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CHAPTER I 

INTRODUCTION 

A. quotation from a recent article Qf Lepkqvsky (1) says, 11 An ade

quate diet comprises the essential nutJrients plus seq.sory stimuli with 

sensory properties being treated collectively as anessential. nutrient." 

Indeed sensory depreivation may lead to neurosis anq psychosis. Flavors 

of food may become an important source of sensory stimuli (2). 

Flavor is a nebulous term the definition of which no two authors 

·agree upon completely. The presently accepted definition of flavor 

whicl;l was advanced t:,y Mqncrieff (3) includes the sensations of taste 

(sweet, sour, bitter, and salty), odor (via olfactory receptors), tac

tual re$ponse (via pain receptors), hotness or coldness, and pungency or 

blan~ness. Of these qualities, oqor and taste are the main contributors 

to flavor. Yet if one's sense of E1mell is deadened, most Qf the flavor 

disappears. Taste remains but, without odor, an apple and an onion 

taste alike, Few foods have a characteristic flavor which can be de

sc:,:-ibed by one of the basic taste responses alone. In order for a chem

ical compound to play a significant role as a foo~ aroma, :Lt is evident 

that it must have significant volatility· since withput a reasonably h'.igh 

vapor pressure a compound is u1;1able to reach the locus of the odor re

sponse. Much of tl;le modern work.in the che!llistry of flavor is based 

upon this 1reasoning, In other words, it is assumed that the odor of a 

f;ood product rather than its taste or feel actually defines the typic1:1l 

1 
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flavor of that food. 

If this reasoning is valid, then it should be possible to reproduce 

a flavor by adding compounds which e+icit the odor response of a given 

food to a medium having the correct tactual and taste response. That 

this is in fact possible has been shown by recent work on the production 

of artificial pork from soybean meal. If the typical pork flavor com

pounds are added to or produced in this high protein (therefore meatlik~ 

medium, the product is nearly indistinguishable from natural pork (4). 

Several foods ~uch as peanuts, cocoa beans, and coffee require a 

process in which they are roasted at high temperature to induce chemical 

reactions which in turn produce volatile compounds which give the roasted 

product its typical flavor. Sine~ peanuts are such a pyrrolytically 

processed food product, they represent an excellent system in which to 

study the compounds of low volatility which are converted to more vol

atile ones during heating and the manner in which this conversion takes 

place. 

A study of the flavor precursors of peanuts was initiated for the 

following reasons: 

1) Most importantly, to accumulat~ basic knowledge concerning the kinds 

of compounds that serve as flavor precursors in foods. 

2) lo determine if there exists a correlation between flavor measured 

subjectively and flavor precursor concentration. If such a corre

lation could be demonstrated, it would be possible to predict the 

flavor of a roasted peanut product by means of a few objective meas

urements made on raw peanuts. 

3) Knowledge of the flavor precursors will allow one to take a scien

tific approach to the off-flavor problem which arises from either 
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improperly cured or very immature peanuts, Even correctly cured 

immature peanuts possess a high degree of; off-flavor. This fact 

means that immature peanuts either containhigh concentrations of 

flavor precursors which are converted to c<;>mpounds associated with 

atypical flavor during roasting or that thl;!Y lack precursors of typ

ical flavor. TherE;ifore it becomes important to study the formation 

of peanut flavor precursors as a function of growing season to deter

mine if a correlation, exists between fll;lvor precursor concentration 

and ase of the peanut fruit. 

The objectives of the. work reported in this thesis were fourfold: 

1) To develop methods of extraction and quantitative estimation of 

peanut flavor precursors. 

2) To determine the nature and identity of the precursors of typical 

peanut flavor • 

3) To quantitatively measure peanut flavor precursor concentration with 

respect to flavor measured subjectively and peanut age. 

4) To investigate pyr:i:olytic reactions of the flavor precursors in 

model systems to determine; 

a) If the so-called flavor precursors when heated can give rise to 

the.· !;lame volatile compound$ which have been isolated from 

o.ormally roasted peanuts. 

b) The likely mechanism(s) of formation of these volatile flavor 

components in peanut-like model sy1;1tems. 



CHAPTER II 

LITERATURE REVIEW 

Introduction 

With the exception of sweetness, raw peanuts exhibit none of the 

flavor usually associated with roasted peanut products such as peanut 

butter. Since this is the case, it is obvious that raw peanuts con t a in 

compounds (flavor precursors) which are converted to new compounds 

(flavor components) which give roasted peanuts their characterist ic 

flavor. 

Roasting of peanuts represents an unusual syste~ in that the i nter

nal temperature of the peanut cotyledon reaches 130-150°C during the 

process (5). The i nternal temperature of food products such as meat and 

vegetables seldom reach temperatures greater than 100°C since they have 

a very high initial and final water content. Peanuts and other food 

products such as coffee and cocoa which have low moisture content there 

fore represent a system in which to study the chemical reactions wh i ch 

can occur between the constituents of the food at higher temperatures. 

The nature of these pyrrolytic reactions and their reactants are of ex

treme i nterest collectively since they must dictate the nature of the 

products produced which in turn determine the . flavor of the finished 

product. 

A knowledge of the exact mechanisms of production of flavor in such 

pyrrolytically processed foods would allow the duplication of a natural 

4 



flavor in an artificial system or the modification of the flavor of a 

natural food product. 

5 

In this review, the author will discuss what was known concerning 

the precursors of peanut flavor prior to the work described in this 

dissertation. Research on flavor precursors of other pyrrolytically 

processed foods, especially cqcoa, will be discussed along with a review 

of the relationship between the Maillard browning reaction and produc

tion of volatile flavor components, 

Precursors of Peanut Flavor 

In 1952, Pickett and Holley (5), of the University of Georgia, 

published a bulletin, later reviewed by Hoffpauir (6), which contained a 

summary of their studies on the process of peanut roasting. A signifi

cant por~ion of this work was concerned with the changes in concentra

tion of various compounds (possible flavor precursors) during roas t ing . 

Their investigation will be discussed in some detail since it repre

sented the state of knowledge up to 1964 when a study of peanut flavor 

precursors was initiated by Mason and Waller (7). 

Pickett and Holley noted prior to 1952 that during roasting peanut 

proteins were denatured (8) but that their nutritive value was unchanged 

(9). The oil and starch remained unchanged (8), while total sugars 

decreased. 

Volatile components associated with the gases over roasted peanuts 

were found to cons~st of 98 percent of carbon dioxide and lesser quanti 

ties of aldehydes, furfu~als, ammonia, hydrogen sulfide, diacetyl and 

volatile sulfur compounds. These workers (5) concerned themselves with 

determining the origin of these volatile substances. 

It was found that peanut protein heated at 150°C gave hydrogen 
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sulfide but no carbon dioxide. A 50 percent acetone extract of raw pea

nuts when dried and roasted, browned and ~volved hydrogen sulfide and 

carbon dioxide. By fractionation of the acetone extract it was found 

that browning and carbon dioxide evolutio~ arose from nonenzymatic 

browning reactions between amino acids and water so~uble carbohydrates. 

After it was established that the Maillard reaction (nonenzymatic brown

ing reaction between amines and carbohydrates) was important in peanut 

roasting, total free amino nitrogen was measured during the course of an 

ordinary roast and was found to decrease significantly. However it wa s 

shown that total nitrogen did not decrease significantly. Sucrose con

centration decreased when peanuts were heated for prolonged periods of 

time (5). 

These authors went on to study the Maillard reaction between su 

crose and amino acids in aqueous solutions at normal roasting tempera

tures. Alanine and sucrose when heated together in aqueous solution 

browned and produced carbon dioxide; in the dry state no browning or 

carbon dioxide evolution was observed. During the reaction, production 

of unfermentable reducing substances was noted. It was concluded that 

either sucrose was not hydrolyzed prior to its participation in browning 

or that the hydrolysis products were immediately consumed by the amino 

acid in the system since using their methods, no glucose or fructose 

could be detected during the course of the reaction. 

A number of amino acids including aspartic acid, asparagine, glu

tamic acid, serine, glycine, threonine, alanine, alpha amino-n-butyric 

acid, histidine, arginine, lysine, methionine, leucine or isoleucine, 

phenylalanine, tyrosine and tryptophan were detected on paper chromato

grams of 70 percent ethanol extracts of raw peanuts. Cystine, proline, 



glutamine and glucosamine were tentitively identified. Extracts of 

roasted peanuts contained the same amino acids but at lower concentra

tions than in the raw nuts. Pickett and Holley also demonstrated that 

of the isomeric alanines, only alpha alanine produced carbon dioxide 

when heated with sucrose at _ 140°C; either alpha- or beta-alanine gave 

brown products (5). From this evidence it was proposed that browning 

during roasting of peanuts might arise via three routes: from caramel

ization, Maillard reaction or reaction of carbohydrates with free non

terminal amino groups in protein. 

Raw peanuts were soaked in solutions of amino acids and reduc i ng 

sugars and after drying it was observed that a normal roast could be 

obtained at a much lower temperature while the color and aroma of the 

nuts were nearly normal (5). 

7 

The work of P\ckett and Holley (5), while limited by the experi 

mentai tools available in 1952, is consistent with results to be dis

cussed in this thesis. One criticism of their work is that a decrease 

in amino acid and carbohydrate concentration during roasting was only 

circumstantial proof that these compounds were flavor precursors. Fla 

vor precursors must pe shown to be reactants in the processes which 

produce volatile flavor components. However at the time of Pickett and 

Ho~ley's work the flavor components of peanuts were largely unknown 

since modern methods were not available for the identification of trace 

amounts of volatile compounds. Since the Georgia workers demonstrated 

that amino acids and sucrose could give rise to Maillard browning and 

since browning ~ight serve as a marker of formation of flavor components 

(7), the observed browning could be taken as somewhat better than cir

cumstantial evidence that the reactants were indeed flavor precursors. 
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Another criticism is that these workers used aqueous model systems . 

Since peanuts contain only 4-6 percent water (5) the aqueous system is 

not a valid model for roasting peanuts. 

Nothing concerning peanut flavor precursors appeared until 1964 

when Mason and Waller (7) from this laboratory published a paper con

cerning the isolation and localization of the precursors of roasted pea

nut flavor. Ground defatted peanuts which characteristically contain 

large amounts of globular protein were st~rred with lM sodium chloride . 

After removal of the insoluble material by centrifugation the soluble 

material (45 percent of the original dry weight of the fat - free peanu ts ) 

was lyophilized to dryness and roasted. Since the roasted material had 

the aroma of roasted peanuts it was evident that flavor precursors were 

contained in this fraction. The components of the unheated soluble ex

tract were separated by gel filtration on Sephadex G-25. Each indivi d 

ual peak from this column was lyophilized and roasted. Only the fract i on 

(the flavor precursor fraction) which contained molecules of low molec 

ular weights.ave rise to peanut aroma upon heating. The very large 

amount of protein isolated produced little or no aroma or browning upon 

heating in the dry state. Paper chromatography of the flavor precursor 

fraction indicated the presence of two ninhydrin positive components and 

one spot which was highly basic and exhibited -a yellow nirthydrin 

reaction. 

Linear Arrhenius type plots of the log of the time required to 

roast a series of peanut samples plotted versus reciprocal temperature 

of roasting were interpreted to mean that the rate limiting processes 

occurring during peanut roasting were unimolecular decompositions . This 

could have meant that production of flavor resulted from decomposition 



of a single preformed flavor precursor although this mechanism seems 

unlikely in view of results to be discussed in this thesis. 

9 

Mason and Waller (7) also found that a single subcellular fraction 

of raw peanuts, the aleurone grain-protein body fraction, produced typ

ical peanut flavor when roasted; starch grains or vascular material ex., . 

hibited little typical roasted peanut aroma upon heating. 

The work of Mason and Waller (7) does not completely rule out the · 

possibility that protein could be a precursor of peanut fl~vor since it 

was not heated with a carbohydrate which was indicated to be a necessary 

reactant in the reacti9ns to produce flavor by the work of Pickett and 

Holley (5). During roasting of coffee protein bound arginine was exten

sively degraded, cystine, lysine, setine and ~hreonine were slightly 

degraded while other protein amino acids remained unchanged during 

roasting (10) . 

Peanut Flavor Components 

Any mechanism to explain the decomposition of flavor precursors 

must take into account the volatile flavor components produced during 

the reactions involving the precursors. 

As previously mentioned, Pickett and ~qlley (5) demonstrated the 

presence of carbon dioxide, aldehydes, ammonia and sulfur compounds . 

More recently Pattee~ !.!,,(11) found by means of gas liquid chromato

graphic retention times and functional group tests, for.maldehy..de, 

acetaldehyde, ethanol, acetone, isobuteraldehyde, 2-methyl valeraldehyde, 

methyl butyl ketone, hexaldehyde, 2-or 3-methyl butanol (tentatively) 

and furfural in raw, high temperature cured, off~flavored peanuts. Re

cently Young and Holley (12) showed that roasted off-flavored 11eanuts 

contained unusually large amounts of volatile carbonyl compounds. 
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Mason et al. (13) characterized by nuclear magnetic resonance spectrom-.....,_........ . 

etry, ultraviolet spectroscopy and mass spectrometry 2-methylpyrazine, 

· 2,5-dimethylpy:ra.zine, trimethylpyru:ine, 2-methyl-5-ethylpyrazine, 2,5".' 

dimethyl-3-ethylpyradne and N-metq.ylpyrrole from peartuts having normal 

flavor. In a later paper, the .same group (14) identified acetaldehyde, 

isobuteraldehyde, benzalde;!hyde, phenylacetaldehyde and tentatively 2-

and 3-methylbutanals and 3-methyl-2~butanone by use of gas liquid chroma-

tography in, conjunction with a rapid scanning mass spectrometer, thin 

layer chromatography of 2,4-din,itrophenylhydrazone derivatives along 

with ultraviolet spectra and regeneration of the derivatives (15). 

Mason (14). believed that phenylacetaldehyde contributed to the sweet bou-

quet of roasted peanuts; low molecular weight aldehydes gave the harsh 

note to freshly roasted peanuts. Pyrazines were apparently the compounds 

responsible for the roasted-nutty aroma of peanuts (13). However Deck 

and Chang (16) reported aroroa responses of "earthy-raw potato" for 

2,5-dimethylpyrazine. 

From this flavor component work taken as a whole, one might con

clude that pyrazine. compounds give .peanuts their. nutpl;i.ke aroma while j 
.aldehydes play a contributoryrole. Aldehydes in hi,gh concentrations 

might be responsible (or atypical- or off-flavor. 

Precursors 'of Chocolate Aroma 

Cocoa beans,. like peanuts, requfr.e :roasting to develop their typical 

flavor. Rohan (17) found that cocoa flavor precursors were water solu

ble, methanol soluble, dialyzable compqunds. The flavor precursor frac-

tion of fermented cocoa beans was. composed of 35 percent sugars, 25· 

percent amino acids and 30 percent flavonoids. These extracted precur

sors, which accounted fol;' 5 percent of the shell-free bean, produced 
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typical chocolate aroma upon.heating for 8 minutes at 130°c. This ob-

ijervation held in fermented beans but not in unfermented ones (18). the 

main groups of compounds :in the cocoa flavor precursor fraction were 

separated into flavonoids, amino acids and carbohydrates by lead acetate 

precipitation anc;l c1;1tion exchange chromatography (18). Fermented beans 

contained lower concentrations of carbohydrates and ~igher concentrations 

of amino acids than unfermented ones. Unfermented beans contained only 

sucrose while fermented ones contained glucose and fructose in addition. 

All amino acids except histidine increased in concentration during fer-

mentation, The flavonoids and phenolic acids contained in the flavor 

precursor fraction of cocoa did not appear to be essential to production 

of chocolate aroma (19). 

Later t~e same group (20) showed that different varities of cocoa 

had c;lifferent aJnino acid concentrations and it was postulated that the 

differences in flavor between varieties arose from the variability in 

amino acid levels in the fermented bean. 

