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CHAPTER I
INTRODUCTION

Goodness of fit tests are concerned with testing that the proba-
bility law or distribution function of a sampled population is of a speci-
fic form, for example, normal with mean ten and standard deviation
two. The broader problems of testing that a sampled population has a
distribution function belonging to a parametric family, and that two or
more sampled populations have the same distribution function are also
classified as goodness of fit problems.

This study is primarily concerned with constructing and evalu-
ating test 'statistics for the simple goodness of fit hypothesis; that is,
the population distribution funcfion F(-) has a completely specified
form FO(-) . The composite goodness of fit hypothesis, that is,
specifying the form of the distribution function only up to certain
unknown parameters, is discussed briefly in Chapter II and then again
in Chapter VI. The problem of testing that two or more population
distribution functions are the same is not considered in this study.

The first analytic procedure for testing goodness of fit was
given by Karl Pearson (35) in 1900, which is relatively early in the
history of statistics. Thus this problem is a classic in the field and
the literature is vast, Even the literature on the Pearson procedure is

very extensive. A brief review of the literature is given in Chapter II.



Notation and Definitions of Terms

Before stating the goodness of fit problem a brief review of -
theory of significance testing is necessary. Let X be a random
variable with sample space Rn (n-dimensional Euclidean space), and
probability distribution function Fe( ) where © is a parameter belong-

ing to some parameter space 2. The null hypothesis is then

HO:Ge QO, where QOC Q,

versus the alternative

H,:0eQ,, where QAC Q

and

£

Any statistic T (X) with values in R.1 can be considered a
test statistic for this hypothesis problem if its probability distribution
function Ge(-) is completely specified for 0 e QO . The obvious
purpose of constructing a test statistic is to measure departure from
the null hypothesis in the direction of the alternative. For practical
problems it is usually possible to construct test statistics such that,
say, small values clearly measure departure from the null hypothesis
in the direction of the alternative (30).

Accordingly, assume that T*(X) is chosen so that small
values are more consistent with the alternative hypothesis. If x is an
observed value of X, t*(x) an observed value of T*(X) , then the

statistical or significance test consists of computing the observed

significance level given by



where GO(-) is the (completely specified) distribution function of
T*(X) for © eQO . Clearly small values of the significance level are

more consistent with the alternative hypothesis.

The observed significance level obviously satisfies

However, not all intermediate values are necessarily achievable, For

example, if T*(X) is a random variable of the discrete type then the
significance level of Tﬂ< can achieve at most countably many values,
If T* is of the continuous type for 0 e QO , then GO(-) is continuous
and JZ(t*) achieves all values in (0, 1).

The observed significance level £(t ) is itself the realization

of the random variable

with distribution function, for 8¢ @ and achievable £ ¢ (0,1),

i

(2) = P [L(T

where

t. =  inf {t>‘<!Go(t>'<) =1} .
~o<t< o

Only achievable significance levels will be considered. If 0 e QO then

Hg(l) will be written H:(l) , and Ho(f) = {4 for each achievable {.



¥ T is of the continuous type for 0 ¢ QO , then

Ho(ﬂ) =4, forall £ ¢ (0,1);

£

that is L(T ) has the uniform distribution on (0, 1).

If Be QA the value of Hg(l) is called the sensitivity or
power of T>:< at significance level £/ and parameter value 6, Though
many criteria have been devised for comparing test statistics, it is

generally agreed that one should attempt to choose a test with good

sensitivity., Several definitions are necessary for definiteness.

Definition 1.1: Two test statistics T1 and T2 are said to be compar-

able if they have the same set of achievable significance levels.

Definition 1.2: If the alternative hypothesis is simple (2, contains

one element 61), and if T1 and T2 are comparable statistics, then

T1 is said to be more sensitive than T2 if

for all achievable £ ¢ [0, 1], with strict inequality holding for at least

one [f e (0,1).

Definition 1.3: If a statistic T is a most sensitive test for all 0 ¢ QA,

then T is said to be a uniformly most sensitive test statistic,

Definition 1.4: A test statistic Ta< is said to be unbiased if

o
Hy (4) > 4

for all achievable £ ¢ [0, 1] and all ©c¢ QA .



In most testing problems the random variable X is of the form

Mo ]
X1
XZ
X =
o]
where the Xi , i=1,...,n, have identical distribution functions and

are independent; that is, the observed value x is a random sample of
~sample size n. It is of interest to inquire whether a test defined for
each sample size n has good properties when n is large. One such
property, consistency, is defined below, Another, Bahadur (2) exact

slope, is discussed in Chapter IV,

Definition 1. 5: A sequence of test statistics {T(n)} is consistent fer

the alternative if, for each 0 ¢ QA -

where the convergence is point-wise for each £ ¢ (0,1).

No attempt will be made here to describe procedures for con-
structing unbiased or most sensitive test statistics, The reader is
referred to Lehmann (26), Fraser (17), Finley (13), or Moore (32) for

such procedures,
Simple Goodness of Fit Hypothesis

The goodness of fit problem of primary interest for this study

can be stated as follows: Let S be the set of all admissible d,istribution



functions of a random variable X with values in RI , and let SA be a
subset of S not containing Fo(-“) . Given a random sample

ST YRRRFE S realizations of the independent random variables

X, X

TR IEREE Xn each with the same unknown distribution function

F(.) ¢ S, test the null hypothesis

versus the alternative

H,:F(x)eS

A , X eR

A 1°

Because it is difficult, from a practical point of view, to select
the admissible set S to be anything less than, say, the set of all con-
tinuous distribution functions and the alternative set SA =S - {FO} ,
it is not possible to use the usual parametric methods for constructing
"good' test statistics. (Lehmann (26)). Test statistics are usually
constructed to be intuitively satisfying in the sense that they will provide
some sensitivity to a wide class of alternatives. There are usually
great mathematical difficulties connected with finding the exact sensi-
tivity of goodness of fit tests. There are, however, procedures
available for obtaining good approximations. One such procedure,
synthetic sampling, is used in Chapter V.

There are, for same of the most well-known procedures, some
mathematical difficulties encountered in finding thé’ exact distribution
function assuming the null hypothesis. (See Chapter II). For such
test statistics approximations are necessary for computing the signifi-
cance level. A test T* is said to be exact if the exact form of the dis-

de

tribution function of T is known as suming the null hypothesis is true,



When the Xi’ i=1,2,...,n, are of the continuous type each
with distribution function FO , then it is well-known that

Ui’ i=1,2,.,.,n, defined by

are independent, each with the uniform distribution on the interval zero
to one. Suppose S is the set of all continuous univariate distribution
functions (distribution functions of all random variables of the contin-

uoeus type) and SA =S - {Fo} . Suppose we always perform this

"integral transformation." No matter what the form of FO , the appli-
cation of the transformation reduces the hypothesis problem HO versus
HA to the problem
T . - - < <
HO : G(u) Go(u) , o <u< o
versus
(. ’ _
HA.G(u) # Go(u), o <u<awo
where

0, u<ao
Go(u)= u, 0 <u<l
1, u>1l

This transformation gives a ''monparametric' character to any pro-

cedure based on the random variables: U'l,_Uz, ce ,_.IJn
Composite Goodness of Fit Hypothesis

In the composite case, the null hypothesis specifies only that

F(+) is a member of a certain parametric class C = {FO(.;;Q) ,0 € Q} .



Typically C is the class of normal distribution functions and
0= (u, 0*2) , K the mean and 0'2 the variance. Two methods for

reducing the composite hypothesis to a simple hypothesis are given in

Chapter II. A method for reducing the composite hypothesis to HO

and HA is given in Chapter VI ,
Combining Independent Significance Levels

Again let Xl, XZ' i 5§ Xp be independent continuous random
variables, but now assume that the distribution functions are
Fl{-), Fz(-), i § Fp(-}, respectively. If a modification to the integral

transformation is applied, so that

U= B . 3= L2, ... 000

1

the p random variables Ul' UZ' & Up will again be independent
uniform random variables,
Now consider the problem of combining independent tests of

significance, Let T.1 , 1=1,2,...,p, be independent test statistics

for testing the null hypothesis

HO,L:BiEQO,L’ i=1,2, i P
versus the alternatives
HA,1B'EQA,1’ L1, 2 v 3 P

0, 1 versus HA,I’ T2

etc, It is desired to construct a

That is, T, 1is a test statistic for testing H

1

for testing H versus

Hy 20

2 Tp that may be used to test the combined null

0,2

function of Tl’ TZ’ 5

hypothesis



HO:GieQ

versus the alternative

HA:at least one 9.1 € QA,i ,

Suppose that each T.1 is of the continuous type, and small

values are taken to be consistent with the alternative HA T Let

Fo i(~) represent the distribution function of T.1 when 9.1 € Qo i

Then the significance levels given by

will be mutually independent uniform variables assuming HO true. If

each of the Ti is an unbiased test statistic (Definition 1.4 ) of H0 i

versus HA P then Hél)(ﬂ) >4 for all ¢ ¢ [0,1] and Oi e 2, , where
. o i
Hél)(-) . represents the distribution function of Li' Even if some of

i
the T.1 are not unbiased, small values of the levels are taken to be

consistent with the alternative., In either case it is reasonable to state
a reduced hypothesis in terms of the significance levels as follows:
Given the random sample { 1° 12, ce e !Zp {observed signifi-

cance levels) test the null hypothesis

0, £<0
Hb':Hgl)(l) =<¢4,0<2<1,i=1,2,..,,p,
1, £>1
versus the alternative
=0, £<0
A Hy 0<t<1, i=13,2,...,p.

T
m/\
Ei'.';
LY
~

1, £>1
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Thus the problem of combining independent tests can be
reduced to a '"one-sided, " simple goodness of fit problem.

Now the observed values of the test statistics, tl, tz, et
arise from data X s Xoseens xp , respectively, Presumably, one
would base a test of HO either on the combined data x= (xl,xz, e X )
or on t= (tl, tz, cees tp) . Itis assumed here,however; tha.t either

(i) the values or else the forms of the distributions

of x and t are unknown,

(ii} or this information is available but the distributions

are such that there is no known or reasonably con-

venient method for constructing a single test of HO

based on x or t.

Numerous examples of such problems have been given in the litera-
ture. (For bexample see Graybill (19) and Rao (38)). The problem of
combining independent significance levels is considered first (Chapters
III and IV). The general goodness of fit problem is considered in

Chapters V and VI,



CHAPTER 11
BRIEF REVIEW OF LITERATURE

Goodness of fit problems have been the subject of almost contin-
uous resecarch since Pearson's (33) test appeared in 1900, Therefore,
a complete review of the literature would be a study in itself. It is
necessary to include a brief review as a source of reference for com-
parative studies made in subsequent chapters. A more complete
review of goodness of fit tests has been given by David (11), A
description of procedures for combining independent test statistics

has been given in a recent paper by van Zwet and Qosterhoff (47),
Simple Goodness of Fit Hypothesis

Pearson xz Test

The test proposed by Pearson is commonly called the chi-
squared test. To apply the test, one first divides the range of X into
k disjoint intervals IJ. = (aj, bj], i=1,2,,..,k. Then the proportion
of the null population, 'pj , i=1,2,...,k, associated with each interval

is computed; i.e.,

p. = Fo(bj) - Fo(aj) =P

: a.<X§bj],j=1,2,...,k.

O[J

The expected number of observations in each interval, Ej , is then

given by Ej = npj where n is the sample size. After the random

11
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sample has been collected, the observed number of observations in

each interval, Oj , is tabulated. The chi-squared statistic is given by

(0. - E.)°
CS = JN N R ,
=15

The statistic derives its name from:the fact that the limiting
null distribution of CS is a chi-squared with k-1 degrees of free-
dom. This fact was first demonstrated by Pearson, The approximate

significance level of CS is given by

teg = Plx%(k-1) > cs]

where XZ (k-1) denotes a chi-squared variable with k-1 degrees
of freedom and cs the observed value of CS.

The larger the Ej , the better the approximation, Rules on the
size of Ej are given in most textbooks, For example Cramer (9)
suggests that if Ej >10, j=1,2,...,k, the approximation is suffi-
cient for ordinary purposes, However, in a recent synthetic sampling
study by Kempthorne (20) it is shown that the approximation is not
seriously affected, for practical purposes, if the Ej are all 1 and n
is as small as 10.

The XZ test is the most versatile of all procedures. The
random variable X can be either of the continuous type or discrete
type. It can also be applied to the composite goodness of fit hypothesis
(14) and to multivariate problems (20). The XZ test is unbiased and
consistent (24) and the sensitivity can be computed by means of the

noncentral chi-squared distribution (8).
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When the intervals Ij , j=1,...,k, are chosen so that

pj =1/k, j=1,...,n, the xz statistic becomes

where Oj is the observed number of observations in the jth interval.
This form is used in Chapter V for comparison with test statistics

developed in this study.

Kolmogorov-Smirnov Test

Another well-known test is the Kolmogorov-Smirnov test which
was first suggested by Kolmogorov (23), It bears Smirnov's name
because Smirnov (44) gave an alternative derivation of the limiting null
distribution and tabulated this function. To describe this test another

definition is required.

Definition 2.1: Let Xl’ XZ’ e Xn be independent and identically

distributed random variables and let the order statistics be denoted by

The empirical distribution function is defined as

~—

0, for x < X(1
Fn(x) =<{i/n, for X(i)‘i x < X
1, for X <x.

(n)

(i+1) *

The Kolmogorov-Smirnov statistic is

KS = sup |F_(x) - Fo(x)l ;
~0o <x<ow
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that is, the greatest absolute vertical discrepancy between the random
function Fn(.) and the hypothesized distribution function FO(-) .

When X is of the continuous type the exact null distribution of Ks has
been tabulated (see Birnbaum (5) for numerical tabulation). The level

of KS 1is given by

Ipg = PylKS > ks]

where ks is the observed value of KS.

