.0710 

input bias --> hidden neuron 5 -3.6475 

input bias --> hidden neuron 6 -0.9706 

input bias --> hidden neuron 7 -4.6110 

input bias --> hidden neuron 8 -0.0466 

input bias --> hidden neuron 9 2.0995 

input bias --> hidden neuron 10 1.4159 

hidden neuron 1 --> collegeenroll(0) 3.7549 

hidden neuron 2 --> collegeenroll(0) 6.2092 
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hidden neuron 3 --> collegeenroll(0) 8.1521 

hidden neuron 4 --> collegeenroll(0) -1.7851 

hidden neuron 5 --> collegeenroll(0) -5.6127 

hidden neuron 6 --> collegeenroll(0) -2.0870 

hidden neuron 7 --> collegeenroll(0) -9.5121 

hidden neuron 8 --> collegeenroll(0) 0.8033 

hidden neuron 9 --> collegeenroll(0) 2.2795 

hidden neuron 10 --> collegeenroll(0) 1.3115 

hidden neuron 1 --> collegeenroll(1) -3.7705 

hidden neuron 2 --> collegeenroll(1) -6.3005 

hidden neuron 3 --> collegeenroll(1) -8.1280 

hidden neuron 4 --> collegeenroll(1) 1.7525 

hidden neuron 5 --> collegeenroll(1) 5.6378 

hidden neuron 6 --> collegeenroll(1) 2.0779 

hidden neuron 7 --> collegeenroll(1) 9.4742 

hidden neuron 8 --> collegeenroll(1) -0.8334 

hidden neuron 9 --> collegeenroll(1) -2.2062 

hidden neuron 10 --> collegeenroll(1) -1.3082 

hidden bias --> collegeenroll(0) 3.3896 

hidden bias --> collegeenroll(1) -3.4067 
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APPENDIX 3: Artificial Neural Network Grade 10 Node 

Weights 
 

Table 34: Grade 10 Artificial Neural Network Model Components 

Node Path Weights  

VAR5 --> hidden neuron 1 2.66158 

VAR6 --> hidden neuron 1 -0.79704 

VAR7 --> hidden neuron 1 -0.70727 

VAR10 --> hidden neuron 1 -0.71177 

VAR9 --> hidden neuron 1 2.48436 

VAR8 --> hidden neuron 1 -0.99247 

VAR12 --> hidden neuron 1 0.80641 

VAR13 --> hidden neuron 1 -1.45253 

VAR14 --> hidden neuron 1 0.29536 

VAR1 --> hidden neuron 1 2.59977 

VAR11 --> hidden neuron 1 -1.98856 

VAR4 --> hidden neuron 1 -0.05522 

VAR2(0) --> hidden neuron 1 0.66557 

VAR2(1) --> hidden neuron 1 -0.78808 

VAR2(2) --> hidden neuron 1 -0.53411 

VAR2(3) --> hidden neuron 1 0.17379 

VAR2(4) --> hidden neuron 1 -0.02219 

VAR3(0) --> hidden neuron 1 -0.26886 

VAR3(1) --> hidden neuron 1 -0.51685 

VAR3(2) --> hidden neuron 1 -0.18363 

VAR3(3) --> hidden neuron 1 -0.01559 

VAR3(4) --> hidden neuron 1 0.46292 

VAR5 --> hidden neuron 2 -0.12163 

VAR6 --> hidden neuron 2 -0.42163 

VAR7 --> hidden neuron 2 -0.50920 

VAR10 --> hidden neuron 2 1.26436 

VAR9 --> hidden neuron 2 -0.72258 

VAR8 --> hidden neuron 2 -2.22553 

VAR12 --> hidden neuron 2 -0.79047 

VAR13 --> hidden neuron 2 -1.51759 

VAR14 --> hidden neuron 2 0.88944 

VAR1 --> hidden neuron 2 0.46894 

VAR11 --> hidden neuron 2 0.43835 

VAR4 --> hidden neuron 2 -0.35146 

VAR2(0) --> hidden neuron 2 0.52920 

VAR2(1) --> hidden neuron 2 0.52606 

VAR2(2) --> hidden neuron 2 -0.71318 

VAR2(3) --> hidden neuron 2 0.24217 

VAR2(4) --> hidden neuron 2 -0.10640 

VAR3(0) --> hidden neuron 2 0.38833 

VAR3(1) --> hidden neuron 2 0.46626 
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VAR3(2) --> hidden neuron 2 0.59880 

