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CHAPTER I 

INTRODUCTION 

Experimental investigations and research problems often require 

a statistical analysis of the data from an incomplete block design. In 

these cases, the general model required is y.. = µ +13. + T. + €.. , 
1Jm · 1 J 1Jm 

where i = 1, • ' b; j = 1, . , . , t; and m = O, 1, " • • ' n ..• lJ 
Due to the nature of the experiment, l3., T ., and~-- might be con-

1 J 1Jm 

sidered as random variables with zero means and with variances 
2 

er 1 ' 

a- 2
2_ and rr 2 respectively. By assuming the random model, the 

researcher is interested in making inferences about the variance com-

ponents .. Estimators of the variance components are generally con-

sidered which possess the properties of being unbiased and having 

minimum var·iance. 

Previously_, several authors have undertaken variance component 

estimation in incomplete block designs based on the "method of analy-

sis of variance. " This procedure consists of equating the quadratic 

forms from the analysis of variance _to their respective expected values 

and solving for the unknown paramete.rs . This method has merit in 

that normality of!.. , 13 ., and T. need not be assumed and in that 
1Jm . 1 J 

it is relatively simple compared to maximum likelihood procedures 

when distributional assumptions are made. However, there rnay exist 

estimators which are not obtained by the analysis of variance method. 

1 



2 

: From the above considerations, the problem of variance cornpo-

nent estimation in this thesis is approached by considering an inter-

mediate step involving the theory of minimal sufficient statistics. This 

"means to an end'' is useful in itself ciue to the properties of a minimal 

sufficient set. Thc1-t is, having fout;1.d a set of minimal sufficient.statis-

tics, the experimenter has all the relevant information {based ori the 

sample· values) necessary to estimate the unknown parameters of the 

densities involved. 

An equ.ally important aspect of a minimal sufficient set is that if 

there is a minimum variance unbiased estimator, it must pe a function 
I ; 

of the statistics in the minimal set. This result has been presented in 

· a theorem proved by Rao and Blac~well. 

Thus, knowledge of a set. of minimal sufficient statistics does not 

imply that minimum variance unbiased esti:fbators can be found .. In 

fact, if a: parameter has more than one unbiased estimator which are 

functions of the statistics in a minimal set,; ,an. estimator with mini-

mum variance may not exist~, In this case the joint distribution of the 

set of minimal sufficient statistics is not co>;nplete. 

Sets of minima,.l sufficient statistics for! the balanced incomplete 

block design and for a general class of designs have be.en given by 

Weeks [ 3]. a:q.d Weeks and Graybill [ 4] .respectively .. In both cases, 

the joint distribution .of the minimal s ufficiept set is not complete 

since m?re than one unbiased estimator of each va.riance component 

exist . ., . From these considerations, any thorough search for minimum 

variance unbiased estimators from these two .sets will require the 

true variallces of the estimators. 
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- Since the stati:s·tics in each of the· two -minimal sets discus.sed 

~hove, are nc~t all independent. one purpose of this thesis is to find 

both joint q.istributions in -orq.er to consider variances of estimators 

which might be functions of thy dependent st,atistics of the minimal sets. 

The statistics· of the minimal set for the balanced incomplete block 

design are considered in detail., For this case certain estimc;1.tors of , 

the individual variance components were chosen because of their sim-

plicity and their variances compared. There are certain conditions 

which are dictated by the choice of the particular de sign for which 

estimators. may possess the property of minimum variance with res-

pect to other chosen estimators. In general, however, not so clear a 

choice is available, In these instances the magnitudes of the variances 

of estimators are a. function of the ratios of the true paramete·rs:::(vari -

ance components) being es.timated and the particular choice of design. 

In view of the preceding discussion., the utility of this thesis could 

depend strictly upon an e:ixperim.enter's knowledge of the ratios of the 

true variance components~ This i.s, in fact, the case for some. situa-

tions in g~netics . 

. For tihose who may have some "ci: priori" inforrna.tion on the 

ratio.s of p~pulation variances, table.s and graphs are given which 

indicate the estimator of smaller variance of the estimators considered. 

These tables are based on thirty balanced incomplete blo.ck designs for 
1 , , I , · 

- which the number of blocks is greater than the number of treatments. 

This restriction insureei the existence of six statistics in the minimal 

sufficient set. The thirty designs were chosen for consideration 
: . . . 

; 

because of thei likelihood of their use in p;ractical situations. 



CHAPTER II 

NOTATION, BASIC ASSUMPTIONS, AND LEMMAS 

For the most part the notation used in this thesis will be the same 

as used by Weeks [ 3] and Weeks and Graybill [ 4] in their pre$enta~ 

tions of the ensuing subject matter. However, there will be some 

deviations from this policy in order to facilitate the differentiation 

between seemingly analogous situations in. the balanced incomplete 

block and the general two-way classification. 

Scalar values used in the general two .. way classification model 

"""' \.vil[>now be· defined. 

1. b is the number of blocks in a design. 

2. t is the number of treatments in a design. 

3. r is the number o.f replications of a treatment. 

4. k ii:i the number of experimental units per block, 

5. X. is the numbe.r of times any two treatments appear 

together in all blocks in a balanced incomplete block 

design. 

6. M is the total nu:i:nber of observations in an experiment. 

7.. y , . . denotes the overall mean of the observations in a 

two-way classification model. 

8. d. denotes a distinct positive characteristic r.oot of a 
l 

matrix. 

9. m. denotes the multiplicity of the characteristic root d .. 
1 l 

4 



10. s . denotes the number of distinct positive characteristic 

roots of a matrix. 

11. BIB is an abbreviati0n for balanced incomplete block. 

12. MVN is an abbreviation for multivariate normal. 

13. (J, is a scalar constant denoting a population mean~ 

The basic matrices used ~n thi.s thesis with their respective 

dimensions will now be given. 

1. Y(M x l)· is a vector of observations. 

2. X(M x h + t + 1) is a design matrix for the' two-way 

classification. model. 

3. Jq · is a (q x. p) matrix of all ones. 
·p 

4. t denotes a covariance matrix. 

5. cj> : will denote the null matrix. A subscript will be 

attached denoting the dimension of cj> · if the dimension 

·is. of importance. 

6. I . denotes a (p x p) identity matrix. 
p 

7. X = [J~. XI' x 2] is a partition of X where· x:1(Mxb) 

corresponds to blocks and· x 2(Mx t) corresponds to 

treatments. The elements of x 1 and x2 are either O 

of 1 since in this thesis the experimental design model 

is assumed. 

5 

8. (J, = (J, J~ denotes E(Y), where . E denotes. mci;thematical 

expectation. 

9. N(txb) is. the incidence m.atrix of the two-way cross. clas­

sification design· where N = : x 2 • x 1• 

10. A::;: x 2 --k- 1x 1 N 1 andhasdimension Mxt. 

11. DB denotes a diagonal matrix with the positive character.;. 

is tic roots 0f · B on the diagonal. 

12... P(M x M) will denote the orthogonal matrix used in the 



12. (continued) ortho.gonal transformation of Y in the BIB 

design. 

13. U(M x M) will denote the orthogonal matrix used in the 

orthogonal transformation of Y in the general class of 

designs. 

6 

14. P = [M .. -1/2 JM k.-l/2X p k-1/2"" p (k/'t)l/2AP . 
. 1 ' .. . 1 21' Al 22' I\. 31' 

15. 

P 4 ] is a partition of P where P 21(bxb-t), P 22(bxt-l), 

P 31(t x t - 1), and P 4 (M x M - b - t + 1) are partitions of 

other orthogonal matrices as defined by Weeks ( 3]. Weeks 

dep.otes the matrix P 31 as P 3 · 

.. 1/ 2 M - 1/ 2 * -1/ 2 - 1/ 2 
U = [M J l , k X 1P 21 , k x 1P 2, AP3D A'A' 

* . 
P 4 ] is a partition of U where P 21 (b x mi + b ,. t), 

P 2(b x t ,. l - m 1), P 3(t x t - 1), and P 4 (M x M - b - t + 1) 

are partitions of other orthogonal matrices. m 1 denotes 

the multiplicity o'f the characteristic root d 1 = · r of A 'A. 

P 21 *, P 2, and P 3 will be c:::onaidered in more detail. 

16. P 4 = [P 22, P 23, , .. , P 2s] is a partition of P 2 where 

the dimension of P 2 . is bx m. for i = 2, ... , s, 
... 1 1 

I 

17. P 2 N'NP 2 .= PNN'(t-l-m 1xt-l - m 1). 

* * P21 'N':NP21 = t\>m +b-t · 
.. *..., l . * 

P 3 = [P31, :E\] is a partition of P 3 where P 31 is 

18. 

19. 
N 

t x m 1 and P 3 is t x t - l - m 1. 

20. p 3 I A 'A p 3 = DA 'A .. 
,v ,N 

21. P/ NN' P 3 = DNN'. 

22. F\ = [ P 32, P 33 , ... , P 3s] is a partition of P 3 where 

P 3. is t x m. for i = 2, , s. 
1 1 . 

23. P 3 . 1 NN 1P 3 . = k(r-d .. ) I for i = 2, ... , s. 
1 1 · 1 m. 

1 



24. P 3.' R-'A P 3. = d.I fe:r.· i = 2 •... , s. 
1 1 1 m. · 

25. 
* *. l 

p 3 l , A 'A p 31 = d l Im l = r Im 

* * l 26. p31 NN' p31 = <l>m • 
. 1 

Distributional Properties, Assumptions, and Other Relationships 

The two-way cla.s sification model Y = X 'V + ~ · is assumed where 

X is .as previously defined and where ~ 1 ;:; [ µ, 13 ', T '] is a. 1 x b tt+ 1 

row vector. 13 1 is 1 x b; -r I is l x t, and µ is a scalar constant. 

It will be assutl'led that b > t for the BIB designs under considera­

tion. Under an Ei~;emhart Model II the following distributional pr,oper -

ties will be made: 

1. 2 
~ - MVN(cp, er IM), 

2. Y,,.,.,,, MVN(µ. t), 

3. 
2 13 _. MVN(cp, er l , 1:))., 

4. 2 
T - MVN (cp, er z It), 

5. COV (E, j3 )· ::; q>, CQV (E, T ) == cj>, COV ( !3, T ) == q>, 

6. P' Y-MVN (P' µ, P 1't,P) where P is as previously 

defined, 

7. U'Y-MVN(U'µ, U'1U)where U iE!aspreviously 

defined. 

Certain relationship1:;1 will prove useful in the following chapters. 

These ar~ given as follows: 

1. 

2. 

3. 

7 



4. 

5. 

x 2 1A = A'A, 

A 'X - <j> ; J l A ' 1 - t 
1 

= · <j> , and JM A = <j>, 

t), p 4 I X l : <p and p 4 1X 2 :::; <p, 

- - ~ 2 2 2 
7. E ( Y - µ )( Y - !Ji) ' = f-' = [ a- 1 x 1 x 1 ' + a- 2 x 2x 2 ' + (Y IM] ' 

8. M = kb = rt, 

9. u = M - b - t + 1, 

10. w = b - t, 

11. rk-X.t= r ., X. and X. 

12. b > t > k > 1. 

= r(k- l) for the BIB, t7'r 

Lemmas 

The derivations pre!;lented in Chapter IV require the use of cer -

tain lemmas. It should be noted that the seven lemmas presented in 

this chapter are all concerned with the BIB design with b, r, k, t, 

and X. as previously defined. These lemmas with their proofs will 

now be presented. 

k-1 

But 

Lemma 1. For a BIB design, x.t M - b = k. (t-1). 

Proof: 

= 
X.(t- 1) 

r 
b t 
r = k 

M - b = Kb - b = b ( k- 1) , B. t ~ = r(k-1) 
u /\. t-1 . Hence, 

which, upon substitution, gives M - b = ~(t-1). 
r 

X.t since kb = rt. Thus, M - b ·= T (t ... l) which was 

· to be proved, 

For a BIB design, -----
t- 1 

M - b - t + 1 = k°"" ( X. t - k). Lemma 2. 

Proof: By Lemma 1, M - b - (t - 1) = _g_ (t-1) 
k 

.., (t-1). Factor-

ing 
(t- 1) 

we have u ::;: t~l[X.t-k] where u denotes M -b-t+l -k-

and the proof is complete, 

8 



Lemma 3. For a BlB design, x.. t > r - X. • 

Proof: Assum. e X. t < • r - x. Then t < .!. - 1. From the - x. 
. r(k .. 1) h r t-1 H < t-1 ·1 relation X. = t- l we ave X: = k- l · . ence, t _ k- l -

t-1 which implies t < - · or t(k-1) < t-1. Therefore, t(k .. l) < t. 
k .. l 

But if t(k - 1) < t then' k - · 1 < 1 or., k < 2. Since k is a posi-

tive integer, . k < 2 implies k = 1, Hence, we nave a contradiction 

since k = 1 irnPi,Lies X. = r(k- l) = O. This completes the proof. 
. t ... i . 

Lemma. 4. For a BIB design in which b > t, · u = M - b - t + 1 

> t - 1. 

Proof: Show u < . t - 1 leads to a contradiction. By Lemma 1, 
t ·1 · . 

u = ·. ~ · . (X. t. - k1. Hence, assuming. u < t - 1, we have that 

X.t-k < l k or, X. t < Zk. Now, if X. > 2 we have a contradic .. 

tion since t > k. Therefore, assume X. < 2, This implies X. = 1 

since X -::f,. 0. Thus, if X. = 1, t < k + k. Subtracting . 1 from ho.th 

sides of the inequality gives (t-1) < k + (k - 1). Since k > l; multi-

1 t 1 k t-1 
ply both sides by k:T to obtain k: 1 < ~ + 1. But k- l = r 

9 

since X = 1. Hence, r < ...!.... + 1. Since k is a positive integer 
. k-1 . k 

and k ~ 2, the function f(k) :;: k ... l + 1 attains its maximum at 

k. = 2 •. Hence, r < f(2) = 3 which implies that r < 2. If r·:;: 1, -
then t. = kb. But, b > t imp ties k < 1 which is a contradiction. 

If. r = 2, then 2t :;: kb. This implies k < 2 since b > t. But 

k ~ 2. Hence, we have a contradiction and the proof is complete. 

Lemma. 5. For a BIB design b i:, 2 t - 1 • 

Proof: rt 
Assume b = 2t - 1. But b = "le Hence, 

rt 
le= 2t -1 

or, :r;t = 2kt .. k. Rearranging,.we have k = 2kt - rt = t(2k-r). But 



t > k. Hence, the integer Zk - r is less than 1 which implies that 

e i the r ( i) 2 k- r = 0, or., (ii) 2 k.., r < 0. If condition (i) is tlwe, then 
'\ 

k = t · 0 = 0 and this is a contradiction. If condition (ii) is true, 

then k is negative which again is a con~7adiction. Hence, the lemma 

is proved, 

· ..1. r [ utw u(r-'X,) 
Lemma 6, If b > t in a BIB design, then b r X.. w - Z>..t(t-1)] 

where u. = M - b - t + 1 and w ,= b - t. 

10 

r u + w u( r -X.) ] . 
Proof: Assume b = A [ w - ZX.t(t- l) .• Solvmg for the last 

u(r-X.) utw X.b u X.t 
term in the brackets, we have ZX.,t(t- l) - -:;;; - r = w + 1 - k , By 

Lemma 2, 

or, 

Hence, 

u = t~ l ( X.t ... k) 

u - (l:...kt_ 1), "T-T -

u (r-X.) 
Z~t(t- 1) 

t-1 Multiplying both sides by - , we have 
u 

r - X. 
'""'z,....,x.-t-= 

Expanding 

r - X. 
ZX.t 

the equation 

t- 1 
1 = w 

= Zt - b - 1 
b - t 

t - 1 - w 
w = 

2t - b - 1 
b-t 

b( k + X. , ZX. t - r] = X. t [ 3 - 4t] 

is obtained. 

But, b > t. Hence, k + X. - 2>.. t -· r < X. (3-4t) and this inequality 



r.educes to 2>..(t-1) < r .. k. Since X.(t-1) = r(k-1) for the BIB design, 

we have that 2r(k- l) < r - k or, r( 2k - 3) + k < 0. The only case 

when r( 2k - 3) + k < 0 -could hold is for k = 1. But k =f:. 1. Hence, 

we have a contradiction and the lemma is proved. 

Lemma 7,. 
r(r-,i} l.-

If b > t in ~ BIB design, then b > 3X: + 

Proof: Assume 

Then 

or, 

But. , 

b < r(r-1) + 1. 
3>.. 

3>.. b < r(r-1) + 3 X. . .,... 

3>,, (b-1) < r (r·d). 

r(k-1) 
x. = ·1 t-

Having substituted for X., algeb:rqic manipulation gives 

3kb - rt + r + t < 3k + 3b - 2. 

Replacing kb by rt, we have, 

2rt+(r+t) < 3(k+b) -2. 

