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"CHAPTER I
INTRODUCTION

Experimental investigations and research problems often require
" a statistical analysis of the data from an incomplete block design. In
these cases, ‘the general model required:is Yijmz " -I-Bi + 'TJ._ + éijm’

where i=1, ..., b; j=1, .., ., t; andm =0, 1,...,nij.
Due to the nature of the experiment, ﬁi, TJ.,. and eijm might be con-
sidered as random Yariables with zero means and with variances 0"12,
022, and 0’2 respectively. By assuming the random model, the

- researcher is interested in making inferences about the variance com-=-
ponents.. Estimators of the variance components are generally con~
sidered which possess the properties of being unbiased and having
minimum variance.

Previously, several authors have undertaken variance component
estimation in incomplete block designs based on the '""method of analy-
sis of variance. ' This procedure consists of equating the quadratic
forms from the analysis of variance to their respective expected values
and solving for the unknown parameters. This method has merit in

that normality of Eijm’ ﬁi, and 'Tj need not be assumed and in that
it is relatively simple compared to maximum likelihood procedures

when distributional assumptions are made. However, there may exist

estimators which are not obtained by the analysis of variance method.



- From the above considerations, the problem of variance compo-
nent estimation in this thesis is approached by considering an inter-
mediate step involving the theory of minimal sufficient statistics. This
""means to an end''is useful in itself due to the properties of a minimal
sufficient set. That is, having found a set of minimal sufficient statis-
tics, the experimenter has all the relevant information (based on the
sample values) necessary to estimate the unknown parameters of the
densities involved.

An equally imporfant aspect of a minimal sufficirent set is that if
there is a minimum variance unbiased estim]‘ator, it musf-pe a function
of the statistics. in the minimal set. This result has beeﬁ presented in

~a theorem proved by Rao and Blackwell.

Thus, knowledge of a set of minimal sufficient statistics does not
imply that minimum variance grfbiajsed estithators can be found.  In
\fact,v if & parameter has more thaﬁ one unbiased _estimator which are
functions of the statistics in a minimal set,. an estimator with mini-
mum variance may not exi’st.‘l In this case the joint distribution of the
set of minimal sufficient statistics is not complete.

. Sets of minirhgl sufficient stafistics for:‘ the ba]:.ance‘d‘incomplete
block design and fo.r a general class of designs have been given by

~Weeks [ 3] and Weeks and Graybill [4] respectively. In both cases,
the joint distribution of the minimal sufficient set is not complete
since more than one unbiased estimator of each variance component
exist., From these considerations, any thorough search for minifnum
variance unbiased estimators’ from fhese two sets will require the

true variances of the estimators.



Since the statistics in each of the two minimal sets discussed
above, are not all independent, one purpose of this thesis i:s to find
both joint distributions in order to consider variances of estimators
‘which might be functions of the dependent statistics of the minimal sets.

The statistics of the minimal set.for the balanced incomplete block
design are considered in detail. . For this case certain estimators of -
the individual variance components were chosen because of their sim-
plicity and their variances compared. There are certain conditions
which are dictated by the choice of the particular de sign for which
es.firnatofs. may possess the property of minimum variance with res-
pect to other chosen estimators. In general, however, not so clear a
choice is available. In these instances the magnitudes of the variances
of estimators are a functién of the ratioé of the true parametersifvari-
ance components) being estimated and the particular choice of design.

In view of the preceding discussion, the utility of this thesis could
depend s'trictl;:upon an expe_rir—n.en‘té‘r’s knowledge of the ratios of the
true variance components. This is, in fact, the case for some situa-
tions in genetics.

‘, For b“h‘ose §vho may have 'sobme “Ia, priori' information on the
ratios of po:pulation variance S, tabie,s and graphs are given which
indicate the estimator of smallgr variance of the estimafors considered.
These ta;bles are based on .thi_rti:};‘ balanced incomplete block designs for
- which the number of blocks is greater than the number of treatments.
This restriction insures the existence of éix statistics in the minimal
suff»icient:set'.. The thirty designs were chosen, for consideration

because of the likelihood of their use in practical situations.



CHAPTER II
NOTATION, BASIC ASSUMPTIONS, AND LEMMAS

For the most part the notation used in this thesis will be the same
as used By Weeks [3] and Weeks and Graybill {4] in their presenta-~
tions of the ensuing subject matter. However, there will be some
deviations from this policy in order to facilitate the differentiation
between seemingly analogous situations in the balanced incomplete
block and the general two-way classification.

Scalar values used in the general two-way classification model

wilﬁzlf"‘"'now be defined.

1. b -is the number of blockrs in a design.

2. t is the nﬁmber of treatments in a design.

3. r is the number of replications of a treatment.

4. k is the number of experimenté.[ uﬁits per block.

5. A is the number of times any two treatments appear

together in all blocks in a balanced incomplete block

design.
6. . M is the total number of observations in an experiment.
7. g; ... denotes the overall mean of the observations in a

two-way classification model,

8. di denotes a distinct positive characteristic root of a
matrix.
9. m, denotes the multiplicity of the characteristic root di°



10.

11.
12.

13.

s . denotes the number of distinct positive characteristic

roots of a matrix.

. BIB is an abbreviation for balanced incomplete block.

MVN is an abbreviation for multivariate normal.

g is a scalar constant denoting a population mean.

The basic matrices used in this thesis with their respective

dimensions will now be given.

1.

2.

10.

11.

12..

x = [ x

Y(M x 1) is a vector of observations.

X(Mx b +t+ 1) is a design matrix for the two-way

classification model.
Jg -is a (q x p) matrix of all ones.
7 denotes a covariance matrix.

¢ will denote the null matrix. A subscript wil]l be

attached denoting the dimension of ¢ 'if the dimension

+is of importance.

Ip _denotes a (p x p) identity matrix.

1 Z] is a partition of X where X-l(be)
corresponds to blocks and - XZ(Mxt) corresponds to '
treatments. . The elements of X1 and-Xz are either 0

of 1 since in this thesis the experimental design model

is assumed.

poo= p.JII/I denotes E(Y)' where E denotes mathematical

expectation.

N(txb) is the incidence matrix of the two-way cross clas-
sification design where N = 'XZI X

A = X, -k !X N' and has dimension M xt.

DB denotes a diagonal matrix with the: pdsitive character-
istic roots of B on the diagonal. ‘

P(M x M) will denote the orthogonal matrix used in the



12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22,

23.

(continued) orthogonal transformation of Y in the BIB

design.

U(M x M) will denote the orthogonal matrix used in the

orthogonal transformation of Y in the general class of

designs.

_ -1/2. M .-1/2 -1/2, 1/2
P =[M Ik X P, k X Py (k/\ t) AP,
P4] is a partition of P ‘where PZl(bXb - t), Pzz(bxt-l),

P31(t xt-~-1), and P4(M xM-Db-t+ 1) are partitions of
other orthogonal matrices as defined by Weeks [ 3]. Weeks
denotes the matrix P31 as P . ‘

-1/2 *" -1/2 -1/2
LK TP, kX P, APDTY
“(bxm;+b - t)

U = [M'l/ZJ

P is a partition of U where P

4]
Pybxt-1-m), P

21

3(txt- 1), andP4(MxM-—b-t+ 1)

are partitions of other orthogonal matrices. m denotes

the multiplicity of the characteristic root dl = rof A'A,

o

PZlf-F, P and P3 will be considered in more detail.

P2 =[P P P is a partition of P, where

Zs] 2

is bxmi for i=2, ..., s,

22° 23 7 " 0 ?

the dimension of PZi‘

H
N = -1=-
P,N'NP, = Dy (t-1-m

3 *
TN =
P21 N,NP21 = ¢m bt

sk ™ 1 ’ B3
P3'= [P31’ P3] is a partition of P, where P is

3 31
. ~
txml and P

lxt-l - ml).

is txt-l-—ml.
TA'A P =
Pj 3

'
wn
Z
z
g
"
U O

P, ] is a partition of 53 where



24, P.'AAP, =dI for i=2, ..., s.

3i 3i i'm,

¢ 3
1 1 - -

25. P31 A'A P31 _dllm - rI‘m ’

L 1 1

' -

26. P, NN'P, = o

Distributional Properties, Assumptions, and Other Relationships

The t\‘:vor-way classification model Y = X vy + € is assumed where
X is as pfeviously defined and where y'=[p, B', T '] is a 1xb+t+l
row vector. B! is lxb; 7' is 1x f, and u 1is a scalar constant.
It will be assumed that b > t for the BIB designs under considera»
tion. Under an Eisenhart Model II the following distributional proper-

ties will be made:

1. € ~ MVN($, o°T, ),
2. Y ~ MVN(L. Z),
2 .
3, B~ MVN($, o] L)
4, T ~ MVN (¢, 0'5 L),
t
5. cov (€, B) = ¢, covie, 7) = ¢, cov (B, T ) =¢,
6. P'!'Y~MVN (P'w, P'2P) where P is as previously
defined,
7. U'Y~MVN (U'x, U' ZU) where U is as previously
defined.

Certain relationships will prove useful in the following chapters.

These are given as follows:

1 —_ 1 -—
1. Xl Xl—kI.b and X2 XZ_rIt’
q - q ‘ -q = q
2. JM-Xl =k Jb and_,_ JM’XZ =r Jt’
1 R | 1 .1
3. .'.rbX-1 -—JM and JtXZ'—JM,



4. X,'A = AA,
1 1
5. A'X1 = ¢§Jt(A-' -v¢,.and JMA—cb,
6. P, X, = ¢ and P 'X, = ¢,
- =\, o 2 L. 2 by 2

7. E(Y‘-IJ,)(Y‘-H?‘)'_Zf._[O'I XX o, XX o I,
8. M = kb = rt,
9. u=M-b-t+ 1,
10, w=b - t,

: ‘ ' r(k-1)
11. rk -2t = r - and )\ = -—-F:“l—— for the BIB,
12. b >t >k > 1.

Lemmas

The derivations preseﬁted in Chapter IV require the use of cer-
tain lemmas. It should be noted that the seven lemmas presented in
this chapter are all concerned with the BIB design with b, r, k, t,
and \ as previously defined. These lemmas with their proofs will

now be presented.

Lemma 1. For a BIB design, M -b = - (t-1).

r(k-1) .

] Hence,

Proof: M -b = kb -b=b(k-1), But A=

k-1 = —)‘-(tr;l—)-— which, upon substitution, gives M - b = —E—z‘—(t—l).
But l:— =-1-:- since kb = rt. Thus, M -b = -{;—t (t-1) which was

‘to be proved.
Lemma 2. For a BIB design, M -b-t+ 1 = t—-E}—()\t - k).

Proof: By Lemma 1, M -b - (t - 1) i—g— (t-1) - (t-1). Factor-

ing E'?l)_ we have u = -t;kl—‘[')\t - k] where u denotes M -b -t +1

and the proof is complete.



Lemma 3. For a BIB design, At > r -\,

r

Proof: Assume At < r - \. Then't < % 1. From the
. r(k-1) T t-1 t-1
= — S e——— K e -
relation X\ ] we have ™ 1 . Hence, t< -] 1
which implies t < tk;l_l or t(k-1) < t-1. Therefore, t(k-1) <t.

But if t(k - 1) < t then k-1 < 1 or, k< 2. Since k is a posi-

tive integer, k < 2 implies k=1, Hence, we have a contradiction

r(k-1)
t-1

Lemma 4. For a BIB design in which b> t, u=M-b -t+ 1

since k =1 implies \ = = 0. This completes the proof.

> t- 1.

Proof: Show u <.t - 1 leads to a contradiction. By Lemma I,
—
At -k
k

tion since t > k. Therefore, assume X\ < 2, This implies X =1

u = (A t - K). HénCe, assuming u < t -1, we have that

< 1 or, At<2k. Now, if A\ > 2 we have a contradic-

since X\ # 0. Thus, if X\ = 1, t<k+ k. Subtracting 1 from both

sides of the inequality gives (t-1) < k+ (k - 1). Since k> 1, multi-

ply both sides by ———r to obtain £ < 4~r + 1. But it =
since X = 1, Hence, r < -kE—l + 1. Since k is a positive integer
and k > 2, the function f(k) = klil + 1 attains its maximum at

k= 2. Hence, r < £(2) = 3 which implies that r < 2. I r = 1,
then t = kb, But, b > t implies k < 1 which is a contradiction.
If r=2, then 2t = kb. This implies k < 2 since b > t, But

k > 2. Hence, we have a contradiction and the proof is complete.

Lemma 5, For a BIB design b # 2t -1,

Proof: Assume b=2t- 1. But b= 5= . Hence, T = 2t -1

or, rt = 2kt - k. Rearranging we have k = 2kt - rt = t(2k-r). But



10
t > k. Hence, the integer 2k - r is less than 1 which implies that
éither (i) 2k-r = 0, oy, (ii) 2k-r < 0. I condition (i) is thue, then
k=t+ 0 = 0 and this is a contradiction. If condition (ii) is ltrue;:
then k is negative which again is a contja.;adiction. Hence, the lemma

is proved,

u+w ; u(‘r—x) ]

Lemma 6, If b > t ina BIB deslgn, then b;é [ SNE(E- 1)

where v = M-b-t+1 and w =b - t.

i[u.+w u(r-\) ].

X w AR Solving for the last

Proof: Assume b =
. ou(r-\) u+w Ab _u A\t

term in the brackets, we have AEE-1) T = - =g + 1.._l_<_ . By
Lemma 2,
u = ———tl-;l (At - k)
or,
u R
oy i S
Hence,
ulr-\) o ow o u
2at(t-1) W t-1°

Multiplying both sides by -1;—:1-1—- , we have

r-)\_t-l_'1 t-1-w 2t - b -1

2Nt - w - b-t
Expanding

r -\ . 2t-b-1

2\t b -t ]
the equation
b[ k+ X~ 2xt-r] = Nt [3 - 4t]
is obtained.

But, b > t. Hence, k+ X -2\t -r <\ (3-4t) and this inequality



reduces to 2\(t-1) <r - k. Since \(t-1) = r(k-1) for the BIB design,
we have that 2r(k-1) < r - k or, r(2k - 3)+ k< 0. The only case
when r(2k - 3) + k <0 -could hold is for k= 1. But k # 1. Hence,
we have a contradiction and the lemma is proved.

-1 ,
Lemma 7. If b > t in a BIB design, then b >E%)\——)-+ 1.

Proof: Assume

r(r-1)

b < 3 + 1.
Then '

3 b < r(r-1)+ 3 x.
or,

3x (b-1) < r (r-1).
But. .

_ r(k-1)
MR

Having substituted for ), algebraic manipulation gives

3kb -rt+r+t < 3k+ 3b - 2

Replacing kb by rt, we have.

2rt+(r+t) < 3(k+Db) -2

Now, -
_ 1 1
r+t = rt(-E-+-;)
and
rt rt 1 1
k+b—b + k—r1:(-]:.)-+---1-<-)

Substitution for (r +t) and (k + b) in the last inequality gives

2+ G+ 1)< 36

In a general BIB design for which b > t the minimum block

11
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size is six. This restriction will give the desired contradiction. To
 see that the restriction on block size is true, we have in the general
case that k = 1 since k = 1 implies that » = 0. Hence, k > 2.
Also, under the assumption that b > t we have r > k. Thus,
r> 3 and t > 3 since t > k. This in turn implies b > 4. How-
ever, the ﬁinimum values of these constants do not conform to the
condition kb = rt of the BIB.

