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ABSTRACT

A closed-form solution for the Timoshenko-type shear correction coefficient (K2) governing
the deflection of bimodular composite laminates in cylindrical bending is presented. The bending-
stress distribution for a laminate constructed of bimodular materials (which have different elastic
moduli in tension and compression) is used in the two-dimensional equilibrium equation to obtain
the transverse shear-stress distribution. This shear-stress distribution is used to obtain expressions
for the shear correction coefficient (based on equrvalent shear strain energy) and the maximum
dimensionless transverse shear stress (&tau;xz)max. Finally, the effects of the elastic-constant ratios on
the neutral-surface location and shear correction coefficient for laminates consisting of either
unimodular or bimodular materials are studied.

INTRODUCTION

ATERIALS WHICH HAVE DIFFERENT MODULI IN TENSION AND IN COM-Mpression are called bimodular materials. Rock, concrete, cord-rubber,
paperboard, and certain biological tissues are examples of such materials.
Even aramid-fiber, polymer-matrix composites exhibit some bimodularity.
The analysis of laminated bimodular material is more complicated than
unimodular material (ordinary material) due to the dependency of the
material stiffness on the material properties, which indeed depend on the
state of stress (i.e., tensile or compressive) in the laminate.
Although transverse shear deformations have been considered in the

analyses of bimodular laminates [1-4] in recent years, there has been no ef-
fort to include the effect of bimodularity of the material on the Timoshenko-
type shear correction coefficient, K2. In other works, it has been tacitly
assumed that the value of K2 is the same as that of an ordinary-material
laminate. The use of such a shear correction factor in predicting the deflec-
tion of shear deformable, ordinary-material laminates in cylindrical bending
is well established [5,6]. It is noted that Whitney [5] extended Chow’s
symmetric-laminate work [7] to arbitrary laminates. Also, it can be shown
that the resulting expressions in [5,6] are algebraically equivalent.

In this paper, a straight-forward approach analogous to that used in
elementary shear theory for single-layer ordinary materials is employed. It
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may be considered to be a generalization of the work of Bert [6] from
ordinary-material laminates to bimodular-material laminates.

THEORY AND FORMULATION

Consider a rectangular-cross-section laminated beam of thickness h. The
origin of the Cartesian coordinate system is located on the mid-surface of the
beam with the x axis being along the length of the beam and the z axis being
measured positive downward. The same displacement field as used in shear
deformable beam theory is implemented here:

The axial normal strain and transverse shear strain are given by

where a comma denotes the derivative with respect to the quantity following
it. The longitudinal bending stress at any distance z from the midplane of the
laminate is

Also

The longitudinal stress resultant and stress couple are defined as

With the aid of Equations (2), (3), and (5), one can derive the following
laminate constitutive relation

where
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In the absence of body force, the two-dimensional static equilibrium equa-
tion for forces in the direction along the length of the beam is

Integrating Equation (7) with respect to z and using Equations (3) and (4),
one has

where a and b are &dquo;partial stiffnesses&dquo; for stretching and bending-stretching
coupling defined by the following expressions for the convex bending case
(top layers in compression and bottom layers in tension)

Multiplying Equation (7) by unity and z, respectively, and then integrating
through the thickness, one obtains the following equilibrium equations,
which coincide with those of elementary beam theory,

where

Therefore, Equation (8) simplifies as follows:

Extending the definition of the shear correction coefficient as used in [6],
which is based on the shear strain energy, to the case of bimodular material,
one has
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If G is constant throughout the thickness of the beam, Equation (13) can be
simplified to

By changing the coordinate from z measured from the midplane to z’
measured from the neutral-surface position, one can simplify Equation (14)
as follows:

To evaluate the stiffnesses (A,B, and D), one needs to know the location of
the neutral-surface position. A closed-form solution can be obtained only
when the neutral-surface position (z,,) and thus, the stiffnesses do not depend
on x. The same criterion to define zn as used in [4] is applied here

Using Equations (2) and (5) and assuming* that

one gets

Equation (18) can be solved explicitly for zn.
It is convenient to introduce the dimensionless transverse shear stress

defined as follows:

Combining Equations (4) and (12) and measuring z ’ from the neutral-
surface location, one obtains

*Note that this assumption is made only for the bimodular case (not unimodular).
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Detailed derivations for K2 and (TXZ)max are given in the Appendix.

