
A JOINT INTEGRAL TRANSFORMATION 

APPROACH TO GOODNESS OF FIT 

By 

CHARLES CLEVELAND STEWART 
I/ 

Bachelor of Science 
Okl~homa State University 

Stillwater, Oklahoma 
1963 

Mq.ster of Science 
Oklahoma St;;i,te University 

Stillwater, Oklahoma 
1966 

Submitted to t}).e Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF PHILOSOPHY 
July, 1971 



.. 

/ 
.j' 

.if .• 
. i' 

A JOINT INTltQRAL TRANSFO.RMATION 

APPROACH TO GOODNESS or FIT 

Thea ii Approved: 

803752 

H 

f ,. 



ACKNOWLEDGMENTS 

I wish to express my sincere gratitude to Dr. J. Leroy Folks 

for suggesting the thesis topic and for serving as chairman of my 

advisory committee. His comments, guidance, and especially, long 

patience, were deeply appreciated. I also wish to express my apprecia ... 

tion to Dr. David L. Weeks, Dr. Jeanne L. Agnew, and Dr. James E. 

Shamblin for serving as members of my committee. 

Acknowledgment is particularly due to those responsible for the 

National Defense Education Act Fellowships. Special thanks also goes 

to Mrs. Mary Bonner for the diligent work in the typing and preparation 

of this thesis. 

Last, but not least, I wish to express the deepest appreciation 

to my wife, Dixie, for all those things which cannot be said with words, 

;;; 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION . . . . . . . " 

II. BRIEF REVIEW OF LITERATURE 

Simple Goodness of Fit Hypothesis 
Composite Goodness of Fit Hypothesis 
Combining Independent Significance 

Levels . • • . . . . . • • . . , 

III. A JOINT INTEGRAL TRANSFORM APPROACH 

The Joint Integral Method of Combination 
Conditional Integral Transform Methods 

. . 
IV. PROPERTIES OF METHODS OF COMBINATION. 

Unbiasedness and Consistency • , ~ • . 
Bahadur Slope of Methods of Combination . . . 

V. GOODNESS OF FIT . . . . ' . . . . . ,. . . 
A Combining Levels Approach to Goodness 

of Fit . . , • • • . • • . , 
Synthetic Sampling Study • , . • , • 

VI . SUMMARY AND EXTENSIONS 

A SELECTED BIBLIOGRAPHY • r 

APPENDIX 

Page 

1 

11 

11 
18 

23 

25 

25 
37 

45 

46 
55 

77 

78 
90 

97 

101 

105 



Table 

I. 

II. 

III. 

IV, 

V. 

VI. 

LIST OF TABLES 

Empirical Percentage Points . . . . . 

Alternative Distributions Used in Study 

Percent Sensitivity at the 10 Percent Level 
of Significance; 200 Samples for Each 
Sample Size . . . . , . . . . . . . 

Percent Sensitivity at the 5 Percent Level of 
Significance; 200 Samples of Size 15 

Sums of Ranks of Sensitivities; First Set of 
Alternatives ....•....... 

Sums of Ranks of Sensitivities; Second Set 
of Alternatives . . . . . . . . , . . 

L !ST OF FIGURES 

Figure 

1. Rejection Regions for Methods of Combination 

Page 

. . 37 

. . 92 

93 

94 

95 

95 

Page 

r • • " ' 
53 



CHAPTER I 

INTRODUCTION 

Goodness of fit tests are concerned with testing that the proba­

bility law or distribution function of a sampled population is of a speci­

fic form, for example, normal with mean ten and standard deviation 

two. The broader problems of testing that a sampled population has a 

distribution function belonging to a parametric; family, and that two or 

more sampled populations have the same distribution function are also 

classified as goodness of fit problems. 

This study is primarily concerned with constructing and evalu­

ating test statistics for the simple goodness of fit hypothesis; that is, 

the population distribution function F( ·) has a completely specified 

form F 0 (·). The composite goodness of fit hypothesis, that is, 

specifying the form of the distribution function only up to certain 

unknown parameters, is discussed briefly in Chapter II and then agq.in 

in Chapter VI. The problem of testing that two or more population 

distribution functions are the same is not considered in thii;; study. 

The first analytic procedure for testing goodness of fit was 

given by Karl Pearson (35) in 1900, which is relatively early in the 

history of statistics. Thus this problem is a classic in the field and 

the literature is vast. Even the literature on the Pearson procedure is 

very extensive. A brief review of the literature is given in Chapter II. 
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Notation and DefinHions of Terms 

Before stating the goodness of fit problem a brief review of 

theory of significance testing is necessary. Let X be a random 

variable with sample space R (n~dimensional Euclidean space), and 
n 

probability distribution function F (.) e where e is a parameter belong~ 

ing to some parameter space n. The null hypothesis is then 

versus the alternative 

and 

Any statistic 
>:< 

T (X) with values in R 1 can be considered a 

test statistic for this hypothesis problem if its probability distribution 

function G (.) e is completely specified for 0 E (2Q , The obvious 

purpose of constructing a test statistic is to measure departure from 

the null hypothesis in the direction of the alternative. For practical 

problems it is usually possible to construct test statistics such that, 

say, small values clearly measure departure from the null hypothesis 

in the direction of the alternative (30). 

Accordingly, assume that T* (X) is chosen so that small 

values are more consistent with the alternative hypothesis. If x is an 

::}: 

ob served value of X, t (x) an observed value of 
~::::: 

T (X), then the 

statistical or significance test consists of computing the observed 

significance level given by 



where G 0 ( ·) is the (completely specified) distribution function of 

T* (X) for a e n0 . Clearly small valu.es of the significance level are 

more consistent with the alternative hypothesis. 

The observed significance level obviously satisfies 

* 0<.t(t)<l 

3 

However, not all intermediate values are necessarily achievable, For 

* example, if T (X) is a random variable 0£ the discrete type then the 

~( 

significance level of T can achieve at most countably many values, 

* If T is of the continuous type for 0 e n0 , then G 0 (.) is continu0us 

and * 1 ( t ) achieves all values in (0, l). 

The observed significance level * .t(t ) 

of the random variable 

* * L(T ) = G0 (T ) 

is itself the reaUzation 

with distribution function, for 9 e n and achievable 1 e (O, 1), 

where 

* * inf {t jG0(t) = 1}. 
-a:i< t< CXl 

Only achievable significance levels will be considered, If a e n0 then 

H; (1) will be written H~(.t), and H 0 {1) = 1 for each achievable 1. 
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If * T is of the continuous type for e ~ no ' then 

,~ 

H 0 (.0 = 1, for all J. e (0, 1) 

>'< 
that is L(T') has the uniform distribution on (0, 1). 

>'< 
If 8 e n A the value of H~ (J.) is called the sensitivity or 

>'< 
power of T' at significance level J. and parameter value 8, Though 

many criteria have been devised for comparing test statistics, it is 

generally agreed that one should attempt to choose a test with good 

sensitivity. Several definitions are necessary for definiteness. 

Definition 1. 1: Two test statistics T 1 and T 2 are said to be compar­

able if they have the same set of achievable significance levels. 

Definition 1. 2: If the alternative hypothesis is simple (QA contains 

one element e1), and if T 1 and T 2 are comparable statistics, then 

T 1 is said to be more sensitive than T 2 if 

for all achievq.ble J_ e [O, 1), with strict inequality holding for q.t least 

one J.e(O,l). 

Definition 1. 3: If a statistic T is a most sensitive test for all 8 e nA, 

then T is said to be a uniformly most sensitive test statistic. 

Definition 1. 4: A test statistic T>:< is said to be \:tnbiased if 

for all achievable J_ E [O, 1) and all a E nA. 
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In most testing problems the random varia~le X is of the form 

x = 

x 
n 

where the X. , i = 1, ... , n, have identical distribution functions and 
l. 

are independent; that is, the observed value x is a random sample of 

sample size n. It is of interest to inquire whether a test defined for 

each sample size n has good properties when n is large. One such 

.property, consistency, is defined below. Another, Bahadur (2) exact 

slope, is discussed in Chapter IV. 

Definition 1. 5: A sequence of test statistics {T(n)} is consistent ~r 

the alternative if, for eac4 0 e OA , 

lim H~n) (£) = 1 
n-+a:i 

where the convergence is point-wise for each J. e (0, 1), 

No attempt will be made here to describe procedures for con-

structing unbiased or most sensitive test statistics, The reader is 

referred to Lehmann (26), Fraser (17), Finley (13), or Moore (32) for 

such procedures, 

Simple Goodness of Fit Hypothesis 

The goodness of fit problem of primary interest for this study 

can be stated as follows: Let S be the set of all admissible dJstribution 



functions of a random variable X with values in R 1 , and let SA be a 

subset of S not containing F 0 ( · ) . Given a random sample 

x 1, x 2 , •• ,, xn, realizations of the independent random variables 

x 1, x 2 , ... , Xn each with the same unknown distribution function 

F(·) e S, test the null hypothesis 

versus the alternative 

6 

Because it is difficult, from a practical point of view, to select 

the admissible set S to be anything less than, say, the set of all con-

tinuous distribution functions and the alternative set SA = S - { F 0} , 

it is not possible to use the usual parametric methods for constructing 

"good" test statistics. (Lehmann (26)). Test statistics are usually 

constructed to be intuitively satisfying in the sense that they will provide 

some sensitivity to a wide class of alternatives. There are usually 

great mathematical difficulties connected with finding the exact sensi-

tivity of goodness of fit tests. There are, however, procedures 

available for obtaining good approximations. One such procedure, 

synthetic sampling, is used in Chapter V. 

There are, for some of the most well-.known procedures, some 

mathematical difficulties encountered in finding th~ exact distribution 

function assuming the null hypothesis. (See Chapter II). For such 

test statistics approximations are necessary for computing the signifi-

cance level. 
~I~ 

A test T is said to be exact if the exact form of the dis -

tribution function of T,:, is known assuming the null hypothesis is true, 



When the X. , i = 1, 2, ... , n, are of the continuous type each 
l 

with distribution function F 0 , then it is well-known that 

U., i=l,2,.,.,n, defined by 
l 

U. = Fo(X.), i=l,2, ..• ,n., 
l l 
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are independent, each with the uniform distribution on the interval zero 

to one. Suppose S is the set of all continuous univariate distribution 

functions (distribution functions of all random variables of the contin-

uoti.s type) and SA= S - {F 0} . Suppose we always perform this 

"integral transformation. 11 No matter what the form of F 0 , the appli­

cation of the transformation reduces the hypothesis problem H 0 versus 

HA to the problem 

H0: G(u) = G0 (u) , -oo < u < oo 

versus 

HA_: G(u) f G 0 (u) , -oo < u < oo 

where 

= {:: ~ : : < 1 

l,u>l. 

This transformation gives a "nonparametric" character to any pro-

cedure based on the random variables u 1,.u4, ... ,.Un. 

Composite Goodness of Fit Hypothesis 

In the composite case, the null hypothesis specifies only that 

F( ·) is a member of a certain parametric class C = { F 0 ( • ;:8), 8 e n} 



Typically C is the class of normal distribution functions and 

2 2 
0 = (µ 1 er ) , µ the mean and er the variance. Two methods for 

reducing the composite hypothesis to a simple hypothesis are given in 

Chapter II. A method for reducing the composite hypothesis to H0 
and H' A is given in Chapter VI . 

Combining Independent Significance Levels 

A gain let X l' x2 , . .. , Xp be independent continuous random 

variables, but now assume that the distribution functions are 

F 1 ( · ), F 2 ( · ), .. . , F p ( ·), respectively. If a modification to the integral 

transformation is applied, so that 

U. =F.(X.), i=l,2, ... ,p, 
l l l 

the p random variables U 1, u2 , ... , Up will again be independent 

uniform random variables. 

Now consider the problem of combining independent tests of · 

significance, Let T . , i = 1, 2, ... , p , be independent test statistics 
l 

for testing the null hypothesis 

H 0 . : 0. e n O . , i = 1, 2, ... , p , 
, l l , l 

versus the alternatives 

HA . : 0. e nA . , i = 1 , 2, ... , p . 
, l l , l 

That is, T 1 is a test statistic for testing B 0 1 versus , 
for testing HO, 2 versus HA 2 , etc. , It is desired to construct a 

8 

function of that may be used to test the combined null 

hypo the sis 



H 0 : a. e n0 . , i = 1, 2, ... , p , 
1 I 1 

versus the alternative 

HA: at least one a. e n'A . , i = 1, 2, ... , P . 
l I l 

Suppose that each T. is of the continuous type, and small 
l 

values are taken to be consistent with the alternative HA . . Let 
' 1 

re pre sent the distribution function of T. when a. E no .. 
l l ' l 

Then the significance levels given by 

L. = F 0 . ( T.) , i = l, 2, ... , p , 
l I 1 1 

will be mutually independent uniform variables assuming H 0 true. If 

each of the T. is an unbiased test statistic (DefiniUon 1.4) of H 0 . 
l ' l 
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versus HA, i, then H~~) (.R.) > .R. for all .R. e [O, 1] and ei e nA, where 

H0(i)(·) . represents the d~stribution function of L .. Even if some of 
. l 
l 

the T. are not unbiased, small values of the levels are taken to be 
l 

consistent with the alternative. In either case it is reasonable to state 

a reduced hypothesis in terms of the significance levels as follows: 

Given the random sample .R. 1, .R. 2 , ••. , .R.p (observed signifi­

cance levels) test the null hypothesis 

r .R. < 0 

H0: Hg)(.0 = .R. ' 0 < .R. < 1 ' i=l,2,,.,,p, 

1 ' .R. > 1 

versus the alternative 

E 
0 ' .R. < 0 

HA_:H~~)(.R.) J. I 0 < J. < 1 
' 

i=l,2, .. ,,p. 
l 

1 ' J. > 1 



Thus the problem of combining independent tests can be 

reduced to a "one-sided," simple goodness of fit problem. 

Now the observed values of the test statistics, t 1, t 2 , .•. , tp 

adse from data x 1, x 2 , .• ,, xp , respectively, Presumably, one 

10 

would base a test of H 0 either on the combined data x = (x 1, x 2 , ... , xp) 

or on t= (t 1, t 2 , .. ,, tp). It is assumed here,however,that either 

(i) the values or else the forms of the distributions 

of x and t are unknown , 

(ii) or this information is available but the distributions 

are such that there is no known or reasonably con-

venient method for constructing a single test of H 0 

based on x or t. 

·Numerous examples of such problems have been given in the litera-

ture. (For example see Graybill (19) and Rao (38)). The problem of 

combining independent significance levels is considered first (Chapters 

III and IV). The general goodness of fit problem. is considered in 

Chapters V and VI. 



