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CHAPTER 1
INTRODUCTION
1.1 Background

During the last three decades, increasing attention has been given
to the effects of blast loading on the behavior of structures. The objec-
tives were, first, to study the nature of the blast wave and the factors
affecting its behavior both in free air and as it encounters a structure;
and second, to examine and develop means of predicting the response of a
structure to blast overpressures.

In spite of the fact that the most common blast loading used by in-
vestigators is that resulting from an atomic explosion, the general term
"blast" refers to both fluctuations of air pressure due to man-made explo-
sions and to vibrations induced in soil. .The former, obvious]y,'includes
conventional (non-atomic) explosions, which yield blast waves comparable
to the atomic blasts in nature but not in magnitude. A sonic boom may
also be considered as a type of blast Tload.

The major effects in investigating the behavior of structures sub-
jected to blast overpressure in the past have been focused on the response
of the frame of a building. A number of assumptions were made by some
investigators to incorporate the effects of the response of such struc-
tural elements as exterior walls, shear walls, and partitions on the over-

all behavior of the structure.



The resistance of masonry walls to blast forces can be significant.
The dynamic behavior of the structure can, therefore, be different from
that when only the frame is considered. Wall resistance is, of course,
dependent on numerous factors such as the strength of the materials used,
support conditions, and workmanship, to mention a few. Quite naturally
then, response of this type of wall to blast overpressures must be
treated more thoroughly in order to have a more realistic understanding

of the behavior of walls and, therefore, the entire structure.
1.2 Purpose and Scope

The purpose of this investigation was to develop a mathematical
model to simulate the behavior of masonry walls subjected to blast over-
pressure originating from a non-atomic source. The developments leading
to this end may be outlined as follows:

1. Two patterns of block arrangements are treated in this disserta-
tion, namely, the horizontal stack and the running bond. The mathematical
model and the equations of motion for both patterns are developed in Chap-
ter II.

2. Chapter III is devoted to the description of the characteristics
of blast Toads.

3. In Chapter IV, the physical properties of masonry walls and their
constituent elements are presented.

4. Computer program "WALBLAST," for solving the equations of motion,
is described in Chapter V.

5. To demonstrate the performance of the computer program, sample

problems are presented in Chapter VI.



1.3 Literature Review

Research aimed at predicting the response of structures to horizon-
tal blast loads has been underway for a significant period of time. As
expected when a new field is investigated, the early efforts were limited
to certain aspects of the problem. In addition, the complicated nature
of both blast waves and the dynamic response of the structure made inves-
tigating the problem a difficult task to undertake. This led many inves-
tigators (25) (30) (33) (37) to develop methods aimed at establishing rapid,
though for the most part approximate, techniques for design purposes. The
common procedure was to excite a mass-spring system having effective
vibration characteristics similar to those of the frame of a building.

The complex nature of the frame-wall interaction and its dependence
on many unpredictable factors led many investigators to ignore wall resis-
tance to applied loads. Several attempts, however, were made to study the
behavior of infilled frames subjected to lateral loads. Benjamin and
Williams (6) performed experiments on masonry walls to determine their
effectiveness in resisting shear forces. A diagonal strut was used by
Smith (31) (32) to represent the infill. Blume (8) incorporated wall
stiffness into a joint rotation index in order to determine the contribu-
tion of joint rotation deformation to the overall building response. A
“discrete physical model" representing the filler by a Tumped mass-spring
system was developed by Fedorkiw and Sozen (12) for the analysis of rein-
forced concrete frames with masonry filler.

Investigation of the behavior of walls subjected to transverse load-
ing has been virtually limited to their response to static loads. A num-
ber of static tests on masonry walls were reported by Hedstrom (19) and

Fishburn (13). Recently, however, there has been increasing interest in



the dynamic behavior of masonry walls. Wiehle and Bockholt (38) devel-
oped a method for evaluating the strength of existing structures sub-
jected to blast loading. Resistance functions were developed for
exterior masonry and reinforced concrete walls using established analyti-
cal procedures which were then used in a dynamic analysis of a single-
degree-of-freedom system. A series of tests on full-scale masonry wall
panels were conducted by the URS Research Corporation (14) (15) (39) (40)
using a shock tunnel facility to study yarious aspects of the behavior

of masonry walls subjected to blast Toading. Willoughby (40) reported
test results on panels having both simple beam and simple plate mounting
conditions. They were found to develop similar cracking patterns of
those of beams and plates, respectively. Gabrielsen and Wilton studied
the arching effect. Walls with "rigid" (very snugly fitted) arching were
found to have failure overpressure four to five times those4bf non-arched
walls, whereas those with "gapped" (having a gap at the tOp) arching were
only slightly stronger thaﬁ non-arched walls whose supports permit a cer-
tain degree of in-plane movement. Further tests (15) confirmed these
results.

