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CHAPTER 1

INTRODUCTION

General

The direct procedure for analysis of structural systems by the
stiffness matrix method is well suited for programming the electronic
digital computer to analyze structures of moderate size. Unfortunately,
for large structural systems, having a high degree of kinematic indeter-
minacy, this direct procedure can become quite cumbersome due to insuffi-
cient addressable core storage in the computer. A segmentation of the
program with temporary storage of data on auxiliary storage devices such
as magnetic tapes or discs becomes necessary. The use of auxiliary
storage devices generally requires a large amount of computer time for
transferring data into and out of the computer memory. The utilization
~of auxiliary storage results in increased cost to solve a problem. To
eliminate the need for auxiliary storage, a large structure may be ana-
lyzed by dividing it into parts. These parts may be referred to as
substructures.

A substructure may be a single bar member or it may be a large unit
consisting of a group (or subassemblage) of members. The interactions
between such groups of members at connection joints play a role which is
similar to the interactions of individual members framing into the

joints. Equilibrium equations for the connection joints can be soived



for the unknown displacements that are common to two or more substruc-

tures framing into those joints.
Historical Review

The technique of working with substructures when a structural system
contains too many unknowns to be solved for has successfully been applied
by Weaver (2), Beaufait et al. (3) and Wang (4) to small plane frames and
plane trusses.

The concept of solving structural systems in terms of substructures
and deve]dpment of group stiffenesses is discussed in some detail in re-
cent books such as Tuma and Munshi (1) and Jamal J. Azar (8).

The successful application of matrix structural analysis using sub-
structures, by Przemieniecki (5), Rubinstein (6) and Meek (7), demon-

strated the feasibility of using substructures.
Objective of the Study

Large structural systems often have repetitive geometry, i.e., they
are assembled together using identical subsystems. Analysis by sub-
structures can be of definite advantage in such cases.

The primary objective of this study is to investigate the possibility
of the extension of the application of group stiffnesses to two specific
problems. The first is the establishment of end stiffnesses of a planar
polygonal bar system (Figure 3), and the second is the solution of a

truss dome (Figure 4).



Scope of the Study

The properties of a polygonal bar are derived by starting with two
bars connected at a joint. Equations are reviewed to see how the middle
joint in the two bar system can be eliminated from the calculations and
the properties of the two bar system expressed as if it were an equiva-.
lent single bar. This equivalent bar can in turn be combined with the
next bar in the polygon and the process repeated. A1l interior joints
in the polygonal bar can thus be eliminated from calculations. A com-
puter program is written which accomplishes this and gives the end
stiffnesses as well as fixed-end stress resultants of a planar polygonal
bar.

The truss dome discussed is made up of six identical segments. The
group stiffnesses of each segment are first derived by eliminating all
its interior joints from the calculations. The solution of the dome is
then shown synthesized using these substructure properties. Again a
computer program is prepared to illustrate numerical application.

A summary and conclusion drawn from the study are recorded in the

last chapter.



CHAPTER 1II
SINGLE BRANCH GROUP
Theory

For polygonal shape bars and frames with a large number of joints,
it serves to an advantage to introduce the concept of single branch group
stiffness. Group stiffnesses can be defined as the stiffnesses of a
single equivalent bar to replace a given group of bars. A single branch
group can best be illustrated by the polygonal frame shown in Figure
1(a).

Such polygonal bars and frames where two bars frame into each joint
are called single branch systems. The development of group stiffnesses
of such systems is as follows: first, two bars are taken and the joint
formed by these bars is eliminated as shown later in this chapter. The
group stiffnesses and group load functions obtained for this two bar sys-
tem then represent the corresponding values of a single equivalent bar.
Then the next bar is added to the single equivalent bar and the new joint
thus formed is eliminated and the group stiffnesses and group load func-
tions are obtained which again can represent a single equivalent bar.

The procedure can be repeated for any number of bars. It may be noted
that no matter how many bars are added (one at a time) the group stiff-

ness matrix will always represent the system as a single equivalent bar
and the size of the stiffness matrix will always be 6 x 6 (planar frames)

and the size of the group end stress vector 6 x 1.
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To derive the expressions for group stiffnesses, two consecutive
bars, ij and jk as shown in Figure 1(b), are considered.
The joint equilibrium relations for joints i, j and k in these two

bars are written as follows:

o ,0 o 0 o _ 0

0 0 o ,0 o 0 o o

. A+ KD AT+ KL A+ s = W .
Kis &7 + K5 83 KJk ( + Fos = W (2.1b)
0 0 o ,0 o _ 0

Kkj by * K & + Fo =W (2.1¢)

in which K?j is a typical segmental stiffness submatrix, the coefficients
of which are the end stresses (stress resultants) induced at j due to

respective unit-displacements applied at i, and

0 o 0
. = Ki, o + KL, ., etc.
K37 %5501 F Kygae ote
A?, Ag, AE are deformation vector values such that
0 0 0 0
Ay =-{6.. , 6, , 85}, etc.
{ J} { ix* S5y Jz} tc

Fo?, Fog, Fcﬁ are the total fixed end stress vector values such that

o _ 0 0

and

0, _ ] ) 0
{Foji} = {FNjix’ FNjiy’ FM'iz} etc., due to Toads.

W?, wg,,wﬁ are applied joint Toad vector values such that

W = WO, + u°
"J Ji jk
and
0 _ 0 0 0



From Equation (2.1b), Ag is solved for in terms of the remaining

matrices.

) o)-1 ;,.0 .0, ,0 .0 0 0.

AL = =K. .. A+ KL, A+ Fo. - W.3. 2.2

37 KT Ky Ay Ky % i} (2.2a)
Ag is now eliminated from Equations (2.1a) and (2.1c) by substituting
for it.

0 .0 Q 0)-1,,0 .0 0o ,0 0 0

+ FU? = W? (2.2b)
0 o)-1,,0 .0 0o .0 0 0 0.0
Kkj {—Kj (Kji Ay + Kjk b ch - WJ)} * K 2y
o _ 0
+ Fak = Wk (2.2c)
These equations can be rearranged and written as

0)G ,0 0)G ,0 0)G _ 0

K" Ay + Kap™ oy + Fci = W; (2.3a)

0)G ,0 0)G ,0 0)G _ .0

Kki A_i + Kk Ak + Fok —;Nk (2.3b)
in which

)G _ 0 o ,0)-1,0

K377 = kG - K5 KT KGy (2.3c)

0)G _ ,0 ,0)-1 0

0)6 _ ,0 ,0)-1 ,0 , v

Kki = —Kkj Kj KJ._i (2.3e)

0)6 _ ,0 ,0 ,0)-1,0

Kk Kk Kkj Kj Kjk (2.3f)~

are the group stiffnesses (end stiffnesses of the bar ijk, acting as a

single unit) and

0)-1 0 )



o ,0)-1 0 0
K Kkj Kj {Foj Wj}.

are the group fixed end stress vectors.

(2.3n)

Equations (2.1a) through (2.1c) have thus been modified as if there

is a single bar "ik".

The next bar "k1" is joined at k as shown 1in

Figure 1(c), and the equilibrium equations are set up for joint i, k and

1 in the equivalent frame ikl.

in which

and

0)G .0 0)G A0 o)G
Ki'™ a3 + K§po a0 + Foll™ = W,
KO)G A° + 32KO 29 + KO A% + zFs0 = O
ki k "k k1 1 k k
-0 0 0 .0 o _ 0
K]k Ak + K] A] + F01 —\W-I
o_ ,0)G, 0
ZKe = Kt Kk,
0_ ~0)G
ZFck = Fck + FOkk 1

(2.4a)

(2.4b)

(2.4¢)

The new. group stiffnesses for the group ijkl obtained by eliminating

joint k can be written by comparison with Equations (2.3a) and (2.3b).

where

0)G' .0 0)6 A0 0)G' _ 0
K70 ay G oy 4 Rt = g
0)G .0 0)G .0 0)G _ ,,0

K-l_I A + K] A] + FG-I —'W]
0)G' _ ,0)G 0)G ,0)G) 0)G
Ki = K_i 'Kik Kki
0)G _ ,0)G ,0)G)-1 0

Kt = -Ki & Ki1

Ko}G 0)G K0)G)-1 Ko)G

(2.5a)

(2.5b)



0)G
1

= kO _ KO gO0)G)-T

0
1~ Kk K K

k1

are the new group stiffnesses at i and 1 of the bar ijkl, and

0)6' _ ~0)G ,0)G ,0)G)-1 ;0 0
Fci - F(j_i - K_ik Kk ' {Fok - Wk}

G o)G) 1

0)
Fo T K

P = Foy

0 0
are the new group fixed end stress vectors-at i and 1 of the bar ijkl in
which

G)-1 G
KE) {KO)

Kek, o
In the same manner the joint 1 can also be eliminated from the bar
system ijkIm, i.e., the equivalent bar system ilm, and final force

deformation relation at i and m of the system ijkim (Figure 1(d)) can be

written as
$)G A + K )G A° + Fo O)G W? (2.6a)
KOG 0 - 0)G AO + Fo )G = O (2.6b)
m1 i m m e
where the matrices KO)G s K?%G, ngG and K;)G are the group stiffness
matrices, and Fc 0)6 cho)G are group fixed end stress vectors, all being

related to the joints i and m only, when the joints j, k and 1 are free

to displace.