VAR3(3) --> hidden neuron 2 -0.31790 

VAR3(4) --> hidden neuron 2 -0.62235 

VAR5 --> hidden neuron 3 -0.21500 

VAR6 --> hidden neuron 3 0.05185 

VAR7 --> hidden neuron 3 -0.28822 

VAR10 --> hidden neuron 3 -0.12314 

VAR9 --> hidden neuron 3 0.01955 

VAR8 --> hidden neuron 3 0.92717 

VAR12 --> hidden neuron 3 -1.90841 

VAR13 --> hidden neuron 3 -2.25807 

VAR14 --> hidden neuron 3 0.91948 

VAR1 --> hidden neuron 3 2.56592 

VAR11 --> hidden neuron 3 0.40869 

VAR4 --> hidden neuron 3 0.55210 

VAR2(0) --> hidden neuron 3 -1.19653 

VAR2(1) --> hidden neuron 3 -0.62203 

VAR2(2) --> hidden neuron 3 0.50102 

VAR2(3) --> hidden neuron 3 0.56936 

VAR2(4) --> hidden neuron 3 0.58012 

VAR3(0) --> hidden neuron 3 1.31829 

VAR3(1) --> hidden neuron 3 -2.15567 

VAR3(2) --> hidden neuron 3 0.44430 

VAR3(3) --> hidden neuron 3 0.54150 

VAR3(4) --> hidden neuron 3 -0.24054 

VAR5 --> hidden neuron 4 -0.49716 

VAR6 --> hidden neuron 4 -3.32836 

VAR7 --> hidden neuron 4 0.96439 

VAR10 --> hidden neuron 4 3.53210 

VAR9 --> hidden neuron 4 -2.61825 

VAR8 --> hidden neuron 4 -1.68655 

VAR12 --> hidden neuron 4 1.18990 

VAR13 --> hidden neuron 4 0.82669 

VAR14 --> hidden neuron 4 -0.75523 

VAR1 --> hidden neuron 4 -0.52751 

VAR11 --> hidden neuron 4 0.48492 

VAR4 --> hidden neuron 4 0.72920 

VAR2(0) --> hidden neuron 4 -1.32038 

VAR2(1) --> hidden neuron 4 -0.79756 

VAR2(2) --> hidden neuron 4 -1.54595 

VAR2(3) --> hidden neuron 4 0.43585 

VAR2(4) --> hidden neuron 4 1.93924 

VAR3(0) --> hidden neuron 4 -0.06176 

VAR3(1) --> hidden neuron 4 -0.91869 

VAR3(2) --> hidden neuron 4 -0.02668 

VAR3(3) --> hidden neuron 4 -0.83516 
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VAR3(4) --> hidden neuron 4 0.57113 

VAR5 --> hidden neuron 5 1.54219 

VAR6 --> hidden neuron 5 -2.04265 

VAR7 --> hidden neuron 5 0.26241 

VAR10 --> hidden neuron 5 1.22997 

VAR9 --> hidden neuron 5 0.89092 

VAR8 --> hidden neuron 5 -1.18849 

VAR12 --> hidden neuron 5 1.31068 

VAR13 --> hidden neuron 5 -0.41383 

VAR14 --> hidden neuron 5 1.42727 

VAR1 --> hidden neuron 5 -1.42726 

VAR11 --> hidden neuron 5 -2.06292 

VAR4 --> hidden neuron 5 0.12135 

VAR2(0) --> hidden neuron 5 -0.80572 

VAR2(1) --> hidden neuron 5 -0.85567 

VAR2(2) --> hidden neuron 5 -0.92655 

VAR2(3) --> hidden neuron 5 0.39048 

VAR2(4) --> hidden neuron 5 0.89146 

VAR3(0) --> hidden neuron 5 1.38915 

VAR3(1) --> hidden neuron 5 -2.56693 

VAR3(2) --> hidden neuron 5 -0.00357 

VAR3(3) --> hidden neuron 5 -0.24807 

VAR3(4) --> hidden neuron 5 0.22878 

VAR5 --> hidden neuron 6 -0.46279 

VAR6 --> hidden neuron 6 -0.76762 

VAR7 --> hidden neuron 6 -1.09629 

VAR10 --> hidden neuron 6 1.85300 

VAR9 --> hidden neuron 6 -0.09270 

VAR8 --> hidden neuron 6 -3.10167 

VAR12 --> hidden neuron 6 -0.12832 

VAR13 --> hidden neuron 6 -2.23603 

VAR14 --> hidden neuron 6 -0.48361 

VAR1 --> hidden neuron 6 0.26868 

VAR11 --> hidden neuron 6 0.91823 

VAR4 --> hidden neuron 6 -0.59016 

VAR2(0) --> hidden neuron 6 0.38600 

VAR2(1) --> hidden neuron 6 0.14059 

VAR2(2) --> hidden neuron 6 0.51270 

VAR2(3) --> hidden neuron 6 0.49486 

VAR2(4) --> hidden neuron 6 -1.49155 

VAR3(0) --> hidden neuron 6 -0.10660 

VAR3(1) --> hidden neuron 6 0.53724 

VAR3(2) --> hidden neuron 6 -0.22643 

VAR3(3) --> hidden neuron 6 0.16762 

VAR3(4) --> hidden neuron 6 -0.39447 

input bias --> hidden neuron 1 -0.49102 
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input bias --> hidden neuron 2 0.52416 

input bias --> hidden neuron 3 -0.14994 

input bias --> hidden neuron 4 -1.31502 

input bias --> hidden neuron 5 -1.24418 

input bias --> hidden neuron 6 -0.00149 

hidden neuron 1 --> collegeenroll(0) 0.29624 

hidden neuron 2 --> collegeenroll(0) 0.10854 

hidden neuron 3 --> collegeenroll(0) 0.44195 

hidden neuron 4 --> collegeenroll(0) 0.28873 

hidden neuron 5 --> collegeenroll(0) -0.83638 

hidden neuron 6 --> collegeenroll(0) 0.91895 

hidden neuron 1 --> collegeenroll(1) -0.27805 

hidden neuron 2 --> collegeenroll(1) -0.12433 

hidden neuron 3 --> collegeenroll(1) -0.45000 

hidden neuron 4 --> collegeenroll(1) -0.28072 

hidden neuron 5 --> collegeenroll(1) 0.80305 

hidden neuron 6 --> collegeenroll(1) -0.75844 

hidden bias --> collegeenroll(0) -0.50774 

hidden bias --> collegeenroll(1) 1.49524 

VAR5 --> hidden neuron 1 2.66158 

VAR6 --> hidden neuron 1 -0.79704 

VAR7 --> hidden neuron 1 -0.70727 

VAR10 --> hidden neuron 1 -0.71177 

VAR9 --> hidden neuron 1 2.48436 

VAR8 --> hidden neuron 1 -0.99247 

VAR12 --> hidden neuron 1 0.80641 

VAR13 --> hidden neuron 1 -1.45253 

VAR14 --> hidden neuron 1 0.29536 

VAR1 --> hidden neuron 1 2.59977 

VAR11 --> hidden neuron 1 -1.98856 

VAR4 --> hidden neuron 1 -0.05522 

VAR2(0) --> hidden neuron 1 0.66557 

VAR2(1) --> hidden neuron 1 -0.78808 

VAR2(2) --> hidden neuron 1 -0.53411 

VAR2(3) --> hidden neuron 1 0.17379 

VAR2(4) --> hidden neuron 1 -0.02219 

VAR3(0) --> hidden neuron 1 -0.26886 

VAR3(1) --> hidden neuron 1 -0.51685 

VAR3(2) --> hidden neuron 1 -0.18363 

VAR3(3) --> hidden neuron 1 -0.01559 

VAR3(4) --> hidden neuron 1 0.46292 

VAR5 --> hidden neuron 2 -0.12163 

VAR6 --> hidden neuron 2 -0.42163 

VAR7 --> hidden neuron 2 -0.50920 

VAR10 --> hidden neuron 2 1.26436 

VAR9 --> hidden neuron 2 -0.72258 
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VAR8 --> hidden neuron 2 -2.22553 