Rohan and Stewart (21) determined the COI).centration of.groups of 

amino acids during roasting of Accra cocoa beans at 182°C. 'l'he results 

indicated that destruction.of amino acids was a li,near function of time 

of roasting and that only about 50 percent of the total amino acids were 

destroyed during the course of an ordinary 28 minute roast. Different 

groups of amino acids reacted at varial;>le rates. Total nitrogen .in the 

beans was unaltered during roasting just as was·observed in the case of 

peanuts (5). A . .mechanism employing the .ideas of Schonberg et al, (22, --
23) concerning the mechanism of Strecker degradation, was proposed to 

. explain the decrease in amino acid concentration during roasting of 

cocoa beans. 
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In some particularly elegant work, Pinto and Chichester (24) deter

mined individual amino acids and total reducing sugars utilized during 

. roasting of cocoa. In addition, they followed the production of indi

vidual aldehyd~:; by gas-\iquid chromatography. They found that all 

amino acids were destroyed during roasting with the exception of methio

nine and that glutamic acid, leucine, phenylalanine and an unknown amino 

acid decreased markedly in concentration. Ammonia inq-eased during 

roasting (a phenomenon noted dur;i.ng roasting of peanuts--Chapter IV). 

A very large increase in concentrat;i.on of isovaleri_a,ldehyde was noted 

along with smaller increases in concentration of propionaldehyde and 

isobutyraldehyde. Volatile aldehydes identified in addition to those 

already mentioned were acetaldehyde and diacet;yl. It was·interesting to 

note that the concentration of acetaldehyde initially increased and then 

decreased during the final stages of roasting. '.!;'he significance of this 

observation was not discussed. 

Both Pinto and Chichester (24) and Rohan and Stewart (2~) found 

nearly complete destruction of reducing sugars during cocoa roasting. 

Further, Rohan and Stewart's results (25) suggested destruction of su

crose during roasting presumably by hydrolysh to glucose and fructose. 

Th!i!Y explained the incomplete destruction of amino acids during roasting 

by the fact that the degrading reagents, reducing sugars, were completely 

utilizl;!d during the process (ZS). 

The overall conclusion.was that amino acids were converted to alde

hydes by Strecker degradation which occurred during roasting. The evi

dence of Pinto and Chichester (24) concerning the origin of volatile 

flavor components seems to be irrefutable since a large decrease in leu

cine concentration and a concomitant increase in its Strec~er aldehyde, 
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isovaleraldehyde, was demonstrated. .This evidence is all the more con-

vincing since Herz and Shallenberger (26) produced chocolate aroma by 

heating leucine, glutamine and threonine at lOOC!C and valine at 180°C · 

with g~ucose. 

Considering the striking morphological similarities of peanuts and 

cocoa beans (27) and the similarity of the roasting process to which each 

is subjected, it is not surprising that these two foods have the same 

flavo~ precursors (amino acids and carbohydrates). It is surprising that 

simple alkylated pyrazines have not been isolated from roasted cocoa 

beans since they have been characterized in peanuts (13), coffee (28, 29) 

and heated carbol;lydrate-amino acid model systems (30, Chapter VI). This 

author suggests that pyrazine compounds will prove to be quantitatively 

important in the volatile components of roasted cocoa beam;, However it 

is impossible to predict the significance of pyrazines in the flavor of 

chocolate. 

Chemistry of Nonenzymatic Browning 
I 

Evidently, considering what has previously been discussed, one of 

the ~rimary events occurring during roasting of peanuts or cocoa beans 

is the Maillard reaction between amino acids and reducing carbohydrates. 

Since th is is true, a brief description. of the reactions occurring dur ... 

ing the Maillard reaction, taken from the volumes of literature avail-

able on this reaction, is in order since a mechanism based upon the 

Maillard reaction fs proposed in this thf;lsis to accoµnt for the forms.-

tion of flavor compounds during roasting of.peanuts. 

The Maillard reaction is very complex and, as a result, most of the 

knowledge concerning the reaction ha.s been derived from· work in simpli-

fied mode\ systems which contain a single amino acid and carbohydrate. 



. 14 

Information concerning the chemistry of nonenzymatic browning reac-

tions was reviewed by Heyns and Paulsen (31), Danehy and Pigman (32), 

. Reynolds (33,34), Ellis (35), Anet (36) and Hodge (37). The very de. 

tailed reviews of Reynolds (33,34) are an excellent guide for those in-

terested in the preparation and properties of intermediates in the Mail-

· lard reaction; the review of Hodge (37) is concerned with tQe chemistry 

of browning from the standpoint of the food or flavor chemist. Hodge's 

review (37) presents the Maillard reaction in an extremely well organ-

ized manner and was used as an outline for the review presented here. 

Hodge (37) divided the browning reaction into three stages. The 

initial colorless stage involves sugar-amine condensation and Amadori 

rearrangement. In the intermediate (colorless or yellow) stage, sugar 

dehydration, sugar fragmentation and amino acid degrl;\dation occur. In 

the highly colored final stages, aldol condensation, aldehyde-amine 

polymerization and formation of heterocyclic nitrogen COil'\pounds occurs. 

Initial Stage--Sug~r Amine Condensation 

The initial stages of the Maillard reaction between glucose and 

glycine have recently been investigated by Song and Chichestl;lr (38) and 

Song.£!.!!.· (39). Song et al. (39) studied the kinetics of formation of _.....,.. . 

brown polymers during the Maillard reaction and observed a pronounced 

lag phase prior to the steady phase· ;formation of melanoidins (brown poly-

meric materials). The lag phase was interpreted to mean that certain 

colorless intermediates were formed prior to the steady phase formation 
. ' 

of melanoidins. They prepared N-D-glucosylglycine and compared its 

chromatographic properties with a product from a heated aqueous glucose-

glycine model system (38) •.. T.he .... coiru;i~.nce ,o·f .the :syne.th.tic .:material 

with the compound from the model system was interpreted to mean that 
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N-D-glucosylglycine was one of the primary products formed in this Mail

lard reaction. Qualitative. !;ests on the :i,solated material also indicated 

that it was N-D-glucosylglycine; That the material from the model sys

tem was composed of glucose and glycine was shown by the fact that it 

incorporated label from either 14c glucose or 14C glycine to the same 

extent. 

Song and Chichester (38) determined the induction period for a num

ber of different sugar-amino acid reactions. A short induction period 

meant that the rate of reaction for one of the components was faster 

than in the glucose-glycine system. In o~her words, a short induction 

time meant that a rate limiting reaction had been overcome. A fructose

glycine mixture had an induction time of 2.3 x 103 minutes while the 

glucose-glycine system had an induction period of 6.9 x 103 minutes. 

This observation was explained by the increased reactivity of the 

carponyl group of fructose toward nucleophylic attack by glycine. In 

comparison, a-methyl-D-glucoside which has a stable hemiacetal ring had 

an induction time of 13 x 103 minutes while a:r;abinose which posse.sses an 

unstable hemiacetal had an.induction.time of only,1.1 x 10~ minutes. On 

the basis of this evidence, the open chain form of glucose was judged 

the reactive species of the carbohydrate in the Maillard reaction. As 

the pij of the reaction mixture approached pJ.<a of glycine, the velocity 

of browning increased markedly .. Thus the conjug,eite base of the glyc~11e 

amino group, rather than the conjugate acid, must have been the reactive 

species of the amino acid, On the basis of Song and Chichester's evi

dence (38) nucleophylic attack of the conjugate base of the glycine 

amino group on the carbonyl group of glucose in. its open chain form was 

the prirqary event in the l'faillard reaction. 



!nitial Stage--Reaction of N-Sub13tituted Carbohydrate 
I . 

Song and Chichester (38) detected anqther compound in their work 

with the glucose-glycine system wpich contained glucose and glycine in 

equimolar quantities.· They felt that it was formed by con13ecutive reac-

tion of N-D-glucosylglycine, and thus represented the product of the 

second step of the Maillard reaction. The fact that the compound gave a 

positive test with m-phenylen,ediamine and decolorized bromine indicated 

to them .that the compound was probably an a,S-unsatur~ted enolic aldi-

mine in equilibrium with its keto form. · This unsaturated compound was 

isolated from the glucose-glycine reaction mixture by adsorption onto 

aluminum oxide. When the material, which had an ultraviolet spectrum 

characteristic of a semicarbazone, was eluted from.the adsorbant with 

ether,. it browned rapidly at room temperature. This fact substantiates 

the conclusion that the unsaturated compound was indeed an intermediate 

in the browning reaction. 

2-propenal was u13ed as a model of a compound having a structure 

more like the postulated a,S-unsaturated aldimine intermediate and it 

was found that the 2-propenal-glycine model systembad no induction per-

iod. The induction period when 2-amino-D-glucose was heated alone at pH 

·6.0was 150 times less than in the glucose-glycine system. These in .. 

duction time data point to the fact that during the induction per;i.od in 

the glucose-glycine reaction nitrogen was incorporated into the carbo-

hydrate and unsaturationwas produced. In the kinetic studies of 

Katchalsky and Sharon.(40), the formation of the N-D-glucosylamino acid 

. was assumed to be the rate determining step in the Maillard reaction . 

. . The work of Song and Chichester (38) and Song.!;!.!!,• (39) bears out this 

assumption since substitution of a substrate which was more reactive to 



nucleopb,ylic attack by the amino acid amipo group exhibited a reduced 

. induct:i,on period (38, 39) • 
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Because they isolated a reactive a,13-unsaturated aldimine, Song and 

Chichester suggested that N-D-glucosylglycine-lost the elements of water 

to give the Amadori :rearrangement product k.eto, 1-amino-l-deoxy-glycino

D..,f;ructose in equilibrium with its enol. This enol lost water at. C-3 

to yield the a,13-unsaturated aldimine. Hodge (37) pointed out that Ama

dori rearrangement (conversion of N-substituted aldosylamines to 1-amino

l-deoxy-2-ketoses) was st,1spected to occur during the Maillard reaction, 

but it was not until 1952 that the Amadori product was isolated by Hodge 

(41) and Gottschalk (42). .That the Amadori product was an intermedic:1te 

in nonenzymatic browning was demonstrated by the fact that the N

.substituted gluco::iylamine browned, at room. temperature and from the 

browned material could be isolated the Amadori rearrangement product in 

30-50 percent yield. However, if .the C-2 hydroxyl of the N-imbstituted 

glucosylamine-was sub1;1tituted (2-0-methyl-D-glycosylpiperidine) then the 

derivative remained white and stable for over two years at 25°C (41,43). 

The carbohydrate which participated in the formation of the N-substituted 

glucos.ylamine could not be iso.lated after acid hydrolysis of the Amadori 

product .(44). This is an .indication that reactions occurred. within the 

carbohydrate moiety of the glucosylamine duI;"ing the Amadori. rearrange

ment. 

Other workers proposed that furans play an important :role as inter

mediates in the Maillard reaction (35,4~). However, Song and Chichester 

(38) showed tl;lat addition of hydroxymethyl furfural (HMF) did not elim

inate the induction period in the browning reaction.· It was reasoned 

that if HMF were an intermediate it would reach its maximum, ... concentration 
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near the end of the lag phase of the reaction, however the experimental 

evidence indicated that HMF was accumulated throughout the reaction 

rather than incorporated into the steady phase of the reaction. Also 

these authors pointed out that trioses and tetroses could uridergo brown-

ing but could not form HMF. From the data and these lines of reasoning, 

HMF was concluded not to be an important intermediate in Maillard 

browning. 

Intermediate Stage of Browning--Dehydration of Sugar Moiety 

The intermediate stage of the Maillard reaction is characterized by 

appearance of absorbancy in the. region from 277-285 mµ.. Dehydration of 

the sugar by loss of the elements of three molecules of water and cy-

clyzation gives a furfural. As was mentioned earlier, furfurals are not 

i mportant intermediates in browning (39). Hodge and Rist (43) showed 

that after Amadori rearrangement the sugar moiety can lose two molecules 

of water to give a reductone, -Z~(CH-CH)n .. rg_. (ri=O or 1). " The reductore 

browned in aqueous solution at pH 6.0, more r~pidly in the presence of 

an amino acid. The reductone described by Hodge and Rist is very Simi -

lar to the dehydration product postulated to arise from the a,~-

unsaturated aldimine by Song and Chichester (38). 

Thus in the q.ehydration stage of the Maillard reactioi;i, two primary 

events apparently occur: loss of three molecules of water to give fur-

furals or loss of two molecules of water from the carbohydrate moiety to 

give a reductone or a reductone-like product containing nitrogen in the 

case of dehydration of an oi,~-unsaturated aldimine. 

Intermediate Stage of Browning--Fragmentation of Sugar Moiety 

Among the known sugar fission products are glycolaldehyde , 
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glyceraldehyde, pyruvaldehyde, dihydroxyacetone, acetoin, diacetyl, 

acetaldehyde, aldol, triose reductone and propionaldehyde (37,46). Many 

of these compounds, especially with the a-hydroxycarbonyl grouping, can 

undergo browning and many have characteristic aromas which could be of 

~mportance in the- f-lavor of heated foods which contain carbohydrates. 

The accepted mechanism for sugar fragmentation according to Hodge (37) 

is a reverse aldol condensation (dealdolization). Since the aldol con-

densation is catalyzed by ~mines and their salts, these same reagents 

will also catalyze the reverse reaction. The dealdolization of diace

tone alcohol was catalyzed by amines but not bases in general (47). To 

explain. dealdolization, Hodge (37) postulated that the 1,2-enol or 2-

ketos.e configuration of the Amadori rearrangement product had a .weakened 

C-C bond a,S to the carbonyl group. 

Intermediate Stage of Maillard Browning--Strecker Degradation 

Strecker degradation is . the conversion of a-amino acids to alde

hydes containing one less carbon atom (Strecker aldehydes) and carbon 

dioxide. The importance of this reaction to the formation of flavor 

components (e.g. 3-methylbutanal from leucine during roasting of cocoa 

beans and phenylacetaldehyde from phenylalanine during peanut roasting) 

has already been noted in this literature review. Strecker degradation 

was reviewed by Schonberg and Moubasher (22) and Schonberg~~. (23). 

It was found that only carbonyl compounds containing the structure 

8-(-C=C-)n-i-(n=O,l, 2 ... ) are capable of initiating Strecker degradatio~ 

It can be seen that the type of molecule reactive in Strecker degrada-

tion could be formed by dehydrogenation of~ reductone (-i~(CH-CH)n=~~0 

formed during the Maillard reaction. Transamination of the amino group 

of the amino acid to the degrading molecule could be important in the 
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incorporation of nitrogen into Melanoidin pigments. The fact that lit

tle ammonia is released during Strecker degradation has been demon

strated (48). 

Stadtman !!, ~. (49) have shown by the use of 14C labelled glucose 

and glycine that over 80 percent of the carbon dioxide generated during 

Strecker degradation arises from the amino acid carboxyl group; ten per

cent arises from glucose. The fact that Maillard browning, carbon diox

ide production and production of Strecker aldehydes are nearly parallel 

reactions has been pointed out (37). The aldehydes produced during 

Strecker degradation, especially acetaldehyde, can undergo browning in 

the presence of amino acids (SO). However, this process is probably of 

little importance as a color producing reaction. 

In summary, the intermediate stage of Maillard browning is charac

terized by dehydration reactions to give furfurals and/or reductones, 

production of sugar degradation products, and Strecker degradation . 

The Final Stages of BrQWning 

In the final stages of browning, the compounds formed during the 

intermediate stage are thought to polymerize to unsaturated, colored, 

nitrogen containing polymers. The chief reactions, on the basis of 

inhibition studies, were aldol condensations, aldehyde~amine polymeri

zation and formation of heterocyclic nitrogen compounds such as pyra

zines, pyrroles, pyridines and imidazoles (37). Song and Chichester (38) 

postulated that anionic polymerization occurred by nucleophylic attack 

of electrons from highly unsaturated nitrogen containing carbohydrate

like molecules on carbonyl groups. The structure of their proposed 

intermediates is in accord with the evidence of other workers who found 

that the backbone of the brown pigments apparently corresponded to 
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carbohydrates less three molecules of water (51). Ultraviolet spectra 

of the brown polymers from a glucose-glycine model system appeared to be 

due to~ transitions as was predicted for the postulated polymeric 

materials. 

