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CHAPTER I
DYNAMICAL -SYSTEMS
Introduction

Historically, dynamical systems developed from the qualitative
theory of differential equations, and hence, is often consildered to be
a topic in the theory of differential equations. Some mathematicians
prefer to consider dynamical systems as applied topology. Others
consider dynamical systems to be an independent mathematical discipline.
Due ‘to the development of topological dynamics as an independent
mathematical discipline, it seems feasible to consider dynamical systems
as a toplc of topological dynamics with results applicable to certain
classes of ‘differential equations. The author's point of view lies
with the latter two conceﬁts but is by no means fixed.

The theory of dynamical systems appears to have evolved from the
pioneering studies. of the topological properties of solutions of
autonomus systems of ordinary differential equations with planar phase
spaces by Poincaré and Bendixson»at the turn of the century. At about
the same time Lyapunov introduced his theory of stability of motdions.
Birkhoff in his 1927 monograph "Dynamical Systems' was the first to
undertake a systematic development of the theory and may well be
considered the founder. The definition of an abstract dynamical system
has been attributed to the independent works of Markov and Whitney in.

the early 1930's. In 1947, Nemytskii and Stepanov published thelr.



"Qualitative Theory of Differential Equations" which contains a survey
of differential dynamical systems. Much effort in the late 1940's and
1950's was directed toward generalizing the concept of a dynamical
system to transformation groups. In 1955, Gottschalk and Hedlund
published their book '"Topological Dynamics" which surveys this work.
The recent developments in dynamical systems are surveyed in four recent
monographs. The major feature of Hajek's book, "Dynamical Systems in
the Plane," is the extension of the Poincaré-Bendixson theory to
dichotomic 2-manifolds. Although Bhatia and Szego give a very adequate
survey of recent thought on dynamical systems in "Stability Theory of
Dynamical Systems,' the treatment is limited to metric spaces. Even
though somewhat 1imited in scope, the notes "Theofy of Dynamical Systems"
and "Local Semi—Dynamical Systems' by Bhatia and Hajek present the ﬁajor-
developments of modern dynamical systems in the most general form.

In [14] Ura introduced his theory of prolongations and pointed out
its connection with stability theory. He suggested the importance.of
'studying dynamical systems of.characteristic 0+ which are flows
satisfyiﬁg a certain stability criterion expressed in terms of prolonga-
tion. Ahmad-classified such.planar flows in [1j in terms of their
critical points.

In this papér-we’characterize planar flows of characteristic 0+vas
well as flows satisfying the,bilatéral concept 8f characteristic 0. In
each case the characterization is'given in terms of the set S of
criticai points and is based on tﬂree mutually exclusive and exhaustive
cases:. S =@, S nonempty and cémpact, and S noncompact. Examples
of dynamical systems of characteristic 0+ satisfying all of the

properties obtained by Ahmad in [1] for the noncompact case are given



including one example which nontrivially satisfies every property.
Examples :of the nontrivial flows of characteristic10 are given.
Finally, as a consequence of the characterization theorem for flows of-
characteristic 0, we extend a well-known result from differential planar
flows ‘to arbitrary planar.flows. -

This study essentially completes the planar versions of the

+ t
characteristic 0, 0 , 07, and O problems.
Basic -Definitions and Notations

-We shall denote the real numbers, nonnegative real numbers, non-
positive real numbers, and Euclidean plane with the usual tepelegy by

R, Rf,vR_; and Rz, respectively.

Definition 1.1: A pair (X,n) consisting of a topological space X, .

called the phase space, and a.comntinuous mapping w: X x R+ X from
the product space X x R into X is called a dynamical system or
(c0ntinuoué) flow whenever the following éonditiqns are satisfied.
(1) 1Identity axiom: n(x,0) = x for-each x ¢ X. |
(2) Homomorphism axiom: w(w(x,t),s) = n(x,t +s) for each
xe X and t,s e R.

(3) Continuity axiom: 7 - is -continuous on- X x R.

Throughout this paper .the phase space X of-a dynamical system
(X,m) will be Hausdorff.  We shall denote w(x,t) by =xt- for brevity.
Unless otherwise specified, we shall let (X,m) denote a fixed
but arbitrarynflowvthroughout'this chapter. When we.refer to a point
or a set without mention of the location, then they are assumed to be

in X«



Definition 1.2: For each x, C(x) = xR = {xt: t e R}, C+(x) = xR+ =

+. - - - . .
{xt: t e R}, and C (x) = xR = {xt: t e R} are called the trajec-
tory (or orbit), positive semi-trajectory, and negative semi-trajectory

through x, respectively.

Let F: X > P(X) be a function from X into the power set: P(X)
of X. We denote \y) {F(x): x ¢ M} by FM) for any set M. When
F(M) 1is a singleton {x}, we write F(M) = x. If M is a singleton

{x}, we write F(x).

Definition 1.3t A point x 1is called a critical or rest point if
C(x) = x. If C(x) # x but xt = x for some t >0 then x is

called periodic.

Proposition l.4: The set of all critical points in X 1is closed.

(See [7], I, p.14 and [8], p.17.)

Remark:r In each of the remaining sections of this chapter, we shall
state definitions, propositions, and theorems which are basic to the
development of the succeeding chapters. Since these results are all
well-known, we shall not prove any of them; however, we shall give.a
reference for each. Several results are simple exercises, but-they

are included for completeness.

Almost>every definition, proposition, and theorem in this chapter -
has a positive, negative, and bilateral version. Since the positive
and négative versions are duals, it :‘is customary to étate énly~tﬁe
positive versions of results. In this chapter, Qe shall staté the -
p@siéivé versions 'except in definitions and shéil usually nete when

bilateral versions hold.



Invariance

Defin;tion-l.S: A set M is called invariant if C(M) = M and

positively (negatively) invariant if . C+(M) =M (C (M) =M.

Proposition 1.6: A set M 1is positively (bilaterally) invariant if and

only if X - M is negatively (bilaterally) invariant. Furthermore, M
is positively (bilaterally) invariant if and only if each of its com-
ponents is positively (bilaterally) invariant. (See [7], I, pp.26-27

and- [8] ’ p-13-)

Proposition 1.7: 1If {Mi; i e I} is a family of positively (bilater-
ally) invariant sets, then »\,){Mi: i e I} and M\ {Mi: ie I} are

positively (bilaterally) invariant:. (See [7], I, p.26 and [8], p.12.)

We shall denote the boundary, interior, and closure of a set. M

by oM, Mp,,and ﬁ, respectively.

Proposition 1.8: If a set M is-positively (bilaterally) imvariant,

then M and M° are positively (bilaterally) invariant. (See [7], I,

p.27 ‘and [8], p.13.)

Proposition 1.9: If a set M is invariant, then dM 1is invariant.
The converse holds if M is open or.closed. (See [7], I, p.28 and [8],

p.13.)

For any simple closed curve C in R? we shall denote the bounded

and unbounded components of R2 - C by dint C and ext C, respective-

ly.



Theorem 1.10: Let X = R® be Euclidean n space and let M be a

positively (bilaterally) invariant set homeomorphic .to the closed unit

ball in Rn.v Then = M contains a critical point. (See [7], I,;p.30.)

Corollary l.ll} ‘Let X = R2 and x be a periodic point. " Then

int C(x) contains a critical point. (See [11], p.175.)

Theorem 1.12: Let X' be an invariant subset of X and =’ = |X'

(the restriction of 7 to X').. Them X',r') is a dynamical system.

(See -[7], I, p.32.)

Limit -Sets"

For each x we let K(x) = C(x), K+(x) = Cf(x); and

K (x) = C (x).

Proposition 1.13: For each x,

&) Kf(x) is ‘closed and positively invariant,
(2) ~K+(xt) C Kf(x) for each t € Rf,v and
(3 Kx =K (x) U K&,
The bilateral versions hold for (1) and (2). (See [6], p.50; [7], I,

p.30; and [8], pp.22-23.)

Definition 1.14: The positive (negative) limit set of x. is

L+(i) = {y: xt, +y for some net t; + 4w}

i

L (%)

{y: xt; >y for some net t; > —©}).