CHAPTER II 

BRIEF REVIEW OF LITERATURE 

Goodness of fit problems have been the subject of almost contin-

uous research since Pearson's (33) test appeared in 1900. Therefore, 

a complete review 0£ the literature would be a study in itself. It is 

necessary to include a brief review as a source of reference for corn-

parative studies made in subsequent chapters. A more complete 

review of goodness of fit tests has been given by David ( 11), A 

description of procedures for c;ornbining independent test statistics 

has been given in a recent paper by van Zwet and Oosterhof£ (4 7), 

Simple Goodness of Fit Hypothesis 

Pea:i,-son x2 Test 

The test proposed by Pear son is commonly called the chi-

squared test. To apply the test, one first divides the range of X into 

k disjoint intervals I.= (a.,b.]. j=l,2,,,.,k. 
J J J 

Then the p:roportion 

of the null population, p., j = 1, 2, .•• , k, associated with eac:h interval 
J 

is computed; i. e,, 

= po [a. < x < b. ]. j = 1, 2' ... ' k • 
J - J 

The expected number of observations in each interval, E. , is then 
J 

given by E. = np. 
J J 

where n is the sample size. After the random 

1 1 



12 

sample has been collected, the observed number of observations in 

each interval, 0. , is tabulated. 
J 

The chi-squared statistic is given by 

k 
cs= ~ 

j=l 

2 
(0. - E.) 

J J 
E. 

J 

The statistic derives its name from :the fact that the limiting 

null distribution of CS is a chi-squared with k - 1 degrees of free-

dom. This fact was first demonstrated by Pearson, The approximate 

significance level of CS is given by 

where 
2 

X (k-1) denotes a chi-squared variable with k-1 degrees 

of freedom and cs the observed value of CS. 

The larger the E. , the better the approximation, Rules on the 
J 

size of E. are given in most textbooks. For example Cramer (9) 
J 

suggests that if E. > 10 , j = 1, 2, ... , k, the approximation is suffi­
J -

cient for ordinary purposes, However, in a recent synthetic sampling 

study by Kempthorne (20) it is shown that the approximation is not 

seriously q.ffected, for practical purposes, if the E. are all l and n 
J 

is as small as 10. 

The x2 test is the most versatile of all procedures. The 

random variable X can be either of the continuous type or discrete 

type. It can also be applied to the composite goodness of fit hypothesis 

(14) and to multivariate problems (20). The x2 test is unbiased and 

consistent (24) and the sensitivity can be computed by means of the 

noncentral chi-squared distribution (8). 



When the intervals I. , j = 1, ••. , k, are chosen so that 
J 

p. = 1/k, j = 1,, .. , n, the x2 statistic becomes 
J 

~·~ k n 2 
CS' = L: 0. - n 

n j= 1 J 
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where 0. is the ob served number of observations in the j th interval. 
J 

This form is used in Chapter V for comparison with test statistics 

developed in this study. 

Kolmogorov-Smirnov ,Test 

Another well-known test is the Kolmogorov-Smirnov test which 

was first suggested by Kolmogorov (23). It bears Smirnov' s name 

because Smirnov (44) gave an alternative derivation of the limiting null 

distribution and tabulated this function. To describe this test another 

definition is required. 

Definition 2. 1: Let X l' X 2 , , .. , Xn be independent and identically 

distributed random variables and let the order statistics be denoted by 

The empirical distribution function is defined as 

F (x) 
n 

{ 
0 , for x < X ( 1) 

= i/n ' for x(i) < x 

1 ' for x(n) ~ x . 

< x(i+l) J i=l,2, ... ,n-1 

The Kolmogorov-Smirnov statistic is 

KS= sup 1Fn(x)-F0 (x)I 
-ro<x<ro 
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that is, the greatest absolute vertic:;aL discrepancy between the random 

function F n(·) and the hypothesized distribution function F o(·) . 

When X is of the continuous type the exact null distribution of Ks has 

been tabulated (see Birnbaum ( 5) for numerical tabulation). The level 

of KS is given by 

where ks is the observed value of KS. 

An asymptotic expression for the greatest lower bound on the 

sensitivity has been given by 1.1assey (31). Massey also pointed out 

that KS is a biased test for some alternatives. Fisz ( 16) proved that 

KS is consistent for a continuous alternative G(.) that satisfies the 

relation 

sup 
-m<x<ro 

When the probability integral transformation U. = F 0 (X.) , 
l l 

i = 1, 2, •.. , n , is applied to the random sample X., i=l,2,.,,,n, 
l 

then the test statistic:: can be expressed as 

[ i i-1 ~ KS = max max ( 0 - U(i)), ·-max (U(i) ... n) 
i=l,2,, .. ,n i-1,2,.,.,n 

where 0 ~ u(l) ~ u(2) ~ •. ' < u(n) ~ 1 denote the ordered transformed 

variables. A modification of the Kolmogorov-Smirnov statistic given 

by 

max 
i=l,2, .. ,,n 
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was used by Shapiro, Wilk, and Chen (42) for coml!larisons of sensitivity 

among several statisticsf Some results of this study are given in 

Chapter V. 

Cramer-Von Mises Statistic 

Another test statistic de signed for continuous X was first 

p11oposed by Cramer in 1928 and also by Von Mises in 1931 (see Darling 

(10)). The statistic is defined by 

1 n 2i- l 2 
= 12n + i~l (U(i) - ""°'2'n) 

It is necessary to use the limiting null distribution of CM to approxi-

mate the significance level, The exact null distribution of CM for 

n = 1, 2, 3 was examined by Marshall (30) and the agreement at n = 3 

with the limiting distribution is remarkably close. Marshall also 

summarized results on sensitivity and showed that there are alterna-

tives for which the test is biased, 

Several modifications of the Cramer-Von Mises statistic have 

been given. Anderson and Darling (1) proposed a weighted version 

intended to increase sensitivity against discrepancies from F 0 in the 

tails. This statistic is defined by 

[F n (x) - F 0 (x)] 
2 

F 0 (x) [l .. F 0 (x)] 

Another modification, introduced by Watson (40), is given by 



WA = n J00 
{F n(x).., F 0 (x) - J00 

[F n(x).., F 0 (x)]d F 0 (x)}2 d F 0 (x) 
-oo -oo 

1 -- 1 n 2i- l 2 
= 12n - n(U - 2) + i~l (U(i).., ~) 

where 

u = 
1 n 

L: u(.) 
n i= 1 l 

Statistics Based on Spacings 

The null hypothesis that U. = F 0 (X.), i= l, 2, .•. , n., are 
l l 

independent uniform variables on (O, 1) when X is of the continuous 

type is equivalent to hypothesizing that the observed values of 

U., i= 1, 2, •.• , n, are randomly scattered on the (O, 1) interval. 
l 

If the distribution departs from the null one would expect some inter-

16 

vals between adjacent points to be shorter and some longer than would 

be expected from random scatter, This suggests that a study of the 

relative lengths between adjacent points might be appropriate for good-

ness of fit. 

Again let us denote the ordered transformed variables by 

0 < U ( 1) .::. U (2 ) < •. , .::. U (n) .::. 1 , and define the random interval lengths 

or 11 spacings 11 by 

Ci = U (i) - U (i- 1) , i = 2, 3, , •• , n 

A number of test statistics have been proposed of the form 



G = n 

n+l 
~ g (C.) 

i= 1 n l 

Procedures based on such statistics are discussed and defended by 

Pyke (36) and extensively studied by Weiss (50). Examples of g (·) 
n 

17 

r I -1
1 are g (C.) = C., r > O; g (C.) = C. -(n+l) 

n l l n l l 
g (C.) = [C.-(n+l)- 1 ] 2 ; 

n i l 

g (C.) =log (C.); g (C.) = l/C. , Note that 
n :i. l n l l 

E{C. IU's uniform} = (n+l)-l 
l 

In each case the limiting null distribution is obtained (36). 

Another irn.portant procedure has been given by Durbin ( 12). 

Durbin shows thatif Y., j=l,2, ... ,n, and W, r=l,2,.,,,n, 
J r 

are defined by 

and 

r 
w 

r 
= :z y. I r = 1, 2 I ••• I n. I 

j = 1 J 

where C(j) , j = 1, 2, ..• , n, are obtained by ordering the 

Ci' i=l,2, ••• ,n, and C(O)=O, then Wr' r=l,2,, •. ,n, have the 

same null distribution as the ordered uniform variables 

u(i)' i=l,2, .. ,,n. 

Durbin gives a heuristic argument that if the true distribution 

departs from the uniform distribution in any manner, except a change 

only in location, the W will tend to diminish, 
r 

Thus any one-sided 

version of other goodness of fit test statistics can be applied to the 

W , for example 
r 
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D = max 
r= 1,2, .. .,n 

[r /n - W ] , 
r 

a one-sided version of the Kolmogorov-Smirno.v statistic. Computations 

suggest that this has good sensitivity against alternatives with the mean 

and variance equal to those of the hypothesized distribution (42), 

Composite Goodness of Fit Hypothesis 

The use of the chi-squared statistic in the composite case was 

first studied by Fisher (14). The approach was to use as a measure of 

discrepancy between the sample and hypothesized class 

{ F 0 ( · ; a), a e n} 

FCS = min {CS} , 
a 

where CS ·is defined in the previous section. If 0 is composed of m 

real parameters, then under quite general conditions, FCS is approxi-

mately distributed as a chi-squared variable with n-1-m (n = sample 

size) degrees of freedom when the null hypothesis is true. 

The minimization with respect to 0 can be cumbersome and 

several modifications have been proposed (33), The most appealing 

modification from a practical point of view is to replace 0 with its 

maximum likelihood estimator, This tends to inflate FCS beyond 

values predicted by the chi-squared distribution leading to some 

unwarranted small significance levels. However, Chernoff and 

Lehmann (7) and also Watson (49) have shown that no serious distortion 

will result if the number of intervals is ten or more, 

When 0 is the pair 
2 2 

(µ,er ) , µ the mean and er the variance, 

F 0 (x; 0) ;may be written F 0[(x - µ)/er] where F O ( ·) is completely 
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specified. An interesting approach in tMs case is to transform the 

composite null hypothesis into an equivalent simple hypothesis, This 

makes it possible to test the composite hypothesis with test statistics 

described in the previous section and those developed in this study. 

Durbin (12) proposed the following transfo:rmation to eliminate 

the mean and variance for the null hypothesis of normality. Let 

x 1,x2 ,, .• ,xn be a random sample from the population of interest, and 

let be a random sample generated synthetically from a 

normal population with mean zero and variance one, Let x and 

denote the sample mean and variance, respectively, of the x 1s, and 

y and 2 
sy the sample mean and variance of the y 1s. 

z., i=l,2, •.. ,n, by 
l 

z. = 
l 

Define 

Durbin proves that the random variable/$ Z 1, z 2,,,., Zn are indepen­

dent standard normal variables. Therefore,the composite hypothesis 

concerning x 1, x 2,, .. , xn can be tested as a simple hypothesis con­

cerning z 1, z 2 , ... , zn . The price paid for the elimination of nuisance 

parameters by this method is that an element of randomization is intro-

duced in the analysis of the data. 

where 

Sarkadi (3 9) gave a similar transformation defined by 

Y .. = 
l 

(X. - X 11 ) 
l 

S" 
,,, [I Xn-1.- Xn I "11-2 J , 
'i' i=l,2,, .. ,n-2, 

..J2 S'' 



X" = 

n 

i~l Xi+ ~ (Xn-1 + Xn) 

S" = I~ x~ 
\/ i= 1 l 

n + ffn 
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and ~ {·) is a monotone decreasing function. The restriction that the 

Y. be independent and normally distributed determines the functions 
l . 

~(·) completely. This transformation has the desirable property that 

only random samples from a normal lead to independent standard 

normal variables; that is, each Y has the standard normal distribution 

if and only if the X's have the same normal distribution. This is 

commonly called a "characterization" of the norm<;1.l distribution. This 

property is important from the point of view of the biasedness of the 

test. This transformation also has the property that it maximizes the 

minimum correlation between Y. and X. among transformations of 
l l 

this general type. Sarkadi argues that this is important in that the 

transformed variables give a best representation of the original 

variables. 

Notice that Sarkadi 1s method decreases the number of variables 

by two, while Durbin 1s method gives the same number of transformed 

variables as that of the original variables, Durbin' s method has the 

disadvantage that random numbers are used in the analysis of the data 

which permits different investigators to draw different conclusions 

from the same set of data. 

Other characterizations of the normal distribution as well as 

characterizations of other parametric families are given in the 
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literature. The basic theory and some important results are given in 

a paper by Prohorov (36). 

Another important approach to testing for normality is given by 

Shapiro and Wilk (41). They give a statistic for which under normality 

the numerator and denominator are both up to a constant, estimating 

2 
(j • Let denote the order statistics arising 

from a random sample of size n from a standard normal population, 

Let ~· :;:;: (m 1, m 2,.,., mn) denote the transpose of the vector of 

expected values of standard normal order statistics, and V = (v .. ) be 
lJ 

the corresponding n x n covariance matrix, If y ( 1 ) < y ( 2 ) .:S. ' • • .:S. y( n) 

are order statistics arising from a random sample from a normal 

population with µ and cr2 unknown, then Y (i) may be expressed as 

where 

and 

= µ + er X (. ) = µ + crm. + er ( X ( . ) - m. ) 
l l l ' l 

=µ.+crm. +e., i=l,2,.,.,n. 
l l 

E(e.) = 0, i=l,2,.,. 1 n. 
l 

~ 2 
C ov ( e ) = er V , 

It follows from generalized least-squares that the best linear unbiased 

2 
estimates of µ and er are 

p, = y 

and 

A 
(j = 



y(l) 

...:.. 
y(2) 

y = • 

y(n) 

The test statistic for normality is then defined by 

w = 

where 

n - 2 
~ (Y(.) ~ Y) 

i= 1 l 

2 n - 2 
s = ~ (Y (i) - Y) 

i= 1 

~,v-1 ~ m m, 

2 ~,v-lv-1~ c = m m, 
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If the Y's are normal order statistic;s then the numerator and 

denominator are both, up to a constant, estimating <T2 , The ratio of 

estimates of <T2 is multiplied by R4 /c2 so that the linear coefficients 

of the Y {i) are normalized. Heuristic considerations augmented by 

extensive synthetic sampling using a wide range of populations suggest 

that the mean of W for non-normal populations tends to shift to the ieft 
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of that for the null case. Thus, small values of W are taken to be 

consistent with the alternative. 

It is easily shown that the distribution of W does not depend on 

the values of µ and cr 2 , but the exact null distribution of W is not 

known for n > 4. In fact the elements of V are not known for n > 20. 

The authors first approximate the elements of V and then approximate 

the null distribution of W by synthetic sampling. 

Combining Independent Significance Levels 

The most widely used method of combining independent signifi-

canqe levels is the so-called omnibus test of R. A. Fisher (15) which is 

given by 

F = -2 log [ ~ L. J = ... z [ ± log ( L. )~ . . 1 l . 1 l l= l= 

The null distribution of F is a chi-square with 2p degrees of freedom, 

Small values of the levels are consistent with H_A, so large values of 

F are consistent with 

by 

H " A' The combined significance level is given 

2 
1F = P ( X ( 2 p) > f] 

where f is the observed value of F and x. 2 (Zp) is a chi-square 

variable with Zp degrees of freedom. 