If b is increased to 5 and r and k are held fixed, the relation
kb = rt is still not satisfied for t = 3 or t = 4. However, if
b =6, t = 4 k=2,and r = 3, a BIBV is defined. Thus the

minimum block size for a general BIB when b >t is b = 6,

From theée considerations, the maximum value of (—,é- + —i) is
1,1, _ 2 1 1 2 .2 2 2
Gt3) =3 Thus, g+ - & 3" 3 -7 7 2- 57 -
Hence, 2+ (?1+?1) < 2 _1% which is a contradiction. This com-

pletes the proof of the lemma.



CHAPTER I

THE JOINT DISTRIBUTION OF ASET OF MINIMAL SUFFICIENT

STATISTICS FOR THE BIB DESIGN
General Discussion -

The purpose of this chapter is to derive the joint distribution of
a given set of minimal sufficient statistics for the BIB design. Since
minimum variance unbiased estimators of the variance components
trz, 0‘12, and (rzz must be based on functions of the statistics from
the minimal set, the joint distribution of the statistics of the set should
be found. The mafginal distfibution of each statistic in the set has
previously been found, but certain dependencies exist among the
statistics.

The derivation of the set of minimal sufficient statistics is based
upon the matrix model Y = X y + € (defined in Chapter II) under the
assumption of an Eisenhart Model IL By invoking the restriction that
the number of blocks is greater than the number of treatmeflts, the

minimal set will contain six statistics. Throughout this thesis, only

BIB designs in which this restriction holds will be considered.

A Set of Minimal Sufficient Statistics for the BIB Design

A

The six statistics of the minimal set and their individual distribu-

tions as given by Weeks [3] are as follows:

13
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-1 1 -
1. s, = M JMY = y.
s . ~NJ[ w, M_l(o'2+ ke L T 2)]
1 1 2
- -1 ot 1
2. S2 = k Y'XIPZIPZI Xl Y.
2

sz~(0' + k.crlZ) xz(w,),where‘ w = b -t.

L= ) -1 1 1 1 1
3. 55 = [ k(r-\)] Y XlN P3P3 NXl Y.
8 ~(o‘2v+ k o 2«+ k_l (r -~ X)o 2) xz (t-1).
3 1 2
4 s = tonYivix nippAry
‘ 4 ' 1 373 :
s4~2 P; sz (n where the p; are the non-zero char-
. s -1
acteristic roots of 2 (A4+A4'); and where
oL 1 1AL
A4 = k XlN P?’P3 At
- -1 o LAY
5. sp = k(xt) © Y AP3P3 A'Y,
se~(ol kIt e, B x 2 (1)
5 2
— ! ]
6. S¢ = Y P4P4 Y.
2

s6~0'2x (u, where u = M -b -t + 1.

Weeks [3] has also shown that the statistics s, (i=1, 2, . . .,

6) are pairwise independent except for the pairs (s3, s4), (s3, s5) R

and (s4, s5). Hence, due to independent:e properties of the minimal
set, the problem of finding the joint distribution of the 85 (i=1, ..., 6)

reduces to that of finding the joint distribution of s ,- and s

3* 94 5°

Before proceeding to the derivation of the joint distributien of

the statistics s3, S 40 and‘s5

six statistics will be simplified by expressing them in terms of a Z

the matrix notation used in defining the

matrix which will be defined.
As was noted in Chapter II, the M x 1 vector P'Y has a multivari-

ate normal distribution with mean P'u and covariance matrix P! Zf P,



That is,
P'Y~MVN [P'L, P'Z P].
To simplify notation let P'Y = Z and partition Z as
| B— r t 3 1 H 1
Z' = [Zl’ ZZ’.Z3’Z4’ZS ]
to correspond to the partitioning of P as explained in Chapter II.

Now, expressing P'Y in terms of Z we have

a2 IgY | ,le—
k_l/zpzal'Xl'Y 22
P'Y = [k(r-)\)}—l/ZP3'NXl'Y =z, | =z,
(k/\ t)l/2P3'A'Y Z,
1=

where the diminsions of Z‘l, ZZ’ Z3, Z4, and 25 are l-x 1, wx 1,
t-1x 1, t-1x 1, and u.x 1l respectively.
From the way.the six statistics are defined, we can now express

them in terms of the - Z ~vector 'as follows:

1. Zl'Zl = M slz..

2. ZZ'ZZ' = 5,

3. Z3' Zy = S3-

4. Z4' Z4'= Sg-

5. ZS' Zg = S¢-

6. Z3'Z4 = ko 540 where k= (k/)\t)(r—)\)“l/z.

The occurence of the constant ko in Z3' Z4 is due to the definition

of s To see this relationship, we have

40
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Z,' 2, = [k(r—)\)]"'l/z(k/)\t) I/ZY'XIN'P?’P?"A'Y
() (x - x)'l/z[ixk—Q.VE?'XlN'P?,P:,)'A'Y]
= ko s4
The 'Jeint Dietribution of Sy Sy | and Sy

The derivation of the joint distribution of the statistics S0 Sy

and Sg requires that the form of E(Z) and cov (Z) be known. The
E(Z) will be considered first.

Now, E(Z) = E(P'Y) = P'} . But the orthogonal matrix P has
been so constructed as to make every element of the first column |

equal., [3] This first column(by the partitioning indicated in Chapter

II) has the form M-l/?“‘JII/I . Since P is orthogonal, the form of the

first column insures that the elements of any other column add to zero,
—_ 1/2 .M
Also, p = p.J’ 1" Therefore, by partltlonmg P as P=[M J P]
sk
where P has dimension M x M-1, we have that

(e 2 e

t

E(Z)

PEATEVRES N A

I

H

[ Ml/z, o], where ¢ has dimension 1x M-~-1l.

Hence, E(Zl) = p.Ml/z and E(Zi) = ¢ for i= 2, .. ., 5.

The covariance matrix of Z as given by Weeks [ 3] is

(B, oo 6 ¢ o

6 B, o b b
PrEP= |6 4 By, B, ¢ |

& & By By ¢

¢ ¢ ¢ ¢ B _
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where
Bl. = (crzj+ kcriz + r;crzz),
B, = (crz,+ kcr'lz) I
B3 = [o-z_ ¥ kcr’lz . (r - \) crzz] Ly
B, = (% + (\ t/k) 0-22) L)
B57 = w1,
. and
By, = [k'2 At(r-2)] 1/2 0“22 L~

 From the formof P'Z P, we see that the only dependency which

exists among the Zi is between Z, and Z Hence, from multivari-

3

ate normal theory, we may state that

4

Let the covariance matrix of the vector 7 be denoted by 234.
4 34
Then, rewriting B“3, B. ., and B in terms of constants times identity

4 34

matrices (as previously defined), we have

CIt—l eIt-l
= 5
34 I dI
©%-1 o
. where
c = [0‘2.+ ko 2 ¥ k“l(r-)\) o 2],
1 L2
-2 2
d-= g%+ (\t/k) o,
and
e = [k'-z)\ t(r-x\) ]1/2,0‘ 2 .

A



Now denote the t - 1 elements of Z; and Z, by z, and Z4a
respectivély, (& =1, 2, . . ., t-1), and denote the sub~subvector

-z
[' 3:] by Qu‘ . From the form of .2534 we see that

4
. | | - - :
cov(Qu, Qn') ¢ for a # o
and
c e
- - —- 1
cov (Qa’ Qm') e 4 for a o
Therefore,
0] C e
Q ~ BVN s Afor a =1, . . ., t-1.
@ 0 e d

Denote the covariance matrix of -Q_ by z

We can now quote a theorem as given by'An'de'rson [1].

- Suppose the p-component vectors Zj, . . . ., Zn(n > p) are

independent, "each distributed according to N (¢, 'Z). Then the

density of A = % Zn za.‘ is
L inp-1) 1 -1
IAF“ | e 5 tr A Tz
22 p(pjl)/4 lzf l 2 I I'[=(ntl-i)]

for ‘A positive definite and 0 otherwise.

18

- In other terminology, we say that A is distributed as the Wishart with

parameters n and X .. Applying this theorem to the Qu vectors we

t-1

have that = Q Q , = # | (say) has the Wishart distribution with

a= 1] K
parameters t - 1 and X

Sk
.
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-Expres sing A1 -in terms of the Q(1 vectors, we have

t-1 t-1 Z3a]
A= Z QQ'= Z ‘ [z ,.z]
L a=1 %% a=1l%a 30’ da
— '
2 Z
t-1 |[%3a %3a%4a
i z"1 %2, Z z"2
a= _Z4o.» 3a 4q
B 2
Zz"3o. 'Z.z3o.z4o.
z z 2z 2
%4a  3a da
r } 1]
_ 3243 23 Z,
1 1
z, z
%3 Koa
kosél- s5

Hence, the elements of Al are functions of the statistics whose

Jjoint distribution. is desired. We then have the result that

S k s
: *
A= s 50| ~WES D
o 4 5
or equivalently,
|A
by (855 sy 8g) =

t-1 1/2 (t-1/2
2 -0/ 2pEd pd g
This function is easily simplified by finding "A R 'Zl *l » and

,tr.-Al-'ZT . After some algebraic manipulation tr A Zﬁ 1 was

found to be
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*1 -1 2 2 2 2 r-\x_ 2
tr A»li]. =a [$3(U + ()\t/k)o‘2 ) + 55(0‘ +k<r‘1 +__k—62')
-1/ 2 2
S 2s, 0 Y22
where
* 4 2 2 2 2 2 2
S a = {Zﬁ‘:cr+ro"62+kcrcrl+)\t0'1crz.
The joint distribution of s, ko?é’ and Sg is then
t-4 3
222 1 -1 .2\t 2, 2=\ 22
(s )_(5355-kos ‘)4 exp->a _s3(0' +-E\Q'22)+55(0'+k0‘1+—1-<—.‘0‘2 —254_()\t) o, ]
1°3 %%/~ T i1 |
t-1 2 2 t-1 t-Z)

‘2 T a l_’(—z"') (=

The Joint Distribution of . S1» S and S¢

- As was stated previously, the statistics 51 _sz, and s6- are

mutually independent. [3] Therefore, the joint distribution (denoted

by hZ) of these three statistics can be expressed as
holsyr 850 se) = gylspleylsyleglsy)
‘where g2 8, and g denote the functional forms of the three distri-

The density functions of . Sy Sy and s are as follows:

butions.
1. 5~ N[ s M-1(0'2v+ ko-lz + r0'22)].
1 1 2
2,072,222 Misy- 1)
gl(sl)=[M /(27 “(o +ko‘1.+r62.)] eXp - gy
2(0 +ko, +ro Z)
1 2
2. s6N0'2x2,(u) or, o S6~X'2(ll) .

u

u
=-1

/ -2 2
2 exp --—;— o 56]/1"(—.%) 27,

g6(56) = [(o S6)

where u= M ~b -t + 1.
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3. s2

=N (0 24ko, 2) 71 ‘—51 2k 5.1 /T3
gz(sz)”‘ [(O' + 0_1 ) Sz] exp (0' O' (

r,y('(rz‘+k&12)x Z(W) or, (0‘2 +ko 2')—]' ~X (w)

where w = b - t.

Now letting §1= 0‘2 + kdtlzr and &2 ='&2 +kql2 + r_czz we have

that

hols a0 5¢) = 8)(51)850s 5)eg(sy)

1 U.
-1 ‘
MZ(U S()) (gl SZ) . exp --1-[ &2- lM(sl-;.L)z-E-U-zséfEl '152]
= T utwtl '
we)?z 4 rG ey

The Joint Distribution of s 5 and S¢

1?7 S S3r Sy 8

., Due to the independence of the sets (s s 56) and (s3, Sy 55),

1’ %2
the joint distribution of the set of minimal sufficient statistics (denoted
by ~h) is simply the product of the densities hl -and 'hZ which are as

: previously defined.

Therefore,

h(sgs 850 89 84 550 Sy) =hy(sy, 55, sgdhy(sg, 5, s0).

= gy(s))gals lggls dhyls 3, 5485
and the joint distribution of the set of minimal sufficient statistics is
the product of a normal, two independent chi-squares, and a Wishart.

Actually the importance if‘ this joint distribution is in the form .of
hz(s‘3,‘ S 4 55). From the result that h, is a Wishart, the variances

2

and covariances of 83 kbs4, and s_. may be easily obtained since the

5
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k:s

moments of the elements of A1 (i.e., 5 3 oS4 s5)

‘have bpen given
in multivariate analysis theory. [1]
The expected values, variances, and covariances of the statistics

in the minimal sufficient set will be investigated in detail in the follow-

ing chapter.



CHAPTER IV

ESTIMATION OF o2, o2, AND crzz IN THE BIB DESIGN

General Discussion

- The derivations of this chapter result from considering a special

case (the BIB design) of the two-way classification model ¥ijm = pt ;31

+ Tj + eijm' wherei=1l], ..., b3j=1], ..., t;and m=0, 1,

., n,,. Itis assumed here that PB., 7., and ¢,. are independent
ij it ijm -
normal random variables with zero means and variances crtl ,. qzz,
- and érz respectively. The complete distributional properties are dis~
cussed in Chapter II.

Under certain conditions the above model represents the BIB

design. These conditions are as follows:

1. There are b blocks of k. experimental units each.
2. The number of treatments t is greater than k.

3. . Each treatment appears exactly r times.

4. Every pair of treatments. must appear together in the

same number (\) of blocks.

. For this special case, the subscript m used in the general
model will take on the value 0 or 1. Expressed mathematically,
we have m = Ry where nij = 0 if treatment j does not appear in

block i, and nij = 1 if treatment j appears in block i.

23
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Under the dssgmptima of the BIB design, the purpose of this chap-
ter-will be to find unbiased estimators of the variance components

2

o, 0"12, and c_rzz based on the set of minimal sufficient statistics and
to compare the variances of the estimators. To accomplish this,
_the expected values, variances, and covariances of the minimal suf-

ficient set must be shown. -As previously noted, only those BIB

‘designs for which b >t will be considered.
- Expected Values of the s; i =1, 2, « « ., 6)

In Chapter III a minimal sufficient set containing the six.statistics

~s.{(i=1, ..., 6) was given, and the 2 x 2 matrix Ai = (A1 ),

i ..
1}
where
£-1 S5 kysy
A = Z Q Q = ’
1 _ T a
a=1 koS4 ®5

. was shown to have a Wishart distribution with parameters t - 1 -and

2 - [

The values of ¢, d, and e are as follows:

¢ = [e?+ ket Kk e’

[N
fl

[0'2 + k_l)\ t ‘0722] .
and
2

[xt (r-x)/RZj'l/Zcz

o
i}

‘Knowing this, the expected values of the elements of Al may be
found using the fact that: E(A1 ) = (t-l)O'i. where %4 is the i, j-th
. * i] )

element of £ . [1]

Thus we have



-E(_ss) .=E(A1 ) =(t-1)c =(t- 1)['Gz+kclz+k-l(r-X)crzz],
711
E(sg) = E(A, )=(t-1)d =(t-1)[e*+k™ '\ to,%],
| 122
- and | _1-
E(k_s,) =E(A; ) = (t- D[at(z -0/ 2o,
: 12
. From the last equation 1
E(sy) = kT He-n{ae(r-0/kT % 0,
or, 3
(s )=(t- D) AN K%,
since

-1

k= (k/xt)(r-x)z .