VAR12 --> hidden neuron 2 -0.79047 

VAR13 --> hidden neuron 2 -1.51759 

VAR14 --> hidden neuron 2 0.88944 

VAR1 --> hidden neuron 2 0.46894 

VAR11 --> hidden neuron 2 0.43835 

VAR4 --> hidden neuron 2 -0.35146 

VAR2(0) --> hidden neuron 2 0.52920 

VAR2(1) --> hidden neuron 2 0.52606 

VAR2(2) --> hidden neuron 2 -0.71318 

VAR2(3) --> hidden neuron 2 0.24217 

VAR2(4) --> hidden neuron 2 -0.10640 
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APPENDIX 4: Artificial Neural Network Grade 11 Node 

Weights 
 

Table 35: Grade 11 Artificial Neural Network Model Components 

Node Path Weights  

VAR5 --> hidden neuron 1 -1.07981 

VAR6 --> hidden neuron 1 -0.16278 

VAR7 --> hidden neuron 1 -0.31475 

VAR10 --> hidden neuron 1 0.22533 

VAR9 --> hidden neuron 1 0.52433 

VAR8 --> hidden neuron 1 -0.06852 

VAR12 --> hidden neuron 1 -0.75497 

VAR13 --> hidden neuron 1 0.01439 

VAR1 --> hidden neuron 1 -0.28976 

VAR11 --> hidden neuron 1 1.01031 

VAR4 --> hidden neuron 1 -0.11432 

VAR3(0) --> hidden neuron 1 1.30022 

VAR3(1) --> hidden neuron 1 -0.26916 

VAR3(2) --> hidden neuron 1 -0.12863 

VAR3(3) --> hidden neuron 1 0.38414 

VAR3(4) --> hidden neuron 1 -0.37746 

VAR2(0) --> hidden neuron 1 1.04106 

VAR2(1) --> hidden neuron 1 -0.60659 

VAR2(2) --> hidden neuron 1 1.18126 

VAR2(3) --> hidden neuron 1 -1.07853 

VAR2(4) --> hidden neuron 1 0.37134 

VAR5 --> hidden neuron 2 -0.31864 

VAR6 --> hidden neuron 2 0.09271 

VAR7 --> hidden neuron 2 -0.16563 

VAR10 --> hidden neuron 2 0.12617 

VAR9 --> hidden neuron 2 0.14468 

VAR8 --> hidden neuron 2 -0.07808 

VAR12 --> hidden neuron 2 -0.32457 

VAR13 --> hidden neuron 2 0.03525 

VAR1 --> hidden neuron 2 -0.02018 

VAR11 --> hidden neuron 2 0.42364 

VAR4 --> hidden neuron 2 -0.00690 

VAR3(0) --> hidden neuron 2 0.39664 

VAR3(1) --> hidden neuron 2 -0.04808 

VAR3(2) --> hidden neuron 2 0.01147 

VAR3(3) --> hidden neuron 2 -0.16130 

VAR3(4) --> hidden neuron 2 0.05324 

VAR2(0) --> hidden neuron 2 0.11118 

VAR2(1) --> hidden neuron 2 0.11949 

VAR2(2) --> hidden neuron 2 -0.20212 

VAR2(3) --> hidden neuron 2 0.11232 
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VAR2(4) --> hidden neuron 2 0.07257 

VAR5 --> hidden neuron 3 -0.11655 

VAR6 --> hidden neuron 3 -0.03049 

VAR7 --> hidden neuron 3 -0.02406 

VAR10 --> hidden neuron 3 0.00606 

VAR9 --> hidden neuron 3 0.00375 

VAR8 --> hidden neuron 3 -0.03738 

VAR12 --> hidden neuron 3 -0.06968 

VAR13 --> hidden neuron 3 -0.04132 

VAR1 --> hidden neuron 3 -0.06708 

VAR11 --> hidden neuron 3 0.08576 

VAR4 --> hidden neuron 3 -0.05293 

VAR3(0) --> hidden neuron 3 0.06111 

VAR3(1) --> hidden neuron 3 -0.03256 

VAR3(2) --> hidden neuron 3 -0.02006 

VAR3(3) --> hidden neuron 3 0.04535 

VAR3(4) --> hidden neuron 3 -0.01279 

VAR2(0) --> hidden neuron 3 0.02330 

VAR2(1) --> hidden neuron 3 -0.06067 

VAR2(2) --> hidden neuron 3 0.04449 

VAR2(3) --> hidden neuron 3 -0.04886 

VAR2(4) --> hidden neuron 3 0.00079 

VAR5 --> hidden neuron 4 -1.19733 

VAR6 --> hidden neuron 4 -0.53499 

VAR7 --> hidden neuron 4 -0.43106 

VAR10 --> hidden neuron 4 -0.15906 

VAR9 --> hidden neuron 4 0.48030 

VAR8 --> hidden neuron 4 -0.08219 

VAR12 --> hidden neuron 4 -0.83030 

VAR13 --> hidden neuron 4 -0.12991 

VAR1 --> hidden neuron 4 -0.49328 

VAR11 --> hidden neuron 4 0.77075 

VAR4 --> hidden neuron 4 -0.46354 

VAR3(0) --> hidden neuron 4 1.01958 

VAR3(1) --> hidden neuron 4 -0.03023 

VAR3(2) --> hidden neuron 4 -0.02757 

VAR3(3) --> hidden neuron 4 0.36595 

VAR3(4) --> hidden neuron 4 -0.91769 

VAR2(0) --> hidden neuron 4 0.94344 

VAR2(1) --> hidden neuron 4 -0.60914 

VAR2(2) --> hidden neuron 4 1.28338 

VAR2(3) --> hidden neuron 4 -1.39848 

VAR2(4) --> hidden neuron 4 0.17139 

VAR5 --> hidden neuron 5 -0.66299 

VAR6 --> hidden neuron 5 -0.15425 

VAR7 --> hidden neuron 5 -0.42444 
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VAR10 --> hidden neuron 5 -0.02554 