Now, 

r + t - rt (; + ; ) 

and 

rt rt · l l 
k + b = ,;- + ~ = rt (b + "ic ) • 

Substitution for (r + t) and (k + b) in the last inequality gives 

l l l l 2 
2 + (- + - ) < 3 (- + - ) - - • t r - b k rt 

In a general BIB design for which b > t the minimum block 

11 
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size is six. This restrictfon will give the desired contradiction. To 

see tp.a.t the restriction on block size is true, we have in the general 

case that k -=J 1 since k = 1 implies that >.. = 0. Hence, k :::_ 2. 

Also, under the assumption that b · > t we have r > k. Thus, 

r > 3 and t > 3 since t > k. This in turn implies b > 4. How-

ever, the minimum values of these constants do not conform to the 

condition. kb = rt of the BIB. 

If b is increased to 5 and r and k are held fixed, the relation 

kb :;: rt is still not satisfied for · t = 3 or t = 4. However, if 

b :::: 6, t :r 4, k = 2, and r = 3, a BIB is defined. Thus the 

minimum block size for a general BIB when b > t is b · = 6, 

From theee considerations, the maximum value 0f (~ + ~) is 

1 1 2 1 1 2 2 2 2 (, + -2.) = - Th.us, 3(- + -) - -. < 3 • - - - = 2 -
o 3 ' b k rt - · 3 rt rt 

Hence, 2 + (..!+ ...!. ) < 2 - rtz which is a contradiction. This com-
t r -

plete s the proof of the lemma. 



CHAPTER III 

THE JOINT DISTRIBUTION OF A SET OF MINIMAL SUFFICIENT 

STA TIS TICS· FOR THE BIB DESIGN 

General Discussion· 

The purpose of this chapter is to derive the joint distribution of 

a given set of minimal sufficient statistics for the BIB design. Since 

minimum variance unbiased estimators of the variance components 

cr 2, er/, and crz2 must be based on.functions of the statistics from 

the minimal set, the joint distrihution of the statistics of the set should 

be fol,lnd. The marginal distribution of each statistic in the set has 

previotis:ly been found, but certain dependencies exist among the 

s ta tis tics. 

The derivation of the set of minimal sufficient statistics is based 

upon the matrix model Y = X y + €. (defined in Chaptel;' II) under the 

assumption of an Eisenhart Model II. By invoking the restriction that 

the ~umber of blocks is greater than the number of treatme~ts, the 

minimal set will contain six statistics. Throughout this thesis, only 

BIB designs in which this restriction holds will be considered. 

A Set of Minimal Sufficient Statistics for the BIB Design 

The six statistics of the minimal set and their individual distribu~ 

tions as given by Week.s [ 3] are as follows: 

13 

r 
! . 

; 



1. 
-1 1 -

s 1 = M JMY = y ... 

-1 2 2 2 
s 1"'N[µ, M .(o- + k<r 1 + r o- 2 ).]. 

2. - k-1 y I x p p , I x I y 
8 2. - 1 21 21 1 • 

2 2 2 
s 2 ,...,(cr + kcr 1 ) x (w,),wher.e· w = b - t. 

3. s · = [k(r-x):1- 1 yr X N' PP 'NX 'Y. 3 · · l 3 3 l 
2 2 -1 2 2 

s 3 .--(cr +kcr 1 +k (r-X.)cr 2 )x (t-1). 

4. s 4 = k:_l (X. t)J/2.y• XrN' P 3P 3 1 A' Y. 
. 2 . . 

s 4 ,...,l:: pi X (1) .. where the pi are the non-zero c.har ... 

acteristic roots of 2-l (A4 + A 4 1) j and where 

A 4 = k"" 1 x 1N•P 3P/ A•. 

5. s 5 = k(X.t)-l Y' AP 3P 3 • A' Y. 

2 -1 2 2 
s 5 ...... (<r + k X.t cr 2 ) X (t-1). 

6. s 6 :Y 1 P 4P 4 1 Y, 

2 2 
s 6 ,-, er X ( u) , . where u = M - b - t + 1. 

Weeks [ 3] has also 1;1hown that the statistics s. (i:;:: 1, 2, 
l 

14 

. ' 
6)arepairwiseindependent except for the pairs (s3, s4), (s3, ss), 

and (s 4 , s 5). Hence, due to independence properties of the minimal 

set, the problem of finding the joint distribution of the s. (i = 1, ... , 6) 
l . 

reduces to that of finding. the joint distribution of s 3, s 4 , and s 5 . · 

Before proceeding to the derivation of the joint distribution of 

the statistics s 3, s 4 , and s 5 the matrix notation used in defining the 

six statistics will be simplified by expressing them in terms of a Z 

matrix which will be defined. 

As was noted in Chapter !I, .the M x 1 vector P 'Y has a multivari­

ate normal distribution with mean P' µ and covariance matrix P 1 f, P. 



That is, 

P 1Y,...,.MVN [P 1 µ., pt~ P]. 

To simplify notation let P 1Y = Z and· partition Z as 

Z I = [ Zl I' . Z 2 I' Z 3 I' Z 4 I' Z 5 I ] 

to correspond to the partitioning of P as explained in Chapter II. 

Now, expressing P'Y in terms of Z we have 

M-1/2 Jl y 
M zl 

k-1/2p Ix 'Y 
21 I z2 

P'Y = [ k( r - >.. ) f 1/ 2p 3 INX 1 'Y = Z3 = z ' 

(k/>..t) 1/ 2 p 1A 1Y 
3 z4 

I 

P'Y 
4 ZS 

where the diminsions of z.1, z 2, z 3, z 4 , and z 5 are Ix I, w x 1, 

t-1 X 1, ,t-1 X l, and U.X 1. respec,tively, 

From the way,the six statistics are defined, we can now express 

them in terms of the Z ·vector ·as foll<;>ws: 

1. z 1 'Z 1 M !;II 
2 = . 

2. Z 'Z ·· 
2 2 = s 2· 

3, Z3' z 3 = s 3• 

4. Z I Z ·• 
4 4 = s 5' 

5. Zs' zs = s6. 

6. Z3' Z4 k where I -1/2 . - s 4' k . = (k )d)(r->..) • 
0 . 0 

The occurence of the constant k0 in z 3 1 z 4 is due to the definition 

of s 4 • To see this relationship, we have 

15 



The Joint Distribution of s 3, s 4 , and s 5 

The derivation of the joint distribution of the statistics s 3, s 4 , 

and s 5 requires that the form of E( Z) and cov ( Z) be known. The 

E(Z) will be considered first. 

Now, E( Z) = E(P 'Y) = P 1 µ . But the orthogonal matrix P has 

been so constructed as to make every element of the first column 

equal. [ 3] This first column(by the partitioning indicated in Chapter 

-1/2 M . . II) lJ.a·13 the form M J 1 • Smee P 1s orthogonal, the form of the 

16 

first column insu:r;es that the elements of any other column add to zero, 

Also, -1/2 M * Therefore, by partitioning P as P =[ M J 1,p] , 

* where P has dimension M x M-1, we have that 

E(Z')::: [EY'] [M-l/ 2J~, P *] 
; 

= [ µ J~]( M-1/ 2Jr , p*] 

1/2 . 
= [ µ M · , cj> ] , where cj> has dimension 1 x M ". l. 

Hence, E(Z 1) = µ M 1/ 2 and E(Zi) = cj> for i = 2, ... , 5, 

The covariance matrix of· Z as given by Weeks [ 3] is 

Bl cj> cj> cj> cj> 

cj> B2 cj> cj> cp 

P' t p = cj> cj> B3 B34 · cj> 

cj> cj> .B34 B4 cj> 

cj> cj> cj> cj> B5 
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where 

[ · 2 , 2 -1 2] 
B · ::: r:r . + kr:r l + k { r - X.) <r 2 3 . 

2 2 
B 4 =(<r +(X.t/k)cr 2 )It-l' 

and 

_ -2 · 1/ 2 · 2 
B34 - [k X.t{r-X.)] o-2 It-1. 

Fr0m the form of P' ~ :A,· we see that the only dependency which 

exists among. the Zi is between z 3 and z 4 . Hence, from multivari­

ate normal theory,. we may state that 

Let the covar:i.ance matrix pf the vector be denoted by t 34• 

Then, rewritin~ B3' B,4, and B 34 in terms of constants times identity 

matrices (as previously defined), we have 

clt-1 . elt-1 

~ . - ., 
34 

e It-1 d\-1 

. where 

[ ·2. ;z ·-1 2 
<r . + ko- 1 + k ( r - X.) o- 2 ] , 

d -
· 2 2-
(J" + ( x.t/ k) 0- 2 , . 

and 

e • = [ k·- 2X. t{ r - X.) ] 1/ 2. o- 2 2 • 



l\fow denote the t - I elements of z 3 · and z4 by _z 3o. and z4a. 

r[ezzs

4

~i.ctibvyely, · (•· -= 1,. 2, · · f. ,. t-lf}, ;nd denote thhe sub..:subvector 

J Q er •. From the orm o f-' 34 we see t at 

and 

Therefore, 

GOV (QQ, -0,. ,) = [: : ] for Q = 

Q8 - BVN ([:J . [: ~)for a = 

* Denote the covariance matrix of ·Ga. by . t, . 

0. I •· 

I, ... , t .. I. 

We can now quote a theorem as given by Anderson [ ~] .· 

. Suppose the p-com·ponent -vectors z 1, ••• , , Z {n > p) are 
n -

independent, each distributed according to, N { cf>·, 't) .. Th.en the 
I 

density of 
n 

A = ~ 
. ·a. =l 

Z z I is 
0. a. 

l 
2 {n-p - 1 } - .!.. tr A :,!"' 1 

IAJ .. . ·· , e 2 · . 

p I 
n r[-(n+I ... i) J 
. I 2 
1= 

for A positive -definite and .0 otherwise. 

In other terminology, we say that A is distributed- as the Wishart with 

parameters n · and 
t-1 

t ~. Applying this theorem to the Q a vectors we 

E ·Qllll: Q 1 = ·Ai. {say) has the Wishart distribution with 
a.= 1 ~ 

have that 

.. ..,/. *. parameters t - 1 and'· f' 
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Expressing A 1 in terms of the Qa vectors, we have 

t .. 1 t-1 [:::] [z 3o.' . z4a] Al::: .. :I; QC1 Qo. 
I = I: 

¢l = 1 0. = 1 

r 2 J t-1 
z z z 

3o. 3n 4n
2 = I: 

a.= l z 4o. z 3o. z 4o. 

Hence, the elements of A 1 are functions of the statistics whose 

joint distribution is deE1ired. We then have the result that 

A ::; 
1 

or equivalently, 

[ 
s3 

k.· s 
0 4 

l . *-1 
- - · tr A 1, Z . 1 

e 

This function· is easily simplified by finding IA 11, I ;t *I , and 

'<I-* -1 "" *-1 tr Ait'-' · .. After some algebraic manipulation tr A 1 1"'-' . was 

found to be 
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where 

a = f ;t * I :;: er4 + 2 2 2 2 2 2 
r er er 2 + k er er 1 + \. ter 1 er 2 . 

The joint distribution of s 3, k0 s4 , and s 5 is then 

The Joint Distribution of. s 1, s 2, and s 6 

· As was stated previously, the statistics s 1, s 2, and s 6 are 

mutually independent. [ 3] Therefore, the joint distribution (denoted 

by h 2) of these three statistics can be expressed as 

·where g l' g 2, and g6 denote the functional forms of the three distri-

butions. The density functions of. s 1, s 2, and s 6 are as follows: 

1. 

2. -2 2 
or, er s6-x · (u) 

where u = M - b - t + 1. 

20 
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3. 

where w = b ,.. t. 

2 2 2 2 2 
Now letting t{ er + kcr 1 and g2 = er +kcr 1 + rcr 2 we have 

that 

h2( 6 1' 6 2' 6 6) = gl(sl)g2(s2)g6(s6) 
1 

= 

The Joint Distribution of s 1, s 2, s3' s 4 , s 5 , and s 6 

,Duetotheindepend«;mceofthe sets (s 1, s 2, s 6 )and(s 3, s 4 , s 5), 

the joint di!:ltribution of the set of minimal sufficient statistics (denoted 

by h) is simply the product of the densities h 1 · and h 2 which are as 

previously defined. 

Therefore, 

and the joint distribution of the set 9f minimal sufficient statistics is 

the product of a normal, two independent chi ... squares, and a Wishart. 

ActuaUy the importance if this joint distribution is in the form of 

h 2(s 3, s 4 , s 5 ). From the result that h 2 is a Wishart, the variances 

and covariances of . s 3, k0 s 4 , and s 5 may be easily obtained since the· 
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· moments of the elements of Al (i.e., s 3, k0 s 4 , s 5) have bFen given 

· in multivariate analysis theory • .[ 1] 

The expected values, va:riances, an.d cova:t'iances of the statistics 

in the minimal suffic:iE;mt set will l:.>e investigatl:ld in detail in the follow-

ing ch~pte r. 



CHAPTER N 

ESTIMATION OF 2 2 . 2 er , er 1 , AND cr 2 IN THE BIB DESIGN 

General Discussion 

The derivations of this chapter result from considering a special 

case {the BIB design) of the two-way classification model y.. :::; µ + 13. 
1Jm 1 

+ T. + f . . where i :::: 1, 
J 1Jm 

• , b; j :;: 1, . . . , t ; and m :;: 0, 1, 

, n. .. It is assumed here that 13 ., T., and~-. are independent 
iJ l J 1Jm 

2 2 
normal random variables with zero means and variances er'1 , er 2 , 

·2 and cr respectively. The complete distributional properties are dis-

cussed in Chapter II. 

Under certain conditions the above model represents the BIB 

design. The(:!e conditions are as follows: 

1. There are b blocks of k experime:ntal units each. 

2. The number of tre;:1.tments t is greater than k. 

3. Each treatment appears exactly r times. 

4. Every pair of treatments must appear together in the 

same number { X.) of blocks. 

For this special case, the subscript m used in the general 

model will take on the value O or 1. Expressed mathematfoally, 

we have m :::; ;n ... where n.. :;: 0 · if treatment j does not appear in 
lJ lJ 

block i, and n .. :;: 1 if treatment j appears in block i. 
. lJ 
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Under the <c1ssurnpti01 of the BIB design, the purpose of·this chap-

ter· will be to find- unbiased est"imators of the variance compcrments 

: cr 2,. cr'12, and o- 2 
2 based on t~ set of minimal sufficient statistics and 

to compare the var;iances of the estimators. To accomplish this, 

. the expected values, variances, and covariances of the minimal suf-

ficient set must be sh0wn. J\s previously noted, only those BIB 

designs for which b > t wili be considered. 

Expected Values of the s, (i ;:: 1, 2, •.. , 6) 
1 

In ChaptE:lr Ill a minimal sufficient set containing the six staUstics 

•. si (i = 1, ••• , 6) was given, and the 2 x 2 matrix A 1 = (A 1. .), 
lJ 

where 

A , ;::; 
1 

. was• shown to have a Wishart distribution with- parameters t - I · and 

+! * = [c e] 
· · e . d 

The values of. c, d,. and e are as follows: 

c = [ . 2 ·2 ... 1 2 
o- + _k o- 1 · + k ( r .. X. ) o- 2 ] 

.iind 

· 2 . -1 2 
d = [o- +k, x.t.0'. 2 J, 

e = [X.t (r-X.)/k2jl/2o-22. 

Knowing this, the expected yalue1:1 of the elements of A 1 may be 

found using the fact that. E(A_ l .. ) = (t- l)<T.. where <T.. is the i, j-th 
lJ lJ . * lJ 

. element of 1! . [ l] 

Th us we have 
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· · -2 2 -1 · 2 
E(s 3) =E{A 1 ) = (t-l)c =(t-l)[cr.tker 1 tk lr .. X.)1r 2 ], 

; 11 
· 2 -1 2 

· E(s 5) i;: E(A1 )=(t-l)d =(t-1)[ er +k X. t1r 2 ] , 
'· 22 

and 
l 

' E(k0 s 4) = E(A 1 ) = (t- :n:[ X.t(r-X.v'k12 er 2 2• 

12 

. From the last equation 

or, 3 
2 . -2 2 

·· E(s )=(t-l)(X.t) ·(r-X.) k · er 
4 2 

since _ l 

k .=(k/X.t)(r .. x.) 2 • 
0 

For simplicity denote the coefficient of crz 2 in the expression for 

· E(s 4 ) by f 1• Then, . E(s 4 ) = f 1rr Z 2~ . It should be noted tha. t these 

· three expected values are identical to those obtained by Weeks [ 3]. 

He has also shown the ,expected values of s 1, s 2, and s 3 to be jJ., 

2 , 2 , 2 
· w(1r +kif 1 ), and u cr r~spectively · where w = b - t and u= M - b 

. - t + 1. 

In summary, the 1;1ix expected value.S:··a·r-e presented as part of 
i / 

a table· given after the derivation of the cova;riance matrix. 

Covariance Matrix; of the s. (i = 1,. 2, •.• , 6) 
' 1' 

Since s 1, s 2, and s 6 are mutually independent and the distribu­

tion of each is known, their variances are as follows: 

1. 
_ .. 1 · Z , 2 2 

var s 1 - M , (O" + kO" l + r<r 2 ) • 

2. [ , 2 . 2 • l 
var (er + kcr l ) s 2 ] = Z(b-t) = 2w 
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oz;' 

3. 

