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Abstract 

Breast cancer screening modalities have received constant research attention that are 

mainly focused on their abilities to detect cancer at an early stage while reducing the risks 

of harmful radiation dose delivered to the patient. As a result, numerous advancements 

have been made over the last two decades which include the introduction of digital 

mammography (DM) and digital breast tomosynthesis (DBT). Numerous clinical trials 

have demonstrated the decrease in mortality rates by employing these modalities. 

Significant research attention remains focused on investigating methods for further 

improving the detection capabilities and reducing the radiation dose. The conventional x-

ray imaging technique relies on the attenuation characteristics of a tissue to produce 

imaging contrast. However, the similar attenuation characteristics of normal and 

malignant breast tissue present a challenge in differentiating between them using 

conventional x-ray imaging. The current technique for providing higher image quality 

involves the introduction of anti-scatter grids and operating the x-ray tubes at much lower 

x-ray energies as compared to the other radiography fields, both of which results in an 

increased radiation dose. The current method for providing higher image quality involves 

utilizing anti-scatter grids and operating at much lower x-ray energies than other 

radiography fields, both of which result in an increased radiation dose. Phase sensitive 

imaging is an emerging technique, which relies not only on attenuation coefficients but 

also the effects produced by x-ray phase shift coefficients. Within the diagnostic energy 

range, it has been estimated that the phase shift coefficients of a breast tissue are at least 

2-3 orders of magnitude larger than their attenuation coefficients. Thus, this technique 
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holds the potential to increase the x-ray energy and remove the grid without 

compromising the image quality, which could potentially reduce the patient dose. The 

inline phase sensitive approach involves the simplest implementation—provided that the 

imaging system is spatially coherent — as it does not involve the introduction of any 

optical element between the object and detector. Preclinical studies with the inline phase 

sensitive imaging technique at the same energy as conventional imaging have indicated 

the ability to reduce the radiation dose without negatively impacting the diagnostic 

capabilities. However, there are some existing challenges that have prevented this 

technique in its clinical implementation. Responding to the challenges, an inline phase 

sensitive imaging prototype has been developed in the advanced biomedical imaging 

laboratory. The goal of the research presented in this dissertation comprises a thorough 

investigation in optimizing a high energy phase sensitive imaging prototype efficiently in 

terms of its geometric and operating parameters. Once optimized, the imaging 

performance of this phase sensitive x-ray imaging prototype is going to be compared with 

the commercial digital mammography and digital breast tomosynthesis (DBT) imaging 

systems using modular breast phantoms at similar and reduced mean glandular dose (Dg) 

dose levels. 

This dissertation includes numerous original contributions, perhaps the most significant 

of which were the demonstration of the ability of inline phase sensitive imaging prototype 

to deliver higher image quality required for tumor detection and diagnosis at higher x-ray 

energies in comparison with low energy commercial imaging systems at similar or less 

radiation dose levels. These results clearly demonstrate the ability of the high energy 
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inline phase sensitive imaging system to maintain the image quality improvement that is 

necessary for diagnosis at high x-ray energies without an increase in the radiation dose. 



 

1 

Chapter 1. Introduction 

1.1 Significance 

Cancer is second leading cause of death in the U.S after the heart disease [1,2].  The 

number of cancer deaths have been climbing for decades, bringing the nation’s top two 

killers closer than ever in the rankings for leading cause of death. For 2017, the American 

cancer society estimates about 252,710 new cases of invasive breast cancer are expected 

to be diagnosed in women with an estimate of 40,610 breast cancer deaths [3]. Breast 

cancer is a progressive disease and small tumors in general indicate an early stage, early 

detection of breast cancer is very important to drastically improved chances for survival. 

According to the American Cancer Society, women with stage 0 or stage I breast cancer 

have an almost 100% 5-year survival rate. If detected while still in stage II, the survival 

rate remains high at 93% [4-7]. However, when the cancer reaches stage III, 5-year 

survival drastically decreases to 72% and once it the cancer has metastasized or reached 

stage IV or above women only have about a 22% chance of surviving their diagnosis. 

Thus, early detection is key to improving breast cancer survival rates.  

Mammography has been the most widely used diagnostic technique for breast cancer 

detection and clinical trials have proven its ability to decrease mortality rates [8-13]. Due 

to its potential for saving lives, mammography has received constant research focus since 

the development of dedicated mammography systems [14-15]. Early detection has been 

a constant goal throughout the development of mammography. In mammography, two-

dimensional (2D) images of three dimensional (3-D) objects are acquired which does not 

able to combat the challenges presented by overlapping structures from dense tissue 



 

2 

superimposition. This inability potentially leads to missed cancers, as well as false-

positive recalls and/or biopsies. Digital breast tomosynthesis (DBT) is an emerging quasi-

three-dimensional (3D) x-ray imaging modality with demonstrated value in breast cancer 

screening [16-21]. In DBT, a set of low dose projection views are acquired over a limited 

angular range. A set of tomographic slices is reconstructed from the limited angle 

projection views to provide better visibility and discrimination of breast masses by 

reducing the structured noise caused by the overlapping breast tissues. Both diagnostic 

mammography and DBT solely rely on the attenuation contrast for the image formation. 

Attenuation contrast is based on the principle that x-rays are absorbed in varying amounts 

according to the biological composition of structures within an object, which generate 

differences in contrast on the x-ray image [22-24]. For example, the difference in 

biological composition between bones and soft tissue produces very high attenuation 

contrast between them on an x-ray image. However, due to the extremely similar 

composition of normal and malignant breast tissue, the results are in low attenuation 

contrast which presents a significant challenge for cancer detection in the field of 

mammography and DBT [24]. As a result, there is always a need for much higher image 

quality in breast imaging to highlight the differences between normal and malignant 

tissue. To fulfill that requirement in the attenuation-based imaging, improving the image 

quality can be accomplished by lowering the x-ray beam energy so that to increase the 

amount of attenuation experienced by a tissue and to improve the signal to noise ratio 

[22]. Other way to improve the signal to noise ratio is to employ an anti-scatter grid which 

reduces the contribution of the scattered x-rays to the image. Both techniques have 
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significance on the radiation dose delivered to the patient which in turn is potentially 

harmful. 

In the last two decades, a new x-ray imaging technology has emerged called phase 

sensitive x-ray imaging which has the potential to improve this difficult balance between 

image quality and radiation dose. Phase sensitive imaging is based on the principle of x-

rays being part of the electromagnetic waves spectrum, undergoes phase shits as it 

transverses the objects [25-30]. The phase shift coefficients are also dependent on 

biological properties of the structures within an object. Phase induced contrast is 

generated from the interference among parts of the emerging wave fronts that have 

experienced different phase shifts. Contrast in the image is produced according to 

differences in phase shift coefficients between structures [28,30]. It has been reported that 

for breast elements such as soft tissue, phase shift coefficients are at least 2-3 orders of 

magnitude larger than their attenuation coefficients for the diagnostic energy range 

[27,31,32]. Therefore, the variations in soft tissue density give rise to much stronger phase 

shift induced contrast compared to the attenuation-based contrast. If proper operating 

conditions are utilized, this phase shift induced contrast is superimposed onto the 

attenuation contrast on the image and helps to improve the visibility of the borders of 

structures and other fine details. Therefore, phase sensitive imaging has received 

extensive research focus, and numerous studies have indicated the potential of the new 

technology to benefit the fields of radiography, especially breast imaging applications.  

The in-line phase sensitive approach involves the simplest implementation of all the other 

approaches — provided that the imaging system is spatially coherent—as it does not 

involve the introduction of any optical element between the object and detector [33-36]. 
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This approach utilizes a similar system configuration as of traditional radiography with 

typically a micro focus source generating a partially coherent x-ray beam which traverses 

an object, and an object-to-detector distance is introduced for the development of 

interference patterns to be detected on the imaging plane. The improvement in image 

quality with this approach has been consistently reported [37-46]. The ability to maintain 

the image quality improvement with reduced radiation dose has been thoroughly 

investigated [47-60], which is of critical importance in breast imaging.  

The typical x-ray energies for diagnostic radiography range from 15 to 150 kilovolts (kV). 

Due to the restrictions imposed by attenuation-based imaging as detailed above, 

mammography and DBT currently operates at the lower end of the range. However, the 

distance that is introduced between the object and the detector in this approach results in 

fewer x-ray photons to be detected by the detector, as compared to the traditional contact 

mode detection under the same conditions of exposure parameters, radiation dose 

delivery and the capability of detectors. Thus, an in-line phase sensitive imaging system 

can hardly provide similar imaging ability as mammography and DBT systems, due to 

the massive loss of attenuation-based contrast. The topic of higher x-ray energies for 

reduced dose has been thoroughly investigated by other radiography fields, such as chest 

radiography, which generally operates between 120 and 150 kV. To solve this problem, 

high-energy x-rays, which are already employed in chest radiography, can be employed 

to compensate for that loss of x-ray photons during a long-distance propagation, thus 

preserving most of the attenuation contrast.  
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For a breast tissue, the phase shift coefficients decrease much slowly than attenuation 

coefficients as the x-ray energy increases, the use of inline phase sensitive imaging can 

sustain the image quality improvements at higher x-ray energies as compared to the 

attenuation-based imaging. Due to the high penetrability and low absorption of high-

energy x-ray photons at higher energies, the radiation dose received by patients can also 

be potentially reduced. To the best of my knowledge, the potential of utilizing x-ray 

energy ranges such as those in chest radiography for mammography and DBT has not 

been reported by other research groups. 

In the past five years, the dedicated members at our lab developed a high energy inline 

phase sensitive imaging prototype. The focus of the research presented in this dissertation 

comprises a thorough investigation of characterizing and optimizing the high energy 

inline phase sensitive prototype in terms of its operating parameters for both 

mammography and DBT applications. Once optimized, phantom studies are going to be 

conducted in mammography and DBT imaging modes and their imaging performances 

will be compared with the two-commercial attenuation-based systems at similar or less 

radiation dose levels. The two-commercial attenuation-based systems are routinely used 

in the clinical world in the U.S for breast cancer screening. Thus, this investigation holds 

a great potential of applying higher x-ray energies using inline phase sensitive imaging 

technique to the field of mammography and DBT for breast cancer screening. In addition 

to the dose benefits of increasing the x-ray energy, the dissertation research also has the 

potential to overcome an existing challenge in the inline phase sensitive imaging 

involving the number of output quanta generated with the x-ray source, which will be 

discussed in more detail in the following chapters. 
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1.2 Organization of Dissertation 

The organization of this dissertation is as follows. Chapter 2 details the research 

background, including the principles and theory of the x-ray in-line phase sensitive 

imaging and phase retrieval techniques. Chapter 3 presents the development and 

optimization of a high-energy x-ray in-line phase sensitive prototype utilized in this 

dissertation. Chapter 4 provides a very detailed characterization of a hybrid micro focus 

x-ray tube which is a core component of the prototype. Chapter 5 presents a detailed 

comparison of the high energy inline phase sensitive prototype and commercial clinical 

mammography systems in imaging phantoms with varying glandular ratios. Chapter 6 

further details the comparison of the prototype and a commercial mammography system 

in imaging a dense breast phantom with heterogenous backgrounds. Chapter 7 explains 

the feasibility of employing a digital tomosynthesis system in overcoming the challenges 

associated with digital mammography. Chapter 8 details a comparison of phase sensitive 

digital tomosynthesis prototype and a commercial digital breast tomosynthesis system in 

imaging heterogenous phantoms with simulated tumors. microbubbles as an x-ray phase 

contrast agent with a projection mode imaging system and provides a criterion in 

microbubble shell material selection. Finally, a research summary and a discussion of 

future research direction are presented in Chapter 8.   



 

7 

Chapter 2. Review of the Current Research 

2.1 Background 

Diagnostic x-rays are an electromagnetic (EM) radiation having the wavelength shorter 

than the ultraviolet rays with photon energies in the range from about 10 keV to 150 keV. 

Three parameters are commonly used to characterize the EM; frequency (ν), wavelength 

(λ) and energy and they all are related to each other by Eq. (2.1) [22] 

    E = h ν = 
ℎ𝑐

𝜆
      (2.1) 

 where h = 6.626 × 10-34 J.s = 4.136 × 10-18 keV.s is the Plank’s constant. When E is 

expressed in kilo-electron-volts and λ in nanometers (nm), we have  

              E (keV) = 
1.24

𝜆 (𝑛𝑚)
     (2.2) 

Diagnostic x-rays occupy a distinguishable range in wavelength from 0.1 to 0.008 nm, 

making them suitable to investigate small objects and various structures in different 

media. When x-rays interact with the electrons of a sample, there is electronic excitations 

which give rise to various forms of x-ray scattering. These scattered x-rays carry 

information about electronic states and structures encountered during their travel to the 

detector. Considering an x-ray wave of amplitude, A0 (r) = E0 (r) exp (-i2πft), that interact 

with a sample with thickness l and refractive index n. The refractive index of a medium 

is defined as follows: [27-29] 

          n = 1 − δ + iβ      (2.3) 
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The incident wave makes the electron of the sample oscillate in the direction of the 

electric field, and as an accelerated charge the electron radiates with frequency f of the 

incident wave. The resulting wave after the transmission through the medium can be 

written as [32, 33] 

A1 (r) = E0 (r) exp (-i2πfnt)     (2.4) 

            A1 (r) = E0 (r) exp (-i2π 
𝑐

𝜆
 (1 − δ + iβ) 

𝑙

𝑐
)   (2.5) 

           A1 (r) = A0 (r) exp (
2𝜋𝑖𝛿𝑙

𝜆
) exp (

−2𝜋𝑖𝛽𝑙

𝜆
)   (2.6) 

In Eq. (2.6), the first exponential term accounts for the phase change, and the second for 

the decrease in the amplitude. The linear attenuation coefficient (µ) and phase shift 

coefficient (φ) for a given tissue are given as   

     µ =  
4𝜋𝛽

𝜆
 = 

2𝜔𝛽

𝑐
 = 2Nλre𝑓𝑙

𝐼    (2.7) 

    φ =  
2𝜋𝛿

𝜆
 =  𝛿𝐾 = Nλre𝑓𝑙

𝑟    (2.8) 

where 𝑟𝑒  is the classic electron radius,  N is the number of electrons per unit volume 

(density), 𝑓𝑙
𝑖 – the imaginary part of the anomalous scattering factor and 𝑓𝑙

𝑟 is the real 

part of the anomalous scattering factor [33].  

It has been noted that the real and imaginary parts of the refractive index (n) changes 

differently with respect to the energy (E) of the incident x-ray photon [31,34,61]. For light 

element in human body such as hydrogen, carbon, nitrogen and oxygen, φ is proportional 
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to 1/E, while µ is approximately proportional to 1/E3. This means that that for light 

elements, the attenuation coefficients decrease at a much faster rate than the phase shift 

coefficients. Furthermore, for those light elements within the diagnostic energy range, φ 

is two-three orders of magnitude larger than µ. Therefore, with the variations in soft tissue 

density, a much stronger phase-shift induced contrast will be produced in comparison to 

the attenuation contrast [25,28,29]. This creates an opportunity of utilizing higher energy 

x-rays for potential phase contrast soft tissue imaging which may potentially reduce the 

radiation dose delivered to the patient.  

Four major techniques have been developed to exploit the phase-contrast in the x-ray 

regime which are: (a) in-line based imaging [25], (b) analyzer-based imaging (ABI) [62], 

(c) crystal interferometry methods based on the use of crystals [63-64] and (d) grating 

interferometric methods [65]. All of the PCI techniques are different in their experimental 

set-up and requirements in terms of the x-ray beam spatial coherence. The final image 

contrast in each technique depends on several factors, including the spatial resolution of 

the x-ray detector, the specific image formation mechanism, x-ray energy and the beam 

divergence. 

2.2  In-line Phase Contrast X-ray Imaging  

With in-line phase-contrast imaging method, a partially coherent wave-front traverses the 

sample and the variations in thicknesses (l) and refractive index (n) of a sample causes 

the wave front to distort in terms of both amplitude and phase. When the detector is 

directly placed behind the sample, an attenuation-based image is formed while as the 

distorted wave-front propagates sufficiently far, the small differences in phase shifts of 
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the wave front causes interference patterns and variations of intensity are observed in the 

image plane. These interference patterns cause edge enhancements at interfaces between 

components with varying phase shift coefficients. This edge enhancement has its own 

significance, for instance, with malignant breast tumors, the edges are heterogenous in 

comparison to a benign tumor and a phase contrast image could potentially identify the 

intra tissue heterogeneity for accurate diagnostic evaluation. Under generalized 

conditions, the lateral Laplacian of phase is directly proportional to the longitudinal 

gradient of intensity. Therefore, the contrast that is arising from the lateral Laplacian of 

phase emphasizes the internal and external contours where the phase shift coefficients are 

changing.   

The schematics of the setup for the inline phase contrast imaging is shown in Figure 2.1. 

In this figure, R1 denotes the source-sample distance, R2 is the sample to detector distance. 

To visualize the phase contrast effects, the x-ray beam generated from an x-ray source 

with focal spot size (s) needs to have sufficient spatial coherence lengths which is defined 

as [28] 

     Lcoh = 
𝜆𝑅1

𝑠
        (2.9)  

It can be noticed that by operating at lower photon energy (E) i-e higher wavelengths over 

a longer R1 distance utilizing x-ray tubes with finite focal spot size (s) can give the best 

phase contrast image. Furthermore, the R2 distance also plays an important in the phase 

contrast imaging formation. It has been proposed that in addition to the sufficient Lcoh, 

phase-space shearing length (Lshear) also plays a crucial role in phase contrast visibility, 

which is defined as [34] 
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     Lshear = 
𝜆𝑅2𝑢

𝑀
                  (2.10) 

where u is the spatial frequency of the structural component of the sample and M is the 

geometric magnification. According to Wu and Liu analyses [34], if the ratio of Lshear/Lcoh 

>>1, the wave front is incoherent over the shearing length, and the phase contrast that is 

associated with the structural component is invisible. If Lshear/Lcoh <<1, the wavefield is 

fully coherent and the phase contrast associated with the structural component is fully 

visible. For intermediate cases with Lshear/Lcoh <1, the wavefield is partially coherent and 

the phase contrast visibility increases with decreasing Lshear. An important system 

parameter, R2 that is associated with Lshear, needs to be optimized.  

 

         

                                 

 

 

 

Figure.2.1. The in-line phase contrast imaging implementation system with a micro focus x-ray 

source and a detector. 
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2.3  Theory of in-line Phase Contrast X-ray Imaging 

To quantitatively analyze the in-line phase contrast imaging modality, it is of critical 

importance to have a theoretical formalism. We will discuss two models for the formalism 

of the in-line phase contrast imaging.  

 

2.3.1 Pogany, Gao Wilkins (PGW) Model: 

In 1997, Pogany, Gao and Wilkins presented a theory referred as PGW model to establish 

a theoretical formalism for the in-line phase contrast imaging [25,28]. The PGW model 

block diagram is given in Figure 2.2.  

Figure.2.2. Block diagram of PGW model for the quantification of the inline phase contrast imaging. 

 

They modeled the phase shift and attenuation effects of a piece of a tissue as a 

transmission function q(x) which was defined in only x dimension and assumed that both 

components of q(x) are small such that 

                                   q(x)= exp [ i ϕ(x) - µ(x)] ≈ 1+ i ϕ(x) - µ(x)               (2.11) 
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The x-ray beam illuminates the tissue at z=0 and the x-ray detector is at z. The incident 

x-ray will be in general refracted and diffracted by the tissue. PGW modeled the diffracted 

x-ray wave field according to the paraxial Fresnel diffraction theory as   

                            f (x; z) = {
𝑖

𝜆𝑧
}

1 2⁄

 exp (-ikz) ∫ 𝑞(𝑋) ∗ 𝑒𝑥𝑝 (
−𝑖𝑘(𝑥−𝑋)2

2𝑧
) 𝑑𝑋            (2.12)  

where k is the wave number, 𝜆 is the x-ray wavelength.  The calculation of Fresnel 

integral is very complicated, and PGW were only able to handle the cases of weakly 

attenuating and weak phase objects such that its |φ(x)| << 1 and μ(x) << 1. Under those 

approximations, it was eventually found that the Fourier transform (FT) of the detected 

intensity at z is 

                        I (u, z) = 𝛿 (𝑢) − 𝑐𝑜𝑠(𝜋𝜆𝑧𝑢2) 𝑀(𝑢) + ϕ(u) sin (𝜋𝜆𝑧𝑢2)              (2.13) 

where I(u, z), Φ(u) and M(u) are the FT’s of image intensity at z, the object’s projected 

phase and projected attenuation, respectively. From Eq. (7), PGW found that the phase 

contrast is proportional to ∇2φ in low spatial resolution cases. The results of PGW are 

valid only for phase imaging of weakly attenuating and weak phase objects (very thin 

tissue samples). These results are going to be totally violated for body parts encountered 

in clinical imaging applications where a phase change of 2π can be resulted from just few 

tens micron thickness of breast tissue for x-rays in mammography. 
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2.3.2 Wu and Liu Model 

A new theoretical formalism was presented in 2003 to overcome all the clinical limitation 

of the PGW model before one tries to analyze and study the phase contrast imaging [66-

69]. The so called “Wu-Liu Model” is derived for spherical waves and it recovers the 

PGW model as its special case. The complete block diagram is given in Figure 2.3.   