VAR9 --> hidden neuron 5 0.16188 

VAR8 --> hidden neuron 5 -0.06941 

VAR12 --> hidden neuron 5 -0.65968 

VAR13 --> hidden neuron 5 -0.14041 

VAR1 --> hidden neuron 5 -0.31107 

VAR11 --> hidden neuron 5 0.50708 

VAR4 --> hidden neuron 5 -0.14116 

VAR3(0) --> hidden neuron 5 0.65308 

VAR3(1) --> hidden neuron 5 -0.21464 

VAR3(2) --> hidden neuron 5 -0.12706 

VAR3(3) --> hidden neuron 5 -0.02010 

VAR3(4) --> hidden neuron 5 -0.05170 

VAR2(0) --> hidden neuron 5 0.37898 

VAR2(1) --> hidden neuron 5 -0.22253 

VAR2(2) --> hidden neuron 5 0.24792 

VAR2(3) --> hidden neuron 5 -0.16448 

VAR2(4) --> hidden neuron 5 -0.00649 

VAR5 --> hidden neuron 6 -0.34152 

VAR6 --> hidden neuron 6 -0.22134 

VAR7 --> hidden neuron 6 0.01140 

VAR10 --> hidden neuron 6 0.03320 

VAR9 --> hidden neuron 6 0.21415 

VAR8 --> hidden neuron 6 0.01101 

VAR12 --> hidden neuron 6 -0.17869 

VAR13 --> hidden neuron 6 -0.02157 

VAR1 --> hidden neuron 6 -0.16434 

VAR11 --> hidden neuron 6 0.20839 

VAR4 --> hidden neuron 6 -0.12370 

VAR3(0) --> hidden neuron 6 0.27842 

VAR3(1) --> hidden neuron 6 0.08062 

VAR3(2) --> hidden neuron 6 -0.01435 

VAR3(3) --> hidden neuron 6 0.30525 

VAR3(4) --> hidden neuron 6 -0.43290 

VAR2(0) --> hidden neuron 6 0.41275 

VAR2(1) --> hidden neuron 6 -0.33925 

VAR2(2) --> hidden neuron 6 0.68638 

VAR2(3) --> hidden neuron 6 -0.77970 

VAR2(4) --> hidden neuron 6 0.15972 

VAR5 --> hidden neuron 7 -0.79641 

VAR6 --> hidden neuron 7 -0.05358 

VAR7 --> hidden neuron 7 -0.44325 

VAR10 --> hidden neuron 7 0.09005 

VAR9 --> hidden neuron 7 0.26565 

VAR8 --> hidden neuron 7 -0.06534 

VAR12 --> hidden neuron 7 -0.78485 
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VAR13 --> hidden neuron 7 -0.10882 

VAR1 --> hidden neuron 7 -0.29348 

VAR11 --> hidden neuron 7 0.73727 

VAR4 --> hidden neuron 7 -0.05348 

VAR3(0) --> hidden neuron 7 0.79497 

VAR3(1) --> hidden neuron 7 -0.39418 

VAR3(2) --> hidden neuron 7 -0.17158 

VAR3(3) --> hidden neuron 7 0.01573 

VAR3(4) --> hidden neuron 7 -0.00792 

VAR2(0) --> hidden neuron 7 0.38290 

VAR2(1) --> hidden neuron 7 -0.33666 

VAR2(2) --> hidden neuron 7 0.20344 

VAR2(3) --> hidden neuron 7 -0.00780 

VAR2(4) --> hidden neuron 7 0.07402 

VAR5 --> hidden neuron 8 -0.43114 

VAR6 --> hidden neuron 8 0.01018 

VAR7 --> hidden neuron 8 -0.13467 

VAR10 --> hidden neuron 8 0.08983 

VAR9 --> hidden neuron 8 0.24879 

VAR8 --> hidden neuron 8 -0.00927 

VAR12 --> hidden neuron 8 -0.41035 

VAR13 --> hidden neuron 8 0.00854 

VAR1 --> hidden neuron 8 -0.17446 

VAR11 --> hidden neuron 8 0.42310 

VAR4 --> hidden neuron 8 -0.07470 

VAR3(0) --> hidden neuron 8 0.46528 

VAR3(1) --> hidden neuron 8 -0.06815 

VAR3(2) --> hidden neuron 8 0.01312 

VAR3(3) --> hidden neuron 8 0.06115 

VAR3(4) --> hidden neuron 8 -0.15042 

VAR2(0) --> hidden neuron 8 0.32958 

VAR2(1) --> hidden neuron 8 -0.03417 

VAR2(2) --> hidden neuron 8 0.27126 

VAR2(3) --> hidden neuron 8 -0.22344 

VAR2(4) --> hidden neuron 8 0.03806 

VAR5 --> hidden neuron 9 0.40075 

VAR6 --> hidden neuron 9 0.22609 

VAR7 --> hidden neuron 9 0.08698 

VAR10 --> hidden neuron 9 0.16581 

VAR9 --> hidden neuron 9 -0.22677 

VAR8 --> hidden neuron 9 0.03096 

VAR12 --> hidden neuron 9 0.23325 

VAR13 --> hidden neuron 9 0.12274 

VAR1 --> hidden neuron 9 0.21288 

VAR11 --> hidden neuron 9 -0.13223 

VAR4 --> hidden neuron 9 0.28706 
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VAR3(0) --> hidden neuron 9 -0.16327 