Independent of Fisher's work, E. S. Pearson (33) proposed 

-2 [ ± log ( 1 - L. )] 
. 1 l i= 

as a method of combining levels. Again the statistic is distributed as 
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a chi-squared variable under the null hypothesis, but now small values 

are taken to be consistent with the alternative. Others have suggested 

h . . . th 1 h 1 1 t e maximum or m1n1mum or m argest among t e eve s. Each of 

these has a beta distribution under the null hypothesis (51). 

T. Liptak (2 7) pointed out the need, in some cases, to weight 

the levels differently. He proposed a statistic of the form 

p -1 . 
L:a.o/ (L.) 

i= 1 1 l 

where 
-1 i¥ is the inverse of an arbitrary continuous distribution func-

tion and the a. are arbitrary weights, To simplify the null distribu-
1 

tion the obvious choice for V is the standard normal distribution. 

Under H" 
0 

weights, 

this statistic is then distributed normally with any set of 

Several criteria for comparing methods of combination have 

been developed (4) (28). Some of these criteria are used in Chapter IV 

to compare methods described above with those developed in Chapter III. 



CHAPTER III 

A JOINT INTEGRAL TRANSFORM APPROACH 

As illustrated in Chapter I, the problem of combining indepen.,. 

dent levels of significance of test statistics of the continuous type can 

be reduced to a one-sided goodness of fit problem. That is, if T. , 
l 

i = 1, 2,.,. 1 p, are independent test statistics of the continuous type 

with levels L., i = 1, 2, .•• , p, respectively, then under the combined 
l 

null hypothesis the L. are mutually independent uniform variables. 
l 

Under the combined alternative one or more of the variables L. are 
l 

stochastically smaller than uniform variables. In this chapter a num-

ber of test statistics are constructed that can be used for either com-

bining independent levels or the one-sided goodness of fit problem. 

The Joint Integral Method of Combination 

The method of combination given in this section is similar to 

Fisher's method, yet takes advantage of properties of uniform order 

statistics, It is hoped that this will increase sensitivity, particularly 

when not all levels are stochastically smaller than uniform variables 

under the c:ombined alternative; i. e,, some of the levels are uniform 

under both the null and alternative hypotheses. 

Consider an observed value of Fisher's statistic. For observed 

significance levels 

F is given by 

i.., i = 1, 2, ... , p ~ 0 < i. < 1, an observed value of 
l 



p 
f = -2log[ II 1.] = 

i= 1 l 

p 
-2 log [ II Po{L. < 1.} J 

i= 1 l - l 

where P 0 [ .] denotes probability under the combined null and G0 (.) 

the joint distribution function of the levels under the combined null, 
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Thus the joint null distribution function provides the measure of depar-

ture from uniform, 

The approach here is to use as a measure of departure from 

uniform variables, the joint null distribution function of the ordered 

observed levels. Again let 1. , i = l, 2, ... , p, denote the observed 
l 

significance levels, then an observed value of the test statistic T, 

henceforth referred to as the joint integral transform method of combin-

ation, will be defined by 

where 0 _::, 1(l) < 1(2 ) < ... .:::_ 1(p) .:::_ 1 are the ordered observed 

levels and K 0 (.) is the joint distribution function of p uniform order 

statistics. The value of t can be obtained by evaluating the multiple 

integral 

In this and subsequent chapters, density and distribution functions of 

uniform order statistics, order statistic$ arising of independent uni-

form variables, will be given without proof. For a complete discussion 
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of order statistics, the reader is referred to almost any probability or 

mathematical statistics textbook; for example, see Fisz (16). 

To obtain a more direct expression for t consider the following 

theorem and proof given by Suzuki (45). 

Theorem 3. 1: If 0 ~ U(l) ~ u(2 ) < ... ~ U(n) < 1 are uniform. order 

statistics and ai, i = 1, 2, ... , n, are real numbers such that 

then 

P [ U (.) > a. 1 i = 1, 2, •.• , n] = ~ (kn) qk , 
i - i k=O 

where 

Proof: Denote 

For n = 1, 

For n=2,3, ..• 

q = 1 0 

k-1 (k) 
q = - ~ . 

k . 0 l 
1= 

a.' 
1 

k-i 
ak qi , k = 1, 2, ..• , n . 

du 
n 



whe:i;e 

Consider the c;hange of variables 

= u 1 /u 
n- n 

= u n 

>l< 
The region r corresponds in a one -to.,one fashion to the region r 

given by 

The Jacobian is 

so 

n-1 
J = yn 

1 

= nf p l{al/y ' .. •,a l/y )yn"'ldy n- n n- n n n 
a 

n 
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q = 1 0 

Note that qk is a homogeneous polynomial of degree k, Now 

P 1 (a 1) = 1 - a 1 = qo + q 1 (a 1 ) · 

Suppose 

then 

p(a 1 ~ •.• ,a) 
n n 
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and the theorem is established. 

Consider again an observed value of T, 

= K 0(£(l)'"'''i(p)) = P0 [L(l)~i(l)''"''L(p)~i(p)J 

= P0 [1-L(l)~ 1-i(l)'" .. , 1-L(p)~ 1-i(p)]. 

Suppose we define 

and 
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Then U(i)' i=l,2,,,.,p, are uniform order statistic;s under the null 

hypothesis and the real numbers ai, i = 1, 2, ... , p, satisfy 

Thus 

where 

q = 1 0 



For example if p = 4, then 

ql: -.(1 -£(4)) I 

2 
q2= -(l-£(3)) - 2 ( 1 - 1 (3))ql' 

3 2 
q3= -(1-£(2)) - 3(1-£(2)) ql - 3(1-1(2))q2' 

4 3 2 
q4 =-(l-.t(l)) -4(1-.t(l)) q 1 -6(1-.t( 1)) q2 -4(1~.t(l))q3 , 

t = 1 + 4q 1 + 6q2 + 4q3 + q4 . 

Clearly small values of T should be taken as consistent with 

the alternative, however, the null distribution function of 

is needed to c;:ompute the combined significance level. 

Theorem S,' •• 2: ; The null distribution of T for p = 2 is given by 

0' t ~ 0 

1 - ( 1 - t) l /2 t tlog [-1 _t_1_1_2 ...,.,.1_,/~2] I 0 < t < 1 
- ( 1 - t) 

1 • t > 1. 

Proof: In terms of L( l) and L(Z) , 

T = 1 + 2Q l + o2 = 1 .. 2 ( 1 - L (2 )) 

= L(l)(2 L(2 ) - L(l)) . 

31 
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To simplify notation let X = L( 1) and Y = L( 2), then the null density 

.function of (X 1 Y) is 

f Q (X, y) : 2 I Q < X ~ Y ~ 1 

= 0, otherwise • 

For t in (0, 1), 

Po[T ,.$ t] = Po[X(2Y -X) .5. t] 

Now 

if 

or, equival~ntly, if 

= Eo{Po[Y<t/2X+X/2IX]} 
x 

P 0 [ Y .$. t I 2x + x I 2 I x = x] = o 

t/Zx + x/2 < x 

x > tl /2 ; 

t/2x+x/2 

P[ Y .5. t/Zx + x/Z IX= x] =! £0(yix)dy 

x 

if 

x < t I 2x + x I 2 < 1 

or, equivalently, if 

1 - {l - t) 1 / 2 ~ x < t 1 / 2 ; 

and 

P[ Y S. t/2x + x/2 IX = x] = 1 



3.3 

if t/2x + x/2 > 1 or, equivalently, if 0 < x < 1 - (1 - t)l/Z. Since 

1 
= ( 1 - x) , x ~ y ~ l 

= 0 , otherwise , 

and 

= 0 , otherwise , 

1 - (1 ~t)l/2 tl/2 

P 0[ T 2$ t] =! Z(l -x)dx +f [t/x - x]dx 

0 1 - ( 1 - t) 112 

1/2 [ t 1' 2 J = 1-(1-t) +tlog .. · 112 
1 .. (1 - t) . 

and the theorem is proved. 

It was not possible to obtain an explic;:it form fo:r the null distri .. 

bution of T for general p, This neces13itated consiQ.eration of an 

approximation. The first attempt was to obtain expressions for 

moments, however this h~s been possible only for the first moment. 

Theorem 3~ 3: The mean of T, under the null hypothesis, is -1 
(p + 1) • 

Proof: Again let 0 ~ L(l) < L(Z) < . , ! < L(p) ~ 1 denote the ordered 

significance levels and define xk' k = 1, 2, ••. 'p. by 

Xk = 1 - L ( p+ l _ k) , k = l, 2, . . • , p r 

Then O < x1 ~ x2 .::5, ••• < Xp < 1 a:re distributed like p uniform. 

order statistics under the null hypothesis and 
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where 

k- l (k) k-i Qk= - ~ . Xk Q.(X 1,.,.,X.), k=l~2,. .. ,p. 
i=O i i i 

For 

k = 1, Q 1 = -X 1 

k = 2 , Q 2 = -X~ - 2X2 Q l 

and for k = 3, 4, . , , 

Q _ -Xk _ k Xk.., 1 Q _ k- l (k) k-i 
k - k k · I ~ · · xk Qi · 

i=2 l 

The conditional density of X 1 given Xk, Xk+ 1, •.. , XP is 

= 0, otherwise 

so 

Thus 



Assume that for k > 2, 

then 

E(Q.JX.) = 0, i=2,3,,,.,k-l, 
1 1 

k-1 ( ) . 
E(Qk I xk) = E{ -X~ - kXkk.., IQ l - L: k xk--1 o. J x } 

i=2 i k l k 
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k k-1 k-l(k) k-i 
= -Xk - kXk E{-Xllxk}- L: . xk E {E(Q.Jx., Xk)} 

i=2 1 i I k 1 1 

where E denotes the expec;tation with respect to X. given Xk , 
i I k 1 

Now since E(QiJxi' Xk) = E(QijXi) = 0, i=l,2, .. ,,k-1, 

so 

Now 

E(T) = E{ 1 +pQl + ~ (~) Qk} 
k=2 

1 

= 1 +pE(Q 1) = l-p2J t(l-tJP- 1 dt 

0 
2 

1 
= l - p = p+l • p(p+ 1) 

It has not been possible to obtain explicit expre.ssions for 

higher moments. Hence, techniques for approximating distribution 

functions based on moments cannot be used (22). In this circumstance 

it seems both appropriate and efficient to employ synthetic sampling to 

obtain an approximation for the null distribution of T, Accordingly, 
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for each p = 2, 3, .•. , 9, three thousand uniform samples were gener-

ated employing the IBM subroutine RANDU (46). Then for each p, 

3000 values of (pt l)T were computed and empirical percentage 

points determined. These percentage points are given in Table I, 

Some check of the accuracy of the approximation is pr0vided by the 

exac;t percentage points for p = 2. 

A summary of the steps nec;essary for combining independent 

levels by this method might be appropriate. To apply the joint integral 

transform method, given p observed levels one 

proceeds as follows: 

(i) Order the levels to obtain 0 ~ .f (l) ~ £(2 ) ~ .•• ~ £(p) ~ 1. 

(ii) Compute xi= 1-.f(ptl-i)' i=l,2,, .. ,p. 

(iii) Compute 

and 

k-l k k-i 
q k = - ~ i xk qi ' k = 1, 2' .•. ' p qo = 1 ' 

i=O 

(pt 1) t 
p p 

= (pt 1) L: k qk. 
k=O 

(iv) Small values are taken to be consistent with the 

alternative, i.e., indicate nonuniform, The approximate 

combined significance level can be obtained from Table I. 
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TABLE I 

EMPIRICAL PERCENT AGE POINTS 

Number Probability of Smaller Value 
of 

Levels • 01 .05 . 10 ' 15 .20 .25 ,50 . 75 . 90 

2,exact . 0071 . 0457 . 105 . 171 .247 .328 • 836 1. 557 2, 187 

2, approx, . 0070 . 0448 . 108 . 176 . 249 .329 • 831 1. 552 2,200 

3 . 0035 . 0267 • 065 • 116 . l 79 ,244 . 745 1. 535 2,364 

4 . 0027 . 0211 . 052 • 088 . 141 . 203 '656 1. 520 2,491 

5 .0010 , 0139 . 039 . 073 . 116 . 167 . 617 1. 510 2.628 

6 . 0008 . 0103 . 029 . 060 • 100 . 150 . 538 1. 494 2, 704 

7 . 0004 '0085 . 024 . 048 . 087 . 131 • 533 l. 449 2.802 

8 . 0004 . 0071 . 021 .044 . 078 . 120 • 488 1. 406 2.817 

9 . 0003 . 0059 . 019 • 040 '073 . 111 • 442 1. 334 2.813 

Conditional Integral Transform Methods 

Consider again an observed value of the joint ingegral transform 

statistic: 

Suppose we define a statistic, say w1 , by replacing inequalit~es in the 

conditioning statement by equalities; that is 
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Theorem 3. 4: The test statistic W1 is the Fisher statistic. 

Proof: The conditional density of L(k) given L(k+l)' .•. , L(p) is 

= 0 , otherwise . 

and the conditional distribution function is 

k=l,2,.,,,n ... l, 

An observed value of w1 is then 

p p 
II .t(k) = II .tk 

k= 1 . k=l 

and the theorem is proved. 

Similarly the statistic defined by 
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. is equivalent to the Pearson statistic if large values are taken to be 

c:;onsistent with the alternative. Of course, neither of these offer new 

methods of combination; however, the approach can be used to generate 

a number of statistics with known null distrihution functions. The 

following theorem will prov~de both a method for constructing test 

statistics and the basis for finding the null distribution of such statis-

tics. 

Theorem 3. 5: If the conditional distribution function, say F XI y(x I y), 

of the random variable X (a scalar) given the random variable Y 

(either scalar or vector) is such that for each value y in some interval 

(c 1 d), 

( 1) there exists an a= a(y) and b = b(y) such that 

(2) F XI y(x I y) is a continuous and strictly increasing 

function of x for a < x < b , then 

(i) U = F XI y(X I Y) is distributed uniformly on the 

interval (0, 1) , 

(ii) U and Y are independent. 

Proof: Consider the conditional distribution of U given Y = y e (c, d); 

let 0 < u < 1 1 then 

Because of (2) there is a point x 0 satisfying F XI y(x0 IY) = u and 

FXIY(xiy) ~ u for x ~ x 0 . Then 



If u ~ 1, then GUjY(ujy) = 1 and if u ~ 0, then GUjY(ujy) = 0. 

Thus the conditional distribution function of U given Y = y is 

{
o. u ~ o. 

Gu I y(u I y) = u , o < u < 1 , 

l, u> 1. 

Because GU j y(u I y) does not depend on the value of Y, U and Y 

are independent and U is uniformly distributed. 