 

 

Figure.2.3. Block diagram of Wu & Liu model for the quantification of the inline phase sensitive 

imaging. 

 

Their strategy was to model the Fresnel diffraction process and relate the object 

transmission function to image intensity. Considering a monochromatic x-ray point 

source at a location (𝑥0 = 0, 𝑦0 = 0, 𝑧0 = 0) with a wavelength of λ, 𝐼0 be the x-ray 

intensity incident at 𝑅1, they applied the paraxial Fresnel diffraction wave theory to the 

x-ray point source geometry and calculated the Fresnel–Kirchhoff integral of the 

diffracted spherical wave field arriving at a location  ,x y  on the detector plane as   
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𝐸(𝑥, 𝑦) =
√𝑅1𝐼0

√𝑖𝜆𝑅2(𝑅1+𝑅2)
𝑒𝑥𝑝 (𝑖𝜋

2(𝑅1+𝑅2)2 + 𝑦2

𝜆(𝑅1+𝑅2)
) 

                                           ∫ 𝑒𝑥𝑝 [𝑖
𝜋

𝜆
(

𝜂2

𝑅1
+

(𝜂 − 𝑋)2

𝑅1
)] 𝑇(𝜂) 𝑑𝜂

∞

−∞

                     (2.14) 

In Equation 2.14, integrating over the variable η convolves T(x) with the Fresnel-

diffraction propagator. Instead of calculating the Fourier transform (FT) of the wave 

amplitude as done in the PGW model, their theory was based on the direct FT of the x-

ray diffraction intensity. They derived the x-ray intensity image I(x) at the detector plane, 

in a symmetric form as 

                                             𝐼(𝑥, 𝑦) = |𝐸(𝑥, 𝑦)|2                                                                               

=
𝐼0

𝜆𝑀𝑅2
 ∬ 𝑒𝑥𝑝 (𝑖𝜋𝑀 

(𝜂1−𝑋
𝑀⁄ )

2

− (𝜂2−𝑋
𝑀⁄ )

2

𝜆𝑅2
) 𝑇(𝜂1)𝑇∗ (𝜂2)𝑑

∞

−∞

𝜂1𝑑𝜂2         (2.15)  

 where 𝐼0=𝐸0
2 is the incident intensity at the object plane, 𝑇∗is the complex conjugate of 

the transmission function. As the integral is difficult to carry out analytically, they 

attempted to conduct the frequency analysis of I(x) to see how the spatial frequency 

information of object attenuation and phase are transferred to the detector plane. They 

substituted Equation 2.15 into the Fourier transform (FT) of the intensity with respect to 

the object coordinates as  

                                 𝐼(𝑢) = ∫ 𝑒𝑥𝑝(2𝜋𝑖 (𝑋
𝑀⁄ 𝑢)

∞

−∞

𝐼(𝑥)𝑑(𝑋
𝑀⁄ )                            (2.16) 
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Image intensity is always known at the detector plane and formulating the image 

transmission function, imaging geometry and the wave front information from the image 

intensity make their theoretical formalism more convenient and applicable. Unlike PGW, 

they assumed that the phase variation across the object is moderate in a small distance 

𝜆𝑅2𝑢

𝑀
 as   |𝜑(𝑥) − 𝜑 (𝑥 −

𝜆𝑅2𝑢

𝑀
)| << 1.  This moderate variation of phase can be easily 

satisfied in x-ray imaging, especially in the clinical applications where x-ray wavelengths 

are very short. After tedious calculations and applying the moderate phase conditions and 

taking into the account of small wavelengths, limited spatial resolution, and finite detector 

sampling aperture, they found that the FT of the detected image intensity reduces to 

                   𝐼(𝑢) =
𝐼𝑖𝑛

𝑀2 {𝑐𝑜𝑠 (
𝜋𝜆𝑅2𝑢2

𝑀
)  𝐹𝑇(𝐴0

2) +  2 𝑠𝑖𝑛 (
𝜋𝜆𝑅2𝑢2

𝑀
)  𝐹𝑇(𝐴0

2𝜙)}       (2.17) 

  

where   

                                                 FT (𝐴0
2) = ∫ 𝐴0

2(𝜂)𝑒𝐼 2𝜋𝜂𝑢∞

−∞
 𝑑𝜂 

                                                      FT (𝐴0
2𝜙) = ∫ 𝐴0

2𝜙(𝜂)𝑒𝐼 2𝜋𝜂𝑢∞

−∞
 𝑑𝜂   

Taking the Fourier transform both sides of Eq. (2.17) and using mapping between the 

differential operators in real-space and polynomials in Fourier space, one obtains the 

projection intensity arriving at the detector plane I (𝑟𝐷) by the x-ray transport equation as  

                         𝐼 (𝑟𝐷) =
𝐼𝑖𝑛

𝑀2 {𝑐𝑜𝑠 (
𝜆𝑅2

4𝜋𝑀
𝛻2) [𝐴2(𝑟) −

𝜆𝑅2

2𝜋𝑀
(𝛻. (𝜙(𝑟)𝛻𝐴2(𝑟)))]  −

                                                           2 𝑠𝑖𝑛 (
𝜆𝑅2

4𝜋𝑀
𝛻2) [𝐴2(𝑟)𝜙(𝑟)]}                                    (2.18) 
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where λ is the x-ray wavelength, 𝐼𝑖𝑛 is the entrance intensity at the object plane, R2 is the 

object-detector distance, M is the geometric magnification factor, 𝐴2(𝑟) and 𝜙(𝑟) are the 

attenuation map and phase shift map of the object, respectively. Furthermore,  

𝑐𝑜𝑠 (
𝜆𝑅2

4𝜋𝑀
𝛻2) and 𝑐𝑜𝑠 (

𝜆𝑅2

4𝜋𝑀
𝛻2) are the 2D pseudodifferential operators in which 𝛻2 is 

the Laplacian operator. In the clinical applications where the object–detector distance 

(𝑅2) should not be larger than 1 meter (m), and the maximum spatial resolution needed 

should be about 20 lp/mm, the term 
λ𝑅2𝛻 2

4𝜋𝑀
<< 1, 𝑐𝑜𝑠 (

𝜆𝑅2𝛻 2

4𝜋𝑀
) ≈ 1  and 𝑠𝑖𝑛 (

𝜆𝑅2𝛻 2

4𝜋𝑀
) =

𝜆𝑅2𝛻 2

4𝜋𝑀
 , thus Equation 2.18 was reduced to   

                             𝐼 (𝑟𝐷) =
𝐼𝑖𝑛

𝑀2 {𝐴2(𝑟) −
𝜆𝑅2

2𝜋𝑀
(𝛻. (𝐴2(𝑟)𝛻𝜙(𝑟)))}                       (2.19) 

Equation 2.19 is the simplified Transport of Intensity Equation (TIE) and hence Wu and 

Liu theory recovers the TIE as a special case of their theory. From this equation, it was 

shown that the image contrast was proportional to the Laplacian of the object’s projected 

phase φ, which is in turn related to the tissue’s refraction index decrement δ.  

It is clear that the attenuation and phase maps are differentially encoded with each other 

in the projection intensity 𝐼 (𝑟𝐷). Hence, the task of retrieving the phase map of an object, 

one should decode the phase information from the projections views by using the above 

equations.   
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2.4  Phase Retrieval Process 

With the theory and guidelines established for the inline phase sensitive imaging, it is 

natural to ask whether we may retrieve the quantitative information from the phase 

contrast images. This problem of calculating the x-ray phase from phase contrast image 

is known as phase retrieval. The need for retrieving the x-ray phase shifts generated in a 

projection of a sample, arises from the efforts to provide quantitative tissue 

characterization in medical imaging applications.  In the attenuation-based imaging, the 

projected linear attenuation coefficient (µ) is straight forward and may be retrieved 

directly from the intensity measurements. In this section, we present a method of 

retrieving the phase information from a single-phase contrast image.  

2.4.1 Phase Attenuation Duality (PAD) Algorithm 

Common phase retrieval methods in the literature require multiple projections (at least 

two projections) acquired with varying object-detector distances for retrieval of the 

phase-shift map of a subject [70-72]. However, this requirement of multiple image 

acquisitions for phase retrieval is cumbersome in implementation, and multiple 

exposures multiply the radiation dose. In searching for a better phase retrieval method, 

it has been noted that when a subject made of elements with atomic numbers Z < 10 is 

imaged with high energy x-rays of approximately 60-500 keV, the x-ray-matter 

interactions are dominated by the x-ray Compton scattering from atomic electrons since 

the x-ray photoelectric absorption and coherent scattering are diminished. In this case, 

both the attenuation and phase shift are all determined by subject’s electron density (ρ) 

distributions, thereby both A2 and ϕ are fully correlated and this full-correlation is 
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known as phase-attenuation duality [73-78]. Fortunately, the breast tissue is mainly 

composed of elements such as hydrogen (H), carbon (C), nitrogen (N) and oxygen (O) 

and they have atomic number Z< 10. It has been reported that the sum of weight 

fractions of other heavy elements in breast tissue is only 1.4%. Hence, for breast tissue, 

there is a strong correlation between the attenuation and phase when imaged at E > 60 

keV. This duality greatly simplifies the phase retrieval to an extent that the phase map φ 

(𝑟) can be obtained with only a single-phase contrast projection image I (𝑟𝑑) by using 

the duality transform. 

Rewriting, the Equation 2.19 in terms of position vector 𝑟𝐷 at the detector plane, we get 

  I(𝑟𝐷) =
𝐼0

𝑀2 {𝐴2(𝑟) −  
𝜆𝑅2

2𝜋𝑀
(𝛻. (𝐴2(𝑟)𝛻𝜙(𝑟)))}             (2.20) 

PAD method utilizes the idea of splitting the x-ray attenuation into two factors as 

𝐴2(𝑟)=𝐴𝐾𝑁
2 (𝑟). 𝐴𝑝𝑒,𝑐𝑜ℎ

2 (𝑟)                (2.21) 

where 𝐴𝐾𝑁
2  denotes the attenuation generated by the Compton scattering, 𝐴𝑝𝑒,𝑐𝑜ℎ

2  is the 

attenuation generated by the photoelectric absorption and coherent scattering. Imaging 

soft tissues at high energy x-rays i-e E > 60 keV, Compton scattering dominates the 

amount of attenuation generated by the soft tissue and both 𝐴𝐾𝑁
2  and φ (𝑟) are determined 

by the tissue’s electron density (ρ) as 

  𝐴𝐾𝑁
2  = exp (-𝜎𝐾𝑁𝜌𝑒,𝑝(𝑟⃗⃗⃗⃗ )),  φ (𝑟) =-λ𝑟𝑒𝜌𝑒,𝑝(𝑟⃗⃗⃗⃗ )             (2.22) 
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where 𝜌𝑒,𝑝(𝑟⃗⃗⃗⃗ )=∫ 𝜌𝑒(𝑟⃗⃗⃗⃗ , 𝑧) 𝑑𝑧  is the projected electron density along the ray path, η = 

E/511 keV and 𝜎𝐾𝑁 denotes the Compton scattering cross-section, which is defined by 

the Klein-Nishina total cross-section as 

 kN (E)= 2𝜋𝑟𝑒
2 {

1+𝜂

𝜂2  [
2(1+𝜂)

1+2𝜂
−  

1

𝜂
𝑙𝑜𝑔(1 + 2𝜂)] +

1

2𝜂
𝑙𝑜𝑔(1 + 2𝜂) −

1+3𝜂

(1+2𝜂)2}            (2.23) 

Solving Equation 2.22 for the samples projected electron density (ρ) 

ln (𝐴𝐾𝑁
2 ) = ln (exp (-𝜎𝐾𝑁𝜌𝑒,𝑝(𝑟⃗⃗⃗⃗ ))                              (2.24) 

     𝜌𝑒,𝑝(𝑟⃗⃗⃗⃗ ) = -  
ln 𝐴𝐾𝑁

2

𝜎𝐾𝑁
                  (2.25) 

Substituting Equation 2.25 into 2.22; 

φ (𝑟) = 
𝜆𝑟𝑒

𝜎𝐾𝑁
 ln 𝐴𝐾𝑁

2  = 
𝜆𝑟𝑒

𝜎𝐾𝑁
  ln Ð(𝐼(𝑟𝑑))               (2.26) 

Substituting Equation 2.26 into 2.20 and after some calculations, we get the  

                   Ð(𝐼(𝑟𝑑)) = (1 ‒((𝜆2𝑅2𝑟𝑒 2⁄ 𝜋𝑀𝜎𝐾𝑁)𝛻2)
−1

. (
𝑀2𝐼(𝑟𝑑)

𝐼1
)               (2.27) 

The detailed flowchart of this phase retrieval method is provided in Figure.2.4.  
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Fig.2.4. The detailed flowchart representing the process of phase retrieval using the PAD method.                                       

 

2.5 Phase Sensitive Imaging vs Phase Retrieval 

Phase sensitive imaging is a technique that utilizes the phase shift variations in the 

emerging beam from the object to enhance the image contrast. To obtain phase 

information, propagation is needed to allow for the interferences of the sub waves and 

hence a distance is introduced between the object and the detector. The overall image 

intensity contrast comes from both phase and attenuation. The contrast enhancement 

provides only qualitative information about the tissue structure. On the other hand, phase 

retrieval is a numerical method for retrieving the quantitative phase map φ (x,y) from the 

phase sensitive images. From φ (x,y), one can derive a map of the object’s projected 
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electron densities. The electron density is an intrinsic attribute of the object, and hence 

the electron density map yields a quantitative image of the object’s structure.   

The application and usefulness of the phase retrieval has been reported in Figure 2.5, 

courtesy [79]. Two images of a breast cancer patient’s lumpectomy specimen were 

acquired with a micro focus x-ray source at 40kVp. Figure 6(a) is the specimen’s 

attenuation-based image only acquired with an SID = 66cm. Figure 6(b) is the specimen’s 

phase contrast image acquired with SID=185cm and M=2.8. Compared to attenuation 

image, phase contrast image demonstrated the dark-bright fringes at enhanced tissue 

interfaces and boundaries. Figure 6(c) is the phase retrieved image where the retrieved 

phase-shift values are shown in the side gray-scale bar. Accordingly, the phase values for 

the specimen tissue ranges from -1400 to -1800 radians, which are consistent with the 

estimate based on the tissue composition, thickness profile and average x-ray energy. As 

the guided wire track in the specimen is a metal, so its phase values are around -3600 

radians range. Outside the specimen, the retrieved phase-shifts are only -1 to -2 radians.  

     

(a)                                       (b)                                      (c) 

Figure.2.5. Comparison between the (a) conventional b) phase sensitive x ray images of the human 

breast lumpectomy tissue, courtesy [79]. The scale bar in each image represents a length of 1 cm. The 

retrieved phase map (projected phase values in radians) is shown in c. 
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It is worth to mention that for the phase contrast tomography, it is necessary to perform 

phase retrieval to reconstruct quantitative artifact-free tomograms. If phase retrieval is 

performed for each phase-sensitive projection image before the tomographic 

reconstruction, an accurate 3D distribution of electron density can be generated without 

the artifacts that arises from the edge enhancement at the interfaces of the two materials. 

It has been proposed that the phase-shift method can be employed to measure the breast 

density directly from the phase contrast tomography [80-83].  The volumetric breast 

density (VBD) can be determined from the retrieved breast phase map as [83] 

                                    𝑉𝐵𝐷 =
∑ (−𝑏𝑟𝑒𝑎𝑠𝑡 𝜑(𝑟)λ𝑟𝑒−𝜌𝑒,𝑎𝑑 𝑇𝑐)

𝑁𝑝𝑇𝑐(ρ𝑒,𝑓𝑔−ρ𝑒,𝑎𝑑)
          (2.28) 

 

where 𝜑(𝑟)  denotes the breast map, 𝑇𝑐  is the compressed breast thickness, λ  is the 

average x-ray wavelength, 
𝑒,𝑓𝑔

= 3.448x1023 /𝑐𝑚3  is the electron density of fibro 

glandular tissue, 
𝑒,𝑎𝑑

= 3.108x1023/𝑐𝑚3 is that of the adipose tissue. 

In summary, phase-contrast imaging is the forward process of producing an image with 

phase enhancement, while phase retrieval is the inverse problem of deriving quantitative 

information about the object from the image data. The differences between the two 

modalities are summarized in Table 2-1 as [34]. 
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Table 2.1: Differences between the phase-contrast image and the phase retrieved image of an object. 

Notation        Phase-contrast Image Ipc           Phase Retrieved Image  

(x,y) Formation Interference between waves of 

different phase shifts. 

Could be retrieved from a single 
phase sensitive image using 
innovative algorithmz. 

Property The edge enhancement increases 

with the Laplacian and gradient of 

phase shift (x,y) and with 

increasing coherence degree of the 

x-ray. 

(x,y) yields a map e,p (x,y) of 

projected electron densities, 

which are the intrinsic attributes 

of the object 

Detector 
configuration 

One detector placed a distance 

downstream from the object to allow 

for wave diffraction; either screen/film 

detector or a digital detector. 

With PAD algorithm, one detector is 

used and the same geometric setup is 

used for phase retrieval. 

 

Images 
acquired 

One exposure acquires a single phase-

contrast image. 

With the high energy acquisition, both 

the attenuation and phase shift 

coefficients are determined by the 

tissues’ electron density over the ray 

path, and they have a full correlation. 

Hence, the phase contrast image is 

only used for the retrieval. 

 Clinical 
significance 

Ipc provides an edge enhancement 

effect from tissue phase contrast, 

thereby improving the image data's 

diagnostic quality. This can 

potentially help in the intra tissue 

heterogeneity for the high precision 

diagnosis.  

(x,y) provides a map of tissue 

projected electron densities, and 

therefore a quantitative tissue 

characterization. Combined with 

tomographic image data, the 3D map 

of the object's electron densities 

becomes available for tissue  

structural characterization and 

visualization.  

2.6 Potential Advantages   

In the last two decades, several studies have investigated the potential benefits provided 

by inline phase contrast imaging in comparison to attenuation-based x-ray imaging [37-

50]. The enhanced image quality in the phase sensitive imaging can be attributed to a 

combination of several factors. First, as detailed previously, the edge enhancement effect 

occurs because of the superimposition of attenuation and phase shifts induced effects on 

the resultant image which improves the contrast of the image, most notably in areas where 



 

25 

both phase shifts and attenuation effects are produced, such as boundaries between 

materials with different properties. Thus, the edge effect has the potential to benefit breast 

imaging, since malignant tissue boundaries are more intricated and rough as compared to 

the smooth boundaries of benign breast tissue. Thus, phase sensitive imaging has the 

potential to detect those boundaries differences for accurate diagnosis that are difficult to 

distinguish based only on attenuation-based images. Second, the image quality 

enhancement in phase-sensitive imaging can also be attributed to the geometric 

magnification introduced by the air gap because of similar triangle geometry. 

The magnification could potentially result in image blurring if the focal spot is not 

sufficiently small to minimize the geometric unsharpness that is caused by the finite focal 

spot size [22, 34]. On the other hand, magnification increases the sampling rate and thus 

the Nyquist frequency, which results in improved spatial resolution. With the 

employment of a micro focus x-ray source, the geometric unsharpness can be 

counteracted and enhance the image quality. The amount of phase shift effects detected 

on the imaging plane is directly related to the amount of magnification, and therefore, its 

selection is critical in designing the phase-sensitive imaging prototypes. Two factors must 

be considered when realizing magnification in phase-sensitive imaging. First, it must be 

large enough so that the phase shifts produced by different parts of tissue can interfere 

together to provide edge enhancement and image quality improvements. If it is too small, 

there will not be any phase induced contrast detected at the imaging plane as in 

attenuation-based imaging where the object is in contact with the detector. Second, if the 

magnification factor is too large, the spatial coherence can no longer be maintained and 
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the phase contrast effect spreads across the entire image instead of only enhancing the 

edges. 

One of the benefits upon which this research is based is the ability to increase the x-ray 

energy using phase-sensitive imaging. It has been noted that the real and imaginary parts 

of the refractive index (n) changes differently with respect to the energy (E) of the 

incident x-ray photon [33]. For light element in human body such as hydrogen, carbon, 

nitrogen and oxygen, φ is proportional to 1/E, while µ is approximately proportional to 

1/E3. This means that that for light elements, the attenuation coefficients decrease at a 

much faster rate than the phase shift coefficients. Furthermore, for those light elements 

within the diagnostic energy range, φ is two-three orders of magnitude larger than µ. 

Therefore, with the variations in soft tissue density, a much stronger phase-shift induced 

contrast will be produced in comparison to the attenuation contrast [21-24]. This creates 

an opportunity of utilizing higher energy x-rays for potential phase contrast soft tissue 

imaging. Due to the high penetrability and low absorption of high-energy x-ray photons, 

the radiation dose received by a tissue can also be potentially reduced.  