Development of the Computer Program

The development of group stiffnesses and load functions for a single
branch group such as a polygonal shape frame described earlier in this
chapter has been programmed for numerical computation on a digital com-
puter. The program No. 1 has been written in FORTRAN Tanguage and tested
on the IBM 360-65 model.
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The program generates the group stiffnesses and load functions.
The results are printed in appropriate matrix form with proper headings.
Two illustrative examples have been solved and the results were compared
with the values given in reference (1).

- The steps involved in the program are shown in Figure 2 as a flow

chart. .



START

Read number of problems

\_ solve all problems

Read & Echo

Geometric and elastic properties,
fixed end stresses and applied
joint Toads of first bar

Generate member stiffness matrix
in member axes. Perform angular
rotation and store member stiff-
ness matrix in global axes

(CALL STIFF)

Read & Echo

Geometric and elastic properties,
fixed end stresses and applied
joint loads of next bar

/" Repeat the program to ‘:>

Bar length = 0 7 \ Y¢5

STOP

e
|no

(CALL STIFF)
|

Develop the group stiffnesses and
group load functions by eliminat-
ing the interior joint formed by
two bars ‘

(CALL GRPSTF)

Print final group stiffnesses and
group load functions of the system

>

Figure 2.

Flow Chart of Computer Program No. 1

11



CHAPTER III.
MULTI-BRANCH GROUP
Theory

The technique of -eliminating some unknowns and developing the stiff-
ness matrix in terms of stresses due to certain unit displacements of the
system leads to the generalized group stiffness matrix concept. It can
best be illustrated by an example, such as the geodesic dome shown in
Figure 3. Such complex frames and trusses are classified as multi-branch
systems and their analysis can also be performed by developing group
stiffnesses and group load functions. In this approach the system is
conveniently partitioned into regions or substructures. A substructure
can be defined as a structure restrained at the joints that are common
to adjacent substructures and that connect the various substructures .
together. Once the substructures for a structural system have been de-
'finéd, each substructure is treated independently for the loads applied
within that region of the substructure and for the possible joint
deformations. A1l the interior joints of each substructure are eliminat-
ed from calculations by using the technique discussed earlier in
Chapter II. A1l substructures are then connected together at the
~ boundaries by using the group stiffnesses and group Toad functions. The
development of group stiffnesses and group load functions for a typical

substructure in a multi-branch system is as follows.

12
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The equations of equilibrium at all joints with (any) degrees of

freedom can be arranged in the following matrix form.

0 0 (o] 0 0] o]

KE Km K| A Foy Wy

0 0 0 0 ol - |yo

0 0 (6] 0 (0] o]

Ko Kjm KR AR Fop Wp
L -~ L. L _— L.

in which (see Figure 4) AE and Ag»are the deformation vector values at

joints on the left and the right boundaries, respectively, such that
0y = ;70 A0 0y.
{AL} {A], Bos o v s A5},
A; is the deformation vector of the interior joints such that
01 = (A0 A0 0 1.
{AM} {A6, Bgs o v v s A]1},
KEM is a typical stiffness submatrix, the coefficients of which are
stress influence values at joints on the left (L) boundary due to unit

deformation at interior joints (M); Fco, Fcﬁ, Fog are the fixed end

stress vector values such that

{Fo} = {FoQ, Fof, . . . , Fopl;
and WE, wﬁ, wg are the applied joint load vector values such that
0y _ (0 0 0
{WL} = {w], wz, c e e w5}.

In Equation (3.1) Aﬁ corresponds to interior joints to be eliminat-
ed. Following a procedure similar to the one used in Chapter II,

o_ ,0)-1 .,0 .0 0.0 ) 0
Ay = =Ky Ky AL ¥ Kypdp + Foy - Wy!

(3.2)
Aﬁ can now be eliminated from the first and the third rows of matrix
Equation (3.1) by substituting for it and the results rearranged as

follows:



0)G 0, ,0)G ,0 0)G _ 0
KL A + KLR Ap * Fo o' = WL
0)G ,0 ., ,0)G ,0 0)G _ 0
KRL AL * KR Ap t FoR = WR

in which

0)G _ ,0 o ,0)-1,0
KW= KD - Kim Kyt K

o)G _ 0 o ,0)-1,0
SR KR - Kim KT Kwr

0)G _ ,0 o ,0)-1,0
Kei = Kpo = Kpm Kv' o Ko
0)G _ ,0 o ,0)-1,0
K™ = Kp = Kew K" Kyr

are the multi-branch group stiffness matrices, and

0)G _ .0 0 o) 1
FcL —-FGL KLM M (F NM)
0)G _ -0 ) ) WO
FGR = FOR KRM M (Fc - M)

(3.

(3.
(3.
(3.

(3.

(3.

(3.

5a)

5b)

5¢)

5d)

6a)

6b)

are the multi-branch group fixed end stress vectors due to loads or other

causes.

These modified functions are used to relate the interaction with

adjacent substructures at the connection joints.:

The given system can now be solved by setting up the system equili-

brium stiffness matrix equation for just the joints at the boundaries of

the substructures. Having found the boundary joint deformations, the

deformations at interior joints of each substructure can be found by

using Equation (3.2). Finally, all member end actions and support reac-

tions are computed from member force-deformation relationship.



Development of the Computer Program

The elimination procedure of interior joints and the development of
multi=branch group stiffnesses and group load functions described earlier
in this chapter can be programmed for solution on a digital computer.
Obviously there is an infinite variety of complex structures that can be
classified as multi-branch systems. Therefore, no attempt is made to
write a completely general program. However, a program is written to
analyze a geodesic truss dome such as the one shown in Figure 3, by using
substructures. The program generates the group stiffnesses and group
load functions for one of the six identical substructures of the geodesic
truss dome, Figure 4. The system equilibrium matrix equation is selved
for the boundary joints of all substructures. The interior joints, mem-
ber forces and support reactions are then computed. Various steps
involved in the program are presented in the flow chart, Figure 5.

The computer program No. 2 has been written in FORTRAN language and
tested on IBM 360-65 model operated by the Oklahoma State University

Computer Center.



Figure 4.

A Typical Substructure of the Dome
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I START |

Read & Echo

Control Data

Number of joints, number of members,
number of supports, number of interior
joints to be eliminated eof ene of the
six identical substructures and the
number of substructures

Read & Echo

Joint Tocation in polor coordinates

Member incidences and member properties

Set up member stiffness matrix in
global reference system
(CALL MEMSTF)

Add member stiffness matrix to substructure
stiffness matrix

Eliminate interior joints of a substructure
and develop group stiffnesses
(CALL GRPSTF)

Connect all substructures using group stiff-
nesses; set up system stiffness matrix

Read & Echo
Loading Number

o

Figure 5. Flow Chart of Computer Program No. 2




b

Y

:-———————-—{ Repeat for each substructure

A loads for all joints

. — . yes
1 Loading number = 0 ? J STOP
no

Read & Echo
Fixed end stresses and applied joint

Set up group fixed end stress vector

L——  Set up applied joint Toad vector |

Set up system equilibrium matrix equation
SMJ * DEL + VJST = VL

(CALL DECOMP & SOLVE)
Solve for boundary joint deformations

Solve for interior joint deformations
of substructures

Solve for member forces and support reactions

PRINT joint deformations,

member forces and support

reactions

Figure 5. (Continued)



CHAPTER IV
TILLUSTRATIVE EXAMPLES

Three numerical examples are presented to illustrate the technique
of working with substructures and the development of group stiffnesses
and group load functions.

The first two examples demonstrate the application to single branch

,structure§.
Example 1

‘A two bar system of constant cross section shown in Figure 6 is
considered. It is desired to verify the group end stiffnesses and group
fixed end stresses obtained by the procedure outlined in Chapter II.

It is assumed that,

2

EI = 290,000 k-ft°,

EA

-1,073,000.00 k.

Member stiffness matrix for .each bar in its Tocal axes is

53650 0 0 -53650 0 0

0 435 4350 0 -435 4350

K = 0 4350 58000 0 -4350 29000
-53650 0 0 53650 0 0

0 -435  -4350 0 435 -4350

0 4350 29000 0 -4350 58000

20
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Figure 6.

Two-Bar System, Symmetrical Bent Bar

T



(44

Also the fixed end stress vectors in local axes are

For; = (0.0, 4.33, 12.52)
Foo, = (0.0, 4.33, -12.52)
Foop = (-2.5, 0.0, -6.25)
Fop; = (-2.5, 0.0, 6.25).