Although relatively extensive work has been done on the experimental
side, an elaborate mathematical treatment was lacking. In an attempt to
satisfy this need, Summers (34) developed a "grillage finite element
model" whereby the wall panel is replaced by discrete plate elements
joined at the nodes. Each element is, in turn, replaced by an equivalent
beam network. The pfincip]e involved was that a plate bending grillage
representation can replace the plate continuum with an equivalent system

of beams. The model produced favorable results.



The model proposed in this dissertation treats the masonry units as
rigid bodies interconnected by three-dimensional "linkage" elements at
the nodes as discussed in Chapter II. The idea of the Tinkage elements
was introduced by Ngo and Scordelis (27) in a two-dimensional form to
represent the bond forces between steel bars and concrete in a finite

element analysis of singly-reinforced concrete beams.



CHAPTER 11
METHOD OF ANALYSIS
2.1 Wall Patterns

Masonry walls have traditionally been used in bui]dingsirmtwo major
capacities: structural (load-bearing) and nonstructural, in which case
walls are merely used for the protection of the interior of the building.
The pattern commonly used for structural walls is the standard running
bond (Figure 1(a)). Several patterns are in use for nonstructural walls.
They include such patterns as the horizontal stack (Figure 1(b)), vertical
stack, running bond, diagonal bond, basket weave, etc. The wall patterns

treated in this analysis are the horizontal stack and the running bond.
2.2 Mathematical Model

Mortar is known to be the major contributor in developing the
strength of masonry walls (10) (18) (19). It is also the critical factor
in wall failures, particularly bond failures. Consequently, the import-
ance of the role of mortar is emphasized in the chosen model. The model
of a given'wall panel consists of rigid masonry blocks "bound" together
by a group of "linkage" elements which replace the mortar. Each Tinkage
element is in the form of a cube for the horizontal stack pattern (a
parallelepiped for the bed (horizontal) joints of the running bond pat-
tern) containing three orthogonal springs. A typical interior portion

of a modeled wall panel for each pattern is shown in Figure 2.



(a) Running Bond

(b) Horizontal Stack

Figure 1. Wall Patterns Analyzed
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(a) Horizontal Stack
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(b) Running Bond

Figure 2. Model Segments



2.2.1 Block Elements

The masonry blocks are assumed to have no deformations. Thus, each
block retains its original dimensions throughout the loading process. A
local coordinate system is assigned to each block. Each block has six
degrees of freedom (Figure 3(a)): a translation in the direction of, and

a rotation about, each of the block's orthogonal axes.

2.2.2 Linkage Elements

In order to simulate the mortar in the model, a three-dimensional
linkage element was chosen. It consists of three orthogonal springs
attached to two brackets in the form of diagonally split halves of a
cube (or a parallelepiped) as shown in Figure 3(b). The springs repre-
sent the axial tensile or compressive force and the two planar shear
forces. Linkage element surfaces normal to the axial spring are consid-
ered mounted to the blocks on the opposite sides.

A mortar joint between two adjacent blocks is represented by four
linkage elements. The Tocation of each element on a given face must be
chosen in such a way as to give the best representation of the mortar.
Therefore, the location of the projection of the element center of grav-
ity on the side of a block (Figure 3(a)) was defined in terms of the

adjustable nondimensional factors Aur’ A Av’ and Aw for locations in

ug’
the u, v, and w directions as follows:

b' = bAs c' = (2.1)

2.3 Equations of Motion

In order to formulate the equations of motion for a typical block,
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it is necessary to develop some geometrical relationships. As mentioned
earlier, the blocks are assumed to be rigid. Consequently, all nodal
displacements of a block can be conveniently related to those at its cen-

ter of gravity.

2.3.1 Notation

Prior to developing the geometrical relationships, it is appropriate
to describe the notation used. The sides of a block are numbered from 1
to 4 in the counterclockwise direction about the w-axis, starting with the
right side as shown in Figure 3(a). Block corners are assigned letter
indices. Points on the block surface where the projection of the center
of gravity of the linkage e]ements‘are located (hereafter referred to as
"nodes") are assigned the corresponding corner letter index and side num-

ber. Thus node i1, for instance, is located near corner i on side 1.