Flavor Components Produced by Sugar-Amine Reactions 

Certain volatile compounds that might be important to flavor are 

produced during the Maillard reaction. That this is the case has al

ready been discussed in this review in connection with production of 

flavor components during roasting of cocoa beans or peanuts. 

As has previously been pointed out, many of these compounds origi

nate by Strecker degradation of ~-amino acids or sugar fragmentation 

during the Maillard reaction. 

The formation of volatile pyrazine compounds during roasting of 

peanuts and coffee has been discussed previously but nothing was men

tioned concerning the origin of this class of compounds. 

Only sca~tered reports concerning formation of pyrazines during the 

Maillard reaction are available. Etard (52) and Stoehr (53) demonstra

ted formation of 2,5-dimethylpyrazine and traces of 2,5-dimethyl-3-

ethylpyrazine by distillation of glycerol with a mixture of ammonium 

chloride and ammonium phosphate. Formation of acrolein from glycerol 

with concomitant combination of two molecules of ammonia was the mech

anism postulated to explain the formation of the dimethyl derivative. 

Stoehr (54) observed that addition of acetaldehyde increased the yield 

of 2,5-dimethyl-3-ethylpyrazine in this reaction. Other workers (55,56, 

57) detected pyrazine, 2-methylpyrazine and 2,6-dimethylpyrazine when 

glucose and ammonium hydroxide were heated at 100°C. Wiggins (58) 

treated inverted molasses for two hours at 100-120°C with anhydrous 
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ammonia at 60 pounds per square inch. From the reaction mixture were 

isolated a number of imidazole compounds (10% yield) and pyrazine deriv-

atives (20% yield) which included 2,6-dimethylpyrazine, 2-hydroxymethyl-

pyrazine, 5-hydroxymethyl-2-methylpyrazine, 2-methyl-5-arabotetrahydroxy-

butytpyrazin~ and 2-methyl-6-arabotetrahydroxybutylpyrazine. Stiles (59) 

found that acid or invertase treated molasses incorporated nearly twice 

as much ammonia as did non-inverted molasses. This information pointed 

out the importance of monosaccharides to the formation of pyrazine com-

pounds. Hough~!!.!_. (60) reacted glucose and aqueous ammonia at 37°C 

for two weeks and isolated 2-methyl-5-(tetrahydroxybutyl) pyrazine and 

2-methyl-6-(tetrahydroxybutyl) pyrazine. These derivatives were found 

to occur in the D-arabo configuration based upon molecular rotation evi-

dence. Reaction of glucose or fructose with alcoholic ammonia yielded 

fructoazine (2, 5-bistetrahydrbxybutylpytazine) . (61, 62) · . . 

The mechanism of formation of simp;le ':olati1e alkyl py:ra.z-irtes is at 

present unknown. In a recently published paper, Dawes and Edwards (30) 

identified 2,5-dimethylpyrazine and trimethylpyrazine from aqueous 
i 

aldose-amino acid solutions refluxed for two hours at pH 9.0. 2,5-

dimethylpyrazine was isolated from both L-phenylalanine-D-fructose and 

glycine-D-fructose model systems; trimethylpyrazine was formed only in 

the glycine system. The formation of these compounds was explained in 

the following manner: Pyruvaldehyde w~s assumed to be generated by 

degradation of the carbohy.d.rate. Amino acetone .or 2-amino-pr.opanal was 

postulated to be formed from the reaction of the amino acid and pyruv-

aldehyde. Condensation of these a-amino carbonyl compounds was postu~ 

lated to occur to give a dihydropyrazide which underwent oxidation to 

2,5-dimethylpyrazine. In like manner, trimethyipyrazine was assumed to 
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arise by condensation of2 .. amino-propanal or amino acetone with the a

amino .ketone derived from dia~etyL l'he suggested mechanism is attrac

tive since Hurd (63) demonstrated the formation of 2,5-dimethylpyrazine 

from a model system containing ac~tol and alanine. It is possible that 

simple alkyl substituted pyrazines could· arhe from the easily formed 

fructosazine by removal of portions of the tetrahydroxybut:yl side chains. 

However this kind of reaction is ditficult to rationalize; the former 

one ;is simple to rationalize in terms of known reactions of Ml:lillard 

browning. 



Introduction 

CHAPTER III 

SOME PROPERTIES OF THE FLAVOR PRECURSOR F~ciioN 

OF SPANISH PEANUTS 

Mason and Waller (7) described the isolation c,f a soluble fraction 

of raw peanuts which pro~uced typical peanut aroma when heated in the 

dry state, This soluble fraction was called the flavor precursor frac

tion. Since the flavor precuroor fraction evidently contained all of 

the compounds necessary to produce peanut aroma during heating, the na

ture of the compounds in this fraction was of great interest. 

Wor~ described ;i.n this chapter was aimed at the qualitative deter

mination of the nature of the components in the flavor precursor frac

tion, the nature of the brown pigment formed when the flavor precursor 

fraction was heat:ed and a comparison of volatile compounds formed when 

the flavor precursor fraction was heated with the volatile compounds 

isolated from normally roasted peanuts and heated defatted peanut meal. 

Reagents 

Ion retardation resin AG-11A8 (50-100 mesh) and Aminex-MS cation 

exchange resin (blend Q~SO) were purchased from the Biorad Corporation, 

Richmond, California; Sephadex G-25 (course grade) was purchased from 

the Pharmaci~ Chemical Company, Uppsala, Sweden. Apiezon-L, SE-52, and 

the Chromosorb W (60-80 mesh) were obtained from the Wilkins Instrument 

Company, Walnut Creek, California. Hexamethyldisilazane and 

24 
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trimethylchlorosilane were purchased from Applied Science Laboratories, 

Inc., State College, Pennsylvania. Elemental analyses were performed by 

Midwest Microlab, Inc., Indianapolis, Indiana. 

Procedure* 

Preparation of the Flavor Precursor Fraction 

Ten pounds of raw peanuts with hearts and testa removed were ground 

with a food grinder and defatted by soxhlet extraction with redistilled 

n-hexane for 48 hours. After removal of the hexane by evaporation at 

room temperature, the fat-free material was homogenized at one-half 

speed with lM NaCl solution (7,5 liters per kg of fat free meal) in a 

Servan Omnimi,cer for 2 minutes. The resulting suspension was stirred 

in a plastic bucket for 24 hours at 5°C. The insoluble peanut meal was 

allowed to settle and the supernatent suspension was centrifuged for 15 

minutes at 5000 x g. The clear supernatent solutions from the centri-

fuge bottles were combined and the extract was reduced to llit~r by 

rotary evaporation. All of the evaporated material was placed on a 

Sephadex G-25 colt,1mn (10.2 x · 132 cm), The column was developed with lM 

NaCl solution at a flow rate of 35 ml per min; 100 ml fractions were 

collected. The pea~s corresponding to the flavor precursor fraction 

(fractions 65-115) described by Mason and Waller (7) were collected. The 

flavor precursor fraction contained 0.43 gm per ml of total organic 

solids as determined by the procedure of Johnson (64). 

A portion of the flavor precursor fraction was placed on a 4.9 x 

36 cm column of Biorad AG-llA8 ion retardation resin. The columnwas 

developed with deionized water at a flow rate of 10 ml per minute. The 

*Abbreviations used throughout this dissertation are those sug
gested in the Journal of :Biological Chemistry ~. 1 (1967). 



salt free fractions were coml>ined; fractions containi,ng both organic 

material and NaCl. were combined, evaporated to 70 ml, and recycled. 

This procedure gave a salt free preparation suitable for qualitative 

analysis. 
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Comparison of the Yield of Various Ultraviolet Absorbini Fractions from 
: . r r, . 

Whple Peanut Cotyledons and Peanut Aleurone Grain-Protein Body Fractions 

Fifty gram sampl~s of the aleurone grain-protein body fraction of 

peanuts prepared as described by Mason and Waller (7) and defatted pea-

nut cotyledons were extracted with lM ~aCl solution as described in the 

section entitled "Preparation of the Flavor Precursor Fraction." Sepha-

dex gel filtration curves were prepared in the manner shown by Mason and 

Waller (7) for extracts of peanuts and the aleurone grain-protein body 

fraction. 

The absorbancy of each peak in the elution pattern at its absorp-

tion maxi,mum and the width of each peak in ml was determined from the 

elution pattern. The product of the peak height and peak width repre

sented the amount of ultraviolet absorbing inaterial (in arbitrary units) 

. in that peak. 

Determination of Neutral Amino Acids in the Flavor Precuri:;or Fraction 

Neutral amino acids in the flavor precursor fraction were deter-

mined qualitatively using procedures similar to those outlined by Hunter 

et al. (65) in which aldehydes having one less carbon atom than their ........ ..... . .· 

parent amino acids were prepared by the use of the ninhydrin reaction. 

Two hundred mg of q.inhydrin and 100 mg of a mixture containing 

19.15 gm of citric acid and 2.06 gm.of .trip.otassium .citrate .were mixed 

with S ml-of flavor precursor fraction in.saturated NaCl solution which 
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was obtained by evaporation of the fraction collected from the Sephadex 

G-25 column. After refluxing the mixture for 30 min, it was steam dis

tilled until 10 ml of distillate were collected. Aldehydes present in 

the distillates were determined in the manner to be described in the 

section entitled "Gas Chromatography." Standard amino acids were treated 

in the same manner and served as standards for the identification of 

amino acids present in the flavor precursor fraction. 

All neutral amino acids except tryptophan, proline, hydroxyproline, 

and cystine could be detected in artificial mixtures using this 

procedure. 

Separation of Anionic Constituents of the Flavor Precursor Fraction 

A 30 ml portion of the desalted flavor precursor fraction was 

placed on a 0.9 x 45 cm column of Dowex 1 in the formate form. A grad 

~ nt elution, similar to that described by Wilken and Hansen (66), in 

which the eluant was delivered to a 500 ml round bottomed mixing flask 

and then to the column was used. Ten ml fractions were collected. 

Deionized water was delivered to the mixing flask which also initially 

contained deionized water for the elution of fractions 1-85. Four nor

mal formic acid was delivered from a reservoir to the mixing volume for 

the elution of fractions 86-240. In like manner, 4N formic acid which 

was 0.2N in ammonium formate was used for the elution of fractions 241-

410; 4N formic acid 0.4N in ammonium formate eluted fractions 411-500. 

Determination of Amino Acids in the Flavor Precursor Fraction Using Ion 

Exchange and Paper Chromatography 

Basic and n~~tral amino acids were eluted from the Dowex-1 column 

just described in fraction 1~30 (fraction , !). Most of the water was 
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removed from thts fraction by,lyophilization and the basic amino acids 

contained in.it were determined using the procedure of Spackman~!.!,, 

(67), buffers described by Moore et aL (68), and the ninhydrin reagent --
developed by Moore and Stein (69). A 1.0 x 50 cm column of Aminex-MS 

cation exchange resin (blend Q-50) was employed for the separation of 

basic amino acids of the fhvor precursor fraction. One inl of ninhydrin 

reagent was added to· the 2 ml fractions collected from the column. The 

test tubes were covered and the mixture was heated on a boiling water 

bath for ;30.min to develop color in the tubes which contained ninhydrin 

positive material, After cooling, the absorbancy at 570 mµ was deter-

mined on each tube using a Beckman DU spectrophotometer. Elution pat-

terns were prepared by plotting As 70 vs tube number. Amino acids were 

identified by comparing the elutiort volume of peaks from the flavor pre-

cursor fraction with those of standards determined on the same column. 

Acidic a_!llt1;1,.e>, .. !l~i4~,.wer-.e-~~lµS~-9. from ,,th,e D9wex-l column in fractions 
.,,._....,.:=-.=....-.----........,,.,....,."""-·-- - --""'-~~J:;a,"=."C,t-,.. ._ . ....,, __ ·-"---·-·~-.:."'>.--~~.,.,,.";): .. ...::~ .•..,-:,:.:-,--,, .. ..,.,.,....,,_ ..... ~-~ '-l."c=-·.,·-...,,.,.., ...... •:: -~.,_ .... _,,,,-.~...: ,-,. ~::: --::;·.·- ,· 

100-106 and paper chromatographed along with standards in a solvent com~ 
l:".,,::...·-~-~_=-,:,..-~ .. 

posed of isobutyric acid 1 concentrated ~OH, and water 66/1/33 by vol .. 

ume. · The paper was sprayed with 0.5% ninhydrin in butanol and heated to 

100°C for 10 minutes to reveal ninhydr:i,n positive compounds. 

Gas Chromatography 

Steam distillates from heated defatted peanuts, methylene chloride 

extracts of .the steam distilbtes from tl,e flavor precursor fraction, 

molecular distillates of roasted peanuts, aldehydes produced by the nin~ 

hydrin reaction on the flavor precursor fraction, and carbonyl compounds 

regenerated from their 2,4-dinitrophenylhydrazones were all gas chroma-

tographed on a Perkin-Elmer Model 800 gas chromatograph equipped with a 

dual hydrogen flame ionization detector. In each case, the components 
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were separated o~ a 20 foot x. 1/8 in o.d. (0.06Z in i,d.} stainless 

steel column packed with 20% w/w Apiezon Lon Chromosorb W (60,-80 mesh). 

A nitrogen :Uow rate of 36 ml per minute was used; the temperature was 

held at l00°C for 2 min and then temperature programmed to 200°0 at 6° 

per minute. Retention times of ~he peaks were normalized by setting 

. that c;,f n-butanal equal to 1.00. 

Trimethylsilyl (TMS) ethers of carbohydrates from the flavor pre

cursor fraction were separated using the same gas chromatograph as de

scribed above. A 5% w/w SE-52 on 60-80 mesh Chromosorb W column (8 feet 

x 1/4 inch o,d.} operated at a nitrogen flow rate of 85 ml per min and 

temperature programmed from 125-260°C at 4° per minute was employed for 

these samples. Qu,antitation was accomplished by comparing peak areas 

of the sugar TMS etb,ers in the samples to those of standards prepared 

and. chroma to graphed in the same manner. 

Regeneration of Carbonyls from their 2,4-Dinitrophenylhydrazo.nes 

Regeneration of2,4-dinitrophenylhydrazones was accomplished using 

the procedure of Ralls (70). For gas chromatography, 6-20 mg of a inix

ture of 2,4-dinitrophenylhydr,azones were mixed with tl;lree times their 

wei,ght of a .. ketoglutaric acid and heated to 250°C for 30 sec in a glass 

tube sealed with a rubber septum. A sample was removed with a gas tight 

syringe and immediately introduced onto the gas chromatographic column. 

Procedures for the Generation and Identification of Volatile, Compounds 

;from Peanuts, Defatted .. Peanuts, and the Flavor Precursor Fraction 

Finely divided defatted peanut meal was suspended in sodium chlor ... 

:i,de solution (saturated at room temperature) at a ratio of l pound of 

meal per 2 liters of.salt solution. The suspension was stirred and 
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r.efluxed at 105°C in a roundbottomed flask for 12 hr or until consider

able browning was evident. The refluxed material was steam distilled 

un.til no .more than a faint caramel aroma existed in the reflux flask. 

These distillates were sufficiently concentrated that they could be gas 

chromatographed without further manipulation, 

A portion of the flavor precursor fraction isolated from the large 

Sephadex G-25 column which was saturated with sodium chloride at room 

temperature and contained a total of 13.5 gm of organic solids was re

fluxed as previously described for defatted peanuts. After steam dis

tillat.ion of the heated flavor precursor fraction, the 500 ml of steam 

distillate was extracted 6 times with 20 ml portions of redistilled 

methylene chl.oride. Rotary evaporation of the bulk of the methylene 

chloride gave a material sufficiently concentrated for gas chromatography. 