. For simplicity denote the coefficient of 0"'22 in the expression for

~-E(_s4_) by £ Then, . E(s4_) =f 2; . It should be noted that these

1 172
three expected values are identical to those obtained by Weeks [ 3].
He has also shown the expected values of Syr Sy and 53 to be W,

' w(d'»2+ko"12), and u &2 respectively where w=b -t and u=M - b
-t+ L

In summary, the six expected values-are presented as part of

a table given after the derivation of the covariance matrix.
- Covariance Matrix of the 55 (i=1, 2, « « ., 6)

- Since s» 5, and s, are mutually independent and the distribu-

tion of each is known, their variances are as follows:

= M-,l(érz' + kcr:lz.+ rqzz) .

1. var s1

2. var [(cr2 + kviz)-ls = 2(b-t) = 2w

]

25



or,
var s, = Zw(’c‘r2 + kcrvlz)2
= Z.W[rr4 ¥ Zkrrzrr"lz + kzcrl4] .
3. var (0-256) =2M-b-t+1) = 2u
or,

var s, = 2u 64’ .

The variances of s3, 54, and S are obtained by using the fact
that Anderson [ 1] has given the general expression for cov (Aij’ Akl)
when ANW(Z, n), Denoting Z by (rrij), this general expression
is

cov (A, ., A

ij kl) )

4

~ no

kl

E (Aij - ncrij)(A Kl

n(crikrrjl + r,rﬂcrjk).
. For our case n =t - 1. Therefore, the variances and covariances of

the statistics S3r Sy and sg are as follows:

1. var s, = var A
3 l,ll

(t=1)(e )

1

1111 T 711%11
2

2(t-1)c?

11

= 2(t- 1)[cr2+kcr'12+k' 1(r— A )rrzz] 2.

2. var (kds4) = var Al

12
2
(t-Doy, 4011955]

1l

= (t-1)[e%ed]

26
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var (kos4) = (t-l)[k—z)\t(r-)\')o';+-(0'2+ko" 2+k—l(r--)\)_t;rzz)(o'Z

1
-1 2
+k A\t Ty )]
_ 4,2, 2 2,2 2
.,-_(t-l)[Z)\t(r-)\),crz /k tro’o, tke o) “HNto o,
+ b'4] .
. But, var (k s,) = k 2 var s,. Therefore
’ o 4 o 4 ’
Ve 4,2 22 2 2 2.2 -4
var s4=()\t)l/ fl[Z)\t(r-)\)o-z/k +ro-‘o-2+k0'. o) FAtop o, t o ]
. where
, - 3
£, = K00 /2 n)(t-1)
3. var (s_.) = var A !
5 ‘122
- 2
= 2(t-1) 752
= 2(t-1)a°
= 2(t-—l)[o‘2 + k'IthZZ] 2
or,
var (s5) = Z(t-xl)(o-4’+2k-1)\txcrzo-22+ (k_le).2624).
.4-.., cov (s,, s.) = cov (A , A )
3 5 l-ll ,122
) PR PRI PP PY
= 200K A (ron) 0 b
5. cov (s,, k. s8,) = cov (A , A )
3 o4 Lyl
(t=1o )71, ¥ 015 7))

1
- 2
2(t- 1) [o% ko 4+ (e -n)e ALk Aot MF o, ]

But cov (53,. kbs4) = ko . cov (‘53, 54). Therefore, after some alge-

braic manipulation, ‘we. obtain
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2 2 2 2,, -1 4
cov (s3,. 54) ='Zf1[0' o, tho ) o, +k ,(r-)\).crz ].

)

. 6. cov (kbs4, 55‘) cov (A1 y A

12 1

22

(t-1)(o )

fl

1222 1 912722
(d,2+k"1xtcr22)

&

2

2(t-1)[k th‘(r-x)] ]/Zcr'z

: +k'1xt¢

Z(t-l)k'l[xt(r-x)] 1/2[0'2‘_0'2

2
. Since cov (kos4, 55) = ko' cov ($4, 55),. we have that

AR | 4
cov (s, 55) = Zfl[cr o, tk "o, ].

To summarize the preceding derivations, the covariance matrix
of the 53 (i=1,2, ..., 6) is shown in 'Table I with the corres- -~

ponding expected values.

Unbiased Estimators of crz, 0'12, and oy

‘and Their Variances

In looking at the ‘e‘xllaected values of the statistics in the minimal

sufficient set as given in Table I, we see that an obvious unbiased
" estimator of erz is u_ S¢ since: E(u"»lsé)= 0_2_ However, furthef

investigation reveals many other unbiased estimatofs of the same vari-
ance component. "crz. In fact, as will be shown latevr, there exist an
infinite number of unbiased estimators of 6'2.' The same may be said
of the other components cr'12 -and crzz.

Since it is the purpose of this chapter to choose unbiased estima-
tors of the variance components and corhpare their variances, a

systematic approach to their selection should be taken.. Such a proce-~

dure will now be discussed,



TABLE I

EXPEGTED VALUES AND COVARIANCE MATRIX
i OF THE Si (i = '1’ e s e 9 6)

Statistic ~Expected Value - Covariance Matrix
s, " s, P % ¢ ¢
s, | w(&»2+k<r‘l,2) | b .S, b ¢ P ®
83 (t-Dlo? +koy 2 A o %) ¢ ¢ S37 ' S3y Sy ¢
S¢ £y0,° ¢ ¢ VI “S45 ¢
5. (-0 + AL 52 " ¢ S, S,s S &
s uo? 6 6 6 ¢ 6 s,
£o= KX )Y Arat-1) 5, = L2 + kcrlz mZZ]
u = M=-b-t+1 'S, .=-2w['o" + 21§0' ‘1 k20'14]
w = be~t . : S3' = Z(t-zl)[cr'4+k2_&l4+k-2(r-)\) o"4+2k0'20'1.2+2k-l(r-}\)O'%chZ+2(r-)\)d'Izo'2
33‘;— Zfl[k-‘l(r"‘)‘.’; o’ v, tko e 2]
S55= 2t-1k At (1) 0,
: S4 L= ();t) 1/'2£1[ 64'- + ZXt(r-x)k-.2q24+k626'12+f62622 + 7\1:0"120"22]
- S45° 'Zfl[(Xt/k) 0‘24 + 0'20'22]
S o= 2t 1)[0‘ + (/R 0, 4 20 /Ko % 0]
2u0‘4

w
o~
I

62
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-Let
] s s s S¢

5

_ 2 3 4 \
Fo=gste) +gsl) Teyl ‘f"l““' g5(e7 ) * gl )

u
be a linear function of all the statistics of the minimal sufficient set
- where the g; are arbitrary real numbers. Then,

_ 2, 2 2, 2,r-\ _ 2 2
E(F) = g ptg,(o tko | “)tgalo ke =0 ,7) +g 0,

2, At 2 2
_+g5(0' T, ,) + g
Collecting coefficients of the variance components, we have
CE(F) = g,p + (g tg.tg tg, )o2+(kg tkg o 2
- g1 27837B57Eg 827837}

r-) A L2
Tlestes ¥ 8510,

We now want to find the values of gi which will reduce - E(F') to that
variance compohe_nt which is to be estimated. This is done by setting
E(F) equal to the component under consideration and equating coef;
ficients. The method described will yield a system of eguations with
the gi's as unknowns. Once the system is solved, the determined g
values may be substituted into the F function to obtain a linear com-
bination of the minimal sufficient statistics whose expected value is.

the variance component under consideration,

Unbiased Eistimators of.. o::z.; , “‘T..‘lfz',"‘. - and 0",‘2,_ S

Unbiased estimators of the variance components will now be
found using the procedure described above., A separate system will

be required for each of the three variance components.

Case 1: Estimation of érz.

Letting E(F) = ¢% we have



gl.,-- 0
gptestestg =1
‘kg2-+ kg3 = 0

r-\ At
k83t 8T 8 = 0

as a system of three equations in five unknowns, g, may be disre-
gardedfor it will always yield a value of zero when estimating vari-
ance components. Solution of the system in terms of g3 and g¢
(chosen for convenience) yields

8 T "By

At -\

8y = (B - D - ) gy

and |
85 = 1~ 8-
Thus, for any value of g3 and g, 2an unbiased estimator of '0'2

can be defined. Two simple solutions are as follows:

1. Let g3 = 0 and g, = 1. Then, g, =g, =g, = 0.
Hence,
F o= and E(F) = o .
2 Let = 0 and - 0. Th =0, g,= -2t
o e g3 = n g6 = . en) gZ = ’ g4_— K ’
and By = 1. Hence,
S S
_ At 4 5 2
,F_(__k_.____,fl t =7 ) and E(F) = o
Let u's, = 0, and (t‘-l)-ls - (Mt/k)f ls -0
6 1 - %5 St 4 2’

Certainly, other estimators (depending upon the values of g3 and

86) could have been chosen. These: two were selected because of their

31
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simplicity.
. . -2
Case 2: Estimation of Ty e
Létting _jE(F) = 0'12 we have

gy = 0

g,tezgtggtg =0

ng + kg3 = 1
Sr=\A At _
r 83 T gt g =0

as a system of three equations in five unknowns. . Solution of this system

- in terms of g3 and . gs gives

Sl
g2 © &k " &3
r-A At
gq = "R 83t g5) o

and
_ 1
8 = ~ {85 * ¢ )

"Two simple solutions are as follows:

1 1

1. Let g3 = 85 = 0. Then, . 82Kk’ 84 ~ 0, and g = " k-
Hence, .
F =i 2oL (8 ana EE) = o2
k *w k u 1
2. Let g, = —le and g; = 0. Then g, =0, g, = -r_z)‘ ,
' k
and g = - -li_ Hence,
F o= [k(t-1)] sy - k'?‘(r-)\) fl-ls4 - (ku)"'s, and E(F) =¢ %
Let

(kw)-'1 Sy~ (ku.)-vls6 = 0

- and i

3
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-2 1 -1

[k(t-1] Yoy - k-0 £, sy - ) s = 0,

Case 3: Estimation of o

2 4

Letting E(F) = Q’ZZ, we have

as a system of three equations in five unknoewns. Solving the system

in terms of g3 and gg gives

gz = "g3’
- 1 . (X=X At
and
8 ¥ "Bs

Three simple solutions are as follows:

1. Let g3 = g5 = 0. Then, g, = g, = 0 and g, = L.
Hence, »
_ -1 B 2
F = fl »s4 and E(F) = L
. k -
2 Let gy = 0 and 85 = % Then, . g, gy = 0, and
Sk
By = - T Hence,
-1 -1 _ 2
CF o= k[t (t-1)] S - k(\tu) s¢ and E(F) =0,

3. Let g, = and g, = 0. Then, g, = -;-k: and

K
r=-\ A

B4 = 8¢ T 0. Hence,
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F o= -k[(r-Nw] s, + K[(z-0(t-1)] " 's, and E(F) =0,
Let (fl-ls4) = 05 » K[\t (t-l)]-ls5 - k()\tu)-lsé- = 06’ and
K[ (e-N(E-1)] s 5 - K[ (z-0w] ls, = 0.

- In summary of the preceding derivations, we have

-1
01 = u 8¢
_ -1 -1, -1
92 = (t-1) 55-k )\tf1 Sy
-1 1 -1
03 = k [w s, -u s s
-1 -1 1 -1 -1
0, = k [(t-1) "¢ ~\_k (r-N)f; "sy -u sé]’
-1
05 fl 54:
-1 -1 1
and
-1 -1 -1
07‘=k(r-)\) [(t-1) Sq " W sz],
. where
_ _ 2
E(gl) "E(Oz) = 0 H
E(0.) = E(.) = o2
3 ' 4 1°
and
: _ _ ~ 2
E(9;) = E(9,) = E(0) = o,%

In order to make a decision as to which one of the estimators to
use for any particular variance component, the variance of each should
be found. The criterion for the ''best'' estimator will be that of mini-
mum variance. This does not mean to imply that an estimator has been
found for each variance component which has the smallest variance of

the entire class of estimators of that component. We are interested



here in comparing variances of only the above particular estimators.
.. For example, in comparing the variances of -03 and- 94, it -will be
shown that the sign of Var-(03) - var (04)' will change,according to
the BIB design used and the true magnitude of the ratios of the vari-

- ance.components. Hence, we cannot say 0

3 is uniformly better

than 04 for all BIB designs.
Having obtained the covariance matrix (Table I) -of the.set.of:
minimal sufficient statistics ’Si(i =1, 2, ..., 6), we can now find

the variances of the seven estimators.

. S
Variance of 01, =.u_ &,
var 8, = w? var Sg ' 7 u’-2[2u0—4'] = 20" 1e?,
Variance of -0, = (t-l)_ls - k l)\t f 1s
: 2 5 4—
- -1 -1 -1
var 92 = var [(t-1) sg -k T atf) s4]

Co=(t-1) 2va.r s5+(k- ]}\t)-zfl- 2va.r 84:'-‘2(1:--_1)- lk- ]thf %:ov(s ,54)

2 4

=2_(t-1)-1'[o-4+2k Lt 0’20‘ +()\t/k) 5]

| +(xt/k)z(xt)l/ [ZM:(r Mk 0’2+r0’2'0‘ 2+k0’20’ +)\t0’ +o‘4]

4

.4[(t-1)kfl]'l At fl[&;qzz + (At/Kk) oy ].

By collecting terms and simplifying, the above equation becomes,
., 2 4 2.2 .22 2
var @, = m+ p) ¢ +kpo o) “trpo’ o, t\tp o, T

~where p = )\t/[v(r-)\)(t-l)].

Now factoring . p, . we have

2

2=p[(l+w)64+k626 252

%irels 2+)\t<r s ].

var 0 1 | N 1.

35
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Variance of 05 = kL [w

var [(kw)

- (k) s, ]

2 + (ku)"2 var sg.