Another key motivation to perform high energy phase sensitive breast imaging is to 

overcome an existing challenge in phase contrast imaging involving the number of output 

quanta generated with the micro focus sources due to the limited output power of the 

micro focus x-ray sources. The number of quanta N generated by an x-ray source is 

represented as  

                        N ∞ kV2. mAs                (2.29) 
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where kV represents the x-ray tube energy and mAs indicates a quantity representing the 

tube current in units of milliamperes (mA) multiplied by the exposure time in units of 

seconds (s). Micro-focus x-ray sources operating with large source-to-object distances 

can provide large transverse coherent lengths [34,52]; however, a very long exposure time 

is required for imaging due to the limited current of the micro-focus tubes. The distance 

that is introduced between the object and the detector in this approach results in fewer x-

ray photons to be detected by the detector, as compared to the traditional contact mode 

detection under the same conditions of exposure parameters, radiation dose delivery and 

the capability of detectors. For example, consider a conventional x-ray source with a tube 

current of 10 mA and a micro focus x-ray source with a tube current of 0.4 mA, both 

operating at 25 kV. The reduction in tube current by a factor of 25 increases the exposure 

time from the standard clinical time of 1 second to 25 seconds, which hinders the clinical 

feasibility due to the requirement of patients to hold their breath during exposure. 

However, increasing the x-ray energy instead of the exposure time requires only increase 

by a factor of 5 from 25 kV to 125 kV, which is clinically feasible. Therefore, phase 

contrast imaging at high energies holds the potential to produce the same number of x-

ray quanta at clinical exposure times, which is an indication of the clinical feasibility and 

corresponding ability to benefit the field of mammography by reducing the dose without 

negatively affecting the detection capability.  
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Chapter 3. High-energy In-line Phase Sensitive Projection Imaging 

Prototype and its Optimization  

3.1 System Design 

3.1.1 X-ray Source Specifications 

A micro focus x-ray source (Model L8121-01, Hamamatsu Photonics, Japan) was used 

in the prototype system design as shown in Figure 3.1. The micro focus x-ray tube 

consists of tungsten (W) target and a Beryllium (Be) output window with a thickness of 

200 μm. The source has varying focal spot sizes ranging from 5-50 μm depending on its 

output power (W). The distance from the focal spot to the output window is 17 mm while 

the x-ray beam angle is approximately 43 degrees. The source provides adjustable tube 

current ranging from 10-500 µA and adjustable tube voltage ranging from 40 to 150 kV, 

which is controlled precisely by a software application interfacing directly with the x-ray 

source.   

                                                            

Figure 3.1: X-ray Source (Model L8121-01, Hamamatsu Photonics) used in the prototype. 
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3.1.2 X-ray Imaging Detectors 

Two imaging detectors were utilized for the optimization and image quality comparisons 

to provide a thorough investigation between images acquired on the prototype and 

commercial systems. Both the detectors have varying image formulation methods, 

dynamic ranges and limiting resolution values. The first detector, Figure 3.2 (a), applied 

the technology of computed radiography (CR), which utilizes imaging plates to absorb 

the incident x-rays and store the intensity information until the system performs a readout 

process. Computed radiography (CR) is a marketing term for photo stimulable phosphor 

detector (PSP) systems. When PSP absorbs x-rays, some light is also promptly emitted, 

but much of the absorbed x-ray energy is trapped in the PSP screen and can be read out 

later. The readout process formulates a digital image corresponding to the intensity values 

recorded at each pixel location. The CR system employed for this research (Regius 190, 

Konica Minolta Medical Imaging, Wayne, New Jersey, USA) provides mammography 

plate processing with a sampling frequency of 43.75 μm. The size of the plates inside the 

cassette is 24 cm × 30 cm. Typical imaging plates are composed of about 85% BaFBr 

(Barium Fluoro-Bromide) and 15% BaFI (Barium Fluoro-Iodide), activated with a small 

quantity of europium (Eu).  After the acquisition, the image plate is moved into the reader 

unit which is scanned by a laser beam. The light released from the plate is collected by a 

fiber optic light guide and strikes a photomultiplier tube (PMT), where it produces an 

electronic signal. The electronic signal is digitized and stored. 

The second detection system was an indirect flat panel CMOS detector (C7942SK-25, 

Hamamatsu Photonics, Japan) as shown in Figure 3.2(b).  This detector is sensitive to 
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visible light and an x-ray intensifying screen made of Cesium Iodide (CSI) is used to 

convert the incident x-rays to visible light photons, which is then relayed to a large 

number of individual detector elements, each one capable of storing charge in response 

to the x-ray exposure. Each detector element has a light sensitive region, and a small 

corner of it contains the electronics for the read-out stage. This flat provides a pixel pitch 

of 50 μm with an active area of 12 cm × 12 cm with an active array of 2316 × 2316 pixels 

and 12-bit digital output. At 1 ×1 binning, the frame rate is 2 frames per second (fps), 

while at 2 × 2 binning, it is 4 fps. In this dissertation, 1× 1 detector binning has been 

utilized for the acquisition of images. 

       
(a)                                                         (b) 

Figure 3.2: X-ray imaging detectors used in the phase sensitive prototype: (a) CR Cassette (Regius 

190, Konica Minolta) (b) Flat panel detector (C7942SK-25, Hamamatsu Photonics). 
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3.1.3 Geometry of the Imaging System 

The prototype system allows operation in both attenuation and phase sensitive imaging 

modes through utilizing the corresponding configurations as depicted in Figure 3.3. The 

ability to employ the same system for both conventional and phase contrast images 

provides an extremely accurate comparison between the modes. As demonstrated in the 

figure, the conventional mode consists of the object in contact with the detector, while 

the phase contrast mode relies on the air gap between the object and the detector. As 

detailed in Section 2.3.2, the phase contrast effect is produced during the propagation of 

the x-rays towards the detector after exiting the object. The distance R2 traveled by the x-

rays before reaching the detector controls the amount of magnification, which represents 

a tradeoff between optimal phase contrast effect and image quality.  

                                         

Figure 3.3: Schematics of the inline phase sensitive x-ray imaging prototype illustrating a micro-focus 

x-ray source, a flat panel detector and a phantom placed in a magnification geometry. 
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3.2 Investigation on Optimal Geometric Conditions and Design 

Parameters   

3.2.1 Tube Energy and Geometric Magnification Selection 

This study has been published and the details can be found in reference [84]. The 

investigation on the optimization of x-ray in-line phase-sensitive imaging prototype under 

different geometric and operating conditions at high x-ray energies for breast imaging 

application was performed. This investigation was necessary as it will provide optimal 

parameters for future comparisons with the clinical based breast imaging systems. The 

phase retrieval algorithm based on the phase-attenuation duality (PAD) was applied to 

the phase-sensitive images acquired by the prototype. Imaging performance was 

investigated at four geometric magnification (M) sets of 1.67, 2, 2.5 and 3 using an acrylic 

edge, and an American College of Radiology (ACR) Mammography phantom under three 

x-ray energies of 100, 120 and 140 kV. These three energy sets are within the diagnostic 

energy range. The source to image detector distance (R1+ R2) was fixed at 170 cm. Table 

3.1 lists the geometric configurations used under various magnifications. The ACR 

phantom images were acquired at a constant mean glandular dose (Dg) of 1.29 mGy using 

the CR detector. Table 3.2 lists the milliampere second (mAs) values that were used under 

the four magnifications sets to acquire the ACR images under the same glandular dose.  
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Table 3.1: The geometric parameters used for the investigation of various geometric magnifications 

(M). 

 

 

 

 

Table 3.2: The milliampere-second (mAs) values required for imaging at 100 kV, 120 kV and 140 kV 

for a constant dose of 1.29 mGy 

X-ray Energy M=1.67 M=2 M=2.5 M=3 

100 kV   18.5  12   7.7  5.5 

120 kV
 

  12.12  7.88   5.06  3.65 

140 kV   8.52  5.60   3.60  2.55 

 

3.2.2 Computer Simulation on Phase Contrast Manifestation 

Computer simulations are performed to compare their results with the experimental 

studies for the investigation of optimal geometric and operating parameters. In the 

computer simulations, the central parameter to calculate is the modulus of the relative 

phase-contrast factor RPF (u) which represents the qualitative measure of the coherence 

and the visibility of phase contrast at spatial frequency u [34, 67]. RPF (u) is given as 

                       RPF (u) = 𝑐2 ℎ2𝑂𝑇𝐹𝑑𝑒𝑡 (
𝒖

𝑀
) ×[∫

𝜋𝑅2𝒖2

𝑀𝐸2 × 𝑆𝐸𝑥𝑖𝑡(𝐸)𝑑𝐸]   (3.1) 

where h is Planck’s constant, c is the speed of light, and  𝑆𝐸𝑥𝑖𝑡(𝐸) is the normalized 

spectrum of the average exiting beam. 𝑂𝑇𝐹𝑑𝑒𝑡 (
𝒖

𝑀
)  is the detector’s spatial frequency 

response at u at the finite focal spot size. An optimal design for the phase sensitive 

imaging system operated at high x-ray energies should achieve a large RPF (u) value. 

Magnification  M=1.67 M=2 M=2.5 M=3 

Source to object R1 (cm)
 

102 85 68 57 

Object to detector R2 (cm) 68 85 102 113.5 
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 It is clear from Equation 3.1 that R2 cannot be too small. If R2 is very small, the phase-

contrast information would be completely lost, as the diffracted x-ray wave needs to travel 

a sufficient lateral distance to disclose any phase change effects. With increasing R2, 

value of M also increases. If a large M is employed, it will affect the RPF in terms of 

R2/M ratio. That is the reason, we restricted the magnification factor such that it will 

exceed 3 in this investigation. Computer simulations were performed for a 5-cm thick 

breast with a density of 50% adipose and 50% glandular tissue, with a tungsten (W) tube 

target, focal spot size of 7 µm and with 2.5mm aluminum (Al) target filter. The phase-

contrast visibility at a target spatial frequency of 15 lp/mm was simulated as a function 

of system design parameters. The computer simulations were performed with the average 

x-ray photon energies of 50, 60, 70 keVs to mimic the 100, 120 and 140 kV tube voltages. 

3.2.3 Phantoms and Image Analysis 

Two phantoms are utilized in this study to provide a comprehensive image quality 

evaluation and comparison of the systems.  A laser cut edge of an acrylic plate of 1.42mm 

thickness is used as a first phantom to verify that the phase contrast effect takes place at 

high energy. The laser fabricated acrylic edge phantom provides a visual indication of the 

edge enhancement provided by phase sensitive imaging at the boundary of edge. Also, 

the edge profiles determined from the acrylic edge images can serve as a graphical 

indication of the phase contrast effect in the form of overshooting that occurs at the 

boundary of acrylic and the air. For the quantification of the edge, Edge Enhancement 

Index (EEI) is used which compares the degree of edge enhancement relative to the 
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absolute change in the pixel intensity for digital systems across the edge [38,47]. The EEI 

is defined as  

    𝐸𝐸𝐼 =

𝑃−𝑇

𝑃+𝑇
𝐻−𝐿

𝐻+𝐿

⁄       (3.2) 

where P and T are the peak and trough intensities at the edge, and H and L represents the 

intensities that would result at these locations if there were no edge enhancement at the 

high and low intensity regions next to the edge.       

An ACR phantom (Mammo156 D, Gammex, WI, USA) of 4.4 cm thickness was used as 

a second phantom which contains a 7-mm wax insert inside that contains 12 sets of test 

objects with a 3.7 cm acrylic base as shown in Figure 3.4. With a total thickness of 4.4 

cm, this phantom approximates a 4.2 cm thick compressed breast of 50 % glandular and 

50 % adipose density. There are twelve simulated objects in the phantom with four fibers, 

four specks and four masses. The fiber like structure object thickness ranges from 0.40  ̶

0.93 mm. The micro calcification like specks object thickness is from 0.20  ̶0.54 mm and 

the tumor like mass object thickness ranges from 0.25 ̶ 1 mm respectively.  

                           

       Figure 3.4. The ACR phantom used for the phase sensitive imaging acquisition. 
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3.2.4 Mean Glandular Dose Calculations 

The purpose of this dissertation was to optimize the high energy inline phase sensitive 

imaging system and compare its performances with the clinical imaging systems at a 

specified mean glandular dose (Dg) values. It is important to mention that how Dg values 

are calculated throughout this study.  The Dg values are calculated using the following 

equation 

𝐷𝑔=𝐷𝑔𝑁.𝑋𝐸𝑆𝐸                 (3.3) 

where DgN is an air kerma to average glandular dose conversion with units of mGy/R and 

𝑋𝐸𝑆𝐸  is the entrance skin exposure. DgN is determined by experimental and computer 

simulation methods based on the following factors: radiation beam quality (x-ray energy 

or half value layer (HVL)), x-ray tube target material, filter material, breast thickness and 

breast tissue composition [32]. For the phase contrast images, DgN was estimated based 

on the previously-described Monte Carlo method [85-89]. However, the previous studies 

only provide 𝐷𝑔𝑁 data for x-ray energies up to 35 keV. To facilitate 𝐷𝑔𝑁 calculation for 

higher energies, we extended the Monte Carlo simulation to 150 keV. For every x-ray 

energy beam utilized in this study, the DgN values are computed from the x-ray spectral 

average of the Monte Carlo simulation-derived values for various photon energies. The 

x-ray spectrum is measured with an x-ray spectrometer having a 3×3×1 mm3 Cadmium 

telluride (CdTe) detector (Amptek Incorporated, Bedford, Massachusetts), using a pair of 

tungsten collimators provided by the manufacturer. DgN values decrease as the thickness 

of breast increase for constant beam quality and breast composition. This is because the 

glandular tissues farthest from the beam entrance receive much less dose in the thicker 
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breast as compared to thinner breasts. However, the lower DgN coefficients for the thicker 

breast. That doesn’t mean that larger breasts receive less dose. The lower DgN values for 

a thicker breast are offset by the higher values of the entrance exposure which is necessary 

to achieve the desired SNR for diagnosis.  
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3.3 Results  
 

3.3.1 Glandular Dose Calculation 

 

 

The mean glandular dose (Dg) corresponding to the phase sensitive imaging acquisitions 

are calculated using Eqn.2.21 The entrance exposure (XESE) readings and the estimated 

normalized glandular dose (DgN) values for Dg = 1.29 mGy are given in Table 3. The 

value of 1.29 mGy is considered as a low glandular dose when imaging a 5-cm thick 

compressed breast.  

Table 3.3: The parameters necessary for the calculation of Dg measurements for tube voltages of 100 

kV, 120 kV and 140 kV. 

 
 

 

 

 

 

3.3.2 Computer Simulations and Acrylic Edge Phantom  

The results of our computer simulations are summarized in Table 4 and plotted in figure 

3.3. A lower kV results in higher RPF values. At 100 kV, all the |𝑅𝑃𝐹(𝑢)| values are 

higher than 120kV and 140kV for a constant Dg values.  The simulations reveal that 

|𝑅𝑃𝐹(𝑢)| increases with the object to detector distance R2 and the magnification M only 

up to a certain M, after which they decrease. This is because, while an increase of R2 

could increase the x-ray diffraction effects, it would reduce the x-ray spatial coherence 

by a higher magnification factor. Based on the results in Table 4, the optimal absolute 

RPF will be achieved around M = 2.5 for a 7 µm focal spot size of the x-ray tube. This 

result is valid for other focal spot sizes such as 25 µm and 50 µm. 

X-ray Energy  𝐗𝐄𝐒𝐄 (mR) 
𝐃𝐠𝐍 (

𝐦𝐆𝐲

𝐦𝐑
) 

   100 kV      258          0.502 

   120 kV
 

     240          0.540 

   140 kV      225          0.575 
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Table 3.4: Computer simulations performed for 5cm, 50%-50% breast at a target frequency of 15 

lp/mm, 7µm x-ray focal spot size and 2.5mm Al filter. 

 
X-ray Energy    M=1.67    M=2   M=2.5    M=3 

100 kV 1.013E-03 1.25E-03 1.37E-03 1.36E-03 

120 kV
 

7.06E-04 8.72E-04 9.57E-04 9.51E-04 

140 kV 5.20E-04 6.42E-04 7.05E-04 7E-04 

 

                      

Figure. 3.5: The |𝐑𝐏𝐅(𝒖)| for phase contrast mammography system with a focal spot size of 0.007mm 

and detector pitch of 0.044 mm. 

 

The phase contrast image of the acrylic edge acquired at 120 kV under M = 2.5 along 

with its edge profile are provided in figure.3.6. One can see that the edge is indicated by 

the white line highlighting the overshooting of the edge which demonstrates encouraging 

phase shift effects at this acquisition condition. This can be seen on its edge profile where 

there is a large overshooting at the boundary of air and acrylic. This overshooting is 

evident by seeing the corresponding peak (P) and trough (T) values on the graph. In the 

contact mode imaging, this overshooting does not exist due to the absence of any phase 

induced contrast. The edge line between air and acrylic is tilted; therefore, an average 

edge profile was generated for the calculations of EEI. 
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(a)                                            (b) 

Figure.3.6: Phase-sensitive image of the acrylic edge acquired at (a) 120 kV, 5.06 mAs with an x-ray 

focal spot size of 7 µm with the CR detector under M = 2.5 (b) The average edge profile generated 

for the ROI on the edge image for the calculations of the EEI values. 

 

From the edge profiles, the EEI values were calculated for the three tube voltages under 

the different magnification sets. The EEI values are plotted in figure 3.6 and one can see 

that the highest EEI values are produced for M = 2.5. It is also evident that under all the 

magnifications, the EEI values for both the 100 kV and 120 kV are very close to each 

other. The highest EEI values were 1.5 and 1.46 at 100 kV and 120 kV under M = 2.5.  

                        

 

 

4.58

4.64

4.7

4.76

4.82

0 100 200 300 400 500

In
te

n
si

ty

x 1000

Pixels

P

T

L

H



 

41 

           

Figure. 3.7: Edge Enhancement Indicator (EEI) for the phase contrast acrylic edge phantom 

investigated for different x-ray energies under different magnification conditions. 

 

As M increases from 1.67 to 2.5, the EEI increases substantially to its peak or saturation 

point. When M increases from 2.5 to 3, the EEI slightly decreases maintaining 

approximately the same values as of M = 2.5. Although the computer simulations reveal 

that the |𝑅𝑃𝐹(𝑢)| for M = 2.5 and 3 are almost the same, the EEI values suggest that 

there are enough differences in those magnifications to accomplish that the phase contrast 

effect is greater at M = 2.5. All the EEI values of the edge phantom images validate the 

computer simulations yielding the highest values for100 kV that are slightly greater than 

120 kV.  

 

3.3.3. ACR Phantom Analysis 

 

The ACR phantom phase contrast and phase retrieved images acquired at 120 kV under 

M=1.67 are given in Figure 3.8. The phase contrast and phase retrieved images acquired 

at 100 kV under M=2.5 are given in Figure 3.9 and the phase contrast and phase retrieved 

images acquired at 140 kV under M = 2 are shown in Figure 3.10. The visual perception 
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of the wax inserted objects with the phase retrieved image is better as more masses (m), 

speck groups (s) and fibers (f) insert are distinguishable.  

 

     

(a)                       (b) 

Figure. 3.8: Comparison of ACR Phantom Images acquired at 120 kV under M=1.67 (a) Phase 

contrast image (b) Phase retrieved image with PAD. 

 

            

          

(a)            (b) 

Figure. 3.9: Comparison of ACR Phantom Images acquired at 100 kV under M=2.5 (a) Phase 

contrast image (b) Phase retrieved image with PAD. 

 

 

 

                  

(a)            (b) 
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(a)             (b) 

Figure. 3.10: Comparison of ACR Phantom Images acquired at 140 kV under M=2 (a) Phase contrast 

image (b) Phase retrieved image with PAD. 

 

The average observer scores for the investigated geometry and x-ray energies are given 

in Table. 3.5 and 3.6 respectively. The observers reported the lowest scores for M = 1.67 

while they reported the highest scores for M = 2.5. Of the three sets of kVs investigated, 

the images acquired with 100 kV yielded the highest average observer scores. For 

example, the average observer scores for the phase contrast images at M = 2.5 under 100 

kV, 120 kV and 140 kV were 8, 6.375 and 6.  Furthermore, the phase retrieved images 

yielded higher scores than the phase contrast images. For example, with 120 kV under M 

= 2.5, the phase retrieved image had a score of 7.5 while the phase contrast image 

produced a score of 6.375. Although the ideal score for this ACR phantom will be 12, a 

score of 8.875 with phase retrieved image reported under M = 2.5 at 100 kV is 

encouraging and met the quality assurance criteria as defined by the ACR for this 

phantom, which indicates the feasibility of acquiring acceptable quality images with a 

substantially low dose.  
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Table 3.5: Average observer scores reported for the phase contrast images of the ACR phantom 

acquired with different range of x-ray energy/magnification factors. 

 

 
Table 3.6: Average observer scores reported for the phase retrieved image of the ACR phantom 

acquired with different range of x-ray energy/magnification factors. 

 

 

3.4. Discussion  

 

The optimal in-line phase-sensitive geometry and high energy settings under the 

experimental conditions were investigated and compared with the computer simulations. 