+ -
The limit set of x.. is L(x) = L (x) k,) L (x).



Proposition 1.15: For each x,

@ tte = M iFE: t e ry,

¢

+
(2 L (x) 1is closed and invariant,

(3) L7(x) = L'(xt) for each t e R,

% K@ =c@ U Lw,

(5) K(x) =17 (U ¢ U 17(®), and
(6) K(x) = K(xt) for each ¢t ¢ R.

The bilateral versions hold for (1) through (4). (See [6], p.50; [7],

I, p.35; and [8], pp.22-23,58.)

We shall let n(x) and n (M) denote the neighborhood filters of

the point x. and set M, . respectively.

Definition 1.16: A space Y is called rim-compact if .for each y e ¥

and V ¢ n(y)\ there is a U e n(y) such that- U (C_ V and 53U is

compact.

Proposition 1.17: If X is rim-compact, then for any point x, K%(x)

is compact if and -only if. L+(x) is nonempty and compact. (See [6],

p.54 -and [7], I, p.36.)

Theorem 1.18: Let X be a subspace of Rz; Then, for any point x,
X € L+(x) if and only if. x 1is either periodic or critical. (See

[131.)

Proposition 1.19: If x 1is a point of X ='R2 and L%(x) # 0y then

either Lf(x) is ‘a periodic trajectory or Lf(y) and L.(y) consist

of critical points for each vy e L+(x). (See [11], p.184.)



*
Theorem 1.20: Let X be locally compact and X = X \U (=} be - the

one point compactification of X. Then there is a uniquely determined
; * % *
dynamical system (X ,m ) such that w7 = 7 |X;. furthermore, « is a

critical point. (See [7], I, p.l16.)

* %
We shall refer to (X ,m ) as the extended flow. For .each point

* *+4 . *+ e .
xe X, we let K (x) and L (x) denote C (x) and the positive
limit set relative to the extended flow, respectively. Similar notation
will be used.in the next section for prolengation sets and prolengation—

al limit sets.

Proposition 1.21: Let X be locally compact. For each x ¢ X,

o
o+ Kf(x) | if K+(x) is compact
KoG) =9 4 | +
K (x) \U {»} if K (x) is not compact
and
N L+(x) if L+(x) is compact
+
L. (x) =

L+(x) K,) {=} if L+(x) is not compact

Furthermore, the bilateral versions of these statements hold. (See [7],

I, p.36.)
Prolongation

Definition 1.22: For each point x, the positive (negative) prolonga-

tion of x. 1is

D+(x)

1]

Ay ¢ X: Xty >y for some nets X > x - and ty > 0}

(D (x) = {y € X: Xty >y for some nets X, * X and t, < 0}).

i i

The prolongation of x 1s D(x) = D+(x) k;) D (x).



Proposition 1.23: For each x,

(1) D+(x) is closed and positively invariant,
(2) D+(xt) _ D+(x) for each t ¢ R+5
(3) K C b, and

(4) D (x) = (\\{C+(M): Me n(e)l

The bilateral versions of these statements hold. (See [6], p.60; [7],

I, pp.42-44; and [8], p.26.) -

Definition 1.24: For each point x,. the positive (negative) prolonga-

tional limit set of x 1is

J+(x) = {y e X: Xt >y for some nets X, > X and £, > oo}

(J_(k)_= {y ¢ X: xit +~y .for some nets x, > x. and ti »> —=}),

i 1

The prolongational limit set of x .1s - J(x) = J+(x) k,} J (%).

Proposition-'1.25: For each x,

(1) J+(x) is closed and invariant,
(2) J+(xt) = Jf(x) for each t ¢ R,
® '@ C W,
(4) J+(x) =M {ﬁ+(xt):‘t e R}, and
(5) D' = ¢fw U I,
The bilateral versions of these statements hold. (See [6], p.60; [7],

I, pp.44-45; and [8], pp.26,58.)

Proposition:1.26: If y e K(x), then J+(x) _ J+(y). (See [6], p.72

and [7], I, p.51.)

) +
Proposition 1.27: If y,z ¢ L+(x), then" y ¢ J (z). (See [6], p.71.)
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Proposition.1.28: vy ¢ D+(x) if and only if x e D (y). Moreover,

y € J+(x) if and only if. x ¢ J—(y). (See [7], I, p.46; [8], p.29;

and [14], p.127.)

Theorem 1.29;7 Let X be locally compact and x.¢ X. If D+(x), is

b + .
compact, then it is connected. Furthermore, if D (x) is not connected,
then it has no compact components. The bilateral versions of these

statements hold. (See [7], I, pp.46-48 and [8], pp.26-27.)

Proposition 1.30: Let X be locally compact. Then

ot D+(x) if D+(x) is ‘compact
D=9 4 +
D (x) \bj {o} 4f D (x) is not.compact
and
. Jf(x)' if*,J+(x) is compact
I =q g o+
J (%) k‘) {=} if J (%)  is not compact.

The bildteral versions of these-étatements:hold. (See [7], I, pp.45-46.)

Definition 1.31: A set M. is called positively d-invariant or

d+—invariant if D+(M) = M. The negative and bilateral versions are

defined similarly.

Proposition 1.32: Let {Mi: i e I} be a family of d+—invariant
(d-invariant) sets.  Then K,){Mi: i eI} and (ﬁ\{Mi: i€ I} are

d+—invariant (d~invariant). (See [7], II, p.3.)

Proposition 1.33: If X is locally compact, then a compact subset is
d+—invariant (d-invariant) if and only if each of its components is -

such.- (See [7], IL, p.4.)
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Proposition :1.34: A set M- is-d+4invariant (d~invariant) if and only:

if X - M is d -invariant (d-invariant). (See {71,y 11, p.4.)

P
P

Definition 1.35: A point x. is called dispersive if J+(x).-'¢. The

flow (X,m) 1is called dispersive if each of its points is dispersive. .

Theorem 1.36: The flow (X,m) 1s dispersive if and only .if
D+(x) = C+(x). for each x e X - and there are no periodic or critical

points. (See [7], I, p.79 and [8], pp.44,47.)

Definition 1.37: Two flows (X,m) and (X',n') are dynamically

isomorphic ‘if and only if there exists a homeomorphism f: X -+ X" such
that f(xt) = f(x)t for each xe X and t eR. Let g: X~>Y bea
homeomorphism from X to Y. We call (Y,n'") 'wﬂere‘ ﬂ"(y,t) =
g(ﬂ(g_l(Y),t))~ for each 'y ¢ f»_and‘ t.e R the flow induced on Y

from (X,m) by. g.

Definition 1.38: A dynamical system (Y x R,m') - is called parallel if

and enly if (y,s)t = (y,s + t) for each y ¢ Y and s,t e R.

Definition 1.39: " The flow (X,m) is called parallelizable if and only

if it is ‘dynamically isomorphic te a parallel flow.

Theorem 1.40: If X dis a locally compact separable metric space, then

(X,m) is parallelizable if and only if it is dispersive. (See [3],

p.548 and [5], p.91.)
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Stability

Definition 1.41: A set M is called positively stable if for every

Uen(M there exists a V e n(M) such that C+(V) C U (or equi-
valently, such that V (C U- and d+(V) = V). The negative and

bilateral versions are defined in the obvious manner.

It is customary to drop the adjective ''positive" but never the
adjectives "negative" or "bilateral" when referring to stability. We
shall adopt this procedure.  We 'shall refer to a point x as (negétivef
ly, bilaterally) stable if {x} - is such.

The bilateral versions of the next seven results hold. This fact

is stated in Theorem l.46 for emphasis.

Proposition 1.42: Every open positively invariant set is stable. (See

[7], II, p.6.-)

Proposition 1.43: The union of stable sets is stable.  (See :[7], IIL,

p.6.)

Proposition 1.44: If M is stable, then M is positively invariant.

(See [7], II, p.6 and [8], p.60.)

Proposition 1.45: - Let X be regular and M be a closed set. If M

is stable then it is df—invariant. (See [7]1, II, p.8.)