2.3.2 Geometrical Considerations

The small displacement theory will be employed to develop the rela-
tionships between the nodal and centroidal displacements. Its applica-
tion, however, will be restricted to displacements occurring during a
time increment At.

The displacements of a typical cdrner (e.g., i in Figure 3(a)) in
the u, v, and w directions aré equivalent to the corresponding centroidal
displacements; they will be added to the geometrical relationships later.
Figure 4(a) shows a positive rotation by a block through a small angle ¢.

The resulting horizontal and vertical displacements for corner i are

acos¢ -~ a - bsing
: (2.2)
bcos¢ - b +asing

<
it
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Since ¢ is small, Cquation (7.2) reduces to

ui = -b¢ and vi = a¢ (2.3)

The displacements at node i1 can be determined using Equation (2.3):

Usq us +bsing

(2.4a)

1]

v%] v% + b' - b'cos¢

Substitution of the expressions for u% and v% from Equation (2.3), for

b' from Equation (2.1), and considering small displacements, allows Equa-

tion (2.4a) to be written as

1]

u;] -(1 - Av)b¢ (2.4b)
and

v%] = aé " (2.4c¢)

"~ The vertical and horizontal springs measufing shear forces are, however,
located at a distance of tx/2 from side 1, where tX is the thickness of
the vertical mortar joint. It follows that v%] must be measured at that
location. Thus Equation (2.4c) must be modified to become

t
X

vip = (a+ )0 (2.4d)

In Figure 4(b), a rotation about the v-axis is considered. Follow-

ing the above procedure, the displacements of node i1 due to this rota-

tion are

|
—
p—

1
>
=

~

(2]

o)

(2.5)

=
-t -
—
it
—
Q
+
nN
~
™
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A rotation about the u-axis is illustrated in Figure 4(c). This in turn

yields the following displacements for node il:

fi

Wiy (1 - Av)be

(2.6)
v¥] = -(1 - Aw)ce

The translational displacements of node il in the u, v, and w directions
are equivalent to those at the center of gravity as indicated earlier.

The total translational displacements are, therefore,
- ] "
Ujp T U Uy T Uy
- ] n 9
Vig =V v+ v (2.7a)

=W W+ oW
Wi il il

Equations (2.4b), (2.4d), (2.5), and (2.6) are substituted in Equation

(2.7a) to obtain

Us;q = U - (1 - Av)b¢ + (1 - Aw)cs

t
Vip =Vt (a + 7%)¢ - (1 - Aw)ce _ (2.7b)

t
=W - X -
Wip =W (a + 2)8 + (1 Av)be
Equation (2.7b) expresses the displacements of node i1 in terms of the
six centroidal diSp]acements. Similar expressions can be obtained for
the remaining fifteen nodes. These relationships are conveniently pre-
sented in matrix form in Equation (2.8a). In symbolic form, Equation

(2.8a) becomes

tu} = [61Mu } (2.8b)

where



"

0 (1 = ay)e =(1 = ay)b
-(1 - A')c 0 (a ¢ tx’z)
(M =ab | -(a+t2) 0
0 - xw)c -(b *.tyIZ)
-1 - xw)c 0 (- Xur)l
(b + tyIZ) (0 - 0
0 Q- iw)c (- xv)b
-0 =) 0 (a+tr2)
-1 - xv)b -(a + t;/2) 0
0 (- aw)c (b + ty/2)
-1 - xw)c 0 - *ur)'
-(b+ ty/2) -(1 - Aur)a 0
0 -(1 - xw)c -1 - xv)b
(- Aw)c 0 (a + t‘/z)
(- av)b ~(a+t/2) 0
0 -(1 - xw)c -(b + t,/Z)
(1 -a)e 0 (-,
b+e/2) =0 -a,) 0
0 -(1 - AJ)e O - xv)b
(V=) 0 (a+t/2)
SV eade | -(at2) 0
0 -(1 - x')c (b + ty/Z)
(=) 0 (1= )e
~(b+ zy)z) <1 -y a 0
0 (1 - xw)c -(b + tylz)
(- A“)c 0 -(1 - xu‘)a
b+ tylz) (- Aut)l 0
0 -(1 - Aw)c -1 - xg)b
(- Aw)c 0 -(a + txlz)
(V- (a+ty/2) 0
0 -1 - x")c - Av)b
(-2 0 -+ t2)
“(1 -, (a+t/2) 0
0 -1 - )c (b+t,/2)
(1 - lw)c 0 -(1 - Aul)'
-(b + :y/z) (V=a,)e 0
0 (-2 )e -(b + tylz)
UERW 0 -(1 - xul)a
(b + tylz) - ‘uz)“ 6
0 (1 - a)e -(1 -,
-1 - Au)c 0 -(a + txlz)
(V- (a + t‘lz) 0
0 (- Aw)c (- xv)b
-(1 - lw)c 0 -(a + t‘/z)
-(1 - xv)b (a+ tx/z) 0
0 (1 -a))e (b + tylz)
-(1 - )c 0 =01 -ay,)a
-(b + tylz) - xut)a 0 -