An asymptotic expression for the greatest lower bound on the
sensitivity has been given by Massey (31). Massey also pointed out
that KS is a biased test for some alternatives. Fisz (16) proved that
KS 1is consistent for a continuous alternative G(.) that satisfies the

relation

sup |F x)—G(x)[:6>O,v

(
~—o<x < 0

When the probability integral transformation Ui = FO(Xi) ,

i=12,.,.,n, is applied to the random sample Xi’ i=1,2,.,,.,,n,

then the test statistic can be expressed as

KS = max max (—l——U.), max (U.—l_—1-)
i=1,2,...n & O 745 0 (1) m
where 0< U < U <..,<U < 1 denote the ordered transformed
- (1) = "(2) — — “(n) —

variables. A modification of the Kolmogorov-Smirnov statistic given

by
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was used by Shapiro, Wilk, and Chen (42) for comparisons of sensitivity
among several statistics, Some results of this study are given in

Chapter V,

Cramér-Von Mises Statistic

Another test statistic designed for continuous X was first
proposed by Cramér in 1928 and also by Von Mises in 1931 (see Darling

(10)). The statistic is defined by

+
CM = n f [Fn(x) - Fo(x)]zdFO(x)
1 iy 2i-1 2
= T2t ifl Uiy~ 3)

It is necessary to use the limiting null distribution of CM to approxi-
mate the significance level, The exact null distribution of CM for
n=1,2,3 was examined by Marshall (30) and the agreement at n=3
with the limiting distribution is remarkably close. Marshall also
summarized results on sensitivity and showed that there are alterna-
tives for which the test is biased,

Several modifications of the Cramér-Von Mises statistic have
been given. Anderson and Darling (1) proposed a weighted version
intended to increase sensitivity against discrepancies from F_, in the

0
tails, This statistic is defined by

Another modification, introduced by Watson (40), is given by
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WA = nf {F_(x)- Fyx) - f [Fn(x)-Fo(x)]dFo(x)'}ZdFo(x)
1 = 1 o 2i-1.2
= T2n - nU-3) +ifl(U(i)" )
where
— 1 B
Va2 %

Statistics Based on Spacings

The null hypothesis that Ui =F (X)), i=1,2,

0%y

independent uniform variables on (0, 1) when X is of the continuous

,h, are

type is equivalent to hypothesizing that the observed values of

U.l , i=1,2,,.,,n, are randomly scattered on the (0,1) interval.

If the distribution departs from the null one would expect some inter-
vals between adjacent points to be shorter and some longer than would
be expected from random scatter, This suggests that a study of the
relative lengths between adjacent points might be appropriate for good-
ness of fit,

Again let us denote the ordered transformed variables by
0<U,.,<U

<U, , <1, and define the random interval lengths

(1y= @)y

or "spacings' by

(n)

i (i)~ “(i-1)°

Cpt1=1- U(n) .

A number of test statistics have been proposed of the form
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G =

n
n .

+
Z g (C)).
i=

Procedures based on such statistics are discussed and defended by

Pyke (36) and extensively studied by Weiss (50). Examples of gn(-)

-1 -172
are g (C.)=C;, r>0;¢g(C)=[C -(n+t])7"| )]

i i ; gn(c1) = [Cl"(n+1

b

g (C.) =log(C.); gn(Ci) = l/Ci ., Note that

n' 1 i

E{Ci,U's uniform} = (n+l)~1 .

In each case the limiting null distribution is obtained (36).
Another important procedure has been given by Durbin (12).
Durbin shows that if Yj’ j=1,2,...,n, and Wr, r=1,2,.,,,n,

are defined by

Y. = +2-9)(C,.,. - C,. , i=1,2, s
j = F2-(Ch - Cyy)s ] "
and
T
W = 2 Y., r=1,2, , N,
T L j
j=1

where C(j) , j=1,2,...,n, are obtained by ordering the

Ci’ i=1,2,,,.,n, and C 0, then Wr’ r=1,2,,..,n, have the

(0) ~
same null distribution as the ordered uniform variables

U(i)’ i=1,2,..,,n.,
Durbin gives a heuristic argument that if the true distribution
departs from the uniform distribution in any manner, except a change
only in location, the Wr will tend to diminish, Thus any one-sided
version of other goodness of fit test statistics can be applied to the

Wr’ for example
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D = max [r/n-W],
r=1,2,...,n r
a one-sided version of the Kolmogorov-Smirnovstatistic. Computations
suggest that this has good sensitivity against alternatives with the mean

and variance equal to those of the hypothesized distribution (42),
Composite Goodness of Fit Hypothesis

The use of the chi-squared statistic in the composite case was
first studied by Fisher (14). The approach was to use as a measure of
discrepancy between the sample and hypothesized class
{FO(- ;0),0 ¢ Q}

FCS = min {CS} ,
0
where CS is defined in the previous section. If 6 is composed of m
real parameters, then under quite general conditions, FCS is approxi-
mately distributed as a chi- squared vafiable with n-1-m (n = sample
size) degrees of freedom when the null hypothesis is true.

The minimization with respect to 6 can be cumbersome and
several modifications have been proposed (33), The most appealing
modification from a practical point of view is to replace 6 with its
maximum likelihood estimator, This tends to inflate FCS beyond
values predicted by the chi-squared distribution leading to some
unwarranted small significance levels. However, Chernoff and
Lehmann (7) and also Watson (49) have shown that no serious distortion
will result if the number of intervals is ten or more,

2 .
When 6 is the pair (u, 0'2) , p the mean and o the variance,

Fo(x;e) may be written FO[(x—p.)/tr] where FO(-) is completely
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specified. An interesting approach in this case is to transform the
composite null hypothesis into an equivalent simple hypothesis, This
makes it possible to test the composite hypothesis with test statistics
described in the previous section and those developed in this study.

Durbin (12) proposed the following transformation to eliminate
the mean and variance for the null hypothesis of normality. Let

Xy, X X be a random sample from the population of interest, and

2’
let yis¥50.00, Vo be a random sample generated synthetically from a

normal population with mean zero and variance one, Let x and Sy

denote the sample mean and variance, respectively, of the x's, and

y and sé the sample mean and variance of the y!'s. Define
Zi’ i':l)zlv--ln B bY
sY(x1 - Xx)
Z., = - + vy
i Sy
Durbin proves that the random variables Zl’ ZZ’ vy Zn are indepen-~

dent standard normal variables. Therefore,the composite hypothesis

concerning x ;X can be tested as a simple hypothesis con-

1 Xps e -

cerning =z . The price paid for the elimination of nuisance

17Zp0 -
parameters by this method is that an element of randomization is intro-
duced in the analysis of the data,

Sarkadi (39) gave a similar transformation defined by

(X.-X") |X  -X |\o-Z
Y, = e q;{: n-1""n %0 ] i=1,2,,..,n-2,
' N2 s" '

where
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n
n
fl X, + /-2—- (X_ | +X)

X1 = ,
n + \’2n
n n
St = \/Z Xf - r_ll- ( Xi)2 - ?1.— (Xn—l - Xn)2 !
i=1 i=1

and {(-) is a monotone decreasing function. The restriction that the
Y.1 be independent and normally distributed determines the functions
§(-) completely. This transformation has the desirable property that
only random samples from a normal lead to independent standard
normal variables; that is, each Y has the standard normal distribution
if and only if the X's have the same normal distribution, This: is
commonly called a ''characterization' of the normal distribution. This
property is important from the point of view of the biasedness of the
test, This transfbrmation also has the property that it maximi_zes the
minimum correlation between Yi and Xi ’among transformations of
this general type. Sarkadi argues that this is important in that the
transformed variables give a best representation of the original
variables,

Notice that Sarkadi's method decreases the number of variables
by two, while Durbin's method gives the same number of transformed
variables as that of the original variables, Durbin's method has the
disadvantage that random numbers are used in the analysis of the data
which permits different investigators to draw different conclusions
from the same set of data.

Other characterizations of the normal distribution as well as

characterizations of other parametric families are given in the
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literature. The basic theory and some important results are given in
a paper by Prohorov (36).

Another important approach to testing for normality is given by
Shapiro and Wilk (41). They give a statistic for which under normality
the numerator and denominator are both up to a constant, estimating

2

o . Let X(l)ix(z)i...ix(n)

from a random sample of size n from a standard normal population.

denote the order statistics arising

Let &' = (ml,mz, cee ,mn) denote the transpose of the vector of

expected values of standard normal order statistics, and V = (Vij) be

the corresponding n x n covariance matrix, If Y(l) < Y(Z) <...< Y(n)

are order statistics arising from a random sample from a normal

population with p and crz unknown, then Y may be expressed as

(i)

(i)

pot (rX(i) = pt om, + O'(X(i) - mi)

|.L+(rrni+e.1, i=1,2,.,.,n.

where

E(e,) = 0, i=1,2,...,n.

and

Cov (D) = o2V,

It follows from generalized least-squares that the best linear unbiased

estimates of p and crz are

-
[}]
<

and

-ﬁ'f'v'l?\
f'fi"V_lfﬁ'

>
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W = 5> = > = ,
s n -
Z(Y,.,-Y)
=1 (1
where
n
s2 = X (Y(i)——')—()2 R
i=1
R = mv g,
< =Rviiviig
e SN -\ o
a’ = (2., 11 2 = ) _ = ’
1 n @V 1 15\1)1/2

If the Y‘sv are normal order statistics then the numerator and
denominator are both, up to a constant, estimating crz . The ratio of
estimates of (rz is multiplied by R‘]r/c;2 so that the linear coefficients
of the Y(i) are normalized. Heuristic considerations augmented by

extensive synthetic sampling using a wide range of populations suggest

that the mean of W for non-normal populations tends to shift to the left
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of that for the null case. Thus, small values of W are taken to be
consistent with the alternative,

It is easily shown that the distribution of W does not depend on
the values of p and 0'2 , but the exact null distribution of W is not
known for n > 4. In fact the elements of V are not known for n > 20,
The authors first approximate the elements of V and then approximate

the null distribution of W by synthetic sampling,
Combining Independent Significance Levels

The most widely used method of combining independent signifi-

cance levels is the so~called omnibus test of R. A. Fisher (15) which is

P ‘ P
F = -2log| @I Li = -2 Elog(Li)
i=1 i=1

The null distribution of F is a chi-square with 2p degrees of freedom,

given by

Small values of the levels are consistent with Hx s

F are consistent with Hx . The combined significance level is given

so large values of

by

1z = P[x (2p) > ]

where f is the observed value of F and xz (2p) 1is a chi-square
variable with 2p degrees of freedom.

Independent of Fisher's work, E. S, Pearson (33) proposed

P
2| Z log(l- L)

as a method of combining levels. Again the statistic is distributed as
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a chi-squared variable under the null hypothesis, but now small values
are taken to be consistent with the alternative. Others have suggested
the maximum or minimum or mth largest among the leQels. Each of
these has a beta distribution under the null hypothesis (51).

T. Liptak (27) pointed out the need, in some cases, to weight

the levels differently. He proposed a statistic of the form

1 M"d
R

e

—-=-
|

where q;-l is the inverse of an arbitrary continuous distribution func-
tion and the @, are arbitrary weights, To simplify the null distribu-
tion the obvious choice for y is the standard normal distribution.
Under Hb’ this statistic is then distributed normally with any set of
weights,

Several criteria for comparing methods of combination have

been developed (4) (28). Some of these criteria are used in Chapter IV

to compare methods described above with those developed in Chapter III.



CHAPTER 1III
A JOINT INTEGRAL TRANSFORM APPROACH

As illustrated in Chapter I, the problem of combining indepen-
dent levels of significance of test statistics of the continuous type can
be reduced to a one-sided goodness of fit problem. That is, if Ti ,
i=1,2,...,p, are independent test statistics of the continuous type
with levels Li’ i=1,2,...,p, respectively, then under the combined
null hypothesis the Li are mutually independent uniform variables.
Under the combined alternative one or more of the variables Li are
stochastically smal'ler than uniform variables, In this chapter a num-
ber of test statistics are constructed that can be used for either com-

bining independent levels or the one-sided goodness of fit problem.
The Joint Integral Method of Combination

The method of combination given in this section is similar to
Fisher's method, yet takes advantage of properties of uniform order
statistics. It is hoped that this will increase sensitivity, particularly
when not all levels are stochastically smaller than uniform variables
under the combined alternative; i.e,, some of the levels are uniform
under both the null and alternative hypotheses.

Consider an observed value of Fisher's statistic. For observed
significance levels Ei , i=1,2,...,p, 0< £ <1, an observed value of

F is given by

2R
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p p
f=-2logl[ I 11] = -2logl I

2 P {L; <2}]
i=1 i=1

-2log[G,(£,,2,,...,4 )]

0'* 12 P

where PO[-] denotes probability under the combined null and GO(-)
the joint distribution function of the levels under the combined null,
Thus the joint null distribution function provides the measure of depar-
ture from uniform,

The approach here is to use as a measure of departure from
uniform variables, the joint null distribution function of the ordered
observed levels, Again let 1.1 , 1i=1,2,...,p, denote the observed
significance levels, then an observed value of the test statistic T,
henceforth referred to as the joint integral transform method of combin-

ation, will be defined by

where 0 <1 < { < ...< [ < 1 are the ordered observed

(1) = 7(2) = """ = "(p)
levels and KO(-) is the joint distribution function of p uniform order

statistics. The value of t can be obtained by evaluating the multiple

integral

' tay e Lo-1) L)
t = p! dupdup_'l.... duzdu:l .

0 uy up_2 up_1

In this and subsequent chapters, density and distribution functions of
uniform order statistics, order statistics arising of independent uni-

form variables, will be given without proof. For a completediscussion
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of order statistics, the reader is referred to almost any probability or
mathematical statistics textbook; for example, see Fisz (16),
To obtain a more direct expression for t consider the following

theorem and proof given by Suzuki (45).

Theorem 3,1: If 0 < U < U <,..<U <1 are uniform order
- (1) = 7(2) = = (n) =
statistics and a;, i=1,2,...,n, are real numbers such that
0_<_a1_<_a2_<_...§an_<_1
then
2 /n
P[U >a., i=1,2,, ,n) = Z()q ,
(i) k=0 k) *k
where
qp =1
k-1
_ ky _k-i -
UG = - f%(i)ak 9, k=l2,...,n

Proof: Denote P[U(i)Zai, i=1,2,...,n] by pn(al,az,,..,a ).

n
For n=1,
1
pl(al) du = -ay .
%1
For n=2,3,...
1 un u3 u2
pn(al,, ,an) = n! duldu2 du -ldun
1 2n-1 a2

{1l
2
'—]\’
[o M)
[

—
[o M)
[

[y
[o N
[



Consider the change of variables

vy = wluy,
Vo = upluy
Yno1 un—l/un
Yn - un

)

*
The region I" corresponds in a one-to-one fashion to the region T°

given by
r ={(yp..oy)ly,>2a/y 02y, <...8y, (<lia <y <1}
The Jacobian is
n-1
J = Y, ,
so
1 1
- 2 d 4 n-1y
r (&, ya ) = n! cee Yie--aY, 109, y
an an-l/Yn al/yn
1
n-1
- n/ Pn_l(al/yn,---:an_l/Yn)Yn dyn .
a
n

Consider qk(al,az,...,a. defined by

i)

28



Note that q is a homogeneous polynomial of degree k, Now

pl(al) = 1"_a1: q0+ ql(al) .