40 

The preceding theorem will be used to obtain . mutually inde -

pendent uni.form variables. Suppose Y 1, ... , Ym have joint distribu­

tion function F(y 1, .. ,, ym) and define 

=FY jY , .. y (YljYz•···•Ym), 
1 2 m , 

/ 

where F y I y , .. y ( · I•) denotes the conditional distribution 
1 2 m 

function of Y 1 given Y 2 , Y 3 , ... , Ym. If this conditional distribution 

satisfies the conditions of Theorem 3. 5, then Z 1 i.s uniformly distri­

buted and independent of (Y 2 , Y 3 , ... , Y m). Now define z 2 by 

Again if F y I y ... y ( · I·) satisfies the conditions of Theorem 3. 5, 
2 3 m 

z2 is a uniform variable and z2 is independent of (Y 3 , .. , , Ym) , 

and the three random variables Z 1 , z 2 and (Y 3 , ... , Ym) are 

mutually independent since 



for all z 1 , z 2 , and (y 3 , •.. , y m) • Continuing this process, m 

mutually independent uniform variables can be obtained. 
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Of ~ourse, the statistics w1 and w2 were constructed using 

this technique and it was clear that, under the null hypothesis, each 

was the product of p independent uniform variables. Consider now 

reversing the inequalities in w1 ; i.e., define an observed value of a 

test statistic by 

w3 = { :~: P 0 [L(kl '.':_ 1 (k) I L(k+ I)= 1 (k+ I)' .•. , L(p)= 1 (p) i} P 0 [L(p) ::_1 (p)l 

= {:~: ( 1-P o[L(kl 9 (kl I L(k+1t 1 (k+ I), .•• ' L(p)= 1 (pl1f .,p o[Lcpl~1 (pl} 

p-l k k 
= II [l - .R.(k)/.R.(k+l)J [l - .1.P( )). 

k=l p 

Large values of w3 will be taken to be consistent with the combined 

alternative. Similarly, reversing the inequalities in w2 , define w4 

by 

w4 = P o[L(l) '.'. 1 (I)] {k~Z P o[L(k) ~ 1 (k) I L(l) = 1 (I)' ••• ' L(k-1) = 1 (k-1) i} 

(1 - .R. )p-k+l 
(k-1) 
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Small values are taken consistent with the combined alternative, 

Since Theorem 3. 5 applies in both cases, both W3 and w4 

are distdbuted as the product of p mutually independent uniform vari-

ables under the null hypothesis. Thus the observed combined signifi-

cance levels are 

and 

where w3 and w4 represent observed values of w3 and w4 , 

2 respectively, and x (2n) indicates a chi .. squared random variable 

with 2n degrees of freedom. 

In all statistics defined above, the conditioning process began 

either with the first or last order statistic. Theorem 3. 5 will apply 

regardless of where conditioning begins and the process will yield 

mutually independent uniform variables if once an order statistic 

appears left of the conditioning statement, it does not appear later in 

the process. Forexample, let p=4 anddefine z 1 by 

define' z2 by 

1(3) - 1(2) 

1(4) .. 1(2) ' 



define z3 by 

= 1 _ r .t ( 4) - .t ( 2 )] 2 

L1 (4) - 1 (1) 

and define Z 4 by 

Now if we define W5 as 
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then, under the combined null hypothesis, -2.tn w5 is agairi distrib­

uted as a chi ... squared with 8 degrees of freedom, If small values of 

w5 are taken to be consistent with the combined alternative, the 
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significance level is 



CHAPTER IV 

PROPERTIES OF MErHODS OF COMBINATlON 

In this chapter properties of the vario'l,ls methods of combination 

will be studied with the hope that comparisons will provide a ch0ice 

among the methods. Birnbaum (4) made a study of sensitivity of four 

methods of combination, specUically, Fisher's method, Pearson's 

method, the minimum of the p levels, and the maximum of the p 

levels. Birnbaum assumed that each of the original samples, on which 

a test statistic is based, has densHy function of the Fisher-Koopman­

Pitman-Darmois (FKPD) form, which is 

f(x,0) = c(0)a(0)t(x)b(x) 

where 0 is the parameter and a, b, c, and t denote arbitrary func­

tions, Among the four methods considered, Birnbaum concluded that 

to combine independent tests on FKPD form distributi0ns (these 

include most distributions commonly occ;uring in applied statistics) 

one should choose between Fisher's method and the minimum. of the 

individual levels. 

Littell (29) compared three of these methods (all except 

Pearson's method) based on an asymptotic criteria. LHtell concluded 

that of these three methods, Fisher's method is gene rally preferable 

based on this criteria, These results wiU be extended in the second 

section of this chapter, The properties of unbiasedness and 
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consistency of methods of combination are considered in the following 

13ection. 

Unbiasedness and Consistency 

Birnbaum (4) introduced the idea of monotone methods of 

combination defined below: 

Definition 4. 1: Suppose W = W(L 1, L 2 , ••. , L.) is a method of com~ .. p 

bination with small [large] values consistent with the combined alter., 

native, Then W is a monotone method of combination if 

* when I.. < I.. , i = 1, 2, ... , p . Birnbaum proved that the most sens i-
i. - 1 

tive method of combination for any particular (completely specified) 

alternative statisfies this condition and thu.s concluded that any method 

of combination which £ailed to satisfy the condition wou.ld seem 

unrea s enable. 

Clearly Fisherts method, Pearson's methoO., the method based 

on the minimum of the p levels, and that based on the maximum of the 

p levels are all monotone methods of combination. 

* method, say T, is also monotone since if I.. < I.. , 
1 ~ 1 

then the ordered values J.(i) and J.~i) also satisfy 

i = 1, 2, .. , , p, and 

The joint integral 

i=l,2,, •. ,p, 



A relationship between monotonicity and unbiasedness (see 

Definition 1. 4) is given in the following theorem. This theorem is 

similar to that proved by Chapman (6) in connection with one-sided 

goodness of fit statistics. 

Theorem 4. 1: Suppose T., i::: 1, 2, ... , p, with significance levels 
l 

L. 1 i::: 1, 2, •.• , p, are unbiased continuous test statisUcs for H 0 . 
l ' 1 
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versus HA,i' i:::l,2, ... ,p, respectively. If W(L 1,L2,. 1 ,,Lp) is 

a monotone method of combination then W is unbiased for the combined 

hypothesis problem. 

Proofj Let Ha (')' i;:: 1, 2, .. ' 'p' 0. E n. ' denote the distribution 
. 1 l 
l 

functions of Li, i::: 1, 2, •.. , p, respectively, and let H;(.), 

0 ;:: (01' 02' ' .. 'Sp) ' 0 E n 1 x n2 x ... x np' denote the distribution func -

tion of the combined significance level using W as a method of combin-

a ti on. 

Since each of the T. is unbiased and of the continuous type, 
l 

::: 1, .R. e [o, l], a. e n0 . 
l 'l 

Ha. (.0 > .R. ' .R. E [ 0' 1], ai E nA 'i . 
l 

We will not require W to be of the continuous type, so it is necessary 

to show that for each a ::: (91, 02 , . , . , Sp) and each achievable 



J. E [O, l]. 

>:c 
Accordingly, let a= (01' .•.• a ) ' a. E n.' and J. be an p 1 ;L 

achievable level for this a , Then the re is a w * such that 
J. 

=f·f ~di. R . l i :i.= 
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where The distribution 

':c 
function of the combined level 1 is given by 

Make the change of variables 

Yi = Ha. (Li) , i = 1, 2, ... , p 
1 

then the Y. are mutually independent uniform random variables and 
l 

W * !JP Ha (1 ) = · ·, IT d y. 
s i= 1 1 

where 

{ I -1 -1 
s = (yl' Yz· •.. ' y ) W(Ha (yl)' ... ,Ha (y )) 

p 1 . p p 

and 



we have 

inf {1 IH0 ( .t) = y.} 
0<£<1 i 1 

H0 ( J. ) ~ 1 , ' E ( 0, 1 ) , 
i 

H~_ 1 (..e ) < J. , J. E [ 0, 1 ] , 
1 

and since W is monotone 

~l -1 w ( Y 1 , .•• , Y ) > w (He ( Y 1 ) , ••• , Ha ( Y ) ) • 
p 1 . . p p 

So if we define s* to be 

* * then S CS, and S == R, so 

H0W(..e*) =!·!~ dy. > r .. (ft dy. = ~* 
s i= 1 i ..:...J's*} i= 1 1 

and the theorem is pr9ved. 
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It is also po1;1 sible to obtain a relationship between monotonicity 

and Qonsistenc;y (see Definition 1. 5) if some restrictions are plac;ed on 

the method of combination and on the combined alternative, Spec::ifi-

cally, assume that the method of Qombination is of the continuous type 

for continuous T., i = 1, 2,, .. , p and assume that the combined 
1 

alternative of interest is 

* H'A: a. E OA • for all i = 1, 2,' .• , p • 
1 .n., l 
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Now let T~n), i = 1, 2, .•• , p denote the p independent test statistics 
l 

where n is the sample size on which each of the individµal test statis-

tics is based. If we let L~n) denote the signific:tance: level of Tin) 

based on sample of size n, then if the i;e:quence {T~n)} is consistent 
l 

fo:r H 0 . versue 
,1 

HA . , the sequence 
.n., l 

converges to zero in 

probability [a.] ' a. E nA . (see Definition 1. 5) . For this theorem we 
l l .n.,l 

shall denote W(L in), L~n), ... , L~n)) by Wn. 

Theorem 4. 2: If the sequences {T~n)}, i = 1, 2, .. ,, p, are consistent 
l 

for H 0 . versus 
,1 

HA i, i = 1, 2, ... , p, respectively, and if 
' 

W (Lin)' .. • ' L ~ n) ) is of the continuous type for 

a = (a1, a2 , •.•• aP) 

sequence {Wn} 

E 0 1 X n 2 X ••• X Op' and is monotone, then the 

:::< 
is consistent for H 0 versus HA, 

Proof: The null distribution of W does not change as n - oo since 
n 

L~n) is a uniform vq.riable for a. E no . regardless of the sample 
1 1 '1 

(n) 
size n. Let Ha (.f), a= (Sp' .. ' ap) E nl x n2 x .• ' x np be the 

distribution of the level of W ; then it is necessary to show that the 
n 

sequence {H~n)(.f )} converges to one for each 

a E nA = nA,l x nA,2 x .• ' x nA,p and each p_ E (O, 1). Let p_ E (0, 1) 

and a E nA I then 

where 

inf {wjG 0(w) = .f}, 
...,oo<w<oo 

is the null distribution function of W , 
n 

Since 

not depend on the sample size n, w1 does not depend on n. 
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Now let R1 = {(1 1, ..• ,1 )!W(1 1,.,.,1 )<wn,0< . .1..<1} 
p n p - A'. - i-

then 

.I. =f. . {'f:r d .I.. > 0 ' 
Ri} i=l l 

so there is some (.I.~, .I.~,, •• , 1;) e R_t 

* 
* such that 1i > 0, i= 1, z, ... ,p, 

Let R denote the set 

* * R = {(.1. 1, •. ,,J. )j.I.. < J.., i=l,2, •.. ,p}. 
p l - l 

Because W is monotone 
n 

* * W (1 11, • , . , J. 1 ) < W (J. l' . , , , J. ) _< Wn 
n p - n p A'. 

for (.tl,, •. ,J. 1 ) e R*, so 
. p 

* R CR_t· 

Hence, for e E OA' 

where H~~)(J.) 
l 

0. E O'A . • For 
1 ,l 

denotes the distribution function of .L~n) for 
l 

e, 0 < t < 1, one can choose N., i=l,2, ... ,p 
l 

such 

that for n >Ni' H~~)(J.~) > (1 ~e:)l/p, so for n > N =. max {N1}, 
l l.=1,2, .•• ,p 

or 
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and the theorem is proved, 

For particular methods of combination it is possible to investi-

gate consistency for the less restrictive combined alternative 

HA : e. E nA . for at least one i = 1, 2, . ' • , p ' 
.n. l .n,l 

For example, let p = 2 and suppose the combined alternative is 

el E nA, 1 ' e2 E n0,2 . If {Tin)} is consistent for Ho, 1 versus 

HA 1 , then , 

, (1') L(n) - 0 . b b'l' 1 in pro a i ity 

(ii) L (n) · · f f 11 e n 2 is uni arm or a n, 2 e 0 , 2 . 

( 4. 1) 

Let e be an arbitrary real number in the interval (O, 1) and 

consider the region R == {(1 1,1 2 )1£ 1 12 < d illustrated in Figure l(a). 

Now for e = (01,82) E nA = nA,l x n0,2' 

P [L(n) L(n) < e:] > P [L(n) < e:] - 1 e 1 2- e 1-

as n-+co. Let LF(n) denqte the level of F = L (n) L (n) and G ( ·) 
n 1 2 0 

the null distribution of F ; then for each e , 0 < e: < 1 , 
n 

P8 [L~)~e] = P 8 [G 0 (Fn) ~e:] 

= P8 [Fn~fe]-1 

as n-+ co, where e = G0 (fe:). Thus {F n} is consistent for H 0 

versus HA:e E nA 1 x no 2 
1 I 



e 
1 

L(n) 
2 

0 

e: 

1 L(n) 

(a) 1 

0 

(c) 

....... 

1 

L(n) 
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1-(1.,e:)l/2 

L n) 
1 

(b) 

Figure 1. Rej ec:tion Regions for Methods of 
Combination 
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L (n) L (n))-
1 - 2 -e: 

1 L(n) 
1 

Similarly, let e satisfy 0 < e: < 1 , then from Figure 1 (b) we 

see that 

p [L(n) (2L(n) - L(n)) < e:] > p [L(n) < 1 - (1 -e) 112 J-1 9 E nA. (4. 2) 
9 ( 1) (2) ( 1) - - 9 1 - ~ .n. 

From Figure 1 (c) we see that 

(4. 3) 



\ 

" 
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Equations (4. 2) and (4. 3) are sufficient to conclude that for p= 2, the 

joint integral transform method and the method based on the minimum 

level aJ;'e consistent for and a consistent 

sequence. 

The following theorems will allow us to check the consistency 

of Pearson's method for HA (Equation (4. 1)) c:onsidered above. The 

first is due to Cramer (9) and the sec:ond to Slutsky (43), 

Theorem 4, 3: Let {X } , n = 1, 2 1 3, ... , be an arbitrary sequence of 
n 

random variables and let the corre spending sequence of distribution 

functions { Fn (x)} converge to F(x) at every continuity point of F(x). 

Fu;rther let {Y}, n = 1, 2, 3,, .. , be another sequence of random 
n 

variables which conve:rges in probability to a constant a. Then the 

sequence of distribution fu:nctions of the random variables X Y con­
n n 

verges to the distribution func:tion F(:x;/a) if a> 0 and to the distri-

bution function 1 - F(x/a) if a < 0. 