The group stiffness and group Toad functions obtained by using these
data in Computer Program No. 1 (Appendix) are given in Table I.

The results are»checkea out and compare very well with those com-
puted from Tables 10-8 and 10-9 of Tuma and Munshi (1), which are

presented in Table II.
Example 2

The elastic properties (end stiffnesses) and load functions (fixed
end stresses) for a circular constant section bar are to be computed.
To illustrate the application of the program developed in Chapter II,
this bar is replaced by a polygonal bar consisting of the chord lengths
connecting points located at 1/10 the total length along the curve,
Figure 7.

The same values of EI and EA as used in Example 1 are also used for
this 10-bar system.

The segmental stiffness matrix in member axes for a typical bar is

as shown below.
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TABLE I
EXAMPLE 1, RESULTS FROM COMPUTER PROGRAM NO. 1

Left End Right End
869.8 0.0  -4348.9 -869.8 0.0  4348.9
0.0 72.5 1255.7 0.0 - -72.5  1255.7
-4348.9 1255.7  50744.6 _4348.9  -1255.7  -7244.9
~869.8 0.0 4348.9 869.8 0.0  -4348.9
0.0 725  -1255.7 0.0 72.5  -1255.7
4348.9 1255.7  -7244.9 ~4348.9 _1255.7  50744.6
FOE)G = (2.5, 6.6, 17.2} Fog)G = {-7.5, 2.1, 10.9}
TABLE 1II
EXAMPLE 1, RESULTS FROM REFERENCE (1)
Left End Right End
870.0 0.0  -4350.0 ~870.0 0.0 4350.0
0.0 72.5 1255.8 0.0 _72.5  1255.8
_4350.0  1255.8  50750.0 4350.0 -1255.8  -7250.0
-870.0 0.0 4350.0 870.0 0.0  -4350.0
0.0  -72.5  -1255.8 0.0 72.5  -1255.8
4350.0  1255.8  -7250.0  -4350.0 -1255.8  50750.0
FOE)G = (2.5, 6.6, 17.2} ch)G = {-7.5, 2.1, 10.9}




47.366"

Figure 7.

Ten-Bar System, Symmetrical Circular Bar

24
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6837880 0 0 -6837880 0 0

0 901 7066 0 -901 7066

K = 0 7066 73923 0 -7066 36962
-6837880 0 0 6837880 0 0

0 -901 -7066 0 901 -7066

0 7066 36962 0 -7066 73923

Fixed end stress vectors for bar No. 4 are as follows:

0 _
F045 = (0.0, 5.0, 18.64)

o _
F054 = (0.0, 5.0, -18.64).

The group stiffness matrix and group load functions are generated
using Computer Program No. 1 (Appendix).

Table III shows these values which can be compared with the corres-
ponding values computed from Tables 10-12 and 10-14 of Tuma and Munshi

(1), shown in Table IV.
Example 3

A geodesic dome of base diameter 150 ft. and 45 ft. high (as shown
in plan view in Figure 3) is analyzed by Computer Program No. 2. The
dome structure is considered as a space truss and it consists of six
identical substructures. All the joints at the base are assumed to be
pinned end supports. Group stiffnesses and group load functions for a
typical substructure are developed by using equations derived in Chapter
“I1I.

The dome is analyzed for a uniform gravity load of 1 k/sft on the
actual area. Figure 8 shows a substructure with joint Toads computed

from respective tributary areas.



EXAMPLE 2, RESULTS FROM COMPUTER PROGRAM NO. 1

TABLE III

Group

Fixed End
Group Stiffnesses Stresses
GLLR GLR Left End

1 2 3 1 2 ‘ 3 1
1 23.971302 0.000000 -458.714308 -23.971302 0.000000 458.714309 9.127295
2 0.000000 1.021301 72.217742 -0.000000 -1.021301 72.217742 7.318540
3 -458.714308 72.217742 15732.646697 458.714311 -72.217744 -5519.398024 23.042503
GRL GRRL Right End

1. 2 3 1 2 3 1
1 -23.971302 -0.000000 458.714309 23.971299 0.000002 -458.714303 -9.127295
2 0.000000 -1.021301 -72.217742 0.000000 1.021301 -72.217742 2.681460
3 458.714309 72.217742  -5519.398023 -458.714294 -72.217751 15732.646664 72.123942
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TABLE IV

EXAMPLE 2, RESULTS FROM REFERENCE (1)

Left End Right End

23.9 0 -461.09 -23.90 0 461.09

0 1.02 71.85 0 -1.02 71.85
-461.09  71.85  15835.75 461.09  -71.85  -5674.28
-23.9 0 461.09 23.90 0 -461.09

0 -1.02 -71.85 0 1.02 -71.85
461.09  71.85  -5674.28 -461.09  -71.85  15835.75

FGE)G = {9.08, 7.31, 20.72} ch)a = {-9.08, 2.69, 71.43}
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The system stiffness matrix is constructed by superposition of all
transformed substructure group stiffness matrices. Fixed end stress
vector is set up by the superposition of transformed group load functions
of each substructure. The applied joint Toad vector-is also set up by
the superposition of all connecting joint loads with proper transforma-
tion. The system equilibrium matrix equation is written for those joints
which are connecting adjacent substructures as shown in Figure 9. The
unknown joint deformation vector is obtained by solving the system
equilibrium matrix equation. The known deformations of each substructure
are substituted in Equation (3.2), for solving for-interior joint deform-
ations. Finally, all member forces and reactions are computed by using
the member force-deformation relationship.

A11 substructure boundary joint deformations are presented in
Table V and the interior joint deformations of the substructure I are
shown in Table VI. The final member stresses in a typical substructure
are summarized in Table VII and the support reactions in Table VIII.

The results are checked out and compared by solving the dome using

STRUDL II.
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150 - ‘\

Figure 9. Substructure Boundary Joints



TABLE V

SUBSTRUCTURE BOUNDARY JOINT DEFORMATIONS, FIGURE 7
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Joint
Number X-Disp. Y-Disp. Z-Disp.
1 0.000000 -0.000000 -0.216258
2 -0.031746 -0.000000 -0.261964
3 -0.057029 -0.000000 -0.216807
4 -0.070657 0.000000 -0.159325
5 -0.014584 0.000000 -0.042307
6 -0.015873 -0.027493 -0.261964
7 -0.028514 -0.049388 -0.216807
8 -0.035328 -0.061190 -0.159325
9 -0.007292 -0.012630 -0.042307
10 0.015873 -0.027493 -0.261964
11 0.028514 -0.049388 -0.216807
12 0.035328 -0.061190 -0.159325
13 0.007292 -0.012630 -0.042307
14 0.031746 -0.000000 -0.261964
15 0.057029 -0.000000 -0.216807
16 0.070657 -0.000000 -0.159325
17 0.014584 -0.000000 -0.042307
18 0.015873 0.027493 -0.261964
19 0.028514 0.049388 -0.216807
20 0.035328 0.061190 -0.159325
21 0.007292 0.012630 -0.042307
22 -0.015873 0.027493 -0.261964
23 -0.028514 0.049388 -0.216807
24 -0.035328 0.061190 -0.159325
25 -0.007292 0.012630 -0.042307




TABLE VI
INTERIOR JOINT DEFORMATIONS OF SUBSTRUCTURE I,

FIGURE 6

Joint

Number X-Disp. Y-Disp. Z-Disp.
6 0.034448 0.009763 -0.021846
7 0.046401 0.026790 -0.009544
8 0.025679 0.024951 -0.021846
9 -0.016904 -0.015073 -0.140511
10 -0.021505 -0.007103 -0.140511
11 -0.034995 -0.020205 -0.236507




33

TABLE VII
FINAL MEMBER STRESSES IN SUBSTRUCTURE I,
FIGURE 6
Member From To Axial Member From To Axial
Number Joint Joint Force Number Joint Joint Force

1 2 1 -435.5762185 23 8 15 58.2736876
2 3 2 -627.3663875 24 15 14 -647.1357546
3 4 3 -674.9366381 25 8 14 -211.9581489
4 5 4 -647.1357546 26 8 9 -590.4985033
5 21 5 -437.8402026 27 7 9 -425.8343988
6 21 20 0.0000000 28 7 10 -425.8343988
7 20 19 0.0000000 29 6 10 -590.4985033
8 19 18 0.0000000 30 6 4- -211.9581489
9 18 17 0.0000000 31 4 10 -261.2757901
10 17 16 0.0000000 32 10 9 -154.8369822
11 16 15 -437.8402026 33 9 14 -261.2757901
12 17 15 -281.5501713 34 14 13 -674.9366381
13 17 8 -596.6250395 35 9 13 -213.3368859
14 18 8 -443.5447351 36 11 -516.2025175
15 18 7 -520.7355366 37 10 11 -516.2025175
16 19 7 -520.7355366 38 10 3 -213.3368859
17 19 6 -443.5447351 39 3 11 -410.3527044
18 20 6 -596.6250395 40 11 13 -410.3527044
19 20 5 -281.5501713 41 13 12 -627.3663875
20 6 58.2736876 42 11 12 -323.0359605
21 7 198.2170523 43 11 2 -323.0359605
22 8 198.2170523 44 2 12 -522.3295297
45 12 1 5762185