VAR3(2) --> hidden neuron 9 -0.01442 

VAR3(3) --> hidden neuron 9 -0.01156 

VAR3(4) --> hidden neuron 9 0.46847 

VAR2(0) --> hidden neuron 9 -0.43979 

VAR2(1) --> hidden neuron 9 0.32863 

VAR2(2) --> hidden neuron 9 -0.36551 

VAR2(3) --> hidden neuron 9 0.79021 

VAR2(4) --> hidden neuron 9 -0.37658 

VAR5 --> hidden neuron 10 0.83743 

VAR6 --> hidden neuron 10 0.26761 

VAR7 --> hidden neuron 10 0.29605 

VAR10 --> hidden neuron 10 -0.00569 

VAR9 --> hidden neuron 10 -0.31839 

VAR8 --> hidden neuron 10 0.05739 

VAR12 --> hidden neuron 10 0.62713 

VAR13 --> hidden neuron 10 0.13553 

VAR1 --> hidden neuron 10 0.35418 

VAR11 --> hidden neuron 10 -0.55342 

VAR4 --> hidden neuron 10 0.22281 

VAR3(0) --> hidden neuron 10 -0.77364 

VAR3(1) --> hidden neuron 10 0.12978 

VAR3(2) --> hidden neuron 10 0.04941 

VAR3(3) --> hidden neuron 10 -0.28437 

VAR3(4) --> hidden neuron 10 0.40029 

VAR2(0) --> hidden neuron 10 -0.66810 

VAR2(1) --> hidden neuron 10 0.40443 

VAR2(2) --> hidden neuron 10 -0.84134 

VAR2(3) --> hidden neuron 10 0.75282 

VAR2(4) --> hidden neuron 10 -0.11464 

VAR5 --> hidden neuron 11 -0.01354 

VAR6 --> hidden neuron 11 0.06217 

VAR7 --> hidden neuron 11 -0.02758 

VAR10 --> hidden neuron 11 0.00650 

VAR9 --> hidden neuron 11 0.00482 

VAR8 --> hidden neuron 11 -0.03592 

VAR12 --> hidden neuron 11 -0.03104 

VAR13 --> hidden neuron 11 0.03815 

VAR1 --> hidden neuron 11 0.01217 

VAR11 --> hidden neuron 11 0.06566 

VAR4 --> hidden neuron 11 0.01473 

VAR3(0) --> hidden neuron 11 0.00756 

VAR3(1) --> hidden neuron 11 -0.05023 

VAR3(2) --> hidden neuron 11 0.00353 

VAR3(3) --> hidden neuron 11 -0.09358 

VAR3(4) --> hidden neuron 11 0.07096 
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VAR2(0) --> hidden neuron 11 -0.00959 

VAR2(1) --> hidden neuron 11 0.05716 

VAR2(2) --> hidden neuron 11 -0.15015 

VAR2(3) --> hidden neuron 11 0.14540 

VAR2(4) --> hidden neuron 11 0.01020 

VAR5 --> hidden neuron 12 -0.12051 

VAR6 --> hidden neuron 12 0.05800 

VAR7 --> hidden neuron 12 -0.09004 

VAR10 --> hidden neuron 12 0.06353 

VAR9 --> hidden neuron 12 0.04132 

VAR8 --> hidden neuron 12 -0.02035 

VAR12 --> hidden neuron 12 -0.11904 

VAR13 --> hidden neuron 12 0.02682 

VAR1 --> hidden neuron 12 -0.01966 

VAR11 --> hidden neuron 12 0.08887 

VAR4 --> hidden neuron 12 0.02777 

VAR3(0) --> hidden neuron 12 0.10262 

VAR3(1) --> hidden neuron 12 -0.04978 

VAR3(2) --> hidden neuron 12 0.03131 

VAR3(3) --> hidden neuron 12 -0.14649 

VAR3(4) --> hidden neuron 12 0.03504 

VAR2(0) --> hidden neuron 12 -0.05454 

VAR2(1) --> hidden neuron 12 0.08721 

VAR2(2) --> hidden neuron 12 -0.17393 

VAR2(3) --> hidden neuron 12 0.10863 

VAR2(4) --> hidden neuron 12 0.00760 

input bias --> hidden neuron 1 0.93543 

input bias --> hidden neuron 2 0.24165 

input bias --> hidden neuron 3 -0.02542 

input bias --> hidden neuron 4 0.48007 

input bias --> hidden neuron 5 0.21224 

input bias --> hidden neuron 6 0.22919 

input bias --> hidden neuron 7 0.30596 

input bias --> hidden neuron 8 0.35936 

input bias --> hidden neuron 9 0.04040 

input bias --> hidden neuron 10 -0.43470 

input bias --> hidden neuron 11 0.05897 

input bias --> hidden neuron 12 0.02339 

hidden neuron 1 --> collegeenroll(0) 0.89139 

hidden neuron 2 --> collegeenroll(0) 1.50458 

hidden neuron 3 --> collegeenroll(0) 0.11996 

hidden neuron 4 --> collegeenroll(0) -0.34762 

hidden neuron 5 --> collegeenroll(0) 1.19259 

hidden neuron 6 --> collegeenroll(0) -0.81720 

hidden neuron 7 --> collegeenroll(0) 1.74305 

hidden neuron 8 --> collegeenroll(0) 0.83660 
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hidden neuron 9 --> collegeenroll(0) 1.37894 

hidden neuron 10 --> collegeenroll(0) -0.43688 

hidden neuron 11 --> collegeenroll(0) 0.43419 

hidden neuron 12 --> collegeenroll(0) 0.66300 

hidden neuron 1 --> collegeenroll(1) -0.86380 

hidden neuron 2 --> collegeenroll(1) -1.44151 

hidden neuron 3 --> collegeenroll(1) -0.10134 

hidden neuron 4 --> collegeenroll(1) 0.38616 

hidden neuron 5 --> collegeenroll(1) -1.21541 

hidden neuron 6 --> collegeenroll(1) 0.84581 

hidden neuron 7 --> collegeenroll(1) -1.71709 

hidden neuron 8 --> collegeenroll(1) -0.80667 

hidden neuron 9 --> collegeenroll(1) -1.42701 

hidden neuron 10 --> collegeenroll(1) 0.43715 

hidden neuron 11 --> collegeenroll(1) -0.43587 

hidden neuron 12 --> collegeenroll(1) -0.67763 

hidden bias --> collegeenroll(0) 0.67833 

hidden bias --> collegeenroll(1) -0.72367 
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APPENDIX 5: Artificial Neural Network Grade 12 Node 