Theorem 1.46: Let X be locally compact and 3M. be compact. Then- M

is stable (negatively stable) if and only if . D+(M) =M (D (M) = M),
Furthermore, M is bilaterally stable if and only if D(M) = M. (See

(61, p.77; [7], 1II, p.8; and [14], p.127.)



13

Proposition 1.47: If X 4is locally compact, then-a compact set M is:

"stable if and only if each of its components is such. (See [7], II,

p.10 and [8], p.62.)

Propogition 1.48: If each component of a set. M is a stable set, then
so is M. Conversely, if - M 1s compact and stable, then so is each of

its components. (See [7], II, p.13.)
Attraction and Asymptotic Stability

Unless otherwise specified, we shall consider R to be a .directed
set directed by the usual order. Thus, for each x, the mapping
with x - fixed is a net on R which"we shall denote by (xt). The
statement "(xt) is ultimately.in. V" means that there exists a T e R
such that xt ¢ V- for t > T. Similarly, the negative net 1s defined
relative to the reverse of the usual order on R.

The bilateral versions of the results which fellow are valid

through Proposition 1.56.

Definipion 1.49: TFor any set M and point x. we say X 1s positively
attracted to M- if -and only if for any V e n(M) there exists a

(V) ¢ RY such that  xt €.V whenever t > T(V). The negative version
is defined relative to the negative net (xt) and the bilateral version

is the conjunction of the positive ‘and negative versions.

We shall drop the adjective "positive" as we did for stability.

If M= {p}, then we say x 1is attracted to p rather than {p}.
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Definition 1.50: If M is a set, then- Af(M) = {x ¢ X! x- is attracted

to M}. The negative and bilateral versions are defined similarly and.

denoted by A (M) ~and A(M), respectively.

PropoSition 1.51: If x 1is a point and Ml and M2v'are sets, then:

(1) xe A+(M1) if and only. if C(x) ( A+(Ml),

@ 1 C M, implies AJ’_(Ml)_ C sty
(3) cOy) =1 implies ¥ C A1), and
@ Ao U ato C sToag Uy,

(See [7], II, pp.17,25,26 and [6], p.8l.)

Theorem 1.52: Let M be a closed set with oM compact. If x ¢ A+(MD,
then either (xt) is ultimately in M or @ # L+(x).(:: M. The

converse holds whenever X 1s rim-compact. (See [6], p.84.)

Definition 1.53: A set M is called an attractor whenever

'A+(M) € n(M).. The term global attractor is used in case A+(M) = X.

The negative and bilateral versions are defined-similarly.

Proposition 1.54: A set. M is an attractor if and only if A+(M) - is

the smallest open invariant set containing M: (See [6], p.81 and [7],

II, pp.27-28.)

Proposition 1.55: Let M be an attractor. Then every set Mi with

M C M _ A+(M) is also an attractor and A+(Ml) = At ). (See

{71, 11, P'27{)

Proposition 1.56: For any set M, J+(A+(M)) _ J+(M).‘ (See [6], p.90

and [7], II, p.32.)
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Definition 1.57: A set M is called asymptotically stable if and only

if it is a stable attractor. The negative and bilateral versions are

defined similarly.

Theorem 1.58: If X = R2 and x is a periodic point of X with G

either of the components of X - C(x), then either
(1) relative to G, C(x) is asymptotically stable or negatively
asymptotically stable, and there exists a V e n(C(x)) such
that V (A\ G contains no periodic points; or
(2) C(x) is bilaterally stable relative to 'E, and for each

V e n(C(x)) there exists a periodic trajectory in V M c.

(See [11], p.196.)

Theorem 1.59: If X = R2 and x is an isolated stable critical point,

then x satisfies precisely one of the following conditions.
(1) x dis a focus (x ¢ L+(y) for some point y # x).
(2) x 1is a Poincaré center (there is a neighborhood of periodic
points surrounding x).
(3) x 1is a center focus (every neighborhood of x contains both
periodic¢ and nonperiodic trajectories).

(See [11], p.198.)

- +
Flows of Characteristic 0+, 0,0, and O

Definition 1.60: The flow (X,m) 1is said to have characteristic 0+
(07) if and only if ﬁ+(x) = K+(x) (D (x) = K (x)) for each x ¢ X.
If the flow has both characteristic 0+ and 0 , then it is said to have
characteristic Ot. The flow has characteristic 0 if and omnly if

D(x) = K(x) for each x & X.
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Theorem 1.61:  The flow (X,m) has characteristic.0+ if and only if

J+(x) = Lf(x) for each x ¢ X. The negative and bilateral versions

hold. (See [6], p.138.)

As we have already noted in the first section, the concepts of
characteristics 0+, 0_, and-Oi were introduced by Ahmad in [1] where he
classified such planar flows and characterized planar flows of
characteristic\oir

In [1] Ahmad defined a point x to be attracted to a closed
invariant set M if @ # L+(x) (CC M. This is not equivalent to
Definition 1.49. However, under suitable conditions the definitions
are equivalent. Since we shall use the results of [1] in this paper,
we show by means of the following proposition that the definitions are

equivalent for the sets and spaces which we study.

Proposition 1.62: Let X be regular and let M be a closed stable

set with @ #,L+(x) for each point x- in M. Then; y.¢ A+(M) if

and only if. ¢ # L+(y)(:: M. The negative and bilateral versions hold.

Proof: Let y € X such that B # L+(y) (CC M and let Uce n(M§. Then
there exists a V e n (M) such that C+(V) =V (C U. Since

L+(y) (C vV, the net (yt) must eventually be in V.  The invariance
of V implies (yt) 41is ultimately in U.

Conversely, let y € A+(M). By virtue of the regularity of X,
there exist disjoint neighborhoods U 6?1(M) and V ¢ n(z) for any /
z ¢ M. The stability of M implies that (yt) dis ultimately in U,
so that z § L+(y). Hence, @ # L+(y) C

The negative and bilateral versions follow similarly. The proof

is complete.
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The definition of attraction in [1] is applied to sets and spaces-

satisfying the criterion of Proposition 1.62. Consequently, the results

obtained in [1] are valid with respect to Definition 1.49.

The following theorem is a compilation of the results obtained in

[1] for planar flows of characteristic 0+.

Theorem 1.63:

Let (Rz,n) be of characteristic 0+ and S be the set

of critical points. Then one of the following results.

(1) s =

(2) s

(a)

(b)

(c)

(3) S

(4) - s

(a)

(b)

(c)

(d)

(e)

@ and the flow is parallelizable.

is compact and one of the following holds.

S consists of a global Poincaré center.

S . consists of a local Poincaré center s. The set' N
consisting of s and the periodic orbits surrounding s
is a globally asymptotically stable simply connected
continuum. |

S is-a globally asymptptically stable simply connected

continuum.

2

is unbounded and S = R".

is unbounded and the following hold.

R2 - § is unbounded.

S is asymptotically stable.

A+(S) Hés;a-countable number of components each being
homeomorphic . to Rzi and unbounded.

A+(So) is a component of A+(S) if and only if SO is
a component of S.

For each component So of 8§, 3A+(So) consists of a
countable numbetr of trajectories C(x) - such that

) = ¢ .
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S has a countable number of components, each being
noncompact and simply connected.

For each s € 3S there is a nonperiodic noncritical
point y with L+(y) = {s}.

For each x ¢ Rz,‘ L+(x) ig either empty or consists of
a single rest point. Further, L+(x) =@ for all

X € R2 - Af(S) and L (x) = @ for all x ¢ R2 - S.

Corollary 1.64: TUnder the conditions of Theorem 1.63 part (4)(e) we

have 3A+(So)~ dispersive.

Proof: By Theorem 1.61, J+(x) - L+(x) = @ for each x ¢ 3A+(So).

The following theorem based on Theorem 5.1 of [1l] characterizes

) =
planar . flows of characteristic 0.

Theorem 1.65: A flow (Rz,w) has characteristic 0ir if and only if one

of the following holds where S is the set of critical points.