We assessed the glandular dose levels for the absorbed dose to breast tissue, the stochastic 

health risk such as cancer of high energy x-ray photons can be further assessed by using 

the equivalent dose (HT). It is defined by the International Commission on Radiological 

Protection (ICRP) as the product of the absorbed tissue dose (DT) and a weighting factor 

(WR) which is related to the radiation quality. For the photon radiation like x-rays and 

gamma rays, the weighting factor has the value 1 independent of the energy of the 

  
M=1.67 

 
   M=2 

  
M=2.5 

  
M=3 

 

 
100kV 120kV 140kV 100kV 120kV 140kV 100kV 120kV 140kV 100kV 120kV 140kV 

m 1.75 1.75 2 2 2 2.25 3 2.125 2.25 2.25 2 2 

s 1.75 2 1.5 1.875 1.75 1.875 2.25 2 2 2.25 2 2 

f 2 1.5 1 2 1.5 1.25 2.75 2.25 1.75 2 1.875 1.25 

T 5.5 5.25 4.5 5.875 5.25 5.375 8 6.375 6 6.5 5.875 5.25 

  
M=1.67 

  
M=2 

  
M=2.5 

  
M=3 

 

 
100kV 120kV 140kV 100kV 120kV 140kV 100kV 120kV 140kV 100kV 120kV 140kV 

m 2 2 2 2.5 2.25 2.125 3.25 2.75 2.5 2.75 2.5 2.125 

S 1.75 1.75 1.75 2 2 1.75 2.625 2.5 2.125 2.375 2.25 1.75 

f 2.25 1.25 1.5 2 1.5 2.625 3 2.25 1.625 2.25 2 1.75 

T 6 5 5.25 6.5 5.75 6.5 8.875 7.5 6.25 7.375 6.75 5.625 
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radiation. Hence, the high-energy phase contrast technique does not present any higher 

stochastic health risk than conventional low-energy mammography technique, as 

compared on equal glandular dose basis. 

 

The simulations show that Equation 3.1 indeed provided the design guidelines for clinical 

low dose x-ray phase sensitive imaging systems. As compared to the other geometric 

magnifications (M), the image quality and target discrimination are highest for M = 2.5 

under the same glandular dose (Dg).  The computer simulations based on |𝑅𝑃𝐹 (𝑢)| also 

validated the experimental results. Although simulations revealed that the |𝑅𝑃𝐹(𝑢)| for 

M = 2.5 and 3 were almost the same, the experimental results established that there were 

enough differences in those magnifications to accomplish that the phase effects are 

greater at M = 2.5.  The acrylic edge results indicated that encouraging phase induced 

contrast effects to occur at high x-ray energies in the form of overshooting at the boundary 

of air and acrylic. The magnification of 2.5 had the highest EEI of 1.5 for 100 kV and 

1.46 for 120 kV. The observer study for the ACR phantom images established that the 

highest scores were reported for 100 kV in M = 2.5. Furthermore, the phase retrieved 

images have improved performance and detectability as compared to the phase contrast 

images. Both the tube voltages of 100 kV and 120 kV resulted in similar results and image 

performances in terms of the image contrast and observer scores. Due to the limited 

output power of the micro focus x-ray tubes, we aim to use 120 kV in the future studies 

for shorter exposure times to scan an object. 

 

           The results of this chapter have been published as reference 84. 
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Chapter 4. Characterization of Continuous and Pulsed Emission 

modes of a Hybrid Micro Focus X-ray Source for Medical Imaging 

Applications 

4.1 Introduction 

Traditionally micro focus x-ray sources have frequently been used in the micro-computed 

tomography (micro-CT) and specimen radiology for high resolution and high throughput 

imaging of small animals and specimens in the preclinical and clinical environments [90-

96]. The small focal spot sizes of these sources allow to efficiently utilize the 

magnification geometry which is not possible with the conventional sources due to the 

blurring associated with their large focal spot sizes. As discussed in Chapter 3, in-line 

phase-sensitive x-ray imaging technique works well with micro focus x-ray tubes. When 

operated with sufficient source to object distances (SODs), this technique can provide 

relatively large transverse coherent length. The technological developments have 

encouraged the design of new in-line phase sensitive imaging setups which have 

permitted to extend the range of applications towards higher x-ray energies. The micro 

focus x-ray sources used in the mentioned modalities operate in a continuous mode that 

emits x-rays continually during its operation, and the x-ray detector records the spatially 

modulated wave emerging from an object/sample. Continuous emission sources utilize 

thermionic or field emission cathodes for the emission of electrons.  

Pulsed x-ray diagnostics and inspection can reduce the radiation dose considerably. 

Generating x-rays as a sequence of short flashes instead of continuous radiation is a 
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distinguishing feature of the pulse x-ray sources. They are commonly used in diagnostic 

imaging such as breast and lung screening. They provide the advantage of removing the 

shutter utilized in breast tomosynthesis and cone beam breast CTs to block the x-rays 

during the source movement from one acquisition angle to the next, which avoids issues 

with image blur.    

In this chapter, it is intended to characterize a micro focus x-ray source that can operate 

in both continuous and pulsed emission modes. For translating this hybrid micro focus x-

ray source for advanced applications such as specimen radiography, tomosynthesis and 

cone beam breast CTs, it is vital to quantify its core performances in the projection 

imaging mode. To the best of my knowledge, this is the first detailed evaluation report of 

the continuous and pulsed emission modes of a hybrid micro focus x-ray source.  

4.2 Hybrid Micro Focus X-ray Source 

The micro focus x-ray source (Model L9181-06, Hamamatsu Photonics, Japan) is referred 

to as Hybrid since it operates in both continuous beam and pulsed emission modes. The 

continuous emission mode works with tube voltage and tube current ranging from 40-130 

kV and 10-300 µA. The guaranteed x-ray tube voltage and current range in the pulsed 

emission mode is 80-130 kV and 50-300 µA. The target material (anode) of the source is 

tungsten (W) and the x-ray output window material is Beryllium (Be) with a thickness of 

500 µm. The source has varying focal spot sizes ranging from 16-50 μm depending on its 

output power (W), which is the product of the source output voltage and current. The 

focal spot to output window distance (FOD) is 13 mm while the x-ray beam angle is 

approximately 100°, as shown in figure. 4.1. In the pulsed emission mode, the source self-
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emits the x-ray beam at a frequency of 1.67 Hz, which corresponds to a pulse duration of 

600 msec. The 50% duty cycle of the pulse ensures on and off times of 300 msec.  During 

the OFF time, the current (µA) drops to zero while the tube voltage (kV) remains at the 

preset value. During the ON time, the current ramps up to the preset value allowing the 

x-ray emission to occur. The source can be synchronized to an external signal generator 

which allows to adjust the pulse width, duration and frequency in accordance to the 5V 

input square wave signal that the source would receive. The source has a full duplex serial 

interface communication method via RS-232 cable at 38400 bits per second data transfer 

speed.  

 

Figure 4.1. Schematics of L9181-06 x-ray source operating in continuous and pulsed emission modes. 

 

After successfully installing the x-ray source on an optical rail, it is very important to 

characterize and monitor the source in both continuous and pulse emission modes on an 

ongoing basis to ensure reliable performance. Pulse emission mode was characterized 

with its self-running frequency (f) of 1.67 Hz. This ongoing and periodic evaluation will 

help to detect changes that may result in a clinically significant degradation in the image 
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quality or a significant increase in radiation exposure. The source output, beam quality, 

focal spot measurements, kV accuracy, spectrum analyses and spatial resolution were 

measured in this study.  

4.3    Continuous Emission Mode Results 

4.3.1 Source Output 

We utilized an air-filled ionization chamber (Model 9095, Radcal Corporation, CA, USA) 

for the measurement of the source output for various tube voltage (kV) values. The source 

output was measured with the ionization chamber placed at 100 cm away from the x-ray 

focal spot as per the guidelines of the American Association of Physicists in Medicine 

(AAPM) [31-33]. The relationship between the current (µA) and exposure rate (mR/min) 

for various kV values are plotted in Figure 4.2. One can see that the exposure in the 

continuous emission mode linearly increases (R2 = 1) as the current increases. 

  

   (a)  
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   (b) 

Figure.4.2. Relationship between the exposure rate (mR/min) and current (µA) in the continuous 

emission mode for (a) 40-70 kVp (b) 80-130 kVp.  

 

The source output measured in the beamline with an ionization chamber placed at source 

to image distances (SIDs) of 50 cm, 100 cm and 150 cm under various kVs. The exposure 

values were fitted to y = k.x-2, where y is the exposure rate, x is distance (cm) and k is a 

constant.  From Figure 3(a), one can see that the output exposure values follow the inverse 

square law relationship with respect to the distance with high R2 values. For an SID = 

100 cm, lateral exposure values were measured to investigate the coverage of field of 

view (FOV). The ionization chamber was placed in two lateral distances, (a) 38 cm to left 

and right with respect to the central beam that corresponded to FOV of 76 cm (b) 76 cm 

to left and right that corresponded to FOV of 152 cm.  
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   (a) 

           

     (b)      

Figure.4.3. (a) Relationship between exposure rate and distance signifies the inverse square law 

relationship. (b) Exposure values measured at several lateral distances to investigate the coverage of 

field of view (FOV).   

 

From Figure 4.3(b), one can see that lateral exposure values significantly drop as the ion 

chamber is laterally moved from 38 cm (FOV = 76cm) to 76 cm (FOV = 152 cm).  This 

is because that the ion chamber placed laterally at 76 cm left or right is just outside the 

field of coverage which is defined by the source emission (cone) angle. For medical 

applications such as mammography and tomosynthesis, the FOV extends to the size of 

the detector which is usually about 30 cm in width. Therefore, necessary actions should 

be taken to narrow the FOV. X-ray collimators are routinely used for this very reason to 

make the size of FOV as to the desired medical application.  
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4.3.2 Beam Quality 

Beam quality was measured using the half value layer (HVL) with aluminum (Al) filters, 

according to the AAPM recommendations [31, 34]. During the measurements, it was 

observed that even with a small thickness of 0.05 mm Al, the x-ray beam intensity drops 

to 27-28 % as compared to the unfiltered beam. This clearly indicates that the unfiltered 

x-ray beam contains many low energy photons, which do not contribute in the image 

formation. In fact, the majority will be absorbed by the tissue, resulting in an additional 

radiation dose. From the measured data, the (HVL) for different kVs are given in Table 

4.1. One can see from the table that these HVL values will help in imaging tissues at 

reduced radiation dose levels.  

Table 4.1: Half value layer (HVL) in millimeters (mm) computed for different kVs with respect to 

different filtration at the input. 

kV no filter 1 mm Al filter  1.5 mm Al filter  2 mm Al filter 

60 0.1172 1.24 1.62 1.93 

80 0.1212 1.50 2.0 2.41 

100 0.1244 1.85 2.41 2.97 

120 0.1296 2.19 2.92 3.6 

130 0.1317 2.38 3.16 3.86 

 

As mentioned above, the unfiltered x-ray beam has a clear majority of low energy photons 

that are readily blocked by Al filters with small thicknesses, hence the HVL values for 

the kV values are small, as shown in Figure 4.4 (a). With 1mm Al filtration at the exit 

window of the x-ray tube as an initial input, the x-ray beam is hardened and the low 

energy photons are blocked and hence the exposure output reduces as shown in Figure 

4(b). HVL values can be measured from these graphs. For example, with 1 mm Al filter 
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at the input end for 120 kV, the exposure rate is 712 mR/min with no added filtration. 

The exposure rate values decrease and becomes 356 mR/min at approximately 2.19 mm 

of added Al filtration.  

    

    
   (a) 

 

      (b) 

Figure.4.4. Half value layer (HVL) computed for several kVs with respect to (a) no filter at the input 

(b) 1mm Al filter at the input. 
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4.3.3 Focal Spot Size Measurements 

The manufacturer’s specifications for the x-ray source indicate varying focal spot sizes 

according to the output power rating, and it is therefore important to measure the focal 

spot sizes for comparing it with the specified sizes. A slit camera (IIE GmbH, Aachen, 

Germany) was placed at SOD = 30.5 cm and SID = 183 cm, yielding a geometric 

magnification factor of M = 6. A CCD x-ray detector (Image Star 9000, Photonic Science, 

UK) with a pixel pitch of 21.7 µm was utilized to measure the focal spot sizes according 

to the technical procedure specified in the literature [35, 36]. The slit camera was carefully 

positioned so that it was either parallel (for measuring the width of the focal spot 

dimension) or perpendicular (for measuring the length of the focal spot dimension) to the 

anode–cathode direction. Multiple transverse profiles from the center section of the slit 

image were averaged, and the results were used for the determination of the full width at 

the half maximum (FWHM) of the focal spot images. The background signal was 

subtracted from each profile to ensure consistent results. Complete description of the 

method can be found in [36]. With the FWHM determined for each slit profile, the 

corresponding focal spot size was calculated as  

    𝐹𝑆 (µ𝑚) =
𝐹𝑊𝐻𝑀−10×𝑀

𝑀−1
    (5.1) 

where FS represents focal spot size; M is the geometric magnification; and the factor 10 

is the physical slit width in microns (μm). Figure 4.5 shows the slit images (448×336) 

acquired under three output powers of 39W, 20W and 5W representing the horizontal 

dimension of the focal spot with respect to the anode-cathode direction. From these 

images, one can visually see that (a) the slit has good alignment to ensure a more accurate 
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representation of an across-slit digital profile, (b) the width of the slit increases with the 

operating power of the x-ray tube. Thus, the width of the slit is largest for 39W and 

smallest for 5W.  

   

(a)             (b)                                                      (c)  

Figure.4.5. Slit camera images acquired using a CCD detector: (a) 39 W (130 kV, 300µA), (b) 20 W 

(100kV, 200µA), (c) 5 W (100 kV, 50µA). 

 

 

The focal spot sizes were measured in the two dimensions and plotted against the output 

power (W) and were compared to the manufacturer-provided specifications in Figure 4.6. 

The focal spot sizes were linearly fitted with respect to the input tube power (W). As 

compared to a small focal spot, a large focal spot produces a greater blur in the output 

images of the system, which results in a wider FWHM. For example, the 39 W horizontal 

slit image produces a FWHM value of 470 µm (21.7 µm × 21 pixel) as compared to a 

FWHM value of 315 µm (21.7 µm × 14 pixel) produced by the 20 W image. In addition, 

the focal spot sizes in the vertical direction are smaller than that of the horizontal 

direction.  

 

 

of an across-slit digital profile, (b) the width of the slit increases with the operating power of the 

x-ray tube. Thus, the width of the slit is largest for 39W and smallest for 5W.  

                                            
(a)                                    (b)                                          (c)  
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Figure.4.6. Focal spot sizes in the two planes plotted against the output power (W).  

 

4.3.4 kV Accuracy 

Accuracy of the kilo voltage was evaluated with a noninvasive kV meter (Radcal 

Corporation, CA, USA).  As shown in Table 4.2, the output voltage was within ±1V for 

input voltages between 40 and 80kV, while the output voltage was within ±3V for 90-

130kV. 

                                                 Table 4.2: Measured output voltages of the x-ray tube. 

Input kV Output kV (300µA) 

40 39.4 

50 49.7 

60 59.5 

70 70.5 

80 80.7 

90 92.6 

100 102.7 

110 112.7 

120 122.5 

130 132.7 
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4.3.5 Spectra Measurements 

The quality of the x-ray beam is affected predominantly by kilo-voltage peak (kVp) 

selection; thus it is very important to know the waveform of the x-ray beams at different 

energies and at different filtration levels. For the determination of the waveform, we used 

a compact integrated spectrometer system (X-123CdTe, Amptek Inc., Bedford, USA) 

which includes a cadmium telluride (CdTe) x-ray detector, a preamplifier, a digital pulse 

processor and a multichannel analyzer (MCA). For the 40-70 kV waveforms, we did not 

employ any external filtration. However, for the waveforms between 80-130 kV, we 

employed a 2.5 mm thick aluminum (Al) filter to remove the low energy photons and 

allow viewing the K edges of the target material (tungsten) prominently. The input rates 

for the acquired spectrum measurements were below 2500 counts/sec. The spectrum 

measurements in the continuous emission of the x-ray source are given in Figure 4.7. One 

can see the L series peaks of the tungsten (W) material for 40-70kV, while the K series 

peaks can be seen for the 80-130kV range. 
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      (b)  

Figure.4.7. Output spectrum measurements for the tube in continuous emission mode for (a) 40-70 

kV (b) 80-130kV.  

 

 

4.3.6 Spatial Resolution Measurements 

It is expected that the focal spot size variation with respect to output power (W) will have 

an impact on the spatial resolution. The same slit camera was employed for the 

measurement of modulation transfer function (MTF) from an oversampled line spread 

function (LSF) [37-39]. The slit camera was slightly tilted (2°~ 4°) and placed at a SOD 

of 68 cm. A CMOS flat panel detector (Hamamatsu, C7942SK-25) with a pixel pitch of 

50µm was used to image the slit. The SID was 170 cm, resulting in a magnification (M) 

factor of 2.5. Figure 4.8(a) represents the MTF curves in the two scanning directions for 

a 30 W output power.  As compared to the horizontal scan, the vertical scan produces 

higher MTF values. The cutoff frequencies (10% MTF) are 11.75 lp/mm and 10.93 lp/mm 

in the two scanning directions. Similar observations can be found in previous studies. The 

remaining assessment of the spatial resolution was performed in the vertical direction. 

The MTF curves for four different output powers in the continuous emission mode are 
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given in Figure 4.8(b). As expected, the focal spot size variation with respect to output 

power (W) has a direct impact on the spatial resolution. The slit images were all acquired 

at 100 kV except for 39 W, where 130 kV was used. The cutoff frequencies (10% MTF) 

for 10W, 20W, 30W and 39W correspond to 13.4 lp/mm, 12.61 lp/mm, 11.75 lp/mm and 

11 lp/mm, respectively.  

        
                         (a) 

 

       
        (b) 

Figure.4.8. (a) MTF curves in the two scanning directions for 30W output power (W) (b) MTF curves 

for different output powers of the source ranging from 10-39W. 
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For the qualitative assessment of the spatial resolution, an ultra-high contrast resolution 

bar chip phantom (016B, CIRS, Virginia, USA) was utilized. The phantom has a 17.5 µm 

thick gold-nickel (Au-Ni) alloy bar pattern with 18 segments ranging from 5-28 lp/mm. 

At 10W, the 13 lp/mm bar lines are differentiated from each other, while the 11 lp/mm 

bar lines are differentiated at 39 W, as shown in Figure 4.9.  

     

 
(a)                                (b) 

Figure.4.9. The bar chip phantom images represent the qualitative assessment of the spatial 

resolution in (a) 10W, 100kV, 100µA (b) 39W, 130kV, 300µA.  
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4.4  Pulsed Emission Mode Results 

4.4.1 Source Output 

The source output measured for the guaranteed voltage range (80-130 kV) in the beamline 

at several distances was measured and the relationship between the exposure rate (mR 

/min) and distance (R) is plotted in Figure 4.10. One can see that the pulse output is about 

half that of the continuous beam output, since the pulse beam operates with a 50% duty 

cycle. This means that for a one-minute exposure, the on and off times are 30 seconds 

each for the pulse beam, as compared to a full one minute on time for the continuous 

beam. For example, at 100 cm for 100 kV, the source output in pulse and continuous 

emission mode is 2.07 R/min and 4 R/min.                         

                   

Figure.4.10. Exposure output plotted against distance shows the inverse square law relationship.   

 

4 4.2 Beam Quality 

Table 4.3 provides the recorded exposure rates using various thicknesses of Al under the 

guaranteed kVs in the pulsed mode. Again, with a small thickness of 0.05 mm Al, the x-

ray beam intensity drops to 30-31 %. This clearly demonstrates that the unfiltered x-ray 
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beam contains a large number of low energy photons in the pulsed mode emission, which 

do not contribute to the image formation and instead result in an additional radiation dose 

absorbed by the tissue. 

Table 4.3: Exposure readings with several thicknesses (0 to 1.5 mm) of Aluminum filters under 

different kVs. 

Condition No Filter 0.05 mm  0.1 mm  0.2 mm  1 mm  1.5 mm 2 mm 

80kV, 300µA 1.72 R/min 1.19 R/min 913 mR/min 593 mR/min 200 mR/min 150 mR/min 118 mR/min 

100kV, 300µA 2.07 R/min 1.43 R/min 1.11 R/min 740 mR/min 276 mR/min 213 mR/min 172 mR/min 

120kV, 300µA 2.35 R/min 1.65 R/min 1.28 R/min 870 mR/min 352 mR/min 281 mR/min 232 mR/min 

130kV, 300µA 2.54 R/min 1.76 R/min 1.34 R/min 924 mR/min 390 mR/min 316 mR/min 262 mR/min 

 

The half value layer (HVL) values for 80-130 kV are given in Table 4.4. As with the 

unfiltered x-ray beam in continuous emission mode, the vast majority of low energy 

photons that are readily blocked by Al filters with very small thicknesses result in small 

HVL values. With 1mm Al input filtration at the exit window of the x-ray tube, the x-ray 

beam becomes harder and one can see from the table that these HVL values will help in 

imaging tissues at reduced radiation dose levels. HVL values in both emission modes are 

similar to each other. For example, with 1.5 mm Al at the output window of the source at 

100 kV, the resultant HVL values are 2.34 mm and 2.4 mm of Al in both pulse and 

continuous emission modes, respectively.  