· 2 , 2 2 
vars 2 =2w(cr +ko- 1 ) 

4 2 . 2 2 4 = Zw[ & + 2ko- o- 1 + k er 1 ] • 

.. 2 . 
var (er s 6 ) = Z(M - b - t + l) = 2u 

,4 
var s6,: 2u er • 

The variances of s 3, st' and s 5 are obtained by usin~ the fact 

that Anderson [ l] has given the general expression for cov (Aij' Aki) 

· when A"' W( Z, n), Denoting Z by (c\j), this general expression 

is 

= n(1r .. kcr.l + Cf.lcr.k). 
1 J l J 

For our case n :;;: t - 1. Therefore, the variances and covariances of 

the statistics s 3, s 4 , and s 5 are as follow1;1: 

1. 

2. 

var s 3 · - var A. 1 
n 

.. ::: (t-l)(o-110'"11 + crllcrll) 

= 2(t- l)cr11 
2 

·2 = 2(t .. l)c 

[ 2 · 2 -1 2 Z = Z(t-1) O' +kq- 1 +k (r-X.)cr 2 ] • 

= var A 1 
12 

2 = (t-l)(er,12 +cr11cr2z] 

. z · = (t-1)[ e +ed.] 

26 
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-2 · 4 · 2 2 -1 2 2 
= (t-l}[k X.t(r-X.)cr 2 +(er +ker 1 +k (r-X.).er2 )(er~ 

-1 2 
+k X.t,er 2 )] 

4 2 2 2 2 ·2 2 
·=(t-1)[2x.t(r-X.).cr 2 ;k +rer er 2 +ker er 1 +X.ter 1er 2 

4 + er ] • 

But, 
. 2 . 

var (k s ) · = k var s 4 • Therefore, 
o 4 O 

1/2 . 4 2 2 2 · 2 2 · 2 2 · 4 
var s 4=(X.t) £1[2X.t(r-Aler/'k +rerer2 +ker er1 +x.ter1 cr2 + er ] 

where 

or, 

3. var(s 5)=varA 1 
· 22 

4. 

5. 

2 = 2(t- l) er 22 

= Z(t-1)4 2 

2 -1 2 2 
. = 2(t- l)[ o- + k x.tcr ] 

·2 

4 -1 · 2 2 -1 2 4 
var (s 5 ) = 2(t-l)(er +2k X.ter er 2 + (k >.t) cr 2 ). 

= cov (A l , Al ) 
11 · 22 

= (t- l)(crl2 crl2 + er 12 o-12) 

= 2(t:-1Jk~-2x.t (r-X.) .er 2 
4 • 

But cov (s 3, k,/ 4 ) = k0 . cov (s 3, s 4 ). Therefore., after some alge­

braic manipulation, we obtain 



6. = cov (Al , Al . ) 
12 22 

= (t-l)(1T12·1T22 + IT121T22) 

= 2(t-1)[ k-2\t(r-X.)] l/21T22(1T2+k-lx.tlT2 2) 

= 2( t-1) k -1 [ X.t( r - X.)] 1/ 2[ IT 2er 22 + k-1 x.ter 2 4]. 

Since cov (k0 s 4, s 5 ) = k0 cov (s 4 , s 5 ), we have that 

·2 2.-1 4 
cov (s4, s5) = 2fl[er r2 +k x.t1T2 ]. 

To summarize the preceding derivations, the covariance matrix 

of the s. (i = 1, Z., 
l . 

, 6) is shown in 'Table I with the corres-· 

ponding expected values. 

Unbiased Estimators of 
2 2 2 

er , er 1 , and er 2 

and Their Variances 

In looking at the expected values of the statistics in the minimal 

sufficient set as given in Table I, ·we see that an obvious unbiased 

. 2 -1 . · -1 . 2 
estimator of er is u s 6 since• E(u s 6) = IT . However, further 

28 

investigation reveals many other unbiased estimators of the same vari-

2 ance comp~ment er • In, fact, as will be shown later, there exist an 

. 2, 
infinite number of unbiased estimators of er. The same may be said 

.2 2 
of the other components IT 1 and er 2 • 

Since it is the purpose of this chapter to choose unbiased estima-

tors of the variance components and compare their variances, a 

systematic approach to their selection should be taken •.. Such a proce-

dure will now be discussed. 



Statistic 

sl 

S2 

S3 

84 

SS 

s6 

TAB.LE I 

EXPECTED VALUES AND COVARIANCE MATRIX 
OF THE s. (i = 1, ••• , 6) 

1 

· Expected Value ·. Covariance Matrix 

µ 

· 2 . 2) . w(<T +k<T 1 

2 2 · r- ~ 2] 
(t-·l}[ CT· +k<T l + -r <T 2 

fl(T 2 
2 

2 ~t . 2 
(t-,1)( er -·_ + ""k <T 2 J 

2 
U<T 

s1 

cj> 

cj> 

cj> 

cj> 

cj> 

<I> 

52 

<I> 

<I> 

<I> 

<I> 

cf> 

<I> 

53 

5 34 

5 35 

<I> 

<I> 

<I> 

5 34 

s 
4 

' 5 45 

cf> 

<I> 

<I> 

5 35 

545 

55 

<I> 

cf> 

cf> 

cj> 

<I> 

cj> 

.S6 

-2 3/2 £1 . = k ( U) (r-X.){t-1) 
-1[ 2 . 2 2 M · IT + k<T 1 + r<T 2 ] s = 1 

u = M-b-t+ 1 

w = b-t. 

s = 2 

s . = 
3 

5 34 = 
s .· = 

35 

s = 4 

5 45 = 

4 2 2 2 4 
2w[ IT + 2~o- er 1 + k:o-1 ] 

4 2. 4 -2 2 4 2 2 -L 2 2 . 2 ·l. 
2(t-J)(a- +k o-1 +k (r-A) o- 2 +2ko- o- 1 +2k {r-id<To-2 +2(r-A)<T1 o- 2 J 

-1 4 2 2 ... 2 2 
2fl[k. (r-A)0-2 + er IT2 tkO"l (T2 ] 

-2 4 
2( t- l) k ;\.t ( r -A) o- 2 

· 1/2 . 4 -2 4 2 . 2 2 2 2. 2 
(At) • £1 [o- + 2At{r-A)k o- 2 =tkO" cr 1 +ro- o- 2 · + N:cr 1 o- 2 ] 

I 4 2 2 
2£ l [ ( At k) cr 2 + o- o- 2 ] 

4 2 4 2 2 , s5 ::: Z(t-1)[ IT + (U/k) IT 2 + 2(U/k)cr er 2 ] 

s6 = 
4 

2u.cr 
N 

'° 



.30 

·-Let 

be a linear function of all the statistics of the minimal sufficient set 

where the gi are arbitrary real numbers. Then, 

E(F) 2. • 2 2 2 r->.. 2. 2 
:;; g lµ+gzCer tkO" 1 · )+g 3Cer +ker 1 +r er z ) +g4er z 

·2 >..t 2 ·2, 
+gs(er + k er 2 ) + g6er 

Collecting coef:t;icienti;i of the val;'iance components, we have 

· E(F) 2 2 
= g 1µ + (gz+g3+g5+g6)er +(kglkg3)er 1 

r->.. >..t . 2 · 
i[(~)g3+g4 + k g5,] er 2 • 

We now want to-find the values of gi which will reduce · .E:(F) to that 

variance component which is to be estimated. This is done by setting 

· .. E(F) equal to the component: under consideration and equating coef­

ficients. The method described will yield a system of equations with 

the gi 's as unknowns. Once.the a.ystetn is solveq..•. t.h .. e d.et~;r:mi.n~d . g 

values may l;>e substituted into the F function to obtain a linear com-

bination of the minimal sufficient statis;tics whose expected value is. 

the variance component under consideration. 

Unbiased estimators of the variance components will now be 

found using the procedure described above. A separate system will 

be required for each of the three variance components. 

Case 1: Estimation of er 2• 

( ) ' 2 Letting ~ F = er we have_ 



g 2 + g3 + g5 + g6 = l 

kg 2 + kg 3 :;: o 

r ... >,.. A.t 
~g3 + g4 + k g5 = O 

as a system of three equations in five unknowns. g 1 may be disre'­

gardedfor it will alway1;1 yield a Vcl.lue of zero when estimating vari-

ance components. Solution of the system in terms of g 3 and g6 

{chosen for convenience) yields 

. g2 = -g3' 

A.t r.,.>,._ 
g4 = k {g6 - I) - {~) g3' 

and 

Thus, for any value of g 3 and g6 an unbiased estimator of 

can be defined. Two simple solutions are as follows: 

1. Let g3 = 0 and g6 = I. Then, g2 = g4 = g5 = o. 

Hence, 

F 
s6 

and E(F) 2 = - = CT 
u 

>,..t 

2 
CT 

2. Let g3 = 0 and g6 = o. Then, g2 = O, g4 = ~ k' 

and g5 = 1. Hence, 

2 
er 

31 

Certainly, other estimators (depending upon the values of g 3 and 

g6 ) could have been chosen. Tfre.s;e, two were selected because of their 
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simplicity. 

Gase 2: Estimation of (]" 1 
2 , 

Letting 2 E(F) = (]" 1 we have 

:r: 0 

kg 2 + kg 3 = 1 

.r-X. X.t 
iz- g3 + g4 + -r gs = 0 

as a system of three equations in five unknowns •. Solution of this system 
l. 

in terms of g 3 and gs gives 

l 
g2 = k - g3, 

r -A X.t 
g4 = - (T g3 + k gs) ' 

and 

"Two simple solutions are as follows: 

l. 
l 

Then, . g = -- , g4 = .2 k 

H(:lnce, 

l s z . l s 2 F = k (-) - k 
( 2-) and E(F) :: er l w u 

2. Let ~ and o. Then, g2 = o, g3 = k gs.= 

l 
and g6 . - - k 

. Hence, 

. 

l 
O, and g6 == - k. 

r -X. 
g = - --:--z ' 4 k 

-1 -2 -1 -1 . 2 
F = [k(t-1)] s 3 - k (r-X.) £1 s 4 - (ku) s 6 and E(F) =;:cr1 • 

Let 

and 



-1 -2 -1 -1 
[k(t-.1)] s 3 - k (r->.) f 1 s 4 - (ku) s 6 = g4 • 

Case 3: Estimation of f.T 2 2 • 

Letting E(F) = (T 2 2, we have 

g = 0 . 1 

= 0 

as a system of three equations in, five unknowns. Solving the system 

in terms of g3 and gs gives 

and 

Three simple solutions are as follows: 

1. Let g 3 = g-? · = 0. Then, g 2 = g6 . - 0 and g4 = 1. 
r 

Hence, 

F = f 1-l s 4 and E(F) 2 = rr 2 • 
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. 2. k 
Let g 3 = O and gs · = Ir Then,. g 2 = g4 - O, and 

-k 
g6 . = - X.t • Hence, 

-1 -1 2 
F = k[A.t (t-l)] sS ... k(x.tu) s 6 andE(F) = ~2 • 

3. Let g 3 = r ~>,., and g5 = O. Then, g 2 ::;: - f x. and 

;;:: 0. Hence, 



-1 -1 2 
F :;: -k[(r-X.)w] s 2 + k[(r-X.)(t-1)] s 3 and E(F):;: o- 2 • 

-1 1 -1 Let(f 1 s 4):;:Q 5 , k[X.t(t-1)]-s 5 -k(x.tu) s 6 :;:Q6 , and 

- 1 -.1 k[(r-..X.){t-1)] s 3 - k[(r-X.)w] s 2 = Q7" 

In summary of the preceding derivations,. we have 

-1 
Q 1 = u s6' 

-1 -1 -1 
Q2 = (t-1) SS .. k X.tfl Ei4, 

... 1 -1 -1 
Q3 -k [w s 2 -u·s6 J, 

-1[ -1 -1 - 1 -1 ] 
Q 4 - k ( t- l) s -:- k ( r.,. X.) f 1 s 4 - u s 6 

. 3 '', 
-1 

Q5 = f 1 84' 

-1 -1 -1 
~ 6 · - k( x.t) [ ( t - 1) s S - u s 6 ] , 

and 

where 

and 

. E(Ql) ·-. E(Q2) 

E(Q3) = E(Q4) 

2 
= ()'" 

2 
:;;: er l ' 

In order to make a decision as to which one of the estimators to 

use for any particular variance component, the variance of each should 

be found. The criterion for the "best 11· estimator will be that of mini-
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mum varianc:;e. This does not mean to imply that an estimator has been 

found for each variance component which has the smallest varianc:;e of 

the entire class of estimators of that component. We are interested 



here in comparing variances of only: the above particular estimators. 

Fo·r example, in comparing the variances af ,g3 and· Q 4 , it will be 

shown that the sign of var ( Q 3) - var (Q 4) will change 1 accordiri.gJo 

the BIB design used and the true magnitude of the ratios of the vari-

ance.components. Hence, we cannot say g 3 is uniformly better 

than Q 4 for all BIB designs. 

Having obtained the covariance matrix (Table I) ·-0£ the~set.;of 

minimal sufficient statistics ·Si(i = 1, 2, ... , 6), we cannowfind 

the variances of the seven e stimato:r,s. 

-1. Variance of Q 1 = . u s 6 

var Ql 
-2 

= u 

=(t- If 2var s5+(k-\.ti£1- 2var s4 ·-Z(t-J)"" \-\.tf; bov(s5,s J 
-1 4 -1 2 2 . ·. I 2 4 

=Z(t-1) [ er +2k X. t er er 2 +(X.t k) er 2 ] 

·t1· 2. 1/2 -1[ -2 4 2..2 · 2, 2 ·. 2·2 4,, +(X. k) {X.t) £1 . Z),,.t(r-X.)k er2 +rercr2 +kerer1 =t-M:er1 er2 +er j 

-1 2 2. I 4 -4qt-l)kf 1] X,t £/er er 2 + (X.t k) ,er 2 ]. 

By collecting terms and simplifying, the above equation becomes, 

2 
var g2 = ( (t-1)+ p) 

where p = X.t/[ (r-X.)(t-1)]. 

Now factoring p, . we have 

g [ ( l+ 2 ) 4 k 2 2 · 2 .. 2 2 2] 
var 2 = p p(t-1) er+ er erl +rer er2 +X.terl er2 . 
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... 1. -1 -1 
Variance of g 3 · = k [ w s 2 - u s 61 

-1 . -1 ] 
varQ 3 = var [(kw) s 2 - (ku) s 6 

-2 -2 = (kw) var s 2 + (ku) var s 6 . 

Now consl;llting Table I, -· ~e see that 

-2 4 2 2 2 . 4 -2 4 
var g 3 = 2(kw) w[O'" +2kcr cr 1 +k ir 1 J+2(ku) ucr 

· which reduces to 

-1 .,. 2[ - 1 4 · 2 4 .. 2 , 2 ] var Q 3 = 2w k u (u+w)cr +k er 1 +2kcr er 1 • 

-1 -1 -1 -1 -1 
Vai-iance of g4 = k ((t-1) s 3 - k (r-A.) £1 .,2 4 - u s 6 L 

-1 -1 -1 ... 2 -1 
varQ4 =va:t,'[k (t-1) s 3 -(ku) s 6 -k f 1 (r-A.).s 4 ] 

- 2 · - 2 -4 -a ·. 2 
=[ k(t-1)] var sl(ku) var s 6 +k ~l {r-A.) var s 4 

-1 -2 ... 1 
-2[ k(t·d)] k f 1 (r.-A.) cov (s 3, s 4 ). 

Substitution fo+ the varicii,nce ap.d covariance termEi gives 

-2 -1 4 2 4 -2 2 4 2 · 2 
var g4 = 2k (t.-1) [er +l~cr1 +k (r-A.) o- 2 +2kcr.cr 1 

-1 2 2 2 2 -2 -1 4 
+2k (r-A.)cr cr 2 +2(r.-A.)cr 1 cr 2 ] +2k u er 

-4-- .,. 1 2 1/ 2 ~ 2 4 2 2 k 2 2 
+k ·fl (r-A.) (At) [ 2U(r ... A.)k o- 2 t:i;-cr O:z + cr<Tl 

2 2 . 4 -1-3 2 2 . 2 2 -1 4, 
+Merl r 2 +er ]-4(t-l) le (r-A.)~cr2tkcr1cr2:i-k (r-X)o-2J. 

Collecting the coeffic;:ientsof the variance components and their combin-

ations ·we hav~ that 

_ 2 [ut(t-U r-A. 4 2 4 1 r-A. 2 2 
var g 4 ~ k2 u (t .. 1) + 2X(t- l) ] er + (t-1) o- 1 + k(t- l)(4+~cr crl 

+ r(r-A.) ;,-ZlT 2 + r-A. 2 2 
k2>.t(t- 1) 2 k 2(t- l) (T 1 (T 2 . 



Now, if we Let 
(r->..) 