1
(2)

(3)

S =@ and the flow is parallelizable.
S = R2.
S consists of a global Poincaré center.



CHAPTER II
DYNAMICAL SYSTEMS OF CHARACTERISTIC 0+

Characterization of Planar Flows of

Characterigtic O+

Throughout this chapter we shall denote the set of rest points for
a given flow (Rz,w) by S.
The following proposition is given in order to sharpen Theorem 2.2

which completely characterizes dynamical systems of characteristic\O+

on.the plane. Dual results hold for flows of characteristic,O_.

Proposition 2.1: Let (Rz,ﬂ) be a flow and S = {Sd} where s, is a

local Poincaré center. If the set N = {x ¢ R2: x 1is periodic .or
critical}l is a connected global attractor then N = int C(x)  for some

point x in N and N is globally asymptotically stable.

Proof: Suppose that for some point p of N we have int C(p)(j: N.

If ye (int C(p)) - N, then C(y) (_ int C(p). There is a point z

in N - S such that y e (int C(p)) - int C(2) since S, is a Poincaré
center. Now L+(y) _ E;ETETET - int C(z)  and s, € int C(z)  (see
Corollary 1.11), so that L+(y> # @ and L+(y) ﬂ S =@¢. Thus,

L+(y) is a periodic orbit (see Proposition 1.19). The component G

of R2 - L+(y) to which y Dbelongs does not-coﬁtain periodic points
near L+(y) (see Theorem 1.58). Thus, if G = int L+(y), then there is

a simple closed curve C such that G (C int G. and

19
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(Int C -G () N =@, Since the connected set N meets int C and
ext C it meets C which is absurd. Similarly, G = ext L+(y) - leads
to a contradiction. Hence, int C(p) (:: N.

Next, we show that' N is compact. Suppose, that N (ﬁ\ N = @.
Then N 1s an open invariant set, and hence, N = A+(N) - R2 (see
Proposition 1.54) which is a contradiction. Hence, N (M) N # 0. Let
xeN (ﬂ\ ON. If y e N --int C(x), then int C(x) (C int C(y). Since
int C(y) C N° and C(x) C ON we have C(x) = C(y). Hence,
N = Int ().

2

Finally, N 1is stable (see Theorem.l.58) and A+(N) = R®, so

that it is globally asymptotically stable. ' The proof is completé.

In case ({) of the,followingltheqrem we characterize flows of
characteristic 0+ which have a compact set of rest points. Parts (a),
(b), and (c) of case ({) are mutually exclusive and exhaustife.
Properties (£)(a) and (L)(b) characterize those flows where S is
empty (we regard @ as compact) and S. consists of exactly one .
Poincaré*cénter, respectively. All other flows are characterized by

property (L) (c). .

Theorem 2;2:‘ A flow (Rz,n) is of characteristic 0+ if and only if
either case ({) or (LL) is satisfied. |
(4) S 1is compact and one of the following holds.
(a) (Rz,ﬂ) is parallelizable.
(b) S = {Sd} where s, 1is either a global Poincaré center
or a local .Poincaré center such that the set N
consisting of s, and all the periodic points is a

connected global attractor.



21

(¢) {s} is stable for each s € 3S and S is a global
attractor,
(L) S 1s not compact and each of the following holds..
(a) {s} is stable for each s e 3S.

(b) Each x ¢ 3A+(S) is dispersive.

(¢) The flow restricted to R2 - A+(S) is parallelizable. -

ZProof: By virtue of Theorem 1.63, the properties in case ({) are
necessary. Parallelizability of. (RZ,W) requires that D+(x) = K+(x)
for each x e R2 in view of Theorems 1.36 and 1.40 since
K+(x) - D+(X) = C+(x); therefore, property (£)(a) is also sufficient.
Next, if property (£)(b) holds, then Theorem 1.58 and Proposition 2.1
infer that every periodic or critical orbit C(x) is stable, and hence,
D+(x) = D+(C(x)) = C(x) = K+(x) (see Proposition 1.23 and Theorem 1.46).
Furthermore, Proposition 2.1 implies that L+(x) = 3N for each
X € R2 - N where N 1s the set of periodic and critical points. Also
J+(x) - D+(N) = N (see Proposition 1.56 and Theorem 1.46) and
J+(x) (ﬁ\ N° = #, so that we must have Jf(x) = L+(x). Hence, property
(£) (b) is sufficient (see Theorem 1.61). Finally, suppose that (£)(c)
holds. Then D+(s) = K+(s) for any point s in S since {s} 1is
stable (see Theorem 1.46). For any point x in A+(S) ~ S we have

+
@ # ﬁ+(x) (C s by virtue of Proposition 1.62. If s, s, e L (x),

1

then s, € D+(s) = {8} (see Proposition 1.27). Thus,

1
(s} = vx) C 7 C 1T(s) = 1V (s) = {s} (see Proposition 1.26),
and hence, L+(x) = J+(x). The proof of case (4) is now complete.
The necessity of case ({{) follows from Theorem 1.63 and Corollary

1.64, and so we assume that ({{) holds. For any point s in 8,

D+(s) = {g} = K+(s). No point of S8 is in BAf(S) since J+(s) ¥ ¢
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for each point s in S. Thus, S 4is an attractor. By an argument

similar to the one used to prove the sufficiency of property (£)(c) we
+ + )

obtain L (x) = J (x) for each point x in Af(S) ~ 8. For any point .

x in aAf(S) we have J+(x) = @, so that L+(x) = J+(x). The ‘paral-

lelizability of the flow restricted to R2 - A+(S) implies that,

relative to R2 - A+(S), D+(x) a K+(x) for each point x in

R2 - A+(S) (see Theorems 1.36 and 1.40). Since R2 - A+(S) is open

we also have D+(x) = K+(x). The proof of the theorem is complete.

The following four examples show that all conditions given.in
properties (£)(b) and (£{)(c) are needed. Since (Rz,ﬂ) is paralleliz-
able if and only if it is dispersive (see Theorem 1.40) property (L) (a)

cannot be weakened.
Example 2.3: The flow defined by.the system of differential equations

0 for 0 <r <1

(r-1) In (r-1) for 1 <r < 2

H
]

2rln% for 2 < r

De
]

1l forr>0

(see Figure 2.1) shows that the connectedness of N in property (£)(b)

2

+
is necessary. Note that A+(N) = R” but, since J+((2,0)) # L ((2,0)),

the flow is not of characteristic O+.
Example 2.4: The system of differential equations

= -r2 sin 6

R

D

=1
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Figure 2.1

for r > 0 defines a flow for which N is connected but A+(N) # R2
+
(see Figure 2.2). Since J (x) = C(x) and L+(x) = ¢ for any point

x  in 9N, the flow is not of characteristic O+.

Example 2.5: The dynamical system defined by

(r-1) In (1 -r) for 0 <r <1

-r In r for 1 <r

Do
1l

0 forr>0

(see Figure 2.3) does not satisfy the stability condition of property
(L) (c) since {(0,0)} is not stable. However, the set of rest points
is a global attractor. Note that J+((0,0)) # L+((0,0)) which implies

) . R -+
that the flow is not of characteristic 0 .
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Example 2.6: For the flow (Rz,n) defined by the system of differen-

tial equations

(1-r)In(1-1r) forO0<r«<l1

~r In r for 1 <r

De
[

1 forr>0

(see Figure 2.4) each point of 23S is stable but A+(S) # R2 and

J+((l,0)) # L+((l,0)), whence global attraction is necessary in

property (L) (c).

Figure 2.4

The fact that we cannot weaken the noncompact case for S 1in

Theorem 2.2 follows by virtue of the next three examples.
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Example 2.7: The flow (Rz,v) defined by the system of differential

equations

r(lL-r) for0<r<1

e
]

0 for 1l < r

=0 forr>0

(see Figure 2.5) satisfiles properties (LL) (b) and ({£)(c) vacuously
sinée. S 1is a global attractor. However, the point (0,0) in 23S 1is

not stable. Since J°((0,0)) # L7((0,0)), the flow is mot of

+
characteristic 0 .