Table 4.4: HVL computed for different kVs with respect to different input filtration. 

kV HVL, no filter HVL, 1 mm Al filter HVL, 1.5 mm Al filter 

80 0.1139 1.45 1.95 

100 0.1172 1.85 2.34 

120 0.1194 2.19 2.81 

130 0.1206 2.38 3.0 
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The HVL and kV values are linearly related for any fixed filter thickness at the output 

window of the x-ray tube as shown in Figure 4.11. For example, with a 1.5 mm Al filter, 

the HVL increases from 1.95 to 3 mm as the tube voltage increases from 80 kV to 130 

kV. 

             

Figure.4.11. Half value layer (HVL) and tube potential (kV) relationship plotted for 1 mm and 1.5 

mm Al filters at the tube output window.  

4 4.3 Spectra Measurements 

The kV waveforms in the pulsed emission mode of the x-ray source are given in Figure 

4.12. Similarly, to the continuous emission mode, a 2.5 mm thick aluminum (Al) filter 

was employed to block the low energy photons for the spectrum measurements. The 

shapes in continuous and pulsed emission are the same, and the only evident difference 

is the input photon rate received by the spectrometer in the pulsed emission mode was 

one half that of the continuous mode. Thus, we used approximately twice the length of 

time to reach the same output photon count levels in the pulsed mode. The k-edge peaks 

are prominent and could be easily differentiated from the rest of the spectrum. 
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Figure.4.12: Output spectrum measurements for the tube in pulsed emission mode for 80 kV-130 kV 

in 10 kV steps.  

 

4 4.4 Spatial Resolution 

The MTF curves for 10 W, 20 W and 39 W output powers are given in Figure 4.13. The 

cutoff frequencies (10% MTF) for 10W, 20W and 39W correspond to 13.6 lp/mm, 11.95 

lp/mm, and 11.27 lp/mm, respectively. This corresponds to an improvement of 20% in 

the spatial resolution when the output is decreased from 39W to 10W.  

                                       

Figure 4.13: The measured MTF curves for different output powers of the tube ranging from 10W 

to 39W.  
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The qualitative assessment of the spatial resolution using the bar chip phantom validates 

the quantitative measurements, as shown in Figure 4.14. One can see that the 12 lp/mm 

bar lines are clearly differentiated at 39 W. 

 
Figure 4.14: The bar chip phantom image acquired at 39W with 130kV, 300µA in pulsed emission 

mode.  

 

 

4.5 Discussion  

 

For the development and refinement of advanced imaging systems using the newly 

designed hybrid micro focus x-ray source, the first step was to characterize the 

performance of continuous and pulsed emission modes in projection imaging. As 

expected, the x-ray exposure output changes with an inverse square relationship to the 

distance, and linearly changes with respect to the current values. The unfiltered x-ray 

beam in both emission modes contains a large amount of low energy photons which are 

readily blocked by an aluminum (Al) filter of small thickness. This implies that these low 

energy photons do not contribute to the image formation and will instead be readily 

absorbed by the tissue/organ, adding unnecessary radiation dose. Therefore, for all the 

kV values, it is recommended to use a certain amount of filtration to block those unwanted 

low energy photons. For any fixed filter thickness at the output window of the x-ray tube, 

the HVL and kVs are linearly related. The wider emission angle of the x-ray beam results 
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in high exposure output readings at the side of the central beam. There was substantial 

exposure output even 38 cm to the side. Lead (Pb) collimation of the field is 

recommended to make the field of coverage correspond to the imaging object size. The 

deviation of output kVs from the preset input values was smaller for lower kVs (40-80kV) 

than for higher kV values (90-130kV).   

The measured focal spot sizes vary linearly with respect to the output power and match 

the manufacturer provided data. The focal spot sizes in the vertical direction were smaller 

than the horizontal direction, which was visible when comparing the spatial resolution of 

the MTF curves. A substantial difference in the resolution can be seen at lower 

frequencies when comparing the spatial resolution for the two scanning directions. We 

can infer that the small focal spot size in the vertical direction will have a favorable impact 

on the spatial resolution in the z-plane of the cone beam CTs as observed in previous 

studies [40, 41]. Our analysis suggests that the performance of the two emission modes 

was similar in terms of spatial resolution. The resolution on the bar pattern are slightly 

different than the one predicted by the MTF curves, since 10% of the MTF value may not 

be an absolute baseline limit for the cutoff frequency estimation. Several studies have 

used a baseline limit of 5% for the estimation of the cutoff frequency, but we selected 

10% for consistency with the majority of previous studies. Furthermore, the curve fitting 

algorithm used to generate the smooth LSF in the MTF calculation has a slight impact on 

the cutoff frequency range.   

For both the continuous emission and pulsed emission modes, the characteristic peaks of 

the anode target in the spectrum were easily differentiated. For low input kVp’s, Lα2, Lβ4 

and Lγ1 were easily differentiated, while Kα2 ,Kα1 and Kβ1 were differentiated for higher 
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kVp values (80-130 kVp).  Pulsed x-ray sources have shown a valuable spatial resolution 

improvement in breast imaging with cone beam CTs [42]. We can expect that the pulsed 

emission mode, when synchronized with the digital detectors in cone beam CTs and 

digital tomosynthesis imaging modalities, will likely improve the spatial resolution, 

reduce the scattering, and reduce the radiation dose levels. With valuable results drawn 

from this characterization, we aim to translate this hybrid x-ray source to perform 

advanced imaging applications like cone beam CT, digital or phase sensitive 

tomosynthesis soon.  

 

This study has been published and the details can be found in reference 97.  
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Chapter 5. Detectability Comparison between a High Energy X-ray 

Phase Sensitive and Mammography systems in imaging Phantoms with 

varying Glandular-Adipose ratios 

5.1 Introduction 

After identifying the optimal geometric and operating conditions for the high energy 

inline phase sensitive imaging prototype in Chapter 3, its comparison with the clinical 

imaging units was the next step. The aim of this investigation was to demonstrate the 

potential benefits of using a high energy phase sensitive imaging of breast tissues with 

varying glandular-adipose ratios in comparison with the commercial mammography 

imaging systems. Many risk factors for breast cancer have been established, which 

include personal and family history. High mammographic breast density has been 

identified as an independent risk factor for developing breast cancer, with estimates of 

relative lifetime risk ranging from two to six-fold as compared to non-dense breasts [98-

103]. The Breast Imaging-Reporting and Data System (BI-RADS), a quality assurance 

tool, identifies four classes of breast densities, in order of increasing risk [104]: Class a 

predominantly fatty; Class b, scattered areas of fibro-glandular density; Class c, 

heterogeneously dense with 50-75% of fibro-glandular tissues; and Class s, extremely 

dense. The sensitivity of mammography for the detection of breast cancer in non-dense 

breasts has been reported to be 85 % [105], which is a reassuring number. However, the 

sensitivity drops as low as 48% in women with extremely dense breasts, i.e. Class d 

(greater than 75% fibro-glandular tissue) [106,107]. It has been estimated that about 28 – 

30 % of breast cancers are associated with breast density, in comparison to 5 – 10& 
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attributed to mutations in the BRCA1 or BRCA22 gene (13). Screening modalities that 

are effective for this large population of women are crucial for optimal early diagnosis of 

breast cancers. Additional screening with magnetic resonance (MR) imaging or 

automated breast ultrasonography (AB US) after screening mammography increases the 

rate of early detection of breast cancer in women with dense breasts [107-110]. For 

example, a recent study showed that out of 112 breast cancer cases diagnosed in a 

population of 15318 intermediate risk women with dense breasts; 82 cases were detected 

using screening mammography, and an additional 30 cases using the automated breast 

(AB) ultrasonography (US) that were not detected by screening mammography [111]. 

The addition of AB US to screening mammography yielded an additional 1.9 detected 

cancers per 1000 women screened. The rates of additional cancers identified by using 

handheld US range between 1.9 and 5.3 additional cancers per 1000 women screened 

compared with mammography alone [111-115]. These studies show that there is room 

for improving the screening mammography in dense breast imaging. 

Conventional mammography is sensitive to the attenuation coefficients of tissues. 

Unfortunately, dense breast tissue makes mammograms more difficult to interpret by 

masking potential tumor, since tumor and dense breast tissue both appear white on a 

mammogram. Phase-sensitive mammography is an innovative and emerging x-ray 

imaging technique that could potentially increase the sensitivity of the mammography. 

This investigation compares the detectability the low energy clinical mammography 

systems and the high energy in-line phase sensitive prototype using a contrast detail (CD) 

test pattern embedded in modular breast-simulating phantoms of varying glandular and 

adipose tissue compositions. To the best of my knowledge, a comparison of relative 
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detectability of these two modalities in imaging phantoms with varying glandular 

compositions has not been previously presented. This study has been published whose 

details can be found in reference [116].  

5.2 Methods and Materials 

5.2.1 Modular Breast Simulating Phantoms  

Two modular breast-simulating phantoms were used in this study. The phantoms consist 

of multiple homogeneous slabs that mimic the adipose (A) and glandular (G) tissue 

composition of a human breast. The slabs are made of epoxy resins with x-ray attenuation 

properties corresponding to different density levels of adipose and glandular densities of 

the breast tissue. The slabs come in 50G-50A and 70G-30A percentages of the glandular 

and adipose densities. The adipose and glandular equivalent materials were uniformly 

blended to make the homogenous background. Three slabs of similar densities were 

sandwiched together to create a 5-cm thick phantom with the middle slab having a 

thickness of 1 cm and the outer slabs having a thickness of 2 cm respectively. As shown 

in Figure 5.1, the middle slab of each phantom was machined to include a contrast detail 

(CD) test pattern. This pattern consists of 6×6 matrix of cylindrical holes with diameters 

of 0.25, 0.5, 1, 2, 3 and 4.25 mm and depths of 0.1, 0.2, 0.4, 0.6, 0.8 and 1 mm. 
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Figure 5.1. The modular breast phantom mimicking the 70G-30A percentage density with a CD test 

pattern machined in the middle slab. 

 

5.2.2 Phase Sensitive Imaging Prototype 

The benchtop in-line phase-sensitive x-ray imaging prototype that was characterized in 

Chapter 3 was used in this investigation. The prototype incorporates a micro focus x-ray 

source (Model L8121-03, Hamamatsu Photonics, Japan) and a 12 cm × 12 cm CMOS flat 

panel sensor system (C7942SK-25, Hamamatsu Photonics) with a pixel pitch of 50 μm. 

The geometric magnification (M) used in this study was 2.5, with a SOD = 68 cm and 

SID = 170 cm. The phase-sensitive images were acquired using a tube voltage of 120 

kVp, a tube current of 500 μA, and an exposure time of 9 sec (4.5 mAs). A 2.5 mm Al 

filter was utilized to harden the beam and block the low energy photons. These specific 

acquisition parameters and geometry are considered as optimal for imaging soft tissues 

according to the investigation in Chapter 3.  
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5.2.3 Clinical X-ray Imaging Systems  

Two conventional mammography systems were utilized in this investigation for 

comparison purpose with the phase sensitive imaging unit. The first system was the 

Senographe DS (GE Medical, United States) as shown in Figure 5.2 (a). The Senographe 

DS utilizes an x-ray tube with dual anode targets of molybdenum (Mo) and rhodium (Rh), 

and a choice of Mo, Rh, and aluminum (Al) filtration. It has an indirect conversion flat 

panel detector that is coupled with a scintillator of cesium iodide (CsI) doped with 

thallium (CSI: TI). The detector has a pixel pitch of 100 µm with a pixel array of 

2294×1914 that provides a field of view of 23 cm × 19.2 cm.   

The second system used was Selenia Dimensions (Hologic, Bedford, MA, USA) as 

shown in Figure 5.2 (b). Selenia system utilizes a tungsten (W) anode target and a choice 

of rhodium (Rh), silver (Ag) and aluminum (Al) filtration. It has an amorphous selenium 

(a-Se) flat-panel detector that performs a direct conversion of the incident x-ray photons 

into electric charge that migrate under the influence of the applied electric field and are 

collected on the detector elements. The detector elements have a pixel pitch of 70 μm 

with a pixel array of 4096 × 3328 that provides a field of view of 28.6 cm × 23.3 cm. The 

source to image-detector distance (SID) for the Senographe is 66 cm, while the Selenia 

has a SID of 70 cm.  

Both the systems utilize an anti-scatter grid for scatter rejection. As mentioned in Chapter 

2 that due to the introduction of the air gap between the object and the detector in the 

inline phase sensitive imaging technique, the need for an anti-scatter grid is avoided 

which potentially reduces the radiation dose delivered to the object. For both systems, the 
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phantom images were acquired using an automatic exposure control (AEC) mode that is 

associated with each system. 

                                        

(a)                                                            (b)  

Figure 5.2.  Attenuation-based images were acquired using commercial breast imaging systems 

(a)Senographe DS, General Electric (b) Selenia Dimensions, Hologic.   

 

With the AEC mode, the system automatically selects a suitable tube voltage (kV), 

anode/filter combination, and mAs value depending on the compressed thickness of the 

breast and its attenuation to x-ray, as determined by a pre-pulse x-ray exposure. In 

addition to the AEC mode, an automatic contrast mode (CNT) was also used for the image 

acquisition with Senographe. The CNT mode applies a lower kV and higher mAs values 

which result in dose values that are more than double as compared to its standard AEC 

mode acquisition. The acquisition parameters used for imaging in this investigation are 

summarized in Table 5.1.  
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Table 5.1:  Parameters used for the acquisition of the phantom images. 

Density GE Senographe 

(AEC) 

Hologic Selenia 

(AEC) 

GE Senographe 

(CNT) 

Phase Sensitive 

System 

50G-50A 29kV,46mAs, 

1.03mGy 

29kV,116mAs,

1.42mGy 

27kV,146mAs, 

2.46mGy 

120kV,4.5mAs, 

1.33mGy 

70G-30A 29kV,55mAs, 

1.14mGy 

29kV,142mAs,

1.57mGy 

28kV,129mAs, 

2.3mGy 

120kV,4.5mAs, 

1.3mGy 

 

5.3 Analyses and Comparison of the Images 

5.3.1 Observer Study  

Performing an observer study using contrast-detail (C-D) analysis is a widely accepted as 

a simple and efficient method for comparison of medical imaging systems and techniques 

including mammography applications [117-120]. All images were randomly presented to 

10 independent observers for analysis. The analysis involved each observer identifying 

the minimum perceptible hole/disk for each diameter in the image. All the images were 

displayed on a high-resolution monitor in a dark room. The monitor was calibrated using 

the DICOM grayscale standard display function.  The reading time was unlimited for 

each user. C-D curves were generated for each image according to the averaged observers 

scores to compare the relative performance of the phase retrieved and conventional 

clinical images. The C-D curve relates the threshold contrast necessary to perceive an 

object as a function of the object’s diameter. Curves for different systems or techniques 

can easily be compared, as a system exhibiting higher performance produces a C-D curve 

located closer to the x-y axis. A student t confidence interval was constructed around each 

data point for determining the variance among the observers for that disk. The 

corresponding confidence interval is calculated as  
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                𝑌̅  ±  𝑡 
𝛼

2
,𝑛−1 .

𝑆

√𝑛
     (4.1) 

where n represents the number of samples, 𝑌̅  is the average value, S is the standard 

deviation in the scores reported by the observers for each disk and 𝑡 
𝛼

2
,𝑛−1  is the student t 

value corresponding to the selected confidence interval with n – 1 degrees of freedom.  

This study utilized a 95 % confidence interval with n − 1 degrees of freedom.  

5.3.2 Contrast-to-noise ratio (CNR)  

The use of C-D analyses unites the concepts of spatial resolution and contrast resolution 

on the same graph. It is excellent in providing the relationships visually, but it is not 

quantitative. For the quantitative comparison of the three different imaging systems, the 

signal-to-noise ratios (SNRs) of the disk targets in each phantom were calculated. The 

SNR of a disk target is defined according to the Rose model as follows [52, 121-123] 

     𝑆𝑁𝑅 =
𝑆𝐴− 𝑆𝐵

√(𝜎𝐴
2 +𝜎𝐵

2 )

2

×√𝑎𝐷 𝑎𝑝⁄       (4.2) 

where SA denotes the mean pixel value of the disc target averaged over a region of interest 

(ROI), SB is the mean pixel value of the background averaged over an ROI of the same 

size, σA
2  and σB

2  are the corresponding pixel value variances, and aD and ap are the areas 

of a disk target and a pixel, respectively. The ROI size for the target disks varied with its 

diameter. Four ROIs of equal sizes, as of ROI of the target disks, were positioned in the 

background regions around each disk. 
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5.3.3 Figure of Merit (FOM) evaluations 

The achieved CNR for any given disk also depends on the mean glandular dose (Dg). 

Since the three imaging systems utilized different Dg values, we define a figure of merit 

(FOM) for target disk imaging performances. FOM is a quantity that is used to 

characterize the performance of a device, system or method, relative to its alternatives 

and it is given as  

   𝐹𝑂𝑀 = 𝐶𝑁𝑅2

𝐷𝑜𝑠𝑒⁄           (4.3) 

The CNR for x-ray quantum limited detectors is related to the number of x-ray photons 

(N) as N1/2. Since Dg is proportional to N, by squaring CNR the influence of N is 

eliminated in the above FOM ((N1/2)2 / N = 1). It conveniently eliminates the parameter 

of exposure level from the comparative analyses [124]. Hence, the defined FOM reflects 

the influence that photon energy has in terms of dose efficiency. We measured the CNR 

and the FOM values for four target discs in the phantom which were 4.25 and 3 mm in 

diameter with drilled depths of 1 and 0.8 mm. The phase retrieved and clinical images 

acquired under the AEC modes with the two clinical units were utilized in the 

computation of CNR and FOM. 
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5.4  Results 

5.4.1 Observer Study 

Figure 5.3 provides the contrast-detail test pattern images of the phantoms simulating the 

50% glandular (G) - 50% adipose (A) density acquired with the GE Senographe, Hologic 

Selenia and inline phase sensitive prototype imaging systems.  

 

                         
(a)                                                                    (b) 

 

                            
       (c)                                                                 (d)  

Figure 5.3. CD phantom images of the 50G-50A phantom set acquired by (a) GE Senographe at 29 

kV, 46 mAs, 1.03 mGy; (b) Hologic Selenia at 29 kV, 116 mAs, 1.42 mGy; (c) GE Senographe at 27 

kV, 146 mAs, 2.46 mGy; (d) Phase retrieved imaged acquired at 120 kV, 500 µA, 9s (4.5 mAs), 1.33 

mGy. 
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Figure 5.3(a) is the AEC mode acquired image with the GE Senographe, 5.3 (b) is the 

AEC mode acquired image with Hologic Selenia system, 3(c) is the CNT (double dose) 

mode image acquired with the GE Senographe system, and 3(d) is the phase retrieved 

image of the phantom. Except for window/leveling, flat field correction and dark current 

correction, no image processing methods were applied to the images. Similarly, figure 

5.4 provides the CD images of the phantoms simulating the 70% G- 30% A density 

acquired in the same sequence of (a)-(d) as of figure 5.3. From visual inspection, one can 

see that the hardest disks to perceive are in the lower left (smaller with less contrast), and 

the easiest disks to view are the in the upper right (larger with higher contrast) on these 

phantom images. From a quick visual inspection, the phase retrieved image is offering a 

noticeable improvement in disc detection as compared to the images acquired at similar 

dose levels with the clinical mammography systems. Selenia acquired AEC images have 

improved disc detection capability as compared to the Senographe acquired AEC images.  
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(a) (b) 

 

                         
                                                         (c)                                                                       (d) 

Figure 5.4. CD phantom images of the 70G-30A phantom set acquired by (a) GE Senographe at 29 

kV, 55 mAs, 1.14 mGy; (b) Hologic Selenia at 29 kV, 142 mAs, 1.57 mGy; (c) GE Senographe at 28 

kV, 129 mAs, 2.3 mGy; (d) Phase retrieved image acquired at 120 kV, 500 µA, 9s (4.5 mAs), 1.3 mGy. 

 

Figure 5.5 compares the threshold contrast detection performance of the phase retrieved 

image with the conventional clinical mode images for the phantoms simulating the 50% 

glandular/ 50% adipose breast tissue. At similar dose levels, the phase retrieved image is 

superior to the images acquired with the two mammography systems under their AEC 

modes. One can see clearly on the C-D curve that the observers perceived more discs for 

all the disc diameters. It is worth to note that the AEC image of the Selenia yields 
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improved detection as compared to the AEC mode of the Senographe system. When the 

radiation dose was increased more than twice, the contrast resolution of the image 

acquired with Senographe improved and it outperformed the Selenia AEC mode image 

for all the discs diameters. In comparison to the phase retrieved image, the CNT mode of 

the Senographe yields in better detection for the discs with 2 mm and 1 mm diameters. 

As CNT mode applies higher dose settings—the relative noise in the image is less, and 

the C-D curve shows that it has better contrast resolution.  

             

Figure 5.5. Contrast detail curve comparison of the phase retrieved image with the clinical 

mammography systems under various imaging protocols for the 50% glandular- 50% adipose 

phantom.  