Suppose
n-1 n-1
P (a 3 ~’a )= z ( )q )
n-1""1 n-1 k=0 k k
then
NCTPRRE N
1

1
i‘
lxe]
e )
3
)
o
S~
<
)
e )
3
S~
«
«
e )
i
T
o,
<

n
1 n-1 n-1 n~1
=n z (k)qk(al/Ys'!':ak/Y) y dY
/ k=0
b
n-1 n-1 ! n-1
=n = <k> qk(al/Y“--,ak/Y)Y dY
k=0
a
n
1
n-1
n-1 n-k-1
_n{z(k)f qk(al,az,...,ak)y dy
k=0
a
n
n-.l
=nd = PN g @,.,a) 12227 )/(n-k)
k k1 k
k=0
n-l n-1
-1 n (n-1\ _n-k
= 7 n (n )q(a, ,,a)-Z-"——( )a q(a‘,
k=0 n-k k k71 k K=o ®° k n k71

29
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?“T' B
1
OMv—'

n
= 2

(&)
k=0 k) *k

and the theorem is established.

Consider again an observed value of T,

Suppose we

and

Then U,., i=1,2,,,

(1)

K (£,,,.,.,14 = P |L < { A
o 1) ) = Follmy< Ly
P [1-L >1-4,.\,...,1~L >1-14
0[ (1)= (1) (p)— (p)
define
U(l): 1~L(p—1+1)’ 1“1,2.:~ s P
a1= l-‘e(p-—i-i-l)' i=1,2, s Py

hypothesis and the real numbers a., i=

Thus

where

WO
o
ti
—

0 <a, < a < e

1 2

< a

< 1

(p)—

1.

(p)

1,2,...,p, satisfy

< 1.
p—

i

]

30

., P, are uniform order statistics under the null
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For example if p=4, then

=1,

q1= "(1 '£<4)) 1

2

_ 3 2

3

2
(1)) ql -

4
Qg = -(1-£)" - 4(1-4 ~4(1-4

t =1+4q;+ 6q2+4q3+ dy -

Clearly small values of T should be taken as consistent with

the alternative, however, the null distribution function of

P
(E) @@ oy gty Hpern)

is needed to ¢compute the combined significance level.

Theorem %..2:: The null distribution of T for p=2 is given by

0,t<0
Fo(t) = (1 - (1-" %+ tiog L : (tllizt)lfz]* 0<t<l
1, t>1.
Proof: In terms of L(l) and L(Z)’
T = 1420+ Q, = 1-2(1-L,) - (1-L;)%+ 2(1-L (1~ L 5))
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To simplify notation let X = L and Y = L ) then the null density

(1) (2
function of (X,Y) is

fo(x,y) 2, 0<x<y<1

H

0, otherwise .
For t in (0, 1),

PlT<t] = PO[X(ZY-X)gt]

EO{PO[Y <t/2X + X/2]|X]}
X

Now

PO[Y_<_t/zx+x/2]X=x] = 0

if
t/2x + x/2 <x

or, equivalently, if

t/2x+x/2

PlYy<t/2x +x/2|X = x] =f fo(y{x)dy
X

if
x < t/2x +x/2 <1

or, equivalently, if

and

Ply<t/ex +x/2|X =x] =1
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if t/2x +x/2 >1 or, equivalently, if 0 < x <1 - (1 -t)l/z. Since
£ (y]x) = e x <y <l
oY l-x @ *=¥=
= 0, otherwise,
and
fO(x)=2(1-x), 0 <x <1
= 0, otherwise,
Lo(1-pt/? (172
PO[TZS_ t] =/. 2(1 -x)dx +f [t/x -x]dx
0 1-(1-t)t/2
1/2
= 1-(1-t)1/2+tlogl: t ,1/2]
1-(1-t)

and the theorem is proved.

It was not possible to ohtain an explicit form for the null distri-
bution of T for general p., This necessitated consideration of an
approximation. The first attempt was to obtain expressions for

moments, however this has been possible only for the first moment.

Theorem 3,3: The mean of T, under the null hypothesis, is (p+ 1)-'1 .

Proof: Again let 0 < L(l) < L(Z) <...< L(p) <1 denote the ordered

significance levels and define Xk’ k=1,2,...,p, by

X, =1-L

k (ptl-k)? K18 eu P

Then 0 < X. < X

1 2

order statistics under the rull hypothesis and

< ... =< Xp <1 are distributed like p uniform



T % (P)Q (X X, )
k=0 k/ Tk k
where
QO =1
k-1
_ k| k-i B
Qk— - = (1) Xk Qi(Xl, , ’Xi)’ k=1,2, P -
i=0
For
k=1,0Q = -X;
k =2,Q, = X2 2X,Q
TEeE2 T T2 T 271
and for k=3,4,..,
k-1
Uk k-1 k\ k-i
Qk— -Xk—ka Ql- :)3 (i)xk Qi
i=2
The conditional density of X1 given Xk’Xk+l""’Xp is
(k - l)(xk—,xl)k-z
f(xllxk!""xp): k-1 rOixlixkiv S.
X
k
= 0, otherwise
s0
X
k X
_ (k-1) k-2 _ _k
E(xllxk,xk+1,...,xp) g t(X, - t) Cdt =
k 0
Thus
EQ,|X,) = E{-X% - 2X,Q,|X,} = -X° - 2X_ E(-X,|X,)
2'7°2 2 2711772 2 2 1772
N 1 -
= -X5 - 2X, (-5 X,) = 0

34
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Assume that for k> 2,

E(Q.|X,) =0, i=2,3,,,.,k-1,

then

k-1 .
EQ, X)) = E{-X{ - kXE ' - = (k) X< X, )

=2\l

k-1
k k-1 k) k-i
X, - kX, T E{-X,[X,} - i=22 <1) Xy i"Ek {E@Q,[X,, X0}

where f) denotes the expectation with respect to Xi given X
ik
Now since E(QilXi, X,) = E(Qi[Xi) =0, i=1,2,..,,k-1,

k L]

E@Q,|X,) = -X\ - ka“l(-%Xk) -0,

SO

Now

P
- - P
E(T) = E{1+pQ, + k§2 (k)Qk}
1
= 1+pE(Q)) = 1-p2f g(1-e)P Lat
0
= PZ ——

L3 ° ptl °

It has not been possible to obtain explicit expréssions for
Frowd
higher moments, Hence, techniques for approxirqatin‘lg”distribution
functions based on moments cannot be used (22). In this circumstance

it seems both appropriate and efficient to employ synthetic sampling to

obtain an approximation for the null distribution of T. Accordingly,
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for each p=2,3,...,9, three thousand uniform samples were gener-
ated employing the IBM subroutine RANDU (46). Then for each p,
3000 values of (p+1)T were computed and empirical percentage
points determined. These percentage points are given in Table I,
Some check of the accuracy of the approximation is provided by the
exact percentage points for p=2.

A summary of the steps necessary for combining independent
levels by this method might be appropriate. To apply the joint integral
transform method, given p observed levels /£ 1’ 12, ..., 4 _, one

proceeds as follows:

(i) Order the levels to obtain 0 _<_1(1) _<_1(2) <... ii(p) <1.
(ii) Compute X, = 1-£(p+l—i)' i=1,2,,..,p.
(iii) Compute

k-1 .

k k-i _ . _
qk——.z i xk qi’k—l’z""’p’qo_l’»

i=0

and
2 op
(p+ 1)t = (ptl) Z k 9

k=0

(iv) Small values are taken to be consistent with the
alternative, i.e., indicate nonuniform, The approximate

combined significance level can be obtained from Table I.
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TABLE I

EMPIRICAL PERCENTAGE POINTS

Nﬁniber ) | Probabilify of Sr‘n'aller‘ Value
Le?rfels .61 .05 .10 | ,15 .20 ;25 ,SO .75 ‘. 90

2, exact .0071}.0457|.105 |.171 |.247 |.328 {.836 |1.557 |2, 187
2,approx, |. 0070 .0448 |, 108 |{.176 |.249 |.329 {,831 }1.552 [2,200
3 .0035| ,0267|.065 |.116 |.179|.244 |.745 |1.535 {2,364
4 .0027).0211}.052 |{,088|.141}.203 |,656 |1.520 |2,491
5 .0010},01394.039 {,073 {.116 |.167 |{.617 |1.510 |2.628
6 .0008{.0103}.029 {.060 |, 100 |.150 |.538 |1.494 |2, 704
7 . 0004 | ,0085}.024 |.048 |.087 |.131 |.533 |1.449 {2.802
8 .0004|.0071}.021 {.0441.078}|.120 |.488 |1.406 |2.817
9 . 0003 | .0059|.,019 |, 040 |, 073 |.111 -44'2 1.334 ]2.813

Conditional Integral Transform Methods

Consider again an observed value of the joint ingegral transform

statistic:
b= Polly Sy o Ly Ay
p-1
=12 Pollug < Lo Paen < ey By = 4yl Polbip) < 4 ()]

Suppose we define a statistic, say W1 , by replacing inequalities in the

conditioning statement by equalities; that is



p-1

w, = II
1 k=1

Poll < 40 e = Ly o L) = 4ip

] PO[L(

Theorem_3.4: The test statistic W1 is the Fisher statistic,

Proof: The conditional density of L(k) given L(k+1)’ ces

® e

and the conditional distribution function is

- 4P
pO[L(p) = ﬁ(p)] - ﬂ(p)
An observed value of W1 is then
2 p-1
W j(l) 1(22) l(p‘—ll) L) = n ! (k)
pP- P -
(2) £(3) l(p) k=1

and the theorem is proved.

Similarly the statistic defined by

0, otherwise .

38
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-is equivalent to the Pearson statistic if large values are taken to be
consistent with the alternative., Of course, neither of these offer new
methods of combination; however, the approach can be used to generate
a number of statistics with known null distribution functions. The
following theorem will provide both a method for constructing test
statistics and the basis for finding the null distribution of such statis-

tics,

Theorem 3.5: If the conditional distribution function, say FX,Y(xly) s

of the random variable X (a scalar) given the random variable Y
(either scalar or vector) is such that for each value y in some interval

(c,d),

(1) there exists an a=a(y) and b=b(y) such that

Fle(a|y) =0 and FX,Y(ny) =1,

(2) FX,Y(X,Y) is a continuous and strictly increasing

function of x for a <x < b, then

(i) U=F (XIY) is distributed uniformly on the

X|Y

interval (0,1),

(ii) U and Y are independent.

Proof: Consider the conditional distribution of U given Y =y e (c,d);

let 0<u<l, then

GUlY(uly) =P[U<u|Y=y] = P[F (X|Y)<u|lY=y].

X|Y

Because of (2) there is a point x, satisfying FXIY(XO ly) =u and

0

FX|Y(XIY)£u for x < Xg. Then
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GU,Y(uly) = P[X_<_xo[Y= y] = FX]Y(XO'Y) = u,

If u>1, then GUIY(uly)=1 and if uw <0, then GU,Y(u,y):O.

Thus the conditional distribution function of U given Y =y is

’uio’
GUIY(u[y)= u, 0 <u<x<l,
1, u>1,

Because GU,Y(u,y) does not depend on the value of Y, U and Y
are independent and U is uniformly distributed.

The preceding theorem will be used to obtain: . mutually inde-

pendent uniform variables. Suppose Yl’ bees Ym have joint distribu-
tion function F(yl, ce e ym) and define
Zy=Fy |y ...y (Y, [Yyooen, Y ),
1'"°2 - "m ,
-/

where F (- I-) denotes the conditional distribution
Yl , YZ oo Ym

function of Y1 given Y - Ym. 'If this conditional distribution

2,Y3,..

satisfies the conditions of Theorem 3.5, then Z. is uniformly distri-

1
buted and independent of (YZ’ Y3, cees Ym) . Now define Z2 by
Z,=F (Y, |Y,,...,Y_)
2 Y, IY3 Y ‘72173 m
Again if F (-I-) satisfies the conditions of Theorem 3.5,

YlYy Y,

Z2 is a uniform variable and Z2

and the three random variables Z1 . Z2 and (Y3, e Ym) are

is independent of (Y3, .o Ym) ,

mutually independent since
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[}
1)
s
N
A
N
_
il
N
A
N
[y 8]
g
w
A
<
w
g
A
<

Szl].P[ZZS—ZZ].P[Y3.SY3""’Y <Y ]

m —

for all Zy, Zy, and (y3, ooy ym) . Continuing this process, m
mutually independent uniform variables can be obtained,

Of course, the statistics W1 and W2 were constructed using
this technique and it was clear that, under the null hypothesis, each
was the product of p independent uniform variables. Consider now

reversing the inequalities in W. ; i.e.,, define an observed value of a

1 5
test statistic by
p-1
% =0 I o0 2 00 Ry Lperny 0 i)™ L) [ Pol ) 24 )]
p-1 ,
T Pollg g ey ™ ) By A I PS4 )
P15, /25, (- P )
T My Ay

Large values of W3 will be taken to be consistent with the combined

alternative. Similarly, reversing the inequalities in W, , define W4

by
1 Pl - S
% = Polley < 4] 1 1L Poll g = 00 120 = )+ By ™ A1)
l-—k+1
P (1-2,,,P
=[1-(1-4 )p]n[l- (k)
L N 3
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Small values are taken consistent with the combined alternative,
Since Theorem 3.5 applies in both cases, both W3 and W4
are distributed as the product of p mutually independent uniform vari-

ables under the null hypothesis. Thus the observed combined signifi-

cance levels are

(2n) > -24nt;],

and

1, = P[x"(2n) < —Zlnt4]

where wy and w, represent observed values of W3 and W4 ,
respeétively, and XZ (2n) indicates a chi-squared random variable
with 2n degrees of freedom.

