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AN EMPIRICAL COMPARISON OF THE ANOVA F-TEST,
NORMAL SCORES TEST AND KRUSKAL-WALLIS TEST
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The present research compares the ANOVA F-test, the Kruskal-
Wallis test, and the normal scores test in terms of empirical alpha
and empirical power with samples from the normal distribution
and two exponential distributions. Empirical evidence supports
the use of the ANOVA F-test even under violation of assumptions
when testing hypotheses about means. If the researcher is willing
to test hypotheses about medians, the Kruskal-Wallis test was
found to be competitive to the F-test. However, in the cases

investigated, the normal scores test was not consistently better
than the F-test or the Kruskal-Wallis test and could not be recom-
mended on the basis of this research.
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A common problem in applied research is to decide whether or
not sample differences in central tendency reflect true differences in
parent populations. It is appropriate to use the one-way fixed
effects ANOVA F-test for the k-sample case (two or more groups)
if assumptions of normality, homogeneity of variance, and inde-
pendence -of errors are met. When normality and/or equality of vari-
ance are doubtful, current literature recommends the use of non-
parametric statistical procedures. Two nonparametric counterparts
to F are the Kruskal-Wallis rank test (Kruskal, 1952) and the

expected normal scores test, which used normalized observations in
the place of ranks (McSweeney and Penfield, 1969).
There are several types of normal scores tests which have been
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developed for the two-sample and the k-sample cases (Hoeffding,
1951; Terry, 1952; Van der Waerden, 1953; Hajek and Sidak, 1967;
Puri, 1964). McSweeney and Penfield (1969) have presented a re-
view of the literature, as well as rationale for and derivation of the
k-sample case. The Terry-Hoeffding form of the k-sample normal
scores test requires the use of special tables (Harter, 1961 ) to trans-
form ranked data into expected normal order statistics. The Van
der Waerden form replaces ranks with inverse normal statistics
which can be computed from any standard normal table. Normal
scores tests were derived to test the hypothesis of equal populations
but are sensitive to location shifts; underlying continuous distribu-
tions are assumed and observations are assumed to be drawn ran-

domly and independently from their respective populations. The
calculation of the test statistic is performed on the expected normal
scores,

where:

n; = the number of observations in the ith sample,
N = ~ n ;, the number of observations in all samples combined,

Wii = the jth expected normal order statistic in the ith sample.

rather than on the ranks or the original data. The test is asymptot-
ically distributed under the null hypothesis as chi-square with k - 1
degrees of freedom, where k is the number of treatment levels or

samples. Large values of the test statistic lead to the rejection of
the null hypothesis.
The Kruskal-Wallis test is based on ranks and is suitable for

the k-sample case. It is a direct generalization of the two-sample
Mann-Whitney U test (Kruskal, 1952; Kruskal and Wallis, 1952).
The Kruskal-Wallis statistic tests

where: 
’

ni = the number of observations in the ith sample,
N = ~ ni, the number of observations in all samples combined,
Ri = the sum of the ranks in the ith sample.
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hypotheses of equal populations and is sensitive to location shifts.
Under the null hypothesis, the Kruskal-Wallis test is also asymptot-
ically distributed as chi-square with k - 1 degrees of freedom. It is
assumed that sampling is random, that samples are drawn from
populations with continuous distributions, and that populations are
infinite or sampling is with individual replacement. Large values of
the statistic lead to the rejection of the null hypothesis.
The most common index for comparing nonparam.etric tests to

parametric tests is asymptotic relative efficiency or ARE. This index
compares the power of one test to the power or efficiency of the
other, by using mathematical computations based on extremely
large sample sizes and extremely small central tendency or location
differences. In fact, sample size is permitted to approach infinity
while at the same time location differences approach zero. The ARE
of the normal scores test as compared to the F-test has a value of
unity for the normal distribution and’a lower bound ARE of unity,
for non-normal distributions. Therefore, asymptotically the normal
scores test can be said to be at least as powerful as F, and when
ANOVA violations are present can be more efficient than F. The
Kruskal-Wallis test as compared to F has an ARE of .95 for the
normal distribution and a lower bound ARE of .864. Thus asymp-
totically, the Kruskal-Wallis H-test is 95% as powerful as the