L
52

(kw)-2 var s

var 03

1t

Now consulting Table I, - we see that

var 03 = Z(kw)_zw[ cr4+ chrzcrlz-i«kzcr 14]'+ Z(ku)—zucr

which reduces to

var 0, = Zw—lk-z[u-l(u+w)cr4'+k2cr 4+2kc1"zcr12] .
. -1 -1 -1 -1 -1
Variance of _04—k [(t-1) s3-k (r-)\)fl__§4 u 56]__
1 -1 -2, -1

-1 -
var 04=var[k (t-1) s3-(ku) s6-k £ (r-)\).s4]

:[k(t—l)]-zvar s3+(ku)-2var s6+k-4fl-2(r-X)2var Sy

-2[ k(t-.l)]-lk-zf ql(r—)\) cov (s

1 30 Sg)-

- Substitution for the variance and covariance terms gives

2 -1

var 94:21{- (t-1) 45 2

[o7+ko, "tk (r-—)\)zcr 4 2ko 2
1 2 1
-1 2 -2 -1

+2k (r«)\)crzczz+2.(r—-)\)cr'l.2‘crz ] +2k Zu 174'

-4. - - 2 2,. 2 2
HH Lo 200 Y 2 2t (r -0k %5, brro, tho's)

+)\tcrlzo-22+c4] -4(t-1)" ]k 3r e crz+ktrlzcz+k )\)0'4]

Collecting the coefficientsof the variance components and their combin-

ations we have that

ut(t- l)

z[ t-1) ZMt 1)]fr4
k

4

2 , 1 r-x, & 2
————-l) +k~———(t_l)(4e+~x——)t ooy
r(r-\) &20_ 2 -\ 2_ 2
kA¢(t-1) 2 K%t-1) L2

var 94

+




. Now, if we let P, = (r-)) and factor pl out of the expression
' k™At(t-1) '

- for var 04,we then have

var 0, =p, {[ 2p(t-1)u" Hutt- D+ 1] s 2p(e- k%o | *

- +[4p(t-1)+1] koo 24 rele 4 Ato 20'22}

1 2 1
- where _
= )\t‘ and pl‘ = --—é—r—:l\l———-
(r=-N)(t-1) k\t(t-1)
Vari £ o =f "}
Variance o 5. = £, s,
o -1 - -2 ,
»varOs—varfl S = fl ’va,rsv4
= (Xt) l/.zfl- l[6'4+2Xt(r7)\)k-‘20’24+k.0"20':12+1‘0'20'22‘
2 2
. -1 -1 -1
Variance of 06~= k(nt) “[(t-1) S5-4 S ]

Hi

var O, = var {k[ )J:(t-.l)]"ls5 - k(\t u)"l 56}

]

kz[xt(t-l)] -2 var sg + kz ()J:u.)-2 var s,

i

24]

2k%0) "= 1) [ e H 200/ 00 %o, 20/ 10 P

+ Z(k/)\t)2 u 10'4'

1, 4

18

[2k/a)% (-7 4 2 (k/a0%a ™) o
-+ Z(k/xt)z (t—l)'l[Z(xt/k) tr,zo-zz + (Xt/k)20'24].

This equation simplifies to

var 9 = Z(t-l)-l‘ {(ls/xt)z[vlhl- l(t- 1)]'er4+cr§+ Z(VXt)azazz} .



- Variance of 6, = k’(r-)\)-‘l[(t"l)_- 53'Wf15v ]

1

var 97-

il

42k J'(r--)\)cfrzo'zz‘+ Z(r-)\)crl.zq- 2

+2k2(r-)\)—2 w

I

zkz(r-x)-'

+2(t-1) ,1¢24+4k3(r-)\)'_2[ (t-1) Liw l] ole

+ 4k(r-)\)-l(tfl)cir.2<r

Let
2
[

go= k%N

-and

kz[(r-)\)(t-—l)]"2 var s, + kzi[w(r-)\)]-2 var s

Zkz(r-)\)‘_ 2(t- 1)” l[ o Trk’o +k-2(r—)\')zq';+ 2ke %o

[

4

var {k[ (r-\)(t-1)] -ls3—k[ w(r-\)]" lsz}

2

2 4 2

1 1

2
4 v .
1[ +2kcrzcrlz+k2crl4]

-1 Lew ok 2ic (-0 A= 1) Hw Yo
2
1

2
2

2 2

+ 4k2[(r-)\Xt-l)] -10'1 o,

1 -1

(t-1)" "+ w 7]

g, = 4k[(r-)\)(t;l)]-l

- to obtain

‘ 4 2 4 -1
-var 07 = go o+ gkioy + 2(t-1) T,

+kg2cr 2

192

_ 4,2 4 -1 4 22 -1 2
= glo +k o'1>+2g (.t-l)crz+2k0'o*l+g g,07 T,

4

2 2, 2
+2kgo oyotg,T o,

~1 2 2
tkg “gy T, ]

Now,

‘ ' : 2(1"-)\)

2w (r__- )\)

gz_/g = n)
k[ (t-1)

. Expressing the coefficient of o

+w °

2

= = g, (say).
4 k(b-1)

4 in terms of g;, we have

4
1
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2 *.w(r-)\)z‘_gl(r_x)
elt- 1~ 2y 2k
The variance of 07 can now be rewritten as
var 07" = g[0'4+k20'l4+g1(r->\)(Zk)-.lq-24+2k£r20'lz
ve g, 0r, kg gy o)
. where
g = »Zkz(r-)\)-z[(t- l)-l + w-l],
g, =2w (=) [k(b-1]",
and
g, = 4k[(z-0eE-n]7.

The results are summarized in Table II -which gives the para-
meter being estimated, the unbiased estimators of the parameter, and
the variance of the estimator. In Table II, , the variance of OJ,

G =1, 2, . . ., 7) is denoted byfvj.
" Comparison of V,j (. =1, 2, . . ., 7)

 In looking at the different variances, it seems evident that compari-
sons between the Vj: will depend upon the variance components them-
selves as well as the particular BIB design. Under certain conditions,

however, an estimator can have minimum variance with respect to
2
2 L

In this section such conditions on the variance components and type of

other chosen estimators regardless of the values of .0'2, 0';12, or ¢

design will be investigated. Cochran and Cox have given a list of BIB
designs most likely to be used in practical situations. Thirty of those

designs for which b > t have been chosen for consideration. Without



TABLE 1I

UNBIASED ESTIMATORS OF THE PARAMETERS
FOR THE BIB AND THEIR VARIANCES

Para- - .
meter Unbiased Estimators Vi(vi = -var gj)
0, = -1 Zu_1 4
) P T u s | o
e < :
-1 -1 =1 -1, 4 2 2 2 . 2 2
92 = (t-1) 55-()"t)(kfl) Sy p[(1+2p‘ (t-1) Yo +ko 4 +ro o‘zzll-xtcl T, ]
5 93 = (kw)_ls -(ku)“ls6 2w 1k—z[ u 1(u+w)¢4+k2¢ 43—21«1-.20'12]
1 0, = [Kk(t- l)] -(ku)” -k-%r-')\)f-ls [ - u+t 1)+1] o -]- o- +(2 +l)ko‘o‘ "31-1'0'0'2 )\ttrz 2
4 LORARSHiS pfr) H(2pg 2 T\,
05 = fl_ls& | (\t) l/zfl ][0' F2Nt(r-NK 20'24-!-1(0‘0' Yro o‘zz-l-)\t(r 20'22]
,022 0, = Kat(t-1)] ls-k(unt) " Ts, Z(t-l)—lsz()\t)— [eu Lt- 1)]0'+o-4+2k \t)” oo zzf
-1 -1 2 4 2 2
0, = K (z-0(t-1] skl w(r-NT s, | gloide tg (e (200 o okt g 0P, Brg 1o %,

U =M-b-t+1

Las’
il

] k'z(mz’/z(r-x)(t-n

p = (At} (r=A)(t-1)

pi = (rN/K° At (t-1)
py = 2p(t-1)
g = 2k%(b=1)/wir-n)? (t-1)

g, = 2w(£-x)/k(b- 1)

0374



- the restriction b > t, the statistic $ 5 of which inter~error is a

function, (as given in the A.O.V., Weeks [3]) would not be defined.

Comparison of

V1 a.nd'V‘2

First to be con

sidered are the variances V, and .V, of 01 and

Let Vl and V2 be as given in Table IIL.-

2
V-1,
Theorem IV-1.
-2 . 2 .
- a. If ¢ = 0 and if one or both of o, 0, is zero,
then. V2 - V1 = 0
2 . 2 L2 .
b. If ¢ .= 0 and neither o‘l nor o, .is zero, then
- >
V2 V1 0.
-2
C. If o > 0, then VZ—V1 > 0.
2 ‘ -2 2
Proof: a. f o =20 then'Vl——-O-a.nd szp)\tcl.qz .
Hence, if o, or crzz or both are zero, we have
that V2 = 0. Therefore, VZ--V1 = 0.
-2 . . B ‘ _ 22
b. o = 0 implies Vlf = 0 a.ndrV2 = p)\t(fl-crz .
: At .
= e—— D> > >
. But p (T = W(E-1) 0 since r A, t 1,
and Xt is a positive integer. Hence, VZ-Vl >0.
c.
where

and

If &2 > 0, we may write V2 as

4 =1, -1 R °y,°
V,=po [1#2p (t-1) HkyFry, Aty Ty,

41

9 fés’pe’ctively;, The results of the c'brnpa.rison are given in Theorem
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2 2, 2
y2,=0'2/<r.

Then,
' 4 -1 2 2
VyV, =o [p+2(t-1) “+pk Y, tPTY,
2 2 -1
S FPAty; Ty, -2u 1.
Since
2 2 2.2
Py tpry, tp Aty Ty,” > 0,
.we need only to show that p + 2(t-_-1)_1 - Zunl > 0. To accomplish
this, assume p + 2(t-1)'1; - 207} < 0. This implies (p/2)+ (t-l-,_)—l .
- u“1 < 0, or,[(kt)/z(r-k)(t-1)]+It-rlT--“l—i-<_.O, But by Lemma 4, u >t-1.

Hence, 1/u < 1/(t-1) and we have a contradiction. This proves

‘that V, -V, >0.

1
The above theorem shows that regardless of the BIB design and

the true value of the variance components the variance of 0, is smaller

1

than the variance of 02 and hence, that of the two estimators, 01 is

-unifermly better than 02

Comparison of V3 and ‘-V4

From Table II- we have that

-1.-2

V,=2w 'k [u-l(u+w)0'4 + 2ke’s, 2

1

.2 4
3 +k0*1]

and

v, = pli[zp(tfl)u'1(u+t;'1)+1]o4+zp(t-1)k,v2crl4

1 2 1

g+[4p(t—_l)+l1]k°'20" 2'-I-‘rb'zvo' 2 + \to 29'22%.

- Subtracting . ~V3 from V4 and collecting coefficients, thelfollowing

equation is obtained.
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Vg~ V3= 0-4[-2P1p(t"l)li—l(u‘-l-t—1)_+‘p1-2(wu)~lk-z(u-+-w)]
A 1]+6'20'12[4p1pk(t-1)

o, zplp(t.-l)kz-2w'

+p1k-4(kv-v)-l,]+p1'[ r0'20‘22+)\ to‘l.zo‘zz] .

- Simplifying the coefficients we have

-b) - : 4 .
V4-V3=0*4[ 2)\t(l\£[ b)tu(r-\) _ 2(\;+w) 1+ c ) [ thI _ 'é, ]
' uk “At(t-1) k" uw
2 2, d\t+ (r-N) _ 4 2 2, .2 2
to o, [ (e T) e ]+p1[r0'.o-2 +\to o, ].

Let the coefficients of 0—,4‘,. 0'14, and 0"‘2'0"12 be denoted by C3» Cls and

cy respectively. Then,

4 4 2 2, 2.2 2.2
V4-V3—-c0'+c0' tc, oo +plr0' o, +p1)\t0'1 o, (1)

3 11 2 1

. . . . 2
The examination of the equation involves two caes, namely ¢ = 0

and 6-2 > 0.

Case 1: -‘5‘2 = 0.
2 .
If ¢ .= 0 in (1), then
_ 4 2 2
V4 ---V3 = c10‘1»+pl)\t0'1 o, {2)

- Setting . 0‘12: 0 in (2), we have 'V4 - V3 = 0. On the other hand, if
2

'0'2 = 0 in (2), then
vV, -V =c0'4'>0ifc >0
4 3 171 1 '
<y > 0. is equivalent to b >2t - 1.

For the next situation assume neither 0'12 nor 022 is zero. This

e . . 2 2 .
restriction implies 'V, -V, > 0 - if C10, TP Mo, >0.. Solving for

»

q'zzwwe obtain 9'22 >~ (cl/pl.)\t)olz., pyAt being positive insures

that V4'V3 >0 if < > 0.  As noted above, < >0 when b>2t-1.
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It should be pointed out that b ;é 2t~ lvby Lemma 5. Thus, if b < 2t-1

the sign of V4 - V3 depends upon the true values of crlz and ,0'22
“when assuming v'irz = 0.
-2
Case 2: o >0,
If 6’2 > 0, we can rewrite (1) as
_ .4 4 2 2 2 2
Vg = Vy=olegteyyy tepy) FRmy, R My Y, L
2 2,2 2 2,2
. where Y, =0y /o and Y, =0, /a”.
. Setting '.V4 - V3 = 0 and solving, for .‘yz‘z we have
2 4 2 2
Yz = —[C].Yl +02Y1 +C3]/(p1r+pl)\-t Yl ) (3)

which is the ratio of a quadratic in ylz to a linear function of ylz.

- It is evident that V4 -V, >0 when _YZZ is greater than the right

3
hand side of (3).

. Clearly, the better estimator might depend .upon the true values
of the variance components, and for one who might have an "'a priori'’
“knowledge of the ratios of 'crz, 0'12-, and 022, the constants involved in
(3), as well as the roots of the equation, have been tabulated by the
use of the IBM 1410 for the thirty different BIB designs previously
mentioned. The calculations for only ten of the thirty designs are given
in Table III. . The remaining twenty designs satisfy certain conditions
which insure that V4 - V3 >-0. Thus, for these particular designs, 0
is preferred to 9, in the estimation of criz. .

Without considering the true values of crz, 0‘12, or o

3

22, the condi~
>0, c, >0, and

tions. which guarantee that V4_ -V, is poesitive are c

3 1 2

Cq > 0 in (3). These are sufficient conditions since pr and pl)\t are



TABLE I

- EQUATION AND CONSTANT VALUES _FOR‘

COMPARING V3 AND

V

4
vV4:-'V3'=0 implies.(p1r+pl»ktylz) .YZZ ='-(c-1y14:.+ czy'12+ c3)
"P.At c c c z intercept
Design No. r k t Pt Pl 1 2 €3 Root 1~ Root 2 Y2 P
1 3 2 4 ..1250 . 1667 -.3333 -.2500  -.0417 -.5000 -,2500 . 3333
2 5 3 6 . 0278 . 0667 =-,1000 -,0500 -.0056 ~-.3333 -,1667 . 2000
3 7 4 8 . 0104 .0357 -,0476 ~,0179 - -.0015 -,2500 - -, 1250 . 1429
4 8 6 9 .0019 .0104 -.4167 -.1375 -.0113 -,1667 -.1633 6.1250
5 6 4 10 . 0083 .0278 -, 1778 - -,0833 -,0097 ~-.2500 -,2187 1. 1667
6 -9 5 10 . 0050 .0222 -.0278 - -,0083 -,0006 -,2000  -,1000 . 1111
7 9 6 10 . 0022 .0123 -,1778 . -,0578 ' -,0047 ~-.1667 ~-.,1583 - 2.1111
8 9 6 16 . 0021 .0111 ~-.1167 -.0375 -,0030 ~-,1667 ' -.1548 1. 4444
9 10 7 21 ..0011 .0071 -,1222 -,0341 -,0024 -,1429 -,1364 2.1000
10 9 7. 28 .0009 .0053 -,1759 - -.0496 --.0035 - -,1429 ' -,1391 4.1111
Other BIB Designs Investigated

Design No, r k t Design No. r k 't

11 10 5 9 21 8 4 -9

12 6 3 5 22 9 2 10

13 10 3 6 23 9 3 10

14 10 4 6 - 24 10 2 11

15 10 5 41 25 6 3 13

16 4 2 5 26 -7 -3 15

17 5 2 6 27 9 3 19

18 6 2 7 28 10 3 21

“19 7 2 8 - 29 8 4 25

20 8 2 9 30 9 4 28

b4



positive. Now, <y =t-—21—— - -é > 0 whenever w >t - 1. But
- w=b - t. Hence,,cl >0 when b >2t-1 = 6 z(sa.y). The

condition for 3 to be positive is more complicated. To see this,

set

2\t(M-b) + u(r-\) _ 2(u + w)

c,’ > 0.
3 ukz)\ t(t-1) kzu W
'This reduces to
M-b u(r-\) utw
. - >
1 ‘om0 v T %
But, as a consequence of Lemma-. 1, we have that
t-1 r
Thus, if C3 is to be greater than zero, then
r utw u(r=-X\) :
> - - =
b5l w NEE-T) ) 8, (say).

