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PREFACE
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this thesis and fully defined. The nomenclature and the illustrations
follow closely Professor Tuma's presentation.
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CHAPTER 1

INTRODUCTION

1-1. General.

. A comparative study of the algebraic constants involved in the
analysis of rectangular, planar grids loaded normal to their plane is
presented. Three clagses of constants are considered:

(a) slope-deflection constants
(b) moment distribution constants
(c) cafry—over constants.
The reylationsrhips and the application ére explained and a procedure of

analysis is described.

1-2. Historical Background

The introduction of ;slope-d‘eflect.ion equations to the analysis of :
rectangular grids is being credited to Szego (1), Marcus (2) and Beyer
(3). Recently a restatement of this application was recorded by Martin
and Hernandez (4). The study of planar grids by the numerical moment
distribution method was reported by Ferguson (35), Lothers (6), Reddy
and Jaeger (7). The carry-over moment procedure was developed by

Tuma (8) and presented in his lectures.

1-3. Statement of the Problem.

- A rectangular, planar grid acted on by loads perpendicular to



its plane is considered. The cross section of the straight members
forming this grid are constant or variable. The joints of the grid are
rigid joints, free to rotate and to displace. The exterior points of the
grid are free, sivmply supported or fixed. Loads are stationary, or
moving loads of constant or variable magnitude. The supports rest on

rigid or elastic foundation.

1-4. Limitation of the Problem.

The analysis is based on the following assumptions:

(a) Material of the structure is homogeneous, isotropic, and
continuous.

(b) All deformations are small and elastic.

(c) Material follows Hooke's Law.

(d) Modulus of elasticity and of rigidity are known numbers.

(e) Modulus of elasticity in tension and in compression is the

same number.

1-5. Sign Convention.

All analytical values (geometric quantities, forces, moments,
deflections and slopes) are related to a set of orthogonal, coordinate
axes X, Y, Z and they are positive if acting in the positive direction

on these axes.

1-6. Nomenclature.

All symbols are defined where they first appear and they are

rearranged alphabetically in the list of symbols.



CHAPTER I

SLOPE DEFLECTION METHOD

2-1, Deformation Equations.

A rectangular, planar grid loaded as shown in Fig. 2-11is con--

sidered.

+X

+Z Fig. 2-1

Rectangular Grid

The initially planar grid deforms into an elastic surface defined
by the elastic curve of each member. The end deformations of each
member are the wertical displacements A's and the angular rotfations

6's . The mathematical relationships between loads, end moments,



end forces and end deformations are known as the slope deflection
equations. |

The moment slope-deflection equations for the members of joint
j (Fig. 2-2) are recorded in Table 2-1. The forte slope-deflection
equations for the same members are recorded in Table 2-2. From
‘these tables the following observations are being made:

(A) End Moments

(1) Each member has two types of end moments:
(a) flexural moments
(b) torsional moments.

(2) Each end moment is designated by thé symbol M and three
subscripts, identifying the near end, the far end and the axis
or rotation, respectively.

(3) Each end flexural moment consists of three partial moments:
(a) angular displacement moment M(e)

(b) linear displacement moment M(A)
(c) moment due to loads M(W) .
- (4) Eéch end torsional moment consists of two parts only:
(a) angular displacement moment M(?)
(b) moment due to loads M‘(W) .

(B) End Forces

(1) Each member has one type of end force called end shears.

(2) Each end shear is designhated by the symbol V and three
subscripts identifying the near end, the far end and the direc-
tion of the end force, respectively.

(3) Each end shear corngists of thiree partial shears:

(2) Angular displacement shear V(e) .



+Y . M.
| | / i

Fig. 2-2

Members of Joint j



(b) Linear displacement ‘shear V(-A) ..
(c) Shear due to loads V‘(W) .

(C) End Deformations

. (1) Each joint undergoes three deformations
(2) two rotations (60)
(b) one deflection (A)
measured in the direction of respective axes.

. (2) Each deformation is identified by two subscripts. The first
subscript designates the end and the second one the direction.
The direction subscript of deflection is omitted to simplify

the typing of the text.

2-2. Elastic Constants.

In addition to moment-, force-, and deformatioﬁ-symbols, a
group of elastic constants is being utilized in the moment- and force-
equations recorded in Tables 2-1 and -2. These constants derived by
means of special conditions are recorded in Tables 2-3, -4, -5, -6,

-7% -8, -9, -10.

2-3. Joint Equilibrium.

Each joint of the grid offers three conditions of compatibility and
three conditions of static equilibrium. The compatibility conditions
already utilized iﬁ Tables 2-1, -2 are: "Rotations and deflections of
all member ends connected at a given rigid joint are the same with

respect to a given axis."