. rest points

Figure 2.5
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Example 2.8: Define a flow (Rz,ﬂ) by the system of differential

equations
X for x2y2 >landy >0
x = 2x3y2 - x for x2y2 <landy >0
-X for y <0
. -y for y > 0
y=
0 for y <0

* (see Figure 2.6 and [4], p.118). Each point of S is stable and, since

J+(x) = ) for each point x in R2'— A+(S), the flow restricted to

R2 - A+(S) is parallelizable. Thus, propertiés (L4) (a) and (L) (c)

are satisfied. However, for any point p in 3A+(S) = {(x,y):rxzy2 =1

and y > 0} we have (0,0) ¢ J+(P) which implies that p is not

Figure 2.6



28

dispersive, and hence, that property ({{)(b) is not satisfied. Note

+
that J+(p) # § =L (p), and so the flow 1s not of characteristic 0.

y

) 5
> =

am

< 2.
%
%
‘ .

rest points

Figure 2.7

Example 2.9: If we define a dynamical system (Rz,ﬂ) by the system of

differential equations

T 3m

> sin y for E—-j_y
Fy <3t
- for 0 < <L
y Y <3

T
-3 for

Mo
]

fory < 0
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K 2 3m
5 Cos'y for TR
T 3m
& ] 0 for 7 SY¥Y <3
-y coszy for 0 <y < %
0 fory <0

(see Figure 2.7 and [12], pp.30-31), then case ({{) is satisfied except
for property (4i{)(c). Each point of S 1is stable and, since J+(p) =0

for any point p 1in BAf(S), each point of 3A+(S) is dispersive.

The flow restricted to R2 - Af(S) is not parallelizable because
7to, ) # 0. since 370, 3B) # 170, &) the flow s not of

-+
characteristic 0 .
Examples of Flows.of Characteristic>0+

The purpose of this section is to present nontrivial examples of
dynamical systems of characteristic,0+ on. the plane. Since flows of
characteristic O+ having compact sets of rest points are easily found,
we will give examples for which the sets of rest points are not. compact.
In particular, the examples will satisfy the statements (a) through (h)
in case (4) of Theorem 1.63 and Corollary 1.64.

Note that Example 2.8 satisfies all of the conditions given in
case (4) of Theorem 1.63. However, it is not of characteristic O+.
According to Theorem 2.2 the condition given in Corollary 1l.64 must be
satisfied in order for a flow to have characteristic O+.

The first three examples lead us to Example 2.13 which nontrivially
satisfies all eight statements of Theorem 1.63 case (4) and Corollary

1.64.
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Example 2.10: The flow defined by the system of differential equations

. 2nm -y forép“g—];"jyiir—l-%-lfn
X =
y - (2n + L)=n - for ﬁg—g—lﬂ <y < 4n ; 3
. (207 - y) cos’y  for ﬁELé%lﬁ <y i.4n ; 1
y = -
(2n + )7 - y] coszy for ég—g_lﬂ‘< y < 4n ; 3
for n =0, %1, £2, ... nontrivially satisfies all of the statements in

case (4) of Theorem 1.63 except (e). Figure 2.8 illustrates the

trajectories for n = 0,

Figure 2.8



Example 2.11:

struction of Example 2.12.

We give this example in order to facilitate the con-

The flow defined by the system of differential equations

e

o

(ST R NTE

, | ,
( %'- y) sin”y

0

for

for

for

for

for

o Nf=

| A A
(=B

| A

ISTE

~«
A

o
| A
(= <
| A
(ST

. + . : : ,
1s of characteristic 0 and its trajectories are illustrated in

Figure 2.9.

rest ﬁoints

wwyy

Figure 2.9
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Example.2,12: The flow defined in this example nontrivially satisfies

statement (4)(e) of Theorem 1.63. We will induce it on R2 by means

of homeomorphisms from the phase plane of the flow of Example 2.11.

(2 + 1)
: 4

#1, #2, ... . For each such n define mappings fn: R2 - In x R by

(tan-lx + 2na, VL + x2 - y) for vy. < 0

fn(x,y) = <(1 + y)tan_lx + 2na, Vl +x -y) forO0<y=<
(@ + %)tan_lx + 2na, Y1 + x° - y) for,%-< y.

let a = and In = ((2n - 1)a, (2n + 1)a) for n =0,

N N
Nl

The mapping fr,1 carries horizontal lines in R2 bijectively onto
nonintersecting secant curves filling the strip In x R. Thus, by
examining the images of basic.open sets in R2 consisting of rectangles
having sides parallel to the coordinate axes, we can easily see that
these mappings are homeomorphisms.

Let us denote the flow of Example 2.1l by (Rz,nl). Define a flow

) .
(R™,m) by
-1

£ (m (£ “(x,y),t)) for (x,y) ¢ I_x R
n' ' 1l'n n
T((x,y),t) =
(x,¥) for x = (2n - 1)a
for n =20, *1, *2, ... . The trajectories of this flow are illustrated
in Figure 2.10. Note that, altheugh S is connected, 3A+(S) contains

infinitely many trajectories.

Example 2.13: We now describe a flow (Rz,w) that nontrivially

satisfies all of the statements in case (4) of Theorem 1.63. The
trajectories of the flow are illustrated in Figure 2.11.
In the regions R x (2nm, (2n + 1)7) for n =0, 1, %2, ...

define the flow by the system of differential equations of Example 2.10.
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N\ (a,0) (3a,0) -

rest points

Figure 2.10

Next, induce the flow on R x [-7,0] from the region [-a,a] x R of

the flow in Example 2,12 by means of the homeomorphisms

g ¢ [-a,al x R> R (2™ - ym, 25 - 1yn]

for n=1, 2, 3, ... where

i TX 3 :
gn(xgy) Cy + 2 +n-1, 2n+la + (2n+l - )ﬂ)'

The effect of the gn's is one of rotation, contraction, and transla-
tion of . [-a,a] x R. Finally, induce the flow on R x [(2n - 1)w, 2n7]

for n = *1, *#2, ... by the translation mapping

'hn: R x [-7,0] - R * ((2n = )7, 2nm]
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X

rest | points

By it

e

Figure 2.11

where

hn(x,y) = (x, y + 2nm).
2 2
Thus, if we let (R ,nl) and (R ,nz) denote the flows of Examples
2.10 and 2.12, respectively, then for any x ¢ R2 and t € R we have

wl(x,t) for x ¢ R x (2nm,(2n+l)7), n € A
T(x,t) = gn(nz(g;l(x),t)) for x € R % [(2—n-l)ﬂ,(2l_n-l)ﬂ], neB

hngn(ﬂz(g;lh;l(x),t)) for x € R x [(2n-1)7,2a7], n € C

where A = {0,+1,+2,...}, B = {1,2,3,...}, and C = {#1,#2,%3,...}.



CHAPTER III
DYNAMICAL SYSTEMS OF CHARACTERISTIC 0
Planar Flows of Characteristic O

It seems natural to ask whether there is a connection between flows
of characteristic 0 and flows of characteristic 0+, 0_, or Oi. Since
D+(x) = K+(x) and D (x) = K (x) for each x ¢ R2 implies
D(x) = K(x), any flow of charact_eristicOlL is a flow of characteristic
0. A flow which has characteristic 0+ (0_) but not characteristic 0 is-
given below in'Example 3.1. Examples 3.2 and 3.3 consist of flows of

TR -
characteristic O that are not of characteristic 0, O , or 0.

Examgle 3.1: The system of differential equationé

y = -y
defines a flow of.characteristic 0+"in which the origin is a proper
node. Note, however, that D((0,0)) = R2 # {(0,0)} = K((0,0)), and so
the flow does not have characteristic O.
Similarly, the flow defined by x = x and § =y is of

characteristic 0 but not of characteristic O.

35
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Figure 3.1

Example 3.2: Let a flow be defined by the system

-rzsin ]

]

(1) r

Da
]
l—l

for r > 0. Figure 2.2 illustrates the trajectories of the flow.