It should be noted that b. # 5, by Lemma 6. Next,

Ixt+r -\ 4
AL LI e S I, [N
€2 [ RNE(E-1) w | 0
~implies that
4at+ v -\ 4 r-\ t-1
NE(E-1) w o or  EFF o > M)
. From the condition on ¢ (i.e., . w >t - 1), it is clear that c
- when Cq >0. Hence, a sufficient conditon for V4_ - V3 >0

b > max (6, 6,

2

is

>0

6,). Of the thirty designs investigated only 10 fail to

-meet this sufficient condition. As was previously stated, these are

the first ten designs in Table IIL . It is easily shown that cpr ©

-and cy are positive for the ' remaining twenty designs. As an

z’

example, the roots of (3) for design 11 are =~.2 and -.3 while

the yzz intercept is -.3. Hence, the graph of (3) does not fall in

46



2 : .
the first quadrant to which vy, and yzz are restricted. The graphs
of (3), for designs 12 through 20 possess this same property.
The results of the preceding section can be summarized in the

following theorem.

Theorem IV-~-2, Let V, and V, be as given in Table II. - Let

3 4

o _ T utw u(r-X\)
61 - (x)[ W 2at(t-1) ]
and
62,= 2t - 1,
-2
Case 1: Assume o .= 0,
a I ¢.° =0 and ¢.% >0, thenV, ~V. = 0
. o, = and 7, , then V, ~ V=
b I o2 >0 and ¢.% = 0, thenV, -V, >0
b, oy nd o, = 0, en.V, Vs
. whenever b > 62 If b < 62,. V4 —-V3 < 0,
c Ifo“2>0-a.nd‘(rz>0 then -V, -V_ >0
’ 1 C2 ’ 4 3
whenever b > 62 . For b < :62, the sign of
2 2
V4 - V3 depends upon T and T, -
Case 2: Assume (rz > 0.
d If o 2 = o 2 = 0, then V, -V, >0 whenever
: 1 2 ? 4 3
> -
b 61. I b < 61, V4 V3 < 0.
e. ¥ ¢.%= 0 and o,% >0, then V, -V, >0
1 2 ? 4 3
-whenever b > 61. If b < 61, the sign of V4--V3
depends upon yéz
f. If 012 >0, then. V4 - V3 > 0 whenever b > max
(61, 62).

47
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g. ¥ b < min (8, 62),.then

. ' 2
(1) V4 --‘V3 < 0 for g, = 0.

(ii) Signof V, -V, depends on yiz and yzz

3

for ,crzz > 0.

The results of parts d and .e of Case 2 are obvious when con-
sidering (3). However, the restriction b < min (61, 62) in part
g could lead to some confusion.. From the discussion of Case 2 we

have
o 4 24 . 2
V4_ -'V3 = 0'4[ c3-+ c1Y; +c2‘\(1 ] if Y, = 0.

. Theoretically, if b < max (51, 52) we could have 51 <hb < 62 or

'62 < b < 51 depending on the maximum. Hence, from the manner

in which 61 and 6, were obtained it would be possible to-have c, >0

2 3
and ¢y < 0 or o > 0 and cg < 0.. For either of these cases the
sign of V4_ - V3 would depend upon the magnitude of ylz. However,

for the ten designs which fail to meet the sufficient condition b >max

(61’

designs in particular the sign of V4 - V3 is negative regardless of

62) all the cJ. (j =1, 2, 3) are negative. Thus, for these ten

yiz when yzz = 0 and o2 > 0.
Disregarding the trivial cases of zero variance components (ii)
of part g in Case 2 remains the most important, . For this nontrivial

case,the graph of (3) for designs 1 through 10 is shown in Table IV, .

Comparison of V5 and - V6

As in the preceding section an expression for V5 - V6 = 0 will

be derived. From Table II .we have that



2 s :
Y, Vsmm V4m_m
1 3
2
1 Y1
Design 1
2
Y2 V3 min V4 min
1
T Y

Design &

TABLE IV

GRAPHICAL COMPARISONS OF V3 AND v

4

FOR DESIGNS IN TABLE III

V4min .
2 . .
1 . 1 Y
Design 2 Design 3
2 2 .
Y2 V,min Y2 V 3 min
V,min V, min
3 4 2 4
2 1
! 1
: 2 L :
1 Y1 1 Yy
Design 8

Design 7

%2 T\ min

| V4mm
6
]
)
2

! N

1

Design 4

]
Design 9

Y1

2
Y2

2
Y2

v 3Vmin
v 4 min

1
Design 5

V3 min
V'4 min

Design 10

2
Y1

Yy

6%
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V.= ()\t)l/fzf '1[*2>\t(r->\)k'2¢ 4+r¢.2<r‘22+k¢2q12

5 1 2
2 2. .4
RN ]
and
v, = 2(t-1)'1%2()\t)-2[ I e D)ot 2k(nt)” lcrzcrzz+crz4} :

‘Taking the difference and collecting coefficients of the variance

components, ‘we have that

V-V, = 64{()\t)1/2£1 2(t- 1) HE () [1+u-1(t~1)]}

4 20>/ % 1" (r-Nk2-2(t-1) 71

Z[ r(\t) l/zf

to >

-1

to2s Lake-1" o™

T2 1

+(At) 1/.2f1'1[ kc‘rzcr'lzﬂ\tcrlzq'zz]o

- Simplifying the coefficients, the above equation becomes

-2
:v5--v6:¢"‘ k [rl_)\v- ﬁ’itb)]
At (t-1)
2 2 k rk
tot 0, srem ey - 4
2
k 22 2 2
»+m[ko‘vo‘l ~FAt T, 0, ].
To simplify even further let |
o 1 _ 2(M-b)
Cs“[_r-x ot 1
1 rk
€4 E[ T\ 4],
and
c kz
o At(t-1)
Then,
_ -4 2 2 -1 2 2 2 2
V5 - V6: = c cgo tc c,o0, +co(rm)\) [chrl Xt o, ].

The remaining investigation of this equation will be considered in
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two. cases.:

Case 1: ‘0_2 = 0,

I 6‘2.= 0 and either o-'l'z or 0"22 is zero, then Ve -V6 = 0,

CIf 0'2: 0 and neither o‘iz nor o

2 | |
3 k 2 2
Vs- Ve = Toveenr “1 %2 %

Case 2: o2 > 0,

2 is zero, then,

If ’0'2 > Q, then ;V5 - ~V6 can be written as

4 2 - v 2 -1 2 .2
V5-V6=cocr [C5+c4,,YZ +(r=~\) lle,Hr')‘) MYV, 1, (4)

* where le and __YZZ are as previously defined. Now, set V5--V6

equal to zero to obtain

: ~1 2, - -1 2
[c4f(r-x) )\t\,{'l ] YZZ =-[c5 +k (r-)\) Y1 ]. , (5)
Hence, V5 - V6 > 0 ..when
oyl 2
~[eatk(r-N)" " v, "] -C
=2 T for vty —E—
SPRRNEE S At(r-\) (5. 1)
or, 1 2
mlco + k(r=\) " v, 7] -c
YZZ < 5 = k > for y12< _—é-—_:-l . (5. 2)
‘ c’4+)\t (r-N\) | At(r-))
2 "Cy
If yi .= ——(—-——)—_—I s (5.1) and (5.2) are not defined.
At(r -\

. Since (r-\), k, X, and t .are positive integers, a sufficient condi-

tion for V5 ‘~»'V6 to be positive is that Cy and ¢y are greater than

. zero.. For Cq >0 and 05 > 0, (5.2) is redundant since ylz and

YZZ cannot be negative.

. Now,



_ 1, rk
g4 ~ ?[ r-x 4] >0
when - rk>4(r-\}.. But, r-A = rk - A t. Hence, the condition on Cy
reduces to 4\t > 3rk. Expressing t as t = k:) ‘we have
2
4\ kb 3 r’
> - - — =
" 3rk or, b >z % 63(say).
> . ; >
Thus, Cy 0 .when b 63.
Next, set
- 1 . 2(M-b) >
€5 7 [ -\ un t ] 0.

By Lemma 1,
At
M-b = - (t-1)

- which, upon substitution, reduces the above condition to

1 2(t-1)
—— D>
r-\ uk
But, by Lemma 2,
o (t-1) _
u = . (Nt k).

Hence, the restriction on c_. is equivalent to

5

—y > iR or, At > 2(r-A) + k.

This last inequality may be expressed as a restriction on block size by
making the substitutions r - X\ = rk - At and k.= rt/b. After

some algebraic manipulation the inequality

b > ~E3'-)\- (2r + 1)

is obtained. Let

r : -
——-3—)'\—'—(21'1'1) = 64.

We can now state that V_ -V

5 6

>0 if b >max (63, 64}. There
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-are other conditions, however, which-dictate the maximum of 63 and

94. . Setting 632 64, :
3 >.’64';-’ for r =4, »‘_63“ = 64; and for r< 4, '63 < 54'.

«Of the thirty designs under considerationonlytwo are such

we- have 3r __>_(4-/3)('2r+1) or, r 2 4. ,Hen_ce,

for r >4, &

that r < 4. Hence, except for these two designs, one needs only
‘to note that b > 3/4 (i-Z/)\) = ,63 to - conclude that VS > ~V6.
. The trivial cases under Case 2 are easily determined from (4).
- If 0'22, = 0, then Vg - _V6 > 0 whenever cg > 0 or equivalently,
' : ' 2
. when b > 64.— ¥ b < 64-__’the sign of V5' +-V6 depends on vy, - If
2

o, = 0, then ,V5 ---V6 >0 .4if b >max ("63,’]‘64) and V5 —V6 < 0,

if b < min (63, 64.).
. For the non-trivial case, the sign of V5 - V6 ~will depend upon
the values of »ylz and YZZ for those designs which fail to-meet the

sufficient condition b > max (63, S, Thirteen designs of those

4)'
considered fall into-this category.v‘fFér these, the coefficients of the
‘true ratios of variances in (5), ‘as well as the root of the equation, have
been calculated-and are pre‘se‘n'te'd in Table V. . Also, that po~1;-ti0n of
the graph of (5) which falls in the first quadrant is shown fér t_i1ese
~thirteen designs in Table VI, |

The preceding discussion is summarized in Theorem IVi-3. .and.the

following: corollaries.

Theorem IV-3. Let V5 and V6=--'b‘e as given in Table II, Let

5, = 3/4(r°/\) and 6, = (r/3N)(2r + 1).

Case 1: - Assume vc‘rz = Q.

~a.. If either crlz or 0’22 is zero, then V5 - V6 =. 0.



TABLE V

- EQUATION AND CONSTANT VALUES FOR
COMPARING V_ AND V

v o i ) 2, 2 _ 2
Vg = Vg =0 dmplies (cy + qpy )y, = =(eg+ a5 vy )

5 6

i 5 5 YZ- intercept Undefin%d_
Design. Noir k. t b 3 "4 “a g s 45~ Root 2 S For ypns
1 3 2 4 6 6.750 7.00 -.500 2.000 -.500 1,000 -,500 -1.000 . 250
6. 4 2 5 10 12.000 12.00 -.667. 1.667 =.333 .667 .500 - .500 . 400
17 52 6 .15 18.750 18.33 -.750 1.500 =-.250 ..500 ,500 - .333 .500
18 6.2 7 21 .27.000 26.00 -.800 1.400 -,200 ..400 .500 - .250 .571
19 7 2 8 28 36.750 35.00 -.833 1.333 -.167 .333 .500 - .200 - .625
20 8 2 9 36 48,000 45,33 -.857 1,286 -.143 ..286 .500 - 167 . 667
.22 92 10 45 60.750 57.00 -.875 1.250 -.125 250 .500 - .143 . 700
.23 9 3 10 30 30,375 28,50 -.048 2,857 .025 ,429 -, 059 .529 .017
24 1002 11 55  75.000 -70.00 -.889 1.222 -.111 ..222 .500 - .125 .727
© 25 3 13 26  27.000 26.00 ~-.133 2,600  .000 ,600 ,000 . 000 .051
26 '3 15 35 36,750 35.00 -.167 2,500 ,000 ,500 .000 .000 .067
27 3 19 57 60,750 57.00 -.208° 2.375 .000 .375 .000 .000 . 088
28 10 3 21 70 75.000 70.00 -.222-2.333 .000 .333 .000 . 000 . 095
5 .- 3 r2 8§, = (r/3\)(2r+1) q, = At/(r-)\) a: = k/(r=-n)
3 4 N -4 \_4 5

14
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TABLE VI

GRAPHICAL COMPARISONS OF V5 AND V,
FOR DESIGNS IN TABLE V

2
.25 .5 Al
D=zsign 1 Design 16 Design 17
- 2 . T 2 2
.5.57 Y1 .5.625 . i .5 L6671
Design 18 Design 19 Design 20
2 ’.‘l
S Y2 L Vv min
1
. 1
6 4
i
1
[}
i .
-3 H : Ve min V6 min
H
5.7 i L017 125 i .5 727 1
Design 22 Design 23 Design 24
_ 2 2
L067 .125 Yy .088 , 125 Y1
Design 25 . Design 26 Design 27

. 095 . 125 Yy
Design 28
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b. If neither 012 nor 022 is. zero, then .V5 - V6 >0.

Case 2: Assume &2 > 0.

o If 0'.2 >0 (i=1, 2), V5 '--V6 > 0. whenever

1 —

b > max (§3, 64).

d. If ‘0'.2

i > 0(i=1, 2), the signof V

5 " V6 .depends on

YZZ whenever b < 'min (-63, 54).

Corollary IV-1: If 02 >0  and o 2 - 0, then

2
a. V5 --'V6- > 0 . whenever b >_,64.
b. The sign of V5 - V6 depends on le' whenever b < 64.
Proof:
a b > &, implies c, > 0. But, o 2 - 0 implies
: 3 7 4 : T2
c4‘y'22':-= 0 and the proof is complete by (c) of Theorem
IV-3.
b. The proof is analogousto (a) using (d) of The’orefn V-3,

Corollary IV-2: ‘Assume &2 >0 and" (T.iz>"0 (i=1, 2).

I r >4 and b >—Z—_(r2/)\); then V, -V, > 0.