+Y

+X

+Z

Fig. 2-3a

Equilibrium of
X-Moments at j

jmy
Fig. 2-3b

Equilibrium of
Y-Moments at j

iv.
jnz
sz
VJ.LZT ivjkz
J
V.
jmz
Fig. 2-3c

Equilibrium of
Z-Shears at j
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TABLE 2-1 END MOMENT SLOPE DEFLECTION EQUATIONS
Member 'ij Member mj
Mijx et Kijxeix + Kjixejx i FMijx Mmjx % ijxemx ijxejx m;]x(A A )
My =+ Kjixejx + CKo 0y + FMy; L
Mo = Kijyeiy + CKjinjy lJy(A -A, ) Wi ® ijxejx - CijXGmx - me(A -4, )
+ FMj,o M
Misy = * Kiiy%iy ¥ gy ®iy * SyBi74y) Mgy = * Emjy®my * “imy®iy T TV mjy
+FM e M:im.v ) ,K:imyejy i Cijyemy + FM:imy
Member ik Member jn
Mjkx A Kka JX Kka kx ka Mjnx gk anxejx * CKnjxenx g, nx(&j“ﬁn)
My i = Kka o T CK. kerx + FMy . +FMy,
Mjky = + Kjkyejy + CKkijky + Sjky(Aj-Ak) Tl Knjx .. & Canxﬂjx - nJX(A ~A0)
+ FMjky + FMnjx
Mysy = * Kripiy + CoixyOiy * Skl %) Miny =+ KinyFiy * CnjyOny * FMyny
e 1 Wiy = * Knjy®ny © Canyejy + E




TABLE 2-2 END FORCE SLOPE DEFLECTION EQUATIONS
Member ij Member mj
Vijz = + sijyeiy +-sjiye>jy 1H(A -A, ) ijz = - SijGmX - sjmxejx mjz(A -A, )
+ Fvijz + Fijz
Viiz = 7 S5iy%y  Sijyliy T TiigtBi Ay jmz = ¥ Simx i T Smixfmx T TimzAm Ay
| +FV.. + FV.
- jiz C jmz
Member jk Member jn
Vies = +‘Sjky6jy +-skjyeky JkZ(A A ) Ving = - SjnxejX - Spixfx T Tinz (8574
+ ijkz + ijnz
- - . =+8S . +8S. . 6. -
ijz Skjyeky Sjkyejy kJZ(A A ) ' njz SnJXGnX SJDXGJX nJZ(A -4 )
) +FV, . + FV_.
kjz njz




TABLE 2-3 | ~ CONDITION 1

Beam E M(1)= CK | Angular Stiffness Factors
" a) General Form
D) - (1) .
(1) M( = K.. - My: 0
Min K | }Jx ijx ijy
(1) - . : 1) -
Mix = CKij Mg = 0
vid) =0 . vil)
1)z ‘ 1z

b) Algebraic Form - I Variable

KlX = _.__._.. 'l' 1
J du
Gd
Conditions.
‘ : ' 1 ,
AN = = - , CK.. = = o
;\ eiX = +1 eiy =0 Ai 0 ) ijx : du
N ‘ ‘ Ga‘r’X
6. =0 6. =0 A.=0
JX 3y J . _ C
c) Algebraic Form - I Constant
G:IX
Torsional Load_ = 0 Kin il e
Flexural Load = 0 GJX
CRix = " T

The limits .of all integrals in this table are from i to j
unless noted otherwise.

01




TABLE 2-4 ~ | | . CONDITION 2

Beam , M(2)=K +1 -Angular Stiffness Factors
jix Ty ‘
a) General Form
(2) ¢ (2) . (2) -
M1 "CK i Miz = CKyx Miy = 0
@ - (2) -
M) = Ky, My = o
v®) -0 o v@ .
ijz : jiz

b) Algebraié Form - I Variable

Jr fix T g
Conditions v N /- y _
0. =0  B._=0 A, =0 CK, = - —1
ix iy i jix dv
6. =+1 6._=0 A, =0 fG’J'x

x 3y i

c) Algebraic Form - I Constant

Tqrsional Load 0 K _ X

Flexural Load = 0

The limits of all integrals in this table are from i to j
unless noted otherwise.

T1




TABLE 2-5 CONDITION 3
Beam Fixed End Moments
a) General Form
(3) (3) - (3) -
Mt =My Mjx = FMjiy Mi ¢
(3) - (3) -
Mji 4 FMji.x Mjiy 0
Vigg =0 Vigg o= 0
b) Algebraic Form - I Variable
k
dv
FM ’ e 15 _._...J_.....__
ijx dia
Conditions GI
p. 4
6. =0 6. =0 A, =0 k
ix iy i a
6. =0 6. =0 A.=80 i X
FM.. = = ——
JX Yy J jix L
a3,

Torsional Load

Flexural Load = 0

c) Algebraic Form - I Constant
- FM - I
' ijx qu L
= - L.
FMjix R "

The limits of all integrals in this table are from i to
unless noted otherwise.