of (2.8a)

15
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{Un} = nodal displacements vector (48 x 1);
U3 = centroidal displacements vector (6 x 1); and
[G] = geometry matrix (48 x 6).

2.3.3 Horizontal Stack Pattern

In the following equations the superscripts refer to the appropriate
block in Figure 5. Forces at the center of gravity of block A can be re-

lated to those at the nodes using the [G] matrix as follows:
GOIER IR | (2.9)

Forces acting at the center of gravity are the applied time-dependent
forces and the inertia forces which are, of course, in opposite direc-

tions. Thus,

A, _ A “A
{Fc} = {Fc(t)} - [M] {Uc} (2.10)
where
{Fﬁ(t)} = vector of external centroidal forces (6 x 1);
{Uﬁ} = vector of centroidal accelerations (6 x 1); and
[M] = diagonal mass matrix for a block (6 x 6).

The full mass matrix for a masonry unit is given below:

[M] = I (2.11)




(Forces on sides 3 and 4
are not shown for clarity)

A

Figure 5.

Nodal and Inertia Forces

for the Horizontal Stack Pattern

Ll
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For a solid brick:

M = mass of the brick

M2, 2
(2.12)
M2, 2
Iv =3 (c® +a7)
M2, 02

For a concrete block, different expressions for Iu’ IV, and Iw are pre-
sented in Appendix‘A.

Nodal forces are dependent on the spring stiffnesses of the linkage
elements, the relative nodal displacements of block A, and those of the
surrounding blocks. These relationships are given by Equation (2.13a)

on the following page. The same equation can be expressed as

BCDE

T A
(F} = [k] (LU} - (U

}) (2.13b)

BCDE

n } is the vector of nodal displacements (24 x 1) of the sur-

where {U

rounding blocks. Substitution of Equation (2.10) into (2.9) results in

}) (2.14)

A CAL T A BCDE
{Fc(t)} - [M]{UC} = [G] EkJ({Un} - {Un

Combination of Equations (2.8b) and (2.14) leads to Equation (2.15a):

FA(t) - I3 = [e1'nkd(Leledy - 16, J0E%Fy)  (2.150)

in which [Gm] is the 48 x 24 geometry matrix of elements B, C, D, and E

BCDE

n } in Equation

given on page 21. Symbolic expansion of [Gm] and {U

(2.15a) yields
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=

(e

{Fﬁ(t)} - [M]{Uﬁ} - [G]T[k]([G]{UQ} - [62:6%:6P:6F7 ¢

C

OMm oo oo o w,

=

(2.15b)

The multiplications on the right side of Equation (2.15b) are performed

to obtain
Ay - Iy = a1 tkate10y - re1rkareBru®)
- [61"rkare“3tly - [617ekare" 10w’y
- (6] TKI6F It (2.15¢)
or

A “A. o AL A B-,,B (o
(Fo(t)} - MUY = [KTIUCY - KUY - [KPTHU )
- [KP30u2y - IKEuE (2.15d)

where [K] = [G]T[k][G] and [KA], [KB], [KD], and [KE] are the stiffness
matrices for block A and the surrounding blocks. Equation (2.15d) may
be rearranged as

ey + 0Medy - Paoody - il - o0y - rkErad
t)} (2.15e)
Equation (2.15e) is the equation of motion for a typical block in the

horizontal stack pattern. The stiffness matrices are given in Appendix

B.
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Equations (2.8), (2.9), and (2.10) are applicable to the running

bond pattern also. Due to the pattern difference, however, the vector

of relative nodal displacements is different. The nodal displacements

can be expressed as (see Figure 6)