Weights 
 

Table 36: Grade 12 Artificial Neural Network Model Components 

Node Path Weights  

VAR5 --> hidden neuron 1 -2.4271 

VAR6 --> hidden neuron 1 -10.2395 

VAR7 --> hidden neuron 1 3.1569 

VAR10 --> hidden neuron 1 -1.2375 

VAR9 --> hidden neuron 1 -0.4375 

VAR8 --> hidden neuron 1 -0.5695 

VAR12 --> hidden neuron 1 -6.4106 

VAR13 --> hidden neuron 1 11.8356 

VAR1 --> hidden neuron 1 -1.6717 

VAR11 --> hidden neuron 1 -3.2228 

VAR4 --> hidden neuron 1 -1.7481 

VAR2(0) --> hidden neuron 1 0.7098 

VAR2(1) --> hidden neuron 1 0.8935 

VAR2(2) --> hidden neuron 1 7.0309 

VAR2(3) --> hidden neuron 1 -6.8142 

VAR2(4) --> hidden neuron 1 -3.3450 

VAR3(0) --> hidden neuron 1 -5.0688 

VAR3(1) --> hidden neuron 1 4.2943 

VAR3(2) --> hidden neuron 1 -3.3745 

VAR3(3) --> hidden neuron 1 2.6952 

VAR3(4) --> hidden neuron 1 -0.0490 

VAR5 --> hidden neuron 2 -2.7425 

VAR6 --> hidden neuron 2 -0.7160 

VAR7 --> hidden neuron 2 6.6629 

VAR10 --> hidden neuron 2 4.1105 

VAR9 --> hidden neuron 2 1.1869 

VAR8 --> hidden neuron 2 -1.3314 

VAR12 --> hidden neuron 2 -0.5877 

VAR13 --> hidden neuron 2 0.7232 

VAR1 --> hidden neuron 2 -4.1035 

VAR11 --> hidden neuron 2 1.7972 

VAR4 --> hidden neuron 2 -0.3031 

VAR2(0) --> hidden neuron 2 3.1302 

VAR2(1) --> hidden neuron 2 -3.9807 

VAR2(2) --> hidden neuron 2 3.3228 

VAR2(3) --> hidden neuron 2 -2.2593 

VAR2(4) --> hidden neuron 2 1.6530 

VAR3(0) --> hidden neuron 2 3.2038 

VAR3(1) --> hidden neuron 2 3.2815 

VAR3(2) --> hidden neuron 2 -5.5505 

VAR3(3) --> hidden neuron 2 0.5486 
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VAR3(4) --> hidden neuron 2 0.2870 

VAR5 --> hidden neuron 3 -3.1645 

VAR6 --> hidden neuron 3 2.0882 

VAR7 --> hidden neuron 3 -2.0796 

VAR10 --> hidden neuron 3 -1.1709 

VAR9 --> hidden neuron 3 0.7906 

VAR8 --> hidden neuron 3 1.1038 

VAR12 --> hidden neuron 3 -0.0380 

VAR13 --> hidden neuron 3 1.1824 

VAR1 --> hidden neuron 3 1.5225 

VAR11 --> hidden neuron 3 -3.9238 

VAR4 --> hidden neuron 3 1.2052 

VAR2(0) --> hidden neuron 3 2.6315 

VAR2(1) --> hidden neuron 3 -0.1310 

VAR2(2) --> hidden neuron 3 0.3420 

VAR2(3) --> hidden neuron 3 0.2160 

VAR2(4) --> hidden neuron 3 1.3613 

VAR3(0) --> hidden neuron 3 1.6898 

VAR3(1) --> hidden neuron 3 3.8221 

VAR3(2) --> hidden neuron 3 -3.2575 

VAR3(3) --> hidden neuron 3 3.2081 

VAR3(4) --> hidden neuron 3 -0.9738 

VAR5 --> hidden neuron 4 4.3464 

VAR6 --> hidden neuron 4 7.6987 

VAR7 --> hidden neuron 4 -4.9896 

VAR10 --> hidden neuron 4 -4.2760 

VAR9 --> hidden neuron 4 6.9124 

VAR8 --> hidden neuron 4 -2.8507 

VAR12 --> hidden neuron 4 7.4019 

VAR13 --> hidden neuron 4 9.3004 

VAR1 --> hidden neuron 4 0.3200 

VAR11 --> hidden neuron 4 -5.3396 

VAR4 --> hidden neuron 4 -1.6297 

VAR2(0) --> hidden neuron 4 0.0970 

VAR2(1) --> hidden neuron 4 -6.1430 

VAR2(2) --> hidden neuron 4 5.6063 

VAR2(3) --> hidden neuron 4 -3.7962 

VAR2(4) --> hidden neuron 4 2.9452 

VAR3(0) --> hidden neuron 4 4.1177 

VAR3(1) --> hidden neuron 4 1.2148 

VAR3(2) --> hidden neuron 4 -0.7250 

VAR3(3) --> hidden neuron 4 -5.5064 

VAR3(4) --> hidden neuron 4 -0.4630 

VAR5 --> hidden neuron 5 4.3810 

VAR6 --> hidden neuron 5 -6.4053 

VAR7 --> hidden neuron 5 32.4178 
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VAR10 --> hidden neuron 5 -2.3202 