P1 = Z and factor p 1 out of the expression 
k >..t(t-1) 

for var Q 4 1 we then have 

(i -1 4 2 4 
var Q 4 = p 1 l[ 2p(t- l)u (u+t-1)+ 1] er + 2p(t- l) k er 1 

· 2 2 2 2 2 2} · +[ 4p(t-l)+l]ker er 1 + rer er 2 + Mo- 1 er2 

where 

X.t p. = ---,---.--
( r - X.)( t- 1) 

( r- X.) and p 1· = 

-1 -2 . 
var g 5 = var f 1 s 4 = f 1 . var s 4 

1/ 2 - l 4 - 2 4 · 2 , 2 2 2 = (X.t) f I [er +2>..t(r.,.>,.)k er 2 +kcr cr 1 +ro- o- 2 

2 2 
+ >..to-1 0"2 J • 

Variance of 

var g6 = var [k[X.t(t·.I)].,. 1s 5 - k(x.t u)-l s 6 } 

2 -2 2 -2 · = k [X.t(t-1)] var s 5 + k {X.tu) var s 6 

. = 2k2{X.t)-2{t-l)[<T4+2{X.t/k)er2~2 2+(x.t/k)2rz4] 

+ 2(k/X.t) 2 u - 10"4 

= [ 2{k/X.t) 2 (t-1)-l + 2 {k/X.t) 2u- 1] cr4 

+ 2(k/Xt) 2 (t-1)- 1[2(>..t/k) rr 2cr 2
2 + (x.t/k) 2er 2

4 J. 

This equation simplifiei;; to 

- l [ 11_/ z. - l 4 4 1_/ 2 2 } var Q6 = 2(t-l) w X.t) L l+u lt-l)]er+er2 +2{ty x.t)a- cr 2 · 
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.VarianGe of g7 = k~r->..)-1[(t .. l)_- 1~3-w- 1s 2 ] 

Let 

. and 

to obtain 

Now, 

var 97· = var [k[(r->..)(t-l)r 1s3·k[w(r->..)]- 1sz} 

. z[ ] .. 2 z[ ] - 2 · = k (r->..)(t·l) v~r s 3 + k w(r->..) var ~2 

· 2 · .. z -1 4 • 2 4 -2 2 4 · 2 . 2 
. = 2k (r .. >.,) (t-l) [er +k o-1 +k (r->..)o-2+2ko- o- 1 

-1 ·2 2 2 2 
.+2k (r->..)O" o- 2 +2(r->..)o- 1 0" 2 ] 

2 -2 -1 4 2 2 2 4 
+2k (r->..). w [ ET +2ko- ET 1 +k Erl ] 

· 2 ... 2 -1 -1 4 4 -2,- · -1 .. 1] 4 = 2k (r->..) [(t-1) +w ]wt2k (r->..) L(t-1) +w &1 

-14 .3 -2 -1 -1·2.2 
+Z(t-l) .<rz +4k{r->..). [(t-1) tw ]1r <r 1 

- l · 2 2 2[ - 1 2 2 + 4k(r->..) .(t-:l)1r.1r 2 .+ 4k (r->..Xt-1)] · 1r 1 1r 2 • 

. ..1 
g 2 = 4k[(r->..)(t-l)] 

4 2 4 -1 4 2 2 · 2 2 
. var g7 := go- + gk 0-1 + Z(t-1) IT2 +2kgO" (Tl +gzcr 0"2 

g /g = 2 

2 2 + kg2 (T 1 <rz 

[ 4 2 4 ... 1 4 2. 2 -1 . 2 •. 2 
.::; g ET +k cr1 +2g (t-l)cr2 +Zko-cr1+g ,g 2ET O"z 

,.; l · 2 2 
+kg g z(T 1 er 2 ] • 

-1 -1 
k[ (t .. l) +w · ] 

·= Zw (r - >..) 

k(b-1) 
= g 1 (say). 

4 . Expressing.the coefficient of cr 2 in terms of g 1, we have 
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2 
g( t - 1) 

2 
w(r - A) 

k 2(b- l) 
::; 

The variance of g7 can now be r,ewritten as 

where 

and 

4 2 4 -1 4 2 2 var g7 = g[cr +k cr 1 +g1(r-A)(2k) cr 2 +2kcr cr 1 

-1 2 2 -1 . 2 2 
+ g g 2cr <T 2 + kg g z<T 1 er 2 ] 

g ::;: 2k\r-A)- 2[(t-l)-l + w'"" 1], 

g 1 = 2w (r-A) [k(b-l)]- 1, 

[ - l g 2 = 4k (r-A)(t-1)] . 

The :r;esults are summarized in Table Ir which gives the para-

meter being estimated, the unqiased. estimators of the parameter, and 

the varianoo of ~he estimator. In Table II, the variance of Q. 

(j = 1, 2, .•• , 7) is denoted by V .. 
J 

Comparison of V. (j. = 1, 2, ••• , 7) 
J 

J 
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In looking at the different variances, it seems evident that compari-

sons between the V .• will depend upon the variance compo'nents them­
J 

selves as well as the particular BIB design. Under certain conditions, 

J:iowever, an estimator can have minimum va.riance with respect to 

other chosen estimators regardless of the values of o- 2, o- 12, or o- 2 2• 

In this section such conditions on the va.riance components and type of 

de sign will be investigated. Cochran and Cox have given a list of BIB 

designs most likely to be used in practical situations. Thirty of those 

designs for which b > t have been chosen for consideration. Without 



Para­
t 

2 
(T 

2 

TABLE II 

UNBIASED ESTIMATORS OF THE PARAMETERS 
FOR THE BIB AND THEIR VARIANCES 

Unbiased E8timat V .(V~ = var QJ 
- - -

Q - u - 1 -1 4 
86 2u IJ' l -

-.1 -l 
g 2 = (t-1) s 5 -n,.t)(kf/ 8 4 

- 1 - 1 4 2 2 2 ·2+ 2 2 p((l+2p (t-1) }o- +ko- <T_1 +r<T o- 2 }\.to- 1 o- 2 ] · 

-1 -1 
g 3 = (kw) 8 2 -(ku) 8 6 

-1 -2 -1 4 2 '\ · 2 2 2w k { u lu+w)cr +k O" 1 2kcr <T 1 ] 

er 1 
-1 -1 -f: -1 g4 = fk(t-1)] 8 3 -(ku) sck r-'X)fl 84 

fi -1 . 4 2 4 . · 2 7 2 2 2 : p 1 [p 3u (u+t-l)Tl] <T +pf<Tl +(2pil)k<TO"ll-r0"0"2 +At<T1 <T 2 2} 
- 1 

Q5 = f 1 S4 
· 1; 7r -1r 4 . - 2 4 2 2, 2 2 2 2 

(\t) l er +2\t(r-\)k. <Tz +kCT<Tl Tr<T <T2 +\ter 1 <T 2 ] 
. 

2 -1 -1 
2(t- l)- 1f k 2( }\.t) - 2( l+u- \t-1)] o-4 +<T/ +2k(U)- 1o-2cr 2 

2] 0-2 Q6 = k[\t(t-1)] s 5 -k(u\t} s6 

-1 . :..; 1 
Q7 = k[(r-\}(t-1)] s 3-k[w(r-X)] 82 

4 2 4 .-1 4 2 2 2 . 2 . 2 2 
g[cr+k cr 1 :i-g1(r-\)(2k) o-/l-2kcrcr1 +g1cr o-2 +kg 1er 1 o- 2 ] 

u=M-b-t+l 
2 

p 1 = {r-,d/k U (t-1) 

w = b - t p 3 = ?p .. (t-1) 

f 1 = k- 2(U) 3/ 2(r - \)(t-1) 
2 2 

g = 2k. _(o-1)/ w(r -\) (t- 1) 

p = (At)/(r.;.\){t-1) g 1 = 2w(r-\)/k(b- 1) 

.i:,.. 
0 



.the restriction b > t, the stati1;1tic s 2, of which inter-error is a 

function, (as. given in the A. 0. V., · Wee ks [ 3]) would not be defined. 

Com:earison of V l . and· V 2 

First to be considered are th~ variance_s :V 1 and V 2 of Q 1 and 

o2 respectively:. The result's of the comparison· are given in Theorem 

.IV-1. 

and 

TheoremIV-1. Let v 1 andV 2 be as given in Table II.~,, 

a. If <r 2 :;: 0 andifoneorbothof o- 12, o- 2
2 is zero, 

then, V 2 - V 1 == O. 

b. If ETZ :;: 0 and neither er 1
2 nor o- 2

2 is zero, then 

V z - V l > 0. 

·2 c. . .If er > O, then V 2 - V 1 > O. 

Proof: a. 

b. 

Z . Z 2 If ET :;: 0 then • V 1 ;:: 0 and· V 2 :;:. pX. t ET 1 . ET 2 • 

Hence, if ET 1 2 or .rJ" 2 
2 or both are zero, we have 

that V 2 = 0. Therefore, V 2 - V 1 = O. 

o- 2 = 0 implies V 1 = 0 

But p ;:: X. t > 0 
(:r - X.)(t-1) 

·2 2 and · V 2 ;::: p x.ter 1 . er 2 • 

since r > X.,. t > 1, 

and X. t is a positive integer. Hence, V 2-V 1 >O. 

·2 
c. If er > 0, we may wdte · V 2 as 

2 2 · 2 
Y1 . = (Tl /er , 
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2 2 2 'Vz. = q-2 /er·. 

Then, 

4 -1 · 2 2 v2-V l =<r [p+2(t-1) +pk y 1 +pry2 

2 2 -1 
+pA ty 1 Yz -Zu ] . 

Since 

2 2 2 2 
pkyl +pry2 +p Atyl Yz > 0, 

-1 -1 
. we need only to show that p + 2(t- l) - Zu > O. To accomplish 

-1 .. 1 1 
this, assume p + 2(t-1) . - 2u ~ 0. This imphes (p/2)+ (t-1)-

-1 r I J . 1 1 - u ~ 0, or, (At) Z(r -A)(t-1) +t-T- ~< D. But by Lemma 4, u > t-l .. 

Hence, 1/u ~ 1/(t-l) and we have a contradiction. This proves 

that V 2 - V 1 > O •. 

The above theorem shows that regardless of the BIB design and 

the true value of the variance components the variance of QI is smaller 

than the variance of QZ and hence, that of the two estimators, QI is 

uniformly better than Q2• 

Comparison of· V 3 and 'V 4 

From Table II· we have that 

.. 1.-2( -1 4 · 2 2. 2 4 
V 3 = Zw k u (u+w)cr + Zkcr cr 1 +k cr 1 ] 

and 

l 

Subtracting . V 3 from V 4 and collecting coefficients, the following 

equation is obtained. 
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4 . -1 -1 -2 
V 4 - V 3 -:::. tr [2p1p(t-l)u (u+t-l)+pc2(wu) k (u+w)] 

4 . 2 -1 2 2[ +o- 1 [ 2p 1p(t,-l)k -2w ]+o- o- 1 4pfk(t-l) 

· -1 . 2 2 2 2 
+p 1k-4(kw) ]+p 1[ro- o- 2 +11.tCJ" 1 CJ" 2 ] • 

. Simpli£ying the coefficients we have 
I 

V -V ;::0",211.t(M~b)-b.u(r-11.) 
4 3 uk 211.t(t- l) 

2(u+w) ] + o- 4[ 2 
k 2 1 t-1 

uw 
~ ] 
w 

+ 2 · 2[ 411.t + (. r - 11.) 
tr tr 1 ·. k11.t(t-l.) 

Let thE; coefficients of o-4, o- 14, and o- 2a- 1
2 be denoted by cy c 1, and 

c 2 respectively. Then, 

4 4 2 2 22 22 
V 4-V 3 = C30" +clo-1 +czo- (J"l +plrCJ" (J"2 +plA.tCJ"i (J"2 . (l) 

2 
The examination of the equation involves two caes, namely CJ" = 0 

2 
and o- > O. 

Gase 1: 
2 

(.f = o. 

If 0-2 = O in ( 1), then 

V V 4 2 2 
4 - 3 = c 1 er 1 + P l Ate, 1 o- 2 ' 

Setting. c, 1
2 = 0 in (2), we have V 4 - V 3 = O. 

2 
CJ" 2 = 0 in(2), then 

V V 4 >0if >O 4 - 3 = cl crl cl • 

c 1 > Q. is equivalent to b >2t - 1. 

( 2) 

On the other hand, if 

]for the next situation assume neither CJ" 1 
2 nor er 2 

2 is zero. This 

restriction implies V 4 - V 3 > 0 if c 1o- 12+p 111.tcr 2 2 > 0. Solving for 

z b . z > ( I ) 2 b . ·t· . . c, 2 we o tam o- 2 - c 1 p 1 .A.t cr 1 • p 111.t e1ng pos1 1ve msures 

~hat v 4 -V3 > 0· if c 1 > O. As noted above, c 1 > 0 ·when b>2t-l. 



It should be pointed out that b =/: Zt-1 by Lemma 5. Thus, if b < Zt-1 

2 2 
the sign of V 4 - V 3 depends upon the true values of CT 1 and <:r 2 

2 
when assuming CT .:: 0. 

Case 2: 
2 

CT > 0 • 

2 
If o- > 0, we can rewrite ( I) as 

4 4 2 2 2 2 
v4 - v3 = CT [c3+C1Y1 +c2Y1 +plry2 +plX.tyl Y2 ], 

2 2 2 2 2· 2 
where y 1 = er 1 /CT and y 2 · = er 2 /er • 

2 
Setting · V 4 - V 3 = 0 and solving for y2 we have 

2 4 2 I 2 
Y2 = -[clyl +czY1 +c3] (plr+plX.t Y1 ) ( 3) 

which is the ratio of a quadratic in y 1 
2 to a linear function of y 1 

2• 

2 
It is evident that V 4 - V 3 > 0 when y 2 is greater than the right 

hand side of ( 3). 

Clearly, the better esttmator might depend .upon the true values 
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of the variance components, and for one who might have an "a. priori" 

knowledge of the ratios of er 2, er 1
2, and CT 2 

2, the constants involved in 

(3), as wl;:lll as the roots of the equation, have been tabulated by the 

use of the IBM 1410 for the thirty different BIB designs previously 

mentioned. The calculations for only ten of the thirty designs are given 

in Table III. The remaining twenty deE)igns satisfy certain conditions 

which insure that V 4 - V 3 > 0. Thus, for these particular designs, g 3 
-2 is preferred to Q 4 in the estimation of er 1 

2 2 2 
Without considering the true values of er , er 1 , or er 2 , the condi-

tions which guarantee that V 4 - V 3 is positive are c 1 > 0, c 2 > 0, and 

c 3 > 0 in (3). These are sufficient conditions since p 1r and p 1X.t are 



TABLE III 

EQUATION AND CONSTANT VALUES FOR 
COMPARING. v3 AND v4 . 

', V 4- v3 = 0 · implies (plr + P1U '(/) "2 2 · = · - (c;1Yi 4 + c2y~ 2 + C3) 

2 . 
D .. N k t plr . P1X.t cl c2 C3.. R t 1-· 'R t 2 Y2 ·intercept es1gn o. r · · · oo oo 

l 3 2 4 ; o 1250 o 1667 -. 3333 -. 2500 · -. 0417 ""'.o 5.Q'OO -. 2500 0 3333 
2 5 3 6 • 0278 • 0667 -. 1000 ... 0500 · -:·0.056 -. 3333 -. 1667 ·• 2000 
3 7 · 4 8 • 0104 • 0357 -. 0476 ..:. 0179 -. 0015 -. 2500 -~ 1250 • 1429 
4 8 6 . 9 .0019 .0104 -.4167 .:. •. 1375 · -.0113 -.1667 -.1633 6.1250 
5 6 . 4 10 • 0083 • 0278 · -. 1778 · -. 0833 · -. 0097 -. 2500 .;.... 2187 1. 1667 
6 . 9 5 10 • 0050 • 0222 -. 0278 · -. 0083 -. 0006 -. 2000 . -. 1000 • 1111 
7 9 6 · 10 • 0022 • 0123 -. 1778 · -. 0578 : -. 0047 · -.1667 · -. 1583 ', 2.1111 
8 9 6 · 16 • 0021 . CHll -.1167 -. 0375 -. 0030. -.1667 · -.1548 1.4444 
9 10 7 21 .• 0011 • 0071 -. 1222 - . 0341 - .. 0024 -. 1429 -.1364 .· 2. 1000 

10 9 7. 28 .• 0009 • 0053 -.1759 · "'.'··0496. ~. 0035 · --:.1429 -.-1391 4.1111 

Other BIB Designs Investigated 
Design No. ...E.. k !. Design No. ..!_ k · !. 

11 10 5 9 21 8 4 · 9 
12 6 3 5 22 9 2 10 
13 10 3 6 23 9 3 10 
14 1 O 4 6 · 24 10 · 2 . 11 
15 10 5 41 25 6 3 .13 
16 4 2 5 · 26 · 7 3 15 
l 7 5 2 6 27 9 3 · 19 
18 6 2 7 28 10 3 21 

. 19 7 . 2 8 29 8 4 ,, 25 
20 8 2 9 30 9 4 · 28 

' 
.,:;. 
IJI 



positive. 

w = b - t. 