-435,




TABLE VIII

SUPPORT REACTIONS FOR SUBSTRUCTURE I, FIGURE 6
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Support

Number X-Force Y-Force Z-Force
16 -123.253118 -213.480663 361.854554
17 -356.654799 -315.889647 - 665.813964
18 -433.581653 -275.682385 714.758759
19 -455.538775 -237.651533 714,758759
20 -451.895859 -150.927293 665.813964
21 -246.506236 -0.000000 361.854554




CHAPTER V
SUMMARY AND CONCLUSIONS
Summary

The application of group stiffnesses for analyzing single branch
systems (polygonal shape frames) and multi-branch systems (complex frames
and trusses) is investigated in this study. Group end stiffnesses of a
polygonal bar system is established by taking two examples of sing]e
branch systems. A two bar system of constant cross section is considered
to develop and verify the group end stiffnesses and group fixed end
stresses.. Another example of a single branch system considered is a cir-
cular constant section bar. To illustrate the application of group
stiffnesses, this bar is replaced by a polygonal bar consisting of the
chord Tengths connecting points located at 1/10 the total length along
the curve. A computer program No. 1 (Appendix) is developed to compute
the end stiffnesses as well as fixed end stress resultants of a planar
polygonal bar. An attempt is also made to work with substructures in the
case of multi-branch systems. A geodesic dome structure with six identi-
cal substructures is analyzed as a space truss dome. The group stiff-
nesses and group fixed end stresses are developed for a typical
substructure and the same were used with proper axes transformation to
synthesize the whole dome structure.. The computer program No. 2 (Appen-

dix) is written which accomplishes this and analyzes the dome and prints .
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out the final joint deformations, member forces and support reactions.
The same truss dome is also analyzed by using STRUDL II to verify the

results of the computer program No. 2.
Conclusions

The investigation of the extension of the application of group
stiffnesses to the illustrative examples showed that the concept of group
stiffnesses and group fixed end stresses can be applied to plane and
space structures with appreciable accuracy. Further, that it is easy
and convenient to work with substructures by developing group stiffnesses
and group fixed end stresses when the structural system has repetitive
geometry. The first computer program can be easily modified to be suit-

able for a three dimensional, single branch system.
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G A0 OA00ON00O0N

1 fOLEFT ENDY L/ /42044014 ,//)
155 FORMAT {10X,I1e5XsF12.6)

* & & % k k % ¥ ¥ & ¥ & ¥ ¥ k % k& ¥ ¥ ¥ ¥ & ¥ % ¥k & ¥ & & ¥ & ¥ k ¥ 163 FORMATY (/777 415X," RIGHT END #4/7,20Xs %1%,/ /)
* * 17J FORMAT [10X,11,5X,F13e0l
* * C
* PROGRAM # 1 * C® % % & % % % & & % % & ¥ %« & ¥ % % ® & % Kk % k £ * ¥ % X &£ K ¥ ¥ € %
* & c READ NUMBER GF PROZLEMS T
* SINGLE BRANCH GRJUP STIFFNESSES AND GRDUP LCAD FUNCTIGNS * C ¥ % % & % % % & % % &£ % & & % % & 6 Sod"# €£,8 & ¥ % & £ ¥ & & & & %
* £ C o - . n L kS
* * READ 1, NPRBLM .. R -
* LANGUAGE USED : FORTRAN IV * N3 ¥000 NUM = 1, NPRBLM T b ..
* DIGIT AL MACHINE 1 IBM 260 - 65 * READES . TITLE ™ v
* PROGRAMMER : MOHAMMED A. RANOOF * PRINT 110 . . 5 :
* * PRINT 10, TITLE A
* # < o . . .
* DESCRIPTION OF PROGRAM = C ® * & & x % & % % % % & &£ & £ & & &k ¥ & ¥ £ & £ & ¥ F & K F %k T ¥ &
* . = c READ PRIPERTIES IJF. FIRST B8AR .
* THIS PROGRAM DEVELOPS GROUP STIFFNESSES axd * C * % & £ £ & & 3.6 & %% p 2% % # x k ¥ % * & & ¥ * ¥x & &£ & ¥ & £ ¥ &
* GROUP LOAD FUNCTION OF SINGLE BRANCH POLYGONA. * C
* SHAPE FRAME MADE UP JF STRAIGHT BARS OF CONSTANT b READ 20, XLy €Ay EI, TMFTA
* CROSS SECTION. THE ILLUSTRATIVE FXAMPLES 1 & 2 *® €A = EA * 100.0
* {CHAPTER {V) WERE SOLVED WITH THIS PROGRAM, * MN = 1
* * PRINT 25y 4N, XL 4 SAy 5@ , THETA - .
* * FEAD 30 (FSLRII,1 Y1523y (FSRLULy1)yIoke3),t0tRET, 13,151, 30,
* * 1 {WRL(Ip1) 41=1,3F 0
%k k &k & ¥ X K K Kk ¥ k k k & ¥ k k k kK € & & k & % X &£ ¥ ¥ £ £ % % " PRINT 2 - - —
. PRINT 8, { FSLR(I,13,1=1+3 )y O FSRLII,Y)eIs)e3 } -
IMPLICIT REAL * 8 ( A-H,0-Z } PRINT 9y (WLRUI,104E=1,43) o ( WRE{I,1),0=1,371

CALL STIFF (XLsEA,EI.THETA,SLLRySLRy SRRL,SRLT |

DIMENS ION TITLE(10} c
DIMENSION SLLR(3,31,SLR{3,3)4SRRLI3¢3),5L(3y 3}SRRX(3,32), C * % % & ® & % * % k¥ # k % & & & & % & % & & & ¥ x ¥ & ¥ & ¥k ¥ ¥ & ¥ %
. ISRX{ 353}, SXXR(393),SXR{343) yWXR{341) C === READ PROPERTIES OF NEXT BAR | -
2FSLRI3s11sWlRE33 1}, FSRLU2, 13 WRULI3,21oFSRXI392)2WRX(3,1) ,FSXI(3,3) C % % % % % & % * & & % % € & € &£ & kX % & K & X ¥ * * £ % ¥ & k £ £ F %
DIMENSION T1(3,3), T2(3,3)s T3(3,3}, T4{3,3), T5(3,1}, T&{3,1) [
50 READ 20, XLs EA, EI, THETA .
1 FORMAT ¢ 10X , I5 1} IF (XL} 100,100,55 )
2 FORMAT (/7/,50X, * FIXED END STRESSES *,//y 40X, 'LEFT END 55 READ 30¢{FSRX{I,1),1=1,3), (FSX(I+1),1=1,3) 0 WRX(I,1},1=1,3},
1 RIGHY END ¢ , / ) o1 {WXR{I411,1=1,3)
5 FORMAT ( 10A8 } . : MN = MN + 1
8 FORMAT (/10X 9* FIXED END STRESSES*,2X431FB84442X 199X 3(F844y2X}} . £A = EA * 100.0
9 "FORMAT (/4 10Xy *APPLIED JOINT LOAD® 32X3{F8s442X) 49X y3(F84%42X}) . PRINT 25, MN, XL , EA, F;I s THETA
10 FORMAT { ///,20Xy 1048 ¢ / ) PRINT 2 -
20 FORMAT ( 4F10.5 ) X PRINT 8, ( FSRX(141),1=1,3 ), FSXR{I+1)41=143 )
23 FORMAT { //, 10Xy, 'BAR #',15,///417X; 'LENGTH EA *y PRINT 9, {WRXUI,1}+1=1,3) 5 { WXR(I,1),1=1,3 )
-1 10Xy® EI  ?y 10Xs* THETA *,//,10X,4{F12.1,5X}) } CALL STIFF (XL oEA L], THE TA o SRRX SR Xy SXXR s SXR)
30 FORMAT (6F8.4,6F5,2) [ ’
110 FORMAT {1Hl ) C % % % % % % ¥ & % % % & kK X % ¥ x % ¥ &k * £ ¥ &k £ ® x *k £ k ¥ Kk # ¥ &
120 FORMATY (///7540X,17THGROUP STIFFNESSES ,7//771) [ CALCULATE GROUP STIFFNESSES ’
130 FORMAT (35X, 4HGLLR ,45X,3HGLR+/// . C % % % % % % & k % % % % % % % &k % ¥ k k kK £k ¥ ¥ ¥ ¥k & k ¥ k ¥ £ % * &
1 22X ' 1% 13X P2, 15X, *3%, 17X, t1%, 14X, *2¢,15X413%,// ) [
140 FORMAT [10XsI1Y95X93(F13,642X)95Xe3(F13.6,2X) } CALL GRPSTF {SLLR ySLR,SRRL,SRLySRRXySRX ySXXR¢SXRy )
153 FORMAT (///7435Xs 4H GRL 9 45Xs 4HGRRL ¢+ // 1 FSLRyFSRL y FSRXyFSXRyWLR yWRLsWR XsWXRy T1,T72,T3,74,75,T6 }
1 22X Lty 13X, 129 ,15Ky 93¢, 1TXs 1%, 14X,%2%,15X4*3%,// ) CALL DUPL { T,y SLLR,y 3 4 3} )
153 FORMAT ( 1H1,///7+20Xy-* GROUP FIXED END STRESSES *4//74+15X, CALL DUt ( T2, SLR 4, 3 4 3}