In all statistics defined ‘above, the conditioning process began
either with the first or last order statistic. Theorem 3.5 will apply
regardless of where conditioning begins and the process will yield
mutually independent uniform variables if once an order statistic |
appears left of the conditioning statement, it does not appear later in

the process. For example, let p=4 and define Z1 by

define Z., by
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2 = Pollig)S )Ly = 21y Liay = Lgy)
£
(2)
_ 2
= u, » ]zf [1(4)-t]dt
@t g,
1 2 2
= [ £, -, - 2,,,]
z My Aoy @) 42)
24y - 2(1]
2
] 1*[’2 4)'“)}
Ly~ Ay
define Z3 by
2y = Folligy < 44| gy = £())

1
—
—
1
LSS PR
—
w
Y
—
H>
~
—
[ d
1
E
—
—
~
~
[a)
Q.
or

W™
Dy ey??
[1-2,0%
and define Z, by
z, = PO[L(I)gz(l)] =1 - [1-1(1)]4.

Now if we define W5 as

then, under the combined null hypothesis, -24n W is again distrib-
uted as a chi-squared with 8 degrees of freedom, If small values of

W5 are taken to be consistent with the combined alternative, the



significance level is

4

5

P[ xz (2n) > —Ztnts] .

44



CHAPTER 1V
PROPERTIES OF METHODS OF COMBINATION

In this chapter vprOperties of the various methods of combination
will be studied with the hope that comparisons will provide a choice
among the methods. Birnbaum (4) made a study of sensitivity of four
methods of combination, specifically, Fisher's method, Pearson's
method, the minimum of the p levels, and the maximum of the p
levels. Birnbaum assumed that each of the original samples, on which
a test statistic is based, has density function of the Fisher-Koopman-

Pitman~-Darmois (FKPD) form, which is

)t(x)'

f(x,8) ='c()a(®d b(x)

where 6 is the parameter and a,b,c, and t denote arbitrary func-
tions, Among the four methods considered, Birnbaum concluded that
to combine independent tests on FKPD form distributions (these
include most distributions commonly occuring in applied statistics)
one should choose between Fisher's method and the minimum of the
individual levels.

Littell (29) compared three of these methods (all except
Pearson's method) based on an asymptotic criteria. Littell concluded
that of these three methods, Fisher's method is generally preferable
based on this criteria, These results will be extended. in the second

section of this chapter., The properties of unbiasedness and
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consistency of methods of combination are considered in the following

section,

Unbiasedness and Consistency

Birnbaum (4) introduce d the idea of monotone methods of

combination defined below:

Definition 4. 1: Suppose W = W(Ll, LZ’ v ey Lp) is a method of com-
bination with small [large] values consistent with the combined alter-

native, Then W is a monotone method of combination if

ok %
W(llolzl :lp) i W(‘el)‘ez, :lp)
[W(ll,lz,..,,lp) > Wiy dpseeent)]
when 1.1 < 11 , i=1,2,...,p . Birnbaum proved that the most sensi-

tive method of combination for any particular (completely specified)
alternative statisfies this condition and thus concluded that any method
of combination which failed to satisfy the condition would seem
unreasonable.

Clearly Fisher's method, Pearson's method, the method based
on the minimum of the p levels, and that based on the maximum of the
p levels are all monotone methods of combination. The joint integral
method, say T, is also monotone since if li < [: , i=1,2,...,P,

3 x

then the ordered values 1(.1) and l(i) also satisfy l(i) < l(i)’

i=1,2,...,p, and
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Elys e e d) = Pl S £g)s Ligy S gy s Ly S 4]
£ b S
< Polby2 4y LyShiey - Lipy S hip)
b b4 b3
= t(!l,lz,.,.,lp)

A relationship between monotonicity and unbiasedness (see
Definition 1.4) is given in the following theorem. This theorem is
similar to that proved by Chapman (6) in connection with one-sided

goodness of fit statistics,

Theorem 4.1: Suppose Ti’ i=1,2,...,p, with significance levels

Li , i=1,2,...,p, are unbiased continuous test statistics for HO i

versus HA,i’ i=1,2,,..,p, respectively. If W(LI’LZ" .,Lp) is

a monotone method of combination then W is unbiased for the combined

hypothesis problem,

Proof: Let He (¢\), 1i=1,2,..,,p, Oi € Qi’. denote the distribution
1
functions of Li , i=1,2,...,p, respectively, and let H;V(v) ,

9=(91,62,...,6p), OeQIXQ

g X oo X Qp , denote the distribution func-
tion of the combined significance level using W as a method of combin-

ation.

Since each of the Ti is unbiased and of the continueous type,

He_(;z) =42,4¢[0,1], 6, € Q

0,i’
i )

Hei(z) >4, £e[0,1], 8 ¢ YR

We will not require W to be of the continuous type, so it is necessary

to show that for each 6 = (61,9 v Bp) and each achievable

2,’1
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2 e [0,1],

w
Hy (4) > 1.

Accordingly, let © = (® ,Op), ei € Qi, and 1* be an

17

achievable level for this 8, Then there isa w such that

*

%*
£ = Py[w(L LZ,...,Lp)f_Wﬂ*]

S

2,,.,,zp)|W(zl,12_,...,zp) < wi*}, The distribution

function of the combined level 2 is given by

where R = {(4

Hgv(ﬂ*) = P IW(L L, ...,L) < w,]

27 p—
f fp dH, (1)
- P H .

R i=1 ei

Make the change of variables

Y, = Hei(L.l), i=1,2,...,p

then the Y.1 are mutually independent uniform random variables and

Jof ke
= .« oy II Y.
SJ i=1 !

where

-1 -1
S = {(Yl; YZ,v--:yp)IW(Hel (YI):---:HG (Yp)) __<_ W>:<} ]

P y

and
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H. (y.) = inf {HHG(!
i 0< <1

y.} .

Now since

Hy (£) > 4, 2e[0,1],
i

we have

He“l(z) <4, 2ef0,1],
i

and since W is monotone

Wiy s oveayy) 2 W(He‘1 (yy)seee s Hy oy )

b3
So if we define S to be

s

S = {(yl,,..,Yp)lW(yv]:,...,yp) 5_ W*}
’ ]

£ b
then S CS, and S =R, so

o sfuf ol o

and the theorem is proved.

It is also possible to obtain a relationship between monotonicity
and consistency (see Definition 1. 5) if some restrictions are placed on
the method of combination and on the combined alternative, Specifi-
cally, assume that the method of combination is of the continuous type
for continuous Ti’ i=1,2,...,p and assume that the combined

alternative of interest is

*

H :’eiGQAi forall i=1,2,,..,p.

>
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Now let Tgn) , 1=1,2,...,p denote the p independent test statistics

where n is the sample size on which each of the individual test statis-

(n)

tics is based. If we let Lgn) denote the significance.level of Ti

based on sample of size n, then if the sequence {T§n)} is consistent

for HO ; versus HA {0 the sequence {Lgn)} converges to zero in

probability [Gi] , Gi € QA i (see Definition 1.5). For this theorem we
(n) ; (n) (n)

shall denote W(L1 . L2 ey Lp ) by Wn’

Theorem 4.2: If the sequences {Tgn)} , i=1,2,...,p, are consistent

for HO,i versus - HA,i , i=1,2,...,p, respectively, and if

W(L(ln), .o ey LI(DH)) is of the continuous type for

6= (91,92, . ,ep) € Ql X QZ X ooo X Qp, and is monotone, then the

o,
ke

3
versus H

sequence {Wn} is consistent for H ~

0

Proof; The null distribution of Wn does not change as n - o since

L;n) is a uniform variable for ei € Q2 regardless of the sample

0,i

size n. Let H™(1), 6= (0 0) ¢ 9

0 RE 1 2 X oo

distribution of the level of Wn ; then it is necessary to show that the

Q Q , be the
X x S

sequence {Hén)(ﬂ)} converges to one for each
e Q, =

g = Sy 1 XS o X e X By
and 6 ¢ then

and each f ¢ (0,1). Let £ € (0,1)

s,
Hé“)(z) - Pe[Wn(L(ln),...,Lgl)) < w,]
where
w, = inf {leo(w) =4},

o<W <o

and GO(-) is the null distribution function of Wn, Since Go(-) does

not depend on the sample size n, w, does not depend on n.
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Now let R, = {(11,..,,1p)|m%(11,.,.,1

ji
P
L =F. .. I de. >0,
Ry f i1 1

s * % s

so there is some (11,12,...,1p)eR1 such that li>0, i=1,2,...,p.

p)_<__w1,0_<_li_<__1}

then

Let R>:< denote the set
Ro={(4;,...,4 )2, < 4, ,i=1,2,...,p}.

Because Wn is monotone

1 1
for (ii,,..,lb)e R, so
R C r
-
Hence, for 0¢ QA.’
(1’1) _ B3
Hy '(£) = PylR,]1 > P [R"]

(n) (n)

where He (£) denotes the distribution function of .Lin for
i
eiEQA,i' For ¢, 0<g< 1, one can choose N.l,i=1,2,...,p such
that for n > Ni’ Hén)(li:) > (1 _E)l/p, so for n> N = max {Ni} .
i i=1,2,...,p

or
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0 < 1-Hé“)(1) <e

and the theorem is proved,

For particular methods of combination it is possible to investi-

gate consistency for the less restrictive combined alternative

HA:Gi € QA,i for at least one i=1,2,...,p. (4.1)

For example, let p=2 and suppose the combined alternative is

If {T(n)} is consistent for H

Gl € QA,l , 92 € QO,Z" 1 0,1 versus
HA,l , then

_ (n) - . L 1s

(i) Ll 0 in probability [91], 91 € QA,l ,

.. (n) .

(ii) L2 is uniform for all n, 92 € QO,Z .

Let ¢ be an arbitrary real number in the interval (0,1) and
consider the region R = {(11, IZ)III 12 < g} illustrated in Figure 1(a).

Now for 6 = (61,62) € QA = A 1 X QO,Z s

R (n) _ . (n); (n)
as n-—-o. Let LF denote the level of Fn--L1 L2 and GO(')

the null distribution of Fn; then for each e, 0 <e <1,

LM <]

PolLy

PG, (F ) <e]

P [F < f£1-1

as n—+o, where ¢ = GO(fe)' Thus {Fn} is consistent for H0

versus HA':B € Q2 1 X QO,‘Z .
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¢ LMWL, [ - 0 .e)t/?
1S 1/
L(ln)(ZL(n)-L(ln))=e
(n) (n)
L L
2 2 (n) b (n) :(n)_
L2 (ZL1 -L2 )=¢
,8
0 UL 0 1L
(a) (b)
' €
1 )L :
rL(ln) =¢
(n)
L2 L
/AN
0 1 L(ln)
, (c)
b

Figure 1. Rejection Regions for Methods of
Caombination

Similarly, let ¢ satisfy 0 < ¢ <1, then from Figure 1(b) we

see that

[L(“)_<_1-(1-s)1/2]—»1, e, . (4.2)

n))££]>P N

(n) 5 (n) (
P, [L ) (@Lgy - Ly > PylL]

(2)

From Figure 1l(c) we see that

Pe[Lgrll; <el > P LM <el~1, 0, , (4.3)

as n-—+>o, where LE?; = min (L(ln) , L(Zn)) and LE;; = max (L(ln) , L(Zn))v
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y )
%

“ s

u

‘Equations (4. 2) and (4.3) are sufficient to conclude that for p=2, the

¥
joint integral transform method and the method based on the minimum
. B (n). .
level are consistent for 6e Q, = QA,l X 90!2 and {Tl } a consistent
sequence,

The following theorems will allow us to check the consistency
of Pearson's method for HA (Equation (4. 1)) considered above. The

first is due to Cramér (9) and the second to Slutsky (43),

Theorem 4,3: Let {Xn} ,n=1,2,3,... , be an arbitrary sequence of

random variables and let the corresponding sequence of distribution
functions {Fn(x)} converge to F(x) at every continuity point of F(x).
Further let {Yn}, n=1,2,3,... , be another sequence of random
variables which converges in probability to a constant a. Then the
sequence aof distribution functions of the random variables XnYn con-
verges to the distribution function F(x/a) if a., >0 and to the distri-

bution function 1-F(x/a) if a <0.

Theorem 4.4: If the sequences {X(ln)},{X(zn)},...,{Xg_n)},nzl,Z,...,

of random variables (r is fixed) converge in probability to

LT YRR respectively, then an arbitrary rational function
R(X(ln), c e Xin)) , l.e., R is a ratio of polynomials in X(ln), ey Xin) s
converges in probability to the constant R(al, IRERE a.r) , provided

this constant is finite.

It will be important in the next section to note that,

(i) the sequence {X(ln)} converges to a, in probability
disregarding the other sequences,

(ii) there is no condition of independence for any of the

variables involved,
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Again let p=2 and consider the alternative QA = QA,l X QO,Z .

Then if {T(ln)} is consistent, we can see that Pearson's method

converges to a uniform random variable by first applying Theorem 4.4

to 1- L(ln) and then applying Theorem 4.3 to Pn ., Thus Pearson's
method is not consistent for HA:G € QA,I X QO,Z . Similar results can

be obtained for p > 2, but is is felt that the asymptotic property

discussed in the following section is of more importance.
Bahadur Slope of Methods of Combination

Littell (28) has compared methods of combination by using the
asymptotic theory for comparing test statistics proposed by Bahadur
(2). Bahadur's approach is as follows.

Suppose {Xn} , n=1,2,,,. is a sequence of random variables,
each with the same distribution funétion Fe(o ), depending on a para-

meter 0 in a set Q. Let the null hypothesis be

Hy:0eQy, 2,C 0,

versus the alternative

Hy:0eQ,, 249,

and

Qom Q, = 0.

For n=1,2,3,... let T(n) be a real valued statistic for testing HO

versus HA which depends only on the first n random variables
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(n)

Xl’X . Xn' Suppose large values of T are taken to be consist-

2: e vy
ent with the alternative, then the significance level is

L(n)

= 1-F (T™)
n
where Fn(-) is the (completely specified) distribution function of

T(n) for Oe Qo . Throughout this section it will be assumed that T(n)

is of the continuous type for all 8¢ Q and all n.