F-test for the normal distribution and can never asymptotically be
less than 86% as powerful. Therefore, with no further information,
the normal scores test would appear to be quite competitive to F.
In addition, McSweeney and Penfield (1969) have shown that

upon comparing the Kruskal-Wallis test and the normal scores

test with samples from both normal and uniform distributions that
&dquo;the small sample power of the normal scores test is clearly superior
to that of the Kruskal-Wallis test in those marginal cases in which
a test at a moderate significance level is used to detect small differ-
ences in location among non-normal distributions.&dquo; They state

&dquo;that the comparison is dependent on the significance level of the
test, the location parameter, and sample sizes as well as on the
distributions sampled.&dquo;
Both the enticing ARE and the favorable comparison of the

normal scores test to the Kruskal-Wallis test as cited by McSweeney
and Penfield ( 1969) have shown the need for further research in this
area. Keeping in mind that asymptotic relative efficiencies are com-
puted for unrealistically large sample sizes with minuscule differ-
ences in measures of location, it would seem profitable to the re-
searcher to be aware of the small, medium, and large sample size
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performance of the normal scores test. In addition, there has been
no comparison of the k-sample normal scores test to its parametric
analogue, F, and neither the normal scores test nor the Kruskal-
Wallis test have been compared to the ANOVA F-test for skewed
distributions.

Further, current literature (Bradley, 1968; Kendall and Stuart,
1961) refers to the nonparametric sensitivity to detect location
differences without stating whether mean or median differences will
be equally detected. Therefore, a. Monte Carlo comparison of the
three statistical tests was completed for realistic location differences
and realistic sample sizes from a normal distribution and two

exponential distributions. One of the exponential distributions was
scaled to have equal means under the null hypothesis to investigate
the sensitivity of the three tests in detecting mean differences. The
other exponential distribution was scaled to have equal medians
under the null hypothesis in order to investigate sensitivity of the
tests to median differences.

Procedure

Random numbers were selected using a pseudo-random number
generator. Depending upon the assumption violation, the numbers
were selected from either a. normal distribution or from one of two

exponential distributions. The random deviates were allocated to

four treatment levels that comprised a one-way fixed effects analysis
of variance situation.

The observations from the normal distribution were derived by
a technique developed by Box and Muller (1958), which generates
pseudo-random variables distributed N (0, 1 ) . For the null situation,
the means of the four treatment levels were zero. The non-null situ-
ation was established by defining values of aj, j = 1, 2, 3, 4, such
that the power for the ANOVA F-test would be about .86 for the

equal variance condition for the normal distribution. Then the

defined cc/s were used for all three statistical procedures, for all

three distributions, and for both equal and unequal variance con-
ditions. Specification of the a/s for the normal distribution was

made through the non-centrality parameter, ~9, (Pearson and Hart-
ley, 1951) where

Setting (Te2 = 1 and J = 4 and using probability of a Type 1 error
equal to .05, the values of ’(Xj were found such that the power was

about .86. Since the equal sample size and unequal size cases would
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lead to different values of aj for each of three sample sizes, the values
of aj were calculated for both equal and unequal sample sizes. Values
of Ctj for the total sample sizes of 28, 68, and 200 are presented in
Table 1. The appropriate .«~’s were added to the samples in each
of the four treatment levels for the non-null situation. Variance
differences were established for particular cases by utilizing unequal
variances in the ratio of 1:2:3:4, with the average variance equal
to unity. The variances used were .4, .8, 1.2, and 1.6. When equal
variance cases were desired, the variances were all given a value
of unity.
The exponential distributions were derived by a method given

by Lehman and Bailey (1968):

t(t) = pe-Pt (4)
with p = 1, E (t) = 1/p = 1, and var(t) = 1/pS = 1. Pseudo-

random exponential variables were generated by multiplying the
negative of the mean, -E (t) = - 1, times the natural logarithm of
uniform random variates distributed on the unit interval (IBM,
1968). The exponential variates were then scaled so that either the
medians would be zero or the means would be zero depending upon
which of the two exponential distributions was desired. The resulting
skewed populations had either mean or median equal to zero, a

variance of -Uj2, a skewness measure of yl = 2, and a, kurtosis mea-

sure of -y.2 = 6.