[
Wi -

{Us,} -

i2

A
{Uj]

} -

{U

Ay _
{F} = Lk ¢

L{Uq4}

which in symbolic form becomes

\

{Up3}
{Uq4}
{Uq3}
{UpZ}
{u 3}
{Un4}
{Un3}

wh s
m2- | (2.17a)

{UJ4}
{U11}
{Uj1}

{U




(Forces on sides 3 and 4
are not shown for clarity,)

Figure 6. Nodal and Inertia Forces for the Running Bond Pattern
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(Fhy = Tka(eufy - quBCEPFy (2.17b)

From this point on the same procedure used for the horizontal stack pat-
tern can be applied, resulting in the following equation of motion for a

typical block in the running bond pattern:
iy + kMl - Bl - ity - Rl
- 11y - K1l - s = Flen (2a8)

The stiffness matrices [KA], [KB], and [KD] are the same matrices devel-

oped for the horizontal stack pattern and are given in Appendix B.

CR], [KER

Matrices [K 1, [KF], and [KH] are also presented in Appendix B.

2.3.5 Equations of Motion for the Wall System

The equations of motion for a complete wall can be assembled using
the equation of motion for avtypical block (Equation (2.15e) or (2.18)).
Consider, for example, the horizontal stack wall portion shown in Figure
7. The mass matrix and vectors of accelerations, displacements, and
loads are arranged as shown in Equation (2.19a). To assemble the system
stiffness matrix, each block in Figure 7 is compared to the block arrange-
ment of Figure 4. Blocks 1, 2, and 5, for instance, correspond to blocks
A, B, and C, respectively, 1h Figure 4. Therefore, [KA], [KB], and [KC]
must be Tocated in the first row in the proper positions to be compatible
with the associated displacement vectors. This process is then repeated
for the other blocks. The system equations of motion for a wall with n
blocks are given in Equation (2.19a). In a compact form, Equation (2.19a)

becomes

M U} + KUY = (F (1)) (2.19b)



]

[M]

1 2 3 4
Figure 7. Portion of a Horizontal Stack Wall
- - ) —_ - 4~ -
. B C
{U]} [K]] [K1 0 0 [K]] 0 0 {U]} {F]}
P D A B C
{U2} [K2] [K2 [KZ] 0 0 [Kz] 0 {Uz} {FZ}
- D A B C
[M] (U} 4 0 [K3 [K3] [K3] 0 0 [K3] {UgH [F3}
[M] ¥ il
M)
Ml
I ko | o |3 o | o [rkPr|cky |y |y
Jun) L n n n7] Ln]j L nJ
(6nx6n) (6nx1) (6nx6n) (6nx1) (6nx1)

(n is the number of elements in the wall.)

(2.19a)

Ge
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2.4 Solution of the Equations of Motion

Equation (2.19b) represents the general form of the equation of
motion for both the horizontal stack and the running bond patterns.
Newmark's B method (26) was used to solve these equations as outlined

here.

2.4.1 Application of Newmark's Method

Equation (2.19b) can be reorganized to solve for the accelerations

as follows:

[Ms]{Us} = {Fs(t)} - [KS]{US} (2.19¢)
Premultiplying both sides by [MS]‘] yields

. R

W = M I ({F (2)} - [K.1{U.D) (2.19d)

The general form of the expression for the displacements in the 8

method is given by

Upey = U+ 0 (at) + (3 - B)ot)® 0+ Bot)® 0, (2.20a)
in which At is the time increment. For B = 1/6
U .. =U +0 (at) ++0 (At)2 + lU (At)2 (2.20b)
m+1 m m 3 m 6 “mtl
The velocities are calculated from
Oy =0+ (0 +0 st (2.21)

This procedure was implemented in the computer program as detailed in

Chapter V.



CHAPTER III
LOADING CHARACTERISTICS
3.1 Blast Wave

A blast wave is defined by Merritt (23, p. 74) as "an atmospheric
disturbance characterized by an almost discontinuous increase in pressure
accompanied by simultaneous changes in temperatures, density, and parti-
cle velocity." 1In order to study the blast effects on a given structure,
the characteristics of the blast wave must be known. Such characteris-
tics include the peak overpressure and the pressure-time history. The
variation in these factors depends on the type of explosion and the atmo-
spheric conditions.