6€
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CALL DUPL ( T3 , SRL 4 3 4 2 )
CALL DUPL ( T4 , SRRL 4 3 4 3 )
CALL DUPL € T5 , FSEtR , 3 , 1 }
CALL DUPL { T6 , FSRL 4 3 , 1 }
GG 79 50
100 PRINT 1190
PRINT 120
PRINT 130

D0 135 I=1,3
PRINT 140, I (SLLRIL+d)ed=153) 3 (SLRIUT pJ} ,d=1,3)
PRINT 150
DO 152 1=1,3
PRINT. 140, [4{SRL{T+J}sI=193)+(SRRLIT I} sd=143}
PRINT 153
DG 154 1=1,3
PRINT 155, I,FSLR{1,1}
PRINT 160
PO 165 1=1,3
PRINT 170y [, FSRL(I,11}
CONTINUF
PRINT 110
sTop
END

* X & Kk & kK K K X X X Rk Xk & &5 R ¥ & K kK K & K & X K £ % £ K & & & £ %
———- SUBROUTINE TO SET yP MEMBER STIFFNESS MATRIX AND TIANSFIRMATION
K K K K kK kK K K K ¥ & X ok kK X K X k k X & & & k X X X & &£ ok & £ * X

SUBROUTINE STIFF (XUL,EA,EI,THETA,SAAB,SAB,SBBA,SBA)

IMPLICLY REAL * 8 { A-H,0-Z } ’
DIMENS ION SAAB{3,3),5A8(3,3),SBBA{ 3 3}, SBA( 3,3}y 3,3} ,WT{3,3)
DIMENSION X(3,3})

€ =--- INITIALIZE

CALL ZERO (SAABy3,3)
CALL ZERD (SAB ,3,3}
CALL ZERO (SBBA, 3, 3)
CALL ZERQC (SBA +343)
CALL ZERD (W93,3)
CALL ZERQO {WT,3,3)
CALL ZERG (X,3,3)

SAAB(1,1) = EA/ XL

SAAB(2,2) = (12,0 *E1) / (XL*¥*3)
SAAB(24+3) = (6.0 * EI} / (XL**%2})
SAAB(3,2) = SAAB(2,3)

SAAB(3+3) = (4,0 * El) /7 XL
SAB(141) = - SAAB(1,1)

SAB{2s2) = - SAAB{2,2}

SAB(2+3) = SAAB(2,3)

SAB(3,2) = — SAAB(2,3)

SAB(3,3} = (2,0 * EI} /XL
SBBA(1,1) = SAAB(1,1)

SBBA{2+2) = SAAB{2,2)

SBBA{2,3} = =~ SAAB{ 2,3}
SBBA(3,2) = SBBA(2,3)

SBAA(3,3) = SAAR(3,3}

THFTA = THE TA % 3,1415326335 / 189,92
wllyl} =NCS{THETA)

wi{l 42} =USIN{THETA)

Wl201) - #{1,2)

wizZye2) wWilse 1)

wWi{3,3) 1.9

CALL TRAN (WsnT,s3,3)

CALL MULT (SAAS,WeXs 393}
CALL ZERD {SAAB,Y,3)
CALL MULT (WT,XyS448,3,3)
CALL ZERG (X43,3)
CALL MULT (SABsw eX33,3}
CALL ZERO (SAB 4343}
CALL MULT (wWT+X¢5A48+3,:3)
Catl TRAN (SAB,.S34,3,%)
CALL ZERD {Xe3,2)
CALL MULT (SBBAyweXs3¢3)

CALL ZFRO (SBBA,3,3) -
CALL MULTY {wT,X,SBBA, 3,3}
RETURN
END

nonoa

C ® % % % % % & ¥ £ ¥ ¥ 3 & 5 % %k % ¥ % & ¥k & % ¥ & ¥ % ¥ ¥ * € & & & ¥

[ SUBRIJUTINE TC FORM GROUP STIFFNESSES .
C * % % % % % % &£ & ¥ %k € ¥ = &£ X £ & K K £ & & & k x £ ¥ X £ ¥ £ & & %

c

SUBROUTINE GRPSTF(SLLR,ySLReSRRL,SRLISRRX pSRX1SXXRySX Ry
1 FSLR FSRLy FSRXsFSXRy WLR s WAL yWR XoWXRy D1,D25D34D4,05,06 1}

IMPLICIT REAL * 8 ( A-H,0-Z2 }

DIMENSION SLLR{3,3),SLR{ 3,31¢SSRR{343),SRLI3,3)} 1SRXE3,3),SXR(3 431,

1 SXXR(342),FSLRI3 41 }oSFSR{3,13,FSXR(3,11,5WR (3,1},

2 SRRL(3,309X0393)sY(3,3)4P{3,1),Q0(3,1)

DIMENSION DSLR(3,3), SSRRI(3s3),FSRLI3, 1} 4SRIX( 3,3}
DIMENSICN FSRX{3 41} sWRLI3,11pWRX (34 134ALR(351},WXRE341)
DIMENSION D1{3,3), D2(3+3)y D3(343) s D4(3+3), D5(3,11, D5(3,1}

CALL ADSUB {SRRLSRRXsSSRRIs3,43,+11}
CALL ADSUB (FSRL+FSRXsSFSRe3+1,+1)
CALL ADSUB (WRL sWRXsSWRy3y1ly+1)
CALL INVERT (SSRRI 43}
CALL ZERDO (Xys2,31
CALL ZERD (Y4342)
CALL ZERQ (P43,1)
CALL ZFRO {Jy 2,1}
CALL DUPL {SLR,DSLR,3,3}
CALL MULY {SLR,SSRRIsXs3,+3}
CALL MULT {XsSRL Yy 3s3)
CALL ADSUB (SLLR,Yy DI 43,3,-1)
CALL ZERO  (X,3,3)
CALL ZERO (Y,3,3)
CALL MULT {SLR,SSRRI X343}
CALL ZF20 {SLRy 3,3}

o
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CALL MULT (Xy58XyY9343)
CALL ADSUB (Y.Yy 02y343,0)

*
*

*
*

12
20

*
*

*
#

50
80
100

CALL ZBRO  (X93,3)
CALL ZERD (Y,3,3)
CALL MULTU(SXRySSRRIsXy343)
CALL MULT(XsSRLsY 43,3)
CALL ZERO {SRL,3,3)
CALL ADSUB (Y,Y, D3+343,0)
CALL ZERD (X ¢3,3)
CALL ZERD (Y43,3}
CALL MULT {SXR¢SSRRI,Xs3,3)
CALL MULT (XySRX4Y,3,3)
CALL ADSUB (SXXRyYs D4 9353,-1)
CALL ADSUB (SFSReSWRyPe3,1,-11}
CALL MULT (DSLR,SSRRI,Y,3,3)
CALL MULT (YsPsQos 21}
CALL ADSUB (FSLRsQy D5 +3,1,-1)
CALL ZERO (Y,3,3)
CALL ZERO (P,3,1)
CALL ZERO 1Q,3,1)
CALL ADSUB (SFSRySHRyPy3,19+-1)
CALL MULT (SXRySSRRIY,3,3}
CALL MULT (Y,P4Q43,1)
CALL ADSUB (FSXR4Qy D6 4341,-1)
RETURN
END

ok K ok kK Kk Kk K %k k % &k K £ ok K k kK & k kK k ¥ k £ ¥ % ok & F * % &
SUBRDUTINE PRNT TO PRINT MATRIX X OF M ROWS AND N COLUMNS
B ok ok % ok K K % k k ¥k % K k % £ Kk &k £ ¥ % € k ¥ £ F kK x £ & & £ %

SUBROUTINE PRNT (XyMyN)
IMPL ICIT REAL * 8 { A-H,2-2 )
ODIMENSION X{M¢N}

00 10 1=1,M ~

PRINT 20, I,(X(Led)ed=1eN)