  

Figure 5.6 provides the threshold contrast detection performance of the phase retrieved 

image with the conventional clinical mode images for the phantom simulating the 70G- 

30A breast tissue. It is important to mention that with the clinical systems, the exposure 

and dose values both increased for this phantom, as the pre-pulse x-ray beam sensed a 

different attenuation due to the higher density while traversing the phantom. While 
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acquiring the phase-sensitive images of this phantom, the exposure values were kept at 

4.5 mAs to be consistent with the first set of images. Contrary to the clinical systems, the 

glandular dose for imaging the 70G-30A set phantom with phase sensitive system was 

less as compared to the 50G-50A set. One can see from the C-D curves that the phase 

retrieved image is superior in detection of all the discs as compared to the clinical images 

acquired under the AEC mode with similar dose levels. The detection of the large discs 

is almost the same as the phase retrieved and Selenia acquired images. As the disc 

diameter decreases, the Selenia acquired image contrast reduces, which results in reduced 

detection of those discs. The Selenia acquired image outperforms the Senographe 

acquired image under the AEC mode. With double dose, the CNT mode of the 

Senographe exhibits improved detection of discs, as it exceeds the phase retrieved image 

in providing better contrast resolution for the 3 mm and 0.5 mm disks. The noise reduction 

provided at double dose levels with the CNT mode was still not enough to completely 

offset the phase retrieved image acquired at a low dose. 

          
Figure 5.6. Contrast detail curve comparison of the phase retrieved image with the clinical 

mammography systems under various imaging protocols for the 70% G- 30% A phantom.  
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5.4.2 CNR and FOM Analyses 

The superiority of the phase sensitive imaging prototype as seen in the observer study is 

further endorsed by its CNR and FOM values. The results provided in Table 5.2 for the 

50G - 50A phantom set demonstrates that the ratios of CNR with the phase image to that 

of the Selenia acquired image ranges from 4.62 – 5.16. For example, the CNR values 

corresponding to 4.25 mm diameter disk with 0.8 mm depth are 6.57 and 1.34 for phase 

retrieved and Selenia images. The FOM values calculated for the phase images range 

from a factor of 22.9 – 28.53 greater than the FOM values for the Selenia acquired image. 

Similarly, the ratios of CNR with phase image to that of the GE acquired image ranges 

from 4.53 – 5.28 while the ratio of FOM values ranges from 15.9 – 21.6. For example, 

the CNR values corresponding to 3 mm diameter disk with 1 mm depth are 8.37 and 1.67 

for phase retrieved and Selenia images that produce the FOM value for the phase retrieved 

image as 19.5 times greater than the Senographe acquired image. 

Table 5.2. Comparison of the CNR and FOM ratios of the phase retrieved image with conventional 

mammography systems, Selenia Hologic (H) and Senographe GE (GE), for the 50% Glandular- 50% 

Adipose phantom set. 

 CNR (P) CNR (H) CNR (GE) FOM(P)/FOM(H) FOM(P)/FOM(GE) 

4.25mm×1mm  8.75 1.72 1.76 27.62 19.18 

4.25mm×0.8mm 6.57 1.34 1.45 25.75 15.90 

3mm×1mm 8.37 1.81 1.67 22.90 19.5 

3mm×0.8mm 6.97 1.35 1.32 28.53 21.6 

 

It is evident that the phase retrieved image has approximately five times the CNR of both 

the clinical system's images which validate the image quality improvements offered by 

the phase sensitive imaging system. For example, the disk with 3 mm diameter and 0.8 
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mm drilled depth provided the CNR values of 6.97, 1.35 and 1.32 with the phase 

retrieved, Selenia and Senographe images. The improvement of CNR with the phase 

sensitive imaging system directly impacts the FOM ratios with the two clinical systems. 

As compared to the Selenia system, the dose with the Senographe system was less which 

resulted in higher FOM values which in return yielded a smaller of FOM ratios. For the 

same disk, the FOM values for the Selenia and Senographe acquired images were 2.30 

and 2.70 which resulted in FOM ratios of 22.9 and 19.5 respectively.  

Both the clinical systems applied higher dose for adequate image quality for the denser 

phantom. With our inline phase sensitive imaging prototype, we were able to maintain 

the image quality enhancement without increasing the exposure and dose to the denser 

phantom. Table 5.3 provides the CNR and FOM values for the 70G - 30A phantom set.  

The ratios of CNR with the phase image to that of the Selenia acquired image ranges from 

4 – 4.95. The FOM values calculated for the phase images range from a factor of 19.32 – 

29.64 greater than the FOM values for the Selenia acquired image. Similarly, the ratios 

of CNR with phase image to that of the Senographe acquired image ranges from 4.41 – 

5.12 while the ratio of FOM values ranges from 17.1 – 23.06. This comparison has 

significance since the phase images were acquired at a reduced dose as opposed to the 

clinical images, yet still, provide a noticeable image quality enhancement in terms of 

CNR and FOM values. Taking the same disc of 3 mm diameter and 1 mm depth, the FOM 

ratios of phase retrieved to Selenia and Senographe acquired images are 29.64 and 23.06 

which are slightly higher to the FOM values of the 50G - 50A phantom set due to an 

acquisition with less dose. Higher CNR values warrant a good contrast resolution, less 

relative noise and thus better image quality. Increasing the mean number of photons (N) 
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incident upon a detector and reducing the scatter by employing an anti-scatter grid 

reduces the relative noise and improves the contrast resolution. One can see from figure 

5.3 and 5.4 that the disks offer a much stronger signal with the phase retrieved image as 

compared to the two opposing images. It is worth to mention that the boundaries of the 

disks are sharper with the phase retrieved image. It is a well-known fact that with the 

employment of geometric magnification in clinical radiology, the boundaries of tissues 

are obscured due to the blurring caused by the finite focal spot size of the x-ray tubes. 

Phase contrast imaging technique demonstrates the edge enhancement effect at the 

interfaces of different tissues or materials while providing additional CNR for the 

diagnostic purposes. 

Table 5.3. Comparison of the CNR and FOM ratios of the phase retrieved image with conventional 

mammography systems, Selenia Hologic (H) and Senographe GE (GE), for the 70% Glandular- 30% 

Adipose phantom set. 

 CNR (P) CNR (H) CNR(GE) FOM(P)/FOM(H) FOM(P)/FOM(GE) 

4.25mm×1mm  8.30 1.76 1.76 26.85 19.50 

4.25mm×0.8mm 6.87 1.52 1.50 24.67 18.39 

3mm×1mm 8.77 1.77 1.71 29.64 23.06 

3mm×0.8mm 6.36 1.59 1.44 19.32 17.10 

 

 

 

 

 



 

85 

5.5. Discussion  

With this investigation, we demonstrated the potential benefits of using high energy x-

rays for phase sensitive breast imaging. Two state of the art commercial clinical imaging 

systems were utilized that are routinely used for breast cancer screening in the U.S. Since, 

both the clinical systems had different x-ray tube targets and filter settings; hence we 

cannot apply the same tube current (mA) and exposure time (s) settings. For a fair 

comparison, we allowed both systems to apply their own optimized techniques, 

determined by their automatic exposure control (AEC) settings. With increasing breast 

density, the AEC modes of the two commercial systems selected higher mAs values, 

based on the attenuation to x-ray determined by the pre-pulse x-ray exposure. This 

increase in mAs resulted in higher dose levels, which in response ensures adequate image 

quality to facilitate diagnosis and interpretation.  It is important to mention that the 

detector quantum efficiency (DQE) decreases itself with an increase in the x-ray energy, 

as do the attenuation and phase coefficients of tissue. Consequently, the use of a high 

energy x-ray beam is inherently disadvantageous for phase imaging in a comparison study 

with low energy attenuation-based clinical images. However, due to the limited output 

power of the micro focus x-ray tubes, a high energy x-ray beam is required for phase 

imaging in order to reduce the exposure times to clinically acceptable values. 

For the 50% G – 50% A density phantom, the observer study, contrast-to-noise ratio 

(CNR) and figure of merit (FOM) comparisons all indicated a large CNR improvement 

with the phase retrieved image as compared to the two commercial imaging systems 

acquired under their AEC modes at similar dose levels. The CNR improvement in the 
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phase retrieved image was sufficient to detect the smallest discs that were undetectable 

by both commercial systems. With a double dose, the detectability of the discs improved 

due to the noise reduction provided by the system under its CNT mode. As compared to 

the phase-sensitive image, double dose provided improved contrast resolution for the 2 

mm and 1 mm disks. The clinical systems had to increase the dose to provide adequate 

image quality for the denser phantom. With our system, we were able to maintain the 

image quality enhancement without increasing the dose to the denser phantom. Thus, the 

comparison of 70G-30A phantom is more significant, since the phase images were 

acquired at a reduced relative dose as compared to the AEC mode clinical images, yet 

still provide a noticeable image quality enhancement regarding the disks perception, CNR 

and FOM values. At double dose, the contrast resolution of the GE system for the 3 mm 

and 0.5 mm disks improved as compared to the phase sensitive image. For detectors with 

small components of additive noise, where most of noise is a result of x-ray quantum 

fluctuations, the ratio of squared CNR to exposure is essentially independent of the 

exposure level; thus, FOM would be expected to be a measure of performance that would 

not change with incident exposure. 

Under the AEC acquisition mode of Senographe, the small disc diameters (0.5 and 0.25 

mm) for the 50G-50A image were slightly better perceived by the observers than that of 

the 70G-30A image. With the CNT, the observer study indicated that the discs with a 

diameter of 2, 1, 0.5 and 0.25 mm of the 50G-50A image were more distinguishable as 

compared to the 70G-30A image. For example, the 2 mm diameter disks produced an 

average score of 0.233 and 0.344 with the 50G-50A and 70G-30A images. With the phase 

sensitive system, the 50G-50A images produced slightly higher scores for all the discs as 
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compared to the 70G-30A image. Furthermore, the observer study indicates that the AEC 

mode images acquired with the Hologic system had higher disk perceptibility and 

detection as compared to AEC mode images of the GE system. The pixel pitch of the GE 

system is larger that results in reduced noise levels and less standard deviation among the 

pixel values of an ROI since it can capture more incident number of photons. Thus, the 

GE system produced similar CNR values and thus high FOM as that of the Hologic 

system at low radiation dose levels. 

              The results of this chapter are published in reference 116.  
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Chapter 6. Heterogenous Dense Breast Phantom Imaging using the 

High-energy In-line Phase Contrast and Conventional Imaging 

Systems 

6.1 Introduction 

With the optimal imaging parameters, the high energy in-line phase sensitive x-ray 

imaging of homogenous background dense phantom showed superiority in terms of 

contrast resolution, spatial resolution and contrast to noise ratios. In this chapter, we are 

utilizing a heterogenous background phantom in which glandular and adipose equivalent 

materials are non-uniformly blended. A heterogenous phantom was used to mimic the 

real breast backgrounds and the detectability of simulated tumors within that background 

was compared using the high energy inline phase sensitive and conventional imaging 

systems at similar radiation dose levels. For conventional imaging systems, a commercial 

mammography system and a benchtop prototype was utilized. As mentioned in the 

previous chapter, high mammographic breast density has been identified as an 

independent risk factor for developing breast cancer, with estimates of relative lifetime 

risk ranging from two to six-fold as compared to non-dense breasts. With this study, we 

aim to compare the sensitivity of the conventional and phase sensitive imaging systems 

using the heterogenous background phantom mimicking a dense breast.  
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6.2 Methods and Materials  

6.2.1 Heterogenous Dense Breast Phantom 

A modular phantom was employed that comprised of multiple slabs mimicking the 

adipose and glandular composition of a breast tissue. The slabs were made of epoxy resins 

with x-ray attenuation properties like 70-30 adipose-glandular percentage density. The 

adipose and glandular equivalent material were homogenously blended for uniform 

background slabs, while heterogeneous blending was used for non-uniform background 

slabs. Three slabs were sandwiched together to create a 5-cm thick phantom with the 

middle slab having a thickness of 1 cm and the outer slabs each having a thickness of 2 

cm as shown in Figure 6.1.                    

 

Figure 6.1. Heterogenous phantom mimicking the 70% glandular- 30% adipose breast density. A 

contrast detail test pattern was embedded to simulate different tumor sizes. 

 

The front slab facing the x-ray tube had non-uniform background while the middle and 

the back slabs had uniform backgrounds. To simulate different sizes of the tumors, the 

middle slab was machined to include a contrast detail (CD) test pattern. This pattern 
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consisted of a 6×6 matrix of circular discs having diameters of 0.25, 0.5, 1, 2, 3 and 4.25 

mm with drilled depths of 0.1, 0.2, 0.4, 0.6, 0.8 and 1 mm. 

6.2.2 Operating Parameters for Phase Contrast and Conventional Imaging Systems 

The benchtop inline phase sensitive prototype was used for the acquisition of phase 

sensitive imaging at geometric magnification (M) of 2.5, with source to object distance 

(SOD) = 68 cm and source to image detector distance (SIDD) = 170 cm. The phantom 

images were acquired at 120 kV, 500 µA, 4.5 mAs under mean glandular dose (Dg) level 

of 1.3 mGy with a 2.5 mm thick aluminum (Al) filter for beam hardening. After the 

acquisition, phase retrieval process was performed using the phase-attenuation duality 

(PAD) algorithm.  

The same commercial system, Selenia Dimensions 3D, (Hologic, Marlborough, USA) as 

discussed in detail in Chapter 5 was used for the acquisition of the low energy attenuation-

based images. The phantom image was acquired at a focal spot size of 300 µm using the 

automatic exposure control (AEC) mode of the system at 30 kV, 142 mAs with W/Rh 

target/filter settings that resulted in a mean glandular dose (Dg) of 1.36 mGy, respectively. 

The HVL thickness corresponding to these settings was 0.533 mm Al. The acquisition 

parameters that were utilized for imaging in this study are summarized in Table 6.1.  

Table 6.1. Parameters used for the acquisition of the phantom images with the phase sensitive and 

clinical mammography system. 

Phase Sensitive Image (P1) Attenuation Image (Hologic) 

120kV,4.5mAs,239mR,1.3mGy 30kV,142mAs, 596mR, 1.36mGy 
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After the acquisition, the images were presented to observers for contrast detail analysis 

as detailed in section 5.3.2. Furthermore, contrast to noise ratio and figure of merit (FOM) 

were measured as detailed in section 5.3.3 and 5.3.4.  

6.3 Results  

6.3.1 Observer Study Analysis  

Figure 6.2 provides the attenuation-based image of contrast-detail test pattern embedded 

in the 70% glandular (G) - 30% adipose (A) density phantom. This image was acquired 

with the Selenia Dimensions 3D imaging system. Excluding window/leveling, no image 

processing methods were applied to the image. From a quick visual inspection, it is noted 

that with the heterogenous background, the perception and contrast of the disks have been 

reduced.  

                      
Figure 6.2. Attenuation-based image of the contrast detail test pattern embedded in the 70%G-30%A 

phantom set acquired by Hologic Selenia Dimension 3D at 30 kV, 142 mAs, 1.36 mGy. 
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Figure 6.3 provides the phase retrieved image of the contrast-detail test pattern embedded 

in the phantom simulating the 70% glandular (G) - 30% adipose (A) density. The phase 

retrieval process was performed on the phase sensitive image which was acquired with 

the inline phase sensitive imaging prototype. From a quick visual inspection, it is noted 

that with the phase retrieved image has better contrast and perception of the disks 

(simulated tumors) as compared to the attenuation-based image.  

                             

Figure 6.3. Phase retrieved image of the contrast detail test pattern embedded in the 70%G-30%A 

phantom set acquired by the inline phase sensitive prototype at 120 kV, 4.5 mAs, 1.3 mGy. 

 

Figure 6.4 compares the threshold contrast detection performance of the phase retrieved 

image with the clinical attenuation-based image for the heterogenous phantoms 

simulating the 70% glandular/ 30% adipose breast tissue. Under the similar dose levels, 

the phase retrieved image is superior in terms of target discs detection and their perception 

in the heterogenous background. On the C-D curve, it is noticeable that the observers 

perceived more discs with less drilled depths. The contrast resolution improvements of 
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the phase retrieved image are visible with the large disc diameters. For example, for the 

4.25 mm diameter discs, the observers reported the threshold contrast of 0.37 for the 

phase retrieved image which is about 51% less than the threshold contrast of 0.56 for the 

attenuation-based image. Therefore, a lower threshold contrast was sufficient to detect 

the discs with small drilled depths.  

The superimposition of the glandular and adipose equivalent materials has a strong 

influence on the detectability of the simulated tumors. For example, the 4.25 mm diameter 

disc with 0.6 mm drilled depth, highlighted by white arrow on figure 6.2, is hardly visible 

on the attenuation-based image. The same disk, highlighted by white arrow on figure 6.3, 

has been perceived by all the observers successfully with the phase retrieved image. 

Therefore, the inline phase sensitive imaging prototype distinguished both the larger and 

smaller diameter discs in the heterogenous background in comparison to the attenuation-

based clinical system.  

             

Figure 6.4: Contrast detail curves generated with the heterogenous background 70G-30A phantom 

for comparisons of the inline phase sensitive prototype with the clinical mammography system under 

similar radiation dose levels. 
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Figure 6.5 compares the threshold contrast detection performances of the phase retrieved 

image with the clinical attenuation-based image for both the homogenous and 

heterogenous phantoms that are simulating the 70% glandular/ 30% adipose breast tissue. 

In this comparison, it is evident that with the heterogenous background, the perception of 

the discs reduces to a significant extent. This is an intrinsic problem associated with 

mammography that it provides a 2D image of a 3D object. This superimposition of the 

soft tissue on the discs (simulated tumors) results in a reduced detection.    

           

Figure 6.5: Comparisons of the contrast detail curves generated with homogenous and heterogenous 

backgrounds 70G-30A phantoms for the comparisons of inline phase sensitive prototype with the 

clinical mammography system. 

 

6.3.2 CNR and FOM Analyses 

The superiority of the phase sensitive imaging prototype as noticed in the observer study 

is further endorsed by its CNR and FOM values. The results provided in Table 6.2 

demonstrates that CNRs calculated for the disks with the phase sensitive image is at least 
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3.5 times greater than of the Selenia acquired image for the heterogenous background 

phantom. For example, the CNR value for the 3-mm diameter disk with 1-mm depth was 

2.93 and it was 0.75 for the similar disk in phase retrieved and Selenia images. The FOM 

values calculated for the phase sensitive image is at least 13 times higher than the FOM 

values for the Selenia acquired image. The higher CNR and FOM values signify that we 

can further reduce the glandular dose for the image acquisition with the inline phase 

sensitive imaging prototype which is significant in-patient imaging.   

Table 6.2. Comparison of the CNR and FOM ratios of the phase retrieved image with conventional 

Selenia Hologic (H). 

 CNR (P) CNR (H) FOM(P)/FOM(H) 

4.25mm×1mm  4.25 1.19 13.34 

4.25mm×0.8mm 2.55 0.71 13.49 

3mm×1mm 2.93 0.75 15.95 

3mm×0.8mm 2.17 0.607 13.36 

 

6.4 Discussion 

This study demonstrated the efficacy of the inline phase sensitive imaging system in 

imaging breast equivalent phantoms with heterogenous backgrounds. The system had 

already shown its effectiveness in imaging the standard homogenous breast phantoms that 

are routinely used for quality assurance purposes in the clinical world. For the dense 

breast phantom, the observer study and contrast-to-noise ratio (CNR) analyses all 

indicated a large SNR improvement by the phase contrast images as compared to the 

conventional image acquired at similar dose levels. The CNR improvement in the phase 

contrast images was enough to detect the smaller discs which were undetectable by the 

conventional systems. The simulated tumors were more perceptible on the phase contrast 
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image in the superimposed underlying tissues. The superimposition of the glandular and 

adipose equivalent materials had a severe influence on the detectability of the simulated 

tumors, particularly with the attenuation-based imaging system. This is an intrinsic 

problem associated with mammography systems as it provides a 2D image of a 3D object. 

To tackle this issue, digital breast tomosynthesis (DBT) technique has been developed to 

provide a set of DBT slices that are reconstructed from low dose limited angle projections 

to provide better visibility and discrimination of breast tumors by reducing the structured 

noise caused by the overlapping and superimposition of the breast tissues.  

                 The results of this study are published in reference 125. 
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Chapter 7. Development of Digital Breast Tomosynthesis using the 

High-Energy X-ray Inline Phase Sensitive Prototype 

7.1 Digital Breast Tomosynthesis 

Digital radiology provides post acquisition processing capabilities that are not possible 

with conventional analog imaging systems. One of the key problem that is associated with 

the 2D projection imaging is that overlying and underlying anatomy are superimposed on 

the tumor, often concealing the detection of the cancer and other abnormality. Digital 

breast tomosynthesis (DBT) has become an important quasi 3D breast imaging method 

to overcome the breast tissue superposition issues intrinsic to the conventional 2D 

mammography [126-132]. A typical DBT system is like a digital mammography system; 

there is an x-ray source and a digital detector whose centers are aligned to each other and 

the breast is exposed on a support stage near the detector. A device that transforms the 

mammography system to a tomosynthesis system is the supporting arm that can rotate the 

x-ray tube around a pivot point over a limited angle in acquiring several low dose angular 

projection images. Each projection image projects the content in the breast volume with 

different shits depending on the geometry of the system. In laboratory prototypes and 

settings, this rotation mechanism is sometimes achieved by employing a rotational stage 

that can move the imaging phantom to simplify those studies. By employing a limited 

angle reconstruction algorithm, a set of tomogram slices are reconstructed. Those slices 

representing the incremental depth within the breast eliminates the superimposed 

anatomy which can help in the correct diagnosis.  
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Three widely-used geometries of the DBT image acquisitions are shown in Figure 7.1 

[133]. In the isocentric mode, both x-ray source and detector rotate synchronously around 

a fixed pivot point. In the partial isocentric mode, x-ray source rotates around a pivot 

point near or on the center of the object under detection, and the detector is stationary and 

in the parallel path mode, the detector moves in one plane and the x-ray source rotates 

about a pivotal point. 