2 
Now, . c 1 = t~ ·-

2 
w 

> 0 whenever w > t - 1. 

H > 0 w· hen b > 2t - 1 · ence, . c 1 = 6 2 (say). 

But 

The 

condition for c 3 to be positive is more complicated. To see this, 

set 

c . = 
3 

2A.t(M-b) + u(r-A) 
2 . 

uk A t(t-1) 

2(u + w) > o. 
·2 
kuw 

1This reduces to 

M-b + u(r-A) 
t-"1 . 2A.t(t- l) 

_ (u+w) > O. 
w 

But, as a consequence of Lemma 1, we have that 

Thus, if c; 3 is to be greater than zero, then 

b > E. [ ~ 
A w 

µ(r-A) . 
- 2A.t(t-. 1) ] = 6 1 (say). 

It should be noted that b -=I, 61 by Lemma 6. Next, 

· implies that 

[ 4A.t ·+ r - A 
Cz = . kA.t(t-1) 

4At + r - A 
A.t(t-1) 

> 4 
w or, 4 + rA ~ A > 4( t:; ) • 

From the condition on c 1 (i.e., . w > t - 1), it is clear that c 2 > 0 

when . c 1 > O. Hence, a sufficient conditon for V 4 - V 3 > 0 is 

b > max (6 1, 6 2). Of the thirty designs investigated only 10 fail to 

. meet this sufficient condition. As was. previously stated, these are 

the first ten designs in Table .III. . lt is easily shown that c 1, c 2, 

. and, c 3 are positive for the :remaining twenty designs. As an 

example, the roots of (3) for design 11 are -. 2 and - .. 3 vyhile 

the 2 
Yz intercept is -. 3. Hence, the graph of (3) does not fall in 
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the first quadrant to which y 1
2 and y2 

2 are restricted. The graphs 

0£ (3), for design13 12 through 20 possess this same property. 

The re suits of the preceding section can be summarized in the 

following theorem. 

and 

Theorem rv ... 2. Let V 3 and V 4 be as given in Table IL Let 

r u+w u(r->-..) 
61 = ( x ) [ --;;-- - 2:>,.,t(t-1) ] 

62 = 2t- 1. 

·2 
Case 1: Assume er = o. 

a. 

. b. 

c. 

Case 2: 

d. 

e. 

£. 

2 
If er 1 

2 = 0 and er 2 >O, then V 4 - V 3 ·. = 0 

. 2 
and· er 2 = 0, then V 4 - V 3 > 0 

whenever b > 6 2. If b < 6 2' V 4 - V 3 < o. 

2 2 
If erl > 0 · and .fF2 > 0, then · V - V > 0 4 . 3 

whenever b > 6 2 •. For b 

2 
V 4 - V 3 depends upon er 1 

2 
As sum e fJ" > 0. 

< 6 2, the signof 

2 
and cr 2 

= O, then V 4 - V 3 > 0 whenever 

2 2 
If er 1 = 0 and· er 2 > O, then V 4 - V 3 > 0 

whenever b > 6 1 . If b < 6 1, thesignof V 4 -v 3 
2 

depends upon y 2 

2 
If er 1 > O, then. V 4 - V 3 > 0 · whenever b > max 
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(i) 

(ii) 

2 
V 4 - V 3 < 0 for rr 2 ::; 0. 

Sigri of V 4 .,. V 3 

2 
for rr 2 > O. 

2 2 
depends on y 1 and y 2 

The results of parts d and . e of Case 2 are obvious when con-

sidering (3). However, the restriction b < min U\, 6 2) in part 

g could lead to some confusion .. From the discussion of Case 2 we 

have 

2 
Y2 = o. 

Theoretically, if b < max(6 1, 6 2) we could have 6 1 <b< 6 2 or 

6 2 < b < 6 1 depending on the maximum. Hence, from the manner 

in which 6 1 and 6 2 wereobtaineditwouldbepossibletohave c 3 >0 

and c 1 < 0 or c 1 > 0 and c 3 < O •. For either of these cases the 

sign of V 4 - V 3 would depend upon the magnitude of y 12• However, 

for the ten designs which fail to meet the sufficient condition b >max 

(6 1, 6 2) all the cj (j:::; 1, 2, 3) are negative. Thus, for these ten 

designs in particular the sign of V 4 - V 3 is negative regardless of 

2 2 O d 2 y 1 when y2 ::; an rr > O. 

Disregarding the trivial cases of zero variance components (ii) 

of part g in Case 2 remains the most important •. For this nontrivial 

case, the graph of (3) for designs 1 through 10 is shown in Table IV. 

Comparison of V 5 and V 6 

As in the preceding section an expression for V 5 - V 6 = 0 will 

be derived. From Table II .. we have that 
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v4m~n 

y/ 

De-sign l 

v4 min 

z 
YI 

Design 6 

TABLE IV 

GRAPHICAL COMPARISONS OF V 3 AND V 4 
FOR DESIGNS IN TABLE ill 

Yz ~, V 3min / v 4min. yz" l v 3 min /V4 min ~·r·m• · v4 min 

-u / 11 / 
6 . 

I 
I 

' I 
y z z 

1 1 1 Y1 1 
Design Z Design 3 Design 4 

'lv,- z z 
Yz :v3 min Yz 3 min 

- v4 min v4 min 
3 

v4min 
3 z 

z 1 z 
I I 
I I 
I z z I 

1 Y1 l Y1 1 

Design 7 Design 8 Design 9 

,,,r·-v4 min 
z . . 

l ,.-
I 
I 
I 

y z 
1 1 

Deaip 5 

··r·-5 v4 min 

4 
I 
I 
I z I 

Y1 1 

Deoign Ht 

YJ 

Y1 

z 

z 

~ 

'° 



and 

· v6 = .2(t-l)-1thuJ"z[l+u."1(t-lJ].-4+zk(Ufl.f.-}+.-z4] . 

;Taking the difference and cellectin:g coefficients of the variance 

components, we have that 

v5 - v6 = er4 Gx.t)112f1- 1-2(t-1r1 ic2(x.tr 2[ l+u- 1(t-l)]j 

+q- 2 4[ 2(X.t) 3/ 2f l- l(r-X.)k-2-2(t-l)- l] 

. +.er 2.er 22[r(x.t) 1/ 2f 1- 1 ... 4k(t-l)-l(M)-l] 

. • + ( >... t) l /2 f 1 - 1 [ ko- 2 i 1 2 + Mer 1 2 er .2 2] • 

. Simplifying the coefficients, the above equation becomes 

V _y6 =o-4 k2 [ _l __ 2(M-b)] 
. 5 _X._t_(-t--1-)- r - X. . ux.t 

+~2 .O' 2 2 M{t-1) [ rr-~ ..; 4] 

k 2 , 2 2 · 2 2 
· + X.t(r-X.)(t ... 1) [ka- a-1 +>...t erl o-2 ] • 

To simplify even further tet 

1 c ·= [--..-
5 r - >... 

2(M-b) 
u>... t ] ' 

and 

c O .· - >..t( t- 1) ' • 

Then, 

The remaining investigation 0f this equation will be considered in 
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two, cases., . 

Case 1: 
' z . 
O" . = o. 

If 1r 2 = 0 and either ff 1 z or O" Z Z is zero, then V 5 - V 6 , = O. 

z ' z 
If a-· = 0 · and neither o- 1 nor . 2. t-1.. 

O" z 1s zero; w:.1en, 

V,5 ... V 6 = 
; 2 

Case 2: r, > O, 

k 2 ' Z 2 1 

(r-X.)(t-1) ··. O"l .o-z > 0• 

. z 
If fT . > 0, then V 5 - -V 6 can be written as 

.4 z -1 ,z -1 .2.z 
VS-V6;:;;.coo- [c5+c4Y2+(r-X.) --ic.yl +(r-X) x.tyl Yz ], 

where 
·2 2 y1 and ,:-12 are as previously defined. Now, set V 5 -·V 6 

equal to zero to obtain 

Hence, V 5 - v6 > 0 .. when 

[ -1 , Z 
y 2 > - cS+k(r-~) Y1 ] 

2 . -1 2 

2 
Y2 

c4+X.t(r .. X,) Yi 

2 
for Y1 > 

-c 
4 

-1 
x.t(r-X.) 

X,t(r-X.) 

2 -c4 
If y ·1· . - , 1 , (5. 1) and (5. 2) are not defined. 

· X.t(r-.X.)-

-1 . 

( 4) 

(5) 

(5. 1) 

(5. 2) 

. Since (r-X.), k, X., and t are positive integers, a sufficient condi-

tion for V 5 - V 6 to be positive is that c 4 and c 5 are greater than 

zero. For c 4 > 0 · and c 5 > O, (5. 2) is redundant since y 1 2 and 

.Y 2 
2 canne:>t be negative • 

. Now, 



when· rk>4(r-X.). But, r-X. :;: rk - X. t. Hence, the condition on c 4 

·· reduces to 4X. t > 3rk •. Expressing t as t = kb 
--- ·we have 

Thus, 

4X. kb > 3rk 
r 

Next, set 

By Lemma 1, 

2(M-b) 
u:x. t 

M - b :;;: X.: (t-1) 

] 

r 

b > ~ r2:;: 
4 T 

> o. 

6 3 (say). 

which, upon substitution, reduces the above condition to 

1 
r-x.· 

But, by Lemma 2, 

u :;:: 

> 2(t- l) 
uk 

Hence, the restriction on c 5 is equivalent to 

or, . x.t > 2(r-X.) + k. 

This last inequa,.lity may be expressed as a restriction on block size by 

making the substitutions r ... X. = rk - X.t and k . = rt/b. After 

some algebraic manipulation the inequality 

b > ; X. ( 2r. + 1) 

is obtained. Let 

We can now state that V 5 - V 6 > 0 - if b >max (6 3, 6J. There 
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are other conditions, however, which ·dictate the maximum of 6 3 and 

-0 4 . Setting 6 3 _:: o4 , . we have 3r _::{4/3)(2r+ 1) or, r > 4. Hence, 

forr >4, o3 >6 4 ; for r:::r:4) 6 3 ::::: 64 ;antlfor r·< 4, 63 < 64 ~ 

.,Of the thirty ·designs u,nder cop.sitleration only two are such 

that r < 4. Hence,. except forthese .two de:stgns, one needs only 

2 
· to note that b > 3/ 4 (r />d ::;: 6 3 to conclude that V 5 > v 6 • 

The trivial cases under Case 2 are easily determined from (4) .. 

2 If o- 2 ··.::::: 0, then V 5 ~ V 6 > 0 · whenever c 5 > 0 or equivalently, 

when b > 64 .. If b < 64 the sign of v 5 ... V 6 depends on y 12 . If 

2 
o- 1 .::::: O, then .v5 -v6 > 0 .if b > rna.x (63' 64) and V 5 -V6 ~ 0, 

if b < min (6 3, 64) . 

. For the non--trivial case, the sign of V 5 - V 6 will depend upon 

the values of y 1 
2 and Yz 2 for those designs: which fail to meet the 

sufficient condition b > max (6 3, 64 ). Thirteen··designs of those 

considered fall into ·this category .. · ·For these, the coefficients of the 
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. true ratios of variances in (5), as well as the root of the equation, have 

been calculated and are presented in Table V. . Also, that po·r.tion of 

the graph of (5) which falls in the first quadrant is shown for these 

thirteen designs in Table VI, " 

The preceding d:i,scussion is sumrnariz~d in Theorem IV;-3 ,and,the 

following corollaries. 

6 . 
3 

Theorem IV-3. Let V and V be as 5 6 given in Ta·ble 1!. 
.. 2 

= 3/ 4 ( r / }...) and 6 4 ::;: ( r/3 }...)( 2r + I). 

Case 1: 

a.·. 

2 
Assume o- · = O. 

If 'th 2 2 . th V V O e1 .er cr 1 or o- 2 1s zero, · en 5 -· 6 = • 

Let 



TABLE V 

EQUATION AND CONSTANT VALUES FOR 
COMPARING v5 AND v6 

v6 ... v.6- =-0 implies- {c4 + q4Yl 2)_Y2 2 = "".{c5 + q5 Y1 2) 

2 . U ndefine.d 

Design. No .. r · k- t b 63 64 c4 q4 c5 
-R t y2 -,1ntercept F · z q 5 , oo ·_ --- or y 1 = 

1 

16, -

n 
18 

19 

20 

- 22 

· 23 

, 24 

'25 

· 26 

27 

28 
) 

6 

3 ·. Z 

4. -·2 

5 · 2 

6 · 2 
7 ·, 2 

8 • 2 

9 .,. 2 

9 3 
__.._ 

· 10 - 2 

6 - 3 

4 6 6.750 .· 7. 00 -. 500 - 2. 000 -.500 

.5. 10 · 12.000 - 12.00 -. 667. 1. 667 "'· 333 

6 · 15 18.750 · 18.33 -. 750 · 1. 500 -. 250 

7 :' Z-1. 27.000. 26.00 - -.800. 1.400 -.200 

8 - 28 36. -750 · 35. 00 ".'°• 833 · l. 333 -. 167 

9 36 ', 48,,0-00 . 45. -33 · '"'• 857 . l. 286 , .:.. 143 

10 45 60 • .750 57. 00 --~ 875 .· 1. 250 : -.125 

10 30 '-30.375 - 28.50 · -.048--2.857 .• 025 

11 55 · 75. 000 .- 70 .• 00 '"'• 889 l. 222 -. 111 

13 26 . 21 .• 000 - 26. 00 - .• 133 2. 600 • 000 

· 7 . 3 ·-15 35 . 36. 750 ·. 35. 00 . -. 167 :' 2. 500 • 000 

9 3 19 57 • 60. 750 57 .• 00 - .... 208 · 2. 375 • 000 

10 - 3 21 70 - 75. 000 70. 00 - .. 222 .·_ 2. 333 • 000 

\ 000 - • 500 -L 000 

.• 607 , 500 - • 500 

- • 500 .500 - • 333 

, • 400 - , 500 - • 250 

• 333 • 500 -· ., • 200 

.• 286 • 500 - • 167 

.• 250 ..• 500 - .143 

• 429 -~ 059 • 529 

•• 222 • 500 - - • 125 

.• 600 • 000 • 000 

.500 .ooo .ooo 
• 375 • 000 .ooo 
• 333 • 000 .• 000 

2 _ 3 r 
3 - 4 X 

_ ~4 = (r/3A.){2r+l) q4 = X.t/{r-\) q5 = k/{r-\) 

• 250 

• 400 

• 500 

.571 

.625 

.667 

• 700 

• b17 
• 727 

,051 

· • 067 

• 088 

· • 095 

\.11 
ip,. 



TABLE VI 

GRAPHICAL COMPARISONS OF v5 AND V6 

FOR DESIGNS IN TABLE V 

z 
Yz 

• 5 

• ZS • 5 

z 
Yz. 

• 5 

z 
Yz 

• 5 

v5min v6min v5 min 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

lv6 
I 

• 5 

D·ilisign I 

.4 .s 
Design 16 Design 

z 
YzZ 

/! 

z Yz Yz 

'"5 • 5 • 5 
I 
I 
I 
I 

v 5 min v6 min v 5 min : v6 min v 5 min 

2 z 
• 5 • 57 YI • 5 .625. Y1 • 5 

min 

17 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
lv6 min 

.667 

Design 18 Delilign 19 Design 20 

z a 
Yz Yz 

, I 
.6 I 

.• 5 I ,s 
I 
I 
I 

z 
YJ 

z 
Y1 

··r-
v5 min v6 min • 5 I Vb min v5 min v6 min 

11 ·z 
Y1 z 

z 

• 5 • 7 Y1 • 017 • !ZS .s Z7 Y1 

Design 22 Desi~n 23 Design 24 

z 

tv5 min 

z 
Yz Yz v5 min. v5 mtn 

I 

• IZS • lZS • IZS 

I 

: v6 min v6 min 

z z z 
• 051 • !ZS YI .Q67 • lZS YJ .088 • !ZS Y1 

Design ZS Design Z6 Design 27 

.095.IZS YI 
z 

DE!sigp ,ZS 
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b. 

Gase· 2: 

c. 

If neither <rl 2 Uor ITz 2 is zero, then V 5 - V 6 > O. 

·2 
Assume IT > O. 

If IT. 2 > ·o (i = I, 2), v5 - v6 > O whenever 
l -

b > max (6 3, t\)· 

d. If <ri 2 > 0 {i = 1, 2),. the sign of V 5 - V 6 depends on 

y2 
2 whenever b < ·min (6 3, 6 4 ). 

C0r0Uary IV- I: If <r 2 > 0 and er 2 
2 = 0, then 

a. V 5 - V 6 > 0 .. whenever b > I\, 
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b. 
2 

The sign of V 5 - V 6 deperl:ds on y 1 whenever b < 64 . 

Proof: 

a. b > o3 implies c 4 > O. But, . <r 2 
2 · = 0 implies 

2 c 4 y 2 = 0 and the proof is complete by {c) of Theorem 

IV-3. 

b. The proof is analogous to {a) using {d) of Theorem IV-3. 