(

If the sequence {T n)} is consistent for H_ versus HA (see

0

Definition 1,5), then for each 0 ¢ QA

lim PG[L(n) <11]=1,

n=-w
for all £ e (0,1); that is, the sequence {L(n)} converges to zero in
probability [68], 6 ¢ Q, . Given two consistent sequences of test statis-
tics {T(ln)} and {T(Zn)} for the same hypothesis problem, Bahadur's
approach is to compute and compare a quantity measuring the rate of
convergence of the respective levels to zero. Bahadur (3) has illus-
trated that it is usually possible, for a sequence of test statistics
{T(n)}, to find a function c(8) such that

(n)
_2logL™ | o

n

in probability [6], 6 ¢ 2, where c(®) =0,8 ¢ QO , c{(@>0,0 ¢ QA'
The function c(6) is called the slope of {T(n)} and is used as the
measure of the rate of convergence of the sequence {L(n)} to zero,

If {T(ln)} and {Tgn)} are two sequences of test statistics

for the same hypothesis problem, and if
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21ogLi™
- - cl(G) in probability 6], 0 ¢ QA ,
and
2 log L(Zn) |
- cz(e) in probability [6], 0¢ QA ,

then Bahadur considers {T(ln)} preferable to {T(Zn)} if
GI(G) >c,(0) ; i.e., the sequence {L(ln)} converges to zero at a faster
rate than does the sequence {L(Zn)}. For further discussion of ¢(0)
with examples and connections between ¢(0) and other asymptotic
criteria the reader is referred to Bahadur (2), (3) and Littell (29),

A number of techniques have been devised for the calculation of
slopes. For this study the following theorem will be sufficient. For

the proof see Savage (40).

Theorem 4,5: If {T(n)} is a sequence of test statistics satisfying

the properties

(i) there exists a function b(0), 0 < b(0) < », such that

()

- b(8) in probability [8], 6 ¢ QA s

n”

(ii) there exists a continuous function f(t) such that for

each t in some neighborhood of £(0) ,

lim - ;ll-log P0 [T(n) > Nmt] = f(t),

n-o
then the slope of {T(n)} is given by

c(8) = 2£(b(8)) . | f
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Consider again the combined hypothesis

H:GiEQ i=1,2,...,p,

0 0,i’

versus

HA:GE QA,i for at least one i=1,2,,,.,p.

(n) —(n)
1 2 TZ ]

s Li)n) where n indicates the

Now denote the p independent test statistics by T

(n)
R

sample size on which each of the test statistics depend.

.., 1)
P

and the respective levels by L

Suppose that the sequence {Tgn)} has slope c,= c.(0.),
i
i=1,2,,.,,p; i.e,,

(n)

2 . .
- = log L.1 - c. >0 in probability [Gi], Gi € Q

A,i’

as n~ o, The objective is then to compute and compare the slopes of
the various methods of combining the p (p remains fixed) independent
levels.

Littell obtained the slope for three of the methods of combina-
tion mentioned in Chapter I, specifically, for Fisher's method, the
minimum of the p levels, and the maximum of the p levels, To illus-
trate calculation of the slope for a method of combination, consider a
slightly modified, yet completely equivalent in terms of the distribu-

tion of levels, version of Fisher's statistic defined by

_ 2 (n); (n) - (n)
F = - - log {L;" Ly F L }.
The slope c¢(0), where 0= (61, 02, cen ,Gp) , will be calculated using

Theorems 4.4 and 4,5. First,
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F
n 2 (n) ; (n) (n)
_’\F—: = - -I‘_l. ].0g {L]. LZ Lp }

in probability [6], by applying Theorem 4.4 and making use of the
assumption

2 log L{™
- ———— —¢;(8,) in probability [ei] ,

To calculate f(t) as described in part (ii) of Theorem 4, 5, notice that
under the null hypothesis Fn is distributed like Y/a/m where Y is a

chi-squared variable with 2p degrees of freedom.

Lemma 4,1: If Y is a chi-squared variable with 2p degrees of

freedom then

lim—ﬁl—»P[Y?_nt]z E o t>o0.

2
n—ow

Proof: The variable Y has density function

fty) = —— V%, 550
(p-1)!2
=0, y<0
and distribution function
F(y) =0, y<0
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Hence for t> 0,

. p-1 i
lim -;11-1ogP[Y_>_nt] = lim —%1og e"nt/2 [ > i—t—:l

n—w n—c i=0 2%i!
p-1 ii |®
loglt = —9-—12—
t . i=0 271!
= 3 - lim
2 n
n-»ao

Applying L'Hospital's rule

2 4.1 8-2] p-1_,
lim - ~P[Y >nt]= & - lim 2 (p-2):
n = 2 2.2 p-1 p-1
n—>c n->w t t t
1+ 510 + PN + + i
. . 2P M p-1)
£ \
)
Thus f(t) = % , and Theorem 4.5 gives
p
c(® = 2.1f(b(O) = Z c.(0.).
i=1 ' 1

That is, the slope of Fisher's method of combination is the sum of the
individual slopes.

Similarly, Littell showed that the slope of the combined test
based on the maximum level is the number of tests, p, times the
minimum of the individual slopes, while the slope of the combined test
based on the minimum level is the maximum of the individual slopes.

Littell also proved the following theorem:

Theorem 4.6: Suppose {’I‘(in)} has a maximum slope for testing

HO i:9i e

, 0.1 versus HA,i:GieQ i i=1,2,...,p. If c (B is the

A,
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¢
slope of any sequence of tests {Tn} obtained by combining the levels

L.(n) , i=1,2,.,.,p, for testing the combined hypothesis, then
i P p

*
c(0) > c ()
where c(8) is the sum of the individual slopes. In fact, c(8) is the
maximum slope of all sequences of test statistics for the combined
hypothesis problem.

It follows that if each of the sequences {Tgn)} has maximum
slope for HO,i versus HA,i , then the Fisher method is optimal,
among all methods of combining the data, based on the Bahadur slope
criteria, The objective here is to compute the slope of Pearson's
method and some of the methods constructed in Chapter III.

Several lemmas will first be proved to facilitate calculation of

the slopes. In all of the following lemmas

(n) (n) (n)
0 <L < L <.,..<L <1
= (1) = 7@2) ="""="(p) —
will denote order statistics arising from L(ln), Lén), ceny LI()n) , the
parameter 0 will denote the vector 6 = (61,92, e ,Op) , Qi € Qi )
1=1,2,...,p, and c_:(l)(e) < c(z)(e) < ... < c(p)(e) will denote the

ordered values of cl(el), cZ(OZ), v eas cp(e ).

Lemma 4. 2: If the random variables X(ln), X(Zn), e e ey X;n) (p fixed)

are independent for each n=1,2,3,... , and if the sequences
{X(n)} {X(n)} {X(n)} of random variables converge in probabilit
1 biXy he Xy , P lity
to LT PYRRRY ap , respectively, then the sequences
{Xgrll;}, {Xé;;}, v {XE;;} converge to 31y 3y e a.(p) , respectively,

x(B) y(m) Sy (n)

where, for each n, (1) X2y - (p) are the order statistics
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arising from x(ln), x{™

PR IR

(n)
’Xp and a(l)j_ a(z) <...Z a(p) are

the ordered values of a.,a_,...,a_ .
1’72 P

Proof: For arbitrary ¢ > 0 and integer k satisfying 1<k <p,

(n) _ (n) (n) .
P[[X(k) - a(k)[ >¢] = P[X(k) > 2yt e] + P[X k) < 2k el
- (n) + (n) -
= p[x(k) >b ]+ P[X(k) <b7]
where b =a(k)+a and b =a(k)-s Now
P[XEE; >b"] = Plat least p-ktl of x(ln),x(zn), ) .,x;n)> b¥]
k +
= = Plexactly p-k+i of x(ln),...,xl()n)>b ]
i=1

For an arbitrary integer i satisfying 1< i <k, the probability

Plexactly p-k+i of X(ln), e Xl()n)> b+]

can be expressed as the sum of m, probabilities, where

™ T - kL) (ko)

since there are m, distinct ways of selecting p-k+i random vari-
ables from the p variables Xl’ XZ’ ceey Xp . With the appropriate
renumbering of the p original random variables, any one of these m,

probabilities can be expressed as
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(n) _ .t (n) + (n) + (n) ot
P[x1 <bT,L X L <hT, X >h ,,..,xp >b' ]
k-i P
=J n Px{™< bt n  Px™spt)
=1 j=k-i+1 I

The right side of the equation follows because X(ln), X(Zn), ey Xl(an) are
independent.

. +

Now since b = a.(k)+e, at most p-k of the a.l,a.z,...,a.p

+ .
are greater than or equal to b, so there is an a , among

ap such that a*<b+. Let 6=b+-—a*>0, then

A oit]’ Bk-it27
j j

px®)s b = px(®) oo > 6]
j j J
S_P[]X(:.:)-a*f >8]=0 as n-w.

J J

Since all other probabilities in the product are bounded by zero and one,

B cpt xSy ,.,.,x;n)>b

; {n) +
P[x1 <bo, X Kit]

as n —o, which implies

1.0

P[exa.ctly p-k+i of X(ln), ey X;n) > b

as n—+o forall i=1,2,,..,k. Therefore,

P[XEE; >bT]>0

as n—-o foreach k=1,2,...,p. An analogous argument can be

used to show that

P[XEE; < b ]=0
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as n->o for each k=1,2,...,p, and the theorem is established.
Note that if we define xgn) - - ;21-1og‘ (i“), i=1,2,...,p, then
(n) _ 2 (n) . _
(p-it1)~ " n log L(i) , i=1,2,,..,p, where X(l)’X(Z)’ .o 'X(p)
denote the order statistics arising from Xl’XZ’ e ,Xp. Thus the

following theorem is a direct application of Lemma 4. 2.

. 2 (n) . i
Theorem 4.7: If - - log Li ci(ei) in probability [Oi], Oi € Qi ,

i=1,2,...,p, then

- c (6) in probability [8] .

(p-i+1)

Lemma 4. 3: If the sequence {Xn} of random variables is such that

P[0 < Xn _<_a] =1 for all n, a finite, then
2 . ys
- o log (b+Xn) - 0 in probability
where b >1.

Proof: For ¢> 0,

Pl|- 2 1og(b+X )| <el = Plee < - Zlog(b+X )]

P[ene/Z

1

> b+X ]
hand n

i
T,
o'
A

Clearly there is an N such that for n > N, em:/2 -b>a, sofor

n>N

P['-%—log(b+xn)] <el=1.

Consider first the joint integral transform method for p=2

independent test statistics T(n) and T(zn).

1 Define the statistic by
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2 ) ( ) (n)
T = -—— log{L -L.))} .

Again there is some modification of the statistic given in Chapter III

and again this is to facilitate calculation of the slope. First,

- %1og{L§‘11; (2 L§2; - L (») )}

Elfs

= _'%logL(n) - -—1ogL§g; - %log{l+l~L§r11;/L(n)} :

RN

By Theorem 4,7,

- 'erlog LET; ™ ¢(2)(®) in probability [e],

2 {n)
glog L(Z) _’c(l)(

8) in probability [6].
By Lemma 4. 3,

2 ‘
-Hlog{1+1-LE‘1‘; ng;} ~ 0 in probability [6]

if we define X_= 1-L™ /) o1 2,... . Thus b(8) described

(1) (2)’

in Theorem 4.5 is b(9) = c(l)(6)+c(z)(6) .

To calculate f(t) as described in part (ii) of Theorem 4.5 we
need

. 1
lim - = log PO[Tn > \nt]

n-+o

il

lim - llog PO - —Zv-log Lgn)(ZL(n)~ En; > \Fnt:]
oo B | VE (1

. 1
lim - o log P

n-—+w

0

1
!
-
-
™~
.
2
1
-
2
A
)
]
o
N
I
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By Theorem 3,2,

1/2
1/2 -nt/2 . -nt/2
PolT_>vat] = 1(1-emt/2) T e 7 1t (- )
tT 2 -nt/2 172
1-(1-e )
Define h(n) = Po[TnZ\mt] and g(n) = l_e-nt/Z, then

1/2
hm) = 1-g'/% + “—;&’wg["liﬂiw]

-8

Note that

lim g(n) = 1

n—+c
and

lim h(n) = 0.

n—>ew
Now

1
f(t) = lim —'rll'lOgPO[TnZ'\/.ﬁt] = lim - lo lg(n) = lim - h'(n)

n—w >0 e co

After some algebra, h'(n) is found to be

h'(n)

t 14172
- 7 (1-g)log l_gT77

SO

1/2

t 1+

1/2°
RVLR (1£g)1og[1+gl 2]
g
¢ ..
2

£(t) = lim - E&ff@—) - lim

n—cw n—+ow

I

lim <{+
n—>o o 2{1 -
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t
2 t
= lim = =,
n—+aw ' 2_ — + 1 2
(1+g/?%) 1og —5-7—-” ik
l-gl Z

Theorem 4,5 gives the slope of the joint integral transform

methed, for p=2, to be 2{f(b(0)) which is

(@) = )0 + ¢ 50 = ¢ (6)) +¢,(6,)

again optimal based on the Bahadur slope criteria. Without the null
distribution function for p > 2, it is not possible to compute the slope
for general p.

Next consider a statistic equivalent to Pearson!s defined by

- 2 (n) (n) (n)
P = -———-log{l—(l—Ll )(1-L2 ).-.(1~Lp )}

n
} n

In this form large values will be consistent with the alternative. First,

P p
0o _Zy5e01- 1 (1-LP)y
NE n i=1 :
_ 2 p (n)
= -Zlog {1 - I (1-1{E))
= -Z10g{1 -pﬁl (1 -1y 4 () Pﬁl (1-LMy
TR T W7 e o S

Define

-1
(n) (n) \ _ p (n)
h(L(l_)”"’L(p-l)) = '1 - I_I (1 "L(i)) ,

then
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; -2-log{h+ L(“ (1-h)}

17

2 (n) Cp(n) s
~ = log{L(p) +h . L(p)h}

. .2 (n) _ _2_ h
= -nlogL(p) log {1+—— ) - h} .
(p)
Note that h(Lg?;,...,LE;)_l)) satisfies
. (n) (n) ) :] _
(i) PGEJgh<L(1),...,L(p ) S1) =1

*

(ii) hu(l)""’ (p- 1)) > h(t (1)”"’1(p-1))

e

for real numbers satisfying I(i) > 1'(171) , i=1,2,...,p~-1. If we define

the sequence of variables {Xn} by

| (n) (n) )
x_- h( (1) '(‘n')L(p-n ] h<L(n) L )
(p)

then for every set of real numbers satisfying

0 <£( )< 2) < I(p)—<— i, x satisfies
h(g,,,,..,12 )
. B (1)’ (p-1)
(i) x = —= : - h(g,..,... ) >0,
n f(p) (1) (P 1)
hig,,.,...,1 )
‘s (1) (p-1)
(ii) x_ = — -~ h(f e 2 1Y)
n f(p) (1) (p-1)
Mgyt M )
N Yip) - Lp)
- p-1
R ¢

= - [ ]
( ) i
= - - (1~ ) S_ pP-
1(p) Jz(p) =0 (p)
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Thus Pe[O < Xn <p- 2] =1 for all n, so by Theorem 4,7 and Lemma
4.3,

P
n

—_— = C

I (1)(0) in probability [6].
n

The function f(t) is given by the following Lemma.