The volatile constituents from normally roasted whole peanuts were 

isolated by homogenizing the peanuts i,n an equa,l wei,ght of heavy mineral. 

oil and then passing this material across a 98°C falling film molecular 

still ~ttached to a vacuum manifold. A vacuum of 10-4 mm of Hg was 

maintained by a three stage oil diffusion pump in line with a high ca

pacity roughing pump. Volatile component;s were coll_!:!ct;ed in a series of 

two traps cooled to -196°C with liquid nitrogen. The trapped volatiles 

were cryoge11ically pumped to a detachable bulb on the vacuum manifold. 

After the.bulb was detached from the vacuum manifold, the contents were 

allowed to warm until they became liquid. Aliquots of the resulting 

m;i.lky suspension were removed :!;or gas-liquid chromatography. 

Preparat:i,on of Brown~nlli Pi.we,ents 

Fifty ml of the flavor precursor fraction described in the section 

entitled "Preparat;i.on of the Flavor Precursor Fraction" were saturated 
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(at room temperature) with NaCl and refluxed at 106°c for 4 hr. The 

resulting material was dialyzed against four changes of deionized water. 

The material inside the dialysis tubing was l,!vaporated to a small volume 

and then subjected to gel filtration on a 2 x 30 cm column of Sephadex 

G-25. The brown material which was completely excluded from the gel was 

collected and lyophilized to dryness. The dry brown powder was examined 

by infrared and nuclear magnetic resonance spectrometry, and analyzed 

for carbon, hydrogen, and nitrogen. NMR spectra were run in D2 0 solu-

tion using a Varian Model A-60 spectrometer; infrared spectra were taken 

on KBr pellets using a Beckman IRS-A infrared specirophotometer. 

Browning Reactions in Modified Flavor Precursor Fractions 

Neutral compounds were removed from a portion of the desalted fla-

vor precursor fraction as described in the section entitled ''S!:!paration 

and Determination of Carbohydrates." Amino acids and other cationic 

species were eluted f:rom the ... cation ... exchange resin with 5N NJ40H in !:l 

manner described by Furuholmen et al. (72). After evaporation of the --
amino acid fraction to one-fifth its original volume, it was saturated 

with NaCl and adjusted to pH 6.5. Five ml of this amino acid fraction 

was refluxed for 10 hr at 105aC in the presence and absence of added 

carbohydrates. Coagulated material was filtered from the heated solu-

tion and absorbancy at 440mµ was determined on the filtrate. The amount 

of brown pigment formed was determined by comparison of absorbancies of 

experimental tubes with tubes containing known weights of the brown pig-

ment isolated as described in the section entitled "Preparation of 

Browning Pigments." 
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Results and Discussion 

The relative ai;nounts of ultraviolet absorbing material in NaCl 

extracts of equivalent amounts of the aleurone grain-protein body fr.ac

tion of peanuts and defatted peanut cotyledons ii;, shown in Table ;r. 

Since the yield of the aleurone grain~protein body fraction of peanuts 

is about 30% of thf:! dry fat-free weight of the peanut, the amount of 

ultraviolet absorbing material in 50 gm of the aleurone grain-protein 

body fraction was multiplied by a factor of 0.3 to obtain the amount of 

absorbing material that .could be extracted from the weight of the aleu

rone grain-protein body fraction contained in 50 gm of dry, defatted 

peanuts. 

If a given absorbing peak originated exclusively from the aleurone 

grain-protein body fraction, then the amount of absorbing material iso

lated from this fraction would be the same as that isolated from an 

equivalent amount; of defatted pea.nut cotyl.edons. 

The results indi,cated that the 308 mµ. absorbing material arose al

most exclusively from outside the aleurone grain-protein body fraction; 

the 262mµ. absorbing material appeared to be distributed throughout the 

particulates of -the parenchyma cells of the cotyledons and the 254 mµ. 

absorbing material seemed to be concentrated somewhat in the aleurone 

grain-protein body fraction. 

Mason and Waller (7) demonstrated that the aleurone grain-protein 

.body fraction produced typical peanut aro!Ilp upon roasting. Since they 

also showed that material in the peaks absorbing at 262 mµ. gave peanut 

aroma upon heating in the dry state, it seems evident that precursors of 

peanut flavor, even though they reside in part in the aleurone grain

protein body fraction, are also distributed with nearly equal frequency 



TABLE I 

YIELD OF ULTRAVIOLET ABSORBING MATERIAlS 
IN DEFATTED PEANUT COTYLEDONS.AND 

ALEURONE GRAIN-PROTEIN 
BODY FRACTIONS 

Starting Material Units of Ultraviolet Absorbing 
Material at. A Max 

Aleurone Grain-Protein 
. Body Fraction (50· gm) 

Aleurone Grain-Protein 
Body Fraction Equivalent 
to 50 gm of Defjtted 
Peanut Cotyledons. 

Defatted Peanut 
Cotyledons (SQ· gm) 

254 mµ, 

290 

87 

160. 

262 mµ, 308 mµ, 

405 290 

122 87 

790 5490 

33 



34 

in other locations in the cotyledon. 

Aldehydes were generated from neutral amino acids in the flavor 

precursor fraction and their identity determined as described in the sec-

tion entitled "Determination of Neutral Amino Acids in the Flavor Pre-

cursor Fraction." 

The results indicated that the flavor precursor fraction contained 

isoleucine, phenylalanine, and valine along with smaller quantities of 

alanine, leucine, tyrosine, and a-amino~n~butyric acid, 

v/· Anionic constituents of the flavor precursor fraction w~re separated 

on a Dowe:x;-1 formate column as described in the section entitled "Sepa-

ration of Anionic Constituents of the Flavor Precursor Fraction," The 

elution pattern of this column is shown in Figure 1. Peak I was nin-

hydrin positive and probably contained neutral and basic amino acids as 
' - ·, . ,• --- .. - -· - -' - -· . .- ,·· -~ - '"·7 ·-·- co._,_.,--_;;;,,~--•· 

well as other n,eutral components such as carbohydrates. Fraction II was 

also ninhydrin positive and paper chromatography showed it to contain 

glutamic acid, aspartic acid, NAO+ and two unknown ninhydri,n, positive 

·compounds having RF values of 0,18 and 0.77 respectively in the solvent 

described ;in the section entitled "Determination of Amino Ac;:ids in the 

FlavorPl;'ecursor Fraction Using Ion Exchange and Paper Chromatogtaphy." 

The identity of the other peaks eluted from this column are unknown but 

tl:).eir ultraviolet spectra in acidic, basic and :neutra1 media are similar 

to the spectra of nucleotides (A max in the area of 260 mµ). No peaks 

were detected after peak VIII. 

Fraction I from the Dowex-1 c;:olumn was chromatographed on the 50 cm 

Aminex-MS column which was desc;:ribed in the section entitled "Determina ... 

tion of Amino Acids in the Flavor Precursor Fraction Using Ion Exchange 

and Paper Chromatography." Amino Acids contained in the flavor precursor 
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fraction identified using this procedure were tryosine and/or phenyl-

alanine, lysine, tryptophan, histidine, and alllJ[lonia. No arginine was 

detected although it has been shown to occur at relatively high concen-

trations in raw peanuts (Chapter IV). Arginine probably was present in 

the flavor precursor fraction but was not detected since the arginine 

was probably eluted from the column as a. broad diffuse peak that could 

not be distinguished from the background ninhydrin color. 

Table I); contains a.comparison o~ volatile constituen,ts from heated 

defatted peanut meal, the heated flavor precursor fracti,on, and a molec-

ular distillate of normally roasted peanuts. Gas chromatographic char-

acteristics are given for ;regenerated carbonyl compounds as well as 

distillates. Because cbndensates from the flavor precursor fraction had 

t9 be concentrated by extraction into methylene chloride, the solvent 

peak obliterated the peaks representing lighter components. For this 

reason these were listed as "not analyzed" in Table II. 

The data of Table ir show: a) In each of the three cases, defat-

ted peanuts, flavor precursor fraction, and roasted peanuts, many of the 

components were carbonyl compounds; b) Relative retention data which 

indicated that many of t)le same components were pl;'esent in all thre-e 

cases. The exceptions included the presence of the component from dis-

tillates af<defatted peanuts having a relative retention of l;.;..(;H\ which 
.. ·_; .. -.,-.. r,·•e: 

was not present in the other two cases and the 4.56 component which was 

not detected in the distillates from the flavor precursor fraction but 

which probably occurred in the distillates of roasted peanuts (tpe 4.68 

component). The regenerated carbonyls of the precursor fraction con-

tai,ned a component having a relative retention of 5.72 which was detect-

ed in distillates of roasted. peanuts but not in distillates from 
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TABLE II 

RELATIVE RETENTIONS OF COMPONENTS ISOLATED 
FROM ROASTED PEANUTS 1 DEFATTED PEANUTS 

AND THE FLAVOR PRECURSOR FRACTION 

Defatted Peanuts Precursor Fraction Roasted Peanuts 
Steam distillate Regenerated Steam distillate Regenerated Molecular Regenerated 

(Condensate) Carbonxls (Condensate} Carbonxls Distillate Carbonxls 

0.56 0.53 0.59 0.58 
0.65 o.68 Not 0.73 o.66 
o.84 0.82 0.89 
1. 01 0.97 Analyzed 0.98 

1.39 1.35 1.39 
1. 50 1.45 1. 49 1. 52 
1,81 l.89 1. 85 1.81 
2.17 -~-- 2.24 

2.45 2.46 

2.69 2.70 2.68 2.86 2.81 

2.99 2.96 

3.46 3.48 3.38 3.44 3.51 
3.64 3.62 3. 70 3.73 
4.18 4.00 4.17 4.10 

4.46 4.38 4.35 4.35 
4.56 4.68 

4.96 4.80 4.78 4.90 4.81 

5.12 5.10 5.17 5.24 5.15 5.13 

---- 5.72 5.68 5. 56 
5.80 5.88 5.95 5.98 
6.25 6.14 6.07 6.11 6.22 

6.43 6,45 6.49 6.38 6.40 

6.65 6.65 6.74 

6.92 7.00 7.08 6.94 6.92 
7.29 

7.55 7.49 7.69 7.51 7,52 

8.oo 7.90 

9.04 9.13 9.04 

9.89 10.04 9,96 
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defatted peanuts. Compounds having relative retentions. of 2.99 and 7.29 

were present in distillates and/or regenerated carbonyls of roasted pea-

nuts but ~ere absent in the other two cases. 

It is possible that some components were present in the various 

systems but did not occur in sufficient quantities to allow their detec-

tion as distinct peaks or shoulders in the gas chromatograms. Thus, 

since the relative retentions of the individual peaks compared in Table 

II generally agreed within 2-3%, the !IU;ljor differences in components of 

the various systems were probably quantitative rather than qualitative. 

Since neutral lipid was absent in the defatted peanuts and in the 

flavor precursor fraction and since these fractions produced many of the 

.same volatile components as conventionally roasted. peanuts, it was co.n-

eluded that neutral lipids have little importance·as precursors of pea-

nut flavor. This was in accordance.with the findings of Iverson et al. --
(73) that there was no difference in fatty acid content of peanut 

triglycerides before and after roasting. However, Casey .et al. (74) 
. -..- ~ 

showe.d that the nature of the m.edium in which flavor producing reactions 

occurred was important in the q\la1;1titative distribution of low boiling 

volatiles produced during heating of many foods, 

Thus it was con,clude.d that the qualitative nature of the volatiles 

produced from roasted peanuts, heat~d defatted peanuts or the heated 

flavor precursor fraction was similar and that the quantitative differ ... 

ences of volatile components arose primarily from differences in the 

reaction medium. 

Table IIJ; gives the identity of carbohydrates identified in the 

flavor precursor fraction using methods described in the section enti

tled "Separation and Determination of Carbohydrates." Unidentified 



Component 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

TABLE III 

SUGARS FOUND IN TIU: FI,.AVOR PRECURSOR 
. FRACTION OF ARGENTINE PEANUTS AS 

DETERMINED BY GAS CHROMATOGRAPHY 
OF THEIR TRIMETHYLSILYL ETHE:RS 

Relati,ve 
Identity Retention 

Unknown 0.41 

Arabinoi;e 0.50 

Unknown 0.55 

$-Xylose 0.65 

Fructose 0.70 

a-galactose 0.75 

Q'-glucose 0.78 

S-glucose 0.82 

N-acetyl- 0.87 
galacto-$amine 
or $-golllactose 

Sucrose 1.17 

Unknown 1.28 

Unknowµ 1.53 
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µ,gSugar/gm 
Orgl!lri.ic Solids in 

Precursor Fraction 

3.9 

Trace 

'.)':race 

8.7 

15.3 

Trace 

Trace 

Trace 

100 .4 

161.8 

5.5 

25.8 
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sugars were present in trace amounts. 

The brown pigment isolated as deE1cribed in the section entitled 

"l'reparation of Browning Pigments" ha,d an elemental analyds of C 37 ,86%, 

H 5.01%, N 3.97%, ash 12,70%, and O (by difference) 40.46%. 'l'he emper-

ical formula was C11 H18 o,N. The fact that most o;E the pigment was ex-

cl~ded from Sephadex G-25 indicated an average molecular weight in 

. excess of 3000. 

NMR spectra of the isolated pigment in D2 0 (Figure 2) showed that 

about 8 of the 18 protons exchanged instantly with D2 0. This fact cou-

pled with the strong absorption between 3500 and 3700 cm-1 in the infra-

red Elpectrum (Figure 3) was interpreted to mean that these protons were 

hydroxyl or enolic. The strong absorption between 1500 and 1700 cm-1 

was thought to arise from carbonyl groups conjugated with double bonds. 

However, since evidence for protons of the '=C- type was l1;tcking in the 

NMR spectrum, it was postulated that the double bonds indicated in the 

infrared spectrum were enolic and that the protons had exchanged with 

D2 0. Absorption in the NMR spectrum between 3.8 and 4.8 ppm indicated 

approximately 8 protons o;E the ®-~-OH type. The remaining protons were 

probably of the type H-¢~as indicated by weak absorption at 0.5 ppm. 

The~e spectral data coupled with elemental analysis indicated that 

the brown polymer was probably composed of residues from both carbohy-

c;lrates and amino acids at a frequency of about two, six carbon sugars to 

one amino acid nitrogen atom .. Oxidation or losses of the elements of 

water along with facile rearrangements could account for the presence of 

enolic protons. 

Neutral and cationic species in the desalted flavor precursor frac-

tion were separated and treated as described in the section entitled 
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"Browning Reactions in Modified Flavor Precursor Fractions." Table IV 

shows that significant browning occurred i,n the c~tionic fraction only 

in the presence o~ added carbohydrates. Fructose was a more efficient 

reactant in the browning reaction than glucose or sucrose at the same 
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. concentration. Naximum browning occurred in the reaction that contained 

glucc;,se and frgctose. The reaction mixt;:ure containing sucrose did not 

brown readily which was the expected result if browniJlg was dependent on 

the presence of a. re9ucing group. Song and Chichester (38) demonstrated 

that a reducing group is required for significant browning. 

Since the reaction mixture containing both glucose and fructose did 

not produce as much brown pigment as would have been expected from the 

sum of the pigment produced from ·glucose and fructose alone, the amount 

of cationic constituents in the mixture containing both glucose and 

fructose probably was the limiting reactant, 

To the extent that non~enzymatic browning indicated the formation 

of compounds whi.ch may play a role in the flavor of heated foods 

(Chapter II) amino acids and/or other cationic constituents must be 

important i,n the production of typical peanut flavor. 



TABJ.,E IV 

BROWNING OF CATIONIC CONSTITUENTS OF THE 
FLAVOR PRECURSOR FRACTION IN THE 

P~ESENCE AND ABSENCE OF 
ADDED CARBOHYDRATES 

mg p;i.gment 
Reactant Added* in 10 hours 

No additions** o.oo 

1 ml O.SM fructose 1.54 

1 i,nl 0.5M glucose 1.39 

1 ml O.SM sucrose 0.68 

glucose and fructose 1.85 

sucros.e and fructose 1.64 

sucrose and glucose 1.48 

sucrose, glucose and fructose 1. 63 

formed 
heating 

*All reaction mixtures contained 5 ml of the c:at:i,.onic fraction 
from the Dowex-50 column as described in the procequre. 