Corollary IV-2: Assume cr 2 > 0 and IT. 2 > 0 {i = I, 2). 
], 

3 2 
!£ r · > 4 and b > 4 {r /'A.),· then, V 5 - V 6 > 0. 

P f > 4 · 1. 3 · r 2 = o 3 > 64 . Hence, b > _43 r 
roo : r · .. imp 1e s 4 1:' . · 'A. 

2 

implies b > max {63' o4 ) and the proof is comple·te by (c) of 

Theorem IV-3. 

2 2 
Corollary IV-3: .Assume IT > 0 and <r. > 0 (i = 1, 2). !£ r > 4 

l 

and k _.:: 4, then • V 5 - V 6 > 0. 

·2 
. Proof: b >2- E.. implies k > 4( r -'A.) • But ·~ < L . Since 

4 'A. r r 

k is an integer we then have k > 4. Hence, by Corollary IV -2, 



. vs - V 6 > o. 

Comparison of V 5 and. V 7 

From Table II 

· 1/ 2 -1 -2 4 2 2 · 2 2 2 2 · 4] 
·· V 5 = ( X:t) fl [ 2X:t( r -X:) k cr 2 trer er 2 +ko- er 1 + X:ter 1 o- 2 +er 

and 

. where 

and 

-2 3/2 f 1 = k (X:t) (r-X:)(t-1), 

g = 2k2(b-l)/w(r-X:) 2(t-1), 

g 1 = 2w(r-X:)/k(b-l). 

Collecting coefficients of like terms, the difference · V 7 -V 5 can 

be written as 

4 1/ 2 · - 1 .· 2 4 4 . - 1 
V 7 - V 5 = o- [ g- ( X:t) f 1 ] + g k o- 1 +er 2 [ g g 1 ( r - X:)( 2 k) 

-2(H)3/4fl-l(r-X:)k-2]+o-2o-l 2[ 2gk-k(X:t)l/2fl-l] 

2 . 2 . 1/ 2 .,.1 2 2 ·~ - 1 
+o- er2 [ggl-r(X:t) £1 ]+erl o-2 [kggl-(At) fl ]. 
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By simplifying the coefficients and letting g 2 = k/(r-X:)(t-1), and 

g 3 = 2(b-l)/w(r-X:), we have 

. -1 4 · 3 4 2 -1 · 2 2 
v7 -Vs·= kg2[g3-(X:t) ]er+g2g3k 0-1 +k g2[Zg3-(X:t) ]o- o-1 

[ -1 · 2 Z 2 2 
+g 2 4-rk(H) Jo- o-2. +3kgl'I er 2 • 

To simplify even furtherr let 

and 

[ -1 2 -1 
c 6 = kg 3 -(X:t) ], c 7 = k[2g 3 -(H) ], 

-1 
c 8 = 4 - r k ( X:t) • 



Then, 

The examination of this equation consists of two cases. 

Case l; 
2 

As sum e er = 0 ,,. 

·. 2 0 Under the assumption that er = ·, we have that 

Now, 

3 4 2 2 
V 7 - V 5 = g 2 g 3 k er 1 + 3 g 2 ker 1 er 2 • 

2 
r:r 1 = 0 implies . V 7 - V 5 

2 
= 0 and er 2 = 0 implies that 

2 2. 
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V 7 - V 5 > 0 since g 2g 3 is positive .. If neither 

t hen V 7 - V 5 > 0. 

erl nor O'"z 18 zero, 

Case 2: 
·. 2 

As sum e r:r > 0 • 

2 2 
Letting er 1 /er = 2 and er 2/er 2 - y 2

2 as before, we have Y1 2 -

v - v 
7 5 

(6) 

Now, if er 1
2 = 0 then V 7 -v5 = g2r:r 4 [c 6+c 8 y2

2 Jwhichis 

greater than zero whenever c 6 and c 8 are positive. If c6 · and cs 

· are both negative then V 7 - V 5 < 0. If c 6 and 

same sign, then the sign of V 7 - V 5 depends upon 

c 8 do not have the 

2 
Yz. 

If cr 2
2 = 0, (6) reduces to a quadratic in y 1

2 ., For this case, 

V > 0 h k 3 4 2 > O v 7 - 5 w enever g 3 y 1 + c 7 y 1 + c 6 . The conditions 

2 
which guarantee that V 7 - V 5 > 0 · when .er 2 · = 0 will be cop.side red 

in conjunction with the restriction of non-zero variance components. 

Setting· V 7 - V 5 > 0, we have from 

- ( c 6 + c 7 y 1 2 + g 3 k 3 y 1 4) 
y 2>~~~~~~~-,,-~~~~~ 

2 (cs +3k Y1 2) 

(6) that 

( 7) 

Since any meaningful interpretation of (7) will depend upon the 



constants involved, conditions to insure that V 7 - V 5 is positive 

should b(:1 considered. 

. ;.. I 1 
Now, c 6 :::: k[ g 3 - (>..t) -- J and is positive if g3 > (At)- • 

Algebraically, this ineguality reduces to b > r~r>..-l) + 1. Since 

c7:::: k 2 [ 2g 3 - (x.t)- 1], it is (:lVident that c 6 >O implies c 7 >
2
0. 

Also, CB > 0 · if 4 > rk( ur· 1 which is equivalent to b > ;A . 
r(r-1) · 2/ Letting 3A I 1 :::: 65 and (r · 4>..) :::: 66 , we can then state that 

V 7 - V 5 > 0 if b > max ( 6 5, 66 ). In other words, the right hand 

side of (7) is negative. 

However, the s;i,tpulation that b > max (6 5 , 66 ) will reduce to 

b > 65 since. 65 > 66 , for all permissible values of r and >... To 

· see this, assume o5 < 66 • Under this assumption, 

r(r-1) + 1 < 
3>.. 

which reduces to 

2 
r 

4>.. 

r 2 + 12 >.. < 4 r. 

The minimum value of the left side of (8) occurs when r :::: 2 and 
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(8) 

>.. = 1. Hence, 16 < 8 · is a contradiction and 65 > 06 • We can now 

· r(r-1) 
say that V 7 - V 5 > 0 whenever b > 3>.. + 1:::: o5 . But, by Lemma 

7 of Chapter II, we see that b · >[ r(r-1)/3>..] + 1 for every permissible 

value of b, r, and >... Hence, V 7 - V 5 > 0. for every BIB design 

for which b > t. These results are stated more precisely in the 

following theorem. 

Theorem N - 4. Let, V 5 and V 7 be as given in Table II. · . 

Case 1: 
2 

Assume · c, :::: O. 

a. 
2 

If cr 1 :;:: 0, thenV 7 -v5 - O. 
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b. I£ o-:12 > o, then v_7 - V 5 > 0. 

2 
Gase 2: "Assume <r · > 0 • 

2 
I£ o- · t O, then · V 7 - V 5 > 0. 

Comparison of V 6 and· V 7 

It now remains to compare · V 6 and v 7• But, by Theorem IV-4;, 

V 7 is alway·s larger than V 5 for the non-trivial case. Thus, in those 

cases for which V 7 . might be smaller than V 6 , one would naturally 

pick Q5 as the estimator of o- 22. On the other hand, in those cases 

. for which. V 7 > V 6, (\ would be chosen unless V 5 < V 6 for the 

particular situation. 

It is then evident that V 7 can be elininated from further considera­

tion and that only the comparison of V 6 · and V 5 is of any value in 

choosing an estimator of o- 2
2 . 

Summary 

· In order to s1..1-mmarize the various comparisons presented in this 

I 
chapter, Table VIL exhibits the thirty designs of int ere st with the 

suggested estimators when the true variances are irrelevant. Also 

shown are conditions on 
. 2 2 

y 1 and y 2 when knowledge of the true 

ratios of variances is assumed. 

The graphs of Table IV are .of special interest in. that V 4 < · V 3 
.2 2 

regardless of y 1 · when Yz is below its corresponding intei;cept. 

These cases are of inter.est since 94 · is a function of the intra-error, 

· treatment component under blocks (ignoring treatments), and the 

additional statistic s 4 which is not found as a sum of squares in the 
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TABLE VII 

PARTIAL CONDITIONS FOR THE SELECTION OF UNIBASED 
EST IMA TORS IN THIRTY BIB DESIGNS 

Design 
., No. 

1 

·2 

3 

4 

5 

·6 

7 

8 

9 

10 

11 

12 

' 13 

14 

15 

16 

17 

18 

19 

20 

,FOR WHICH b· > t * 
Estimator of 

r .· k · t ·z . er 

3 2 4 g 
1 

z er . ,· 
1 ,·, 

5 · 3 
' 2 

6 g 1 g4if Yz ~o. 200 

7,4 8 · g l g4H y2 z < O. 143 

· 8. 6 

6 . 4 

· 9 gl Q4if,y2 2<6. 125 

. '2 ' 
10 g l · gij, 1f Yz ~ 1. 16 7 

· 9 5 10 g 1 Q4ify/ ~0.111 

9 6 · 10 g l Q4if .. vz 2 < 2. 111 

9 6 · 16 g i '4if y2 2 ~ 1. 444 

10 · 7 . 21 · gl Q4ify/< 2. 100 

9 7-28·-Ql Q4ifyz2<5._4.lll 

10 5 9 gl g3 

6 . 3 5 g l 

10 3 6 Q l 

10 4 6 Q l 

10- 5 41 gl 

· 4 2 5 gl 

5 2 6 gl 

6 · 2 7 gl 

7,2 8 gl 

. 8 2 9 gi 

g3 

g 
3 

Q3 

.03 

g3 

g3 

g3 

g3 

g3 

2 
er 2 

%if y12 <.25; o6if y/>.500 

1\ 
g6 

g6 

g6 

g6 

g6 

g6 

g6 

g6 

.g 
6 

g 
6 

g6 

'g ' 
6 

g6 

. g5 if y/ < • 40 ; g 6 if y/ >. so o 

g5 if y/ < • 5 o ; g 6 if y1 2 >. so o 

Qify2 .. ,2 · 
5 _ 1- <.50, Q61f y 1 > •. 571 

QsifY12 so g··f · 2 6 · <. ; ~/ y l >. 25 

· Q5if y/<. 50; Q6i£ yi2>· 667 
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TABL.E:VII 

( Continued) 

Estimator of 

·• Design '2 2 
2 er 1 er .No. -r k .t cr ' 2 

21 8 4 9 Ql g3 'g6 

·22 9 2 10 gl g3 . Q5HY12 <. 50; Q6i£ Yi 2 >. 700 

23 · 9, 3 10 .g 
1 g3 06if Y[ >,. 017 

~4 10 z 11 gl .g 
. 3 · g5i£ y1 4<. 50; 06 if y 12 >. 727 

25 6 3 13 gl g3 g6 if _y1 2 >. O 5 1 

26 7 :3 15 gl g3 · g6 if y1 2 >. 06 7 

27 '9 3 19 gl g 
.. 3 · Q6if y1 2 >. 088 

· 28 10 3 21 · g . 1 g3 · g6 if 'Y1 2 __ >. 09 5 
., 

29 8 4 25 gl g3 g6 

30 ·9 4 ,' 28 gl ·g3 .g 
Q 

Q. (i :::; l, . . • , 6) a,re as defined· in Table II 
l 

* A choice of estimators may be obtained for those regions of 

y 1 2 and 'Yz 2 not specified in the above table by consulting the 

equations .of Tables· lU and V or the graphs of Tables N and 

. VI. 
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analysis of variance .. [ 3J On the other hand,. Q3 is a function of 

inter-error and intra-error .. Thus, the statistic not normally 

· computed in the analysis of variance (namely, s 4 ) has a useful 

purpose in the estimation of er 1 2 for those designs under inve stiga­

tion when the choice of Q 3 or· Q 4 depends upon the true r.atios of 

variance components. 

It should be pointed Qut that some of the unbiased estimators 

· found in this chapter c;:ould give negative estimates of the block and 

treatment variances. If such a result is deemed negligible on com,-. 

parison with the intra-error estimate of variance, a zero estimate 

could be used. However, if a relatively large negative estimate 
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occurs, a re-examination of the entire experimental proc;:edure might 

prove more feasible. 

Example 

In conclusion of this chapter an example will be given to illustrate 

how to choose and compute the different unbiased estimators under 

consideration. Design 2 (as given in Table III) will be examined using 

artificial data. Table VIII gives the statistical layout of this design 

where r :;:: 5, k = 3, t ::;; 6, b = 10, and A = 2. 



Treatment 

Block 1 

2 

3 

4 

5 

6 

7. 

8 

9 

10 

Treatment 
Totals• 

1 

7.0 

5.0 

10, 6 

8.3 

5.9 

36. 8 

TABLE.VIII 

STATISTICAL LAYOUT 

2 3 4 5 

5.4 8,2 

3. 8 

9.0 11. 3 

7.5 

7.3 7. 2 

6.8 7.0 8.7 

5. 2 5.6 . 8. 4 

7.4 9.4 

5.9 8.7 

' 8.7 9.3 

28.6 35.0 45.4 41. 8 

6 

3. 0 

6.0 

6.4 

5.0 

1: 
5.5 

· 25 . .9 

Block 
Totals 

20.6 

11. 8 

30.9 

21. 8 

20.4 

22. 5 

19. 2 

23. 2 

19. 6 

23.5 

213. 5 
Grand 
Tota( 

Let· '.Bj (j = 1, •.. , ·, 9) denote. t.he J .... th t+eatment total and 

T. the total of aU blocks containing the j-th treatment. Let 
J 

-1 
B. - k T. = Q .• J J J . . 

These quantities for the data of Table VIII are as follows: 
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j B. T. Q. TjQj J J J 

l 36. 8 . 105. 5 1. 6 168. 80 

2 28.6 97.3 -3.8 -369.74 

3 35. O 114.0 -3. 0 -342.00 

4 45.4 120.5 5. 2 626. 60 

5 41. 8 103, 3 7.4 764;42 

6 25.9 99.9 -7.4 -739. 26 
___.,.., ..,....__ 

Totals 213.5 640.5 o.o 108.82 

The analysis of variance may be obtain(;:ld from these calculations and 

is given in lable IX. 

TABLE IX 

ANALYSIS OF VARIANCE FOR THE DATA IN TABLE VIII 

Source d. £. S.S. M.S. 

Total 29 108. 46 

Blocks (igno:i,-ing treatments) 9 67.04 

Treatment Component 5 43.48 8.696 

Inter-error 4 23.56 5.890 

Treatments (adjusted for blocks) 5 40.64 8; 128 

Intra-error 15 . 78 . 052 

Weeks (3] has shown that Inter-error S.S. :::: s 2, Tl;'eatment Com­

ponent S.S. = s3' Treatments (adj.) S.S. = s 5 , Intra .... error S.S. =s6 , 
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-1/ 2 -1 
and (At) k ET .Q. = s 4 , Therefore, from the way the unbiased 

. J J . 

estimators are defined in Table II, the following relations exist: 

Q 1 = Intra-error M. S. 

Q3 = k- 1[Inter-error M.S. - Intra-error M.S. ]. 

Q 4 = k- l[ Treatment Component M.S. - Intra-error M. S. 

r - A - i -.,,,...2 - fl ET.Q.] 
k J J 

g5 = (k£ 1)-l ETjQj' where f 1- 1 = k 2[()1.t)3/2{r-x)(t-l)J- 1, 

'\ = (k/U)[ Treatment (adj.) M. S, - Intra-error M. S. J. 

Using these results and the mean squares in Table IX we have 

Ql :;: .052, 

1 , 052] Q3 = 3 [ 5. 89 .. = 1. 95, 

1 • 052 9 
Q4 = 3[8.696 .. - 6 23' 5 2 ( 10. 4 7 2) J = 2. 83, 

Q5 = . 15, 

and 

1 . 
Q6 = 4 [8. 128 ... 052] = 2. 02. 

2 2 
Consulting Table VII~ we see that the estimators of CT and CT 2 , for 

Design 2, are Q 1 and· Q6 respectively. Hence, 

is . 052 and the estimate of IT 2 2 is 2. 02. 

2 
the estimate of er 

The decision of whether to pick g 3 = L 95 or g4 = 2. 83 as the 

estimate of IT 1 2 must now be made. Since y 22 = CT 2 2 / CT 2, we can 

ti t th t . b ·t· ,. 2 Q6 2. 02 38 8 Al es mae era.10 ycompu1ng y 2 = -g = = •• so, 
l . 052 Q 

2 .... 2 3 y1 are available, namely, y 1 = Q-- = 37. 5 
1 1 

two estimates of 
... Q4 

and y 2 = rr- ::::; 
12 "'1 

54. 4, 
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. Now, using the values in ·Table III, the equation 

2 2 4 2 
( •. 028 + . 067 y 1 )y2 = . Iy 1 . + . 05y 1 + . 006 (9) 

is obtained. · If 

2 4 2 2 
Yz >(.lyl +.05y1 +,006)/(.028+.067y1 ), 

then V 4 · is greater than v 3 and g 3 has smaller variance. If the 

inequality is reversed then V 4 < V 3 and Q 4 has smaller variance. 