NUMERICAL RESULTS

Three cases of laminates constructed of bimodular materials are considered
here: single-layer, two-layer, and three-layer. Numerical results obtained
from closed-form solutions for the shear correction coefficient and the max-
imum dimensionless shear stress for different bimodular-material parameters
are presented. Also, the effects of elastic-constant ratios on neutral-surface
position and K2 for both unimodular and bimodular laminates (up to three
layers) are studied. The laminates are assumed to be made of equal-thickness
layers and the effect of the sign of the longitudinal normal strain on shear
moduli is ignored (that is, GCIGI = 1).

In the case of single-layer bimodular material (see the Appendix), it is in-
teresting to note that both the transverse shear correction coefficient and the
maximum transverse shear stress are unaffected by the bimodular ratio Ê IE.
However, this does not imply that the distribution of shear stress is the same
for unimodular and bimodular materials (see Fig. A-1). The effect of
bimodular ratio on the location of the neutral surface is studied in Table 1.
For values of Ê < EI (e.g., aramid-cord/rubber), hi falls within the lower
half of the thickness; whereas for materials such as rock (Ef > E‘), h, is in the
upper half of the beam (for the convex bending case).

In bending of a two-layer bimodular laminate since one of the two layers is
always in compression (or tension), only three of the four elastic moduli
belonging to these layers are pertinent [see Fig. A-2]. This means that the
location of the neutral surface depends on only two elastic-moduli ratios. The
effects of these two ratios on h, are studied for a wide range of E/I E/ in
Table 2. The shear correction coefficient varies drastically with the ratio of
the shear moduli of the two la7ers (G,IG,), whereas it changes only a little for
a wide range of E/IE2 for E1cIE/ = 1, as shown in Fig. 1.
The shear correction coefficient for two-layer unimodular laminates in-

creases rapidly from 50% to 98% of the classical value (5/6) as the elastic-

Table 1. Effect of Bimodular Ratio on Neutral-Surface
Location for Single-Layer Bimodular Material.
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Table 2. Effect of Bimodular Ratios on Neutral-Surface Location for

Two-Layer Bimodular Laminates (ht/h2 = 1).

Figure 1. Effect of shear modulus ratio on shear correction coefficient for various blmodulus
ratios (E~°lEZ‘l for two-layer bimodular lammates (hl/hz = 1, E,’IE2’ = 1/2),

modulus ratio E,lE2 varies from 0 to 0.25 as shown in Fig. 2. For ratios

greater than 0.5, a value of 5/6 would be a good approximation for K2. The
dimensionless maximum shear stress increases from 0 to 12 as Ell E2 changes
from 0 to infinity as tabulated in Table 3.

Three-layer bimodular laminates which have facings (top and bottom
layers) made of the same material are considered here. For the case in which
E/I E/ = l, the effect of bimodular ratio E/I E2 C on h,lh for different ratios
of E,.IIE2c (1/2, 1, and 2) are investigated in Table 4. As E3‘lE2‘ increases
from 0 to 10, h~lh decreases for all three values of E2’IE2c. Also, a plot of KZ 2
vs E/I E/ is given in Fig. 3 which shows the shear correction factor as a
function of the bimodularity of the material.
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Figure 2. Effect of longitudinal Young’s modulus ratio on shear correction coefficient for two-
layer unimodular materials (hz/hz = 1, G./Gz = 1J.

Table 3. Effect of Elastic-Moduli Ratio on Dimensionless
Maximum Shear Stress for a Two-Layer
Unimodular Material Laminate (h21h2 = 7).