Although the physical properties of the energy source or explosive
affect the observed characteristics of air blast waves in one or more
respects, evidence indicates that at reasonable distance from the center
of the explosion all blast waves, regardless of the source, share a com-
mon general configuration. Fiqure 8(a) shows typical pressure-time
curves resulting from nuclear and chemical explosions, measured at a
given location from the source of explosion. Both waves have positive
as well as negative phases. The latter, however, is of minor importance
and is often neglected, especially when the failure of a structural ele-

ment is being investigated.

27
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Figure 8. Pressure-Time History for Blast Waves
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3.2 Non-Atomic Blast Data

A blast wave may be generated by the sudden release of stored energy
which occurs in the form of an explosion. The failure of a high-pressure
gas storage vessel or steam boiler are examples of non-atomic sources of
explosion. Another source is that of a chemical explosion. Experimental
data on explosions of this type are not readily available on a wide scale.
One good source for data is a Ballistic Research Laboratories (BRL) re-
port compiled by Goodman (16) on bare spherical pentolite charges. In-
formation such as overpressure, duration, impulse, and distance from the
explosion are tabulated and plotted in the report. Another reference is
a comprehensive text by Baker (7) dealing with blast phenomena.

Blast data in the BRL report or in a similar source can be used in
two ways. For a wall located at a given distance from the center of ex-
plosion of a known charge, the pressures and durations are determined
from the graphs in the report. The computer program described in Chapter
V can then be used to determine the wall behavior under the given circum-
stances. Conversely, the impulse causing failure of a given wall can be
determined after running the program. The distance at which failure
occurs can then be obtained from the impulse graph in the report, followed
by the side-on overpressure and duration from other graphs.

Even though reference above was made to the BRL report which was
prepared for pentolite, the procedure is by no means restricted to pento-
lite. Pentolite has been widely used in blast experiments because it
gave reproducible data when detonated in small quantities. Blast proper-
ties of other chemica1’exp1osives can be obtained using conversion fac-

tors as reported by Baker (7).
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3.3 Blast Loading

Blast loading on a given structure is a direct result of the pres-
ence of that structure in the path of the blast wave. . The interaction
between the blast wave and the structure is a complex phenomenon affected
by numerous factors such as type of both the explosion and the structure,
distance from the center of the explosion, and orientation with respect
to the direction of the blast wave. When this information is specified,
the 1oad further depends on the face of the building being considered,
since a certain pressure-time relationship exists for each face of the

building.

3.3.1 Pressure-Time History

Attempting to define the form of the blast wave as a function of
time in mathematical terms has not been an easy task. Expressions of
varying complexity have been suggested to describe the positive phase as
reported by Baker (7). They were based on theoretical and/or experimental
data.. The following expressions, modified from expressions in References
(7) and (29) to describe the positive phase.of Figure 8(b), are probably

the best compromise:

1]

p.(t)

‘ Pso(t/tr) to<t<tr (3.1a)

and

t - tr
ps(t) - Pso (- ty - t,

y )e'(t'tr‘)/(td‘tr) t.<t<ty (3.1b)

where

ps(t) = overpressure at time t;
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-
t

= peak side-on overpressure;

—+
]

rise time after shock arrival; and
td = duration of the positive phase.
The corresponding positive impulse representing the area under the curve

in Figure 8(b) is obtained by integrating Equation (3.1a,b), resultingin

Impulse = P[5t + (2 - e )/(ty - t)]. (3.2)

r

3.3.2 Loading Distribution

The distribution of the blast pressure over the wall area in diffrac-
tion type (closed or almost completely closed) structures depends on a
number of factors. In addition to the type and orientation of the build-
ing mentioned earlier, the loading distribution further depends on the
location of the wall in the building and the total area of openings in the
wa]],lif any. Giyen the many uncertainties involved in the interaction
process between the blast wave and the structure, préecise loading informa-
tion is hard to obtain and may not be justified.

For walls with no openings, the blast wave generally yields a loading
distribution which can be considered uniform, sinusoidal (e.g., on an
interior wall), or é combination of both. For sinusoidal distribution

Equation (3.1a, b) are expressed as

—
—+
~
i

Poin(t/t.) ty<t<t, (3.3a)

and

t-t. -(t-t )/ (t,-t )
r r d “r ‘
psin (]__——td_tr)e to<t<t

H

(t) (3.3b)

Psin d

Similarly, the following expressions apply for uniformly distributed load:
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p,(t) = P, (t/t,) to<t<t. (3.43)
and
t-t -(t-t.)/(t,-t.)
p, (1) = Pu(]-%—d—_%)e rft i to<t<t, (3.4b)
r

For the general case when a combination of uniform and sinusoidal distri-

bution is present, the pressure at any pointyat time t is given by

(t) (sin XX sin 1’9‘4) (3.5)

p,(x,y,t) = p (t) + 3

Psin
in which L and H are the clear length and height of the wall, respective-
1y (refer to Figure 1 for the coordinate system used).