This flow is of characteristic O but not characteristic O+, O—, or

. .
0. For let X be a point on the parabolic boundary of the region

consisting of the pole and the perlodic orbits surrounding the pole.
+ + +
Then D"(xo) = C(xo), and hence, D"(xo) ¥ K"(xo) whereas

D(x) = C(x) = K(x) for each x ¢ R2.
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Example 3.3: The flow defined by the system of differential equations

(2) X = -xy

x-1- y2 for x>0

«
[}

-x -1 - y2 for x <0

is of characteristic 0. System (2) can be obtained from system (1) by
changing system (1) to Cartesian coordinates, translating to obtain the
equations of (2) for x> 0, and then reflecting the trajectories of

(2) for x> 0 in the y axis to obtain the trajectories of (2) for

x < 0. The orbits of the flow defined by (2) are illustrated in
Figure 3.2.
¥

=
%

Figure 3.2

_.1
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Characterization of Planar Flows

of Characteristic O

The purpose éf this section is to glve necessary and sufficient
conditions for a flow (Rz,w) to have characteristic 0. Unless other-
wise specified, we shall let (Rz,w) be a fixed flow of characteristic
0 and S be the set of critical points. We shall first prove a few

lemmas.

Lemma 3.4: If L+(x) #0 (L (x) # @) for some x ¢ R2, then x 1is

either periodic or critical.

Proof: Let y ¢ L+(x). Then x ¢ J-(y) since vy ¢ J+(x) (see
Proposition 1.28). Hence, x e D(y) =.K(y) (C L+(x). By Theorem 1.18,
X ¢ L+(x) if and only if x is either a critical point or a periodic

point. The result for L (x) # § follows similarly.

Lemma 3.5: If xe€ S or x is periodic, then C(x) is bilaterally

stable.

Proof: The proof follows from Theorem 1.46 since D(xt) = K(xt) =

K(x) = C(x) for each t in R dimplies D(C(x)) = C(x).

Notation: For any s € S we shall henceforth let

N, = {x e.RZ: x =s or x is periodic and S [ ) int C(x) = {s}}.

Lemma 3.6: If s, is an isolated point of S, then S, is a
Poincaré center and NSo- is an unbounded connected open set. If

NSo # R2, then oN is a single trajectory and NSo is a simply

So

connected component of R2 - BNSO.
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Proof: Let: C be a simple closed curve with S (M int C = {sd}. By
virtue of Lemma 3.5, there exists a V ¢ n(so) such that

+
C(V) CC int C. Since L (x) # @ for each xe V, V - {so} consists

of periodic points. If x e V - {so},‘,then
@#5s ()int c(x) C S () int C = {s_}.

Thus, V consists of s, and periodic orbits surrounding s,
‘implying that s, is a Poincaré center.
Let x e Ng, = {s } and ye (int C(x)) - {s_}. Since

ﬁ+(y) # @, y is periodic. We have

45 () int cy) C s () int C(x) = {s,}

so that y € Ng . Hence, int C(x) C Ng,- Furthermore, Ng, is
connected since NSo = (J){IEE_EYQT: X € NSO} is the union of
connected sets each containing the point S,

If BNSO = @, then Nsé = 8% and s, 1is a global Poincaré center.
‘Suppose BNSO # §. Note that BNSO is invariant since NSo is

invariant. We shall show that in this case BNSO

~contains no critical
points or periodic points. First, suppose s ¢ BNSO (ﬂ\ S. There is an
open simply connected neighborhood U in n(s) such that s, ¢ U. By
Lemma 3.5 there exlsts a Vl € n(s) such that C(Vl) C vu. Let

X € Vl {ﬂ\ N

int c(x) C Nso, s, € int C(x) (C_ U which is a contradiction.

so° Then C(x) (C_ U. Since U is simply connected and
Hence, S (‘\ BNSO = (§. Next, suppose there is a periodic point x in
BNSO. Let So =3 (ﬂ\ int C(x). There is a simply connected neighbor-
hood U e n(C(x)) such that S (ﬁ\ U=S_ . By Lemma 3.5 there is a

v, € n{C(x)) suqh that v, = C(V2) ( u. TFor any periodic point vy
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in Nso (—\ V2 we have C(y) (- V2. Since U 1is simply connected,
int C(y) (CC U. Hence, s, €8 (U= S, The sets S and S - 8,
are closed implying that there are simple closed curves - Cl and C2
contained in int C(x) and ext C(x), respectively, such that

S (ﬁ\ (ext~Cl) {ﬂ\ (int C2) = @¢. By Lemma.3.5 there is a V3 e n(C(x))
such that C(V3) C (ext Cl) (ﬁ\ (int CZ)' Now Nso is connected with
s, € NSo and C(x) (G BNSO, so that wg can select a point y from
NSO(\V3 (" int C(x). Thus, 5, M int C(y) 48, s, ( intCj,.
and C(y) C V3 C ext Cl imply So C int C(y). Hence, So = {so}
and x. € Nso. Finally, for any point z ¢ V3 (ﬁ\ ext C(x); L+(x),# )
implying z is periodic. Since C(z) C(V3) C int C, we have

S /ﬂ\ int C(z) = So' The point 2z 1is in Nso and

C(x) C int Cc(z) C Ngd.' This contradicts x ¢ BNSO. Therefore, the
points of- BNSO are neither periodic nor eritical.

By virtue of Lemma 3.4 and the fact that BN

s contains no
o

+
periodic or rest points, L7 (x) = ¢ for each x ¢ BNsd. Thus, BNSO

is not bounded and hence NSo is an unbounded open set.
We now show that BNSO‘ is a single trajectory. Let- x and vy

be distinct points‘of 8N56° Let Cl- and C2 be simple closed curves

and" int Cl {ﬂ\ int C

such that x € int C y € int C = @, For

l,’ 2 5
z in Nso () int C;» we have int C(z) Nso’ and so

2

ext C(2) € n(y). Thus, (int C2) '(ﬁ\ (ext C(z)) € n(y) and

(int C) () (ext C(z)) () Ng_# 0. Let
w ¢ (int C2) {.\ (ext C(z)) (ﬁ\ Nso,

Then C(z) (C int Cw) C Nso. We have z ¢ int C(w) and

x ¢ ext C(w). Since x, z ¢ int Cl and int.Cl is connected, it
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follows that C(w) (ﬁ\ int C; % ¢. Hence, we can find nets (wi) and
(witi) converging to y and x, respeétively. In other words,
x € D(y) = K(y) = C(y).

Suppose NSo is not a component of RZ - BNSO. Since Nso is

connected, it is a subset of some component . B. If NSo # B, then
2
BNSO (B # ¢ contradicting B (_ R —'BNSO. Hence, Ng_ is a
component of R2 - BNSO.
Finally, let R2 # NSO. Suppose that C 1is a simple closed curve
lying in NSo with dint C Ci: Nso' Then * int C connected and
N, ()int C # int C imply that aNso(’\ int C # @, Furthermore,

BNSO (Next C# @ since N is unbounded. Thus, C ( ) aNg | 0

50

contradicting C. N, . Therefore, N is simply connected.
So So

Lerma.3.7: 1If So =5 (ﬂ\ int C(xd) for some periodic point X

then. So consists of exactly one Poincaré center.

Proof: Let N = {xe int C(x): x 1is periodic and §_ = § () int C(x)}
and D = ('\{ZEE’E?ET: x € N}. At least X € N, and so, D #@.
Also, D 1is the intersection of closed invariant sets containing So
so that D 1is a closed invariant set and So (C bp. 1t also follows
that 9D 1s invariant.