¢l



TABLE 2-6

CONDITION 4

Beam Angular Stiffness Factors
M(4)_K 2 a) General Form
-1jy Tijy M%) ok 43
le 1JY -
w | M
Ml - o
v{%)=s u v v(f“=-s..
ijz “ijy < s iz iy (4) R
L 3| IJZ ijy
b) Algebraic Form - I Variable

Mm@

= K..

Ly 13y
M) = ck..
ny 1y
4 e R
jiz ijy

y + 27,
2f ul

Conditions f fv du _f uv du | 2
EI
6. =0 B # A =D Y
ix iy i
6. =0 e T . =0
ix iy o EIy
Sy~ 3 5 -
Torsional Load = 0 f PE-I{-?-. EE'TE;E -f uEIiu 4
Flexural Load = 0
Sy
c) Algebraic Form - I Constant Sijy = ¥
4EI
K.. = _...._X
ijy L
2EI 6EI The limits of all integrals in this table are from i to j
CK.. = S e - unless noted otherwise.

€l



TABLE 2-7

CONDITION 5

M®)=cK.. M)k
ijy jiy Iy iy
(5)- 1 (9)-_
Vijz Ay _u L v V]1z iy
e 9}
L -
| +2Z
Conditions
aix=o Giy=0 Ai =_0_.
6. =0 8. =+1 A.=0
JX B J -

Torsional Load = 0

Flexural Load = 0

c) Algebraic Form - I Constant

4EI

Kiiy ~

CE.. = v 8 Elzl
iy L iy L

Angular Stiffness Factors

a) General Form

) & o M)

- b= CK..
Ux 1)y ny
m®) = o m®) = K.
jix 1y Ly
(B): ¢ ®) . .
Vljz Sjiy Vjiz Sjiy
b) Algebraic Form - I Variable
2
L2 v du
Koo =
By fudufvdu _(fuvdu)Z
: EI
y
R uv du
fudufvdu_fuvduz
EI
y
T L &
S.. = le 1y
ny L

The limits of all integrals in this table are from i to j

unless noted otherwise.

Al



TABLE 2-8

CONDITION 6

Beam

I

Conditions .
eix =0 .eiy = 0 Ai= +1
6, =0 8. =0 A.= 0
Jx 3y : J

Torsional I.oad =

Flexural Load = 0

0

Linear Stiffness Factors

a) General Form

M) = o Y ()
ijx | My T Pijy
M) = ¢ - Mm® =g,
jix ity iy
(6) . L(6) __
Vijz T Tijz Vi * g

b) Algebraic Form - I Variable

K.. + CK..
g, = _iy ijy
iy . L

K.. + CK..
s. = ¥ EN
iy L -

= T = _J.L_J__Xsi " Si

ijz jiz L

(For K., , K.._ and CK,, , CK..  useTables2-6,-7)
jy » ity ijy iy |

c) Algebraic Form - I Constant

6EI
ijy — iy Lf

12E1
T.. = T., = —a¥
ijz jiz L3

GI



CONDITION 7

TABLE 2-9
Beam Linear Stiffness Factors
v (Mg M_(.?):-S.. -a) General Form
Y. /==S.. iy ily ,
| Uy 1y m{T) = o M) = -5
| M - o EY(() I
V(7)"="—-’-'T [V(7)=T. Mjix 0 Mjiy ' Sjiy
ijz=rs Tijz) jlz " jiz S
" (M -_ (M o
L S DR 4 Vijiz = Tijz Viiz jiz
L b) Algebraic Form - I Variable
l+z K.. + CK,,
v = _Aly 1y
ijy L
Cbnditions , _ Kjiy * CKjiy‘
. iy L
6. =0 .. = 0 A, = 0
ix iy i S.. + S.
. . = = i. ‘i
6., = 0 =0 A, = +1 ijz jiz S
X 1y J ’ ‘
(For K,. , K.. .and CK,._ , CK.. use Tables2-6:7)
1Jy Iy 11y Ly
Torsional Load = 0 ¢) Algebraic Form - I Constant
Flexural Load = 0 6EI
iy~ Py T T2
12EI
T.. = T, = —si
ijz jiz L3

-91



TABLE 2-10a

CONDITION 8a

Beam
(8}= uz M(8)=FM--
My  FMjy pp—u V—epilly Iy

@i _ §) —

V%?z)—;Fvijz X _L L-x ng)=FvJIZ
L
|+z
Conditions
G 0 eiy = 0 A =0
Bjx=0 Bjy=0 Aj=0

Torsional Load = 0

Flexural Load = -I;,uz

The limits of all integrals in this table are
from i to j unless noted otherwise.

Fixed End Moments

a) General Form

- B) . (8)
ngx = 0 Mijy
8 . (8)
Mi(jx = 0 Mjiy
8) . pv v(8)
V{jz ijz jiz

b) Algebraic Form - I Variable

M. = =Ko 7. ¥ CKiiiTa,
MIJY 1]y 1)y 1y 1y

R s e G s
FMyiy jiy " iiy ijy ijy

BM_ (L-x)dx
% i BM,

Tijy L Bl

FM..