 

(a)                                         (b)                      (c) 

Figure 7.1. Digital breast tomosynthesis geometries: (a) Isocentric mode, (b) Partial Isocentric mode, 

and (c) Parallel path mode. 

 
 
 

The detector that is used in a DBT system must perform the data read-out quickly, 

produce minimized ghosting, and provide sufficient detective quantum efficiency (DQE) 

at relatively low dose levels. Many projection images, typically 11 to 51, are acquired 

over a limited angular range, typically ±7.5 to ±25, in a scan time that ranges from 4 to 

20 sec.  One of the commercial system, Hologic Selenia Dimensions system, utilizes an 

amorphous selenium (a-Se) based direct detector that potentially meets the requirement 
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sufficient DQE at low exposures and acquires 15 images over a range of 15 degrees.  

Furthermore, that system acquires the projection images in a short period of 4 sec due to 

the continuous movement of the x-ray source for the acquisition of the projection images. 

However, the expense in obtaining short image acquisition period is the loss of system 

spatial resolution, which results from the application of the continuous gantry motion and 

the pixel binning in the detection process and has a direct negative impact on the detection 

of the microcalcifications. The recently FDA-approved GE SenoClaire tomosynthesis 

system employs step-and-shoot tube motion mode without binning, which facilitates the 

detection of microcalcifications, but the acquisition time for scan is higher as compared 

to the continuous arm motion. 

Several reconstruction techniques [134,135] can be employed (a) shift and add method; 

(b) filtered back projection; (c) simultaneous algebraic reconstruction techniques; and (d) 

maximum likelihood algorithms. More sophisticated iterative methods require longer 

reconstruction times but they provide enhancement by further reducing out-of-plane 

signals. 

 

7.2 In-line Phase Sensitive Tomosynthesis Prototype Development 

The phase sensitive DBT prototype utilizes a micro focus x-ray source, a detector and a 

rotational stage that provides a tomosynthesis mechanism. The micro focus x-ray source 

used was Model L8121-01, Hamamatsu Photonics, Japan and the details of the tube are 

listed in section 3.1.1. In laboratory prototypes and settings, instead of utilizing an 

amorphous-selenium (a-Se) based direct detectors, CCD-based and CMOS-based indirect 

flat-panel detectors have been widely used for system characterizations and imaging 
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studies using small animals, tissues and phantoms [136-137]. They use a scintillator to 

convert the incident x-ray energy to light photons, which are then converted to electronic 

signal and read out with a large area integrated circuit with an amorphous silicon (a-Si) 

photodiode and a thin film transistor (TFT) at each pixel. The thickness of the scintillator 

may cause additional scattering and, therefore, decrease the imaging spatial resolution, 

but CCD-based and CMOS-based flat-panel detectors are both able to produce relatively 

low electronic noise.  This research is going to employ the same CMOS flat panel detector 

(C7942SK-25, Hamamatsu Photonics, Japan) as discussed in Chapter 3 whose 

scintillating screen is made of structured cesium iodide (CsI) to convert the x-ray photons 

to light photons. It provides a pixel pitch of 50 μm with an active area of 12 cm × 12 cm 

and 12-bit digital output.  

A device that transforms the mammography system to a tomosynthesis system is the 

supporting arm that can rotate the x-ray tube around a pivot point over a limited angle in 

acquiring the angular projections. In laboratory prototypes and settings, this rotation 

mechanism is sometimes achieved by employing a rotational stage that can move the 

imaging phantom to simplify those studies. The prototype utilized a motorized rotation 

stage (Model SGSP-160YAW, OptoSigma) to provide the tomosynthesis mechanism and 

is shown in Figure 7.2. This rotation stage provides 0.0025°/pulse angular resolution. 

This means that it takes 400 pulses for the motorized rotation stage to provide 1° of 

rotation.  
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Figure 7.2: Motorized rotation stage (Model SGSP-160YAW, OptoSigma). 

 

Once the prototype acquires a number of phase sensitive projections over a limited 

angular range at a low dose, the reconstruction algorithms reconstructs the DBT slices.  

The reconstruction algorithm employed in this dissertation research is a modified 

Feldkamp–Davis–Kress (FDK) back projection algorithm [138-142].  This reconstruction 

method is a proven powerful reconstruction method for digital tomosynthesis imaging 

tasks. Several studies have employed a modified FDK reconstruction algorithm for 

laboratory tomosynthesis prototype characterizations and have demonstrated that this 

algorithm is able to provide a reconstructed image with high spatial resolution and 
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contrast, as well as minimal artifacts resulting from the incomplete sampling 

characteristics due to the nature of tomosynthesis. 

                      
Figure 7.3. Schematic illustrating the geometry of the object space and the detector plane.  𝐒,  𝐒′ and 

𝐎  represent the x-ray focal spot, the x-ray focal spot mapped on the detector plane and the isocenter 

of the system. 

 

As illustrated by the tomosynthesis geometry in Figure 7.3, the following formula 

expresses the algorithm reconstructing a certain slice at depth, 𝑦0 , from a set of 2D 

angular projections,  𝑃(𝑢, 𝑣, 𝜃). 

𝑓(𝑥, 𝑦0, 𝑧) = ∫
  𝐶(𝑥,𝑦0,𝑧)∙ 𝐷2

(𝐷−𝑠)2

max𝜃

min𝜃
∫

𝐷

√𝐷2+𝑢2+𝑣2

∞

−∞
× 𝑃(𝑢, 𝑣, 𝜃) ∙ 𝐻 (

𝐷∙𝑡

𝐷−𝑠
− 𝑢) 𝑑𝑢𝑑𝜃       (7.1) 

where 𝑓(𝑥, 𝑦0, 𝑧) represents the reconstructed image at the given slice with 𝑦0, 𝐷 is the 

source-to-isocenter distance or source-to-object distance (SOD, R1) in the experiments, 

𝐻(∙) represents the one-dimensional Ramp filter along the tube-swept orientation on the 

detection plane aiming to invert the blurring caused by the sampling and the back 

projection, 𝑃(𝑢, 𝑣, 𝜃) is the projection value of the projection coordinate (𝑢, 𝑣) from a 

projection view 𝜃 , and C(𝑥, 𝑦0, 𝑧)  is the compensation weighted factor which is 

experimentally and optimally determined by the following [143] 
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                                  C(𝑥, 𝑦0, 𝑧) = 1/cos [
1.3𝑧

𝐷−√𝑥2+𝑦0
2+𝑧2

)                                        (7.2) 

7.3 Efficacy of Digital Breast Tomosynthesis 

To intrinsically and directly investigate the ability to avoid superimposition of the tissues, 

a phantom consists of two superimposed fan shape resolution patterns at different depths 

were utilized. The tomosynthesis slices will be compared with the superimposed bar 

pattern images. The bench-top prototype consists of the x-ray tube, detector and a digital 

rotational stage. Two resolution test patterns (Model 02-539, Fluke Corporation, WA, 

USA) were used for imaging.  The two patterns were fixed on the two sides of an 8-mm 

thick acrylic piece. We intend to investigate the effect of superimposition in the projection 

and digital tomosynthesis, the two resolution patterns are not precisely aligned with each 

other. The schematics of the phantom shown in Figure 7.4.  

                                        

Figure 7.4. Configuration of the phantom where two resolution patterns are imposed with other. 
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The source-to-object distance (SOD) and the source-to-image distance (SID) were set as 

68 cm and 136 cm respectively which makes the geometric magnification (M) to be 2. 

The phantom is rotated with respect to the rotation center from -8° to +8° with an angle 

interval of 1°. Thus, a total of 17 projections were acquired over a 16° angular range. 

Each projection image was acquired using 120 kV, 0.6 mAs. After image acquisition, the 

tomosynthesis slices are reconstructed using the modified FDK algorithm as mentioned 

in section 7.2.  

 

7.4 Results and Analysis   

The standard projection image of the phantom acquired at 120 kV, 2.7 mAs is shown in 

figure 7.5. This is the image a radiologist would expect from the phantom in 

mammography. It is quite clear that the bar lines, and the text on the resolution pattern 

are superimposed on each other which blur the bar lines heavily, particularly the 

highresolution bar lines. In particular, for the 1 lp/mm to 2 lp/mm range and 3 lp/mm to 

20 lp/mm, the superimposition has a heavy blur in the differentiation of the bar lines as 

highlighted by the arrows.                         
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Figure 7.5: Projection image of the phantom of the two superimposed patterns.  

 

Figure 7.6 provides the in-plane reconstructed DT slices of the two superimposed 

resolution patterns respectively. Figure 7.6 (a) is the front side resolution pattern slice and 

7.6 (b) is the back-side resolution pattern slice. From the two reconstructed slices, one 

can clearly distinguish those bar lines which were heavily blurred in the projection 

images. From the DT slices, the bar lines from 1-lp/mm to 10-lp/mm are clearly 

distinguished and resolved.   Note that the subtle vertical lines in both the slices are the 

off-plane artifacts caused by the high contrast bars of the test patterns separated by the 

thin acrylic plate. Various strategies can be employed to get rid of these off-plane artifacts 

and the discussion on those strategies is beyond the scope of this study.  
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(a)        (b) 

Figure 7.6. Reconstructed digital tomosynthesis slices of the phantom. (a) Slice showing the front side 

pattern (b) Slice showing the back-side pattern.  

 

Figure 7.7 shows the contrast profiles corresponding to 3.5 lp/mm bar lines for the 

projection and DT slices. It is evident that the bar lines in this range are barely resolved 

in the projection imaging mode due to the super imposition of the two phantoms. The 

contrast is less than 5%, which clearly is not enough to resolve those bar lines. On the 

other hand, the contrast for both the front and back slits are greater than 35% in the DT 

slices and all the bar lines for this resolution are successfully resolved.  
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Figure 7.7. Contrast profiles corresponding to 3.5 lp/mm bar lines for the projection image and 

digital tomosynthesis (DT) slices. 

It is important to mention that the spatial resolution in digital tomosynthesis is lower as 

compared to the projection imaging. In a study conducted on the same prototype [145], 

multiple low dose projections of an edge phantom were acquired at 40 kV, 500 µA with 

an angular range of -7.5º to +7.5º and 1.5º step. The source-to-isocenter distance (SOD) 

and source-to-image distance (SID) were 77 cm and 87 cm. The modulation transfer 

(MTF) curves from that study as shown in Figure 7.8. It was shown that the cutoff 

frequencies (10% MTF) was 6 lp/mm in the projection imaging. In the digital 

tomosynthesis mode, the cutoff frequency was 4.95 lp/mm. This is a drop of 

approximately 17% in the spatial resolution in digital tomosynthesis. This reduction in 

the spatial resolution is attributed to the reconstruction algorithm, the limited angular 

range of the tomographic scan and the z-axis offset.  
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           (a) 

 

                        

                        (b) 

Figure.7.8. The pre-sampled MTF curves calculated for the (a) Projection imaging mode (b) Digital 

tomosynthesis mode. 

 

7.5 Discussion 

DBT has become an important quasi 3D breast imaging method to overcome the breast 

tissue superposition issues which is intrinsic to the conventional 2D mammography. To 

directly investigate the ability to avoid superimposition of the tissues, a phantom consists 

of two superimposed fan shape resolution patterns at different depths were utilized. It was 
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quantitatively shown that due to the superimposition, the 2D projection imaging is 

influenced by blurring heavily which particularly affects the high resolution details. The 

spatial resolution in tomosynthesis imaging system effectively solve the issue of 

superimposed structures with relatively low penalties on spatial resolution. This result is 

critically important in the breast imaging as there is also the superimposition of glandular 

and adipose tissues on  potential tumors which adversly affects the correct diagnosis. In 

the next chapter, we are going to compare  the phase sensitive and attenuation-based 

DBTs in imaging a heterogenous phantom for the detection of simulated tumors.  

                This study has been published as references 144 and 145.  
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Chapter 8. Detectability Comparison of Simulated Tumors in Digital 

Breast Tomosynthesis using High-Energy X-ray Inline Phase Sensitive 

and Commercial Imaging Systems 

8.1 Introduction 

In the previous chapters, it was shown that the 2D mammography has the problem of 

superimposition of the tissues that limits the detection capability of a system for correctly 

identifying the disease. Digital tomosynthesis can provide better visibility and 

discrimination of breast masses by reducing the structured noise caused by the 

overlapping breast tissues. Just like 2D digital mammography, DBT projection views are 

sensitive to the attenuation coefficients of breast tissues.  For the diagnostic x-ray energy 

range of 10–100 keV, the contrast difference between a tumor and fibro-glandular tissue 

is less than 10% because their respective attenuation coefficients are similar. It has been 

reported that for breast elements such as soft tissue, phase shift coefficients are at least 2-

3 orders of magnitude larger than their attenuation coefficients for the diagnostic energy 

range. Therefore, the variations in soft tissue density give rise to much stronger phase 

shift induced contrast compared to the attenuation-based contrast.   

The objective of this investigation was to compare the detectability of simulated tumors 

using a high-energy x-ray inline phase sensitive digital breast tomosynthesis prototype 

and a commercial attenuation-based DBT system. A 5-cm thick modular phantom 

simulating the appearance of a human breast with 50-50 adipose-glandular percentage 

density containing contrast-detail (CD) test objects to simulate different tumor sizes was 
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imaged by each modality. A commercial DBT system that acquired 15 projection views 

over 15 degrees (15d-15p) was used to acquire the attenuation-based projection views 

and to reconstruct the conventional tomographic slices. For acquiring phase sensitive 

projection views, the phase sensitive prototype utilized two acquisition geometries: 11 

projection views were acquired over 15 degrees (15d-11p), and 17 projection views were 

acquired over 16 degrees (16d-17p). A phase retrieval algorithm based on the phase-

attenuation duality (PAD) was applied to each projection view, and a modified Feldkamp-

Davis-Kress (FDK) algorithm was used to reconstruct the phase sensitive tomographic 

slices. The overall exposure time utilized to acquire the inline phase sensitive projection 

views falls within the range of exposure times used by different commercial systems. To 

the best of our knowledge, a comparison of relative detectability between a clinical DBT 

system and high-energy phase sensitive DBT imaging has not been presented previously. 

Furthermore, this comparative study is a step forward for the potential application of 

phase sensitive imaging to breast tumor detection and diagnosis. 
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8.2 Methods and Materials 

8.2.1 Breast Phantom 

We employed a modular phantom comprised of multiple slabs mimicking adipose and 

glandular breast tissues. The slabs were made of epoxy resins with x-ray attenuation 

properties similar to 50% adipose-50% glandular density. The adipose and glandular 

equivalent materials were homogenously blended for uniform background slabs, while 

heterogeneous blending was used for non-uniform background slabs. Three slabs were 

sandwiched together to create a 5-cm thick phantom with the middle slab having a 

thickness of 1 cm and the outer slabs each having a thickness of 2 cm. The front slab 

facing the x-ray tube had non-uniform background while the middle and the back slabs 

had uniform backgrounds. To simulate different tumor sizes and densities, the middle 

slab was machined to include a contrast detail (CD) test pattern. This pattern consisted of 

a 6×6 matrix of circular discs having diameters of 0.25, 0.5, 1, 2, 3 and 4.25 mm with 

drilled depths of 0.1, 0.2, 0.4, 0.6, 0.8 and 1 mm. 

 

8.2.2 Phase Sensitive Tomosynthesis Prototype 

As shown in Figure 8.1, the system incorporates a micro-focus x-ray source (Model 

L8121-03, Hamamatsu Photonics, Japan) and a CMOS flat panel detector (C7942SK-25, 

Hamamatsu Photonics, Japan) with a pixel pitch of 50 μm. The geometric magnification 

of 2 with SOD = 68 cm and SID = 136 cm was used in this study. A motorized rotational 

stage (Model SGSP-160YAW, Opto Sigma, USA) was utilized to provide the 

tomosynthesis mechanism.  
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 Figure.8.1. Schematic of the inline phase sensitive x-ray imaging prototype used to acquire high-

energy phase sensitive projection images. 

For experimental imaging, the phantom was placed at the rotational center of the stage, 

equivalent to the traditional isocentric motion mode, in which both the x-ray source and 

detector rotate around a fixed pivot point synchronously. The two acquisition geometries 

utilized in this study are summarized in Table. 8.1. This prototype has been characterized 

and the details can be found in reference [53]. 

Table 8.1.  Two combinations of tomosynthesis angle and angular increments used to acquire phase 

sensitive projections for DBT comparisons.   

Protocol Scan Angle               

(Degrees) 

   Range              

(Degrees) 

 Number of  

Views 

Angular Increments  

        (Degree) 

Exposure time per 

Projection (sec) 

 Dose   

(mGy) 

15d-11p           15 -7.5, +7.5        11            1.5       0.95        1.5 

16d-17p           16   -8, +8        17              1        0.62 1.5 

 

For both angular geometries used to acquire DBT images with the prototype system, the 

acquisition of angular projection at 0 degrees was possible. All phase sensitive projection 

views were acquired using a tube voltage of 120 kV, tube current of 500 μA and with a 
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total exposure time of 10.54 sec (5.27 mAs). A 2.5 mm aluminum (Al) filter was utilized 

to harden the beam and exclude low-energy photons. The half value layer (HVL) 

corresponding to these acquisition settings was 4.3 mm Al. All projection views were 

acquired in a step-and-shoot manner, whereby the rotational stage was stationary during 

the acquisition of each projection view. The corresponding mean glandular dose (Dg) 

values utilizing the specified acquisition parameters for the 50-50 phantom imaging was 

1.5 mGy with a total entrance exposure (XE) of 279.8 mR.  Phase retrieval process was 

applied to each projection view. Finally, DBT slices were reconstructed using the 

modified FDK algorithm that results in an in-plane pixel size of approximately 0.025 mm. 

8.2.3 Attenuation-based Tomosynthesis System  

A commercial system (Selenia Dimensions 3D, Hologic, Marlborough, USA) was used 

to acquire the attenuation-based projection images and to reconstruct the conventional 

tomographic slices. The details of the system can be found in section 5.2.3. The projection 

views were recorded with an amorphous-selenium (a-Se) flat-panel detector with a matrix 

array of 4096 × 3328 pixels and a pixel size of 70 µm. The source to image-detector 

distance (SID) was 70 cm. As shown in Figure 8.2, the system operates with continuous 

x-ray tube motion, taking 15 projection views over a 15-degree angular span (15d-15p). 

The distance between detector and center of rotation was 0 mm. All projection views 

were acquired using an automatic exposure control (AEC) setting at 32 kV, 46 mAs, and 

0.7 mm Al filter with XE = 578 mR, corresponding to a mean glandular dose of 1.6 mGy. 

The conventional slices reconstructed by the system using a proprietary filtered back 

projection method, resulting in an in-plane pixel size of approximately 0.1 mm with slice 

separation of about 1 mm. 
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Figure 8.2. Schematic of the commercial DBT system used for the acquisition of low-energy 

attenuation-based projection images. 

 

The inline phase sensitive acquisition geometry of 15d-11p is similar in angular range, 

while the 16d-17p geometry is similar in number of projection views to the commercial 

system’s acquisition geometry (15d-15p). 

Finally, the simulated x-ray spectra were generated for the two x-ray tubes utilizing the 

tungsten (W) target as shown in figure 8.3. The spectra were generated according to the 

method specified in the literature [146]. In the simulations, the input filter was 2.5 mm 

aluminum (Al) for the 120-kV beam spectrum while it was 0.7 mm Al for 32 kV beam 

spectrum.  
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                                                                              (a) 

 

                             
                                                                               (b) 

Figure 8.3. Simulated x-ray spectra for the two x-ray tubes with tungsten target (a) 120 kV, 2.5 mm 

Al filter as used by the phase sensitive prototype (b) 32 kV, 0.7 mm Al filter as used by the clinical 

DBT system. 
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8.2.3 Analyses Methods  

The reconstructed in-plane slices containing the CD pattern were cropped to include only 

rectangular regions of identical size containing the simulated tumors/discs. All images 

were displayed on a 5 Megapixel LCD monitor (EIZO SMD 21500D, 2048 × 2560, 800:1 

contrast ratio, 1024 gray levels, 750 Cd m-2 maximum luminance) in a dark room. The 

monitor was calibrated using the DICOM grayscale standard display function. During the 

observer study, images were randomly presented to 9 independent observers, each with 

greater than 5 years of experience in evaluating and grading medical images. The readers 

were instructed to grade each perceptible disc on 4-point (0 to 3) scale: 3 = disc is 

completely perceived, including its margins; 2 = disc is perceptible, but without 

conspicuous margins/circular shape; 1 = greater than half, but not the full disc is 

perceptible; and, 0 = disc is either not perceptible or less than half is seen. Reading and 

scoring times were not limited. Threshold contrast and contrast-detail (C-D) curves were 

generated for each acquisition technique from pooled readers’ scores. Contrast-to-noise 

ratios (CNRs) of the disk targets in each phantom image were calculated to quantitatively 

compare the imaging systems. Because the CNR for any given disk is influenced by the 

radiation dose and since the two imaging systems utilized different radiation dose levels, 

we defined a figure of merit (FOM) to characterize the imaging performance of the 

conventional DBT and phase contrast modalities. 
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8.3 Results 

8.3.1 Observer Study 

The projection views of the phantom acquired at 0° angle with low dose using the two 

imaging systems are given in figure 8.4. The high energy phase sensitive projection 

views, 8.4(b) and 8.4(c), yield an improved perception of the simulated tumors as 

compared to the attenuation-based projection view, 8.4(a). In comparison to the phase 

contrast projection view, 8.4(b), the phase retrieved projection view, 8.4(c), has enhanced 

bulk contrast for the simulated tumors. Thus, the phase retrieved projection views were 

used for the DBT slice reconstruction.  