° 2

& 3 r

' - > , = I

Proof: r > 4 implies -43- ;\. 53 54- Hence;, b > iy
1mp11es b > max (63, 64) and the pI“OOf is 'C‘om‘ple‘te by (C) of

Theorem IV -3,

Corollary IV-3: ‘Assume %> 0 and diz >0(i=1, 2). If r>4

and k > 4, then:V_. -V, >0,

5 6
2 r-X

Proof: b >%-§: implies . k >4(_1:_—) . "‘But - < 1. . Since

r-\
T

k is an integer we then have k > 4. Hence, by Corollary IV-2,
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V. -V

>,
5~ Ve 0

Comparison of V5 and V7

From Table II

_oval/2, -1 --2“]4‘ 2 2,2 2 2 2, 4
Ve = (xt) £ [ 2\t(r-Nk o, 4ree, ke o Tnte To M ]
and '
o -14 2 2 2 2 2 2,2 4 4
.V7—g[g1(r—x)(2k) 0, +g o 0, +2ko oy +kgl 192 +Ko o+ 1,
. Where
£ = K200 Y Ao,
, 2 2
g =2k (b-1)/w(r-\)"(t-1),
and '
g"l = 2w(r-\)/k(b-1).
Collecting coefficients of like terms, the difference -V7 -’V5 can
be written as
' 4 1/2, -1, 2 4, 4 -1
v, -'V5‘= o [ g-(\t) / £, J+gk o) to, [ggl(r-)\*)(Zk)
-2()\t)3/2‘f1-l(r—)\)k_z]+d'20'12[ ng-k(xt)l/zfl'l ]

1

25 2lxge, -007%, 71

2 2 1/2. -1
too, [ggl-r()\t) /'fl J40, %0,

By simplifying the coefficients and letting g, = k/(r-\)(t-1), and
g3 = 2(b-1)/w(r-\), we have

3

. -1, 2
'V7 - V5‘ kg [g3-()\t ]0' +g2g3k oy +k gz[ Zg3 (\t)

]eo crlz

-1, 2 2

2 2
: +g2[4-rk()\t) ]o cJ'2,+3k_g2cr1 T,

- To simplify even further, let

Cy = k[g3 -.()\t)-l], c., = kz[ -1

7 2g3 - (\t)

I

and

_ -1
cg = 4 - rk (\t) .
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Then,
. 4 2 2, 2 2 .3 4 2 2
V-V, = gz[céc + ¢ 000 Tregete, Mg ke T +3ke T, ].

The examination of this equation consists of'two cases.

2
Case 1. Assume ¢ = 0.
Under the assumption that 0-2 = 0, we have that
2 2

_ 3 4
Vo= Vg = gag3k o) + 3g ke o,

Now, 0"‘12 = 0 :'melies,V7 -VV5 = 0 and ;rzz‘ = 0 implies that

P2
: . N . . ‘. B . .
V7 V5 0 since g2g3 is positive.. If neither o‘l nor ¢, is ZETO,

-V >
t hen V7 V5 0.

Case 2: Assume 6‘2 >0,

Letting - crlz/cr2 = yiz and crzz/crz = YZZ as before, we have
_ 4 2 2 3.4 2. 2,
V7 u_V5 =g,0 [C6+C7.Yl tegy, tE3kTY, +3k“y1 Y, ] (6)
Now, if ¢,% = 0 then V., -V, =g, o [c,+cy¥,°] whichi
ow, if o,” = ien Vo, - Vo = g0 [cgtegy,”] whichis

greater than zero whenever e and cg are positive. If < -and g

‘are both negative then V., - V_ < 0. I ¢, and cg do not have the

same sign, then the sign of V7 - V5 depends upon Y22=

I o. 2 = 0, (6) reduces to a quadratic in ylz,_ For this case,

2

3 4 2
- > > iti
V7 V5 0 whenever g3k Y] teoy teg 0. The conditions

~ which guarantee that V7 - V5 >0 when lchZ: 0 will be considered

in conjunction with the restriction of non-zero variance components.
Setting V7 - V5 > 0, we have from (6) that
3

2 4
“leg teqvy tggkl vp) 2. "Cg

when Yy > =35 (7)

Y22> 2
- (cg +3k v; )

. Since any meaningful interpretation of (7) will depend upon the
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constants involved, conditions fo insure-that V7~ ~ V5 is positive

should be considered.
=1 -

Now, Cy = k[ g3 - (At} -] and is positive if 83 > (\t) 1.

v r(r-1) -

Algebraically, this inequality reduces to b > E3N + 1. Since
c7-’ = "kz [2g3 - ()\t)_l], ‘it is evident that ¢ >0 implies c, >20,

- Also,. <g >0 .if 4 > rk(Xtv)-l‘ which is equivalent to b > ;x
Letting ﬂ%—%—h 1 = 65 and _(i'z/4>\)-= 66’ we can then state that
V7 - V5 >0.if b > max.(&s, 66). In other words, the right hand

side of (7)  is negative.
However, the sitpulation that b > max (65, 66') will reduce to
N .
b 65 since 65

- see this, assume 65 < 56. Under this assumption,

> 66,for all permissible values of r-and \. To

2
r(r-1) r
R .Y A P -
vy
which reduces to
ré4 12 < 4r. (8)

The minimum value of the left side of (8) occurs when 'r = 2 and

A = 1. Hence, 16 < 8 is a contradiction and 6. > 66. We can now

5

' ‘r(r-1) _
- > . > ! =
7 V5 0. whenever b N + 1 55 . But, by Lemma

-7 of Chapter II, we see that b >[r(r-1)/3\] + 1 for every permissible

say that V

value of b, r, and \A. Hence, . V7 - V5 >0 for every BIB design

for which b > t. These results are stated more precisely in the

following theorem.

Theorem IV - 4., Let- V5 and V7 be as given in Table IL - .

Case 1: ASSu.me'cr2 = 0,

a. I e 2 =0, then V

1 V. = 0,

7775
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1"2 >0, th'en V [ -V >0,

b I 7 5

Case 2:~----~~_*A?s-sume 0'2' >0,

- 0'2 >0, t_hen-V7 - V5 > 0.

Comparison of Vé and V7

It now remains to compare 'V6 and - V»7.. But, by Theorem IV-4

V. is always larger than V_ for the non-trivial case. Thus, in those

7 5
cases for which V7- might be smaller than V6’ one would naturally
2

5 2 -

. for which. V7 > 'V6, - 96 would be chosen unless V5 < V6 for the

pick 9. as the estimator of o On the other hand, in those cases

particular situation.

It is then evidentthat V_ can be elininated from further considera-

7

‘tion and that only the comparison of V6 -and V_ is.of any value in

5

2 -

.choosing an estimator of o
Summary

‘In order to summarize the various comparisons presented in this
chap(ter, Table VII. exhibits the thirty designs of interest with the
suggested estimators: when the true variances are irrelevant. Also
shown are conditions on y“lz and yzz. when knowledge of the true
ratios of variances is assumed. -

The graphs of Table IV. are .of special interest in that V4 < vV3
regardless of y'l'z‘.. when yzz is below its corresponding intercept. -
These cases are of interest since _94 .is a function of the intra-error,

treatment component under blocks (ignoring treatments), and the

additional statistic s

4 which is not found as a sum of squares in the



TABLE VII

PARTIAL CONDITIONS FOR THE SELECTION OF UNIBASED
ESTIMATORS IN THIRTY BIB DESIGNS
FOR WHICHDb > t *

Estimator of

]?el\?é.gn' rk ot of "1"2'_, o)
13 2 4 8 Oify%<0.333  Gif v,°<.25; Qif %>, 500
2 5.3 6 .H1 0,if y,%<0. 200 %
30 74 8 0, 0ify,%<0.143 0,
4 8.6 9 0 ify,2<6.125 0,
5 64 10 0, voéifiyzzf_‘lu 167 o,
6 9 5 10 0 0ify2<0.111 0,
79 6 .10 0, 9ify2<2. 111 o,
8 9 6 16 .0, o4if_Y22<_1.444 0,
9 10 721 0, 0ify,2<2.100 0,
10 9 7 28 0, Qifyf<4.11l o,
111005 9 8 0, o,
12 6.3 5 9, 0, o,
1310 3 6 0 0, 0,
14 10 4 6.9, 0, Ch
15 105 41 o 9, o
6 42 50 0, 0if v, ©<.40; 0, if v >. 500
17 52 6.6, 0, 0if y,% <. 50; 0 if v, %>, 500
18 62 79 % SEN2< 505 gif y 2> 571
voooT2z 80 °3 BEVE< 505 g ity 2> 625
200 8.2 9 o 0, 9,8 v,%<. 505 0, if y,2>. 667

61
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TABLE VII

(Continued)

Estimator of

: 2 2
Dle\ril.gn rk ot o° T1 72
21 8 4 9 9, o o
22 9 2 10 9, 0, -_@51f2y12<.5o; &if vy > 700
23 93 10 0, 0, Oéifylz >. 017
24 10 2 119, o, 0.ify, 7<. 505 gf y 2 >, 727
25 6 3 13 0 0, | 0if y,2 >. 051
2% 73 15 0 e 0,if v 2>, 067
27 9 3 19 6, o, 9 if yy©>. 088
28 10 3 21 0, 0, Qif v 2>, 095
29 8 4 250, 0, o B
30 9 4 28 9 o, %

0. (i= 1 ..., 6) are as defined in Table II

1

%

"A choice of estimators may be obtained for those regions of
YlZ and YZZ not specified in the above table by consulting the
equations of Tables III and V or the graphs of Tables IV and
VI. '
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analysis of variance, [3] On the other hand, . Q3 is a function of

inter-error and intra-error.. Thus, the statistic not normally

-computed in the analysis of variance (namely, s,) has a useful

4',)

1

tion when the choice of »_93 or 0

purpose in the estimation of o for those designs under investiga-

4 depends upon the true ratios of
variance components.

. It should be pointed out that some of the unbiased estimators
- found in this chapter could give negative estimates of the block and
treatment variances. If such a result ié deemed negligible on com-
parison with the intra-error estimate of variance, a zero estimate
could be used. However, if a relatively large negative estimate

occurs, a re-examination of the entire experimental procedure might

prove more feasible,
Example

In conclusion of this chapter an example will be given to illustrate
how to choose and compute the different unbiased estimators. under
consideration. Design 2 (as given in Table III}) will be examined using
artificial data. Table VIII gives the statistical layout of this design

where r =5, k=3,t =6, b = 10, and X = 2.
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TABLE VIII

STATISTICAL LAYOUT

Block
Treatment 1 2 3 4 5 6 Totals
Block 1 7.0 5.4 8,2 | 20.6
2 5.0 3.8 | 3.0 11.8
3 10,6 ‘9.0 11.3 30.9
4 8.3 7.5 6.0 21.8
5 - 5.9 7.3 7.2 20. 4
6 | 6.8 | 7.0 | 8.7 22.5
7 5.2 5.6 - 8.4 19. 2
8 7.4 9.4 6.4 23.2
9 5.9 8.7 5.0 19.6
10 . | . 8.7 9.3 5.5 23.5
Treatme.nt , | '
Totals 36.8 28.6 35.0 45.4 4£1.8 - 25.9 213.5
' ‘ ' Grand
Total
Let >BJ. (j=1, . . .", 6) denote,tﬁek j-th treafment total and

Tj the total of all blocks containing the j-th treatment. Let

These quantities for the data of Table VIII are as follows:
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j B, T, Q T2,
1 3.8 . 105.5 1.6 168. 80
2 28. 6 97.3 -3.8 -369. 74
3 35.0 114, 0 -3.0 -342.00
4 45. 4 120. 5 5.2 626.60
5 41.8 103, 3 7.4 764, 42
6 25.9 . 99.9 -7.4 ~739. 26
Totals 2?; 640. 5 0.0 108.82

The analysis of variance may be obtained from these calculations and

is given in Table IX.

TABLE IX

ANALYSIS OF VARIANCE FOR THE DATA IN TABLE VIII

Source d.f. S.S. M.S.
Total 29 108. 46
Blocks (ignoring treatments) 9 67.04

Treatment Component ' 5 43.48 8.696

Inter-error 4 23.56 5.890

Treatments (adjusted for blocks) 5 40.64 8.128

Intra-error 15 .78 . 052

Weeks [3] has shown that Inter-error S.S. = Treatment Com-

S 53
ponent S.S. = 83 Treatments (adj.) S.S. = sS;VIntra»-error'S.S. =56,
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and ()\‘c)"l/2 -1

k ZlTij = s Therefore, from the way the unbiased

4

estimators are defined in Table II, the following relations exist:

©
§

Intra-error M.S.

1
9, = k—l[Inter-error M.S. - Intra-error M.S. ],
0y = k-l[Treatment Component M.S. - Intra-error M.S.
. =M fl‘l =T.Q] .,
Kk J
- - -1
0, = (k) lZ)Tij, where f, Lo qe-ni-0]7 L
96 = (k/\t)[ Treatment (adj.) M.S. - Intra-error M.S.].
Using these results and the mean squares in Table IX we have
Ol = .052,
1
9; = -§[5.89 - ,052] = 1.95,
9, = -1[8.696 - .052 - —-—(2———-—(10 472)] = 2.83
4 3 ) 623.52 . T
95 = .15,
and
1
96 = 2[8. 128 - .052] = 2.02.
Consulting Table VII, we see that the estimators of 0“2 and 0-22,, for
Design 2, are 91 and v06 respectively. Hence, the estimate of ¢
is . 052 and the estimate of 0'22 is 2.02.
The decision of whether to pick 93 = 1.95 or 94_ = 2.83 as the
estimate of 0-12 must now be made. Since YZZ = 0_22/0_2’ we can
~ e .
estimate the ratio by computing YZZ: 96 = &Ogi = 38.8. Also,
1 ~ 9
two estimates of vy 2 are available, namely, vy 2 = 3 = 37.5
o, 1 S

4
and vy 2=_= 5 54,4,
12 gl .
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‘Now, using the values in Table III, the equation

(.028 + .067 v )y,® = .1y, F+ .05y, %+ . 006 (9)

is obtained. If

2

v,0> 1y, + .05y %+ . 006)/(.028 + 067 y ),

then V , is greater than V, and €, has smaller variance. If the

4 3 3

inequality is reversed then V4 < V3 and 94 has smaller variance.

Substitution of Y1 2 and Y, 2 into (9) gives
: 1 2
v,2 = 56,1 and  y,% = 8L3

respectively. But .YZZ. = 38.8 < 56.1 < 81.3.
Thus, since both results indicate that

yzz < (.1 y14 + .05 ylz + . 006)/(.028 +.067 ylz),

we could conclude that 94 has minimum variance with respect to 03‘\

On the basis of this information, Ql = ,052, 94 = 2.83, and 96 = 2.02

would be used to estimate crz, 0'12, and o, respectively.

, 2
It should be pointed out that the method used for finding the esti-
mates of ylz did not involve any !'a priori'! information about the

true ratios of variances. However, the method could be misleading

since it was not rigorously defined and investigated..



CHAPTER V

THE JOINT DISTRIBUTION OF A MINIMAL SUFFICIENT

STATISTIC FOR A GENERAL CLASS OF DESIGNS
General Discussibn

In Chapter III the joint distribution of a set of minimal sufficient
statistics fbr a BIB design was found. This chapter will be an. exfen-
sion of that derivation in the sense that a general class of designs
will be considered. This general class of designs will include the
BIB and the partially-balanced incomplete block design as subsets.

The principal differences between this chapter and Chapter III
result from the development of the orthogonal transformation on the:
vector Y as given by Weeks [3].