FM..
Yy

jiz

= Bending moment

y of simple beam ij due

BM_ x dx
iy %] —TE :

c) Algebraic Form - I Constant

P uv2

M e o 28 FM..
ijy 2 iy

to loads

LI



TABLE 2-10b

CONDITION 8b

Beam

Q
(8).. uy (8).
g A i e b

lv(?)=Fv

jiz jiz

(8). 1
vijz Fvijz

L —

Fixed End Moments

a) General Form

B) - o M@ - Fm

Mi;ix ijy ijy
$) . (8)

M) = o M@ = M.
jix iy iy
(8) . (8) -

Vijz FVijz Vjiz ijiz

b) Algebraic Form = I Variable

Conditions

8. =30 Q.= 003 A= 0
ix iy i

Q... =40 6. =0 A, =0
JX W J

Torsional Load = 0

Flexural Load = Quy

The limits of all integrals in this table are
from i to j unless noted otherwise.

M. = =B o oS K s
ijy ijy iy jiy " iy
M. = Koo wan = Gt
Miiy jiy iy ijy ijy
BM_ (L-x)dx
Tya: ® T BMy = bending moment
iy v

of simple beam 1ij due
to loads

BM_ x dx
Tiiy = — BT T

c) Algebraic Form - I Constant

Q. .V Q.. u
M., = <23 - L FM, = -—%— (3v-L
ijy Lz (3u ) jiy t ( )
FV = - BV, = 2%
ijz jiz L3 Quy

81



TABLE 2-11

JOINT X - MOMENT EQUILIBRIUM EQUATION

Algebraic Form:

+ 60 CK . +AS
0, CK,y + 0, TK ; ekaKk‘.jxv + AZS, + BFMy - Mg = 0
+ 6meijx B A1r>nSjmx
E quiva‘lents :
EKJX - Kjix * Kjkx * Rimx anx ESJX 5 Sjmx T Sgnx
EEM'j = FMy, o+ My b FM o+ M

61



TABLE 2-12

JOINT Y - MOMENT EQUILIBRIUM EQUATION

| Algebraic Form:

.+ 6 CK_. + A.S..
- ny njy iTjiy
6. CK.. + 6. FK. + 6. CK.. + A.FS. '+ CFM, - M, = 0
iy T ijy v iy ky ~kjy 3Ty iy iy :
"+ 6 __CK__. - A.S.
- my T mjy k™ jky
Equivalents:
K. = K + K. + K S. = 8. - S..
jy ity iky jmy jny x iy jky ity
LFM. = FM + FM, + FM + FM
iy iy iky jmy jny

0¢g



TABLE 2-13

JOINT Z - FORCE EQUILIBRIUM EQUATIONS

Algebraic Form:

- 0.8 .
njx

S + 6. LS.  + Q.XZ‘,S. + 6, S

- 6..8,.
1y 1y o J

+ 6mxsmjx

Equivalents: |

S. = 8. - S..
B iy Tiky iy

£S.. = S. - 'S

jx ky kjy

--A T. .
n jnz
ATy, + ALT, - ATy, + EFV, - Py =0
B Arnijz
EFVJ.Z = FVjiZ + ijz + Fijz + FanZ

1¢
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= @ = @0 = @ =

t‘;-'.;iix jkx jmx jnx ejx
8 % Q. . = 8§ = 0, = 0. 9-1
iy Jky jmy jny iy =)

%iz A_]kz A_)mz %nz %Z

This relationship explains why only two angular deformations and one

linear deformation occur at a given joint. The joint equilibrium equa-
tions state (Fig. 2-3) that: '"Sum of all end momentg, end forces and

joint loads at a given joint with respect to a given axis is equal to zero."

A Mjix # Mjkx 3 Mjmx E Mjnx ) ij il

-M,. - M. = Mg - M. M. =0 2-2
iy jky jmy ny Iy e

2 Vjiz ¥ ijz i ijz 3 anz i sz ok

Thus there are as many equations of static equilibrium as joint defor-

mations.

2-4, Deformation Matrix.

The joint equilibrium equations (Eq's. 2-2) may be expfessed in
terms of elastic constants, and deformations (Tables 2-11, -12, -13)
and written for each joint of the grid. The matrix thus obtained is
called the stiffness matrix. The solution of the joint equilibrium
matrix gives the numerical values of 6's and A's . The final moments
are obtained by substituting these numerical values in the slope-

deflection equations (Tables 2-1, -2),

2-5. Procedure of Analysis.

The procedure of analysis may be summarized in the following
steps:

(a) Designate all joints by symbols and introduce redundant
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slopes and deflections.

(b) Record geometric values such as lengths of span, functions
of cross sections, position coordinates of loads and material
constants E and G. |

(c;) Compute elastic éonstants: fixed end moments FM's ,
fixed end . shears FV's ,. stiffness factors K's , CK's , S's,
T's . |

(d) Write joint equilibrium equations for all joints.