In order to evaluate the external 1oad acting on a given block, Equa-
tion (3.5) is used to determine the pressure on the block. The equiva-
lent concentrated load, acting at the centroid of the block in the
w-direction, is then calculated. This represehts the third element in

the vector of external forces {Fﬁ(t)} in Equations (2.15e) and (2.18).



CHAPTER 1V
MATERIAL PROPERTIES AND SPRING STIFFNESSES
4.1 General

The basic elements used in masonry construction are the masonry
units and their bonding agent, mortar. As a result, the strength proper-
ties of a masonry structure depend on, excluding other factors such as
the method of construction and curing conditions, the properties of its
elements. The properties of these elements, in turn, depend entirely on
those of their constituents and on the methods of production.

The first portion of this chapterbwi]1 be devoted to the description
of the basic properties of masonry. The remainder will deal with the
evaluation of spring stiffnesses and related properties for linkage ele-

ments.
4.2 Masonry Units

The masonry units commonly used in masonry construction are clay
bricks and concrete blocks. Several versions of each type are available.
Selection of the type of units to be used in a given structure depends on

the specifications of the structure.

4.2.1 Clay Bricks

Common (building) brick is, as its name implies, a clay product

33
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fired at high temperatures to near-vitrification. It is available in a
wide variety of shapes and qualities. The basic unit, however, is a
rectangular block, solid or cored not in excess 6f 25 percent.

In selecting a brick for use in masonry construction, the general
requirements are that it should be durab]erand possess sufficient
strength to enable the masonry to carry the design loads. The durability
of the unit would largely depend on the weather conditions at the con-
struction site, particularly with respect to the degree of exposure to
moisture and freezing conditions. Compressive strength of brick is a
function of raw material, manufacturing brocess, degree of burning, and
unit size and shape. Some of the physical properties of building bricks
are tabulated in Table I. It is to be mentioned that size variations do

exist, especially the length and thickness.

4.2.2 Concrete Blocks

Concrete blocks are masonry units made of water, portland cement,
and various types of aggregates such as sand, gravel, crushed stone, air-
cooled slag, coal cinders, expanded shale, clay, etc. Depending on the
type of aggregate used, blocks of various weights are produced.

A concrete block may be solid or hollow with two or three cores.

It may be load-bearing or,non-1bad-bearing. Some of the physical prop-

erties of concrete masonry units are given in Table II.
4.3 Mortar

Mortar for masonry construction is a mixture of cementitious
materials, sand (natural or manufactured), and water. The cementitious

materials may consist of portland cement, masonry cement, or a



TABLE 1

SELECTED PHYSICAL PROPERTIES OF CLAY BRICKS
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. . a .
Dimensions™ (in.) Compressive Strength Unit Weight
Type | Length | Width | Thickness (psi) (1b/ft3)
c 12 4 2
g 3 1
2 8, 12 4 25, 4, 5§ b' .
2,500 - 20,000 104 - 142
2
S 3 21
< 8 3% n
+
e

qFrom Reference (21).

bMim'mum specified by ASTM C62-75a (3) for Grade MW.

“Maximum normally available (18).



TABLE II

SELECTED PHYSICAL PROPERTIES OF CONCRETE MASONRY UNITS

Dimensions (in.)

Compressive Strength (psi)

Load—Beam’nga

Non-Load-BearingD

Unit Weight (1b/ftd)

Hominal Actual (Average Gross Area) (Average Net Area) Light | Medium | Normal
| o5 s 1000° -~ 600° uw | 105 | 125
8x8x16 7§x7§x15B d d to to or
(800) (500) 104 124 more

Minimum specified by ASTM C90-75 (3) for Grade N-I.

b,

Minimum specified by ASTM C129-75 (3).

cAverage of three units.

dIndividual unit.