The construction éf the orthogonal matrix P(which is used in
the special case of the BIB) makes use of the known characteristic
roots of A'A where A'A is the matrix in the system A'A.;: A'Y.
However, for the ge»néral éla.ss of designs all of the characteristic
roots of A'A are not known. It is- assumed that there are s distinct
d of

2’ " Y

« vy M respectively. This distinction

positive characteristic roots of A'A denoted by di, d
multiplicities my, m,,
has mainly dictated the construttion of the orthogonal matrix U as

defined-in Chapter II.

In addition to the joint distribution of the minimal set of sufficient

68
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statistics their expected values and variances will be found.

A Set of Minimal Sufficient Statistics for a

General Class of Designs

A set of minimal sufficient statistics for ‘a . general class of
designs has been given by Weeks and Graybill [4] as suming Eisen-
hart's Model II. Before giving these statistics it should be noted
that the condition b > t is not imposed for the general class of
designs.

The 3s + 1 statistics of the minimal set are as follows:

s, = v
- klyx p¥ e Fixoy
S2 ° 17217 21 “1¢
s. = r tyap ¥p_ fawy
3 31 © 31
L= 1P !
54 Y'P,P,'Y
_ -1 1 1 [ s
Sg, = k YXlPZiPZin Y i=2, ..., s
— -1 ) IA L s
sg; = 4 Y'AP, . PoA'Y i o= 2, ., s
— -1 1} IA L CO
s, = kT Y'X NP, P AY i = 2, , s
>k L%
where PZl’ P31/‘ and P3i are as defined in Chapter II. The matrix

notation for these statistics will now be expressed in terms of the
partitions of Z which is to be defined.

From the distributional properties given in Chapter II we have
that U! Y~MVN (U uw, U' EU). Let Z = U'Y and partition Z

as
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with the dimensions of the partitions as follows:

1. Zl (lx 1),
. 2. Zz(ml.-hb‘-tx-l),
3. . Z'Z;ﬁ (px 1) where p = t - 1 - m,,
%
6. Z4(u-x~l)‘where ui= M-b -t + 1,
The partition of U as given in Chapter II is
vtV Mo -2 * =12, -2
U=[M 705k TPy, k TGP, AP D, T P

In order for the partition of Z to correspond to that of U, the parti-

tion
£ ~
Py = [Py, Pyl
is used. Hence,
CraemY2 .M -12 x  -)2 -1/2
U=[M Jl y K “’XlPZI , k “X'IPZ’AP31DA'A R
~ -1/2
CAPDa s T Pyl
" and
Y, -
—1 2 1 ‘1r —
M J'M.Y Zl
%
-1 AY Y Z
k Py 1 2
Y 2pox vy z,"
U'Y = = L= Z.
,.1/2 *
’DA'A P31A'Y Z3
Y2 s, %
D‘,A'A PylalY z,
P4'Y 24

. — — -
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It should be noted that

= —
_1/2 51
. d) 7Py 5
T P‘»*" d "l/ZP 1
- 31 T2 32
p,, Y%, =D 12 =
A'A 3 TA'A f; '
3
; d 'I/ZP '
| s 3s
where thei di (i=1,2, ..., s) are the s distinct positive charac~-

teristic rc§>ots of A'A.. Weeks and Graybill [4] have assumed that

d. = r.

Next, partition PZ as 'PZ = [PZZ" P23, . e e PZs]' to obtain

/25 vy iy ] —, =
k 'P22 Xl Y ; ZZZ
-1/2 s
k-l/ZP XY = k P23'Xl 'Y = - Zo3 | %
2771 . . o= Z.
. 2
-1/2 ' !
_—k .st X,1 Y— ZZS |
where the dimension of Z2i is m; X l for i=2, . . ., s.
~ ~ .
Also partition P, as P, = [P32, Pags « o o s P3s] to obtain
[ "1/2 TA L | B —1
dy 7 P AY | %32
- -1/2
» d P IA'Y Z
~1/22 ia v "3 33 . 33|
Dyag Pya™ = : =
: "1/2 ] 1AL : :
ds P3s A Z3S
b ] - pu—
= U'Y can

where the dimension of Z3i ‘is m, x 1 for i=2,...s.

now be rewritten as
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/2.1 . [ ]
M JMY Zl
"1/2 ::::Y
k le Xl'Y | Z2
'1/2 1 1 : Z
k PZZ.XIY 22
Y/ 2p X 'Y Z,.
U'Y = 2s = . = Z.
~1/2 *
T P31'A'Y Z3
'1/2 TA !
Z
d~2 P3’.2AY “32
.k/i%ifﬁs;‘) .
_1/2 A}
Z
ds 1':>3sAY 3s
P 'Y Z
- 4 et aa % —
-From this partitioning of U'Y = Z the following relationships
exist:
“1, M. 1 2
' = ! =
1 lel M YJ’I\{IJMY Msl
‘ -1 3K sk
t = 1 i 1 -
2. ZZ ZZ k YXlP 21 le X.l Y 5,
-1
: = ] 1 v o= s -
3. ZZi Z'Zi k YXlPZiPZinY s5i i=2, . ., , s
4 z.'Z, =t 'YAP, P, 'A'Y =s
: 3 3 317 31 3
-1
1 = 1 IAVY = -
5. Z3i Z3i di YAP3iP3iAY Sgi 1 2, « «. .4 8
1 = V1 1 -
6. Z4 Z4 YP4P4 Y S4
7. ARV :(kd)'l/ZY'X P_P_.'A'Y = k.s
2i T 3i i 1" 2i" 3i 771’
gl o wm=1/2
where k, = [d"i"('r_di")]'

i=2, . . ., S

In explanation of the seventh relationship it can be shown that



P, = [k(r—.di)]“l/zp N,

2 3i
Hence,
Zoi %337 [k;di(r—di)] -1/2y 'X NP, P, 'A'Y
= [di.(r-di)] _l/zk_lY'X (NP, PAY
= ki"?sﬁ.

The Joint Distributionofs_., s,., ands_  {(i=2, . . . , s)
bi 6i 71

In order to find the joint distribution of the 3s - 3 statistics

S 7 and s._., the covariance matrix of Z as well as E(Z) must

5i’ 7i

be found. These two matrices will be presented in correspondence

with the partition

Z'=[2,' z,', 2z, Z,' Z,%, Z
First,

Bz = [iY2 4 4 0 6 4.
In explanation of the first element, we have

=M'l/2JlEY=HM“l/2JlJM Ml/z.

All the other elements of E(Z) are zero since - E(Z) = (U! E )=l U'JM

1

and all columns of U except the first add to zero.

The covariance matrix of Z [4] is given as

G, ¢ ¢ ¢ o o]
¢ G, ¢ ¢ & ¢
wEu= | ¢ ¢ G, ¢ G ¢
6 ¢ ¢ G ¢ ¢
¢ ¢ G, ¢ G e
& ¢ ¢ & o G

73



where

G1=cr +kcrl +rcr2 ,
2 2
G, =[o +kcrl]I Jrw
% 2 -1 _ 2 ;
G2 =[e +kcrl]1p+k UZ'DNN’
e -1/2 2. 1/2 1/2
Gas3 =k 7 o Dynt Pama v
2
G3 =(c " +ro,)I ,
2
1
G g I +chD
3 =0 p 2 A'A’
and >
G, = o I ,

N dZImZ ¢
1 DA A T
¢ dsIrn
- S|
where di and mi (i=2, . .., s) are as defined in Chapter II.
- -3
k(r-dZ)Im ‘ ¢
2
_ k(r-d.,)I
2 Dnne = 3, .
¢ k(r-’ds)Ims
[ -

b3 2k %
‘Expressing .G2 s G23 , - and G3 ’ in terms of their respective

diagonal elements, we have:

2, 2 2 ]
[ +ko "H(r-d,)o, ]Irnz ¢

2 2 2
¢ [ +ko , H(r-d)o, ]Irns
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[dz(r-dz)l/zchZI , ¢
2 G2;= .
¢ [d(r-d)] y Zcrzzlms
Tcr +d,0, ]IrnZ ¢ ]
3 G3"'=
¢ | [crz+dscrzz] Irns

From multivariate normal theory a necessary and sufficient
condition for the subvectors of Z to be jointly independent is that
corresponding submatrices of U'Z U be equal to the null matrix.
Hence, from the covariance matrix of U'Y = Z we have that Zl’ ZZ’

"Z3, and Z4_ are mutually independent and each jointly independent of

< 3

Z2 and Z3 The only dependency is between the subvectors Z2
and Z3’F. From these considerations the independence of four of the
-3s + 1 sufficient statistics can be determined.
Writing s =M'1/Zz s, =2Z'"Z_,s,=2," Z,, and
1 I’ "2 272" 73 3 73
S4 = Z4_' Z, we can conclude that the sj(j =1, .. ., 4) are mutually
independent due to the mutual independence of the Zj G=1 ..., 4).

Applying still another theorem from multivariate normal theory

[1] we have the result that

sl ste
Sk

7~ MVN'Y(s, £ )

where

3*
3

1 = i *y
Z —[22’23 ]lx2p

and
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Sje e
z = * *

2p x 2p

S
i

By paftitioning zZ and Z, as previously defined,

2 3
; 2
(i.e., Z = ZZZ’ , ZZS’ Z32, e Z3s'] )
we see that the covariance matrix of Z>‘< is
B I ¢ 4.1 ;—
C .
2 m, 2 m,
1 "1
% ¢ s m ¢ s 'm_
cov (Z ) = ~f = *
d, I ¢ e ¢
2 m, 2 m2
¢ dS'Im ¢ s Im
s s
where '
*_ 2 2 2
c, =0 + kcr1 + (r-di) P
* 1/2 2
and
>}<_— 2 2
e; =0 +td;0,

for i=2, . .., s. For the subvector Z  the only dependencies

between Z.,. and Z are when i=j3 (i, j=2, . . ., s). Hence,

21 3j
ZZi ¢ i Im. di Im.
~ MVN : . %
Z3; ? | 4G Im, % Im
i i
for i = 2, . . ., 8, where Z_. and Z.,. have dimension m. x 1.
21 31 i
21 % s
Let Z3i] be denoted by Z23i Then, COV(Z23i R ZZ3j )= ¢



.+ .+, 8). Now, partition ZZi’and Z3i as
| B “
2" = ey 2212’ Cr %o ]
i
and
Z ‘l = [Z y Zo. ’ y Z,. ]
3i 31l 312 3i

Again, from the covariance matrix of Z

s
53y We see that the only
dependencies between z

- 1
25 and z3il are when a a ,.(a,
‘ a a

el =1, 2, . . ., m.).

Z 21

Thus, denoting 2 "al as - Q. , we have
31 R
a N
0. |
Qi ~ BVN \(O) ; " y for e =1, 2, , M
a di

Also,

COV(Qi’Qi )= ¢ if @ # a'.

a a'l

Recalling the theorem in Chapter IIl as given by Anderson [1l] we
have that

i
i Q. Q

i i
a=1 [\ ] a

m,
A, = X

is distributed as a Wishart with parameters m. and

153 5k
C. d.
z _ i i
i B %
d e,
1 1

Now, writing

m,
' Q.
a=1 la la

as a matrix we have

(i



2 _
‘m m, |%2i %21 %3,
i 1 a co lm
A, = =z
i 112 Zye .
a=1 asl]"31 Zld, 22311{
T ; 2 = o
Zzla -ZZiGZ3iQ
Ai= Zz Zz.,. 2
31 21 3i
- e |
—_— -
_ Zoi %o Zoi 23y
1 1
L2y Ly 23y
-
| sse Ko
CkiSqi S
Hence, , ‘
AN W (A m) (i=2,...,s
or/.

e R L2

h.(s_., 5,., 8,.) = .
i‘®5i’ Tei’ T7i m, m./2_,m; mji -

1/2 M/ (i) pR
2 + Y EA (51T

Now, since Ai and Aj are independent for i # j, we have

hl(SSZ’ C e Spgy Sgos e ‘S6S’ Soos + v e s7s)
s
= O hi(s_., s,., 5_.)
j=p F 5i’ “6i 7i

Hence, the joint distribution is the product of s - 1 independent
Wisharts.

. For the joint distribution of the 35 + 1 statistics, it remains
to find fl(sl)’ fZ(SZ)’ f3(_s3),. and f4(s4) since each of S1» Sy Sa

and S4 is mutually independent of all the other statistics.



The Joint Distribution 6f s, ,, 55 ands,

As was noted in the previous section h(sl, S50 Sgs s4)
= fl(sl)f(sz)f(s3)f(s4) due to the independence of the four statistics
involved. In this section the distributions will be found for each of

the four statistics 8 10 SZ’ s3, and s4.

Distribution ’c"if"-""sl =y e

¥ Y~MVN (}I,Z-)Jthen BY~MVN(BL, B ZB')

79

- where B is a q x M matrix of rank gq < M. [1l] Hence, expres-

. 1 -1 :
sing 4Sl as s, = -IT/IJMY' we have that

1 .1 —ul 1 M

sl~N(

- M
. But = p.Jl/where B is ascalar/and

1

2 2. 2
(- 1 .
= (X% R O NS XAk

Therefore,

and

<

Thus,

s~ N, M [k

Let the functional form of this distribution be denoted by: fl(s l).



Before proceeding to the other distributions, it will be helpful to
make use of a theorem given by Graybill [ 2] which states that if
Y~N(w, £ ), then Y'BY'wx'Z(k, A= —%.p' B p) if B is of rank k
and B ¥ is idempotent. This theorém will be used in finding the

distributions of S, S3 and Sy

. ~1
o o . - 1 7 1 |
Distribution of SZ k 7Y X]PZ.l—l-?Zl X1 Y
Let B. = k'Ix. P. ™. X 1. Then
© 2 " 121 T2l 1
—- -2 * *1 1 H 2 - 1 2
B EB,=k "X Py Py XXX e XX ey
2 % *,»
: X
toyl X Py Pyt Xy
' -2 VR R 202
— ! ) 1 IN - Y
k X'lPZI PZl [Ulka-i-q'Z%\T N. !
2 * * oy
+o ka]/PZI Py X,
But
<. . 5%
N )
P,y NNP,, ¢ml+w
and
*, *
Po1 Py "Iml+w
Therefore,
-2 2.2 2 %
=k - . 1 H
By¥ By =k "X\ Pyy Lo ke W twlFar X
e b 2y o2 g
= k (o‘l k'+ o )XlPZI PZ,l “le
2 2
= (¢ + kcrl ) BZ.
* 2 S 2.-1 % S %
‘Let B, = (o7 + ko) VBZ. Then, B, z B, = B, and

e
sk e

2 * 1 — 3
YIBZ Y"’Xl' (P (BZ )s ?“iBZ 'IJc,‘

*

%
- where p(BZ ) denotes the rank of BZ .

80



Now p (B2>,<) = p (BZ)' However, it can be shown that B2 is

~idempotent. Hence, p (BZ) .= tr (BZ)' and

_l sk X i

tr (BZ) =k “tr (XlPZl le'Xl')

_ >,'<' ok

= tr (PZl PZl )

= ml+W.

Also,
/

1, #— 1 2, 1o 217151 L iy agM
5 k'B, }J.—-zp.z[k(o‘ +ko ) )] JMXIP;J P, X Jl .