(e) Consider end conditions and eliminate unnecessary unknown
0's and A's .

(f) Invert the stiffness matrix for 6's and A's.

- (g) Compute the end moments and the end shears.

(h) Check for the equilibrium at all joints.
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CHAPTER III

MOMENT AND SHEAR DISTRIBUTION METHOD

3.1. General.

The moment and shear distribution method as a general method
of numerical, successive approximation for analyzing planar frames
with straight members has been developed by Cross (9). The exten-
sion of this method to the analysis of orthogonal, planar grids is dis-
cussed herein. In applying the moment and shear distribution method
to this structure, six classes of constants must be considered:

(2) load constants

(b) X-angular constants

(c) Y-angular constants

(d) Z-linear constants

(e) XZ-cross constants

(f) YZ-cross constants
These constants are derived from Tables 2-11, -12, -13 by means of

special conditions.

3-2. Load Constants.

If all deformations in joint equations (Table 2-11, -12, -13) are

assumed to be equal to zero, three load constants are obtained.
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(a) Unbalance of X-moments at _j

,A,ijl.(w) =+ :Fij - M,

ix (3-}x)
(b) Unbalance of Y-moments at j
Cam | - pEM, - M. 3-1
lA JYl EE My iy o (3-1y)
(c) Unbalance of Z-shears at j
| (W) . ) | ]
IAVJ.ZI +LFVy, - Py  (3-1z)

Because these constants represent the unbalance at j, a corrective

procedure, which will eliminate this unbalance, must be developed.

3-3. X-=Angular Constants.

If the joint j is allowed to rotate about the X-axis (all other

deformations are assumed equal to zero), the slope at j (Table 2-11)

|am, | (W)
ejx = - —_fiJ{'}'{"'— : (3-2x)
x

and the end moments due to loads and this rotation become (Table 2-1),

oo _jix W) o
Miv TR, Aijl o FMy,

= - _._J___ (W)
Moy TR Aijl + FMy,

(3-3x)

s . _jmXx (W)
Mimx = = FK; Aijl * FMimx

jnx ZK,
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!
P
=2

W) 4 FM,

Mijx K, ix

oo jkx (W)
My sy iR, | AMi tOEMy iy

CK, (3-4x)
M= - (A | e

mjx K. jx

= - __Jnx (W)
Mnjx rK. AM + FMn

X

New constants introduced in Eq's. (3-3x, -4x) are defined below:

(2) Moment Joint Stiffness ‘EKjx is the joint moment required

at j, to produce a unit rotation of that joint about the X-axis

DK, = Ky, + Koo + K+ K (3-5x)

(b) Moment Distribution Factors

(0 K.. 0 K.
p(0) - - _jix p(0) - . jmx
jix LK. jmx ZK,
X ix
| (3-6x)
pl0) o L _jkx : pl® . __jox
jkx EKjX ‘ jnx EKJ.X

are the moments developed at near ends of members’forming joint j
by a unit moment unbalance about the X-axis at that joint. The sum of

distribution factors

0 0 0 (0 0
):DJ(X) = D§i)2 + ng)); -*D;(.nzx + ng){ = +1 . (3-Tx)
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(c) Moment Carry-Over Distribution Facto_rs‘

cpl® = - X o c(0) p(0)
jix EKjX jix Tjix
| CK,
(@ - - S () o)
. jkx L‘KJ.X jkx Tjkx
(3-8x)
CK.
cpl®) = - __dmx o o0 p(0)
T jmx ‘EKjX jmx T jmx
CK.
cpl® - - __dnx o c(0) p(0)
: jnx Z)Kjx jnx Tinx

are the moments developed at the far ends of members forming the
joint j by a unit moment unbalance about the X-axis at that joint.

(d) Moment Carry-Over Factors

(0) : _CDJ(iO)z i CKjix
Jix :Dggz Kiix
C(O) ) Cngl(;){ ) CKjkx
JJkx DJ(I({)}){ Kikx
(3-9x)
cpl® CK,
_ C(0) = jmx | jmx
Jmx DJ(?IZX jmx
«© . cngg}{ Ky
Jnx D(O) anx

jnx

are the ratios of the moments developed at the far ends to their counter-
parts induced at the near ends. For members of constant cross sec-

tion, the torsional carry-over factor

cgf}g = ,CJ(&){ = -1 | (3-10x)
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and the flexural cai'ry-over factor
RS (O | (s-11x)

jmx jnx

3-4, Y'—Angular Constants.

If the joirit j is now allowed to rotate about the Y-axis, the

slope at j becomes (Table 2-12)

. (3-2y)

and the rend' moments due to loads and this new rotation may be ob-
~ tained from Eq's. (3-3x, -4x) by substituting y for x . New con-
stants thus obtained are identical to those in Eq's. (3-5x, -6x, -T7x,
-8x, -9x) if y is interchanged for x . For members of constant

cross section, the torsional carry-over factor

Cgfrzy = 'cj(g; =-1 | (3-10y)

and the flexural carry-over factor

a0 . a0 L1 i
Cjiy Cjky = 4. : (3-11y)

3-5. . Z:Linear Constants.