FORMAT (//,10X,1145X,3(013.6,2X})
RETURN

END
ok B K K K Kk Kk K ¥ ¥ & % %k ¥ %k ¥k k k ¥ & ok &k ok % kK Kk ¥ % ¥ k ¥ ¥

SUBRDUTINE MULT  TO MULTIPLY TWO MATRICES X(M X M),
Y{M X N} AND STORE THE PRIDUCT AS Z(M X N} ~
* ok oF K K % k k k &k Kk £ ok ok %k % k %k X k k % ¥ %k k k ¥ ¥ k k *k k %
SUBROUTINE MULT (X¥eZsMsN)
IMPLICIT REAL * 8 ( A-Hp0-Z )
DIMENSTON  X{Mo MY oY {MyN) 3 Z( My N}
DO 100 I=1,M
DO BO J=1,N
TEMP =0.0
DO 50 K=1,M
YEMP = TEMP4X (1,K) * Y(KsJ}
2(1,4) = TEMP
CONTINUE

[sXalaNaRalal

(s Na¥eNaXal

(e aNal oWl

#*
*

*
#*

1

»

*
*

*
£

*
*

29
3

40

S0
60

79
8)

99
00

#*

10
20

10

RETURN
END

ok ¥ ok ok kg
SUBRIYTINE

TO CHANGE ST

£ 0k & ok o £ ox

R
; * %k & oK
ADSJ3 TI AD0(X+Y) 2% SUBTRAST (X-Y) R

GN JF MATRIX X AND STORE RESJLT AS I (M XN

##*k###**tt#k*t##t*t*t*#*#

SUBKOUTINE ADSUB (£ 4¥4Z4MyN, IS IGN)

IMPLICIT REAL * 3 (

A-H,0-2 )

CIMENSTIN XA(MyND Y(¥,N),2(4,N)
LF (ISIGN) 10,40,70

D0 30 I=1,M
DO 20 J =1,N

ItT ) &= X(1,9) - vY(I,N

CONTINJE
60 T2 10
D0 60 [=1,M
00 50 J=1,N

LUl dd= =X (1,9}

CONTI huF
GO T 100
DO 90 I=1,M
OU 80 J=1,N
LUl b=X{1,4)
CONTINYE
RETURN
END

+ Y(Id)

t#*#****#*#ﬁt*‘*‘****‘t***’k*$***.#t

TRAN T3 TRANSPOSE X(M X N) AS YIN X M)
*t*tt#*#**t**tttt***t*ttt*

SUBROQUTINE
* ¥ X x k & %

SUBROUTINE TRAN (X, Y,M,N)

IMPLICIT REAL % 3

DIMENSION  X{M N} yY(N,M}

00 20 I=1,m
00 10 4=1,N

YOJyT) = X(1,4)

CONT INJE
RETURN
END

U a-H,0-2 )

#***#**#‘t*#t#****#*****#***#k*k*

SUBRQUTINE
MATRIX XM

ZERO T4 MAKE
X N} ZERD

ALL ELEMENTS OF

*#*t***ti***#**t*#*tittt***t*tt*t

SUBROUTI NE

ZERC (Xy4,N)

IMPLICIT REAL * 8 { A-H,0-Z )

DIMENSION
BC 10 I=1,M
00 10 J=1,N
X(I,J) =0.0
CONTINUE

X(MyN)
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RE TURN

END
c
C % % X % % & X § ¥ & % &% ¥ % % % % % ¥ % *k % ¥ £ X &£ % & X ¥k ¥ ¥ F ¥ ¥
c SUBROUTINE DUPL TO DUPLICATE MATRIX Y AS X {M X h)

C & % & & & % % % % & % # % ¥ % % & %k & & &k &£ % * % ¥ % % ¥ ¥ ¢ & £ & %
SUBROUTINE DUPL (XY MsN)
IMPLICIT REAL * 8 { A-H,0-7 }
DIMENS ION X{M N},Y{4N)
D0 10 I=1,M
DO 10 J=14N
Y{lsd)=X{1,4)

10 CONTINUE

RETURN

END
¢ .
C * % % % X % % % % & % & & & % ¥ & & ¥ & ¥ ¥ % & & & ¥ ¥ ¥ ¥ & ¥ & & %
[ SUBRTUTINE INVERT 7O REPLACE X{M X M) AS ITS INVERT

C % % & % % % % ¥ % % *-%k ¥ & & k k¥ ¥x %k k k X k ¥ ¥ &k % ¥ Kk & *k ¥ & % *
c .
SUBROUT INE INVERT (X,M)
EMPLICIY REAL * 8 { A-H , 0-2 )
DIMENSION X{M,M)
D0 60 1=1,4
S=1e0/X{1 41}
DO 10 -J=1l.M
10 X{I,d)=X(1,d) = §
X(1s1) =S
D0 60 J=1,M
IF {J .EQ. I} GO TQ 60
S=X{JI}
X{J+11=0.0
D0 50 K=1.M
50 X{ JyK}=X{J,K)=5%X{],K}
60 CONTINUE
RETURN
END
$ENTRY

A
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PROGRAM # 2

MULTIBRANCH GROUP STIFFNESSES AND
GRUJP LDAD FUNCTIONS OF A SPACE TRUSS

LANGUAGE USED H FGRTRAN 1V
DIGITAL MACHINE Lot 18M 360 - 65
PROGRAMMER H MOHAMMED A. RAAQDF

DESCRIPTION OF PROGRAM :

THIS PROGRAM DEVELOPS GROUP ST IFFNESSES AND

GROUP LJAD FUNCTIONS OF £ACH SUBSTRUCTURE AND
CONNECTS ALL SUBSTRJCTURES OF THE SPACE TRUSS.
CALCULATES JOINT DEFORMATIONS OF CONNECT ION NODES AND
ALL DTHER NODES AND COMPUTES ALL MFMBER GEND ACTIONS
AND SUPPCRT REACTIONS.

. THE ILLUSTRATIVE EXAMPLE & 3 (CHAPTERIV ) HAS BEEN

SOLVED AITH THIS PRIGRAM.

INPUT PARAMETERS:

PRUBLEM TITLE

NJT » NMEM , NSPRTS , NIJF s NSUBRS { CONTRAL DATA )

UN s Ry THETA , Z(IN) ( JOINT CIORDINATE DATA )

MN 5 JOINTJIMN) » JOINTK{MN) 4 AE{MN}  ( MEMBER DATA )

LN . { LOADING NUMBER ) .
D TITLE

ESA? F)X( ¢ FY , FZ { JOINT STRESSFES }

IN ¢ WX » WY o WZ . { JOINT LIADS )

EMPLICIY REAL * 3  {A-H , 0-2 )

@ s 4 6 o 8 9 e % e s e s e st s e e et e s e e eyt etae s

c
c

H

j3Y

[CIR NN N g

29

25

3

4
59

&0
0
80

S0
145

125
205
210
519
1
520
569
1
6190
7T
1
720
9002

1
2
1

OIMENSIGN  TITLE (1D}

DIMENSION SU53,531,X(21) ,Y¥Y(21) 4221} 4 JOINTIL45 ), JTINTK(45),
AE(aS )y FS (6241 )yW(063913)sSMI6e61,SMI{T75,751465(27,27),
GTEMPEL2412) »TEMPL(15,18) 2 TEMP2({12,13),TEMPI(3,2),TFHPL(3,7),
TEMPS{12, 1} TEMPA( 249 1)

FSL(1S Y 1, FS2 U149, 1 FE3(12,1 042018, 1),5FSL 27420, YY( 13,10,
CO15, 1) 4E(12,2) ,VIST{TS,1) 4VL(75,1)

DIMENS INN GTEMPL{24y 24}y SG( 27,27

DIMENSIO RGESL27 01 ) o RE(27,27)

DIMENSTIN ST21 (13,158 9ST23018,312)4502(13,18),ALPHA(LI8,110,
AETALL18, 1)y GAMAL 1Ay 1)y DFLTALC L5y 1) s 2ELTAR{1241) ,DELTAMI18,1}
JIMINSION UL6341), REACTX(21)y REACTY(21), REACTI(21)
FIMENSTIN SAVEL( 2y 24}y SAVFLIT(24,3) 4SAVE2(3,12),SAVEZT(12,2)

DATA GNE » PL » SIKTY ,» HRO
7 140037 v 2.1415526535867930004+50.,3000,130.003) /

FORMAT ( 10438 )

FORMAT ( 1H1 )

FORMAT (//,10X,1048 )

FORMAT (10X, 515 1}

FORMAT ( //,10X, '"JOINT CDORDINATE DATA , PCOLAR COOFDINATESS,
/7+10X,' JT. # RADIUS THFE Ta

2-CO0RD. " 9/}

FORMAT (///4 13X, 21HIATA FIR SUBSTRULTURE ,// 210X 124CONTROL DATA

1// 21584 NJ«JTS. N MEMS . NJL.SUPRTS, NIJLdE

2 NOLSUBSTRSe/ /9 1XsE500Xe1547Xs1549X91546X518,//7 )

1

1

1

FORMAT (10Xy I545X, 3F10.56 }

FORMAT (//,10X 2 HJOINT COORDINATE DATA//,70H JT.NT,
X-CICRD. ¥~ Q0R0D. I-CODRD. 5 /)