. . . (n) (n) { (n)} _ Theorem4.4. Ifthesequences {X 1 },{X2 }, ... , Xr ,n-1,2, ... , 

of random variables (r is fixed) converge in probability to 

a 1, a 2 ,.,,, ar 1 respectively, then an arbitrary rational function 

R(x (n) X(n)) . R . ... · f · l . l . X(n) X(n) 
1 , . , , , r , i.e. , is a ra~10 o po ynom1a s in 1 , ..• , r , 

c;:onverges in probability to the constant R(a 1, a 2 , ... , ar), provided 

this constant is finite. 

It will be important in the next section to note that, 

(i) the sequence converges to a. in probability 
l 

disregarding the other sequ,enc:;es, 

(ii) there is no condition of independence for any of the 

variables involved. 
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Again let p = 2 and consider the alternative OA = nA, l x n 0 , 2 

Then if {Tin)} is c;:onsistent, we can see that Pearson's method 

converges to a uniform random variable by first applying Theorem 4. 4 

to 1 - Lin) and then applying Theorem 4. 3 to P. 
n 

Thus Pearson's 

method is not consistent for HA:e e nA,l x n 0 , 2 . Similar results can 

be obtained for p > 2, but is is felt that the asymptotic property 

discussed in the following section is of more importance. 

Bahadur Slope of Methods of Combination 

Littell (28) has compared methods of combination by using the 

asymptotic;: theory for comparing test statistiGs proposed by Bahadur 

(2). Bahadur's approach is as follows. 

Suppose {X }, n=l,2,, •. 
n 

is a sequence of random variables, 

each with the same distribution function F 0( •), depending on a para­

meter 0 in a set n. Let the null hypothesis be 

versus the alternative 

and 

For n = 1, 2, 3,... let T(n) be a real valued s~atistic for tee;ting H 0 

versus HA which depends only on the first n random variables 
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x 1, x2, ... , Xn. Suppose large values of T(n) are taken to be consist­

ent with the alternative, then the significance level is 

where F (•) 
n 

is the (completely specified) distribution function of 

T (n) for a E no . Throughout this sec;tion it will be assumed that 

is of the continuous type for all a e n and all n. 

If the sequence {T(n)} is consistent for H 0 versus HA (see 

Definition 1, 5) ~ then for eac;h a E nA 

liITJ. Pa [L (n) ~ 1] = 1 , 
n-co 

for all 1 e (0, 1); that is, the sequence {L(n)} converges to zero in 

probability [a], a e nA. Given two consistent sequences of test statis­

tics {Tin)} and {T~n)} for the same hypothesis problem, Bahadur's 

approach is to compute and compare a quant~ty measuring the rate of 

convergence of the respective levels to zero. Bahadur (3) has illus-

trated that it is usually possible, for a sequence of test statistics 

{T(n)L to find a function c(0) such that 

2logL(n) 
- -+ c(0) 
n 

in probability (0), 0 En, where c(0) = 0, 0 E n 0 , c(0) > 0, 0 E nA, 

The func;tion c(0) is called the slope of {T (n)} and is used as the 

measure of the rate of convergence of the sequence {L(n)} to zero, 

If {Tin)} and {T1n)} a!'e two sequences of test statistics 

for the same hypothesis problem, and if 
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2logLin) 
n - c 1 (9) in probability [9]. 9 E nA • 

and 

2 log L~n) 
n - c 2 (9) in probability [9], 9 E gA , 

then Bahadur considers {T~n)} preferable to {T~n)} if 

c 1 (0) > c 2 (0) ; i, e., the $equence {Lin)} converges to zero at a faster 

rate than does the sequence {L~n)}. For further discussion of c(9) 

with examples and connections between c(9) and other asymptotic 

criteria the reader is referred to Bahadur (2), (3) and Littell (29), 

A number of techniques have been devised for the calculation of 

slopes, For this study the following theorem will be sufficient. For 

the proof see Savage (40), 

Theorem 4, 5: If {T(n)} is a sequence of test statistics satisfying 

the properties 

(i) thel;'e exists a function b(9), 0 < b(9) < oo , such that 

T(n) 
...--,...- - b(0) in probability [9], 9 E n."A , ,Jn. .M. 

(U) there exists a continuous function f(t) such that for 

each t in some neighborhood of f(9) , 

lim ~ ln log P 0 [T(n) :::_ .JU t] = f(t) , 
n..+oo 

then the slope of {T (n)} is given by 

c(0) = 2 f(b(0)) . 
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Consider again the combined hypothesis 

H0 : 0. e n0 . , i = I, 2, •.. , p , 
l ,l 

versus 

HA:0e nA,i for at least one i=l,2, ••• ,p. 

Now denote the p independent test statistics by Tin), T~n), .•. , T~n) 
. (n) (n) 

and the respective levels by L 1 , ... , LP whel;'e n indicates the 

sample size on which each of the test statistics depend. 

Suppose that the sequence has slope c. = c.(0.) , 
l l l 

i= 1,2, •. ,,p; i.e., 

- ~log L~n) - c. > 0 in probability [0.], 0. E nA . ' 
n l l l i ,1 

as n-. eo. The objective is then to compute and compare the slopes of 

the various methods of combining the p (p remains fixed) independent 

levels. 

Littell obtained the slope for three of the methods of combina-

tion mentioned in Chapter I, specifically, for Fisher's method, the 

minimum of the p levels, and the maximum of the p levels. To illus-

trate calculation of the slope for a method of combination, consider a 

slightly modified, yet completely equivalent in terms of the distribu-

tion of levels, version of Fisher's statistic defined by 

The slope c(0), where 0 = (01, 02,.,., 0p), will be calculated usii;ig 

Theorems 4. 4 and 4, 5. First, 
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F 
n = - £log {L(n) L(n) • • · L(n)} 

n 1 2 p 

-- 2 1 L(n) . 2 1 L(n) 2 1 L(n) - n og 1 - n og 2 - ... - og p 

in probability [a], by applying Theorem 4. 4 and making use of the 

assumption 

2 log L~n) 
---1- - c.(8.,) in probability [a.]. 

n i i ~ 

To catc;ulate f(t) as described in part (ii) of Theorem 4, 5, notice that 

under the null hypothesis F is distributed like Y /.,fn where Y is a 
n 

chi-squared variable with 2p degrees of freedom. 

Lemma 4. 1: If Y is a chi-squared variable with 2p degrees of 

freedom then 

1 t 
lim - - P [ Y > n t] = -2. , t > 0 . 

n -

Proof; The va;riable Y has density function 

f(y) = 1 YP ,,. 1 e - y I 2 , y > 0 
(p-1)!2p 

= 0, y~O 

and distribution function 

F(y) = 0 , y ~ 0 

, y > 0 



Hence for t > 0, 

lim - .!_ log P [Y > nt] = lim {- l tog {• -nt/2 [pi! niti J}} 
n - n i=O 2 1i! n-+-co n-+-co 

[p-1 niti 

log i~O ~ 
t 21, I 

lim 
1, 

= 2 n n-CXJ 

Applying L 'Hospital 1 s rule 

lim - .!_ P [ Y > n t] = t - l im 
n - 2 n-+-a:i n-a:i 

t = 2 . 

Thus f ( t) t 
= 2 , and Theorem 4. 5 gives 

c(0) = 2, f(b(0)) 
p 

= !; c. (0.) . 
i= l 1 1 
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That is, the slope of Fisher's method of combination is the sum of the 

individual slopes. 

Similarly, Littell showed that the slope of the combined test 

based on the maximum level is the number of tests, p, times the 

minimum of the individual slopes, while the slope of the combined test 

based on the minimum level is the maximum of the individual slopes. 

Littell also proved the following theorem: 

Theorem 4. 6: Suppose {'r\n)} has a maximum slope for testing 

Ho . : 0. Eno . versus H'A.: 0. E r.i'A . ' i = l, 2, ... 'p . 
,1 l ,1 ',1 l ,1 

* If c (0) is the 
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slope of any sequence of tests obtained by combining the levels 

{ L~n)} 1 i = 1, 2,.,., p, for testing the combined hypothesis, then 
1 

* c(8) > c (8) 

where c(8) is the sum of the individual slopes. In fact, c(8) is the 

maximum slope of all sequences of test statistics for the combined 

hypothesis problem. 

It follows that if each of the sequences has maximum 

slope for H0 . versus H'A . , then the Fisher method is optimal, 
,1 ,1 

among all methods of combining the data, based on the Bahadur slope 

criteria. The objective here is to compute the slope of Pearson's 

method and some of the methods constructed in Chapter III. 

Several lemmas will first be proved to facilitate calculation of 

the slopes. In all of the following lemmas 

0 L (n) < L(n) L(n) 1 
< ( 1) (2) < ... < (p) < 

·11 d t d t t' t• · · f L(n) L(n) L(n) th w1 eno e or er s a 1s 1cs ar1s1ng rom 1 , 2 , .• , 1 p , e 

parameter 8 will denote the vector 8: (81, a2,.,,, 8 ) , 8. E (2. 1 p 1 1 . 

i=l,2, ... ,p, and c;(l)(e) < c(Z)(8) ::_ .,. ::_ c(p)(e) will denote the 

ordered values of c 1(e1),c2 (e2 ), •.• ,cp(ep). 

. (n) (n) (n) 
Lemma 4. 2: If the random variables X l , x 2 , ... , Xp (p fixed) 

are independent for each n = 1, 2, 3, ..• , and if the sequences 

{xin)}, {x1n)}, ..• , {X~n)} of random variables converge in probabUity 

to a 1, a 21 .•. , ap, respectively, then the sequences 

{ (n)} { (n)} { (n)} X(l) , X( 2 ) , r.,, X(p) converge to a(l)' a(Z)' .•. , a(p), respectively, 

(n) (n) (n) 
where, for each n, X(l)' x( 2 )'.,., X(p) are the order statistics 



. . (n) (n) (n) 
arising from xl • x2 •.•.• xp and a( 1) ::5. a(2) ::5. ••• ::5. a(p) are 

the ordered values of a 1, a 2 , .•. , ap. 

Proof: For arbitrary e > 0 and integer k satisfying 1 ~ k ::5_ p, 

[I (n) I ] [ (n) ] [ (n) ] 
p x(k) - a(k) > e: = p x(k) > a(k) + € + p x(k) < a(k) - € 

= P[X(n) > b +] + P[X(n) < b-] 
(k) (k) 

where + 
b =a(k)+e and b-=a(k)-e:. Now 

P[X(n) > b +] = P[at least p-k+ 1 of X(ln), x 2(n), , , . , Xp(n) > b +] 
(k) 

k [ . (n) (n) +] 
= ~ p exactly p-k+i of xl •...• xp > b 

i= 1 
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For q.n arbitrary integer i satisfying 1 < i ::5_ k, the probability 

P[exactly p-k+i of X~n),, .• , X~n) > b +] 

can be expressed as the sum of m. probabilities, where 
1 

m. 
l 

= p! 
(p-k+i)! (k-i)! • 

since there are m. distinct ways of selecting p-k+i random vari-
1 

ables from the p variables xl' x2 •... I xp. With the appropriate 

renumbering of the p original random variables, any one of these 

probabilities can be expressed as 

m. 
l 
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[ (n) + (n) + (n) + (n) +] 
P x 1 < b , •• ! , xk . < b , xk . + 1 > b ,. •. , x > b 

- -1 - -1 p 

= II P[X~n) ~ b +] II P[X~n) > b+] { 
k-i } { p } 

j=l J j=k-i+l J 

Th . ht 'd f th t" f 11 b x(ln). x2(n) ••.. 'xp(n) are e rl.g s1 e o e equa ion o ows ecause 

independent. 

Now since + b = a(k) + e:, at most p ... k of the 

+ are greater than or equal to b , so there is an a.* among 

ak- · + l' ak · +2' • · · ' a l -1 . ' p 
such that Let i = b + - a -~ > 0 , then ...... 

J 

< P[ / X(~) - a ~:c / > o] - 0 as n - co • 
j j 

Since all other probabilities in the product are bounded by zero and one, 

[ (n) + (n) + (n) + (n) +] 
P x 1 < b , ... , xk . < b , xk . + 1 > b , . , . , x > b - o 

- -1 - -1 p 

as n-+ co, which implies 

as n-co forall i=l,2, ..• ,k. Therefore, 

P[X(n) > b +]-+ 0 
(k) 

as n - a:> for each k = 11 2, .•. , p. An analogous argument can be 

used to show that 



as n -oo for each k= 1, 2, .•. ,p, and the theorem is established. 

Note that if we define x~n) = - ~log L(.n) I i = 1, 2, •.. , p' then 
1 n · 1 

(n) _ 2 (n) . _ 
X(p-i+l) - - n log L(i) , 1- 1, 2,, •. , p, where X( l)' X(2 ),, .. , X(p) 

denote the order statistics arising from xl' x2,.'., xp' 

following theorem is a direct application of Lemma 4. 2. 

Thus the 

Theorem 4. 7: If - ~log L~n) -c. (0.) in probability [el.], e. E n. ' 
n 1 1 1 i 1 

i = 1, 2, ... , p , then 

2 (n) [ ] 
.., n log L(i) - c (p-i + l) (0) in probability e . 

Lemma 4. 3: If the sequence {X } of random variables is such that 
n 

P[O < X < a] :;: 1 for all n, a finite, then 
- n -

2 
- - log (b + X ) - 0 in probability 

n n 

where b > 1 . 

Proof: For £ > 0 , 

Pf I - ~ log (b + X ) I ~ e] n n 
= P[~£ < - ~log(b+X )) 

- n n 

= P[ene:/Z > b+X ] 
- n 

= P[X <en£/ 2 -b]. 
n-

n£/2 
Clearly there is an N such that for n > N, e - b > a, so for 

n>N 

2 . 
P[ I - - log (b + X ) I < £] = 1 . 

n n -

Consider first the joint integral transform method for p = 2 

independent test statistics T~n) and T~n). Define the statistic by 
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2 { (n) (n) (n) 
Tn = -~ log L(l) (2 L(Z) - L(l))} • 

Again. there is some modification of the statistic given in Chapter III 

and again this is to facilitate calculation of the slope. First, 

T n 2 { (n) (n) (n) } --. = .. n log L(l) (2 L(2 ) - L(l)) 
..[Fi 

. 2 (n) 2 (n) 2 (n) / (n) 
= -nlogL(l)-nlogL(2)-n·log{l+l ... L(l)/L(2)}, 

By Theorem 4, 7, 

2 (n) [ ] - nlogL(l) -c(2 )(0) in probability 0 , 

2 (n) [ ] - n 1ogL(2 ) -c(l)(0) in probability 0 , 

By Lemma 4. 3, 

2 { (n) / (n) [ ] -n log 1 + 1 - L( l) L(2 )} .-o in, probability 0 
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if we define X0 = 1 - L~~~ / L~~~, n = 1, 2,,., • Thus b(9) described 

in Theorem 4. 5 is b(0) = c(l)(0)+c(i)(0). 

To calculate f(t) as described in part (ii) of Theorem 4, 5 we 

need 

lim - .!, log P 0 [T > .Jn t] n . n--

= lim - ! log P 0 [- --L log {q~l(zLl~l- Ll~l>t <rn t] ~~ ~ . J 
. 1 I, (n) (n) (n) -nt/2] 

= ~~~ - n log po L(l)(2L(2) - L(l)) < e . 