Finally, the effect of elastic moduli ratio Ell E2 on K2 and (T~m~ are
studied (see Fig. 4 and Table 5) for three-layer unimodular-material laminates
with identical facings. For different values of G,/G=, K2 increases rapidly for
Ell E2 less than 0.05 but after this point, K2 changes very slowly. The max-
imum dimensionless shear stress varies from 0 to 40.5 for 0 < E,IE2 < 00.
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Table 4. Effect of Bimodular Ratios on Neutral-Surface Location for
Three-Layer Bimodular Laminates (h.lh2 = hJlh2 = 7, E1cIE2c = E/IE2c = 1).

Figure 3. Effect of bimodular elastic moduli ratio E,’ / E2c on shear correction coefficient for a
three-layer bimodular laminate (h.lh2 = 1, G.lG2 = GJ/G2 = 1, EdE2’ = 2).

Figure 4. Effect of elastic moduli ratio and shear moduli ratio on shear correction coefficient
for three-layer unimodular-material laminates (HI/h2 = h3/h2 = 1, E./E3 = 1, G,lG, = 1).
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Table 5. Effect of Elastic-Moduli Ratio on Dimensionless
Maximum Shear Stress for a Three-Layer

Unimodular-Material Laminate
(hJh2 = hJlh2 = 1, EJE3 = 1).

CONCLUSIONS

Closed-form solutions for the Timoshenko-type shear correction coeffi-
cient and the maximum dimensionless transverse shear stress are presented
for bimodular laminates undergoing cylindrical bending. These solutions de-
pend on bimodular ratio(s) for different laminates. However, it is interesting
to note that both the transverse shear correction coefficient and the maximum
dimensionless transverse shear stress (fxJmax for a single-layer material are
unaffected by bimodular ratio, Ef/E’.

For two- and three-layer laminates, both KI and (TxJmax depend upon the
bimodular ratios and transverse shear moduli ratios. According to the results
presented, in some cases KI is less than the classical value of 5/6.
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APPENDIX: DETAILED DERIVATIONS

In the following, detailed derivations for unimodular and bimodular
laminates are given. Three types of lamination are considered: single-layer,
two-layer, and three-layer. In the latter two cases, all layers are assumed to be
of the same thickness. Also, in the bimodular cases, the effect of bi-

modularity on elastic-shear moduli is ignored (since for most of materials
G’lGc = 1). Further, in the bimodular analyses, axial force is assumed to be
zero.

l. Single-Layer* (Bimodular Material)
Normal and shear stress distributions for single-layer, bimodular material

are shown in Fig. A-1. Since the axial force is taken to be zero,

Using the fact that

Figure A-1. Normal and shear stress dlstrlbutlon m a single-layer bimodular matenal

*This case also might be considered to be a two-layer laminate of ordinary materials but with a certain special
thickness ratio (h,/h, = d5I)
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one can integrate Equation (A-1) to obtain

where (3 is the bimodular elastic-moduli ratio defined as

From Equations (6) and (9), one has

Substitution of Equations (A-4) and (A-5) into Equation (15) and using Equa-
tion (A-3) leads to

Also, using Equations (19), (20), (A-3), (A-4), and (A-5), one has

Although the maximum shear stress remains unaffected by bimodularity
ratio, the shear-stress distribution does depend on ~3. Combining Equations
(19), (A-3), (A-4), and (A-5) gives the following shear-stress distribution

2. Two-Layer laminates
(a) Bimodular Material
Each individual layer has different elastic moduli in tension and compres-

sion. However, since one layer is only in either a tension or a compression
state, only three of the four elastic moduli for two-layer analysis come into
the picture (see Fig. A-2). A similar procedure to that used for the single-layer
case is used here. To determine the bending and the partial bending-stretching
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Figure A-2. Normal and shear stress distribution m a two-layer bimodular material lammate.

coupling stiffnesses, one is able to obtain the neutral-surface position from
the following quadratic equation