Substitution of y 1 2 
I 

2 y 2 = 56. I 

... 2 
and y 1 · into (9) gives 

2 

and 
2 

Yz = 81. 3 

respectively. 
,... 2 

But 'Yz = 38.8 < 56. l < 81.3. 

Thus, since both results indicate that 

2 
Yz < 

4 2 2 
{. I y 1 + • 05 yl + • 006)/(. 028 +. 067 y 1 ), 

we could conclude that Q 4 has minimum variance with respect to Q 3. 

On the basis of this information, Q 1 = • 052, Q 4 = 2. 83, and Q6 = 2. 02 

would be used to estimate cr 2, er 12, and (J" 2 
2 respectively. 

It should be pointed out that the method used for finding the esti­

mates of y 1 
2 did not involve any "a priori" information about the 

true ratios of variances. However, the method could be misleading 

since it was not rigorously defined and investigated •. 



CHAPTER V 

THE JOINT DISTRIBUTION OF A MINIMAL SUFFICIENT 

STATISTIC FOR A GENERAL CLASS OF DESIGNS 

General Discussion 

In Chapter UI the .joint distribution of a set of minimal sufficient 

statistics for a BIB design was found. This chapter will be an, exten-

sion of that derivation in the sense that a general class of designs 

will be considered. This general class of designs will include the 

BIB and the partially-balanced incomplete block design as subsets. 

The principal differences between this chapter and Chapter III 

result fro,m th;e development of the o:rthogonal, trans<formation on the 

vector Y as given by Weeks [ 3]. 

The construction of the orthogonal matrix P(which is used in 

the special case .of the BIB) makes use of th<;l known characteristic 

roots of A I A where A 'A is the matrix in the system A 1A. T = A 'Y. 

However, for the general class of designs all of the characteristic 

roots of A 'A are not known. It is assumed that ·there .are s distinct 

' positive characteristic roots of A'A denoted by d 1, d 2, , d of 
s 

multiplicities m 1, m 2, .• , , ms respectively. This distinction 

has mainiy dictated the construction of the orthogonal matrix U as 

defined in Chapter II. 

In addition to the joint distribution of the minimal set of sufficient 
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statistics their expected values and variances will be found. 

A Set of Minimal Sufficient Statistics for a 

General Class of Designs 

A set of minimal sufficient statistics for .a, general das s of 

designs has been given by Weeks and Graybill [ 4] assuming Eisen-

hart's Model II. Before giving these statistics it should be noted 

that the condition b > t is not imposed for the general class of 

de signs. 

The 3s + 1 statistics of the minimal set are as follows: 

s 1 = y 

,-1 ,:, * 
Sz = k Y 1X 1P 21P 21 1X 1,Y 

- 1 ,:, * s ' = r Y'AP31 p31 'A'Y 3 

s ' = y •p-p 'Y 
4 4 4 

s Si = k- ly 'X lp Zip 2i 'X 1 1 y i = 2, . ' s 

s6i = d. - lY'AP3.P3. 1A 1Y i = 2, ' s 
1 . 1 · 1 . . 

s 7i = k-l Y 1X 1NP3iP 3i 1A'Y i = 2, . . . ' s 

,:, , * 
where P 21 , P 3 II' and P ;3i are as defined in Chapter II. The matrix 

notation for these statistics will now be expressed in terms of the 

partitions of Z which is to be defined. 

From the distributional properties given in Chapter II we have 

that U ,, Y-MVN (U 1 µ , U I t, U). Let Z = U I Y and partition Z 

as 
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with the dime.n;s.iqns of the partitions .as follows: 

3. . * . z 2 (p,x 1). where p = t - 1 ... m 1, 

4. z3 (~ 1 x1), 

* 5. z3 (p x 1), 

Q, z4 (u x 1) where u, = M - b - t + 1. 

The partition of U as given in Gha.pte r· II is 

In order for the pa;rtition of Z to correspond to that of U, the parti-

tion 

is used. Hence, 

and 

M-1/ZJ~ y z1 

* .. 1 · •x ·•y zz k P 1 21 

k - l/ 2P · 'X · . 'Y z * 
U'Y = 2 1 2 z. = ·=· 

-1/ 2 * o··. P 'A'Y z3 . A'A 31 

D-l/Z P 'A'Y * . A 'A 3 z3 

p 'Y 4 Z4 
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It should be noted that 

.-J/2._,, I - -1/2 
DA'A -P3 -DA'A ·[pp33;'],· = 

d -l/~p3 ·' 
s s 

where the! d. (i = 1, 2, ... , s) are the s distinct positive charac-
1 1 

teristic r~ots of A 'A •. Weeks and Graybill [ 4] have as,sumed that 

d 1 = r. 

Next,. partition P z as.· P 2 = [ P 22,. P 23, 

k - J/1? 2'X.1 'Y = 

k - 1/ Zp t X. I y 
22 1 

k .. 1/ 2p ' 'X I y 
23 1 

P ] to obtain ' Zs · 

2 22 

= 

where the dimension of z 2. ·is m. x 1 for ·i = 2, ... , s. 
1 1 

, P 38] to obtain 

, d -l/2p 'A'Y 
· 2 · 32 

Dl/2pN 'A'Y -
A :tA 3 · -

d3- l/ 2P33 'A 'Y 

d - l/ 2P 'A 'Y . 
s 3s · 

. where the cj.imension of z3. · is m. x 1 . £or i = 2, ..... s. U 'Y can 
· 1 1 

now he ·r:ewritt;en a:s 



U'Y = 

M-l/2Jl y 
M 

k -l/2p' *IX 'Y 
21 · 1 

k- l/ 2p 'X 'Y 
22. l 

k-l/ 2p 'X 'Y 
2s l 

r - 1/ 2p 3,:~ 'A 'Y 

d -l/ 2p 'A'Y 
2 3 2 

d -l/ 2P 1A 1Y 
s 3s 

p I y 
4 

2 2s 
= = z. 

Z3 

2 32 

From this partitioning of U 'Y = Z the following relationships 

exist: 

l. 

2. 
-1 ,:, * 

z 2 1 z 2 = k y 'X l p 21 p 21'X1 1 y = s 2 

3. 
-1 z 2/Z 2i = k Y 1X1P 2iP 2/X 1 1Y = sSi 1 = 2, .. , , s 

4. 
-1 :::;( * 

z 3' z 3 = r y 'AP 3 l p 31 ' A ry = s 3 

5. z 3/Z 3i = di-lY 1AP 3iP 3/A'Y = s 6 i i = 2, ... , s 

6. 

7. 

z I z = y 'P p I y = 
4 ·4 4 4 s4 

z 2i I z 3i =(kdi) ..,.1/ 2y 'X lp2ip 3i 'A 'Y 

· - , -1/2' 
where k. = [d.(r-d.)] 

1 _,,.. 1 1 

= k.s 7 ., 
1 1 

i = 2, . • .. I s II 

In explanation of the seventh relationship it can be shown that 
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p 2. , = [ k( r ""d.)] - 1/ 2p 3. , N. 
1 1 1 

Hence, 

z 21.1 Z. = [k2d.(:r-d.)]-l/ZY'X NP .P .'A'Y 31 . 1 1 1 31 31 

- 1/ 2 -1 I I = [d.(r-d.)] k Y 1X 1NP 3 .P3 .A Y 
l 1 1 1 

The Joi';ntDistribution of s 5 ., s 6 ., and s . (i = 2, ... , s) 
1 . 1 71 

In order to find the joint distribution of the 3s - 3 statistics 

sSi' s 6i' and s?i' the covariance matrix of Z as well as· E(Z) must 

be found. These two matrices will be presented in correspondence 

with the partition 

First, 

>Jc tr 
Z I = [ z 1 ', z I z I z I z I z I ] 

2' 2' 3' 3' 4 . 

E(Z 1) = [µMl/z, cp, cp, cp, cp, cp]. 

In explanation of the first element, we have 
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- M 
All the other elements of E(Z) are zero since · E(Z) = (U 1 µ )= µ U 1J 1 

and all columns of U except the first add to zero. 

The covariance matrix of z [ 4] is given as 

Gl cp cp cp cp cp 
cp G2 cp cp cp cp 

* ,,, 

cp cp G2 cp G23 
-·· cp u•,t u = 

cp cp cp G3 <p cp 

cp cp 
.. , 

.Gz3": cp G * 3 
cp 

cp cp cp cp cp G4 



where 
2 . 2 2 

G 1 =er tker 1 +rer 2 , 

2 2 
G 2 = [ er + ker l ] Im! +w , 

,:, 2 2 -1 2 
G 2 = [ er · + ker l ] Ip + k er 2 . DNN 11, 

,):. -1/ 2 2 1/ 2 ......, 1/ 2 
G 23 = k cr 2 DNN I DA 'A ' 

2 2 
G 3 = ( er + r er 2 ) Im 

1
, 

* 2 2 -
G 3 = er \ + er 2 D A'A ' 

and 
2 

G 4 = er Iu • 

In explanation of the above notation, we have: 

"' 
l. DA'A = 

d I 
sm 

s 

where d. and m. (i = 2, . . , , s) are as defined in Chapter II. 
1 1 

2. 

k(r -d 2)I mz 
k( r -d3)I 

m3 

,:c * ,; 

k(r-d )I 
s m 

s 

• 

Expressing. G 2 , G 23 , and G 3 in terms of their respective 

diagonal elements, we have: 

1. :;: 
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2. 

[d(r-d)] J/2cr2
2I 

s s m 
s 

3. 

From multivariate normal theory a necessary and sufficient 

condition for the subvectors of Z to be jointly independent is that 

corresponding submatrices of U 1 /:, U be equal to the null matrix. 

Hence, from the covariance matrix of U 1Y = Z we have that Z 1, Z 2, 

Z 3, and z4 are mutually independent and each jointly independent of 

* 

* The only dependency is between the subvectors Z 2 

and z 3 . From these considerations the independence of four of the 

3s + 1 suffident statistics can be determined. 

W ·t· -M- 1l 2z z •z z •z d r1 1ng s 1 - 1, s 2 = 2 . 2, s 3 = 3 3 , an 

, 4) are mutually 

independent due to the mutual independence of the Z. (j = 1, ... , 4). 
J 

Applying still another theorem from multivariate normal theory 

[ l] we have the result that 

where 

and 

* z = 
* ,r z 2 1, Z ,,, '] 

3 l x 2p 



* 
,,, ,,, 

G2 G23 

7/',:' = ,,, 

* .... 
G23 

I 
G3 2p x 2p 

;:,:: * 
By partitioning Z 2 and Z 3 as previously defined, 

(i.e., z,:,, = 2 22' ... , 2 2s' 2 32' ... , 2 31) 

we see that the covariance matrix of z* is 

where 

and 

* cov ( z ) = ,, 

-

"* c I 
s m 

s 

* 2 2 2 
ci =er +ker 1 +(r-di)o- 2 , 

,;, _ 1/ 2 2 
d. - [d.(r-d.)] 0-2 ' 

l l l 

,:, 2 2 
e. :::: er + d. o- 2 l l 

...... 
d ,,.I 

s m 
s 

<p 

e "*r 
s m 

s 

for i = 2, . , . , s. For the subvector Z the only dependencies 

between Z 2i and Z 3j are when i :::; j (i, j = 2, 0 0 0 ' 
s). 

,.:, J ) d. I 
1 m. 

l. 
:;c 

e. I 
1 m. 

l 

Hence, 

for i = 2, ... , s, where Z 2i and z 3i have dimension mix 1. 

* 
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Let [: ~i] be denoted by Then, cov ( Z 231 '\ z 23j ) = <p 



for j, (i, j = 2, • • . , s). 'Now, partition z 2i • and z 3i as 

and 

z2.'=[z2·',·z2.' 
. l 11 12 ' ' ' ' z 2i 

m. 
l 

: [ Z3, ' Z3· ' 
11 12 ' ' ' ' z 3i 

m. 
1 

* Again, from the covariance matrix of z 23i we see that the only 

dependencies between z 2i and z 3 . are when a 
la• 

= a•, (a., 
Q 

ct I 

Thus, denoting la as Q. , we have 
1 

= 1, 2, ... , mf·~·z· 
z3i 

a 

Q. rv BVN 
1 

Q ~~: dij_: ·,. for 

• e. 
l l 

a = 1, . 2, · .•. , m .. 
l 

Also, 

cov ( Q. , Q. ) = cj> . if a :/= a 1 • 
1 1 I 

0. Q 

Recalling the theorem in Chapter III ·as given by Anderson [ l] we 

have that 
m. 

l 

A. = I; Q. Q; I 

1 
a=l 

1 l 
Ql ct 

is distributed as a W1shart with parameters 

Now, writing 

m. 

= ~ * J Ci di 

t.c * 
d. e. 

l 1 . 

J:; l Q. Q. I 

a=l 1a \1 

as a matrix we have 

m. 
1 

and 
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m ~zj m. 
i l 

A. = 1:; [ z Zi ' z3i ] = 1:; 
l 

a=d 3i o ::::; 1 a 0. . 
a 

Z3. z2 .. 
l l " a a 

A.=~ z2ia 2 

i z 3i z 2i 
Q O 

[

8 5· l 

= ki 8 7i 
k.s 7 .. J.-'. 

. l l . 

. 86. 
. l 

Hence, 

A. rv W (-9'_., :m.J (i = 2, . · •• , s) 
1 ri .1 

h.-{s 5 ., s 6 ., s 7 .) = 
l l l l 

IA l{l/Z){m.-3) . _ _!t A ~ 
. 1 exp 2 . r . ,-, . 
l l l 

Now, since A. and A. are independent for i -:/:- j, we have 
l J 

s 
= II h.{s 5 ., s 6 ., s 7 .) 

i= z 1 1 1 . 1 

Hence, the joint distribution is the product of s - 1 independent 

Wisharts. 

For the joint distribution of the 3,s + 1 statistics, it remains 

since each of 

and s 4 is mutually independent of all the other statistics. 



Tre J6int Distribution 6£ s 1, s 2, s 3, and s 4 

As was noted in the previous section h( s 1, s 2, s 3, s 4 ) 

= f 1 (s 1)f{s 2)f{s 3)f{s 4 ) due to the independence of the four statistics 

involved. In this section the distributions wi 11 be found for each of 

the four statistics s 1, s 2, s 3, and s 4 . 

Distributfon . bf s l ± y ~ •· • 

If Y r,v MVN (µ ,t )1then BY,v MVN (B µ , B t B 1 ) 
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where Bis a qxM matrix of rank q < M. [l] Hence, expres-

1 J 1 . sing s 1 as s 1 = M MY, we have that 

1 1 1 lv1M 
s l ,vN( M JM jJ.' 2 JM ~J l ) 

M . 

_ But fJ. ::;: 
M 

fJ, J 1 1 where µ is a scala:; and 

Therefore, 

and 

Thus, 

t = [ x l 2\ • (j 1 2 + x2x 2 ' (j 2 2 + (j 2 IM] . 

l l M 
= J Jl fJ, = fJ, 

M M 

M 
( ) = M .. 2[ J l x x , J 2 ix x 'JM 2 

var s l M 1 · l l a: l +J M 2 2 1 c; 2 

l M 2 
+ J MJ l c; ] 

-2 .2 l b 2 2 l 1J 2 2 = M [ k J b J l c; 1 +r J t J l cr 2 + M<T J 

-1 2 2 2' 
= M [ko- 1 +rc;2 +a-] 

Let the functional form of this distribution be denoted by f 1(s 1). 



Before proceeding to the other distributions, it will be helpful to 

make use of a theorem given by Graybill [ 2] which states that if 

YtvN{µ, :Z), thenY1BY...;..x• 2 (k, ~= !-µ'Bµ) if Bis of rank k 

and B t is idempotent. This theorem will be used in finding the 

distributions of s 2, s 3 , and s 4 . 

Distribution of - l .. * * k Y' X P P 1- X 1 'Y - - ~l-,-21-1-

-1 * * Let B 2 . = k ,_ X 1 P 21 P 21 'X 1 1• Then 

B ztB z=k-zx lP ziP 21 *•x 1 '[X lx i'tr 12+x2x2' a-zz 

2 ] X p *. .. *1 X I 
_+a-IM l 21 pz'l ·1 

But 

"*-. - * 
P N'NP cl> 21 21 = m {w 

and 

*, - -* 
p21 .p21 = 1m 1+w · 

Therefore, 

-B t 
2 

. -2 ,:, 2 2 2 * 
B2 = \-XlP21 [{O"l k.+O" k)Iml+w]P21 'X1' 

-1 2 2 * · * 
= k {crl k + er )XlP21 P21 , X/ 

2 2 
. { IT + kcr l ) B z· 

* 2 2).., l * ...,;.. B-.. 2* * .LetB2 =(cr +ko- 1 B 2. Then, B 2 ,;., = B 2 and 

''B * I 2 * 1- * y 2 y"' x ' { p {B 2 ) , 2 µ I B 2 . µ)' 

where * * p{B 2 ) denotes the rank o~ B 2 . 
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,:, 
Now p (B 2 ) ;:: p (B 2). However, it can be shown th.at B 2 is 

· idempotent. Hence, p (B 2) . :;: tr (B 2) and 

Also, 

* p ) 
21 

I 

1 - , *- _ 1 2' 2, · 2)] -1 1 ;* ,:., 'JM 2 fJ. B2 fJ,-zfJ. Lk(.<r +.k<rl JMXlPZ,1 P21 x.1 1 . 
I 

But Ji1X 1P 21 *;:: k JtPzl * and this operation is adding the elements 

* · ef each column of P 21 .. Since the first column of the orthogonal 

* * matrix P 2 , of which P 21 is a partition, is a vector of the form 

-V2b • b J 1 , the other columns of P 2 must add to zero. Hence, · 

·.1 *' 1 -. . *-J b 1 P 21 . ;:: <p and 2 fJ, B 2 fJ. ;:: 0 . 

or, 

. It has now been shown that 

( o- 2 + k <r 2) - 1 
1 

. Let the density of s 2 

2 s 2 ,v X (m 1 + w). 

be denoted by £ 2(s 2) . 