By Theorem 3, 2, 

[ 
1/2] e-nt/2 l+(l -e-nt/2) 

2 log . . 1/2 
1-(1-e-nt/2) 

Define h(n) = P 0 (T n ~ ,_jtlt] and g(n) = 1- e -nt/ 2 , then 

= 1 - gl/2 + l!.::K21 [1 + gl/2 J h(n) 2 og . 1 /2 • 
1 - g 

Note that 

l~m g(n) = 1 
n-m 

and 

lim h(n) = 0 . 

Now 

f ( t) = lim - .!. log PO(T > "1fi t] = lim - log h(n) = 
n n- n 

h'(n) 
lim - h(n) 

n-m n-m n-co 

After some algebra, h'(n) is found to be 

so 

t [1+ 1/2] h'(n) = - 4 (1 - g) log g 172 
1.,. g 

f(t) = lim - log h(n) = lim 
n 

n-m 

= lim 

t [l+gl/2] 4(1-.g)log 1/2 
1 - g 

1 1/2+ l!.::K21 [l+gl/2] - g 2 og 1 /2 
1 - g 

2(1-gl~2) . ) 

[ 
1/2 J + 1 l+g 

(1 - g) log 172 
1 - g 
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t = lim -~---·_2 __ ,..._ ___ + 1 = 2 ~ 

1/2 ( 1 + g ) log l+gl/2] 
'1 /2 1 ... g . 

Theorem 4, 5 gives the slope of the joint integral transform 

method, for p = 2 1 to be 2 f(b(0)) which is 

again optimal based on the Bahadur slope criteria. Without the null 

distribution function for p > 2, it is not pos$ible to compute the slope 

for general p. 

Next consider a statistic equivalent to Pearson ls def~ned by 

In tMs form large values will be consistent with the alternative. First, 

p 
2 

p 
( 1 - L~n))} n = - -- log { 1 II 

.,Jn. n 
i= 1 

1 

2 p 
(n) } = ., ..,. log { 1 II (1-L(i)) n i= 1 

2 
p ... l p-1 

- .. -dog { 1 - II (1 - L(?)) + L(n) II (1 - L(?))} 
n 

i= 1 (1) (p) i= 1 (1) 

Define 

p-1 ( ( )) 
= 1 - i~ l 1 ., L(~) , 

then 



p 

n = - ~log {h+ L~;~ (1 - h)} 
~ 

2 { (n) (n) } 
= - n log L(p) + h ,.. L(p)h 

2 (n) 2 h 
::; - - log L( ) - - log { 1 +-.( -) ., h} n p n · Ln 

(p) 

* 
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for real numbers satisfying .e(i):'.:. .e(i)' i=l,2, .• ~,p-1. If we define 

the sequence of variables {X } by 
n 

x = n 

( (n) (n) 
h L l)""'L( -l) 

l.,(n) 
(p) 

( (n) (n) ) 
- h L(l)"'"'L(p-l) 

then for every set of real numbers satisfying 

(i) x = 
n 

h(L ( 1 v ' .. ' .e (p-1)) 
. . L . ... h(L(l)' ... , J.(p ... l)) ~ 0 , 

(p) 

(ii) x = n 

< h(L(l)'""'l.e(p .. l)) 

.e(p) ' 

= 1 - (1 - .e(p))p,..l 

.e (p) 
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Thus Pa [O < Xn .:5. p,.. 2) = 1 for all n, so l:)y Theorem 4, 7 and Lemma 

4. 3. 

p 

n - c ( 1) (8) in probability [a] . 
..Jn 

The function f(t) is given by the following Lemma. 

Lemma 4, 4: If Y is a chi-squared variable with 2p degrees of 

freedom then 

lim - ~logP[-2log(l -e-Y/2) > nt] = 7:-. 
n-o:i 

Proof: The random variable Y has distr~bution function 

-y/2[p-l .i J F(y) = 1 .., e ~ -1:-. , 
. i=O 2\! 

P[-2log(l -e'""Y/ 2 ) ::::_ nt] 

and 

= P[Y < -2 lo~~ e -nt/Z)] 

= h(n) , 

lim - !.1ogP[Y < -2log(l -.e-Y/2 )] = 
n - lim - !. log h(n) .. n 

n-o:i n-a:> 

= . .. h'(n) 
... lim - h(n) 

n-oo 

h"(n) 
= lim - h'(n) 

n-oo 
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After some simplification 

h' (n) 
(-l)P-2te-nt/Z t/2 1 

= {log(l-e-n )}P- , 
2 (p-1) ! 

h "(n) = _,_( .. _1......,)P_-_2 ..... t2_e.,....-_n_t/ ....... 2 {log (1 - e -nt/2)} p-2{(p~ 1 )e -nt/2 
4(p-l)! (l-e-nt/2) 

and 

Now 

h"(n) 
lim - . · · 

h'(n) n..+co 

/ 2 / 2 log ( 1 _ e "nt/2) 
1. .. . nt 1 ( 1 ... nt . ) 1. _ 
im e o g - e = im · -n t 7 2 

n-co n-oo e 

= lim 

t -.nt/2 re 

Hence 

lim - *logP[-21og(l -e-Y/2 ) ~ nt] = 
n-oo 

and the lemma is proved. 

Applying this lemma 

-nt/~ 
- log ( 1 - e J 

= -1 . 

lim - .!. P 0 [P > .['ii. t] 
n n - = lim - * p o[-2 log ( 1 - e - y 12 ) ~ nt] = -¥-

n-+oo n-oo · 
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since under the combined null hypothesis, -2 log { h ( 1 - ~((~)))} is a 
i= 1 l 

chi-squared variable with 2p degrees of freedom, Finally, the slope 

of Pearson's m~thod is 

= 2 ( p c i 1 ) ) = p c (0) 
( 1) • 

or the number of levels, p, times the minimum of the individual slopes, 

Statistics suggested in the last section of Chapter III can also be 

used as methods of combining independent levels. Bowever, general 

expre1;1sions for the slope can be obtained only if some restrictions are 

placed on the combined alternative and individual slopes, First, it 

will be assumed that the combined alternative is 

specifically because it will be necessary to have c(i)(0) > 0 for 

* 0 = (01' ..• '0p) E nA. where now 

From a practical point of view one might hypothesize a value of a 

parameter near the actual value and hopefully this will lead to small 

value for the slope; however,it is unlikely that one will hypothesize the 

exact value of any parameter, Thus it is felt this assumption does not 

greatly re strict the results. 

The second assumption is that c(i)(9) 'f; c(j)(0), i #j, for the a 

of interest in a E nA. This assumption wUl place some restriction on 

the application o:f the results. However, in the important case when 



the .f.n), i= 1,2, ... ,p, are distinct test statistics of the same or 
l 

distip.ct hypotheses the assumption is very reasonable, 

With these assumptions three more lemmas hold. 

Lemma 4. 5: For e E n~. L~~ - 0 in probability [e]. 
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[ (n) ] Proof: If we select an e > 1 , then Pe L(i) < e: = 1 . If we se~ect an e: 

satisfying 0 < e < 1 then 

Pe [ 

(n) 

> - 2 l~g< J [ (n) J 2 log L(i) 
Pe L(i) ~e = n 

Pa[ 

(n) 

= 
2logL(i) 

> 2 loge J -c -Cl -n (p-i+l) - (p-i+l) n · 

Sine e 0 < e < 1 , - 21~ge > 0, but since e(p-i+l) > 0 we can find an 

N such that for n _> N, - c - 2 loge: < 0. So for n > N, 
(p-i+l) n 

= Pe [-

(n) 

2 L:g• J ~ (n) J 2logL{i) 
-c >-c -Pe L(i) ~e: n (p-i+l) - (p-i+l) 

:'.;.Pe~-
(n) 

2 L~ge J 2 log L(i) 
- c(p-.i+l) I ~ c(p-i+l) + n 

> Pe~ -
(n) 

2~g· J 2 log L(i) 
-c(. )l<c(. )+ n p-1+1 - . p-1+1 

- 1 as n-+oo. 

LemmC;l. 4. 6: For 

L (n) 
(i) 

L (n) 
(j) 

- 0 in probability [e] 



for each i = 1, 2, ... ,p-·1 ·; j = 2, ... , p; j > i, 

Proof: Since c (p ... i+ 1) > c (p-j+ 1) , 

2 (i) 2 (n) 2 (n) 
[

L(n)] 
"n log L~j/ = - n log L(i) + n log L(j) 

* - c(p-i+l).., c(p-j+l) > 0 in probability [a], a E nA. 
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So for 0 l k d 4 loge f 11 < e < , . =c(p-i+l) - c(p-j+l), an n > - k , it o ows 

that 

{ 
L (Q.) 1 ..:Jil. Pa . (~) < e 
L(j) 

{ 
(n) } 2 L i) k 

= p e - n log-=t& - k > - 2 
L(j) 

(n) I } 2 L i) k 
- nlog~ - k < 2 

L(j) 

-+ 1 as n-+ co. 

Lemma 4, 7: If the sequence of ranelom variables {X } c0nverge s to 
n 

·zero in probability then the sequence 

2 
{- -log(a+X )} n n 

converges t~ zero in probability, where a> 0 is constant. 



Proof: For e: > 0 , 

P{ 1- .?_ log (a+ X ) I ~ e:} = n n ~ 

2 
P{ -e < .,. - log (a+ X ) < e:} 

- _n n -

= P{e-ne/2< a+X < ene/2} 
- n-

Clearly there is some N and some b > 0 such that for n > N, 

-a+e-ne:/Z < -b and -a+ene:/Z > b, so for n > N 

- 1 as n - oo • 

Now consider the statistic V n, equivalent to w4 defined in 

Chapter III, given by 

v 
n = - .?_log [Jl -(1-L )p}p~- l {1-

n } ( 1) i= 1 

2 p-1 . 
+ -- :E log {(l - L )P- 1 } 

n i=l (i) 

2 p - n log { 1 - ( 1 - L( l )) } . 

The superscript (n) is deleted here to avoid confusion with powers, 

For i=l,2, ... ,p-2, p>2, 
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= 1 + P.,;:i(p-i)(-l)kLk. - 1 P.,;:i (p-i) ( l)kLk 
k~l k . (1) - k~l k - (i+l) 

p ... i ( ") k k prii ( ") k k = (p-i) L(i+l) - k~2 pk1 (-1) L(i+l) + k~l pk1 (-1) L(i) 

" L(i+l) {(p-i) - =~: (pki)(-lh~;~\) + L~i~l) =~: (pki) (-lh~;) 1} 
(4. 4) 

Since L(i)- 0 in probability [e] by Lemma 4. 5, L(i/L(i+l) ...... 0 in 

2 
probability [e] by Lemma 4, 6, then by applying Lemma 4~ 7 to -- ~Log 

of Equation. ("4. 4) . 

i=l,2,, .. ,p-2. 

For i = p-1, 

2 2 · 2 L(£-1) 
- nlog{(l-L(p-l)) - (1-L(p))} = - nlog{L(p)} - nlog{l- L(p) } 

- c ( 1) (9) in probability [e] . 

Now 

2 { p -illog 1-(1-L(l))} 2 p(p) kk = - nlog{l -1- k~l k ( .. 1) L(l)} 

2 2 p (p) k k-1 
= - nlogL(l),,. nlog{l- k~2 k (-1) L(l)} 

- c (p) in probability [a] 

by again applying _,Lemmas 4. 5 and 4. 7. The sequence 



p-1 . p-i 
2 { p-1} n :E log (1 -L(')) = 

i= 1 1 

2(p-i) 
n :E log (1 ... L(.)) 

i= 1 1 

..... 0 in probability [0] 

by Lemma 4. 7 • Hence 

v 
n 

p 
.- :E c (.) (0) in probability [0] • 

i= 1 i 
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The function f(t) is provided by Lemma 4. 1 because under the com-

bined null hypothesis, ...[n V is a chi-squared variable with 2p 
n 

degrees of freedom; i.e., f(t) = t/2. 

Finally the slope of V , say 
n 

>!r:::** 
c (9) 

2 

>:<*>~ 
G (0) , is 

p * :E c. (0.) , 0 ~ OA • 
i= 1 l 1 

It is important to note that V is not a monotone method of combina­
n 

tion, yet does possess optimal Bahq.dur slope, 

A summary of the results of this section is included in Chapter 

VI. It is clear, however, that the joint integral transform approach 

does yield methods of combination which share the optimal Bahadur 

slope with Fisher's method for many importq.nt problems. 



CHAPTER V 

GOODNESS OF FIT 

Techniques similar to those used to construct methods of com­

bination in Chapter Ill will now be applied to the general goodness of 

fit hypothesis problem. To restate the problem, suppose that for a 

continuous random variable X with distribution function F(·) it is of 

interest to test the null hypothesis 

Ho: F(x) = F o(x). x: E (-Cr:i, a>). ( s. 1) 

versus the alternative 

for some x e(-IX), m). Tqroughout this chapter the following assump­

tions and notation will be used: 

(i) x 1, X 2,. , . , Xn will denote n mutually independent 

identically distributed continuous random variables. 

(ii) U 1, u 2 , ..• , Un will denote the integral transforms 

of x 1,x2 , •.. ,Xn' respectively; i.e,, Uk= F 0 (Xk)' 

k=l,2, •.. ,n. 

(iii) u(l)' u(Z)', •,I u(n) Will denote the order Statistics 

arising from u 1, U2,,.,, Un. 
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A Combining Levels Approach to 

Goodness of Fit 

Suppose we consider each random variable Xk as a test statis­

tic for the hypothesis 

versus 

HA,k: F k(x) ~ F 0(x), for some x E (-ai, ex>) 

where F k(•) denotes the distribution function of Xk. Then the good­

ness of fit hypothesis, Equations (5, 1) and (5, 2), is the combined 

hypotheeis 

versus the combined alternative 

If it were possible to define an appropriate significance level, 

say Lk, for eac:h Xk, then perhaps we could use Fisher's method 

n 
~ log Lk 

k=l 

to test H 0 versus HA. By an "appropriate" level we mean that 

small values should reflect departure from the null hypothesis in the 

direction of the alternative. 

In Chapters II and III it was possible to define appropriate 

levels because of the a priori knowledge that smaU values of each test 
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statistic are consistent with its respective alternative. Such a 

priori knowledge is not available for the goodness of fit hypothesis. 