9¢
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combination thereof, and may include in addition quicklime or hydrated
1imel

The American Concrete Institute (ACI) specifications (1) for con-
crete masonry structures recommend ASTM mortar Type M, S, or N for load-
bearing non-reinforced masonry. ASTM specifications (3) for proportion-
ing and compressive strength of mortar are listed in Table III, along

with corresponding tensile strength from Reference (20).
4.4 Mortar-Unit Interaction

As indicated earlier, the strength of masonry construction depends
primarily on the properties of both the masonry units and the mortar.
Furthermore, the integrity of the masonry depends on how well the masonry
units are joined togethef by the mortar. The stresses needed to separdte
the mortar from a masonry unit by axial or shear forces are known as the
tensile bond strength and shear bond strength, respectively.

The structural bond between the mortar and the unitsvis an important
factor in the structural behavior of masonry walls. In fact, bond
strength was found to have a distinct limiting effect on the flexural
strength of masonry walls. In flexural strength tests on various masonry
wa]]s.subjected to static transverse loads, Fishburn (13) and Hedstrom
(19) reportedkbond failure in all walls tested in flexure. Thus, bond
strength is considered the weak 1ink in masonry walls.

Various -factors are known to have an effect on the bond strength.
0f major importance is having the joints between the individual units
completely filled with mortar. Furthermore, mortar should have an ade-
quate water retentivity. This can be achieved by having the maximum

water content of mortar consistent with workability, along with an



TABLE III

MIX DATA AND PHYSICAL PROPERTIES OF MORTAR

Proportions (Parts by Volume)®

Compressive

Tensile
Mortar | Portland | Masonry Hydr. Lime or Strengthd Strengthb
Type Cement | Cement Lime Putty Aggregate (psi) (psi)
M ! ] - 2500 360
1 -- 1/4 400
S 1/2 1 -- The sum of the 1800 280
1 -- over 1/4to1/2 | volumes of the 340
cements and Times
N ) ] - must be greater 750 73
1 -- over 1/2 to 14 9 145
than 2% and Tess
-- 1 -- 70
0 than 3 350
1 -- over 1% to 2% 120
K 1 - over 25 to 4 75 --

aASTM'specifications (3).

b

From Reference (20).

8¢
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acceptable initial rate of absorption of the masonry units. In addition,
Copeland and Saxer (10) found that tensile and shear bond increased with
the ratio of portland cement to the weaker cementitious constituents
(1ime or masonry cement) and with the compressive strength of hortar.
They further noted that higher initial flow had a favorable effect on
tensile bond, while increasing the air content beyond 7 to 8 percent had
an adverse effect.

Noteworthy in this context is an expression proposed by Grimm (18)
for calculating the bond strength of conventional mortar to brick.
Based on extensive research, the expression was given in terms of the

initial flow, air content, and time of exposure of mortar.
4.5 Spring Stiffnesses for Linkage Elements

As indicated in section 2.2.2, mortar between the masonry units is .
represented in the wall model by four 1inkage elements. Each linkage
element encloses three springs arranged in the x, y, and z directions to
measure the displacements and therefore the corresponding axial, in-plane
shear, and transverse shear forcés.

Spring stiffnesses ki used in Equation (2.13) were determined for
beams by applying the basic theories of strength of materials. In order
to have the same shear and moment capacity in a masonry beam as those in
an equivalent elastic beam, the stiffness expression for springs in the

axial direction of head joints was found to be

K, = — (4.7)

where
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A = one-fourth of the area of contact between a masonry unit and
a mortar joint;
E = modulus of elasticity of mortar; and
Ly = center-to-center distance between blocks in the x-direction.

Accordingly, each of the four axial springs must be located such that

c-c¢c' == (4.2)

Using the expression for ¢' from Equation (2.1), Equation (4.2) yields

Ao=1 -1 (4.3)

W /3
The stiffness expression for transverse shear was found to be

ksw _ 2AG

i 312

(4.4)

in which G is the shear modulus of mortar.

For simply supported walls with two-way action, the stiffnesses
obtained from the above expressiohs proved to be too high when the wall
behavior was compared with an equivalent elastic plate. Thus, further
investigation was necessary. The solution of several examples was
attempted. This led to a modified version of Equation (4.4) to be used

for plates. The modified expression is

(S _ 2A6 (2¢)° (4.5)
1 z | :
31, h

in which 2c is the thickness of the wall, and h is the center-to-center
distance between blocks parallel to the y-axis. In addition, the stiff-
ness of the springs representing in-plane shear, which was not important

for beams, had a significant effect on the behavior of walls. The
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stiffness expression for these springs is

sv . AG (4.6)
Favorable results were obtained when Equations (4.1), (4.5