**l'his mixture browned slightly and was used as a plank. 
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CHAFTER IV 

FRECURSORS OF 'r'{PICAL AND ATYPICAL 

ROASTED PEANUT FLAVOR 

Introduction 

Earli(:!r work from tll,is laboratory described the isolation of a fla .. 

vor precursor fraction of raw peanuts which consisted of low molecular 

weight compounds rather than proteins or poly~accharides. Paper chroll18. .. 

togra~hy of the fraction containing the flavor precursors indicated 

further the presence of ninhydrin positive and basic c;::ompounds (7). 

Any compound that is a flavor precursor must, by nature, be a sub .. 

stance of low volatility which can be co~verted to a more volatile one 

during heating .. The authors' approach to the pea11ut flavor precursor 

problem was to analyze t~e heated and unheated flavor precursor fraction 

or extracts of raw and roasted peanuts. Knowing the volatile compounds 

produced (11,13,14,75) and the non-volatile material degraded allowed 

the postulation of a mechanism to explain the decrease in flavor pre .. 

cursor concentration during roasting and the production of compounds 

which exhibit typical roasted peanut flavor. A similar approach has 

been employed in cocoa flavor precursor work (21,24~25). 
' C 

Procedures 

Determination of Peanut Maturity 

Peanuts having dat:k colored interior perical!p surfaces and thin 

pink colored testa were classed as mature; those having light colored 
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interior pericarp surfaces and fleshly white testa were classed as im-

mature. J?eanuts falling between these extremes were classified a,s inter-

mediate in maturity. The peanuts from the maturity classes used in the 

work presented here were large enough to be retained on a 15/64 x 3/4-

inch screen. 

Subjective Analysis of Peanut Flavor 

A flavor panel consiting of five members was instructed to,rate the 

flavor of four coded samples of ground, roasted plus coded and uncoded 

standards of Argentine Spani$h peanuts. The Argentine Spanish standard 

has consistently proven to have superior organoleptic properties over 

several years of testing. The organoleptic evaluation was reported on 

rating sheets like that shown in Figure 4. Mean preference rank was ob-

tained by taking the average of the preference rank given by each panel 

member to a particular sample. The mean preference ran~ is an estimate 

of peanut flavor in numerical terms as compared to a standard. The 11).ean 

preference ranks reported in this ,thesis represent·an average of two 
.:/ 

separate determinations. In each replication, the sample in question 

was roasted immediately befo+e it was presented to the panel. Due to 

variations in the roasting process and the inF'-bility of the panel to 

detect subtle flavor differences, the two replications of the mean pref-

erence rank were seldom exactly the same. For example, sample 2 (Table 

VI) had a mean preference rank of 2.4; sample 1 had a mean preference 

rank of 2.2. 'fhe former sample was considered to have better flavor 

because the panel rated it, with respect to flavor, superior--or equal--

to the standard (Figure 4) more consistently than the latter one. 

According to taste panel results, samples 1, 3 and 5 had flavor 

somewhat inferior to samples 2, 4 and 6. The difference in flavor of 
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4. Good 4. Sweet 4. Over ~- Oily 
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the peanµt sam{'les used in this work was due to the degree of maturity 

of the samples. All samples were of the same variety, grown at the same 

location, and processed in the same manner. Samples 1, 3 an9 5 were har .. 

vested September 18, 19Q5, and were more ir.runatt,1re; samples 2, 4 and 6 

were harvested on October 9, 1965. The mean preference ranks for sam .. 

ples 1, 2, 3 and 4 were 2.2, 2.4, 3.6 and 2.4 respectively. 

· Preparation of Peanuts for NaCl or Perchlori~ Acid Extraction 

Raw peanuts ground with a food grinder or ground ~oasted peanuts 

were extracted with redist~lled n .. hexane in a soxhlet extractor. After 

the solvent was removed by evaporation, the dry peanuts were ground to a 

fine powder and the fat .. free meal was stored in tightly stoppered bottles 

at room temperature prior to further extraction. 

Preparation of a Peanut Flavor Precursor Fraction 
I 

The flavor precursor fraction from 2 kg of raw fat-free peanuts was 

obtained by extraction with 15 liters of lM NaCl solution. The extract 

was concentrated to 1 liter by rotary evaporation and the evaporated 

extract was subje.c:::ted to gel filUation on a 10,8 liter column of Sepha,.. 

dex G.:.25. From the Sephade.x column was collected the flavor precursor 

fraction. described by Mason and Waller (7). 

Perchloric Acid Extraction 

Ground fat-free meal was stirred w;i.th 3N perchloric acid (25 ml of 

3N HC104 per gm of fat-free meal) on a magnetic stirrer for 1 hour at 

4°C. The acidic extract was centrifuged at 10,000 x g :in tp.e c:old to 

remove insoluble material. The pH of the supernatant liquid was adjusted 

to 7.0 w:i.th saturated KOH; the KG104 formed was removed by pigh speed 

.centrifugation at 4°C. The clear supernatent liqu.id was lyopbilized to 



dryness and redissolved in a minimum volume of 0.2 N citrate buffer at 

pH 2.2. Hydrolysis of amide nitrogen was not a problem as judged by the 

absence of hydrolysis of glutamine and asparagine standards which were 

treated in the same manner. 

Preparation of Samples for Carbohydrate Analysis 

Fat-free meal (0.5 gram) was extracted for 24 hours with 100 ml of 

80% ethanol in a soxhlet extractor. The volume of the extract was re-

duced to about 15 ml by rotary evaporation and placed on a 0.8 x 20 cm 

column of Amberlite CG-120 (100-200 mesh) in the sodium form. Neutral 

compounds were eluted from the column with 50 ml of deionized water and 

the eluate was lyophilized to a solid residue. The residue was dis-

so~ved in 2 .0 ml of N ,N .. dimethylforrnamide and allowed to stand at room 

temperature for about one hour to achieve dissolution. The following 

additions were made to the dimethylformamide solution in the order: 

.0,5 ml of pyridine, 0.4 ml of hexamethyldisilazane and 0.2 ml of tri-

methylchlorosilane. One ml of· a standard sohition containing 8 µ.mole 

each of ribose, fructose, glucose, inositol, and sucrose was treated in 

the same manner as the samples from peanuts. Sugar concentrations were 

calculated by comparison of sample peak, areas with corDesponding peak 

areas of the standard. 

Gas Chroinatography of Trimethylsilyl Ethers 

Gas chromatography·was conducted on a Perkin.;.Elmer model 801 gas 

chromatograph equipped with a hydrogen flame ionization detector. A 

6 foot x 1/4 inch o.d. glass column packed with 5% (w/w) SE-52 on 100-

110 mesh Gas Chrom Q operated at a nitrogen flow rate of 60 ml per 

minute and temperature programmed from 120-250°C was used to separate 



the trimethylsilyl derivativ~s. 

Amino Acid Analyses 

Amino acid contents of perchloric acid extracts obtained as pre

viously described were determined with a Beckman 120-C Amino Acid 

Analyzer using Beckman PA-28 1;tnd PA-35 resins respectively. 

Gross Changes in the Flavor Precu+sor Fraction During Heating 

50 

A NaCl solution (saturated at room temperature) of the flavor pre

cursor fraction obtained in the manner previously described which con~ 

tained 13.5 grams of total organic solids was refluxed for 15 hours at 

105°C, Total ninhydrin positive material (76), pentoses (77), carbohy

drates (78) reducing sugars (79), and organic solids (64) were determined 

Qefore and after refluxing using published procedures. 

Results and Oiscussion 

The Effect of Heating on the Flavor Precursor Fraction 

The heated and, unheated flavor precursor fractions were analyzed as 

previously described. Table V shows that total carbohydrates and amino 

acids decreased, pentose sugars and total organic solids remained rela

tively constant, and reducing activity increased sharply during reflux

ing. The biuret test (80) indicated that the flavor precursor fraction 

contained only traces of peptides after residual protein was precipitated. 

The results of the analysis for ninhydrin positive material and 

total sugars indicated that amino acids and carbohydrates had reacted in 

1;1ome manner and that both were modified during the process. The ob

served increase in reducing power was explained by hydrolysis of sucrose 

or by a process in which carbohydrates were converted to reductones (37). 

The fact that total organ{c solids decreased only slightly during the 



TABLE V 

CHANGES IN COMPOSifION OF THE FLAVOR PRECURSOR 
FRACTION DVR,ING REFLUXING 

Total in Milligrams 

Before After Change 
Treatment Heat:J,.ng Heat;ing During 

Heat;i.ng 

Ninhydrin {as leucine) 517 263 - 254 

Orcinol {as ribose) 16 15 1 

Anthrone (as glucose) 8915 6360 -2555 

Al~aline copper 470 640Q +5930 
{as glucose) 

Total Organic Solids 13500 12750 - 750 
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. Percent 
Change 

49.1 

6.3 

28.6 

1261.9 

5.6 
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heating process meant that mosi of the material produced during heating 

was of low volatility. 

The formation of large amounts of polymeric material was evidenced 

by formation of condderable insQluble dark co1-QX#d material in the fla-
. ,,":"-O .... ,. .. 

vor precursor fraction during h~ating. When a portion of the heated 

saline solution was dialyzed agl;linst dei.o.nized :wat,er, ..the l>row.n .. .mat.er-ial 
·., 

remained inside the dialysis tubing. 'l'he nondialyzable materia:l was 

lyophilh:ed to dryness, redissolved in a minimum of water, and subjected 

to gel filtration on a 20 x 3 cm column of Sephadex G-25. The brown 

material which was completely excluded from the gel was collected, lyo~ 

philized and analyzed for carbon, nitrogen, hydrogen, and ash. The 

analysis (C 37.86, H 5.01, N 3.97, ash 12.70, and Oby difference 40.46) 

corresponded to an empirical ~ormula of C11 H18 09 N. The results of these 

experiments indicated that amino acids and carbohydrates of the flavor 

precursor fraction were undergoing chemical changes. 

Chan~es in Individual Amino Acid Concentrations Durin~ Roasting 

Amino acids can give rise to aldehydes by Strecker degradation and 

can serve as the source of nitrogen for the formation of pyrazine com-

pounds (30,37). That these compounds are produced during roasting of 

peanut;.s was indic1;1ted by recently published results (13,14,75) in which 

pyrazines and aldehydes were shown to.represent the major classes of 

organic compounds evolved frolll peanuts during roasting. Data presented 

in Tables VI and VII indicated very strongly that.amino acids and sQgars 

were the precursors of these volatile flavor components in. roasted 

peanuts, 

Table VI shows amino acid concentrationl:i (expressed in µ.moles per 

gm.of fat-free peanut meal) in raw and roasted peanuts and the ratio: 



TABLE.VI 

AMINO ACID CONCENTRATIONS (µMOLES/G~ OF FAT-FREE MEAL) 
AND RAW/ROASTED RATIOS IN FULLY MATURE 

AND lNTERMEDIATE MATURITY PEANUTS 

FULLY MATURE. INTERMEDIATE MATURITY 
Amino Acid SamJ:!le l SamJ:!le 2 SamJ:!le ~ SamJ:!le 4 

Raw- Roasted Ratio Raw Roasted Ratio Raw Roasted Ratio· Raw Roasted - Ratio 

Aspartic acid 0.58 0.73 0.79 o.88 0.58 1.52 _- 0.58 o.44 1.33 1.02 o.88 1.16 

Threonine 0.73 0.58 1.26 0.29 0.12 - 2.42 o.88 0.58 i.52 o.44 _0.29 1.52 

Serine 1.17 o.88 1.33 0.58 o.44 1.32 1.61 1.02 1.58 1.75 o.88 1.99 _ 

Asparagine and 
Glutamine 2.19 1.32 1.66 2.92 o.88 3.32 2.49 1. 02 2.44 4.53 1.46 3.10 

Pro line 1.32 1.17 1.13 1.02 0.58 1.76 1.02 o.88 1.17 2.19 1.02 1.98 
Glutamic Acid 7.02 3.95 1.78 7.89 2~34 3.37 _ 7.02 _ 3.36 2.09 11.26 3.07 3.67 

-Glycine- 1.17 1.02 1.15 o.44 o.44 1.00 1.75 1.17 1.50 1.61 0.73 2.21_ 

Alanine 4.68 3.22 1.45 - 2.05 1.32 1.55 8.19 5.41 1.51 5.56 3.36 l.65 

Valine 1.32 1.02 1.29 -o. 7} 0.29 2.52 1.75 1.02 1.72 1.90 o.88 2.16 

Unknown 2.92 1;32 2.21 4.09 o.44 9.30 1.90 0.73 2.60 1.46 0.29 5.03 
·Methionine· 0.29 0.15 1.93 0.29 0.15 1;93 0.15 0.15 1.00 0.29 0.15 1.93 

.Isoleucine 0.73 0.58 1.27 0.44 0.29 1.52 o.88 o.44 2.00 o.88 o.44 2.00 

Leucine 0.58 o.44 1.32 o.\4 0.15 2.93 0.73 0.44 1.66 0.73 o.44 1.66 

Tyrosine 0.44 0.44 1.00 0.15 0.15 - 1.00 0.73 o.44 l.66 0.29 0.15 1.93 -

Phenylalanine 2.19 2.63 0.83 2.34 1.61 1.46 2.05 1.32 1.55 1.75 1.46 1.20 

13-alanine trace trace -- 0.15 trace -- trace trace -- trace 0.15 

Lysine o.88 . 0.58 1.52 o.44 0.15 2.93 o.88 0.73 1.21 0.73 0.29 -2. 52 

Histidine o.44 0.29 1.52 0.29 0.15 1.93 0.58 0.29 2.00 0.58 0.29 2.00 

Ammonia 1. 75 4.09 o.43 0.73 0.58 1.26 2.34 4.97 o.47 2.63 6.43 o.41 

Arginine 1.46 1.17 1.25 1.46 1.32 1.11 1.32 2.19 0.60 1.61 1. i.7 1.38 

Tryptophan 0.29 0.29 1.00 o.44 0.29 1.52 0.73 0.44 1.66 0.58 0.29 2.00 

VI 
w 
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µ.moles per gm raw I µ.moles per gm roasted. Several conclusions were 

drawn from examination of these data. First, regardless of the maturity 

category studied, glutamic acid, asparagine .. glutamine, the unknown a.mino 

acid, phenylalanine, and alanine made up most of the total free amino 

acids and probably were the most important as flavor precursors. Sec

ondly, with the exception of the under-roasted sample (Sample No, 1) the 

raw/roasted ratios {or a given amino acid in different samples were 

fairly consistent. The raw/roasted ratios of the under-roasted sample 

were consistently lower than the average of the other three samples with 

the exception of the very minor components: methionine, lysine, and 

arginine. This result would be predicted if destruction of amino acids 

were a function of the duration of roasting. 

These two facts show that free amino acids were destroyed during 

roasting to a degree approximately proportional to their original con

centration. Further, although initial concentrations of some free amino 

acids appeared to be a function of maturity, the proportion of each de

graded during heating was fairly constant; from sample to sample. 

The observations prompted the authors to consider kinetic control 

as the control mechanism in the conversion of amino acids to flavor com

pounds during roasting. If kinetic control were independently operative 

(i.e., if available energy were not a limiting factor) one would expect 

the raw/roasted ratios for a given amino acid in different samples to 

remain relatively constant provided the samples were roasted to the same 

extent. 