One might suggest 

the definition generally used for two~tailed test statistics when it is 

known that either large or small values of the statistic are consistent 

with the alternative. Note that Lk as defined here is a uniform 

variable under the null hypothesis F(x) = F 0 (x), x e (-a:i, a:i). This 

definition seems inappropriate for H 0 versus HA, but it does suggest 

a possible approach. 

from 

Consider the order statistics U(l) .:::_ U(Z) .:::_ . , . < U(n) arising 

Uk= F o(Xk)' k = 1, 2, ••. In. Under the null hypothesis the u (k) 

are up.iform order statistics. Under any alternative it seems reason-

able to assume that, for at least some of these variables, either 

smaller or larger values than predicted by uniform are likely. Perhaps 

a reasonably sensitive statistic; would be 

= -2 

where 

n * 
~ log Lk 

k=l 

and 

the null distribution function of U (k). The function 

denotes 

2 Min {Gbk) (U(k)), l - Gbk) (U (k))} would attain its maximum value if 

U(k) were to realize its median value (under H0 ), and the function 

decreases as U (k) either decreases or increases from' its median 

value. Thus small values of L: 1 large value of 0 2 , should be taken 

consistent with the alternative. 
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* * Each of the Lk is a uniform variable under H 0 , but the Lk 

are dependent random variables and therefore 0 2 is not a chi-squared 

variable under H0 , Rather than attempt to find the null distribution of 

Q2 , suppose we turn to the conditional approach used in the last section 

of Chapter III. Define the conditional level, say Lk I k+ 1 , of U (k) to 

be 

k=l,2,~ .. ,n-1, 

where Gbkjk+l)(· j,) is the c;onditional distribution function (under 

H 0 ) of U(k) given U(k+l). Recalling previous discussion of uniform 

order statistics this is actually the condHional distribution function of 

U(k) given U(k+l)' U(k+2 ), .•• , U(n). Hence by Theorem 3 1 5 

Lk I k+ 1 , k = 1, 2, . , • , n are mutually independent 1,lniform variables 

under H0 • The conditional distribution function is 

k=l,2, ... ,n-1 

and 

k=l,2, ... ,n 

if we define U (n+ 1) = 1 . The test statistic Q3 defined by 



n 

:: -2 ~ logLklk+l 
k:; 1 

is a chi-. squared variable with 2n degrees of freedom under H 0 . 
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Small values of Lk I k+ 1 , large values of a3 , will again be 

taken consistent with the alternative. Because of the conditional nature 

of Lk I k+ 1 1 this approach has perhaps lost some of its appeal. In fact 

it can be demonstrated that a3 is a biased test statistic for at least 

one alternative. Consider the class of alternatives. 

and the joint density of u(l)' u(2)' .•. 'u(n) is 

If we define U (n+ 1) :: 1 

n :: a n! 
n 

a-1 
IT u(k) 

k=l 

= 0, otherwise 

and 

the joint density of Y 1, Y2 , ... , Yn is 

n 
n a-1 = a IT yk 

k= 1 

0 ~ u( 1) < •. , ~ u(n) ~ 1 

O<yk~l, k::l,2, ... ,n, 

= 0, otherwise , 



Note that the Yk are indepep.dent, a.nd in terma of Y 1, ... , Yn, 

Lk jk+l is 

Lk I· k + 1 = 2 Min { Y k , 1 - Y k} , k = 1 , 2 , . . , , n . 

Hence for 0 < J. < 1 

PA[Lklk+l ~.t) = PA[2Min{Yk, 1-Yk} ~J.) 

= PA[Yk< ~)+PA(Yk~1..,tJ 

The null hypothesis corresponds to a= 1 , and in this case 

However, if a= 2 the distribution of X differs significantly for the 

null hypothesis, but 

= 1 ' 

and 

where H(3 )(·) denotes the distribution function of the significance 
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level of a 3 . Hence a3 is only trivially unbiased for the alternative 

a= 2. 

Some 1000 samples of size n = 15 from the alternative 
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where synthetic~lly generated, and for each, o3 was calculated. Since 

the null distribution of o3 is chi-squared with 30 degrees of freedom, 

(see any numerical tabula.tion of the chi-squared distribution) and 

Of the 1000 values of o3 , 68 or 6. 8 percent of the values exceeded 

40. 26. Considering this as an estimate of a proportion p based on 

1000 samples, the probability is approximately . 95 that p is in the 

interval 

. 068 p 1, 96 (. 068.)(. 932) 
1000 . = . 053 

to 

. 068 + 1. 96 (. 068)(. 932) 
1000 = . 083 

Hence, this is a good indication that 

and that o3 is a biased test for this alternative. Note that for 

ot:r.3/2, 

0. 5 • 

Further empirical investigation with a variety of alternatives 

indicate that o3 generally provides poor sensitivity when the mean of 

the alternative is larger than that of the null. Some of the results ate 
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given in the last section of this chapter. In this same section it will 

also be demonstr~ted that Q3 provides extremely good sensitivity for 

aQ. important and practical problem. 

Recalling the discussion given in the last section of Chapter Ill, 

many other definitions of conditional significance levels of the U(k) 

are possible. For example, consider the random variables, 

z 1, z 2,.,,, Zn where observed values are defined by 

zk= P0[u(k)~ u(k)IU(i) = u(i)' i=l,2, •.. ,k-1] 

( 1 _ )n .. k+ 1 
u(k) 

= I k:: 2, 3, •, "n • 

Now if we define the conditional levels to be 

Lkjk-l = 2Min{Zk, 1-Zk}, k=2,3, ... ,n, 

then again the Lk I k,.,. l , k = 1, 2, , .. , n are mutually independent 

uniform variables under H 0 . Empirical studies of 

n 

Q4:: -2k~llogLkjk,.,1 

indicate that this statistic is extremely sensitive to alternatives with 
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larger mean than the null, while less sensitive to alternatives with 

smaUer mean than the null. 

Again referring to Chapter III, it is not necessary to begin the 

process of defining conditional levels with either U(l) or U(n)" The 

variables z 1, z2,.,., Zn will be independent uniform variables (under 

H 0) if we observe the following rules: 

for any k = l. 2, .•. , n ; 

(U) Once we define a z as the conditional (null) proba-

bility that U (k) is less than or equal to u(k), U (k) 

does not appear again in the process; 

(iii) Until we define a z as the conditional (null) proba-

bHity that U (k) is less than or equal to u(k) , all 

'probabilities will be conditioned on U (k) = u(k) . 

For each sample size n, n! diffe:rent definitions of the Z' s 

are possible, two of which lead to Q 3 and 0 4 defined above. One 

more will now be considered here, Let us begin with n = 4, For 

u(3) - u(2) 

u(3)~u(l) 
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2 
= 

Ju(4) 2 
(u(4 ) - t) dt = 

u( 1) 

Now define 

~'* 
Ll = 2 Min {Z l, 1 - z 1} 

*:=::: 
2Min{Z 2 , 1 - z2} L2 = 

*:=:c 
2 Min {z 3 , 1 - z 3 } L' = 3 

::i:i::::::i:: 

2 Min {z 4 , 1 - z4 } L4 = 

::::<* 
Actually L 1 is designed to measure departure of U(Z) from that 

** predicted by H0 , L 2 is de signed to measure departure of U (3 ) , 

etc. , but it will be convenient to use the difference in tanks of the u 1 s 

in the numerator as the subscript for the corresponding signific;ance 

level. Also note that in the definitions of z 1 and z 3 the inequalities 

are opposite those used to d=~~i:.:,.., z 2 and z4 •l·-;;'l:.hi$ does not affect the 

n'\lll disfributibn'7 of the Z's ;: and the L 1 s :are exactly the 'same vari-

ables as if the inequalities were in the other direction.· The purpose is 

to help.establish a recognizable pattern in the· definitions. 



For n = 5 , define 

= u(3)-u(2) 

u(4) - u(2) 

Now define L:* =2Min{Zk' 1-Zk}, k=l,2, .•. ,5, 

Before considering the general case, let us d,efine U (k) = 0. 

k< 1 and U(k)= 1, k>n. Now for observec;l u(k)' k=l,2, ••• ,n., 

0 ~ u(l) <.,, :S. u(n) ~ 1, and for any k = 1, 2, •• ,, n and r > k, 

Ju(r) 
= . (r .. k) . (u - t{-k,..l dt 

( )r.,k (r) 
u -u 

(r) (k-1) u(k) 

= 

forany k=l,2, .•. ,n and r<k 
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= /
u(k) 

(k-r) . (t _ r . )k-r-1 dt 
k~r (r) 

(u(k+l)-u(r)) u 
(r) 

For general n, n even, we define 

= 
u(n/2+1) - u(n/2) 

u - u (n/2+1) (n/2~1) 

z = 3 

For n odd, we define 



z :: 
2 

(n-1) uz-
u (nz 1) 

[u(!!f) -u(¥)] 2 

[u(n;3) u(nz3 )] 2 

[u(!!f) -u(¥)] 3 

r (n+5) . (n-3). ]. 3 
Lu 2 - u z 

Finally, we define 

** Lk = 2 Min { Z k , 1 - Z k} , k = 1 , 2, , •. , n , 

and 

*:::~ 
Small values of Lk , large values of Q 5 , will be taken consistent 
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with the alternative, For an observed q 5 , the significance level, say 

.e 5, is 

where 
2 x (Zn) is a chi- squared variable with. 2n degrees of freedom. 
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Synthetic Sampling Study 

Analytic studies of the sensitivity of goodness of fit test statis-

tics are not ve:ry fa:r advanced at pre sent. It is difficult, from a prac-

tical point of view, to select the alternative hypothesis from all possible 

alternative hypotheses. There are also great mathematical difficulties 

connected with finding an exact, or even an approximation expression 

for the sensit~vity of test statistics, This is particularly true for the 

type of test statistics defined in the preceding section, because the 

:s:c* 
conditional levels (Lk I k+ 1 , Lk+ I I k, or Lk ) are dependent random 

variables for most alternatives of interest. Even the theory of limiting 

distributions of statistics that are functions of dependent variables is 

not far advanced. 

It is not difficult to obtain empirical approximations of distribu-

tion function (and sensitivities are distribution functions) with the aid 

of a high-speed computer. In a recent study by Shapiro, Wilk, and 

Chen (42) several of the test statistics defined in Chapter II were 

compared by com.paring the empirical approximations of the distribu-

tions of significance levels. The study was designed to com.pare the W 

statistic (see Chapter II) with other tests of normality, thus in each 

case the null hypothesis was norm.al. Since the W is scale and origin 

invariant, the null hypothesis for this statistic was norm.al, mean and 

* variance unknown. For the chi-squared statistic (CS·), Kolrnogorov-

>x 
Smirnov (KS'), Cramer-Von Mises (CM), weighteQ. Cramer-Von Mises 

(WCM), and Durbin (D) it is necessary to specify the mean and var-

iance. It is also necessary to specify the mean and variance for 0 3 , 

o4 , and o5 defined in the preceding sec-tion,. , 
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Accordingly, for the first set of alternatives (Table II), the 

mean and variance of the null hypo the sis is taken as the known mean 

and variance of the actual alternative. For example, if the alternative 

is a chi.squared distribution with two degrees of freedom, the simple 

null is normal with mean two and variance four. This approach is of 

particular interest in the light of the transformations described in 

Chapter II designed to reduce the composite hypothesis of normality 

(mean and variance unknown) to a simple hypothesis; if one of the trans .. 

formations is first applied to the data it will in~mre that the mean and 

varianc;e of the alternative is nearly that of the null hypothesis, specif-

ically mean ze:ro and unit variance. 

The values of 131 and 132 are the skewness and lcurtois, 

respectively, of the corresponding alternative. Recall that a normal 

distribution, the null hypothesis, has 13 1 = 0 and 132 = 3. 0. 

Samples from the various alternatives were generated using the 

IBM subroutine RANDU as the basic imput (46). Obtaining samples 

was greatly simplified by the fact that all alternatives in Table II have 

distribution functions that are easy to invert. For example, if X is a 

chi-squared variable with two degrees of freedom, then 

( -.x/2 
F x) = 1 - e , x > 0 , 

and 

x = -2log(l-F(x)), 

Hence, to generate an observation x from this population, an observa-

tion u from a unifo;rm on the unit interval is generated with RANDU, 

and then 

x = ... 2 log ( 1 - u) • 
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TABLE II 

ALTERNATIVE DISTRIBUTIONS USED IN STUDY 

Alternative 131 • 132 

1. Uniform: f A (x) = 1 • 0 < x < 1 131 = 0,00 

= 0. otherwise 132 = 1. 80 

2; Triangular: f A. (x) = 2x , 0 < x < 1 131 = .,. . 57 

= 0. otherwise 132 = 2.40 

3. Chi-Squared, fA (x) = O, x < O 13 = 2.00 
1 

Two Degrees of Freedom: = l/2e-x/2 , x>O 132 = 9.00 -
4. Tukey (A=,7): Tukey variates are defined by the 131 = 0.00 

A A transformation Y = R - ( 1-R) where R is uniform 132 = 1. 92 

on the unit interval 

5. Tu key (A = 10) ! 131 = 0.00 

132 = 5.38 

114 e - 1I2 Ix I , 131 = 0 .. 00 
6. Laplace: f A (x) = -ai < x < CXl 

132 = 6. 00 

7. Weibull (A= L, k = fh 5) : fA (x) = 0 , x<O k 131 = 6,62 
k-1 -AX 

=Akx e • x>O 132 = 87. 72 
j 

8, Weibull (A=l,k=2): 131 = 0/63 

132 = 3,25 

2e 
2x 131 = 0,63 

9, Logistic: fA (x) = 
(l +e2x)2 • - OJ < x < OJ 

132 = 3.25 
,'' 

1 1 13 = 0.00 
10. Cauchy: fA (x) <x<CX> 1 = -

( 1 + x 2 ) 
• -OJ 

132 = 1T ~ --.. ~ .. 

: ., 



TABLE III 

PERCENT SENSITIVITY AT THE 10 PERCENT LEVEL 

OF SIGNIFICANCE; 200 SAMPLES FOR EACH 

SAMPLE SIZE 

Test Statistic Q3 Q5 KS* cs•:< CM 

Sample Size 10 15 20 10 15 20 10 15 20 10 15 20 10 15 20 

Uniform 14 17 23 11 7 13 14 11 19 14 17 18 11 8 8 

Triangular I 16 22 24 15 12 19 10 10 14 16 14 12 16 12 20 

Chi-Squared ! 38 51 57 43 46 56 32 30 37 81 43 43 20 23 33 

I 12 Tukey (X.= ,7) 15 17 8 10 8 15 9 17 12 14 15 11 8 17 
<U 
> ..... 

Tukey (X. = 10) 73 87 93 78 89 96 31 45 63 27 83 81 23 33 54 ..., 
. «I 

c 
1-4 

Laplace 19 24 26 23 26 33 13 7 13 14 17 25 12 7 15 <U ..., 
....... 
< Weibull (k= .5) 94 100 100 98 100 100 58 65 100 94 97 99 57 73 96 

Weibull (k=2) 12 13 19 10 12 14 12 14 15 11 15 12 10 11 14 

Logistic 13 14 21 15 16 18 9 6 9 12 12 8 10 9 8 

Cauchy 90 99 100 95 100 100 30 47 65 23 46 54 32 46 71 

WCM 

10 15 20 

14 8 9 

17 13 20 

23 26 41 

12 7 18 

27 29 61 

36 20 37 

63 77 99 

11 11 15 

13 9 9 

95 98 99 

10 

16 

16 

31 

17 

72 

23 

89 

10 

13 

75 

D 

15 20 

17 19 

15 23 

39 56 

8 8 

77 87 

21 24 

99 100 

7 11 

4 10 

84 91 

...!) 