In order to facilitate the ‘argument we show that V e n(C(y))
implies - V (ﬁ\ N #@ for all y € 3D. Suppose V ('\ N=¢ for some
Ve n(C(y)). By Lemma 3.5 there is a connected set U e.n(C(y)) such
that C(U) (C V. For xe N, U ( )C(x) = @. Since y e int C(x)
and U is connected, we have U (_ int C(x). The point x was

)

arbitrary, so that U (C D. But this implies y e D° which

contradicts y € oD.
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Suppose that D. is not a singleton. We first show that there
existS‘a point y ¢ N such that D = 252-5157: If D= I;E_ET;;Z
then we are doéne. Assume D . # EE?'E?E;T and choose points x in D
and y in 3D such that x % y. Either y ¢ SO or y 1is periodic.
Suppose there exists a simple closed curve C such that x g ext C
and C(y) (C int C. By Lemma 3.5 there is a V e n(C(y)) such that
C(V) (C int C. We have shown that V (YN#@., Let zeV ()N

Then C(z) (C C(V) (C int C. But this "implies that
x € int C(z) (C int C

contfadicting x € ext C. Thus, y 1is periodic and x & int C(y).
Since. x was an arbitrary point of D, we have D E;E—Ez§$:
Furthermere, C(y) (C 8D.(C int C(z) for each z € N implying
T e C (VW Ime Gl z ¢ N} = D. Hence, D = Tnt TG,
Since So is compact thére exists a simple closed curve
C (C int C(y) ' with S0 (C int C. By Lemma 3.5 there is a
V.e n(C(y)) such that C(V) (C ext C. Each point z in
\ (f\ int C(y) 1is periodic by Lemma 3.4, and so, FSO (ﬂ\ int C(z) # 0.
Since. C(z) (T ext C, int C(z) () int C # ¢, and int C 1is
connected, we have So C int € ( int C(z) and z e N. Thus,
D (::.EHE_E?ZS‘gand C(z) (C int C(y) 4imply that D ( int C(y)
which contradidts y ¢ D. Consequently, D must be a singleton.
Finally, @ # 5, C D implies that D is composed of an isolated

critical point. By Lemma 3.6, SO consists of a Poincaré center.

Lemma 3.8: If S # @ and S # RZ, then S consists of Poincaré.

|
centers.
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Proof: Let So denote the set of Poincaré centers. We can select a
point- 8 from 23S since S # @ and S # R2. For any compact set

U é n(s) there exists-a V e n(s) such that C(V) (C U by Lemma 3.5.
For any x e V (ﬂ\ (R2 - 8), ﬂ+(x) # 0 implying that x is periodic.
Thus, Lemma 3.7 implies So #¢ 0.

Suppose . 8 € 9(S - So)" Since s 1s bilaterally stable, n(s)
contains a compact connected simply connected inVariant set V. Either
V contains ‘a regular point or a Poincaré center. If it contains a
regular point x, then x must be periodic so that int C(x), and
hence V, must contain a Poincaré center. Therefore, we can assume
that V contains a Poincaré center s,. Now, for each x ¢ Ns, - {so},
s, e int C(x) ' and, by Lemma 3.7, s e ext C(x). Thus, V must meet
C(x) = d5int C(x) since it is connected. But this implies C(x) (C_ V
and hence Ng (C_ V, contradicting Lemma 3.6. Therefore,

9 (s = So} =@, and so S = Sof

Lemma 3.9: If S # ¢ and é\# Rz, then S consists of at most two

Poincaré centers.

Proof:. Suppose S1s 8o and s, are distinct points of S. We shall

3
show that this supposition leads to a countable collection of mutually
disjoint closed sets whose union is R2 which is impossible. = Unless
explicitly stated; the remainder of the proof will be considered
relatiye to the extended -dynamical system on Rz*. We.denote thé
closure of the trajectory through x in the extended system by k*(x).

Since the sets NS are disjoint and open relative to R2,

. \
A =R?- U {NS:\s e S} is nonempty. For each x € A,

* ' .
K (x) = C(x) \U {=} 1is a simple closed curve. Let
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M= {x e A: Nslc Ax* and NSZ.U‘ NS3C B_ where Ax and B are.
* *
the components of Rz - K (x)}. By Lemma, 3.6, M # @ since

- *
BNg, - {«} (CC M. Note that A = A U K (x) and let

FSl = U {K;: x e M}.

Each set . K—, is connected and contains Ng., and so Fg. 1s
' X 1 1
connected.
For any point. p; in BFsl - {*} we have Fsl = APl’ For let
Py and 94 be distinct points i1in aFSl.— {»} and let Cl and C2

be simple closed curves.in R2 surrounding Py and qqs respectively,

such that = int Cy (”\ int.Czb

Ap (ﬂ\ int Cl,; and hence. C(p) (.\ int C

= @, There exists a point p for which

1° are nonempty sets. Since

Bp (—\ int.Cz>e n(ql) there exists a point ¢q such that:
Aq M BP‘(A\ int Cz.% g;

hence, C(g) (A\ int C2 # Q. Now, Aq meets A.p and- Bp; so that

Ap C AQ' Thus, Aq 1s a connected set which meets both int C, and
ext Cy implying that C(q) (ﬂ\ int ¢, # . We can find nets (xi)

and (xiti) converging to qq and Pq» respectively; hence,

Py & D(4)) = K(gy) = C(q)) and 3Fg - {=} = C(p,). Now, C(p,) Ci: N,

1
for any s in S since Ns (ﬂ\ Fsl # @ 1implies there exists an x
in M such that ,C(pl) _ N, C A - Fgl contradicting

C(pl) (G anl. Thus, . C(pl) (C A. Since. FSl is an invariant set,

either _C(pl) [ Fg, oF C(Pl) M Fg, = @. Suppose -

Then Fsl - {@} 1s the connected set Fgl, and so it 1s ‘a component
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2% * 9%
of R© ==K (pl) = R™ - BFSl. Also,

2%

Ng, (U Ney CC (MB,: x.6 M} =R™ - Fg,

which means P, € Fsl’ contradicting C(pl) (ﬂ\ FSl = @. Hence,

FS1 = Apl.
Analogously, for S, and S, there exist points Py and Pg in

I
A and sets F32 and F such that F32 = Al and F

o A
S3 P2 S3 APS'

- * *
Note that Fsl>= Apl and Fs2 C::Bpl. 1f BFSl = K (pl) = K (pz) =

2%
oF then FSl KJ)FSZ = R which contradicts -84 ¢ Fsl\~) FSZ.

89?

Hence, Fsl(’\ FSZ = {w}, Similarly, Fsl’(\\FSB =.FS2 (A\FSS = {=},
*

Let F = Fslk‘) FSZ(‘) FSB. Obviously, R # F, and so

* * *
R2 - F # . ~ Suppose that A (ﬁ\ (R2 - F) =-¢§. Then R2 - F must

*
consist of periodic -and rest points, so that N, C R2 - F for some

s € §. Furthermore, ON_ - {«}(C A implies that
% * *
Ny C oF =k (p) U k0 U K.

o 2%
By letting ON_ = K (p,) we have R° = N \_J F; since N_ and
s k s k s
o)
FSk
for 1 # k which is clearly not possible. Therefore,

* %
are components of R2 - X (pk). But this implies that s; € FSk

A () @ - 40

*
For each point x in A'(.\ (R2 - F) onhe component of

* % *

R2 - K (x) contains F since K (x) does not separate any of the

sets Nsl’ NSZ’ and NS3 from the other two. Denote the components
X, %

of B2V -k (x) by G _ and H_ vwhere F _ H . For any point y

* *
in A )@Y -1, let M= {xc A (\(R2 - ©: 6 (C 6. Note

that M # ¢ since e M. Let F' = {G: xe M} By arguin
- yeM. y= Ute: x el By arguing
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as we did for FSl, we can find a point w in BF; (h\ A such that
- 2% !

F' = G., For each point in A R® - F) for which F' = F'

y = % P P (M ( ) p = Fos

select a point v, in C(w) and denote F; by Fy . Let I' be the
)

index set for all the F, sets and let I =TI' \“)'{Sl’ Sy s3}.

o
If x and z are distinct points in I, then F_ M F = {=}.

For suppose F_ M F # {»}, The sets .F: and Fz are components of

* %
R2 - BFx and R2 - 8Fz, respectively, where an and BFZ are

simple closed curves each consisting of {»} and a single trajectory.
o o 0 0
Thus, either OF - {=} C F, OF - {=} C F, or F_ (ﬁ\ F_ = g.