Breakdown of all carbohydrates in the better flavored peanuts 

(Table VII) in each maturity class was of the order of 4 to 10 µ.moles 

per gm, assuming that all sucrose lost was converted to fructose and 



Sample 
Designation 

MATU~E 

Sample 1 

Sample 2 

INTERMEDIAl'E 

Sample 3 

Sample 4 

TABLE VII 

GAS CHROMATOGRAPHIC ANALYSIS OF TRIMETllYLSILYL 
ETHERS OF CARBOHYDRATES FROM RAW 

AND ROASTED PEANUTS 

Raw Roasted, Change, 
µ,mole/ µ,mole/ µ,mole/ 

Carbohydrate gm gm gm. 

fructose 6.22 11.42 + 5.20 

glucose 6.90 15. 72 + 8.82 

unknown 5.87 2.96 2.91 

inositol 2.48 3.34 + .86 

sucrose 312.00 262.00 .. 50.00 

fructose 4.18 4.62 + .44 

glucose 4.00 5. 72 + 1. 72 

unknown 3.36 1.22 - 2.14 

inositol 1. 78 1.44 .34 

sucrose 266.00 266,00 0.00 

fructose 4.38 4. 76 + .38 

glucose 3.27 3.64 + .37 

unknown 1.39 1.18 .21 

inositol 5.30 3.98 1.32 

sucrose 299.00 188.00 -111.00 

fructose 6.24 5.36 .88 

glucose 3.82 5. 74· + 1.92 

unknown .2.36 1.08 1.28 

inositol 3.02 2.46 .Sq 
sucrose 236,00 232.00 - 4.00 

55 

% Change 

45.5 

56.1 

49.6 

25.7 

16,0 

9.5 

31.1 

63.7 

19.1 

00.0 

8.0 

10 .2 

15.1 

24.9 

37.1 

14.0 

33.4 

54.2 

18.5 

1. 7 
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glucose; breakdown of amino acids was rqughly twice that of the carbo-

hydrates. This fact suggested that these two classes of compounds re-

acted in a two to orie stoichiometric ratio during roasting. However, 

under the conditions of roasting (Z10°C in :a non .. aqt,1epu~ medium) gltita-

!lline and glutamic acid can readily self condense to form pyrolidone .car-

boxylic.acid (81) and thus inay .not have reacted in the same manner as 

other amino acids. 

With the thought in mind that the initial concentration of each 

amino acid controlled the extent to which it was degraded during roast-

ing (kinetic control), the authors derived an equation which related the 

concentration of amino acid flavor precursor in the raw peanut with sub-

jectively measured flavor. As a first approxiffii:ltion, based on the evi-

clence, the assumption was made that typical flavor was directly 

proportional to the concentration of each amino acid flavor precursor, 

Flavor a Cp, where Cp was the measured flavor precursor concentration in 

the raw peanut. Since mean preference rank (M) decreased as typical 

flavor increased (i.e., M was a smaller number for a better tasting sam

ple," or Flavor Q' it) it followed from these proportionalities that another 

1 1 
could be written, Cp a Mor Mot Cp' Insertion of tpe constant Kr (the 

flavor function constant) into the second proportionality yielded: 

M = K'i' /Cp ( 1) 

which was rearranged to give; 

l<r = MCp (2) 

:I;f the assumption that typical flavor was pro:portional to fll:lvor pre-

cursor concentration was justified, the proportionality constant Kr, for 

any given p:i:ecut;sor in one peanut sample, should be equal within experi-

mental error of determining Mand Cp, to Kt fc;ir that precursor in any 
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other sample regardless of the flavor of the two samples. If, however, 

the flavot;" precursor in question produced compounds associated with 

atypical or off-flavor then Kr values for a given precursor in two 

different samples would not agree since the assumption that typical fla

vor was proportional to flavor precursor concentration would not be 

satisfied. These statements would apply only to those samples which 

were roasted to the same extent. Since the raw/roasted ratio would in

crease with heaviness of roast and would decrease with lighter roasting; 

- the inclusion of the raw/roasted ratio (R) in Equation 2 reduced all 

samples to an identical heaviness of roast. Division of the right side 

of Equation 2 by R yielded1 

Kr = MCp/R (3) 

Kt values calc1,1lated from Equation 3 m;;ing the data in_ Table VI, 

ratios of Kr values, and average Kr ratios for the amino acids occurring 

in peanuts of two maturity c;las.ses were determined. The results are 

tabulated in Table VIII. Ratios near l .Q indicated those amit10 acids 

which contributed to typical flavor; those which departed sharply from 

1.0 indicated precursors of atypical or off-flavor. The amino acid con~ 

centration qata are much more precise by nature than the mean preference 

rank data. Therefore tqe agteement of the Kt values can be no better 

than the precision of vahles for the least precise measurement; namely, 

t;he mean preference rank. The arbitrary limits set for average Kf' 

values of precursors of typical flavor were Kr = 1.0 - 1. 7; Kr values 

greater than 2.5 were considered to indicate that the aiµino acid was a 

precursor of atypical flavor. 

On the basis of these calculations, aspartic acid, asparagine

glutamine, glutamic acid, phenylalanine, and histidine were considered 



TABLE VIII 

Kt VALUES, RATIO OF Kf VALUES, AND AVERAGE RATIOS OF Kf VALUES 
IN INTERMEDIATE MATURITY AND FULLY MATURE PEANUTS 

Mature Intermediate Aver~,r 
Amino Acid Sample 1 Sample 2 Ratio Sample 3 Sample 4 Ratio Ratio Interpretation 

Std. Deviation 

Aspartic Acid 1.6 1.4 1. 1 1.6 2.1 1.3 1.2 "!: 0.1 T 

Threonine 1.3 0.3 4.3 2.1 0.7 3.0 + 3. 7 - 0. 7 A 

Serine 1.9 1.1 1. 7 3.7 2.1 1.8 1.8 '! 0.1 X 

Asparagine and + Glutamine 2.9 2.1 l.4 3.7 3.5 1.1 1.3 - 0; 1 T 

Pro line 2.6 1.4 1. 9 3.1 2.4 1.3 1.6 t 0.2 * 
Glutamic Acid 8.7 5.6 l. 6 12.l 7.4 1.6 1.6 t 0;0 T 

Glycine 2.2 1.1 2. ') 4.2 l. 7 2.5 2.3 t 0.2 X 

Alanine 7.1 3.2 2.2 19.5 8.1 2.4 2.3 t 0.1 X 

Valine 2.2 0.7 3.1 3.7 2.1 1.8 2.5 t o.6 * 
Unknown 2.9 1.1 2.6 2.6 0.7 3.7 3.2 t o. 5 A 

Isoleucine 1.3 0.7 1. 9 1.6 1.1 1.5 l. 7 t 0.2 X 

Leucine 1. 0 0.4 2.5 1.6 1.1 1. 5 2.0 t 0. 5 * 
Tyrosine 1. 0 o.4 2.5 1.6 0.4 4.0 3.3±0.7 A 

Phenylalanine 5.8 3.9 1. 5 4.8 3.5 1.4 1. 5 t 0.1 T 

Lysine 1.3 o.4 3.3 2.6 0.7 3.7 3.5 t 0.2 A 

Histidine 0.6 0.4 l. 5 l. 0 0.7 1.4 1. 5 t 0.1 T 

Ammonia 9.0 1.4 6.4 17.9 15.4 1.2 3.8 t 2.6 * 
Arginine 2.6 3.2 1.2 7.9 2.8 2.8 2.0 t o.8 * 
Tryptopban 0.6 0.7 1.2 1.6 0.7 2.3 1.8 t 0.3 X 

T Precursor of typical flavor 
A Precursor of atypical flavor 
X Intermediate ratio, no prediction \JI 
* Anomolous ratios 00 
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to be precursors of typical peanut .flavor; threonine, the unknown, tyro

sine, and lysine were precursors of off-flavor, In Table VIII, precur .. 

sors of typical flavor were designated as T. whereas precursors of 

atypical flavor were designated as A. I- few averiage K, value ratios i,n 

Table VIII were anomolous in that they had large standard.deviations and 

could have been classified as either precursors of typical or atypical 

flavor. Some of the average K, values in Table VIII fell between the 

arbitrary limits set for precur·sors of typical flavor and precursors of 

atypical flavor. No predictions.were made conerning these amino acids. 

Kr values calculated from Equation 3 and ratios of K, valueis for 

immature peanuts are given in 'l:able IX, The ratio of Kr. values indica

ted that glutamic acid apd phenylalanine, as in mature .and intermediate 

maturity peanuts, were precursors of typical roasted peanut flavor. 

However, the results indicated, in cc;,ntrast to the results shown in 

Table VIII for mature and intermediate maturity peanuts, that serine, 

praline, alanine, valine, leucine, and isoleucine were precursors of 

typical flavor; asparagine-glutamine and aspartic acid were precursors 

of atypical flavor. 

The differences in interpretation between Tables VIII and IX prob

ably arose from the fact that Sample 5 had a very high mean preference 

rank (M = 4.0). In peanuts of such poor flavor, the mean preference 

rank must have deviated considerably from a linear function of roasted 

peanut flavor. This in turn caused anomolous results in K, values ~ince 

. it was assumed ;i.n the der.ivation of Equation 3 that typical peanut fla

increased in a linear fashion with decreasing mean preference rank. 

Equation 3 predicts that Kt values for precllrsoris of atypical fla

vor should be higher in poorer flavored peanuts than the corresponding 



Amino Acid 

Aspartic Acid 

Threonine 

Serine 

Asparagine and 
Glutamine 

Pro line 

Glutamic Acid 

Glycine 

Alanine 

Valine 

Isoleucine 

Leu cine 

Tyrosine 

Phenylalanine 

TABLE IX 

l(f VALUES AND RATIO OF Kf VALUES IN 
IMMATURE PEANUTS 

Kf 

Sample 5 Sample 6 
M=4.0 M=3.2 Ratio 

2.08 5.25 2.52 

2.08 1.05 1. 98 

3. 76 4.20 1.12 

3.36 9.45 2.82 

4.60 5.63 1.22 

10.00 14.33 1.43 

6.70 2.46 2. 72 

19.70 13.00 1.52 

3.76 3.84 1.02 

·1.68 1. 76 1.05 

1.68 1. 76 1.05 

1.68 

4.20 5.pO 1.33 
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value in good flavored peanuts since for a given M, Cp should be higher 

in poorer flavored peanuts. Table VIII shows that Kf values for threo-

nine, the unknown, tyrosine, and lysine were indeed higher in peanuts 

which had poorer flavor. The fact that in very immature pea nu ts, which 

have a very high level of off-flavor, the amino acid~ which were pre-

dieted to be precursors of atypical flavor occur at very high concen ... 

trations, tends to support the conclusions drawn from Kr values 

concerning precursors of atypical flavor, 

Similarly, the amino acids which contributed to typical peanut 

flavor according to calculatiQn of Kr values were the same ones whi~h 

made up about 50% of the total free amino acids in the fully mature 

peanuts. 

Changes in Carbohydrates During Roasting 

The data in Table VII showed that sucrose underwent only small 

decreases in concentration during roasting of peanuts having good flavor 

(Samples 2 and 4). The results might have been interpreted to mean t;hat 

sucrose ~ ~ was not involved in the production of flavor. This inter-

pretation agreed with the results of El'ode et al. (82) who showed th.at --
sucrose was much less :reactive in the browning reaction than monosac-

charides. 

Glucose and fructose must have been consumed during roasting since 

the increase in concentrat.ion of these sugars was less .than the amount 

which could have been produced from the hydrolysis of sucrose. 

Evidently, fructose was utilized in t;he reactions to produce vola-

tile compounds to a greater extent than glucose since the increase in 

fructose concentration during roa!ilting of peanuts was less than that of 

glucose. This result was reasonable in. light of the work of 
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Casey et al. (74) who showed that fructose exhibited much higher rates --
of prqduction of volatiles than glucose in model hexose-amino.ac;i.d 

systems. 

Monosaccharides are extremely important in the formation of pyra-

zine compounds which have been implicated as the character impact com-

pounds of roasted peanuts (7). Wiggins (58) observed that ammonia 

heated with an acid hydrolyzed (inverted sucrose) sample of molasses 

gave a variety of pyrazine compounds; unhydrolyzed molasses took up only 

about one-half as much ammonia, Evidence discussed in Chapter VI with 

model glucose-amino acid systems showed that qualitatively the S(:lme 

volatile pyrazine compounds were produced regardless of the amino acid 

employed as the nitrogen source. 

Hypothetical ~echanis[Jl for the Conversion of Amino Acids and Carbohy-
' 

drates to Volatile Comeounds 

Consideration of the results obtained in this work led the authors' 

to postulate a plausible mechanism, shown in Figure 5, for t;he conver-

sion of amino acids and sugars to volatile compounds associated with 

peanut flavor. The mechanism, which includes ideas set forth by Hodge 

(37 ,46) and B,ohan and Stewart (21), involves the initial addition of an 

amino·acid to the anomeric;; carbon atom.of an aldose followed by dehydra-

tion to the 1,2-.eneaminol (I) and elimination of hydroxyl ion to give 

the Schiff base cation (II). The Schiff base cation can undergo hydrol-

ysis to an a-dicarbonyl compound (III) which is converted to browning 

pigments by a series of steps. Alternatively, the Schiff base cation 

(II) could decarboxylate to the imine (:IV) which would rapidly p.ydrolyze 

to yield ai;i aldehyde and a dieneamine (V). Enolization of the 1,2 

double bond and migration of the 3,4 double bond yields the unsaturated 
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ketoamine (VI). This compound then could undergo retro-aldol cortdensa-, 

ti9n to yield amino acetone and glyceraldehyde. Condensation of two 

moieGules of amino acetone yields 2,5 ... dimethylpyrazine (VII) which was 

one of the major pyrazine compounds found in roasted peanuts (13,75). 



CHAPTER V 

PRODUCTION OF PRECURSORS OF TYPICAL A~D ATYPICAL 

PEANUT FLAVOR IN MATURING PEANUTS 

Introduction 

Immature peanuts, even when correctly cured, possess a high level 

of off-flavor. It was suggested in Chapter IV that amino acids and car

bohydrates are the precursors of the compounds that give roasted peanuts 

their flavor. Further, it was suggested that aspartic acid, glutamic 

acid, glutamine-asparagine, histidine, and phenylalanine were the pre

cursors of typical peanut flavor; threonine, tyrosine, lysine, and an 

unknown amino acid were considered to be precursors of atypical flavor. 

· If the previous suggestions that certain amino acids are required 

for the production of typical peanut flavor while others produce atypi

cal- or of~-flavor are true, then one would expect that one or both of 

two events would occur: Precursors of typical peanut flavor would in

crease in concentration during maturation or precursors of atypical 

flavor woulq decrease in qoncentration as maturity was approached. 

Procedure 

Collection of Samples 

Argentine-Spanish peanuts, which were planted on the same date and 

grown in pots in a plant growth chamber in a randomized block design 

were harvested periodically by removing two pots (replicates) from each 

block .. During the maturation of the plant, pegs were dated at the time 

65 



66 

o:f their appearanc;:e and at each harvest date the peanuts were divided 

into three groups, Peanuts in group A were those.whose pegs appeared 

earliest of those harvested; group B represented peanuts of interm~.diate 

age and group C contained peanuts harvested from the most recent pegs. 

Therefor~ in group A were peanuts having a long growing season and group 

C peanuts were those having the shortest growing season. In addition, 

peanuts within each harvest date were classified as mature, intermediate 

in maturity, or immature according to external seed characteristics as 

described in the section of Chapter IV.entitled "Oetermination of 

Peanut Maturity." 

Extraction and Determination of ~ndividual Amino Acids and Carbohydrates 

Flavor precursors were extracted and estimated using p:r;ocedures out

lined in Chapter IV in the sections entitled "Preparation of Peanuts for 

NaCl or Perchloric Acid Extraction," "Percl:tloric Acid Extraction," 

"Preparation of Samples for Carbohydrate Analysis,'.' "Gas Chromatography 

of Trimethylsilyl Ethers," and "Amino Acid Analyses." 

~esults and Discussion 

In a preliminary experlment, the replicE1,tes from each harvest date 

from the mature peanuts of group A were combined and in like manner~ the 

immature peanuts from each harvest date of group C were combined. 