FORMAT /411X, [595Xs 30 1PD15.6, 5X})

FORMAT (10X,315,5X9F2046 )

FORMAT (// 410X 39HME MBER INCIDENCES AMD MEMBER PCOPEERTISS//,

49H MEM  NO. FRIM M JT. AE 4/ )
FORMAT (/510X 4I545X0[5+2X,1596X4s1PDI5.5 )

FCRMAT (///, 10X, 19HAPPLIED JTINT LOADS./, * - JTeNDa 7,
TXy 'X-L0OAD Y-LOAD 2=LOAD '/ )

FORMAT (///+10X%XyY6HSUBSTRUCTURE #4133 )
FOPMAT (10X, 15 } .
FORMAT (//,10X,10H LCADING #,154/71)

FORMAT ( IH1,//7,10X,64JT. # 42Xy 13H X-CISP. 53X,
'Y-DISP. 1-01S5P. /7 )

FORMAT { /y 11Xe013, 64Xy 3¢ F10.6 » 35X ) }

FORMAT { //7/7 910X, *MFEMeN]L 23Xy PFROM TO JGINT AXTALY

YFORCE? 4, /7 )

FORMAT ( 12X,2(12,7X)y Fla.7 } . -

FORMAT {1H1,///77410K,*SUPPORT NJ. ',5X,* X-FQRCE 3 X,
* Y-FIRCE 193Xt I-FORCE Wi

FORMAT ({ 13XeI12,11Xy3(FL2.6,43X 3} )

FORMAT { ///77519X, t¥%kk% SRR]OAR kxkk&k 1, /)

READ & SCHD TITLE
READ 1, TITLF

PRINT 5

e



o0

el gl

OO0

(4]

45

55

€5

75

PRINT 13, TITLE

‘READ & ECHO CONTROL DATA

READ 20y NJT S NMIMyNSPRTS,NIJE,NSUBRS
PRINT30, NJT¢NMIM,NSPRTS,NIJE, NSUBRS

ND = 3 ¥ NJT

NN = NJT = (NSPRTS ¢ NIJF )

N = (NN+1}/7 2

L =3 * (NN - N}

N =33%N

M= 3 % NIJF

K= N+ L

JMS = 3 % {NSUBRS * (L/3) + 1 )
NPL = N ¢ 1

NPMP1 = N¢M+l

READ & ECHO JOINT COORDINATE DATA

PIQHBO = PI1 / HB0

PRINT 25

90 45 1 = 1 + NJT

READ 4Uy JN, R 4 THETA ,2{JN}

PRINT 50, JN, R 4 THETA , Z{JN}

THETAR = THETA * PIJH80 .

X{JN) = R * DCOS(THETAR )

Y(JU} = R * DSIN{THE TAR )

CONTY INUE

PRINT 5

PRPINT 50

DO 55 N = 1 , NJT

PRINT 60, JN, XTJIN}, YUINI, ZLJN]

READ & FCHO MEMBER DATA AND MEMBER PROPERTIES
0O 65 I = 1 , NMEM

READ TO, MN, JCINTJ{MNI, JOINTK{MNI, AE(MN)
PRINT 5

PRINT 80

DO 75 MN= 1 , NMEM

PRINT 90,MN, JOINTI(MN}, JOINTK(MN) , AF{MN)

SET UP SUBSTRUCTURE STIFFNESS MATRIX

INITIALIZE

CALL ZERQ {SyNDsND)
MEMBFR ST IFFNESS MATRIX
PG 130 MN = 1 , NMEM
JMN = JOINTI(MN)

KMN = JOINTK(MN}

DX = X{KMN} = X{JMN}

DY = Y{KMN} = YUJMN)

DZ = IZ(KMN} - Z{JMN)

XL = DSQRT (DX*DX + DY¥DY + DZ*DZ )
X = DX /7 XL

cY = DY / XL

€z =02 / XL

[xXa N2

A0 000N

e e Na¥al

95
160

AEGL
cate

= AE(MN) /7 XL

MEMSTF

AR MEMIFER

JSHIFT =

a9 9% Jg

2
KSHI{FT = 2

0N 55 g

F
42 =
Kl =
K2 =

(CKCYCLyALDL,SSM )

STIFFNZSS YATRIX T3 SUBSTRIUCTURE STIFF, saTtelx

JSHIFT + JJ
JSHIFT + KK
KSHIFT + 34
KSHIFT + KK
Std,J2)

SUKY,J2)

Sty

SIKl.K2) =

K2}

CONT INUE
CONTINUE

S{J1sd21 ¢ SMUJJWKK)
SIKLyK2Z} + SMJJI+34KK+3)
SUKL,J2) ¢ SM{JJ+3,KK]}
S{J1eX 2} + SMUJJKKe3}

ELIMINATF INTERIUR JOINTS OF THE SUSSTRUC TURE
SUBSTRIC TURE STIFF. MATRIX { GROUP STIFFNESSES )

CALL GRPSTF

€ Sy NDy Ly My Ny GSy TEMPL, TEMP2,ST21,5723,532)

CONNECT ALL SUBSTRULTURES |
SET UP JOINT STIFFNESS MATRIX

KM = K - 3

CALL ZERC (SMJU,JMS,UMS)
CALL ZERO (GTEMP,L,L 1}
CALL ZERO (GTEMP1,KM3,KM3}

CALL

NS =

AD SM

NSUBRS

JSHIFT = 4

D0 180 t =
THETA = | * SIXTY

CALL

ROTATE

(SMIyIMS, IMSGS KKl sl )

-1

1, nS

¢ GS 4y Xy THETA, SGy RR }

CALL RMVSM { SG » K 9 K 4 TEMP3 , 3 4, 3 , 1 , 1}
1

CALL ADSM ( SMJ,dMS,UMS, TEMP3 , 3,3, 1 ,

JSHIET = JSHIFT + 12

IF
CALL
CALL
CALL
CALL
caLL
CALL

JSHIFT
RMV SM
ANSM {
RYYV S
ADSM
TRaN
ADSHM

«FRs 64 ) G TC 150

U SG 5 KyKy QUEMPL,K43,KM3, 4 , 4}

SMJ s IMS, IMS,GTERPL yKM3,KM3, JSHIFT , JSHIFT }
( SGyKyKy SAVEL, 3424y 1, 4 )

SMJI,IMS, UMS, SAVEL 43,24, 1 , JSKIFT )

SAVZI1, SAVElT, 3, 24}

SMJ9JMS,IMS, SAVELT, 24,3, JSHIFT, 1}

14



laNeal

[sXaX gl

[aXaXesRe]

OO0

153

180

200

215

G0 T3 180 c

CONT INUE

CALL RMVSM ( SG 4K o K 5 GTEMP 4, L o L 4 & » 5 )

CALL ADSM ( SMJ o+JMS,UMS, GTEMP , L o L 4 54 4 54 )

CALL RMVSM { SG , KoKy GTEMP 4 Loly 16 » 1o}

CALL ADSM { SMJ ,JMS,JMS, GTEMP 4 Lyls & 4 4}

CALL RMVSM [ SG,K,Ky GTEMP,L,Ly & ¢ 15 )

CALL ADSM { SMJ,JMS,JMS, GTEMP,LsL, 64 4 & ) 240
CALL RMVSM ( SGeKeKy GTEMP,LsLy 156 5 & ]} c
CALL ADSM { SMJ,JMS,JUMS, GTEMP,LsLy & o+ 64 )

CALL RMVSM ( SGyKsKy SAVE2y3412y 1+ 4 )

CALL ADSM ( SMJyJMS,JMS, SAVE243,12, 1 , 64 )

CALL TRAN ( SAVE2, SAVE2T, 3 , 12 )

CALL ADSM { SMJ,JMS,JMS, SAVE2T,12,3, 64 , 1}

CALL RMVSM ( SGeKyKe SAVE243412, 1 4 15 )

CALL ADSM ( SMJ,JMS,JMS, SAVE2,3,12y 'L 4 4 ) 253
CALL TRAN ( SAVEZ2, SAVE2T , 3 , 12}

CALL ADSM { SMJ,JMS,JMS, SAVE2T,12,43, & » 1 ) c
CONT INUE . )

SYSTEM STIFFNESS MATRIX ' SMJ ¢

CTHETA = SIXTY
CALL ROTATE ( SG, K 5 THETA, SG ,RR )

JOINT STRESSES & APPLIED JOINT LDADS
LOADING NUMBER

READ 205, LN
IF { LN +EQe 0} GC TO 9993

. READ & ECHO LDAD TITLE

READ 1, TITLE
PRINT 5°

PRINT 210, tN

PRINT 10, TITLE
READ JOINT STRESSES . :
CALL ZERD (VJST,JMS, 1) [+
CALL ZERO (VL yJdMS,1)

08 500 I = 1 , NSUBRS

INIT [ALIZE

CALL ZERQ (FSyNDyl1} 330
D3 215 NJ =1 , NJT

READ 40y JN 5 FX 4 FY 4 FI

JROW = 3 % {JN =1}

(X s N el

FS{JROwW¢1s1) = FX
FSUJROW+2,1 ) = FY
FS{JROW+ 3,1} = FZ

CONT INUE
FCHO JCINT STRESSES
INITIALIZE

PEAD APPLIED JOINT LUOADS -

CALL ZERG {wWyNLC,!)