Lemma 4,4: If Y is a chi-squared variable with 2p degrees of

freedom then

lim - —:‘;-logP[—Z log (1 -e-Y/z) > nt] = Pt .

n-+w 2

Proof: The random variable Y has distribution function

p-1 i
F(y) = 1-»e—y/2 bH —Y;—' s
' i=0 27i!

P[-21log (1l -e”Y/2) > nt]

PIY < -21og e "2/2)]

fl

1.

1-(1-e""t/2 [1 + Py (*lli{lg(l_irlefnt/z)}iJ

i=1
= h(n) ,
and
lim - +log P[Y < -2log (1 -e” /)] = lim - % logh(n)
n-+cw n n—>w n
_ piq  Bi(n)
= lim hin)
n—>co
1 h''(n)
= lim -y

n-+o
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-2, -nt/2
(-1)P %t e -nt/2.,p-1
1 -
h'(n) = Z(p-1)! {log (1l ~e )} ,
-2.2 -nt/2 p-2 -nt/2
(~1)P %% " -nt/2 (p-1)e -nt/
] - - - -
h'(n) = 51! {log (1l -e )} (1_e'nt : log (1 -e
and
-nt/2
. h''(n) ot (p-1)e™"
lim ~ —=—— = lim - 5 — -1
e BT 2 ) (1. e 2y g (1 - e /2
= - oLt 1 Lyt
lim ent/2 log(1 _e—nt/Z) 2
n—+o
Now
~-nt/2
lim ent/2 log (1 - e-nt/Z) - lim 08{l-¢ )
-nt/2
n—+-o n—-ow e
Le-{nt/z
= lim 2 = 1.
. '% e»nt/Z (1 _e-ntlz)
Hence
lim - LiogP[-210g (1-e7Y/?) > nt] = £
n+o O
and the lemma is proved.
Applying this lemma
1 1 -Y/2 pt
- — = - — - - > =
;Ln; = Py[P, > vut] ;Lri a0 Pyl-2log(l-e ) > nt] = 5
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p

since under the combined null hypothesis, -2log{ I (I - LE?)))} is a
i=1

chi-squared variable with 2p degrees of freedom. Finally, the slope

of Pearson's method is

2 ) = Pe®

or the number of levels, p, times the minimum of the individual slopes.
Statistics suggested in the last section of Chapter III can also be
used as methods of combining independent levels. However, general
expressions for the slope can be obtained only if some restrictions are
placed on the combined alternative and individual slopes, First, it

will be assumed that the combined alternative is

HA:e'i € QA,i for all i=1,2,,..,p,

specifically because it will be necessary to have c(i)(e) >0 for

53
0= (91, ..,,Gp) € Qa , where now

From a practical point of view one might hypothesize a value of a
parameter near the actual value and hopefully this will lead to small
value for the slope; however,it is unlikely that one will hypothesize the
exact value of any parameter, Thus it is felt this assumption does not
greatly restrict the results.

The second assumption is that c(i)(e) # c(j)(e) , i#j, for the 6
of interest in 0 ¢ 2, . This assumption will place some restriction on

A

the application of the results. However, in the important case when
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the T(in) , i=1,2,...,p, are distinct test statistics of the same or
distinct hypotheses the assumption is very reasonable.

With these assumptions three more lemmas hold.

sk
Lemma 4. 5: For 0Oe QA’ LE?)) ~ (0 in probability le].

Proof: If we select an ¢ > 1, then PG[LE?)) <g]=1. If we select an ¢

satisfying 0 <eg <1 then

(n) -
Pe ‘:L(i) < s:’

(n)
ZloiLi) - 212 e]

|
0
D
- 1

2 lOng(?}) 2loge
= PG h 'n - C(p-—i+1) 2 -O'(p-.i+1) h n :
. 2loge . .
Since 0<g<l1l, -———=—>0, but since ¢ . >0 we can find an
n (p-itl)
N such that for n>N, -c¢ . -M <0, Sofor n>N,
= (p-it1) n -
" 2logL{® |
(n) _ _ (i) S - _ 2loge
Pel}"(i) el = PG n - c(p-i+1) - c:(_p'-.i-l-‘l) n
~ (n)
2logL,.
o (1) Zloge
2 Fgil- o " Spait1)] £ Cp-it1)T
2 log L(E‘l) :
> P ,_ ___.__...___(_1_).. -c . ] < c . + 2Zloge
-0 n (p-itl)! — “(p-i+l) N

- 1 as n—->wo.

*
Lemma 4,‘6: For He QA s

L)
-+ 0 in probability (6]




73
for each i=1,2,..,,p-13j=2,...,p;j>1i.

Proof: Since | C(p-i+l) > C(p-j+1) s

Le) 2 (n), 2
3 i _ 2 n 2 (n)
log L( a7l = "a log L(i) .+ o log L(j)
G)
C(p-i+1) " S(p-j+1) > O in probability [6], 6@, .
~ 41loge )
Sofor 0<eg<l1, k_c(p-i+l) - c(p—j+l)’ and n > - _____ES_E_ , it follows
that ’
(n) (n) n, k
S B (S N Y el (U X
ACY = Yo} (@)
(3) (i)
(n)
L
_ 2 (i) k
= Pe - l.Og L(n) > Z
(3)
L(F‘)) "
B i
= P, .—1ogﬁ-r—17 ~k> -3
()
2 L) k
> Py -Hlog—i(%-k <3
L)

Lemma 4.7: If the sequence of random variables {Xn} converges to

‘zero in probability then the sequence

{-L10g(a+X )}

converges to zero in probability, where a > 0 is constant,



Proof: For €>0,

P{I-%log(a+X_n)l <e}

2
P{-e < —_Hlog (a+X ) <e}
= P{e.—n8/2§a+Xn_<__ ene/Z}

-.ns/Z enﬁ/z}

P{-ate <X < -a+

n

Clearly there is some N and some b > 0 such that for n> N,

e-na/Z

-a + < -b

Now con

ne/2

and -ate > b, so for n>N

P{|-Z10g(a+X )| <c} > P{|X_| <b}

-1 as n—+o.

sider the statistic Vn, equivalent to W4 defined in

Chapter III, given by

A%
.
NEY

-

+

The superscript

For i=

p-1 (1-L, . )Pt
%log 1 - (1 -L(l))p m1- ““’p_i
i=1 (I”L(i))
2 P-l p-i p-i
p-1 ' .

%log{l-(l—L(l))p}.

(n) is deleted here to avoid confusion with powers,

1,2,..-,p"2.: p>21

74
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p-i p-i
(L) - (=L
p i p-i. N
_ P nkikoo O F p-i k_k
= 1+ El(k)(.l) L(i) 1 kfl(k)( 1) L(+1)

8]

p-i p-i .
. p-i k. k
(P-)Liy1y- ( )( b (+1)+ z ( k)('l) L)

k=2
P- . L,. p-i
= iy - p-i\,_ k_k-1 —QL, k k-l

Since L(i)->0 in probability [6] by Lemma 4.5, L(i)/L(Hl)-—»O in

140 g

SRR

probability [6] by Lemma 4,6, then by applying Lemma 4,7 to -

of Equatidn.(4.4).

Pt ~cp g in probability [6],

2 p-i
-Ziog{01-1, L) T T pa

i=1,2,,..,p-2 .

For 'i=p-1,
L
2 -2 1.2 _{p-1)
- log{(l".L(p_l)) (1- (P))} nlog{L(p)} nlog{l L(p) }
—>c(1)(6) in probability [6].
Now
2 Py _ 2 P (p\, ;\k k
-E-log{l-(l-vL(l)) }o= - log{l-1- kzzl(k>(—l) L(l)}
= -Z1ogL,, - Zlog{l- S (P 1)kLk- h
T Tn %8 t(1) " q o8 k:Zk (1)

in probability [6]

—~ C

(p)

by again applying Lemmas }4. 5and 4.7. The sequence
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: p-iy | 2(p-i) B3t
log {(1 - (1)) } = — '21 log (1 - L(i))
i=

TRYE

1

- 0 in probability [6]

by Lemma 4.7, Hence

A\
n (6) in probability [6].

~—>

JE

it MO

o)

The function f(t) is provided by Lemma 4.1 because under the com-
bined null hypothesis, n V. 1is a chi-squared variable with 2p

degrees of freedom; i.e., f(t) =t/2,

Seslesk

Finally the slope of Vn’ say ¢ ) , is

2{ p (e)}
°(1)
¢ o) = —iL -

%
. ci(ei) , B¢ QA
2 i

1

H MO

Itv is important to note that Vn is not a monotone method of combina-
tion, yet does possess optimal Bahadur slope.

A summary of the results of this section is included in Chapter
VI. It is clear, however, that the joint integral transform approach
does yield methods of combination which share the optimal Bahadur

slope with F'isher's method for many important problems,



CHAPTER V
GOODNESS OF FIT

Techniques similar to those used to construct methods of com-
bination in Chapter III will now be applied to the general goodness of
fit hypothesis problem. To restate the problem, suppose that for a
continuous random variable X with distribution function F(.) it is of

interest to test the null hypothesis
Hy:F(x) = Folx), xe(-0,e), (5.1)
versus the alternative

HA: F(x) # Fo(x) (5.2)

for some x ¢(-o,o). Throughout this chapter the following assump-

tions and notation will be used:

(1) Xl’ XZ’ oo Xn will denote n mutually independent

identically distributed continuous random variables.

(ii) Ul’ UZ’ ey Un will denote the integral transforms
of Xl’ XZ’ ey Xn , respectively; i.e,, Uk= FO,(Xk) s
k=1,2,...,n,.

(iii) U(l)’ U(Z)’ ey U(n) will denote the order statistics

arising from Ul’ UZ’ ey Un

77
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A Combining Levels Approach to

Goodness of Fit

Suppose we consider each random variable Xk as a test statis-

tic for the hypothesis

HO,k:Fk(x) = Fo(x) , all x ¢ (-0, ™)

versus

HA,k:Fk(x) # Fo(x), for some x ¢ (-0, o)

where Fk(.) denotes the distribution function of Xk' Then the good-~
ness of fit hypothesis, Equations (5.1) and (5.2), is the combined

hypothesis

HO:Fk(X)zFO(X), xe(-w’w)! kzlnz’eo-,n,

versus the combined alternative
HA: Fk(x) # Fo(x) , for some x ¢ {(-o,o), k=1,2,...,n.

If it were possible to define an appropriate significance level,

say Lk' for each X then perhaps we could use Fisher's method

k’
n
Q.= -2 Z logL
1 k=1 k
to test HO versus HA . By an "appropriate' level we mean that

small values should reflect departure from the null hypothesis in the
direction of the alternative.
In Chapters II and III it was possible to define appropriate

levels because of the a priori knowledge that small values of each test
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statistic are consistent with its respective alternative, Such a
priori knowledge is not available for the goodness of fit hypothesis.

One might suggest

L, = 2Min{F(X), 1-F (X))},

the definition generally used for two-tailed test statistics when it is
known that either large or small values of the statistic are consistent
with the alternative. Note that Lk as defined here is a uniform
variable under the null hypothesis F(x) = Fo(x) , X € (-o,o), This
definition seems inappropriate for HO versus HA.’ but it does suggest
a possible approach.

Consider the order statistics U(l) < U(Z) < ...Z U(n) arising
from Uk= FO(Xk) , k=1,2,...,n. Under the null hypothesis the U(k)
are uniform order statistics, Under any alternative it seems reason-
able to assume that, for at least some of these variables, either

smaller or larger values than predicted by uniform are likely. Perhaps

a reasonably sensitive statistic would be

n *
Q, = -2 = logL
2 k=1 k

(k)
0

the null distribution function of U(k) . The function

where L:Z 2 Min {G(()k) (U(k)) , 1 -G (U(k))} and ng) () denotes

2 Min {G(()k) (U - G(()k) (U ))} would attain its maximum value if

(k) 1 (k

U(k) were to realize its median value (under HO) , and the function

decreases as U(k) either decreases or increases from' its median

value. Thus small values of L;, large value of Q2 , should be taken

consistent with the alternative.
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i< £
Each of the L; is a uniform variable under H0 , but the Lk

are dependent random variables and therefore Q2 is not a chi~squared

variable under Ho . Rather than attempt to find the null distribution of

Q2 , suppose we turn to the conditional approach used in the last section

of Chapter III. Define the conditional level, say Lk|k+1 , of U(k) to
be
(k|k+1) (k|k+1)
L1 = 2 Min {G{ (U ey Uiy » 1~ G (Uiaeyy V1))t »
k=1,2,...,n-1,
_ . (n) (n)
Ln|n+1 = 2 Min {Go (U(n)) , 1 —Go (U(n))} ,
where G(()klk+1)(- I-) is the conditional distribution function (under

Ho) of U(k) given U(k+1) . Recalling previous discussion of uniform
order statistics this is actually the conditional distribution function of
U(k) given U(k+1)’U(k+2)""’U(n)' Hence by Theorem 3, 5

Lk |k+1 k=1,2,.,.,n are mutually independent uniform variables

under H0 . The conditional distribution function is

(k| k+1)
o | (U Vi) = k)/ k+1)) 0= Uk S Yisny -

(n) _ n
Go (Upgy) = (Uyy) » 0 U

and

. k
Lk|k+1=ZMm{(U(k)/U(kH)) , (k)/ (k+1)] “},

k=1,2,

if we define U = 1. The test statistic Q3 defined by

(n+1)
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n
Q,= -2 % logL

3 =1 k| k+1

is a chi-squared variable with 2n degrees of freedom under H0 .

Small values of Lk|k+l , large values of Q3 , will again be
taken consistent with the alternative, Because of the conditional nature
of Lk[k+l’ this approach has perhaps lost some of its appeal. In fact
it can be demonstrated that Q3 is a biased test statistic for at least

one alternative, Consider the class of alternatives.
@
Hy:F(x) = [Fy(x)]", «>0.