Knowing the neutral-surface location, one can easily determine the following
stiffnesses

and

Substituting Equations (A-10) and (A-11) into Equation (15), one has

where

Since h/h and hlh depend upon a and ~3, K2 is a function of g,, a, and P for
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the case of equal-thickness layers. The maximum dimensionless shear stress
also is a function of the bimodular ratios (a,(3)

(b) Unimodular Material
A similar lamination as used in part (a) is considered here. The normal and

shear stress distributions are shown in Fig. A-3. Since the flexural-extensional
coupling stiffness (b) does not vanish, one must use Equation (13) in order to
compute KI. Let the transverse shear moduli be the same for both layers
(G2/G1 = 1) * and a = E21E1. Then, the stiffnesses can be expressed as

and

Substitution of Equations (A-14) and (A-15) into Equation (13) gives

Figure A-3. Normal and shear stress distnbution m a two-layer unimodular material laminate.

*This case also might be considered to be a two-layer lammate of ordmary matenals but wtth a certain special
thickness ratio (h,/h, = E~/E,).
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It is interesting to note that K2 as given by Equation (A-16) gives the same
result for a = c and a = 1 /c, where c is an arbitrary constant. Combining
Equations (4), (12), (19), (A-14), and (A-15) one gets

which shows that (T~m~ depends on elastic-moduli ratio (E2IEJ, only.

3. Three-Layer Laminate
(a) Bimodular Material
Consider a three-layer laminate with the top and bottom layers (facings)

made of the same material (i.e., E1 = E3‘, E/ = E3‘) as shown in Fig. A-4 in
the convex downward bending position. One assumes that the neutral-surface
position is within the middle layer (which happens for most practical cases).
The axial force vanishes if

Equation (A-18) can be used to determine the neutral-surface position. Hav-
ing the values of hi and h, enables one to calculate K2 with the same procedure
as used for the two-layer case

Figure A-4. Normal and shear stress dIstributIOn m a three-layer bimodular material laminate
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where

By substituting Equations (A-19), (A-20), and (A-21) into Equation (15), one
can determine K2. Also, using Equations (A-19 and the following expression
for bmax (the maximum value of partial coupling stiffness b) in the respective
regions, one has the maximum dimensionless shear stress by Equation (19).

where

(b) Unimodular Material
Shear, bending, and partial stretching-bending stiffnesses for the three-

layer symmetric laminate* with equal-thickness layers as shown in Fig. A-5
are (g, = G1/G2, a = E1/EJ

*The top and bottom layers have the same properties.
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Figure A-5. Normal and shear stress dlstrlbutlon m a three-layer unimodular, matenal lammate

and

Substituting these stiffnesses into Equation (13) leads to

Absolute dimensionless maximum shear stress occurs at the midplane.
Using the same procedure as used before, one obtains

and the shear stress at the interfaces is

It is interesting to note that
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SYMBOLS

a partial extensional stiffness
A extensional stiffness
b partial flexural-extensional coupling stiffness
B flexural-extensional coupling stiffness
c arbitrary constant
D flexural stiffness
E longitudinal Young’s modulus
g transverse shear moduli ratio
G transverse shear moduli
h beam thickness
He defined by Equation (A-22)
K~ 2 shear correction coefficient

L,(i = 1,2,3,4) defined by Equation (A-24)
M moment resultant
N force resultant

Q transverse shear resultant
S thickness-shear stiffness
u,w displacements in x and z directions
x coordinate along the length
z thickness-direction coordinate, measured positive downward

from the midplane
z ’ thickness-direction coordinate, measured positive

downward from neutral-surface position
Zn neutral-surface location for zero normal strain in the x

direction

a,(3,y bimodular longitudinal Young’s moduli ratios
FX normal strain in the x direction

yxz,yxz engineering shear strain in xz plane: actual and uniform-
shear-distribution cases

T~z shear stress in xz plane
ox normal stress in the x direction
tp bending slope
Subscript
1,2,3 layer number
( ),X x a ( )l a X
Superscript
o midplane
- dimensionless
(c,t) (compression, tension)
(k) index (= c,t)
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