But Jlx P F=ikgl
R ¥ it ) B

%
~of each column of P . . Since the first column of the orthogonal

21

matrix P, ", of which P,ZI"\ is a partition, is a vector of the form

_1/2 b % v
b Jl » the other columns of PZ must add to zero. Hence,
slp. * - and 2B, T = 0
Jp P T e and R B = 0

. It has now been shown that

(6‘Z+ ko‘lz)"l Y"BZ YNXZ(mI + w)

or,

(ch+ kcrlz)_l sZNXZ(ml + w).

- Let the density of s

> be denoted by fz(s

Z) )
Distribution of §, = 1 Y'! AP31>‘<_v__Pi

o o

*
1 1
312 Y

-1 *P_ . %' A', Then,

Let B3 ='r AP31 31

2 *

% %*
-2, o *¥P_ AKX X e XXt Pre 1A, TP T A

3321 B,=r "AP 31

3] 1171 2722

31

b3 2
But A'Xl.= ¢ and P

31 22 731 31 31

Therefore,

-2 2.2 2 ook
~B3ZB3-—r AP [chrIm1+cr rIml]P,31 A

bP21 and this operation is adding the elements

% = o .
TAX X VAP, S =P IAAAAP .‘=r1m
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-1 2 2 3k >;cl '
r (0'2 r+o )AP31 P31 A

_33233

2 2

Let B * = (0'2i+ ro 2

“lB.. ThenB,*¥B."= B* and
3 . 3 3 7

2 ) 3 3

1 *

£ 2 e — R

Next, p(B;‘:) = p (B3), - But it is easily shown that B, is idempo-

tent. Hence,

* B3 b3
= =t 1A =
p(By ) = tr (By)=r "tr(P,; 'A'AP, ) = m,.
-Also,
1
l =y *= _1 2 2 2,-1.° ¥ F M
Z BBy Ege (0T o) APy Py AN =0

1
since JMA= ¢. Thus,

*

2, 2,1, 2 2,-
i - i 1 R
Y!B,Y = (¢74ro,") ¥B3Y = (0 + ro, ) s,
and ‘
2 2,-1 2
(o +rcr2 ) S3~ X (ml).
Let the density of S5 be denoted by f3(s3).
Distribution of s, = Y'PAE4'_¥_
- 1 I
Let B4—,P4P4. Then,
B, % B,=P,P,' [¢ °X X "o %X X ‘“el1 ]P P,
T4 ‘ 4 " 4 4 1 171 2 742 M7 4" 4°
. Weeks and Graybill [4] have shown that P4IX1 =¢ and P/'X, = ¢.
Hence, ‘
B& ZB =P [d‘ZP P 1P 1=5%p I P '=cr2PP '
T4 4 4 .4 74" 4 44 4 4" 4°
’::_, -2
Let B4 =0 B4. Then,

%*

L] 5
B, £B, = B,
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and
2 I *

*
Y'B, Yox'

But p(B4)= p(B4) and B4- is idempotent. Hence,
* ' .
p(B4)—tr B4—tr(P4P4)—tr G- U
~where u .= M -b+t+ 1. Also,
*
I —, -1 21 : M
ToRIB T g TP P =0

since the elements in each column of P4 add to zero. Thus,

Y'B*Y = O'“ZY'B Y=0'—Zs
4 4 4

and

o % 4~ x )

Let the density of s

4 be denoted-by f4(_34),

In summary the distributions of the four statistics are

S| o~ N, M-l[0'2+k0'lz+rorzz]),

2 2. 2
S5 (o +kcrl)x (ml+w),

: 2 A 2
Sy o~ (o +r‘°'2,) X (ml),

- and

S, szz(u)o

4

Thus, due to the independence property, it can be stated that
B(syr 8y 83 8 = £1(s))f(s,)5(s,)f s ).

This joint distribution is the product of a normal distribution and

three independent chi~-square distributions.
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The Joirt Distribution of the 3s + 1 Statistics of the Minimal Set

Knowing the joint distributions h of Sy» Sy Sg» and Sy and h1

of ., and 8o (i=2, « . ¢ s)/ and since h and h, involve

51" ®6i 1
independent variables, we can now define the joint distribution ho (say)

of all the statistics in the minimal set for a general class of designs.

Hence,
ho(sl’ S50 S3s 54, Sgoy +res Spos Sgor eees Sggt S

)

.s S
* U7s

H

h(sl, SZ’ S 3 54)h1(s52’ s e e s Sgls Seoa e e "565’872’

°? s?s)

S

= f f (s )f £ II h, , » §_ ).
(s )E5(8 )58 504 (sy) en 1(s5i %61 i

With the knowledge of this distribution we are pow in a position
to give: the expected values of the 3s + 1 statistics and the correspond-

i ng covariance matrix. . Since s 3 and s, are constants times ¥

2° 5

variables their means and variances are easily obtained by knowing

4

their respective distributions. The means and variances of the statis-
tics involved in the s - 1 independent Wisharts are also readily acces~
sible by the same procedure used in Chapter IV. These derivations are

the content of the next section.
Expected Values and Variances of the 3s + 1 Statistics

Expected Value and Variahqe of Sy

Since 5 is a normal variate whose distribution is known, we

have E(Sl) = W and var (s l) = 1\/1',1 (0‘2 + ko‘ylz +r 0'22),



Expected Value and Variancé of s,

2)-1

- It ‘has been shown that (o*2 + kcrl SZ~X2 (ml + w). Thus,

from the distributional properties of a xz variable we have that

2 2,1 o ' :
E (e + koy ) SZ] = 'm,+ w
Hence,
E(s, ) =(c" + ko 2)(m' + w)
2 R | 1 :
Also,
var [(¢™ + kcrlz) ‘S,Z] = vZ(ml + w).
Hence, - ,
var (SZ) = 2 (0'Z +‘ko‘12)2(ml+w).

‘Expected Value and-Variance of S5

Since (6‘2‘+ ro 2)-1 2(m l)’ we have, by the same method

2
2

2 S3~X

previously used, E(s3) = o‘2 + rcrzz)’m'l and var (s3)=2(0'2+ro- )Zml.

Expected Vé.lue and Variances of Sy

Since o""'Z s4~x2(u), we have E(s4) = d'zu-and var (s4) = 20‘4L Us

7i(i=2,.-..,s)

ExprectedrVa.lues‘of ,SSi-!——sé‘iv’ and s

It was previeusly shown in this chapter that

me.
1

A, = T Qi Qi‘

i
a=1 e a

is distributed as a Wishart with covariance matrix

where

85
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% 2 2 2
c. = o +tko "+ (r—di) o,
* vl/z 2
d, = [dy(r-d;)] o,
and
% . / 2
e. =0 + di T, -
But
S5;  KiSyy
Ai =
ki.s71 61
- -1/2 y
where k, = [di(r-—di)] . Hence, by the same procedure used in

Chapter IV, the expected values and variances of the elements of .Ai
are easily found.
The expected value of the (p, gq)~th element of the matrix Ai is

m, times the corresponding element of Zﬁi. Using this fact, the

expected values of sSi’ Séi’ and s7i are as follows:
_ * 2 2 2
1. E(S5i) = m.cc, = mi[cr + ko "+ (r—di)crz ].
_ * 2 24
2. E(s6i) =m e, = .mi[cr +d;o, ].
3 E kla”
(871) = mLE d1
_ 1/2 /2 2
_ 2
hat midi(r-di) 0-2 °
These three expected values hold for i = 2, . . ., s.
Variance Qf Sgi1 Sgis and So: (1=2y o ¢« « 4 8)

If Ai denotes the (p, q)-th element of Ai and ‘oqu denotes the

pq :
(ps g)~th element of ZZ'i, then the general expression for the covariance
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of any two elements of Ai is

.cov(Ai ., A ) = m.( ).

i i pp? "Jmpq"(r p'
Pq p’q' qq q

Using this general expression, the variances of SSi’ Séi’ and s -

are as follows:

‘ *2 2 2 2.2
1. var sg. = Zrnici = Zmi[o- -l-ko-l -l-(r-—di)q‘2 ]
) %2 _ 2, 2.2
2, var s . = 2me, "= Zmi[U' +d. o, "]
=2 %2 k%
3. var so. = k. mi[di‘ A ]

tl

4 . 4, 2.2, 2 2

di(r—di)mi[o- ~}-Zdi(r’--di)o-2 +ko Ty +ro-.o-2
2 2

+ kd;o, "o, ].

These three variances hold for i =2, . . ., s.

Yi) (i =2, . .s 5)

Covar;ance of (SSi’—§61); (s S

228540 5 ’);_a.‘_n..d__.(_séi’_f.

71

Again using the general expression for the covariance of two ele-

ments of Ai as previously given, the covariances of s S¢ 0 and

51’

s_. are as follows:

71
1 cov (s s,.) = 2m.d 2 2m.d (r-d.)o 4
‘ 5i’ T6i i1 i7i i'v 2 ¢
X _ _2 b b4
2. cov (SSi’ S?i) = Zmiki, c, di
4 2 2 -2 2

= Zmidi(rﬁdi)[(r“di)gz +0‘,o'2+k0*1 o, ].
2 K -2 B ok

3. cov (Séi’ .S7i) = 2m.k; di e

4 2 2
Zrnidi(r~di)[di‘0‘2 +o o, 1.
As before, the three covariances hold for i =2, . . . , s.

Table-X summarizes the preceding drivations and gives the
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expected values and the covariance matrix of the 3s + 1 statistics.
‘Using. the results of this chapter, one could now find unbiased estima-
tors of the different variance components based on the minimal set of
sufficient statistics and the respective variances of the estimafofs.
Certainly, as in the special cases of the BIB designs of Chapter IV,

. any variance of an estimator will be a function of the true variances
themselves. This fact extremely complicates the search for an esti-
matoer with the minimum variance pfoperty. . Excluding special cases
of the generva.l. c‘la.ss of desiéns, the matter is further complicated by
the lack of knowledge of the characteristic roots of A'A and their res-
pective multiplicities. These statements are obvious upon.examination

of the variances and covariances given.in Table " X..
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TABLE X

EXPECTED VALUES AND COVARIANCE MATRIX OF
THE MINIMAL SUFFICIENT STATISTICS FOR
A GENERAL CLASS OF DESIGNS -

“Statistic Expe cted Value

Covariance -Matrix

SRR L Hy
2, 2
s, (mvi~+w)(o* +ko-1 ) H2
m, ( 24 2) H ’
53 1\ T o 3
64_ u.o H4
- {m fo% kol (r-d)o ]
852 |mArtkepH(r-do B2 Hee2s72
2 2 : ‘
Sgp [mdoT ¥ dyoy] Hea2t2 o2
: ' 2 _ o
s7p |dp(r-dylo, B2
2., 2 .
sSs ms[0‘+ko-1+(r—ds)_‘cr22] 6 H5S HS6S H57s
, 2,
S6s ms[o- + dso-Z ] H56&‘; Hés H6~75
‘ 2
S75 | Psds(T-dg)e, s He7sH 75
- oyl 2, 2
H1 = M 7 +k0‘1 +r_cr2 )
H2 = Z(m1 + 'w)(:crz + ko where w = b -t
_ 2. 22
H3 = Zml(O‘ + ro, )
H4:2urd' where u.= M -b -t + 1
. 22, 2.2 . _
HSi = Zmi[c +kcr1 +(r di)(r.2 i i=2,...,s
~ 02 2.2 .
H6i = Zmi[q +dicr2 ] i =2, ...,s:s
) 4 4,22, 22, 2 2. _
Ho. = m.d(r ‘di)[O' +2d(r di)_O‘2 +ko o) trote,"tkd, o) o, ] i=2, ...,
H56i_ Zmi di (r'-di)O'2 = 2, . « ., 8
| . i ) 4. .2 2., 2.2
Heo.= Zmidi(r di)[(r ‘di)o-Z too, koo, ]
_ 4, 2
Hep= 2mdi(r-d)[djo, "+ 07,7



CHAPTER VI
'SUMMARY AND EXTENSIONS

A set of minimal sufficient statistics has been given by Weeks and
Graybill [-4] for a generall class of designs assuming an Eisenhart
Model II. All the statistics of the minimal set,however, are not inde-»
pendent, This fact complicates the search for unbiased estimators of
the variance components unless the distribution of the minimal set of
sufficient statistics is known. . The complication is encountered when
using an estimator which is a function of dependent statistics of the
minimal set. If the distribution of the minimal set is known, then the
variance of any estimator based on the set of minimal sufficient statis-
tics may be found and variances of d}ifferent estimators of the same
variance component can be compared.

As a special case of the general two-way classification model,
the joint distribution of a set of .minimal sufficient statistics for the
BIB design haé been derived in Chapter III. This derivation was under -
taken on the premise that the minimal set contained six statistics.

This condition is equivalent to imposing the restriction that b >t. If
b = t, the minimal set contains only five statistics.

Knowing the distribution of the six statistics of the minimal set it

. was-possible to find their respeétive variances and covariances. Then,

using different linear functions of statistics from the minimal sufficient

g0
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set, several unbiased estimators of each of the variance components
: 0‘2, 0'12, and 9'22 were chosen and their variances compared,
Under certain conditions on one of the classifications (say blocks)
- of the two-way clas sifiéation model; it has been shown for some par-
ticular BIB designs that the variance of one estirrjator of an individual
vériance component is uniformly smaller than the var'ianfzes of other
cho;sen‘ estimators.
- Other special cases of BIB designs wilich fail to conform to the
given conditions are considered in more detail. For these desig.ns
comparisons of variances of the different estimators are presented in
~graphical form showing those regions.for which the variances differ
in magnitude, These regions are functions of the particular BIB
~design under consideration and the ratios of the true variance com-
ponents whic‘h were ass::urnied in thglmodel.

Ch#pter,V pertains to the _extension of the derivation of the dis-
tribution of the set of minimal suffi(:ie_r;t statistics to a general class
of designs. For this general class the.minimal set:contains 3s + 1
statistics where s is the number of distinct positive characteristic
roots of A'A ;nd A'A is the coeffiéient matrix of "T' in 'Ehe sysfem
A'A"; = A'Y. The restriction b > t is not imposed in the general
class of designs.

The jc;int distribution of the statistics of the minimal set for
the general -ca.s‘e is found to be thé product of‘a.. norrﬁal, t:hree inde -
-pendent chi-squares, and s-1 independent Wisharts. The expected
values: and cévariancé ma.t‘rix}of the 3s + 1 statistics are also given.

In Chapter IV, three systems of equations, each having an infinite
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number of solutions, were given for findiﬁg unbiased. estimators of
0'2, O"iz, and.q-zz. In that chapter, certain solutions of these systems
were chosen tha,t yvielded unbiased estimators which might_ normally
be selected when considering the exiaected values of the statistics in
-the minimal sufficient set. |

In extension of the resuits obtained in this thesis, other estima-~-
tors and their variances could be inves't‘iga.ted as é function of the . .
unknowns (gl, . e e g6) in. the three systems.' That is, solutions
of each system are functions of two arbitrarily chosen 8; and any
- estimator and its variance could be expressed in terms of these .g;
values. Therefore,v by incrementing the g wvalues in some systematic
manner, a sequence of unbiased estimators and their vatriances could
be obtained, thereby gaining insight into the seavch'fdr :.miﬁirhum

variance unbiased estimators.
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