<1

Then for Ukz FO(Xk) and O k<

1A
o

PplUp <} = Pu{FXp) < w}

PA{[FO(Xk)]ai o}

= U,
and the joint density of U(l)’U(Z)’ . ’U(n) is
n Tl
- 1 -
fA(u(l)’u(Z)’ ve ,u(n)) = a n! kill u(k) , 0 _<_u(1) <. ., Su(n) <1

0, otherwise

. _ B k B
If we define U(n+1)_1 and Yk— (U(k)/U(k+l)) , k=1,2,...,n, then

the joint density of Yl’ YZ’ e, Y - is

fA(Yl’YZ""’yn)

Tt
Q
nHs
«

-
o
N
<
-
N
—
~
i
—
N
ol

0, otherwise ,
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Note that the Yk are independent, and in terms of Yl’ vy Yn ,

Dijrer 8

Ly i1 = 2Min{Y,, 1-Y,}, k=1,2,..,,n.

Hence for 0<¢ <1

PA[Lk|k+1_<_1] = P [2Min{Y,, 1-Y,} < 1]
=P, [y <-1—]+P [v >1--’—]
ATk =2 A"k =72
_ (L 1\
-'(2) +1"(1"2) .

The null hypothesis corresponds to @ =1, and in this case

<gl=1.

Polly k1 S

However, if a =2 the distribution of X differs significantly for the

null hypothesis, but

g 12
PA[Lklk+1§_1] =g tl-1+e-7
= {,
and
(3) - 1(3) -
Hy (43) = Hy'(L3) = 14

where H(3)(-) denotes the distribution function of the significance
level of Q3 . Hence Q3 is only trivially unbiased for the alternative
a=2.

Some 1000 samples of size n=15 from the alternative

H,: Fx) = [Fo(x)]3/2
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where synthetically generated, and for each, Q3 was calculated. Since

the null distribution of Q3 is chi-squared with 30 degrees of freedom,
0.10 = P [Q, > 40,26]
(see any numerical tabulation of the chi-~squared distribution) and

(3) -
Hy'(.1) = P[0, > 40.26].

Of the 1000 values of Q3 , 68 or 6,8 percent of the valués exceeded
40.26. Considering this as an estimate of a proportion p based on

1000 samples, the probability is approximately .95 that p is in the

interval
L068 - 1,96 L 0618380932_) = . 053
to
. 068 + 1. 96 ‘/('Oéfgg'o%z) = . 083
Hence, this is a good indication that
Hg)(. 1) < .1

/

and that Q3 is a biased test for this alternative. Note that for
a=3/2,
- 3/2 _ _
E,[u.]-= 3/2[11 du = 0.6 > E [U,]=0.5.
Further empirical investigation with a variety of alternatives

indicate that Q3 generally provides poor sensitivity when the mean of

the alternative is larger than that of the null, Some of the results are
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given in the last section of this chapter. In this same section it will
also be demonstrated that Q3 provides extremely good sensitivity for
an important and practical problem.

R.eéalling the discussion given in the last section of Chapter III,
many other definitions of conditional significance levels of the U(k)
are possible. For example, consider the random variables,

Zl’ ZZ’ .y Zn where observed values are defined by
n
z, = PO[U(I) > u(l)] = (1 -u(l))

n-1
(1- uiz))

|u u = :
2 0" (2) (2)" 7 (1) (1) (1-u )n-l
(1)
z, = PO[U(k) > u(k)lU(i) gy 1212, ., k-1]
(l-u )n-k+1
- (k)
=7 kA v KEE3een
(e

Now if we define the conditional levels to be

Lijo= 2Min{Z,, 1-2.},

1/0 1’

Lk‘k-l = 2Mm{Zk, l-Zk} , k=2,3,...,n,

then again the Lklk-l , k=1,2,,..,n are mutually independent

uniform variables under HO . Empirical studies of

n
Q,= -2 Z logL

4 o k|k-1

indicate that this statistic is extremely sensitive to alternatives with
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larger mean than the null, while less sensitive to alternatives with
smaller mean than the null.

Again referring to Chapter III, it is not necessary to begin the
process of defining conditional levels with either U(l) or U(n) . The
variables Zl’ ZZ’ e Zn will be independent uniform variables (under
HO) if we observe the following rules:

i =P {U,, = U..=u,., j=1,2,...,n;j#k

(1) 2= Po{Upy = 91 Ugg)= 95 3 nij# k)

for any k=1,2,...,n;

(ii) Once we define a z as the conditional (null) proba-

bility that U(k) is less than or equal to Uik U(k)

does not appear again in the process;

(iii) Until we define a z as the conditional (null) proba-
bility that U(k) is »less than or equal to LAY all
probabilities will be conditioned on U(k) = u<k) .

For each sample size n, n! different definitions of the Z's
are possible, two of which lead to Q3 and Q4 defined above, One

more will now be considered here, Let us begin with n=4, For

observed u(l), u(z), u(3) and u(4) define Zys 2y Z3, and N by

21 = PolUi) 292,100y %1y Uay=ugsyr Uy = gyl
Y(3) ¥(3)m 9
T l.u f dt:=u3)--u2) !
@) J 3%
(2)
23 = PolUpsy S vy 102 wy)s Uigy= g
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= > =
23 = PolUn) 2 ¥y Vpay = gy}
u 3
(4) (W 4y-u.py)
- 3 24, - 4 (1)
= 3 (u(4)- t)“ dt = 3 ,
(4) ~a, (4)
H4) 4
Z, = PO{U(4)_<_u(4)}= 4t dt—u(4)
0
Now define
B
| = 2Min{Z,, 1-2Z,},
L, =2Min{Z,,1-2,},
?',<>:< 3 R
Ly = 2Min{Z,, 1-2,},
L4 =2Min{Z4,1-Z4},
KKk
Actually L1 is designed to measure departure of U(Z) from that
b33
predicted by HO , L2 is designed to measure departure of U(3) ,

etc., but it will be convenient to use the difference in ranks of the u's
in the numerator as the subscript for the corresponding significance

level. Also note that in the definitions of z and Z3 the inequalities

are opposite those used to define z, and zy v Lhis does not affect the

P
null distributionof the Z's;. and the L's ‘are exactly the same vari-
ables as if the inequalities were in the other direction. The purpose is

to help.establish a recognizable pattern in'the definitions.



For n=5, define
Y3)"%2)
z,=P {U, <u |U U,5y, U u,,\} = - ,
1 0" (3) (3} 7(2)  (2) (4)  “(4) u(4)-u(2)
(24)" 92))°
%2 = PolVe) 2 vV = 2y Vit v} T 7
(4) (1)
| (g o)
%3 = PolTa) < g 1P 2y YT T s
(5) (1)
(gt py)
- - - _ (5) (1)
2g = PolU1y 2 9 U5)= w5y} = 2
u
(5)
z.= P {U, . <u,_.} = w
5 0l (5) = “(5) (5) °
. ok .
Now define Lk =2M1n{Zk, l-Zk} , k=1,2,...,5.
Before considering the general case, let us define U(k) =0.
k<1 and U(k)= 1, k>n. Now for observed u(k), k=1,2,...
Of_u(l)f_.,,f_u(n)f_l, and for any k=1,2,.,.,n and r >k,

PolU002 %0 V() = ¥y -

for any k=1,2,.

Y17 2 e Yo T Yy

It

PolU0 2 20y P ik-1) = Be-1)* Vi) = Yoy}

(r) r-k-1
f (u(r) - t) dt

% k)

(r-k)

r-k
()" P ic-1))

r)

(u -u )r-!-k
() )

’

r-k
)™ %))

..,n and r<k

sy



U .., U

PolUugS w1 Y= 2y Uiy ™ %oy Ve )™ Bty -+ Vi)™ )

H

PolUi) S %y 1 Ye) = ey Y1) ® Y1)

u
(k)
(k-r) k-r-1
(r)

(9+1)” U

k-r
(B4~ %))

Al

k-r
(® 1) %z

For general n, n even, we define

z, = PO{U(n/Z)zu(n/Z) |all other U(k) = u(k)}

i} Yn/2+1) " Y(n/2)
Yn/2+1) " Y

n/2-1)

z, = PO{U(n/2+1) < u(n/2+1)la11 remaining U(k)= u(k)}

[u - u )2
_ (n/2+1) (n/2-1)

[u -u 12
(n/2+2) (n/2-1)

[u -u Ik
_ n/2+2) " Y(n/241)

[u -u I
(n/242) " *(n/2-2)

&)
!

n
n u"(n) .

For n odd, we define

z, = PO{U(%’l) < u(“—;’l) lall other Uty = %)}
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Lk =2M1n{Zk,1-Zk}, k=1,2,,,.,n,
and
n b33
Q.= -2 X logL, .
5 k=1 k
Hesk
Small values of Lk , large values of Q5 , will be taken consistent

with the alternative, For an observed d5 » the significance level, say
15 , is

15 = P{x°(20) > qg}

-where XZ {2n) is a chi-squared variable with 2n degrees of freedom.
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Synthetic Sampling Study

Analytic studies of the sensitivity of goodness of fit test statis-
tics are not very far advanced at present. It is difficult, from a prac-
tical point of view, to select the alternative hypothesis from all possible
alternative hypotheses. There are also great mathematical difficulties
connected with finding an exact, or even an approximation expression
for the sensitivity of test statistics, This is particularly true for the
type of test statistics defined in the preceding section, because the

sk

conditional levels (Lk|k+1’ L or Lk ) are dependent random

k+l |k’
variables for most alternatives of interest. Ewven the theory of limiting
distributions of statistics that are functions of dependent variables is
not far advanced.

It is not difficult to obtain empirical approximations of distribu-
tion function (and sensitivities are distribution functions) with the aid
of a high-speed computer, In a recent study by Shapiro, Wilk, and
Chen (42) several of the test statistics defined in Chapter II were
compared by comparing the empirical approximations of the distribu-
tions of significance levels. The study was designed to compare the W
statistic (see Chapter II) with other tests of normality, thus in each
case the null hypothesis was normal, Since the W is scale and origin
invariant, the null hypothesis for this statistic was normal, mean and
variance unknown. For the chi-squared statistic (CS*) , Kolmogorov-
Smirnov (KS*), Cramér-VonMises (CM), weighted Cramér-VonMises
(WCM), and Durbin (D) it is necessary to specify the mean and var-
iance. It is also necessary to specify the mean and variance for Q3 ,

Q4, and Q5 defined in the preceding section.,
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Accordingly, for the first set of alternatives (Table II), the
mean and variance of the null hypothesis is taken as the known mean
and variance of the actual alternative. For example, if the alternative
is a chi-squared distribution with two degrees of freedem, the simple
null is normal with mean two and variance four, This approach is of
particular interest in the light of the transformations described in
Chapter II designed to reduce the composite hypothesis of normality
(mean and variance unknown) to a simple hypothesis; if one of the trans-
formations is first applied to the data it will insure that the mean and
variance of the alternative is nearly that of the null hypothesis, specif-
ically mean zero and unit variance.

The values of [31 and [32 are the skewness and kurtois,
respectively, of the corresponding alternative, Recall that a normal
distribution, the null hypethesis, has [31 =0 and [32= 3.0.

| Samples from the va.rioué alternatives wer;z generated using the
IBM subroutine RANDU as the basic imput (46). Obtaining samples
was greatly simplified by the fact that all alternatives in Table II have
distribution functions that are easy to invert. For example, if X is a

chi~squared varjable with two degrees of freedom, then

-TX/Z

Fix) = 1-e x>0

?

and

x = -2log(l-F(x)),

Hence, to generate an observation x from this population, an observa-
tion u from a uniform on the unit interval is generated with RANDU,

and then

x = -2log(l-u).
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ALTERNATIVE DISTRIBUTIONS USED IN STUDY"

Alternative [31 , _‘32 |

1. Uniform: fA(x) =1, 0<x<1 (31- 0,00
= 0, otherwise (32- 1.80

2., Triangular: fA(x) =2x, 0<x<1 plz - .57
| = 0, otherwise (32= 2,40

3. Chi-Squared, fA(x) =0, x<0 (31= 2,00
Two Degrees of Freedom: =1/2 e-x/2 , x>0 B,= 9.00

4, Tukey (A=,7): Tukey variates are defined by the (31 = 0,00
transformation Y=R)\ - (l-R.))\ where R is uniform (32 = 1.92

on the unit interval
5. Tukey (A =10): (31— 0.00
(32= 5.38
= 0.00
-1/2 By= 0
6. Laplace:fA(x)=l/4e / |x|’ ~o <X <o Bz'z 6. 00
7. Weibull (A=1,k=0€:5):f,(x)=0, x<0 B,= 6,62
A k-1_-ax" 1

=\kx “e” , x>0 (32=87.72

8, Weibull (A=1, k=2): B = 0/63
_ j (32= 3‘.25

zeZx B, = O. 63

9., Logistic: f,(x) = — : , -® < x < o _

A (l_l_er)Z B, = 3.25
hy: £ (x) = L 1 Py= 0.00

10, Cauchy x) = = , -0 <x<a - L




TABLE III
PERCENT SENSITIVITY AT THE 10 PERCENT LEVEL
OF SIGNIFICANCE ; 200 SAMPLES FOR EACH

SAMPLE SIZE

AL
i~

Test Statistic Q4 Q. KS® CS* CM WCM D
Sample Size 10 15 20410 15 20|10 15 20|10 15 20|10 15 20|10 15 20|10 15 20
Uniform 14 17 23|11 7 13|14 11 19|14 17 18|11 8 8|14 8 9|16 17 19
Triangular 16 22 24|15 12 19)10 10 14|16 14 12|16 12 20|17 13 20{16 15 23
Chi-Squared 38 51 57|43 46 56|32 30 37|81 43 43120 23 33|23 26 41|31 39 56
o | Tukey (A=.7) 12 15 17| 8 10 8|15 9 17|12 14 15|11 8 17}12 7 18|17 8 8
g Tukey (A=10) | 73 87 93|78 89 96|31 45 63|27 83 81|23 33 54|27 29 61|72 77 87
g Laplace 19 24 26|23 26 33{13 7 13|14 17 25(12 7 15|36 20 37|23 21 24
< | Weibull (k=.5) | 94 100 100 | 98 100 100 | 58 65 100| 94 97 99|57 73 96|63 77 99 |89 99 100
Weibull (k=2) | 12 13 19|10 12 14|12 14 15|11 15 12|10 11 14|11 11 15}f10 7 11
Logistic 13 14 21|15 16 18| 9 6 9}12 12 8{10 9 8|13 9 9|13 4 10
Cauchy 90 99 100 |95 100 100 |30 47 65|23 46 54|32 46 71|95 98 99|75 84 91

€6
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Samples of sizes n=10, 15, and 20 were used in the study.
For a typical computer run, that is, for one alternative, one sample
size (say n=10), and one test statistic (say Q3), 200 samples of
size 10 each were generated and 200 values of Q3 computed, The
percentage of the Q3 values exceeding 28,41, the 90 percent quantile
of a chi-squared distribution with 20 degrees of freedom, was then
computed and recorded in Table III. Thus values given in Table III
estimate the sensitivity at the 10 percent level of significance. Only
percentages for Q3 and Q5 were actually computed in this study;

all our percentages are those given by Shapiro, Wilk and Chen (42).