VJ 
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Samples of sizes n = 10, 15, and 20 were used in the study. 

For a typical comp~ter run, that is, for one alternative, one sample 

size (say n = 10), and one test statistic (say Q3 ), 200 samples of 

size 10 each were generated and 200 values of a3 computed. The 

percentage of the a3 values exceeding 28, 41, the 90 percent quantile 

of a chi-squared distribution with 20 degrees of freedom, was then 

c;omputed and recorded in Table III. Thus values given in Table III 

estimate the sensitivity at the 10 percent level of significance. Only 

percentages for Q3 and 0 5 were actually computed in this study; 

all our percentages are those given by Shapiro, Wilk and Chen (42). 

TABLE IV 

PERCENT SENSITIVITY AT 5 PERCENT 

LEVEL OF SIGNIFICANCE ; 200 

SAMPLES OF SIZE 15 

Mean .000 . 000 ' 150 .300 . 180 ,360 ! 195 • 390 

Std. Deviation 1. 2 1. 3 1. 0 1. 0 1, 2 ' 1. 2 1. 3 1, 3 

Q3 14 29 8 9 13 17 22 20 
u Q 12 16 10 13 14 19 17 l 21 ..... ...., 5* rn ..... KS 5 11 3 10 6 6 8 ! 14 ...., 

j ell ~·-...., cs" 6 9 5 12 10 16 12 29 u:i 
...., 

CM 4 8 8 17 13 21 13 26 rn 
G) 

E-4 WCM 11 15 9 17 20 29 26 38 

D 10 15 4 10 8 10 15 17 



Test 
Statistic 

10 
Sample 15 Size 

ao 

TABLE V 

SUMS OF RANKS OF SENSITIVITIES ; FIRST 

SET OF ALTERNATIVES 

Q3 Q5 KS* cs* CM WCM 

30,0 34.5 47.0 40,5 61, 0 34.0 

17. 5 27,0 53. 5 32.5 57. 0 51. 0 
17. 0 32.5 45.0 53.0 56,5 38.0 

TABLE VI 

SUMS OF RANKS OF SENSITIVITIES; SECOND 

SET OF ALTERN,A.TIVES 

Test ' 
KS* cs* 

Statistic Q3 Q5 CM WCM 

Sample 15 27,0 20,0 51. 5 38.0 32.5 14,0 
Size 

The second set of alternatives are "misspecified" normal 

95 

D 

33.0 

41. 5 

38.0 

D 

41.0 

distributions used to study the effect of errors in the assumed values 

of the normal parameters in testing the simple hypothesis that the dis,. 

tribution is normal, mean zero and standard deviation one. The alter~ 

native parameter values are: (µ,o-) = (0, 1,2), (0, 1.3), (.15, 1.0), 

(. 18, l, 2), (, 195, 1. 3), (, 3, l. 0), (. 36, 1. 2), (. 39, 1. 3). Resul,ts are 
. '., 

given in Table IV. 



To aid in summarizing the results of the synthetic sampling, 

ranks from one (b~st observed sensitivity) to seven (least observed 
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sensitivity) were assigned for each sample l\lize.alternative combina ... 

tion. These ranks were then summing over the ten alternative for the 

first study (Table V) and over the eight alternatives for the second 

study (Table VI). In case of ties ranks were averaged. 

The results in this section were derived from sampling and are 

thus subject to sampling error. As a guide to accuracy, the standard 

deviation of any estimate of sensitivity is bounded by 

(, 5)(. 5> ,.._, 036 
200 ,.._, . • 

Even with the ra·the.r wide gauge of ±2(. 036) = ±7, 2 percentage points, 

Q 3 , and Q 5 to a lesser extent, provide superior sensitivity for 

several of the alternatives considered. TMs is particularly true for 

alternatives with a long (heavy) tail compared to that of the normal 

distribution; these include the chi.,.squared, Tukey (X..= 10), Weibull 

(k= 5), and Cauchy alternatives. 

It was mentioned in the preceding section that Q3 generally 

provides better sensitivity when the mean of the alt~rnative is smaller 

than that of the null, as opposed to the mean of the alternative greater 

than that of the null, To demonstrate this point, 200 samples of si~ 

15 were generated from eac:h of the alternatives normal (µ, <r) = (-.15,1) 

and normal, Wi~h a null hypothesis of normal, .. 
(µ, <r) = {O, 1), the observed sen1:1itivities were 16 and ~5 percent, 

respectively, at the 5 percent level of significance, Compare these to 

the 8 and 9 percent given in Table IV for the alternatives normail, 

(µ, <r) = (, 15, 1), and normal, (µ, <r) c:: (. 30, 1) ! 



CHAPTER VI 

SUMMARY AND EXTENSIONS 

In this study several test statistics were given for testing the 

simple goodness of fit hypothesis. Chapter III was concerned with 

constructing test statistics, referred to as methods of combination, for 

the special case of the general goodness of fit hypothesis obtained by 

considering sign~ficance levels of independent test statistic,:s. 

Properhes of methods of combination were investigated in 

Chapter IV. The concept of a monotone method of combination was 

introduced, and relationships between monotonicity and the properties 

of unbiasedness and consistency of methods of combination were 

obtained, Specifically, if the p original test statistics are unbiased, 

then a monotone method of combination is an unbiased test statistic for 

the combined hypothesis problem; if the original test statistics are 

c::onsistent, then a continuous (a random variable of the continuous type), 

monotone method of combination provides a consistent test statistic for 

a slightly restricted version of the combined hypothesis problem (see 

page 49). The joint integral transform method of combination is a 

continuous, monotone method of combination, as are Fisher's method, 

Pearson's method, the maximum level and the minimum level, How­

ever, the conditional integral transform methods W 3 , w4 (page 41), 

and w5 (p(:\ge 43) are not monotone methods of combination. 

q7 
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In the last section of Chapter IV it was shown that the exact 

e;lope s of the combined tests are for Fisher 1 s method 

(established earlier by Littell (28)), c 1 (91) + c 2 (e2 ) for the joint 

integral transform when p= 2, pm~n ck(ek) for Pearson's method, 

and ~ ck(9k) for the conditional integral transform method w4 (with 

some restriction on the combined alternative). Littell also demon ... 

strated that the slope of the method based on the minimum level is 

m:x ck(8k), and the slope of the method based on the maximum level 

ie; p ~n ck(8k). Thus based on the Bahadur slope criteria, for p = 2 

and for the most general combined alternative, one should choose 

between Fisher's method and the joint integral transform method. For 

p > 2 perhaps Fisher's should be used. It is felt that the slope of the 

joint integral transform method is also the sum of the individual slopes 

for p > 2, however, it is not possible to prove this conjecture without 

the null distribution for general p. 

Results of the synthetic sampling study given in Chapter IV 

clearly demonstrate that the conditional significance level approach to 

the simple goodness of fit problem is worthy of further consideration. 

However, more extensive synthetic sampling, with null hypotheses 

other than that of normality, would be nec:;essary to draw general con-

c;lusions. 

The composite goodness of fit problem definitely deserves 

further investigation. It is possible to use a technique, similar to the 

conditional significance level approach, to reduce the composite 

problem to a simple goodness of fit problem, 

For example, suppose X l' x2 ,, . , , Xn+ l, Xn+Z are indepen­

dent normally distributed random variables, each with the same 



unknown mean µ and unknown variance 2 
er • Define 

where 

y -k - , k=l,2, ... ,n 
n+2 

L; (X. - X) 2 
l i=l 

X= 1 (n+2 ) 
(n+2) i~l xi ! 
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It is shown in the appendix that the joint density of Y 1, Y 2 , .•• , Y n does 

2 
not depend on µ and er , however 1 the Y's are dependent random 

variables. 

Suppose we apply the technique described in Chapter III (pages 

40 .. 42) to obtain mutually independent uniform va:dables. That is, 

u = FY I y y (Y I y l' . ' . i y 1)' n-r · 1, .•. , 1 n-r n-r-n-r n-r- . · 
r = 0, 1, 2, ••. , n-1 

where F I (·i·) y Yl, .. ,,Y 1 n-r n-r-
is the conditional distribution 

function of Y. gi,ven Y 1,Y2 , ••• ,Y. 1 . n-r n-r-
It is shown in the 

appendix that U will be n-r 

U = _21 - _21 P.(Z2 ; ; 'r+21), z < 0, 
n-r '"' n-r " n-r ~ 

U = .!.+ .!. P.(Z 2 · .!. r+l) Z > O 
n-r 2 2 '"' n-r' 2 ' 2 ' n-r ' 

where 



z = n-r 

y + 1 
n .. r (r+3) 

n-r-1 
~ 

i= 1 
Y. 

l 

(
n-r-1 2 ) 1 (n-r .. l 

1 - ~ Y. - . :3 ~ 
i=l 1 (r+ ) i=l 

and f3(·; £"¥,(3) is the incomplete beta function (see appendix). 

Therefore, the composite hypothesis concerning 
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X 1, X 2 , .. , , Xn+ 1 , Xn+2 can be tested as a simple hypothesis concern.­

ing the independent (under the null hypothesis) random variables 

u 11 u2, ... 'Un. The appealing feature of this approach is that We 

essentially replace the unknown parameter (µ, cr 2 ) by its minimal 

sufficient statistic 
- -2 (X, ~(X. - X) ) . No attempt has been made to study 

l 

the sensitivity of this approach. 
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APPENDIX 

The purpose of this appendix is to provide details of transfer-

mations, given in Chapter VI, to reduce the c:omposite hypothesis of 

normality, mean µ. and variance o- 2 unknown, to a simple hypothesis. 

Let X 1, x 2 , ... , Xn+2 denot~ independent normally distributed random 

variables, each with the same (unknown) mean µ. and variance o-2 . 

Define 

and 

then wl and w2 are independent with respective density functions 

and 

= 0, otherwise.· 

The joint density of 

-1 /2 1 [l 2 n 2] w2 exp - --2 2 (w1 - 2µ) + w2 + ~ (xk - u) 
2o- k=l ' 

Jn+2)/2 in+3)/2 crn+2 

1 () c; 



-co < xk < co 

-co < wl < a:l 

0 < w2 <co . 

Make the change of variable r:; 

n 
Tl = w 1 + I: x , 

k:=l k 

n 
x )2 (T - !: T2 

1 k=l 
k n 

T2 w2 + + I: x2 1 
= - n+2 2 k=l k 

1 
Tl 

, k=l,2, •.• ,n, 
(n+2) 

then the joint density of Y 1,, •. , Yn, T 1 , T 2 is 

= 

where 

(n+2)/2 2(n+3)/2 n+~ 
7T CT 

~ 

y = n 

..:. j, 

0 < y' B y < 1 , 
n n n 
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B = I + _!.J J' 
n n 2 n n ' 

I is the n dimensional identity matrix and J is an n x l vec;tor of 
n n 

oq.e s, 

Note that 

where 

n+2 _ 2 
T 2 = 2: (Xk - X) 

k=l 

X l T 
= (n+2) 1 · 

Therefore the joint density of T 1 and T 2 is 

.JF 2 r(n+2 1) 2fo+1)/2 "". n+l 21T (n+2) er v 

and the conditional density of Y 1, Y 2 , ... , Y n given T 1 , T 2 is 

r n+l .JnIT 
£( It t ) 2 [1 - ..),,' B ~ )"' l /Z 0 < ~, B ~ 1 

y 1 ' · · · ' y n 1 ' . 2 = .J2 jn + 1)/ 2 Y n n Y n ' Y n n, Y n < · 

.Since f(y 1, •. , ,ynlt 1, t 2 ) does not depend on t 1 and t 2 , this ~s just 

the joint density of Y 1, Y2,.,., Yn. 

In the remainder of this appendix the following notation will be 

used: 



(i) I will denote the n-r dimensional identity, 
n-l' 

r=O, 1, ... ,n-1; 

(ii) J will denote an n-r dimensional vector of n-r 

ones, r=O, l,,,. ,n-1; 

(iii) B will denote the matrix 
n-r 

...li. 

(iv) yn-r will denote the vector 

, r=O, 1,, .• ,n-1. 

Now assume that, for r = O, 1,,,,, k, the joint density of 

Y 1, , , • ~ Y is 
n-r 

..i.. ..lo. 

0 < y' B y < 1 • n-r n-r n-r 
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where C is a constant suc;h that the density integrates to one. Now n .. r 

n-k 2 1 n .. k n-k 
..i.., B ~ ""' + ""' ""' Y Y = LJ Y· k+z· . LJ LJ Y· Y· k n-k n-k i l J i=l. J=l i=l 

= (~:~)Y!_k + 2 Yn-k (f!z) Y~.,k-1 J n-k+l 

+ y' {I + (-L.) J JI } y n-k-1 n-k.,..1 k+Z n-k.,.1 n-k-1 n-k-1 



109 

~ ~ + y' B y n-k-1 n-k-1 n-k-1 

Let 

rn = -L~y J 
r rt2 n-r · n-r 

and 

2 ~, B ~ s = y y r n-r n-r n-r ' 

then 

f.(. ) _ c . [l - 2. ](k+Z)/.,1 /k+Z ... ! 1
(1 t2)(k+l)/2 .. 1dt 

Y1•••.••Yn .. k-l - n-k 6 k+l Vlli ... 
! .. 1 

. (k+l)+l .. 1 
- C (1 ~, B ..lo. ] ' 2 
- n-k-1 "'Yn-(k+l) n-(k+l) Yn-(k+l) 

Since the original assumption is true for r = 0 1 it is true for 

r = 1, 2, ••• , n .. 1 · by induction. 

so 

It can be shown that 

1 r+l 1 J ct -t2 )""'"2"" " dt = 

-1 

t< Y I Yi' ••• , Y i) n-r n.,.r-

~( ~) l!K 2 -112 I. 
= .,r;rr(•~l) ifr+Z (l-•r+1> . L-



Therefore 

where 

F(y IY1~···1Y .1)= n .. r n-r-

y n-r + rnx+ 1 
z = 
n-r v* /1-•!+1 

U we make the change of variables in integration 
2 

v = t then 

I 1 1 2 1 r+ 1 ) 
F(y Y1• · • • 'Y 1) = -2 - -2 A(z ; -2· ' 2 ' n-r n-r- ~ n~r · · z < 0 ' n-r 

I 1 1 2 1 r+ 1 · 
F(y Y l' • · · 'Y 1) = =2 + -2· f3(z ; -2· ' -2·· ) ' n-r q-r.. n-r z > 0 J n .. r 

where f3(· ;a,f3) is the incomplete beta function; that is 

x . -! r (a +[3) a -1 f3- l f3(~ , a, f3) - r (a}r ( f3) t ( 1-t) dt , 

0 

O<x~l, a >-1, f3>-l, 
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