VAR9 --> hidden neuron 5 2.9221 

VAR8 --> hidden neuron 5 0.4341 

VAR12 --> hidden neuron 5 -7.4284 

VAR13 --> hidden neuron 5 2.3537 

VAR1 --> hidden neuron 5 4.4765 

VAR11 --> hidden neuron 5 -3.6527 

VAR4 --> hidden neuron 5 -4.8914 

VAR2(0) --> hidden neuron 5 -9.8154 

VAR2(1) --> hidden neuron 5 -3.6333 

VAR2(2) --> hidden neuron 5 -3.2475 

VAR2(3) --> hidden neuron 5 -0.3456 

VAR2(4) --> hidden neuron 5 0.9681 

VAR3(0) --> hidden neuron 5 -2.7657 

VAR3(1) --> hidden neuron 5 -4.0043 

VAR3(2) --> hidden neuron 5 -3.1207 

VAR3(3) --> hidden neuron 5 -2.9561 

VAR3(4) --> hidden neuron 5 -3.2059 

VAR5 --> hidden neuron 6 3.5439 

VAR6 --> hidden neuron 6 -3.6116 

VAR7 --> hidden neuron 6 1.2286 

VAR10 --> hidden neuron 6 4.9381 

VAR9 --> hidden neuron 6 10.2706 

VAR8 --> hidden neuron 6 -1.0204 

VAR12 --> hidden neuron 6 -0.3155 

VAR13 --> hidden neuron 6 2.0615 

VAR1 --> hidden neuron 6 -1.9071 

VAR11 --> hidden neuron 6 -6.4048 

VAR4 --> hidden neuron 6 -0.6361 

VAR2(0) --> hidden neuron 6 -2.2844 

VAR2(1) --> hidden neuron 6 -1.4419 

VAR2(2) --> hidden neuron 6 -1.1444 

VAR2(3) --> hidden neuron 6 -0.0568 

VAR2(4) --> hidden neuron 6 0.2860 

VAR3(0) --> hidden neuron 6 -2.9769 

VAR3(1) --> hidden neuron 6 -6.1172 

VAR3(2) --> hidden neuron 6 3.8552 

VAR3(3) --> hidden neuron 6 5.8795 

VAR3(4) --> hidden neuron 6 -5.3997 

VAR5 --> hidden neuron 7 3.1596 

VAR6 --> hidden neuron 7 -5.4269 

VAR7 --> hidden neuron 7 -2.5966 

VAR10 --> hidden neuron 7 1.8031 

VAR9 --> hidden neuron 7 4.3552 

VAR8 --> hidden neuron 7 -0.6169 

VAR12 --> hidden neuron 7 6.0163 
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VAR13 --> hidden neuron 7 -1.2849 

VAR1 --> hidden neuron 7 6.2791 

VAR11 --> hidden neuron 7 -1.9047 

VAR4 --> hidden neuron 7 0.5574 

VAR2(0) --> hidden neuron 7 -2.6596 

VAR2(1) --> hidden neuron 7 -1.1806 

VAR2(2) --> hidden neuron 7 -1.2486 

VAR2(3) --> hidden neuron 7 1.3847 

VAR2(4) --> hidden neuron 7 -0.1704 

VAR3(0) --> hidden neuron 7 -5.6939 

VAR3(1) --> hidden neuron 7 5.3688 

VAR3(2) --> hidden neuron 7 -3.0806 

VAR3(3) --> hidden neuron 7 -7.1774 

VAR3(4) --> hidden neuron 7 6.7051 

VAR5 --> hidden neuron 8 -3.2436 

VAR6 --> hidden neuron 8 1.3813 

VAR7 --> hidden neuron 8 -5.5919 

VAR10 --> hidden neuron 8 -3.1332 

VAR9 --> hidden neuron 8 1.2757 

VAR8 --> hidden neuron 8 1.7340 

VAR12 --> hidden neuron 8 -0.8385 

VAR13 --> hidden neuron 8 -2.1050 

VAR1 --> hidden neuron 8 0.3353 

VAR11 --> hidden neuron 8 1.2490 

VAR4 --> hidden neuron 8 0.7886 

VAR2(0) --> hidden neuron 8 2.7280 

VAR2(1) --> hidden neuron 8 -4.2931 

VAR2(2) --> hidden neuron 8 5.4967 

VAR2(3) --> hidden neuron 8 -0.0529 

VAR2(4) --> hidden neuron 8 -0.1573 

VAR3(0) --> hidden neuron 8 1.8953 

VAR3(1) --> hidden neuron 8 -0.0699 

VAR3(2) --> hidden neuron 8 3.3665 

VAR3(3) --> hidden neuron 8 0.4499 

VAR3(4) --> hidden neuron 8 -1.8897 

VAR5 --> hidden neuron 9 -2.7207 

VAR6 --> hidden neuron 9 4.6578 

VAR7 --> hidden neuron 9 -5.8605 

VAR10 --> hidden neuron 9 1.0525 

VAR9 --> hidden neuron 9 0.6142 

VAR8 --> hidden neuron 9 3.1565 

VAR12 --> hidden neuron 9 4.6107 

VAR13 --> hidden neuron 9 -0.9566 

VAR1 --> hidden neuron 9 7.8674 

VAR11 --> hidden neuron 9 -0.1744 

VAR4 --> hidden neuron 9 -0.1744 
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VAR2(0) --> hidden neuron 9 9.9895 