TABLE IV
PERCENT SENSITIVITY AT 5 PERCENT
LEVEL OF SIGNIFICANCE ; 200

SAMPLES OF SIZE 15

Mean .000 | .000 {,150 | .300 | . 180 | ,360 | ,195 | .390
Std. Deviation| 1.2 1.3 1.0 1.0 1,2 1.2 1.3 1.3
Q3 14 29 8 9 13 17 22 20
}.j Q5 12 16 10 13 14 19 17 § 21
= KS" 5 11 3 10 6 6 8 ! 14
[0} %
& CS 6 9 5 12 10 16 12 29
@ CM 4 8 8 17 13 21 13 26
Q
= WCM 11 15 9 17 20 29 26 38
D 10 15 4 10 8 10 15 17
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TABLE V
SUMS OF RANKS OF SENSITIVITIES; FIRST

SET OF ALTERNATIVES

Test sk *
Statistic Q, Q KS” cs CM | wWCM D
10 |30.0 | 34.5 | 47.0 | 40,5 61.0 | 34.0 | 33.0
l :
S;’;’:ze 15 | 17.5 27,0 53,5 32.5 57.0 51.0 | 41.5
20 |17.0 | 32.5 | 45.0 | 53.0 | 56.5 | 38.0 | 38.0
TABLE VI
SUMS OF RANKS OF SENSITIVITIES ; SECOND
SET OF ALTERNATIVES
Test Q Q ks* | cs*| cMm | wem D
Statistic 3 5
Sg’fnple 15 | 27.0 20.0 51.5 38.0 32.5 14,0 41.0
1Zze

The second set of alternatives are ''misspecified' normal
distributions used to study the effect of errors in the assumed values
of the normal parameters in testing the simple hypothesis that the dis-
tribution is normal, mean zero and standard deviation one. The alter~
native parameter values are: (u,o) = (0,1,2), (0,1.3), (.15,1.0),
(.18,1,2), (.195,1.3), (,3,1.0), (.36,1.2), (.39,1.3).

Results are

given in Table IV.
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To aid in summarizing the results of the synthetic sampling,
ranks from one (best observed sensitivity) to seven (least observed
sensitivity) were assigned for each sample size-alternative combina-
tion. These ranks were then summing over the ten alternative for the
first study (Table V) and over the eight alternatives for the second
study (Table VI), In case of ties ranks were averaged.

The results in this section were derived from sampling and are
thus subject to sampling error. As a guide to accuracy, the standard

deviation of any estimate of sensitivity is bounded by

/(. 5)(.5)
~00 " = . 036 .

Even with the rather wide ga‘uge of +2(,036) = 7,2 percentage points,
Q‘3 , and Q5 to a lesser extent, provide superior sensitivity for
several of the alternatives considered. This is particularly true for
alternatives with a long (heavy) tail compared to that of the normal
distribution; these include the chi-squared, Tukey (A=10), Weibull
(k=5), and Cauchy alternatives,

It was mentioned in the preceding section that Q3 generally
provides better sensitivity when the mean of the alternative is smaller
than that of the null, as opposed to the mean of the alternative greater
than that of the null, To demonstrate this point, 200 samples of size
15 were generated from each of the alternatives normal (u,o) =(-.15,1)
and normal, (p,0)=(~-,30,1). With a null hypothesis of norrr}al,

(u,0) = (0, 1), the observed sensitivities were }¥6 and 25 per;:ent,
respectively, at the 5 percent level of significance, Compare these to

the 8 and 9 percent given in Table IV for the alternatives normal,

(p,0) = (.15,1), and normal, (u,o) = (.30,1),



CHAPTER VI
SUMMARY AND EXTENSIONS

In this study several test statistics were given for testing the
simple goodness of fit hypothesis. Chapter III was concerned with
constructing test statistics, referred to as methods of combination, for
the special case of the general goodness of fit hypothesis obtained by
considering significance levels of independent test statistics.

Properties of methods of combination were investigated in
Chapter IV. The concept of a monotone method of combination was
introduced, and relationships between monotonicity and the properties
of unbiasedness and consistency of methods of combination were
obtained, Specifically, if the p original test statistics are unbiased,
then a monotone method of combination is an unbiased test statistic for
‘the combined hypothesis problem; if the original test statistics are
consistent, then a continuous (a random variable of the continuous type),
monotone method of combination provides a consistent test statistic for
a slightly restricted version of the combined hypothesis problem (see
page 49). The joint integral transform method of combinatién is a
continuous, monotone method of combination, as are Fisher's method,
Pearson's method, the maximum level and the minimum level, How-
ever, the conditional integral transform methods W3 , W4 (page 41),

and W5 (page 43) are not monotone methods of combination.

97
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In the last section of Chapter IV it was shown that the exact
slopes of the combined tests are E ck(ek) for Fisher's method

(established earlier by Littell (28)), cl(el) +c,(6 for the joint

22)

integral transform when p=2, pmﬁn ck(ek) for Pearson's method,
and E ck(ek) for the conditional integral transform method W4 (with
some restriction on the combined alternative), Littell also demon-
strated that the slope of the method based on the minimum level is

ml?x ck(ek) , and the slope of the method based on the maximum level

kG -

and for the most general combined alternative, one should choose

is p mlin c Thus based on the Bahadur slope criteria, for p=2
between Fisher's method and the joint integral transform method. For
p > 2 perhaps Fisher's should be used. It is felt that the slope of the
joint integral transform method is also the sum of the individual slopes
for p > 2, however, it is not possible to prove this conjecture without
the null distribution for general p.

Results of the synthetic sampling sfudy given in Chapter IV
clearly demonstrate that the conditional significance level approach to
the simple goodness of fit problem is worthy of further consideration.
However, more extensive synthetic sampling, with null hypotheses
other than that of normality, would be necessary to draw general con-
clusions.

The composite goodness of fit problem definitely deserves
further investigation. It is possible to use a technique, similar to the
conditional significance level approach, to reduce the composite
problem to a simple goodness of fit problem,

For example, suppose Xl’ XZ’ .ot Xn+1 , Xn+2 are indepen-

dent normally distributed random variables, each with the same



29

. 2 .
unknown mean . and unknown variance ¢, Define

X, - X
Yk: , k=1,2, ,
n+2 _ 2
z (X, -X)
i=1 !
where
_ ] n+2
= —| Z X.],
(n+2) i=1 1

It is shown in the appendix that the joint density of Yl’ YZ’ cees Yrl does
not depend on p and 02, however, the Y's are dependent random |
variables.

Suppose we apply the technique described in Chapter III (pa.gés

40-42) to obtain mutually independent uniform variables. That is,

define UI'UZ""’Un by
U =F (Y lY.,...,Y ), r=0,1,2,...,n1 -
n-r Y Y0¥ et n-r-1 :
where F_Y ,Y Y (- I-) is the conditional distribution
n-r 1 n-r-1
function of Y given Y ,Y_,.,..,Y . It is shown. in the
n-r 1° “2 n-r-1
appendix that Un-r will be
_ 1 1 2 1 r+l
Un-r—zqzﬁ(zn—r’a’ '2‘)'Zn r<0’
_ 1.1 2 1 r+l
Un-r"2+26(zn-r’2’ 2)’Zn-r>o’

where
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] n-r-1
Yn:r * (r+3) ifl Yi
n-r ) ' : !
-r-1 n-r-l 2
r+2 n-r 2 1
(r+3> 1'( z Yi)‘ (r-+3)( = Yi>
i=1 i=1

and B(-; a,B) is the incomplete beta function (see appendix).
Therefore, the composite hypothesis céncerning

Xl’ XZ’ “ e Xn+1 'Xn+2 can be tested as a simple hypothesis concern-

ing the independent (under the null hypothesis) random variables

Ul’ UZ’ v Un' The appealing feature of this approach is that we

essentially replace the unknown parameter (g, 0‘2) by its minimal

sufficient statistic (X, Z(Xi-—}_()z) . No attempt has been made to study

the sensitivity of this approach.
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APPENDIX

The purpose of this appendix is to provide details of transfor-
mations, given in Chapter VI, to reduce the composite hypothesis of
normality, mean p and variance orz unknown, to a simple hypothesis.

Let Xl’ IRREY X denote independent normally distributed random

n+2

variables, each with the same (unknown) mean p and variance o

Define

1 n+l n+2
and

W, = (X

2 2
2 atl = W/ (X o - W 2)7,

then W1 and W2 are independent with respective density functions

= ——L——exp-—vlz— (w1—~2|_L)2, - §w1<m .

)
1 NZuNZ o 4o

and
. W,
f(w,) = —1 wz'l/zexp-——-—2 , W, >0
NZT o 20
=0, otherwiée .
The joint density of Xl’ XZ’ e Xn’ W1 s W2 is
n
wz-l/zexp -———1—? {:%— (wl- ZI.L)Z + W, + Z (xk— u)Z:]
20’ k::l .
By s x Wy wy) = — wFyz fardlz n¥z '

1NR
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-0 < x, < ®
-0 < w, < @

0 < w, <o ,

Make the change of variables

n
T =W+ ZX
k=1 k
o 2
(Tl-kfl i) no2 T%
T, = W, + > + DX - =,
k=1
X 1l _ 7
v =~ 1 poi2,.,,
VT,

then the joint density of Yl’ ve.s ¥ , T T, is

f(yl, « s 9 3 yn, tl, tz)

n+l1/2 X a 1-1/2 1 1 2
t2 [l-yanyn] exp——-—-—zcz [m (tl-(n+2)p.) + tZ]

T$n‘+?.)/2 2(n+3)/2 Un+2 T T

_.L' -
0 < yanyn< 1,
-0 < t1< « ,

0<t2<m,

where




107

In is the n dimensional identity matrix and Jn isan nxl wvector of

ornes,
Note that
n+2
T, = 2 X .,
1=y K
n+2 — 2
T, = fl (X - X)
where
= 1
X=mm T

Therefore the joint density of T, and T, is

1 2
n+l/2 1 1 4 2
t2 exp - — [——-—-—(n+2) (tl‘- (n+2)p)" + t2]
ft,,t,) = _2c , — _
1’ 72 )
Vor (n+2)o? T 2l ftlfz o+l
and the conditional density of Yl’ YZ’ e Yn given T1 s T2 is
ntl nt
_ 2 > > q-1/2 LSS
f(yl""’yn,tl'tZ)” [l-yanyn] ’ 0<yan n <t

JZ -rr(n+ 1y2

Since f(yl, “ v yn,tl’ t2) does not depend on 1:1 and t2 , this is just
the joint density of Yl’ YZ’ e Yn .

In the remainder of this appendix the following notation will be

used;



(i) In will denote the n-r dimensional identity,

-r

r=0,1,...,n~1;

(ii) ‘Tn-r will denote an n-r dimensional vector of

ones, r=0,1,,..,n-1;

(iii) Bn-r will denote the matrix

— ]' t — .
Bn-rr— Innr+—(_r_-r2—)-Jn-—rJn—r’ r=0,1,...,n-1;

(iv) '; will denote the vector
n-r ‘

r=0,1,...,n-1.

<k
M

n-r

Now assume that, for r=0,1,,.,,k, the joint density of

Y., Y . is
- N > fr+ly2-1
fyporeny, =6, -y B, ¥y ] ,
_L' .S
0< Yn-r n-rn-r <l.

where Cn r is a constant such that the density integrates to one.

-

n"k 2 1 n—k n—k
NePaakVn-k ™ 2V TR j>=:1 IRARE

_(k#3) 2 L, 1 \a, p
“\k+2/Vn-k T “Yn-k\k+2) Yn-k-1"n-k+l

Nan
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Now

‘ ] -
n-k-1 ko1 k+2>Jn-k~lJn-k-1}ynmk-l
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_(k+3 1 o, 2
‘(+2> Unort &3 Yaike1 Tneke?
..\| RS
* Ynok-1 Baok-1 Yn-k-1
Let
_ 1 o I
M. " %2 Yn-r’n-r
and
2 Y
°r " Yn-r Pn-r Yn-r’
then
) _ 2 (k+2)/~1 [k+2 2)(k#1)/2-1,
By oo Yagee1) = Cooie [l - 514 ] V& (1 t)
(k+1)+1

= C -‘ ] 2

n-k—l[l” -(k+1) B, -(k+1) Tn-(k+1)

Since the original assumption is true for r=0, itis true for
r=1,2,..,,n-1" by induction.

It can be shown that

80

Iy Yoy

o frt2 2
i} 1“(2) T3 2 -1/2 Vot ™y

r r+1 r+2 (1~sr+1) 1- 'rr-:-Zr 1 2 !
() (55) 0ot

r+2 2 r+2 2
RS | "/r+3 % " Syl < Ynor < "Mt + r+3 ‘/1 "Bt
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Therefore

(Y, Yooy o))

r=0,1,2,...,n-1

where

nr. r+1

z
n-r
r+3 ’/ -

If we make the change of variables in integration v= t2 then
1 1 2 1 r+l
r,YI:---,Yn_r_l)- Z'Zp(znqu 2 2): zn_r< 0:
1 1 2 1 r+l,
F(Yn-'rlyl”"'Yn-r--l)_ f+?p(zn-r’f’ 2 ) zn-»r> 0,

where PB(-;a,B) is the incomplete beta function; that is

X
B(x; a,p) =f —%‘;—12‘3(—)‘3) t"'l(l-t)p'ldt.
0

0<x<l,a>-1,8>-1,
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