If finally the joint j is free to displace vertically but locked

against rotation (Table 2-13), the deflection at j

,Avjzl(W) | :
bAj = - L ETj - _ (3-22)

and the end shears due to loads 'and this deflection become
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W) 4 mv

W) .
+- 'Fijz

(3-32)
W) 4 v

W) FV,

(W) .
: ijz

(W)

(3-4z)

W) 4 pv

New constants introduced in Eq's. (3-3z, -4z) are similar in sense to

those defined by Eq's. (3-5x, -6x, -Tx, -8x, -9x).

. (a) Shear Joint Stiffness Z:sz is the joint force required at j

to produce a unit displacement of that joint in the Z-direction

ZT,
J

= T.. + T,

jiz

jkz

+ T.  + T, . (3-5z)
jm

z jnz

(b) Shear Distribution Factors

pld)
jiz

(A)
Djkz

B
= -~ _JiZ
LT,

T., -
= - _Jkz
ETj

T,
pld) _ _ _jmz
jmz ETj
- (3-62)
- pld) - _ _jnz
- Tinz ETj
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are the end shears developed at the near ends of members forming

joint j by a unit shear unbalance at that joint. The sum of shear

distribution factors

A) _ A A A A) _
2D§Z) = 'DJ(iz)‘+ DJ(kz) + DJ(I'I])Z + D§nz) = +1 . (3-72)

(c) Shear Carry-Over Distribution Factors

T.. T..
cpld) - jiz o “ijz . o(8) p(A)
iz ETj ETJ. jiz Tjiz

T, T, . '
cpld) - Zikz o “kiz . o(B) p(A)
jkz ~ TT, LT, “ikz “jkz

(3-8z)
op@® - Limz _ Tmjz | o(A) p(A)

jmz ETj' ETJ. jmz Tjmz
T. T .
jnz ETj ETj jnz Tjnz

are the shears developed at the far ends of members forming the joint
j , by a unit shear unbalance at that joint.

(d) Shear Carry-Over Factors

(A)
C~(A) _ CD.iZ _ .
iz T A
jiz
(A)
c® o e
jkz © D)
jkz
?) (3-92)
CD\
o Djmz
jmz D(A)
: jmz
(A)
CD!
@ - Pz
jnz D(A)

jnz
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are the ratios of the end shears developed at the far ends to their
counterparts induced at the near ends. These constants are equal to

-1, regardless of the variation of the cross section.

3-6. XZ-Cross Constants.

New moments deweloped about the X-axis by means of Eq's.
(3-3x, -4x) consist of two parts:

(a) Initial fixed end moment FM

(b) Correction moment DM or CDM .
The correction moments introduce new unbalance of shears at j ,

———J—- AM_ |(W) |AM |(W)+——l—-—|AM ](W)

mx

IAV.
JZ

which is the sum of the products of moment-shear carry-over factors

and the joint moment unbalances. The moment-shear carry-over

factors
c(08) _ _ Smix o(08) _ _ ES:]'x c(04) _ , Snjx Bepie)
msz EKmx ]sz ) ix njxz EKnx

are the shear unbalances at j due to a unit moment unbalance at m ,
j, and n, respectively.

Similarly, new shears developed by means of Eq. (3-3z, -4z)
consist of two parts:

(c) Initial fixed end shear

(d) Correction shear DV or CDV .
The correction shears introduce new unbalance of moments about the

X-axis at j,

W) _
AV, (

IAM ,(AZ) +—-'L-— ’AV z|(w)--z—,sf.i§

’AV

(3-12x)
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which is the sum of products of shear-moment carry-over factors and

the joint shear unbalances. The shear moment carry-over factors

S LS. S.
(A0) jmx (A0) _ jx (AO0) _ jnx %
Cm;zx ETm CJZX B j anzx ET {2-182)

are the moment unbalances at j due to a unit shear unbalance at m ,

j, and n, respectively.

3-7. YZ-Cross Constants.

A similar situation arises about the Y-axis, where the shear un-

balance,
. o Sk
- 2ie (W) _ |(W) . '(W)
IAij + i |AM | sRL |aM, ﬂ— aM,,
ry JY J
(3-10y)
the moment-shear carry-over factors YZ ,
LS, y
08 iy | goa), Py | qoa) % (3-11y)
ijyz EK jivz K. kjyz T
1y i 4 Y
the moment unbalance
’AM |(AZ) |AV ‘(W) |AV ™)+ —J—— o,
(3-12y)
and the shear-moment carry-over factor ZY ,
S.. LS. S.
(AO) iy cla0) . _ "y C(AO) + Ak (3-13y)
1]zy Z:T szy ETj kjzy ETk

3-8. Procedure of Analysis.