VAR2(1) --> hidden neuron 9 -2.4867 

VAR2(2) --> hidden neuron 9 1.8767 

VAR2(3) --> hidden neuron 9 -3.9980 

VAR2(4) --> hidden neuron 9 -1.9622 

VAR3(0) --> hidden neuron 9 -3.1203 

VAR3(1) --> hidden neuron 9 2.2926 

VAR3(2) --> hidden neuron 9 0.0593 

VAR3(3) --> hidden neuron 9 2.1369 

VAR3(4) --> hidden neuron 9 2.0820 

input bias --> hidden neuron 1 -1.5028 

input bias --> hidden neuron 2 1.8353 

input bias --> hidden neuron 3 4.4460 

input bias --> hidden neuron 4 -1.2573 

input bias --> hidden neuron 5 -16.0469 

input bias --> hidden neuron 6 -4.7499 

input bias --> hidden neuron 7 -3.8918 

input bias --> hidden neuron 8 3.7264 

input bias --> hidden neuron 9 3.4399 

hidden neuron 1 --> collegeenroll(0) -1.0605 

hidden neuron 2 --> collegeenroll(0) -1.2609 

hidden neuron 3 --> collegeenroll(0) 1.5916 

hidden neuron 4 --> collegeenroll(0) -1.2746 

hidden neuron 5 --> collegeenroll(0) 2.3928 

hidden neuron 6 --> collegeenroll(0) -1.1643 

hidden neuron 7 --> collegeenroll(0) -0.6351 

hidden neuron 8 --> collegeenroll(0) 0.5634 

hidden neuron 9 --> collegeenroll(0) 2.0249 

hidden neuron 1 --> collegeenroll(1) 1.8399 

hidden neuron 2 --> collegeenroll(1) 1.2402 

hidden neuron 3 --> collegeenroll(1) -2.0504 

hidden neuron 4 --> collegeenroll(1) 1.3873 

hidden neuron 5 --> collegeenroll(1) -3.3982 

hidden neuron 6 --> collegeenroll(1) 2.2255 

hidden neuron 7 --> collegeenroll(1) 1.5395 

hidden neuron 8 --> collegeenroll(1) -1.2260 

hidden neuron 9 --> collegeenroll(1) -1.8381 

hidden bias --> collegeenroll(0) -1.3377 

hidden bias --> collegeenroll(1) -0.7987 

VAR5 --> hidden neuron 1 -2.4271 

VAR6 --> hidden neuron 1 -10.2395 

VAR7 --> hidden neuron 1 3.1569 

VAR10 --> hidden neuron 1 -1.2375 

VAR9 --> hidden neuron 1 -0.4375 

VAR8 --> hidden neuron 1 -0.5695 

VAR12 --> hidden neuron 1 -6.4106 
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VAR13 --> hidden neuron 1 11.8356 

VAR1 --> hidden neuron 1 -1.6717 

VAR11 --> hidden neuron 1 -3.2228 

VAR4 --> hidden neuron 1 -1.7481 

VAR2(0) --> hidden neuron 1 0.7098 

VAR2(1) --> hidden neuron 1 0.8935 

VAR2(2) --> hidden neuron 1 7.0309 

VAR2(3) --> hidden neuron 1 -6.8142 

VAR2(4) --> hidden neuron 1 -3.3450 

VAR3(0) --> hidden neuron 1 -5.0688 

VAR3(1) --> hidden neuron 1 4.2943 

VAR3(2) --> hidden neuron 1 -3.3745 

VAR3(3) --> hidden neuron 1 2.6952 

VAR3(4) --> hidden neuron 1 -0.0490 

VAR5 --> hidden neuron 2 -2.7425 

VAR6 --> hidden neuron 2 -0.7160 

VAR7 --> hidden neuron 2 6.6629 

VAR10 --> hidden neuron 2 4.1105 

VAR9 --> hidden neuron 2 1.1869 

VAR8 --> hidden neuron 2 -1.3314 

VAR12 --> hidden neuron 2 -0.5877 

VAR13 --> hidden neuron 2 0.7232 

VAR1 --> hidden neuron 2 -4.1035 

VAR11 --> hidden neuron 2 1.7972 

VAR4 --> hidden neuron 2 -0.3031 

VAR2(0) --> hidden neuron 2 3.1302 

VAR2(1) --> hidden neuron 2 -3.9807 

VAR2(2) --> hidden neuron 2 3.3228 

VAR2(3) --> hidden neuron 2 -2.2593 

VAR2(4) --> hidden neuron 2 1.6530 

VAR3(0) --> hidden neuron 2 3.2038 

VAR3(1) --> hidden neuron 2 3.2815 

VAR3(2) --> hidden neuron 2 -5.5505 

VAR3(3) --> hidden neuron 2 0.5486 

VAR3(4) --> hidden neuron 2 0.2870 

VAR5 --> hidden neuron 3 -3.1645 

VAR6 --> hidden neuron 3 2.0882 

VAR7 --> hidden neuron 3 -2.0796 

VAR10 --> hidden neuron 3 -1.1709 

VAR9 --> hidden neuron 3 0.7906 

VAR8 --> hidden neuron 3 1.1038 

VAR12 --> hidden neuron 3 -0.0380 

VAR13 --> hidden neuron 3 1.1824 

VAR1 --> hidden neuron 3 1.5225 

VAR11 --> hidden neuron 3 -3.9238 

VAR4 --> hidden neuron 3 1.2052 
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VAR2(0) --> hidden neuron 3 2.6315 

VAR2(1) --> hidden neuron 3 -0.1310 

VAR2(2) --> hidden neuron 3 0.3420 

VAR2(3) --> hidden neuron 3 0.2160 

VAR2(4) --> hidden neuron 3 1.3613 

VAR3(0) --> hidden neuron 3 1.6898 

VAR3(1) --> hidden neuron 3 3.8221 

VAR3(2) --> hidden neuron 3 -3.2575 

VAR3(3) --> hidden neuron 3 3.2081 

VAR3(4) --> hidden neuron 3 -0.9738 

VAR5 --> hidden neuron 4 4.3464 

VAR6 --> hidden neuron 4 7.6987 

VAR7 --> hidden neuron 4 -4.9896 

VAR10 --> hidden neuron 4 -4.2760 

VAR9 --> hidden neuron 4 6.9124 

VAR8 --> hidden neuron 4 -2.8507 

VAR12 --> hidden neuron 4 7.4019 

VAR13 --> hidden neuron 4 9.3004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 

 

APPENDIX 6: Model ROC AUC Estimates by Grade 
 

Table 37: Model ROC AUC Estimates by Grade 

Model Grade Level ROC AUC Estimate 

Artificial Neural 

Network 

 

 

 

Gradient Boosted 

Decision Trees 

 

 

 

Multilevel Logistic 

Regression 

9 

10 

11 

12 

 

9 

10 

11 

12 

 

9 

10 

11 

12 

.8688 

.8784 

.8870 

.8926 

 

.8029 

.8378 

.8713 

.9108 

 

.8654 

.8780 

.8793 

.8986 
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