The - first two statements imply that Fx = Fz, and hence x = z,

*
contradicting x # z. The third statement implies that F U F, =‘R2

which is impossible. Therefore, Fx (ﬁ\ Fz = {w},

* : D%k
Next, 'R2 = U {Fx: x € I}. For let z belong to R2 - E

where E = K_){Fx: x e I}, Since A (C E, there is a point s in S
*
such that ~z ¢ N_. For some point y in E, K-(y) = ON_. Further-
*
more, there is a point x in I such that K (y) =.3Fx since

*
K (y) (C 3E. The sets NS “and FZ are disjoint components of

2% * 2%
R - K (y), andso R = Ns \.) Fx' This implies Fx = E, and thus

*
s, € Fk for 1 = 1,2,3, which is clearly impossible. Hence, R2 = E,

The set- {Fx: x e I} 1is a countable collection of closed sets

such that Fx (ﬂ\ Fz = {«} for x # z. Hence, {Fx-— {e}: x e I} is

a countable collection of mutually disjoint sets closed in R2 and
r? = \_’}{Fx - {w}: x € I}. This is not possible as we indicated at

and s are not

the outset of our argument. Therefore, 815 Sy 3

distinct.
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Lemma 3.10: Let S # R%. Then the flow restricted to
rR? - K,){Né= s € S}
is parallelizable.

Proof: Let x e r? - W, {Né:.s € S}. Then L#(x) = (. Recalling
that . J(y) = L(y) for each vy esz, we have J+(x) = . Hence,

D+(x) = Cf(x). The result follows by Theorem 1.36.

Theorem 3.11l: A flow (Rz,n) has characteristic 0 1f and only 1f one

of the following holds.
(1) s=¢ and (Rz,ﬂ) is parallelizable.
(2) S consists of at most two Poincaré centers. For each
s € S, either s 1s a global Poincaré center or Ns is
unbounded and BNS is.a.single trajectory. The restriction

of the flow to - % - K“){NS:AS € S} 1s-parallelizable.

Proof: The necessity of .the conditions follows from the lemmas.
Conversely, Theorem 1.36 shows that condition (1) is sufficient.
Similarly, if condition (2) holds, we get D(x) = K(x) - for each

2
xe R - K“){Né: s € S}. For each s € S, N, 1s a component of
R2 - BNS since BNS is a single -trajectory. Thus, Ns is a
connected simply connected set: Obviously, x € ﬁ; implies

D(x) = K(x). Hence, condition (2) is sufficient. Condition (3) is

trivially sufficient.’

Corollary 3.12: A flow (Rz,w) has characteristic .0 if and only if.

D(x) = C(x) for each x ¢ R2.»




Remark:
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Theorem 3.11 implies that there are six basic types of planar

flows having characteristic 0; namely,

ey

(2)

(3)
(4)

(5)

(6)

parallelizable flows,

flows having a global Poincaré»center,

flows similar to Example-2.4,_

flows similar to Example.3.3,

flows similar to Example.3.3 except that BNS = 3N where
S = {s,t}, and

flows having only critical points.



CHAPTER IV
PERIODIC DYNAMICAL SYSTEMS

Many well known properties of differential flows have proven to be
valid for general dynamical systems. In this chapter we show that
certain properties of planar differential flows having only periodic

and critical points generalize to planar dynamical systems.

Definition 4.1: We shall call a flow (X,m) having only periodic and

critical points a periodic flow.

Throughout the remainder of this chapter we shall denote the set

of critical points for a given flow by S.

Theorem 4.2: Let (Rz,w) be a periodic flow. If So is a compact

component of S, then So 1s bilaterally stable.

Proof: TFor each point x in R2 - S8, C(x) 4is bilaterally stable

(see Theorem 1.58) yilelding D(x) = D(C(x)) = C(x) (see Theorem 1.46).
Thus, D(R2 - 8) = R2 - S, and hence, D(S) ='S. Suppose S, is a
point of S° such that D(so) Ci: So' Since D(so) is a subset of - S
which meets both the component S° and the set S - So’ it 1s not
connected. The set D(so) (‘\ S, is a compact component of D(so)

which 1s absurd (see Theorem 1.29). Hence, D(So) = Sd and So is

bilaterally stable (see Theorem 1.46).

49
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Corollary 4.3: Let (Rz,n) be a periodic flow. If s is an isolated

point of S, then s, is a Poincaré center,

Proof: 1In view of Theorem 1.59 we need only observe that . s, is an

isolated bilaterally stable point.

Corollary 4.4: Let (Rz,n) be a periodic flow. If 8 4is a finite

set, then - 8 consigts of a global Poincaré center.

Proof: By Corollary 4.3, S consists of Poincaré centers. Each
trajectory,is-bilaterally stable (seg Theorem 1.58 and Theorem 4.2),
so that D(x) = D(C(x)) = C(x) = K(x) for each x e»R? (see Theorem
1.46). Thus, (Rz,ﬂ) has characteristic O and the desired result

follows from Theorem 3.11.

Corollary 4.5: Let x be a periodic point of a flow (Rz,n). If the.
restriction of the flow to int C(x) 1s periodic and S (Y int C(x)

is finite, then it consists of exactly one Poincaré center., .

Proof: Define a.flow (Rz,n') which agrees with (Rz,n) on int C(x)
and consists of periodic trajectories surrounding C(x) on ext C(x).

The proof follows from Corollary 4.4.

In Corollary 4.5 the components of S () int C(x) are assumed
to be a finite number of isolated critical points. The following
example .1llustrates that there can be countably many isolated critical

points if the set S (ﬂ\ int C(x) 41is not finite.

Example 4.6: Let: (Rz,n) be defined by the system of differential

equations



o

for (x,y) ¢ B - A

/
Ly \1“VX2 + }’2 for (x,y) ¢ R® - B

(0 for (x,y) ¢ B - A

2

| X (sz + y2 - ) for (x,y) ¢ R2 -~ B

B = {(X’Y) X2+y2i

By = 4G i - poy R

and

= A

n=1

The phase plane is illustrated in Figure 4.1. Note that the points

6—5 s 0> for n = 1,2,3,... are local Poincaré centers.
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/
. _ 1\2, 2\f _1\2, 2 1 )

. 1 ' 1\2, 2{1 1\2, 2
y =i( -—5-) vv»x - —n) +y g é(-—; +y )for (x,y) € An,n=l,2,3,...
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rest points

N©

Figure 4.1



CHAPTER V
SUMMARY

In Chapter I we listed the basic properties of ‘dynamical system
theory used in this thesis. 1Included is a survey of the known results
for planar dynamlcal systems having characteristic 0+, 0—, Oi, or 0.

Chapter II contains a characterization of .dynamical systems of
characteristic O+ (Of)'in terms of the set of critical points.

Examples are given to show that the conditions of the characterization
are sharp. Examples of dynamical systems satisfying all of the
properties obtained by Ahmad in [1] for flows having noncompact sets of
critical points afe given including one which nbntrivially satisfies
all of the properties.

In Chapter III we characterize dynamical systems of characteristic
0 in terms of the set of critical points. Examples of the nontrivial
types of planar flows having characteristic 0 are given.

Finally, in Chapter IV we .show that the set of critical points of.
a planar periodic flow having a finite number of critical points
consists of . a global Poincaré center. Also, if the interior of a
planar periodic orbit is a periodic flow and the set of critical points
1s finite, then the 'set of critical points consists of a single.
Poincaré center.

There are many questions suggested by the results of this thesis.

One might attempt similar characterizations of planar dynamical systems
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of characteristic a+, o, ai; and o where a dis any ordinal number;
that is, flows where 'DZ(x) = D:_l(x) for each - x where D:(x)
represents the - ath  prolongation of x and so forth. Dynamical
systems for which D:(x)'=»D;(x) for each x where o and B8 are.
fixed ordinal numbers as well as their negative, conjunctive, and
bilateral versions can be studied. Any of these problems .can be
studied :for arbitrary rather than planar phase spaces. Transformation
groups having any of these properties can be studied. Elanar~periodic
flows can be .classified and characterized in terms ofktheir critical

points.
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