The application of these constants in the analysis may be sum-
marized in the following steps:
(a) Designate all joints by symbols and record geometric values

and material constants.
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(b) Compute elastic constants FM's, FV's, K's, CK's, S's,
T8, EK's ; ES's ., ET'R, D's , and C's -

(c) Prepare three distribution tables (X-moments, Y-moments,
and Z-shears) with number of columns equal to number of
end values required.

(d) Record distribution factors, carry-over factors, fixed end
moments and fixed end shears in the corresponding columns
of each table.

(e) Using the moment and shear distribution procedure, calcu-
late the resulting moments and shears at each end.

(f) Check for the equilibrium of joints.

It is important to note that:

(1) Each distribution cycle consists of three distributions (about
X-, Y-, Z-axis) at each joint, each type performed in a
separate table.

(2) Each in-table carry-over cycle consists of three independent
transmissions from one end to the other end, each type per-
formed in a separate table.

(3) Each between-tables carry-over cycle consists of trans-
missions from the moment table -x and -y to the shear table
-z and vice versa.

(4) Each joint unbalance consists of two parts: carried-over
values from the adjacent joints (in-table unbalance) and the
sum of carried-over values from the same joint in other

table or tables (between-tables unbalance).



CHAPTER IV

JOINT MOMENT AND SHEAR CARRY-OVER METHOD

4-1. General.

The application of the joint moment and shear carry-over method
to the analysis of orthogonal, planar grids is discussed in this chapter.
The historical background of this method was recorded by Tseng (10)

and is not repeated here.

4-2. Elastic Constants.

Similarly as in the case of the moment and shear distribution
method, the application of the joint moment and shear carry-over
method requires calculation of elastic constants, by means of which
the carry-over procedure is performed. In the derivation of the ana-
lytical expressions for these constants, the joint equations (Table 2-11,
-12, -13) and new equivalents are utilized.

The product of the joint rotation and the joint moment stiffness

0 DKy = IMy (4-1x)

1]

0. rK. IM. £}
iy Py iyy (4-1y)

is defined as the joint moment required at j to produce a rotation Bj ;
when all other deformations are equal to zero.
Similarly, the product of the joint deflection and the joint shear

stiffness

34
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A ET = IV, (4-1z)

is defined as the joint force required at j to produce a deflection Aj "
when all other deformations are equal to zero. These joint equivalents

are introduced at all joints of the grid.

4-3, X - Joint Constants.

With new symbols

CKi'x CKm'x
e s LK, mxx T DR
(4-2x)
CK‘k' CK
= - X == njx
"kjxx © " T N Tnjxx EKnx
Sjmx
Sijzx S Smjzx Nt 3
Sinx
Skjzx " 0 ®njzx _TEJT; (4=0%)
LS.
PR -
I
J
my, = - CFM, + M (4- 4x)

The X-joint equilibrium equation (Table 2-11) takes the carry-over
form shown in Table 4-1.

The joint constants r's , s's, and m's have the following
physical meaning:

(a) The Starting Moment m. is the X-joint moment at j
J

XX

due to loads, when the far joints are locked against rotation
and deflection, and the near joint j is restrained against

deflection.
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TABLE 4-1

JOINT CARRY-OVER EQUATIONS

JM jxx

rrnjxx‘Imex / rnjxxJMnxx
\

JMiX—-—- m,. —.— rijxJkax

X jxx
S Jv / [

P
ijxx

. 8. .
mjxz"  mzz njzx"  nzz

Sjjzx" " jzz

jzz

tmjx zJmex tjsz'nmjxx tnszJMnxx

qmjzzwmzzk l e g qnjzsznzz

e Voo ~—
qijzz']vizz /, \\qkazwkzz

ti..dM, t . JM
ijyz  iyy tjjszijy kjyz T kyy

JM,

Yy

SJJZY Jzz

izz 2 l e r Skizy? ¥ kez
T ey, SR Sl T L
IM = Qe IM
& § o
Tmjyy” " myy njyy"  nyy

&lo. IV
1)zy

Tijyy” kyy




TABLE 4-2x

X-- - CARRY-OVER MOMENT FACTORS

LE



TABLE 4-3x

ZX - CARRY-OVER SHEAR MOMENT FACTORS

8¢
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(b) The Carry-Over Moment Factor rijxx (rijx 4 rmjxx * rnjxx

)

is the X-joint moment at j due to a unit X-joint moment at i
(k, m, n) when all joints are restrained against deflection and
the uninvolved joints are fixed.

(c) The Carry-Over Shear-Moment Factor s (s

is the X-joint moment at j due to a unit Z-joint shear at

)

mijzx v jjzx”’ Snjxx

m(j, n) when all other joints are restrained against deflection

and all far ends are fixed.

4-4, Y-Joint Constants.