For the exponential distribution scaled to have equal means of
zero value under the null distribution, the mean of unity was sub-
tracted from every score. Thus the median of .69315 also had the

value of unity subtracted from it, yielding a median of -.30685
when variances were equal. When variances were unequal and means

TABLE 1

Values of nj and <xj

(nj = Number of Observations per Treatment Level, and N = Total Number
of Observations)

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016epm.sagepub.comDownloaded from 

http://epm.sagepub.com/


794 EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT

were equal and of zero value, the median for group j was &horbar;.30685~;
thus the medians were -.19407, -.27445, -.33614, and -.38814.
For the exponential distribution scaled to have equal medians of

zero value under the null hypothesis, the means will be nonzero.
For equal variances, the value of the means was .30685. For un-
equal variances and equal medians of zero value the mean for group
j is .30685~; thus the means were .19407, .27445, .33614, and .38814.

In order to simulate null and non-null conditions in the expo-
nential distributions, the values of aj were identical to those used in
the normal distributions as shown in Table 1. The variance for

equal variance cases for the two exponential distributions was, as in
the normal distribution, equal to unity, and for unequal variance
cases were equal to .4, .8, 1.2, and 1.6.
Comparisons among the F-test, the normal scores test! and the

Kruskal-Wallis test were made on five combinations of sample sizes
and variances. These combinations were as follows: (1) equal
sample sizes and equal variances, (2) equal sample sizes and un-
equal variances, (3) unequal sample sizes and equal variances,
(4) unequal sample sizes and unequal variances which were posi-
tively related, and (5) unequal sample sizes and unequal variances
which were negatively related. For each of the five cases, 1000 ex-
periments were performed using observations from the normal dis-
tribution, the exponential distribution scaled to have equal means
under the null hypothesis, and the exponential distribution scaled
to have equal medians under the null hypothesis, where an experi-
ment consisted of computation of each statistical test. The propor-
tion of rejections in 1000 experiments when there were no location
differences was referred to as empirical alpha. When differences in
location were specified, the proportion of rejections was referred to
as empirical power. Theoretical alpha (level of significance) was
set at .05. The three statistical tests were then compared in terms
of empirical alpha and empirical power for total sample sizes of 28,
68, and 200. It should be noted that the equal sample size, equal
variance case for the normal distribution was included in the pres-
ent study for the purpose of establishing validity of the Monte
Carlo method and has been established for the statistics in prior
studies.

Results

Normal Distribution

For a total sample size of 28, the ANOVA F-test surpasses the
performance of both the Kruskal-Wallis test and the normal scores
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test in terms of approximating theoretical alpha and having greater
power in all but one case of assumption violation (negatively re-
lated sample sizes and variances). The empirical alphas and power
of the nonparametric methods were comparable to each other for
N = 28, with the Kruskal-Wallis test being more preferred than
the normal scores test in the unequal variance situations. Current
literature has suggested that the normal scores procedures are far
less sensitive to heterogeneity of variance than are the parametric
or rank procedures (McSweeney and Penfield, 1969), but this

robustness was not substantiated for N = 28 as shown in Table 2.

In general, for this sample size neither of the nonparametric methods
compete favorably with F, except for negatively related sample sizes
and variances.
The ANOVA F-test is generally the most powerful technique for

the larger sample sizes (N = 68, N = 200), but at the expense of
making a few more Type 1 errors than the nonparametric methods.
For N = 68, the Kruskal-Wallis test provides the best overall

approximation to theoretical alpha when variances are unequal. For
N = 200, while the normal scores test generally provides the best
approximation to alpha, the Kruskal-Wallis test also gives a good
approximation to alpha with comparable or better power. All three
of the tests are competitive for the larger sample sizes.

TABLE 2

Normal Population

Note.-Entries are the proportion of rejections in 1,000 experiments for the ANOVA F-test