Amino acid analyses we:r;e performed on these s~mples as described in 

the "Procedure" section of this chapter. The concentration of ind;ividual 

amino ~cids in these samples is presented in Table X. Proline and 

serine values from group C harvest 7/2/66 were not. calculated due to 

malfunction of the amino acid analyzer. There were no group A peanuts 

available from the 5/8/66 harvest date (i.e., there were no peanuts 



TABLE X 

AMINO ACID CONTENT (µMOLES/GM FAT-FREE MEAL) OF PEANUTS CLASSIFIED 
INTO THREE GROUPS ACCORDING TO AGE WITHIN HARVEST DATE 

Oldest (Grou2 Al Yountest (Gro~ Cl 
Harvest Date 6/5 6/11 6/11 6/25 7/2 7/9 5/28 6T 6 11 7/2 
Sample No. 2 3 4 5 6 i l 2 ' 6 

Aapartic l.65 1.54 1.78 1.58 1.98 1.,9 2.48 4.05 1.44 8.89 

Threonine 0.-24 0.24 o.4o o.4o o.4o o.4o o.88 1.19 0.67 2.,1 

Serine 0.71 1. 07 0.99 0. 79 0.99 o.4o o. 1, · 1.19 0.58 

Alparagine and 
Glutamine 4. 73 3.33 2.38 2.18 3.37 2.18 6.72 10.48 7.40 11.66 

Pro line 1.18 2.61 0.79 o.4o 0.59 - 2.19 1.90 2.79 

·Glutamic 11.58 ,.92 , 1. 58 1.58 20.59 13.66 8.~7 16.43 3.75 26.48 

Glycine 0.71 0.95 0.79 0.99 o. 79 0.59 0.58 0.71 0.38 1.98 
' 

Alanine 1.42 1.43 1.19 1.19 1.,9 1.19 2.o4 2.86 1.44 5.34 

Valine o. 71 0.83 0.59 0.59 0.79 0.59 0.44 0.71 0.29 1.19 

Half•Cystine* ,.31 3.92 8.12 9.90 14.45 9.90 2:34 4.29 0.77 5.73 

l.soleucine 0.24 0.36 0.40 0.40 0.59 o.4o 0.15 0.24 0.10 0.59 

Leu cine o.47 0.36 0.20 0.20 0.20 0.20 0.29 0.24 0.10 0.59 

Tyrosine 0.05 0.12 trace 0.20 0.20 0.20 0.15 0.14 · o.06 0.20 

Phenylalanine 0.71 0.83 2. 77 3.76 5.35 2.57 0.29 0.71 0.29 1.19 

Lysine 0.30 0.14 0.17 0.25 0.20 0.20 1.75 l.67 3.83 .2.47 

Histidine 0.02 0.07 0.14 0.12 0.25 0.20 0.44 0.71 o.42 0.74 

As>onia 0.89 0.71 3.11 1.~9 l. 73 7.92 o. 73 0.95 0.42 0.74 

Arginine 1.18 o.48 0.45 0.50 0.50 0.59 21.46 18.33 12.0S 33.33 

* Recently found not to be cysteine °' ...... 
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having .mature seed characteristics in this early harvest date.) 

Certain conclusions of considerable ;interest were drawn from the 

data. First, in group A, the concentration of aspartic acid, glutamic 

acid, glutamine-asparagine, phenylalanine and histidine (;i.e., the amino 

acids implicated in the production of typical peanut flavor in Chapter 

IV) either remained relatively constant or tended to increase with age. 

~ext, the concentration of threonine, tyrosine, and lysine (amino acids 

implicated in the production of atypical peanut flavor in Chapter IV) 

remained relatively constant or decreased with age. The unknown amino 

acid which was thqught to be a precursor of atypical flavor increased 

significantly with age however. When the data of Table X were plotted 

(harvest date vs. amino acid concentration) a large amount of scattering 

of points was observed. This was attributed to sampling error and the 

inability of personnel to separate nature and immature nuts on the basis 

of seed characteristics alone. 

In an effort to minimize sampling error, the replicates of group B 

(peanuts of intermediate age) from each harvest date were combined. 

These samples contained peanuts of all maturity groups on the basis of 

seed characteristics. Table XII gives percent by weight of the various 

maturity groups within group B. Samples from the early harvest date 

contained more immaturity than samples from later harvest dates which 

was expected. 

Table XI gives amino acid contents in peanuts from various harvest 

dates; Figure 6 shows the same information in graphic form. Apparently 

sampling error was still prevalent but the conclusions drawn in Table XI 

and Figure 6were the same as those drawn from analyses of the older and 

younger peanuts (Table X). An interesting point brought out by the data 



TABLE.XI 

SYNTHESIS OF AMINO ACID FLAVOR PRECURSORS--AMINO ACID CONTENT {µMOLES/GM FAT-FREE 
MEAL) OF INTERMEDIATE AGE PEANUTS FROM EACH HARVEST DATE 

Harvest Date 5/28 6/4 6/11 6/18 6/25 7/2 7/9 
· Sample Number 1 2 3 4 5 6 7 

Aspartic Acid 4.5 1. 9 1.8 1.1 o.8 1.9 o.8 

Threonine o.8 0.3 0.5 0.2 0.2 0.3 0.1 

Serine o.8 0.5 0.7 0.3 0.2 0.3 0.2 

Asparagine + Glutamine 7.2 3.4 3.9 2.1 1.2 2.5 1.1 

Pro line 2.3 0.9 1. 5 o • .a o.6 1.0 o.4 
Glut-amic Acid 15.3 9.8 12.4 10.4 6.8 15.8 8.7 
Glycine 1.1 o.4 0.9 0.5 o.4 0.7 0.5 
Alanine 3.4 1.5 1.8 1.0 0.7 1.6 0.7 
Valine 0.9 o. 5 0.9 o.6 0.4 0.7 o.4 
Unknown 2.5 2.4 - 4.4 3.1 7.1 5.3 
Isoleucine 0.2 O.l 0.3 0.3 0.2 0.3 0.2 

Leucine o.4 0.2 0.3 0.2 0.1 0.2 0.2 

Tyrosine 0.1 0.1 0.2 0.1 0.1 0.1 0.1 

Phenylalanine o.6 o.4 0.9 1. 5 0.9 2.0 1.2 

Lysine 1.4 o.6 - 0.3 0.3 0.2 0.2 

Histidine 0.5 0.2 - 0.2 0.2 0.2 0.2 

Anunonia 1.1 4.2 - 1.4 0.9 0.7 o.6 
Arginine 16.4 5. 5 - 3.8 4.6 2.7 1.1 °' \.0 
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in Figure 6 was the sharp drop in glutamic acid concentration near the 

middle of the growing season followed by a sharp increase during the 

latter stages of the growing season. !his observation may be signifi

cant.in view of results presented in Chapter VI which show that the 

major portion of volatile pyrazine compounds in roasted peanuts probably 

arise from glutamic acid. 

The data of Figure 6 and Tables X and XI also indicated that the 

diffe,;ence in arginine conqentration between immature and mature peanuts 

was on the order of 20 to 40 fold showing that a chemical measurement of 

arginine content holds some promise as a sensitive method for the evalu

ation of immaturity in certain lots of peanuts. 

Carbohydrate concentrations in the peanut samples used for the 

amino acid analyses given in Table XI. and Figure 6 were determined as 

described in the "Procedures" section of this chapter. The results, 

which are given in Table XII and Figure 7, were not as dramatic as those 

ot the amino acid analyses but certain conclusions could be drawn. 

Total sugars decreased with peanut age but increased rather sharply at 

the latter stages of development. This trend was due largely to changes 

in sucrose concentration, but fructose seemed to follow the same trend. 

Glucose concenttation dropped off and then rose slightly at later har

vest dates; inositol concentration tended to decrease with age. 

Percent immaturity by weight was determined in these peanuts before 

analysis (Table XII) so that any variation in maturity might be accounted 

for in interpreting the results. Sample 6 contained a higher percentage 

of immature and intermediate maturity peanuts which probably accounted 

for values for amino acid.and carbohydrate concentrations which were 

out-of-line with surrounding valuea (Figure 6 .and Table XII). 
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TABLE XII 

SYNTHESIS OF CARBOHYDRATE FLAVOR PRECURSORS--SUGAR CONTENT OF FAT-FREE MEAL 
FROM INTERMEDIATE AGE PEANUTS FROM EACH HARVEST DATE 

Haxvest Date !!!!olesL&!!! fat-fre~ Meal Percent bI Weight 
Mature+ 

Month DaI Fructose Glucose Inositol Sucrose Total Mature Intermediate Intermediate 

5 28 7.0 6.8 6.0 328.; :;48.1 ;; ;6 69 

6 4 9.:; 5.9 4.7 :;01.6 321.5 54 :;4 88 

6 11 4.; :;. 8 :;.4 29:;.6 :;05.1 63 26 89 

6 18 :;.4 :;. 8 2.; 250.9 260.4 4:; 46 89 

6 25 7.1 4.4 2.9 2CX:i.o 220.4 50 :;8 88 

7 2 10.l 7.; 5. O ;o8.9 :;:;1.; 29 56 85 

7 9 7.8 4.; 2.1 284.o 298.; 45 45 90 
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,S:(.nce immature peanuts have poorer flavor than mature ones, one 

would predict tha.t precursors of typica~ _peanut flavor would increase in 

.concentration during maturation or that precursors of atypical flavor 

w<:>uld decrease in concentration dur.ing the same period or that both 

events would occur. 

The results presented in this chapt~r indicated that both events 

occurred during maturation of peanuts. The only exception was that the 

concentration of the unknown amino acid increased in concentration with. 

increasing age whereas its concentration was predicted to decreas'3 with 

age. 



CHAPTER VI 

FORMATION OF PYRAZINE COMPOUNDS 

IN MODEL SUGAR~AMINE SYSTEMS 

Introduction 

Mason et al. (13) showed that a number of simple alkylated pyra----
zines were contained in the volatile compounds obtained by high vacuum 

outgaSSing of rQasted peanuts. This group suggested that some of these 

pyrazine compounds were responsible for the roasted-nutty arpma of 

roasted peanuts. Deck and Chang (16) isolated 2,5-dimethylpyrazine from 

potato chips; Reichstein and Staudinger (28) and Goldman et al. (29) 
' . . ~~-

found pyrazines in roasted coffee. It was suggested in Chapter III that 

roasted Gocoa beans might also contain pyrazine compounds. 

In Chapter IV it was proposed that amino acids and carbohydrates 

were the precursors of volatile compounds responsible for the typical 

flavor of roasted peanuts. Since this was suggested, it was important 

to demonstrate that the peanut flavor precursors (amino acids and sugars) 

<;:ould give rise to peanut flavor compounds (pyrazines). 

- The work of Etard (52), Stoehr (53), Brandes and Stoehr (55), 

Stolte (~6), Tanret (57), Wiggins (58), Hough _2! !!!· (60), Hurd (63) 

and Dawes and Edwards (30) demonstrated that pyradnes were indeed 

formed in heated aqueous carbohydrate-amine or carbohydrate-ammonium 

.ion srstems. The preceding references were discussed in greater detail 

in Chapter II. 
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The early work concerning the formation of pyrazine compounds was 

carried Ol)t in aqueous model systems which were not a good representa

tion of a peanut-like situation. 

76 

The objectives of work presented in this chapter were to develop a 

model sugar-amino acid system which was more peanut-like than the aqueous 

ones used by earlier workers, to demonstrate the formation of peanut 

flavor components in this system and to try to gain some insight into 

the mechanismof formation of pyrazine compounds in amino acicl· 

carbohydrate systems of low water content. A further objective was to 

show that a model system containing a mixture of carbohydrates and amino 

acids qualitatively and quantitatively like that of peanuts could give 

the same distribution of volatile pyrazine compounds as that produced 

during normal roasting of peanuts. 

Procedure 

Materials--DL-aspartic acid (A grade), l.,-~lutamine (A grade) and 

D-asparagine hydrate were obtained from Calbiochem, Los Angeles, Cali

fornia; DL-glutamic acid-HsO and DL-phenylalanine were purchased from 

Nutritional Biochemicah Corporation, Cleveland, Ohio; diethylene glycol 

(histological) and sucrose were purchased from Fisher Chemical Company, 

Fair Lawn, New Jersey; D-glucose (A.R.) was obtained from the 

Mallinckrodt Chemical Company, St. Louis, Missouri; fructose (C.P.) was 

a product of Pfanstiehl Laboratories, Inc., Waukegan, Illinois; and 

methylene chloride was purchased from the Aldrich Chemical Company, 

Milwaukee, Wisconsin. Pyrazine, 2-methylpyrazine, 2,5-dimetJ,-iylpyrazipe, 

2-methyl-6-ethylpyrazine, 2-n-pentylpyrazine, and 2-methyl-5-n-pentyl

pyrazine were gifts from the Wyandotte Chemicals Corporation, Wyandotte, 

Michigan. Trimethylpyrazine, 2,6-dimethyl-.3-ethylpyrazine, and 
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2,5-dimethyl-3-ethylpyrazine were synthesized by alkylation of corre

sponding dimethyl compounds with ethyl lithium or methyl lithium, The 

last three compounds were synthesized by Mr. Philip Koehler in our lab~ 

oratory. The Thermocap relay was a product of the Niagra Electron 

Laboratories, Andover, New York. 

Methods--Model systems were routinely prepared by dissolving 10 

mMoles each o! the carbohydrate and amino acid in 20 ml of deionized 

water. The water solution of the reactants was transferred to 200 ml of 

diethylene glycol maintained at 120~123°C in a 250 ml round bottomed 

flask immersed in a mineral oil bath. The temperature of the mineral 

oil bath was maintained with a Thermocap relay connected to a 1000 watt 

immersion heater; both the oil bath and the reaction mi~ture were stirred 

with a magnetic stirrer. 

After heating had continued for 26 hours, the reaction mixture was 

transferred to a 250 ml separatory funnel connected to the inlet of a 

falling film evaporator. The falling film evaporator used in these 

studies was similar to that described by Herz and Chang (83) except that 

volatiles were trapped in a single cold finger trap at -196°C, the 

column was heated to 98°C, and the sample was introduced onto the col

umn from a separatory funnel. A smaller trap was placed between the 

vacuum pump and the larger trap to prevent volatile material from the 

vacuum or oil diffusion pumps from contaminating the volatiles produced 

during heating of the reaction mixture. The material obtained after 

heating the reaction mixture was passed over the ~vaporator three time~ 

at a rate of about 400 ml per hour to remove volatiles as completely as 

possible. The material collected in the large cold finger trap was 

transferred under vacuum to a detachable 100 ml flask connected to the 
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bottom of the cold finger trap by evaporating the liquid nitrogen in 

the trap with a stream of ~ir. After the liquid nitrogen had evaporated, 

warm water was poured into:the cold finger trap to cause the material 

c<;mtained in it to drop to the liquid nitrogen cooled 100 ml flask 

attached to the cold finger trap. After the transfer was complete, the 

small flask was removed from the cold finger trap and stored at -20°C 

prior to further steps. 

The collected material was allowed to warm to room temperature 

after which ultraviolet spectra were obtained on appropriate water di-

lutions of the falling film distillate. The material from the trap was 

extracted 5 times with 5 ml portions of redistilled methylene chloride. 

The combined methylene chloride extracts were dried over 2 gm of sodium 

sulfate after which the extract was reduced to a small volume by rotary 

evaporation. The evaporated extract was transferred quantitatively to 

a 3 ml volumetric flask and the contents were made up to volume with 

redistilled methylene chloride. Aliquots of this material were analyzed ,,, 
by gas liquid''cpromatography on a Perkin-Elmer Model 801 dual hydrogen 

flame gas chromatograph using the following conditions: Column--20 ft 

x % inch o.d. glass column containing 15% w/w Carbowax 20-M on Gas 

Chrom Q; flow rate--48 ml per minute of nitrogen; temperature--linear 

program from 75-l90°C at 4°C per minute, injector temperature 220°C. 

Gas chromatographic peaks were quantitated by comparison of peak 

area.s from samples with those of knowp weights of standards ch.romato-

graphed the same day under the same conditions. Duplicate analyses of 

the standard and samples were conductec;l and the results averaged to 

obtain the data presented in this chapter. 