Distribution of s3 ;:: r-l Y' AP 3 t£31 *1A' Y 

L t B ;:: . - 1 AP * P 31 * , A'· Then, 
e 3 r ·· 31 

* .2 2 2- * * 
B 3~ B3;::r -2AP3 ;p 31 'A'[ X lX 1'<r 1 +X2X2 '<r 2 +cr-i:M]AP 31 p 31 'A' 
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P *,AX , A. * _ *, 1 , *- 2 But A'Xl.:;:: cp and. 31 2x 2 . P 31 - P 31 A AA AP 31 - r Im 1. 

Therefore, 



. ..,/, -1 2 2 * * . 
'B 3+-'B 3 = r (er 2 r + er )Al? 31 p 31 'a I 

2 2 . = (a- +ro-z )B 3° 

. * 2. 2 -1 *""' * * Let B 3 = (er l+ rer 2 ) B 3• Then B 3 · ~B 3 = B 3 and 

* 2 * 1 - *-Y'B3 Y-x, (p (B3 ), z µ'B3 µ ). 

* Next, p(B3 ) = p (B 3) •. But it is. easily shown.that· B 3 is idempo-

tent. Hence, 

* 
p (B3 ) = * * -1 

tr {B 3) = r tr(P 31 'A'A P 31 ) = 

-Also,· 
l 

1 - * - 1 2 · 2 2 .,. 1 * *• 1 M 2 µ 1 B 3 .· µ = 2 µ (er +r IT 2 ) JMAP 31 p 31 A J l = O 

since 
1 

JM,A, = cp. Thus,·· 

Y' B3*y = (cr-2+rcr-22)-1Y'B3Y = (er2 + rer22)-l s3 

· and 

Let the density of s 3 be denoted.by f/s). 

Distribut;i.o~,of s 4 = Y'P 4P 4 i 

Let B 4 = P 4 P 4 •. 'Ih,en, 

B- """ .B: -p P ' [ zx x '+ zx x '+. Zr . ] P P ' 
· 4 ~ 4 - 4 · 4 · er 1 1 1 er 2 · 2 2 er ""M 4 4 • 

. We_eks and GraybiU [ 4] have· shown that P 4 •x 1 = cp and P 4•x2 = cp. 

Hence, 
' 

·""" [2 '] 2 2 +:-. . B 4 ~B4 = P 4 er 1?4 1P 4 P 4•=cr- P 4IU:P 4 1 = er P 4r 4 1• 

Let * -2 B 4 :::: er B 4 • Then, 

B *,EB*_= B * 
4 4 4 

8 2. 



and 

* 2 * 1 - *-y 'B 4 y - x I ( p (B 4 ), z f.L 'B 4 . f.L ) • 

* But p (B 4 ) = p (B4 ) · and B 4 is idempotent. Hence, 

* p(B4 ) = tr B 4 = tr(P4 1P 4 ) = tr Iu = u 

. where u = M - b ;.. t + 1. Also, 

* 1 - 1 - 1 2 1 p I JM _ O Z . f.L . B 4f.L = 2 f.L J Mp 4 4 1 ~ 

since the elements in each column of P 4 add to zero. Thus, 

Y' B 4*y = cr- 2 Y 1B 4Y = cr- 2s 4 

and 

-2 2 
er s 4''' X ( u) • 

In summary the distributions of the four statistics are 

-1 2 2 2 s 1 r..,1 N(µ, M [o- + kcr 1 · + r cr 2 ]), 

2 2 2 
s 2 r..J ( cr + kcr 1 ) X ( m l + w) , 

2 2 2 
s 3 ,v (er + r <Tz.) X (m 1), 

and 

2 2 
cr x ( u) . 

Thus, due to the independence property, it can be stated that 

This joint distribution is the product of a normal distribution and 

three indeJ?endent chi-square distributions. 
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The, Joint Distribution ofthe 3s + 1 Statistics of the Minimal Set 

Knowing the joint distributions h of s 1, s 2, s 3, and s 4 and h 1 

of sSi' sbi' and s?i' (i = 2, •.. , s).., and since h and h 1 involve 

independent variables, we can now def:i,ne the joint distribution h. ( say) 
0 

of all the statistics in the minimal set for a general class of designs. 

Hence, 

s 
II h.(s , s , s ). 

i=2 1 Si 6i 7i 

With the knowledge of this distribution we are now in a position 

to give the expected values of the 3s + 1 statistics and the correspond­

i ng covariance matrix .. Since s 2, s 3, and s 4 are constants times x 2 

variables their means and variances are easily obtained by knowing 

their respective distributions. The means and variances of the statis-

tics involved in the s - 1 independent Wis harts are also readily acce s -

sible by the same procedure used in Chapter IV. These derivations are 

the content of the next section. 

Expected Values and Variances of the 3s +: 1 Statistics 

Expected Value and Variance of s 1 

Since s 1 is a normal variate whose distribution is known, we 

have E(s 1) = µ and var (s 1) = M"" 1 (cr 2 + kcr'12 + r cr 2
2). 



Expected Value and V~riance of s 2 . 

. · . 2 . 2)-1 l ) 
It :has been shown that (<t + ko- 1 s 2-x (m 1 + w · Thus, 

from the distributional properties of a x. 2 variable we have that 

Hence, 

Also, 

2 2 -1 
var [(q- + ko-1) ,sz] ;:: 2(ml + w). 

Hence,· 

Expected Vatue and.· Vari.ance of . s 3 

' ·2 2-1 '2 
Since (er + r cr 2 ) s~-x (m 1), we have; by, the same method 

. ) .2 2 . { ) ( 2 22 previously used, E(s 3 ::; o- '. r0" 2 )m 1 and var s 3 ::;2 o- +ro- 2 ) m 1• 

Expected Value and Va1:iances of· s 4 

Since cr~ 2 s 4-x2{u), .we have E{s 4 ) ;::: 0" 2u and var (s 4);:: 

Expected.Values of s 5i.?....,...s 6 i, and s 7i {i::; 2, •.• ; s) 

It was previous Ly shown in this chapter that 
m. 

A. = 
l 

l 

~ Q. Q. I 
. l l a;::l a tt 

is distributed as a Wishart with covariance matrix 

$.::; 
l [ * *] c. d. . 

l '.l 

* * d. e. . 
l .. 1 

where 

4 
Zo- u. 
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* · 2 2 2 
c. = er + k er 1 + ( r -di) er 2 ; 

1 

* · l/2 2 
d. = [di(r-d/J er 2 , 

1 

and 

* · 2 I 2 
. e. = er + d. O" 2 • 

1 1 . 

But 

~•s1 ki97J A -. -
1 k.s 7. 

1 1 s6i 

where ki = [ di(r-di)] -l/ 2• Hence, by the same. procedure used in 

Chapter IV, the expected values and variances of the elements of A. 
1 

are easily found. 

The expected value of the (p, q)-th element of the matrix Ai is 

m. times the corresponding element of "t.. Using this fact, the 
1 1 

expected values of sSi' s 6i, and s 7i are as follows: 

1. E(s5i)::;: mici* = mi[er2+kcrl2+(r-di)o-22]. 

2. 

3. 

* :;; m. e. 
1 ], 

. [ 2 d 2] = .m. O"" + .er~ • 
1 1 c. 

-1 * ::; m.k. d. 
l 1 ·1 

= m.[d.(r-d.)] l/ 2[d.(r-d.)] l/Zer 22 
1 l 1 l 1 · 

2 
~ m.d.(r-d.) cr 2 • 

1 1 1 

These three expected values hold for i = 2, .•• , s. 

Variance of s 5i~6i' and s 71 (i = 2, ••. , s) 

H A. denotes the (p, q)-th element of A. and o- denot~s the 
lpq . 1 pq 

(p, q)-th element of '1,t., then the general expression for the covariance 
. 1 



of any two elements of A. is 
l 

. cov (A. 
l 
pq 

, A. ) = rn.(o- ,er · ,+o- ,o- _ ,) . 
lp'q' i pp qq pq' qp 
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Using this generai expression, the variances of sSi' s 6i' and s ?i 

are as follows: 

I. 
*2 2 2 2 2 

var s 51 = 2rn.c. ·· = 2rn.[ CT +ko- 1 +(r-d.)0" 2 ] 
l l . l l . 

2. 
· *2 ,2 2 2 

var s 6 . = 2rn.e. = 2rn.[o- +d.CT 2 ] 
l l·l l ·l 

3. -2 *2 * * var s 7 . = k.. m.[d .. +c. e. ] 
l l. . l l l l 

) [ 4 . d 4 2 .2 2 2 
= d.(r-d. rn. O" +2d.(r- ,)0" 2 +kcr O"l +ro- 0" 2 l l l l l 

These three variance!;! hold for i = 2, ... , s. 

Covariance of (s5 ., s 6.); (s 5 ., s 7 .); and (s6 ., s 7 .) (i = 2, •.. , s) 
, · 1- l -- l - l l - 1 

Again using the general expression for the covariance of two ele-

ments of Ai as previously given, the covariances of sSi' s 6i, and 

s 7i are as foUows: 

I. 

2. 

3. 

*2 4 cov (s 51., s 6.) = 2m.d. = 2rn.d.(r-ddo- 2 . 
·l 11 11 l· 

- 2 * * · cov (s 51., s 71.) = · 2rn.k. c. d, 
1·1. l l 

cov (s 6 ., s 7 .) 
l . l 

4 2 2 2 2 = 2rn.d.(r ... d.)[(r-d.)0" 2 +O".CTz +ko- 1 o- 2 ]. 
1 l l · 1 

- 2 * * = 2m.k.. d .. e. 
l 1 l 1 

4 ·2 2 
::: 2m.d.(r-d.)[d.o-2 +er crz ]. 

l l 1 1 

As before, the three covariances hold for i = 2, ••. , s. 

Tab.le --X summarizes the preceding drivations and gives the 
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expected values and tlie covariance matrix of the 3s + 1 statistics. 

Using the results of this chapter, one could now find unbiased, estima-

tors of the· different variance. components based on the minimal set of 

sufficient statistics and 'the respective variances of the estimat9rs. 

Certainly, as in the special cases of the BIB designs of Chapter IV, 

any variance of an estimator will be a function of the·true variances 

themselves. This fact extremely complicates the search for an. esti-

mator with the miQ:imurn va.riance property .. Excluding special ca.ses 
' . 

of the general class 0f designs, the matter is further cempli.cated by ., 

the lack of knowledge of the characteristic roots of A 'A and their res-

pective multiplicities. These statements are obvious upon. examination 
' . 

of the variances and covariancef;l given in Taql!=) ·. X., 



TABLE X 

EXPECTED VALUES AND COV:,f\.RIANCE MATRIX OF 
THE MINIMAL SUFF IGIENT STATISTICS FOR 

A GENERAL CLASS OF DESIGNS· 

89. 

Statistic Expected Value Covariance Matrix 

Hl 

Hz 

H3 

s 
I 

82 

63 

84 

8 52 

8 62 

8 72 

= 
::: 

= 

1-1 

2 2 
( m 1+w) ( er + ker 1 ) 

. 2 2 
m 1(er + r cr 2 ) 

2 
u er 

· 2 2 ~ m ;J er+kffi:+ ( r -d;;Jer 2 · 

2 2 
m;J er + d 2er 2 ] 

m 2 d 2 ( r - d 2) er 2 
2 

2 2 2, 
mJcr +lw1+(r -dJer2J 

[ . 2 2 
m cr+dcr] 

s s 2 
2 

h1 d (r -d )er 2 8 s s 

-: 1 2 • 2 . 2 M · (er +kcr 1 +rcr 2 ) 

Hl 

H2 

H3 

H4 

1-\2 1%621\72 

1\621%2 H672 

f\721\72~2 

2(m 1 +w)(cr 2 +kcr 1
2) 2 where w = b - t 

2 2 2 
2~ 1 ( er + r cr 2 ) 

.4 
- 2u cr where u = M - b - t + 1 

HSs J-\6s H57s 

H56sl\s H67s 

H57s H67s H 7s 

HSi = 
( ·2 ··.2 22 

2mi er +kff l +(r ... di)er 2 ] i = 2, ' s 
... 2 2 2 = 2m.[er + d.er 2 J 

1 · 1 
i = 2. . . . ' s 

4 4 2 2 2 2 22 
= m.d.(r-d)[er+2d(r-d.)er 2 =+kcr er 1 +rer er 2 +kd. er 1. cr 2 ·] 

11 1 1 1 · 1 
i = 2, ... , s 

2m. d. (r-d.)er2
4 i = 2, ... , s 

1 1 1 

[ 4.·· ·2 2 2 2 2m.d.(r,-d.) (r.,,d.)cr 2 · t er cr 2 + k er 1 er 2 ] 
1 1 1 · 1 · 

2m.d.(r-d.)[d.er 2
4 + er 2cr 2

2J 
1 1 1 1 , . 



CHAPTER VI 

SUMMARY AND EXTENSIONS 

A set of minimal sufficient statistics has been given by Weeks and 

Graybill [4] for a general class of de signs assuming an Eisenhart 

Model IL All the statistics of the minimal set,however, are not inde­

pendent, This fact complicates the search for unbiased estimators of 

the variance c:omponents unless the distribution of the minimal set of 

sufficient statistics is known. The complication is encountered when 

using an estimator which is a function of dependent statistics of the 

minimal set. If the distribution of the minimal set is known, then the 

variance of any estimator based on the set of minimal sufficient statis­

tics may be found and variances of different estimators of the same 

variance component can be compared. 

As a special case of the general two-way classification model, 

the joint distribution of a set of minimc1.l sufficient statistics for the 

BIB design has been derived in Chapter IIL This derivati0n was under­

taken on the premise that the minimal set contained. six statistics. 

This condition is equivalent to imposing the restriction that b> t. If 

b = t, the minimal set contains only five statistics. 

Knowing the distribution of the six statistics of the minimal set it 

was possible t0 find their respective va.riances and covariances .. · Then, 

using different linear functions of statistics from the minimal su~ficient 
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set, several unbia-sed estimators of each of the variance components 

cr 2, cr 1
2, and cr 2

2 were chosen and their variances compared. 
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Under certain conditions on one ofthe classifications (say blocks) 

of the two-.way classification model; it has been shown for some par-

ticular BIB designs that the variance of one es.timator of an individual 

variance component is uniformly smaller than the variances of other 

chosen estimators. 

Other special cases of BIB designs which fail to conform to the 

given conditions are considered in mol,"e detail. For these designs 

comparisons of variances of the different estimators are presented in 

graphical form showing those regions for which the vari~nces differ 

in magnitude~ These regions are £unctions of the particular BIB 

design under consideration and the ratios of the true variance com-

ponents which were assumed in the model. 

Chapter. V pertains to the .,extension of the derivation of the dis-

tribution of the set of minimal sufficient statistics to a general class 

of designs. For this general class the .. :rni:himalset:contains 3s + 1 

statistics where s is the number of distinct positive characteristii:; 

roots of A 1A and A 'A is the coefficient matrix of 'T in the system 

A 'A 'T == A 'Y. The restriction b > t is not imposed in the general 

class of designs. 

The joint distribution of the statistics of the minimal set for 
: 

the general case is found to be the product of a. normal, three inde-

pendent chi-squares, and s -1 independent Wis harts. The expected 

values and covariance matrix of the 3s + 1 statistics are also given. 

In Chapter IV, three systems of equatio~~ each having an infinite 



nurnber of solutions, were given for finding unbiased estimators of 

2 2 2 
(J' , (J'l , and (J' 2 . Iri that chapter, certain soluHons of these systems 

were chosen tha.t yielded unbiased estimators which might normally 

be selectE)d when consider;i.ng the expected values of the statistics in 

the minimal sufficient set. 

In extern~ion of the results obtained in this thesis, other estima-

tors and, their variances could be investigated as a function of the : . 

unknowns (g 1, •.. , g6 ) in the three systems. That is, solutions 

of each system are functions of two arbitrarily chosen g. and any 
1 

estimator and its ·variance could be expressed in terms of these g. 
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values. Therefore, by incrementing the g values in some s:yst:ematic 

manr1,er, a sequence of unbiased estimators and their variances could 

be obtained, thereby gaining insight into the sea:ech:fcfv ,.miriimurn 

variance unbi;ased estimators. 
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