With similar symbols

CK,. CK_ .
Tiyy T TR “miyy = " TR o
iy my
(4-2y)
CKk' GCE ..
n
Pao = - § tienr - =
kiyy EKky njyy EKny
B:q
& Jri =
Sijzy E'Tii Smjzy
Skay 7 f’%ﬁ Snjzy . (4-3y)
LS.
S.. = =
Jizy E’Tij
¢ = = EFM. '+ M, 4-4
Py iy iy S

the joint Y-joint equilibrium equation (Table 2-12) takes the carry-over
form shown in Table 4-1. The physical meaning of these constants is

similar to those defined in the preceding article.



TABLE 4-2y

Y - CARRY-OVER MOMENT FACTORS

17



TABLE 4-3y

ZY - CARRY-OVER SHEAR MOMENT FACTORS

1874
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4-5., Z-Joint Constants.

With similar symbols

s e
- _mjz - _njz
qmjzz s o qnjzz & o
(4-22)
g i i
& TPkl Ll
Vjzz - _'ﬂ‘z i Yejez ~ T,
LS,
20 X
tjsz ; Eﬁ.
ix
Sm'x Sn‘x
trnsz Y EKmx tnsz = Er%nx
Si' Sk'
Yiyz © EYE; kjyz ~ 'Efe('; (#-32)
LS,
Yiyz T T IR,
Jy
vjzz & - Z:FVJ.Z + sz (4-4z)

the Z-joint equilibrium equation (Table 2-13) takes the carry-over form
shown in Table 4-1. The physical meaning of constants q's , t's, and

v's is defined in the following paragraphs.

(a) The Starting Shear ijz is the Z-joint shear at j due to loads,

when all joints are locked against rotation and the far joints

are restrained against deflection.

(b) The Carry-Over Shear Factor qijzz (qkaz 3 qmjzz : qnjzz)

is the Z-joint shear at j, due to a unit Z-joint shear at
i(k, m, n), when all joints are locked against rotation and

the uninvolved joints are restrained against deflection.



TABLE 4-2z

Z - CARRY-OVER SHEAR FACTORS

]

4



TABLE 4-3z

XZ - CARRY-OVER MOMENT SHEAR FACTORS

474



TABLE 4-4z

YZ - CARRY-OVER MOMENT SHEAR FACTORS

I\

Sy
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(c) The Carry-Over Moment-Shear Factor t (t )

jixz ’ 1:nj)cz

mjxz
is the Z-joint shear at j, due to a unit X-joint moment at
m(j,n) , when all other joints are locked against rotation and
all far ends are restrained against deflection.

d) The Carry-Over Moment-Shear Factor t.. AT AN L

(@ L ijyz (jyz * kiyz

is the Z-joint shear at j, due to a unit Y-joint moment at

)

i(j, k) , when all other joints are locked against rotation and

all far ends are restrained against deflection.

4-6. Procedure of Analysis.

The application of these constants in the analysis may be sum-

marized in the following steps:

(a) Designate all joints by symbols and record geometric values
and material constants.

(b) Compute elastic constants FM's , FV's, K's , CK's, S's,
T's , TK's' . ES's . ET'a , rv'B , q'sa . 8's , and t's .

(c) Prepare three carry-over tables (JMxx r JMyy . JVZZ) with
number of columns corresponding to the number of values
required (equal or less than number of joints).

(d) Record all carry-over factors, starting moments, and
starting shears in the corresponding columns of each table.

(e) Using the carry-over procedure, calculate the final joint
moments and joint shears.

(f ) Substitute these final values in the slope deflection equations
to obtain the final end moments and end shears.

(g) Check for equilibrium of joints.
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It is important to observe that:

(1) Three tables are used.and two types of car"ry—over‘procedure
are applied |
(a) carry-over in-table (r's and q's)
- (b) carry-over between-tables (s's and t's).

(2) Each new starting value consists of two parts:
(2) the sum of carried-over values from the adjacent joints
(b) the sum of carried-over values from the same joints in

other table or tables.



CHAPTER V

SUMMARY AND CONCLUSIONS

5-1. Summary.

The elastic constants of the major stiffness methods used in
analyzing rectangular grids are derived, defined and physically inter-
preted. Their application is explained and a procedure of analysis is

described.

5-2. Conclusions.

(1) Three major stiffness methods are available for the analysis
of rectangular grids:

(a) slope deflection method
(b) distribution method
(c) carry-over method.

(2) All three methods are based on the slope deflection equation;
which relates the end statical vectors to the end deformation
vectors through linear elastic constants called stiffness factors.

(3) The stiffness factors are of three types:

(a) angular (K's)
(b) linear (T's)
(c) mixed (S's)
(4) These factors are functions of each member, independent of

loads and formation of structure.

48
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(5) Governing equations'of fhese methods are:
(2) joint deformation vector equations
(b) joint balance vector equations
(c) joint starting value vector equations,
(6) Each method requires a solution of a set of linear equations
_,by' a direct or a successive inversion.

(7)) If an electronic computer (with a subroutine capable of
invérting the given matrix) is available, tﬁe slope deflection
method is preferred (Chapter II). |

(8) If long hand computation muét be carried on, the carry-over

method is preferred (Chapter III).
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