A prototype of the LKB 9000 combination mass spectrometer-gas 
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chromatograph (MS-GLC) was used for mass spectral investigations. The 

conditions were as follows: Column and conditions--24 ft x \ inch o.d. 

glass column containing 5% w/w Carbowax 20-.M on Gas Chrom Q operated 

isothermally at 120°c at a helium flow rate of 40 ml per minute; mass 

spectrometer- ... electron energy 70 ev:~ trap current ·38 µ.amps, accelerating 

voltage 3,5 kv, multiplier voltage 2.1 kv, filter 120 cps, and molecule 

separator temperature 280°c. 

Results and Discussion 

A mixture containing about 0.21 gm of 2,5-dimethylpyrazine in 50 ml 

of diethylene glycol was passed over the falling film evaporator. Quan

titative ultraviolet spectra were taken on the material which did not 

distill to the cold finger trap. The results showed that 95.1% of the 

original absorbancy was removed after one pass Qver the evaporator; 

99.3% after two passes. 

A solution of 10 µ.1 o( 2-methylpyrazine and 10 µ.1 of 2-n-pentyl

pyrazine in 50 ml of water was prepared. Sixteen ml aliquots of tJ::iis 

solution were placed into separatory funnels and each aliquot was ex

tracted 3 times with~ ml of n-pentane, diethyl ether, or methylene 

chloride. It was found that after the third extraction about 4% of the 

original absorbancy remained in the aqueous layer when extraction was 

carried out with methylene chloride while diethyl ether or n-pentane 

failed to extract 26% and 61% of the original absorbancy respectively. 

Diethylene glycol (100 ml) was heated with 50 mMoles of ammonium 

hydroxide in water for 30 hours at 120°C. The material was passed over 

the falling film evaporator three times, extracted with methylene 

chloride and subjected to gas-liquid chromatography as described in the 

"Procedure"· section of this ·chap!=er •. No pyrazine compounds were 
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detected by ultraviolet spectrometry of the falling film distillate or 

by gas chromatography of methyl~ne chloride extracts of the distillate. 

A standard solution containing pyrazine, 2-.methylpyrazine, and 2,5-

dimethylpyrazine in 25 ml of methylene chloride was subjected to rotary 

evaporation as described in the ''pro~edur~' section of this chapter. 

Gas-liquid chromatograms of the solution were obtained before and after 

evaporation. It was found that about 83% of the pyrazine was recovered 

after evaporation; 92% and 96% of 2-methylpyrazine and 2,5-dimethyl

pyrazine respectively were recovered. 

This work showed that the solvent (diethylene glycol) when heated 

with a nitrogen s.ource produced no pyrazine compounds and that pyrazine 

compounds (except pyrazine itself) which. were produced in the sugar 

amino acid model systems could be recovered from .. the diethylene glycol 

reaction medium.in nearly quantitative yield. 

The retentio.n times of compounds producted in the model systems 

were compared with standards run under the same conditions. Retention 

times relative to that of 2-methylpyrazine were also calculated for each 

significant peak derived from the model systems (Table XIII). Equality 

of~ relative retention time of a sample peak with that of a standard 

one was routinely used for the identification of peaks from the various 

model systems. Mass spectra of peaks from the asparagine-glucose model 

system were identical with standards having the same relative retention 

time. This fact indicated that it was valid to identify peaks from the 

model systems on the basis of their relative retention times. 

Table XIV shows the total yield of pyrazine compounds (measured by 

total ultraviolet absorbancy at the absorption.maximumin the aqueous 

falling film distillates) from several of the model systems studied. 



TABLE XIII 

RETENTION TIMES AND RETENTION TIMES RELATIVE 
TO 2-:METHYLPYRAZINE OF GAS CHROMATOGRAPHIC 

PEAKS FROM THE ASPARAGINE-GLUCOSE 
MODEL SYSTEM 

MODEL SYSTEM STANDARD 

COMPOUND Retention Relative Retention Relative 
Time (min) Retention Time (min) Retention 

pyrazine 13.65 0.88 13.65 0.88 

2-methylpyrazine 15.50 1.00 15.55 1.00 

2,5-dimethylpyrazine 17.60 1.14 17.55 1.13 

2-methyl-6-ethylpyrazine 19.70 1.28 19.70 1.27 

trimethylpyrazine 20.30 1.31 20 .30 1.31 

2,5-dimethyl-3-ethylpyrazine 21.55 1. 39 21.60 1.39 

2,6-dimethyl-3-ethylpyrazine 22.20 1.43 22.20 1.43 

2-n-pentylpyrazine 27.70 1. 79 27.70 1. 78 

2-methyl-5-n-pentylpyrazine 29.90 1. 93 29.50 1. 90 

00 
I-' 



TABLE XlV 

TOTAL YIELD OF PYRAZINES PRODUCED FROM 
HEATED SUGAR-AMINO ACID OR SUGAR

AMMONIUM CHLORIDE MODEL SYSTEMS 

TOTAL YIELD ABSORPTION 
MODE;L SYSTEM (µMoles) MAXIMUM (mµ.) 

Asparagine-glucose 411 272 

Glutamine-glucose 205 272 

Aspartic acid-glucose 198 274 

Glutamic acid-glucose 114 274 

~ Cl-glucose 59 262 

N~Cl-fructose 195 280 

Asparagine-sucrose 268 274 

Asparagine-glucose- 11643 280 
acetaldehyde 
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The results indicated that the absorp~ion maximum was near that exp~cted 

for a mixture of pyrazines (A i:nax 2-methylpyrazine = 278 lllj.l,). Aspara

girie gave the highest yields of pyrazines when heated with glucose; 

glutamic acid the lowest. The table also shows that the yield for 

aspartic acid is nearly one-half that o.f asparagine suggesting that both 

nitrogens of asparagine were incorporated into pyrazines. The same was 

true when the glutamine-glucose system was compared with the glutamic 

acid-glucose system. The overall yield of pyrazines in the asparagine

glucose system was about 4% on the basis of 10 mMoles of glucose used as 

a reactant; the yield from glutamic acid and glucose was about 1%. 

One mechanism which could be postulated for the formation of pyra

zines involves the addition of ammonia, produced from the amino acid, to 

sugar degradation products to give reactive compounds, such as a-amino 

carbonyl compounds, which could form pyrazines readily (Chapter II) • 

Another possible ~echanism involves the initial rate limiting nucleo

phylic attack of the amino acid nitrogen on the carbonyl group of the 

sugar (38). In the first mechanism, the amino group of each amino acid 

. would ultimately be converted to ammonia and thus each amino acid would 

give the same distribution of pyrazine compounds and also the same prod

uct distribution as an ammonium salt heated with a carbohydrate. In the 

second mechanism, the ease of the initial nucleophyJ;ic attack would be 

influenced by the nature of the amino acid reactant and each amino acid 

would give different product distributions and product distributions 

different from an ammonium salt heated with glucose. 

Figure 8 shows the product distribution for a number of amino acids 

and ammonium chloride heated with glucose in the model system. The 

results clearly showed that amino acids gave product distributions very 



PERCENT ¥!ELD 
I\) -I=" 0\ OJ 

0 0 0 0 0 

ASN 

0 GLN 
GLU 

NH4cl 

PEANUTS 
ASN 

9 I GLN 
CW 

~ 
g ASP 

I-'• «> 
OQ 
i:: 
11 
Cl> PEANUTS· 

s: ASN 00 ·G) 

h GLN 

t::, \=.( GLU 
I-'• ;s: ASP ::c: Cl) a> 

Cl> rt 
lb 11 
rt I-'• 
I-'• C" ::s i:: 

OQ rt 
I-'• 

Cj) 0 

~ ..... ::s 
i:: 
n o 111 
0 '1-tt 

"' 
.... 

Cl) a rD "'d 

:el~ 
t, 

§ 
I-'• lb '"3 

rt N :s: ::T I-'• (11 

<~ ~ lb 
11 n ASP 
I-'• 0 111 
0 !3 .... 
i:: 't:I 
Cl) 0 

>6 :i:'. 
PEANUTS 

~- fr (11 

~ -;1""• • A ::s Q 0 "'d 

> ci ~.S::' ASP n o. GI CD . I-'· i:: o. n 
Cl) Cl> 

0. 

C" is:: '< (11 

~ GLU 

~ - fl1 = ASP 
a, .... 

i: • 
~ 
!t ·Flt 

• .. 

178 



different from an a,;nmonium salt when the nitrogen-containing reactant 

was heated with glucose. Amino acids gave.2-methylpyrazine as a major 

product; anunonium chloride gave more pyrazine, These facts ruled out 
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the first mechanism for the production of pyra2;ines proposed above. The 

facts that the yield of 2,5-dimethylpyrazine was lower and that the yield 

of dimethylethylpyradnes was higher in t;he glutamic acid-glucose sys

tem than in the other systems studied indicated to the author that a 

two carbon fragment might have alkylated 2,5-dimethylpyrazine to.increase 

the yield of the dimethylet;hyl derivative. This phenomenon was al.so sug

gested by the work of Stoehr (54). To determine if a two carbon frag-. 

ment could effect the proposed alkyl,ation reaction, a model system 

containing 10 mMoles of glucose, 10 mMoles of asparagine and a large 

excess of acetaldehyde was prepared. The total yield of pyrazines from 

this system is given in Table XIV. The product distribution shown in 

Figure 9 indicated that larger amounts of pyrazine and 2-methylpyrazine 

were formed in comparison to the product distribution in the absence of 

acetaldehyde. This was expected since all carbons of pyrazine and car

bons 5 and 6 of 2-methylpyrazine probably can arise from two carbon 

fragments. Mass action would tend to increase the yield of these prod

ucts in the presence of excess acetaldehyde. Figure 9 showed that the 

yield of 2-methyl-5-ethylpyrazine was increased llli:lny fold in the presence 

of added acetaldehyde; 2,6-dimethyl-3-ethylpryazine also increased but 

not a,s dramatically as the former derivative. These results strongly 

suggested the participation of a two carbon fragment, such as acetalde

h,yde, in the formation of ethyl substituted pyrazine compounds. It was 

impossible to determine from the data if the acetaldehyde added to the 

pyrazine or to a pyrazine precursor. 
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Figure 9. Effect of Adding Acetaldehyde to Model System 
Containing Glucose and Asparagine 
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Sucrose is the major carbohydrate in peanut cotyledons (Chapter IV). 

Tbe reaction of sucrose (10 mMoles) with asparagine (10 mMoles) was 

1;1tudied to determ:i,.ne if the sugar could serve as a reactant in the for

mation of pyrazines. Table XIV shows that sucrose gave a significant 

amount of ultraviolet abs9rbing material when heated with asparagine but 

not as much as did glucose under the same conditions .. Figure 10 gives 

the produ~t distribution for asparagine heated in the presence of glu

cose, sucrose, and fructose plus glucose in three separate experiments. 

The glucose and sucrose gave significantly different product distribu

tions; fructose plus glucose gave nearly the same product distribution 

as sucrose, especially for the major products 2-methylpyrazine and Z,5-

dimethylpyrazine. The results suggested that sucrose was hydrolyzed to 

glucose and fructose prior to reaction with the amino acid to give pyra

~ines. The hydrolysis must have been incomplete since Table XIV shows. 

that sucrose gave only about one .. half as much ultraviolet absorbing 

material as an equimolar quantity of glucose. If 10 mMoles of sucrose 

·were c,ompletely hydrolyzed, one would expect to obtain nearly twice as 

much ultraviolet absorbing material as with an equimolar quantity of 

. .glucose heate.d with asparagine . 

. Data in Figure 8 shows that no single amino acid when heated w;i.th 

glucose gave a product distribution the same as that from a falling film 

distillate of roasted peanuts. However, a mixture of amino acids 

(glutamic acid, aspartic acid glutamine, asparagine, and phenylalanine) 

and monosaccharides (glucose and fructos,e) which closely approximated 

the amino acid and carbohydrate analysis of good flavored raw peanuts, 

gave a distribution of products similar to roasted peanuts {Figure 11). 

The agreement was particularly good for 2-methylpyrazine, 
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2,5-dimethylpyrazine, 2,5-dimethyl-3-ethylpyrazine, and benzaldehyde. 

It was assumed in preparing the peanut-like mixture of amino acids and 

monosaccharides that the ratio of aspartic acid to glutamic acid was the 

same as the ratio of asparagine to glutamine. This assumption was nec

essary since asparagine and glutamine could not be separated on the 

amino acid analyzer and thus could not be exactly quantitated. 

Although glutamic acid forms pyrazines more slowly than the other 

amino acids studied, its contribution to the pyrazines of roasted pea

nuts is considerable since its concentration in raw peanuts is high. 

Table YN gives µMoles per pound of some precursors of typical peanut 

flavor and the µMoles of total pyrazines formed per hour in model sys

tems containing the amino acid and glucose. The results indicated that 

the reaction of glutamic acid and glutamine with monosaccharides could 

account for nearly 87% of the volatile pyrazines formed during roasting 

of peanuts. 

Results presented in this chapter showed that amino acids and 

sugars when heated together can form volatile pyrazine compounds. A 

peanut-like mixture of amino acids and monosaccharides produced pyra

zines having a distribution similar to that found in roasted peanuts. 

However, none of the mixtµres of pyrazines isolated from the model 

systems had a truly characteristic roasted peanut aroma but rather had 

a roasted-nutty aroma. Raw.peanuts must contain one or a series of as 

yet unknown flavor precursors which are responsible for the formation of 

volatile compounds which give roasted peanuts their characteristic 

"l?eanutty" aroma. 

Since one can supress the peanut-like aroma of a distillate of 

roasted peanuts by acidification of the mixture, the compounds 

I 



Compound 

Glutamic acid 

Aspartic acid 

Glutamine 

Asparagine 

TABLE 'YJl 

APPARENT CONTRIBUTION OF VARIOUS AMINO 
ACIDS TO TOTAL PYRAZINES FORMED 

DURING ROASTING OF PEANUTS 

µMoles Pyrazines 
Amino Acid formed/hour/µmole 
µmoles/lb Amino Acid 

3180 4.4 

263 7.6 

915 7.8 

78 15.8 
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Contribution 

13,992 57.4% 

1,999 8.2% 

7,137 29.3% 

1,232 5.1% 



responsible for the "peaQ.utty'' aroma of roasted peanuts must be basic 

compounds not unlike the pyrazi,nes. 
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Amino acids and carbohydrates .i:lre among the pr~cursors of roasted 

peanut flavor since, whenheated together in a system of low water con

tent, they produce many of the same vofatile carbonyl and pyrazine 

compounds that are produced during normal roasting of peanuts. 



CHAPTER VII 

SUMMARY 

Peanuts require a high temperature roasting process in order to 
, 

develop the typical flavor associated with roasted peanuts. This fact 

implies that raw :\'eianuts contain certain. compounds qf low volatility 

(flavor precursors) which are converted, during roasting, to other more 

volatile compounds (flavor components) which are responsible for the 

flavor of roasted peanuts, 

Raw and roasted peanuts or heated and .unheated soluble extracts of 

raw peanuts. were analyzed for various. cla~ses of co~pounds. Compounds .. 

which decreased. in concentration during heating wen~ implicated as pre-

cursors of peanut flavor. 

Only amirio acids and carbohydrates were observed to decrease sig-

nificantly in concentration during roasting of peanuts. Analysis of 

peanuts of known flavor for individual amino acids and carbohydrates 
! 

resulted in the derivation of an equation which related amino acid fla-
. i 

vor precursor concentration to subjectively measured flavor of roasted 

peanuts. Calculations on the basis of this equation indicated that 

aspartic acid, glutamic acid, glutamine, aspara~irie, histidin~ and 

phenylalanine were associated.with'the production of typical peanut fla-

vor; ·threonine, tyrosine, lysine and an. unknowI). amino acid we re con-

sidered to be precursors of atypical flavor. 

The concentration of precursors of typical flavor increased during 

93 



maturation; precursors of atypical flavor decreased in concentration 

during the same period. 
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Amino acids associated with the production of typical peanut fla

vor were heated with carbohydrates in a nearly non-aqueous model system. 

The same volatile compounds produced during roasting of peanuts were 

produced in the model systems. 
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