                                  

           (a) 
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(b)                                                            (c)       

Figure 8.4: (a) Attenuation-based projection view acquired at 0° with the commercial DBT system at 

32 kV, 3.06 mAs and 0.106 mGy (b) Phase contrast projection view acquired at 0° with the phase 

sensitive prototype at 120 kV, 0.31 mAs and 0.09 mGy (c) Phase retrieved image using PAD 

algorithm. 

Figure 8.5 illustrates a reconstructed DBT in-plane slice depicting the simulated tumor 

pattern embedded in the modular 50-50 adipose-glandular density phantom acquired with 

the conventional DBT system using the AEC mode. Of 60 reconstructed tomographic 

slices, this slice represented the best imaging quality regarding the disc clarity and 

conspicuity and was cropped to include only the rectangular regions of identical size 

surrounding the simulated tumors/discs. Apart from window/leveling, no image 

processing method was applied to this slice used for the observer study.   
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Figure 8.5. In-plane slice containing the simulated tumors, reconstructed from attenuation-based 

projection images of the phantom acquired with the commercial DBT system at 32 kV, 46 mAs, 1.6 

mGy over 15° angular span with 15 projections. 

Figure 4 provides the in-plane phase sensitive tomographic slices of the simulated tumors 

reconstructed from two different angular geometries. Figure 8.6 (a) is the in-plane slice 

reconstructed from15d-11p geometry and 8.6 (b) is the in-plane slice reconstructed 

from16d-17p geometry. Due to the limited size of the CMOS detector and the 

magnification factor utilized, only the CD pattern of the phantom was captured on the 

image. On these phantom images, the most difficult disks to perceive (smaller with lower 

contrast) are in the upper right and the easiest disks to perceive (larger with higher 

contrast) are in the lower left. 



 

121 

  
   (a) 

 

(b)  

Figure 8.6. In-plane slices reconstructed from phase sensitive projections of the phantom containing 

the simulated tumors acquired with the phase sensitive prototype at (a) 120 kV, 500 µA, 5.27 mAs, 

1.5 mGy over 15° angular span with 11 projections; (b) 120 kV, 500 µA, 5.27 mAs, 1.5 mGy over 16° 

angular span with 17 projections. 
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Figure 8.7 compares the threshold contrast detection performances of the phase sensitive 

and attenuation-based DBT systems. At similar dose levels, the reconstructed phase 

sensitive DBT images exhibit superior target perception compared to the attenuation-

based DBT image. The C-D curve indicates that observers perceived more simulated 

4.25, 2, 0.5 and 0.25 mm diameter tumors on the phase sensitive tomographic slices. 

Thus, the threshold contrast required for tumor perception for the phase sensitive slices 

is lower than that of the attenuation-based slice for those diameters. For the two 

modalities, observers reported similar detection scores for simulated tumors of 3 and 1 

mm diameter and thus, the threshold contrasts were identical.  

                               

Figure 8.7. Contrast-detail curves for the phase sensitive and attenuation-based tomographic slices 

for the 50% glandular- 50% adipose phantom.  

 

Figure 8.8 compares the phase contrast (15d-11p) and attenuation-based DBT images and 

observer scores for 4 tumor discs with different diameters and drilled depths. Our results 

demonstrated better conspicuity of simulated tumors on phase contrast tomographic 

slices. For example, for the 2mm, 0.6mm depth tumor disk (Figure 5b), 2 observers 

reported a score of 3 (fully perceptible round shape with conspicuous margins), 5 
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observers reported a score of 2 (fully perceptible but not in a circular shape/less 

conspicuous margins) and 2 observers reported a score of 1 (greater than 50%, but not 

fully perceptible) with the attenuation-based DBT image; while 6 observers gave a score 

of 3 and 3 observers gave a score of 2 for the same tumor disk with phase sensitive DBT 

image.  

                    

(a)                                                                                 (b)  

                    

                                                           (c)                                                                                  (d)  

Figure 8.8. Comparison of the observer scores for the simulated tumors extracted from the 

attenuation-based and the phase sensitive tomographic slices having (a) 2mm diameter, 1mm drilled 

depth; (b) 2mm diameter, 0.6mm drilled depth; (c) 1mm diameter, 0.8mm drilled depth; and, (d) 

0.5mm diameter, 0.6mm drilled depth. 

 

8.3.2 CNR and FOM 

The superior performance of the phase sensitive imaging system in our observer study is 

further supported by the calculated CNR and FOM values. Figure 8.9 provides a graphical 

comparison of CNR ratios calculated for simulated tumors in the phase sensitive and 

attenuation-based tomographic slices for several diameters with 1 mm drilled depth.  The 

Attenuation 

Phase 

 Sensitive 
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phase sensitive slice (16d-17p configuration) has 1.53-3.06 times the CNR as that of the 

attenuation-based slice. Similarly, for the phase sensitive slice with 15d-11p 

configuration, the improvement in CNR is 0.71-2.34 times the CNR of the attenuation-

based slice.  

                         

Figure 8.9. Graphical comparison of CNR values for the simulated tumors calculated with phase 

sensitive and attenuation-based tomographic slices. 

 

The improvement of CNR with the phase sensitive imaging system directly impacts the 

FOM ratios with the commercial system. From table 8.2, the FOM values of the phase 

sensitive slice (16d-17p) range from a factor of 2.5-9.97 greater than the FOM values of 

the attenuation-based slice. Similarly, FOM values for the phase sensitive slice (15d-11p) 

are 0.54-5.84 greater than the FOM of the attenuation-based slice. Of all the simulated 

tumor disks, the attenuation-based DBT system had better CNR and FOM values for only 

the 4.25 mm diameter tumor disk when compared with the phase sensitive system (15d-

11p configuration).  
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Table 8.2. Comparison of the FOM ratios calculated for various disk diameters with 1 mm drilled 

depth with the phase sensitive and attenuation-based tomographic slices. 

 1 mm 2 mm 3 mm 4.25 mm 

FOMPhase (16d-17p) / FOMAttn (15d-15p) 9.18 9.97 3.05 2.50 

FOMPhase (15d-11p) / FOMAttn (15d-15p) 3.71 5.84 2.33 0.54 

 

8.4.  Discussion  

This study demonstrates the potential benefits of utilizing a high-energy x-ray phase 

sensitive system for breast imaging applications. The commercial attenuation-based 

imaging system operates at low tube voltage (kV) with different filter thickness and SID; 

hence we cannot apply the same tube current (mA) and exposure time (s) settings as of 

our phase sensitive prototype. For a fair comparison, we allowed the commercial system 

to apply its optimized techniques, as determined by its AEC settings. The AEC mode 

settings resulted in a mean glandular dose value which was slightly higher than the phase 

sensitive prototype.  

From the projection views of the phantom acquired at 0°,  it was evident that the high 

energy phase retrieved images provided better discrimination of the simulated tumors as 

compared to the low energy attenuation-based projection image. It is widely known that 

for soft tissue (Z<10) and its equivalent materials, attenuation-based imaging at 120 kV 

would be of inferior contrast due to their attenuation properties. Phase sensitive imaging 

allows the opportunity to utilize high energy x-rays for imaging soft tissue equivalent 

materials at low dose levels.  With phantom imaging analyses, the phase sensitive DBT 

imaging prototype demonstrated improved observer ratings, contrast-to-noise ratio 
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(CNR) and figure of merit (FOM) compared to the commercial system. The SNR 

improvement provided by the phase sensitive slices was sufficient to detect the smallest 

discs that were undetectable with the attenuation-based slices, and the C-D curves 

indicated that the phase sensitive images provided better contrast resolution and spatial 

resolution. For example, with 4.25 mm tumor disk diameter, the reported threshold 

contrast was 0.31 versus 0.38 for the phase sensitive (16d-17p) and attenuation-based 

tomographic slices, indicating improved contrast resolution. Similarly, for smaller disk 

diameter of 0.25 mm, the reported threshold contrasts of 0.63 and 1.13 for phase sensitive 

and attenuation-based tomographic slices, respectively, clearly show an improvement in 

the spatial resolution. With the employment of geometric magnification in clinical 

radiology, it is well-known that the boundaries of tissues are obscured due to the blurring 

caused by the finite focal spot size of the x-ray tubes. As a part of its requirement, in-line 

phase sensitive imaging effectively utilized the geometric magnification with no blurring. 

The observer rating study indicated better conspicuity of simulated lesion shape and 

margins with phase-sensitive tomographic slices. For instance, for the tumor disk with 

0.25 mm diameter and 0.6 mm drilled depth, 1 observer reported a score of 3, 3 observers 

reported a score of 2 and 4 observers reported a score of 1 with the attenuation-based 

slice; while 2 observers reported a score of 3, 5 observers reported a score of 2 and 2 

observers reported a score of 1 for the same tumor disk with the phase sensitive slice. It 

is our general observation that by employing a wider tomosynthesis angle (32d-17p) with 

phase sensitive imaging, the conspicuity and perception of the shape of the disks improve 

while the spatial resolution (smaller discs and micro-calcifications) decreases.  
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While the phase sensitive tomographic slices produced CNR values that were 

significantly greater than the CNR values as of attenuation-based slices, it was interesting 

to note that the CNR values decreased as the disk diameter increased. There are several 

reasons for this result including (a) with the heterogeneous background of the phantom, 

the variation of pixel values within an ROI increases as the size of an ROI increased, 

resulting in a large standard deviation value that results in a lower CNR value; (b) the 

ramp filter accentuates the high-frequency noise, and in the case of limited view 

tomography, also excessively suppresses the low frequency content, whose impact is 

clearly distinguishable for large area objects. For detectors with small components of 

additive noise, where most of the noise results from x-ray quantum fluctuations, the ratio 

of squared CNR to exposure is essentially independent of the exposure level; thus, the 

FOM would be expected to be a measure of performance that would not change with the 

incident exposure. The FOM values calculated for the phase sensitive slices, (16d-17p) 

and (15d-11p), are 2.5-9.97 and 0.54-5.84 times the FOM of the attenuation-based slice. 

The two-phase sensitive DBT geometries that we evaluated utilized about the same 

tomosynthesis angle but with different numbers of equally spaced projections. Our 

observers preferred the slices reconstructed with a larger number of projections, 16d-17p. 

For a fixed tomosynthesis angle, one may utilize a greater number of projections for 

refined angular sampling, but there are few limiting factors: (a) for a fixed mean glandular 

dose, each additional low dose projection introduces additional electronic noise from the 

detector, which increases the overall noise of the reconstructed volume and (b) the total 

scan time generally increases with the number of projections, particularly in a step-and-

shoot configuration, which may increase motion artifacts.  
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We plan to use complex breast imaging phantoms with various testing objects in different 

planes of the phantom to further highlight the benefits of utilizing inline phase sensitive 

DBT imaging as it provides improved depth resolution in comparison to the attenuation-

based DBT imaging [60]. To our best knowledge, 10.5 sec is the shortest reported 

exposure time for successful inline phase sensitive DBT imaging outperforming a 

commercial DBT system regarding target detection and CNRs. Furthermore, this 

exposure time falls within the range of exposure times used by commercial systems. 

The results of this study are published in reference [147].  
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Chapter 9. Conclusions 

9.1 Summary 

The research presented in this dissertation demonstrates the feasibility of a high-energy 

in-line phase contrast x-ray imaging system for potential clinical applications. The ability 

of the inline phase contrast x-ray imaging system has been shown for digital 

mammography and digital breast tomosynthesis applications in comparison to the 

attenuation-based clinical imaging systems at similar or reduced glandular dose (Dg) 

levels. We assessed the glandular dose levels for the absorbed dose to breast tissue, the 

stochastic health risk such as cancer of high energy x-ray photons can be further assessed 

by using the equivalent dose (HT). It is defined by the International Commission on 

Radiological Protection (ICRP) as the product of the absorbed tissue dose (DT) and a 

weighting factor (WR) which is related to the radiation quality. For the photon radiation 

like x-rays and gamma rays, the weighting factor has the value 1 independent of the 

energy of the radiation. Hence, the high-energy phase contrast technique does not present 

any higher stochastic health risk than conventional low-energy mammography technique, 

as compared on equal glandular dose basis. 

Chapter 2 introduced the theory behind the inline phase contrast imaging. To obtain phase 

information, a propagation distance between the object and the detector is needed to allow 

the development of interferences of the sub waves. The overall image intensity contrast 

comes from both phase and attenuation. With the theory and guidelines established, a 

numerical method for retrieving the quantitative phase map from the phase contrast 

images was introduced. This phase retrieval method was based on the phase-attenuation 
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duality and requires only one phase sensitive projection image with some special 

requirements that were discussed. From the extracted phase map, one can derive a map 

of the object’s projected electron densities. The electron density is an intrinsic attribute 

of the object, and hence the electron density map yields a quantitative image of the 

object’s structure.   

In Chapter 3, the optimal in-line phase-sensitive geometry and high energy settings under 

the experimental conditions were investigated and compared with the computer 

simulations. As compared to the other geometric magnifications (M), the image quality 

and target discrimination are highest for M = 2.5 under the same glandular dose (Dg).  

The computer simulations based on the modulus of relative phase-contrast factor 

|𝑅𝑃𝐹 (𝑢)|  also validated the experimental results. The phase retrieved images had 

improved performance and detectability as compared to the phase contrast images. Both 

the 100 kV and 120 kV resulted in similar results and image performances in terms of the 

image contrast and observer scores. 

In Chapter 4, the characterization of an innovative hybrid micro focus x-ray tube was 

performed. Micro focus x-ray source is an important component of the inline phase 

sensitive imaging prototype and it was necessary to characterize the performance of this 

hybrid tube in both continuous and pulsed emission modes. The measured focal spot sizes 

vary linearly with respect to the output power and match the manufacturer provided data. 

The focal spot sizes in the vertical direction were smaller than the horizontal direction, 

which was visible when comparing the spatial resolution of the MTF curves. For both the 

continuous emission and pulsed emission modes, the characteristic peaks of the anode 
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target in the spectrum were easily differentiated. The unfiltered x-ray beam in both 

emission modes contained a large amount of low energy photons which were readily 

blocked by an aluminum (Al) filter of small thickness. This implied that these low energy 

photons didn’t contribute in the image formation and will instead be readily absorbed by 

the tissue/organ, adding unnecessary radiation dose. Therefore, for all the kV values, it 

was recommended to use a certain amount of filtration to block those unwanted low 

energy photons. 

After identifying the optimal geometric and operating conditions for the high energy 

inline phase sensitive imaging prototype in Chapter 3, its comparison with the clinical 

imaging units in imaging homogenous breast phantoms with varying glandular-adipose 

tissue ratios was the next step in Chapter 5. Two state of the art commercial clinical 

imaging systems were utilized that are routinely used for breast cancer screening in the 

U.S. For the 50% G – 50% A density phantom, the observer study, contrast-to-noise ratio 

(CNR) and figure of merit (FOM) comparisons all indicated a large CNR improvement 

with the phase retrieved image as compared to the two commercial imaging systems 

acquired under their AEC modes at similar dose levels. The clinical systems had to 

increase the dose to provide adequate image quality for the denser phantom. With our 

prototype, we were able to maintain the image quality enhancement without increasing 

the dose to the denser 70% G – 30% A density phantom. Therefore, the comparison of 

70G-30A phantom was more significant, since the phase sensitive images were acquired 

at a reduced relative dose as compared to the attenuation-based images acquired by 

clinical images, yet still provided a noticeable image quality enhancement regarding the 

disks perception, CNR and FOM values. 
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Having shown in its effectiveness in imaging the standard homogenous breast phantoms 

that are routinely used for quality assurance purposes in the clinical world, Chapter 6 

demonstrated the efficacy of the inline phase sensitive imaging prototype in imaging 

breast equivalent phantoms with heterogenous backgrounds. The CNR improvement of 

the phase sensitive images was enough to detect the smaller discs simulated tumors that 

were undetectable by the commercial imaging system. The simulated tumors were more 

perceptible on the phase sensitive image in the superimposed underlying tissues. The 

superimposition of the glandular and adipose equivalent materials had a severe influence 

on the detectability of the simulated tumors, particularly with the attenuation-based 

imaging system.  

Having seen the superimposition of tissues which limits the detectability of potential 

tumors in the 2D digital mammography, the feasibility of a digital tomosynthesis was 

introduced in Chapter 7. With the phantom study, it was quantitatively shown that the 2D 

imaging is heavily influenced by blurring due to the superimposition of the bar patterns. 

That blurring particularly affected the high resolution details. The spatial resolution in 

tomosynthesis imaging system effectively solve the issue of superimposed structures with 

relatively low penalties on spatial resolution. This result is critically important in the 

breast imaging as there is also the superimposition of glandular and adipose tissues on  

potential tumors which adversly affects the correct diagnosis.  

Finally, the investigation presented in Chapter 8 extended the research of Chapter 6, in 

which the detectability of simulated tumors in a heterogenous phantom was compared 

using the high-energy x-ray inline phase sensitive digital breast tomosynthesis (DBT) 
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prototype and a commercial state of the art attenuation-based DBT system. From the 

projection views of the phantom acquired at 0°,  it was evident that the high energy phase 

sensitive images provided better discrimination of the simulated tumors as compared to 

the low energy attenuation-based projection image. Phase sensitive DBT slices 

reconstructed in two acquisition geometries demonstrated improved observer ratings, 

contrast-to-noise ratio (CNR) and figure of merit (FOM) compared to the commercial 

system. The SNR improvement provided by the phase sensitive slices was sufficient to 

detect the smallest discs that were undetectable with the attenuation-based slices, and the 

C-D curves indicated that the phase sensitive images provided better contrast resolution 

and spatial resolution. With the employment of geometric magnification in clinical 

radiology, it is well-known that the boundaries of tissues are obscured due to the blurring 

caused by the finite focal spot size of the x-ray tubes. As a part of its requirement, in-line 

phase sensitive imaging effectively utilized the geometric magnification with no blurring. 

The observer rating study indicated better conspicuity of simulated lesion shape and 

margins with phase-sensitive tomographic slices. 

9.2 Future Research Direction 

The investigation presented in this dissertation further encourage and warrants future 

research not towards the further development and optimization of the innovative high 

energy inline phase sensitive prototype in improving x-ray image detectability and 

specificity.  

An existing challenge for the current micro focus x-ray tubes is their limited output which 

consequently limits the short acquisition time. One key reason is that the anode target of 
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these tubes is solid that generates x-ray output at tens to several hundred micro amperes 

current. The surface temperature of the anode target must be well below its melting point 

to avoid its damage and maintain its life time. Therefore, the range of current is much 

lower than the operating tube current for commercial imaging systems. Future studies on 

the feasibility of the inline phase sensitive imaging with liquid metal jet x-ray tubes and 

carbon nanotubes (CNT) are needed to further shorten the exposure time needed for a 

scan. In liquid metal jet x-ray tubes, the anode target is itself molten and regenerative in 

nature. Thus, the limitation to maintain the target well below its melting point is removed 

and it achieve high brightness at micron spot sizes.  In traditional thermionic based x-ray 

technology, a tube with an electron emitter, typically made of tungsten filament, at one 

end and a metal anode at the other end. When the filament is heated to a very temperature, 

it emits electrons that are accelerated towards the anode target to create x-rays. Instead of 

utilizing a single emitter, CNT tubes utilize an array of nanotubes which serve as 

hundreds of tiny electron guns and the nanotubes emit electrons efficiently without 

heating and thus enabling many closely spaced nanotubes to generate x-rays in a single 

tube.  

It is important to mention that the detector quantum efficiency (DQE) itself decreases as 

the x-ray energy increase, as do the attenuation and phase coefficients of tissue. 

Subsequently, the use of a high energy x-ray beam is inherently disadvantageous for 

phase sensitive imaging in a comparison study with low energy attenuation-based clinical 

images. However, due to the limited output power of the micro focus x-ray tubes, a high 

energy x-ray beam is required for phase imaging to reduce the exposure times to clinically 

acceptable values. Therefore, an investigation on the employment of detectors that have 
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high quantum efficiency at higher x-ray energies would further benefit future studies in 

high energy phase sensitive imaging.  

The reconstruction algorithm used for phase sensitive DBT slices was not fully optimized 

and suffers from imperfections like streaking and other noise-like artifacts which may 

obscure anatomical features. By employing optimization filters, such as spectrum 

apodization and slice thickness filters, the sensitivity of phase sensitive DBT imaging 

technique will further increase just like in the phase sensitive projection imaging.  
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