(F), the Kruskal-Wallis Test (KW) and the Normal Scores Test (NS) in terms of probability of a
Type 1 error (a) and power (1 - 0). Nominal alpha was set at .05, N = total sample size, and n =

sample size per treatment level.
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Exponential Distribution: Scaled to Have Equal Means under the
Null Hypothesis
For this distribution, the ANOVA F-test consistently outperforms

the nonparametric methods. As sample size increases (N = 68, N =
200), the nonparametric tests begin to make far too many Type I
errors when variances are unequal. For example, in Table 3, the
negatively related sample sizes and variances case for N = 200,
shows an a = .440 for the normal scores test, and an a = .381 for
the Kruskal-Wallis test while for the F-test, a = .092. This extreme
increase in empirical alphas is thought to be caused by the nonpara-
metric sensitivity to the unequal medians. Scaling to equal means
of zero value under the null hypothesis for a skewed distribution
leaves nonzero medians. If the variances are equal, then the medians
(though nonzero) are equal; however when variances are unequal,
the medians are also unequal. Thus for cases where variances were
equal, the nonparametric tests approximated theoretical alpha fairly
well with good power. However, the F-test still provided the best
approximation to theoretical alpha in most cases for both equal and
unequal variance situations.

Exponential Distribution : Scaled to Have Equal Medians under the
Null Hypothesis
For this distribution for unequal variance cases, the empirical

alphas of the Kruskal-Wallis test and the normal scores test show

TABLE 3

Exponential Population, Scaled to Have Equal Means under the Null Hypothesis

Note.-Entries are the porportion of rejections in 1,000 experiments for the ANOVA F-test
(F), the Kruskal-Wallis Test (KW) and the Normal Scores Test (NS) in terms of probability of a
Type I error (a) and power (1 - (3). Nominal alpha was set at .05, N = total sample size, and
n = sample size per treatment level.

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016epm.sagepub.comDownloaded from 

http://epm.sagepub.com/


797FEIR-WALSH & TOOTHAKER

a marked decrease as compared to the exponential distribution

scaled to have equal means. For the case cited in section 3.2, N =

200, negatively related sample sizes and variances, the empirical
alpha for the Kruskal-Wallis test has dropped from .381 to .095 and
for the normal scores test from .440 to .121. This decrease in

empirical alphas with equality of medians under the null hypothesis
substantiates the nonparametric sensitivity to median differences.
When there exist no median differences, the nonparametric pro-
cedures (especially the Kruskal-Wallis, see Table 4) do well in

approximating theoretical alpha, and provide good power in detect-
ing median differences when they are specified. The Kruskal-Wallis
test provides the best approximation to theoretical alpha with high
power for all sample sizes, however the F-test is a good competitor
with the normal scores test falling in close proximity.

Conclusion and Summary

When normality and/or homogeneity of variance is doubtful, the
ANOVA F-test is the recommended procedure for testing hypotheses
about means. The researcher does have the option of testing hypoth-
eses about medians with the assurance that if a significant F-value
is obtained, both mean and median differences will be present. When
using the Kruskal-Wallis test or the normal scores test in investigat-
ing mean differences, with non-normality and heterogeneity of vari-
ances, the researcher might very well reject the null hypothesis due

TABLE 4

Exponential Population, Scaled to Have Equal Medians under the Null Hypothesis

Note.-Entries are the proportion of rejections in 1,000 experiments for the ANOVA F-test

(F), the Kruskal-Wallis Test (KW) and the Normal Scores Test (NS) in terms of probability of a

Type I error (a) and power (1 - (3). Nominal alpha was set at .05, N = total sample size, and
n = sample size per treatment level.

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016epm.sagepub.comDownloaded from 

http://epm.sagepub.com/


798 EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT

to median differences, when means are in fact equal. Thus, the
researcher in the case of finding a significant value for the Kruskal-
Wallis test or the normal scores test has little assurance that mean
differences actually are present. The F-test can further be recom-
mended on the grounds that the ~-distribution is more extensively
tabled, and that the F-test is the most easily used of the three tests
for large sample sizes. There are computer programs readily avail-
able for ANOVA, and the tedious task of transforming data is not
necessary, as it is for the nonparametric tests.
With non-normality and inequality of variances, the Kruskal-

Wallis test might be considered to be the recommended procedure.
The researcher, however, must be aware that he is testing for median
differences, and must state his null hypothesis in these terms. The
Kruskal-Wallis test for large samples does require the tedious chore
of ranking, but computer programs are becoming more and more
accessible.
The normal scores test, despite its enticing asymptotic relative

efficiency, cannot be recommended on the basis of this study. In none
of the cases investigated does the normal scores test consistently
outperform the Kruskal-Wallis test or the ANOVA F-test. Only in
isolated cases could the normal scores test be recommended, and
even then, only with reserve, because of the difficulty in transform-
ing data from ranks to expected normal scores.
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