D0 240 Nd = 1, NJT

IEAD 43y IN o WX 4 AY 4 Wl
WL = ~wl

JROW = 3 * {JN-1)

WIJRIN €L ,1) = WX
#{ JRDW+2 ,1) = WY
W{JROW*3,41) = Wl

CONT INUE

ECHO APPLIEC JCINT LCADS

PRINT 125, I

PRINT 145

JN = 0

o2 250 Il =1, ND » 3

Jt o= JNe)

PRINT 60y JNoWLIT o1l omlIT+1,1) 4w (10¢2,1)
CONT INUF .

IF {1 oJNEo 1 } S0 T2 330
INITIALIZE

CALL ZERD (YY M, 1)

CALL ZERC {(CyN,1)

CALL ZERT (S4L4 1)

CALL RMVSM (FSaNDy1sFSYyN,1s1,10
CALL RMVSM (FS,ND,1,FS2,My1 ,NPL,1}
CALL RMYSM {FS,NDy 11 FS3,Ls1,8PMP1,1)
CALL RMVSM (WsNDy1,W2¢MelsNPL,1)
CALL ADSUB (FS2+W2,YYsMels-1)

CALL MULT (TEMPL,YY,CsNyM,1)

CALL ADSUB (FS1,C,CyNyl1,-113

CALL MULT (TEMP2,YY,F,L,My1}

CALL ADSUB {(FS3,E,E,Ly1s-1)

CALL ZER® (GFS,K,1)

SET 4P GROUP FIXED END STRESSES MATRIX # GFS "

CALL A4DSM (GFSyKy1,CsNslyt,1)

CALL ADSM (GFS,KylyEsls1,NP1,1)

SET UP JOINT STRESS VFCTOR " VJST ¢
CALL ADSM (VJIST,JdMS, 1,6FSyKylel,yl)
CALL OUPL { GFS 4, R3FS 4 K 5 1 )

GO, T 3¢60

CONT INUE

PRINT 5

IMONE = 1 = )

THETA = IMONE * SIXTY

CALL ROTATE ( SG » Ky THETA, SGy RR }
CALL ™ULT { KR 4 &KGFSy 3FSy KeKy 1)
CALL ZERN (TEMP&4,y3,1)

CALL ZFRQO (TEMPS 41,1}

CALL ZFID {TFMPS,KM3,1)

CALL RMYSHM (GFS4K,1,TEMP4y 3, 1,1, 1)
CALL ADSM (VJIST,JMS,1,TEMP4,3,1,1,1)
CALL PMYSM {GFSK, Ly TEAMP6,KM34144,413

17



laKel

360
380

400

410

429

IF (1 «F2s 2 ) 50 TQ 319
IF € T «FQe 3 1 G2 T2 320
TE O 1 JEQe 4 ) 50 TG 330
IF { I «FQe 5 ) GO TO 340
IF € 1 +EQe 6 } GO T9 350
IF (1 4674 6 ) PRINT 9000
GO T) 9999

CALL ADSM (VJUST,UMS,1,TEMPE,KM3,1,15,1)

GO T3 360

CALL ADSM (VJIST,UMS, 1, TEMPOyKM3, 1,28, 1)
GO T3 340 -

CALL ADSM {VJST,UMSy Ly TEMPEIKM3 41 440,41}
GO TO 350

CALL ADSM {VJUST,JMS,14TEMPE,KM3,1,52,1)
50 T3 360

CALL RMVSEM (GFS Ky 1,TEMPS,Ly1y4y1)

CALL ADSM {VUST,JMS, 1 TEMPS Ll 464,1)
CALL RMVSM { GFSsKel, TEMPS, L, L 4 16,
CALL ADSM (VJUST,JUMS, 1, TEMPS,Ly1y4,1 )
GO TO 380

CONT INUE

CONT INUF

SET UP APPLIED JUINT LOAD VECTIR

CALL ZERD (TEMP6 4KM3,1}

CALL RMVSM (WyND 1, TEMP4;341,1,1)
CALL ADSM (VL JMSy1,TEMP4, 3,1, 1,1)
CALL RMYSM (W¢ND,1,TEMPS,12,1,4,11} .
CALL ADSM (TEMPH,KM3y1,TEMPS,Ly141,1)
CALL ZERG (TEMPS.Lsl)

CALL RMYSM (WyNDyLoTEMPS L 41 434,1)
CALL ADSM (TEMPS5,KM3,1,TEMPS,L+1,413,1)
IfF {1 +NEo 1 ) GO TO 4ud

CALL ADSM (VL ¢JASs 1, TEMPH,KM3 41 44 ,1)
GO YO 500

IF ( I «€Q., 2 ) G0 TQ 410
IF { 1 +EQ. 3 ) GO TO 420
IF ( I .EQe 4 ) GO TO 430
IF (I <EQe 5 ) GO TQ 440
IF (1 JEQ. 6 } 50 T9 405
TF { I .GT« 6 ) PRINT.9000
GO TO 9999

CALL ADSM (VL JMSs1, TEMPSyL,y144,1)
CALL 2ERQ {TEMP3,L1)

CALL RMVSM {TEMPS KM3 41 4 TEMPS yL 41 91,41}
CALL ADSM (VL JMSy 1, TEMP S,L 41,641}
G0 T2 Su0

CALL ADSM (VL dMS,1,TEMPO 4KM3 y1+16,1)
GO TO 500

CALL ADSM (VL 4JMS,1,TEMPS,KM3,1,428,11}
GO TO 500

CALL ADSM (VL JMSs 1, TEMPOE,KM3y1,40,1)
G0 7O 500 .

1

[a¥alnlaNaNaRal o

[N el

44y
500

515

550 -

CALL ADSM (VL ,JMS,1,TEMPe,kM2,1,52,1)
CONTINUE .

SOLVE FOR DEFJRAATIINS { CONNECTING NODES )
SMJ * DEL + VJST = vL

CALL ADSUB (VLsVJIST, VL 4JdMS,1,-1)
CALL ZSRO (VJST,JMS, 1}

CALL DECO¥P ( SvJ, JMs )

CALL SOLVE [ 5MJ,y VL o, VJST, JMS }

PFINT 510
N = 0

oc 515 1
N = JN ¢
PRINT 520
CONT INUE
CALL RMVSM  (VUST 7541 ,D5LTAL,15+141,) )
CALL RMVSM  (VJST,75, 1,DELTAR,12,1,16,1 )
CALL MULT ( ST21,DELTAL, ALPHA, 18515, )

CALL MULT { ST23,0%LTAR,BETA,18,12," )

CALL MULT ( SL2y YYy GAMA, 138413,1 )

CALL ADSUB { ALPHA, 3ETA, RETA, 18,1, +1 )
CALL ADSUB [ RETA, 3AMA, GELTAM, 18, 1, +1 )
CALL ADSUB | DELTAM,DFLTAM,DELTAM, 18, 1, O )
PRINT 5

1 s JMS 4 3

- -

Ny VISTII o1y VISTUI+1,1), VJISTI1+42,11

PRINT 510

JN =0

B0 550 1=1,18,3
JN = Jnel

PRINT 520, JN, DELTAM(I, 1),y DELTAM{I#1,1), DELTAM({T+2,1)

CONTINUE

CALL Z5RO ( Uy 53, Y )

CALL ADSM ( Uy63,41,y DELTAL,15,1,141 }
CALL ADSM ( Ue63,), DELTAM,18,1, 16,1 )
CALL ADSM { Usb3,)y DELTARy 12,1y 3491 )
PRINT 5

PRINT 560

SOLVE FCR MEMSFR END FORCES & REACTIONS

o0 555 T = 1,21
RELCTACL} = 0.0

REACTY(I) = 9.0

REACTZ(I) = 040

CONTINUE

93 770 MN =1 , NM"M
JMN = SO INTJMN)
KMN -= QI NTK(MN)

9



[aNel

700

725

9399

500
800
100

J =3 % (JMN -1 )

Jk = 3 % (KMN - 1}

OX = X{KMN) = X(JMN}

DY =" Y(KMN) - Y{JMN)

DZ = Z(KMN) = Z(JMN}

XL = DSQURT { OX*DX + DY®DY + DZ*DZ )
CX = DX/XL

CY = DY/XL

€Ll = CI/XL

AEOL = AF(MN) / XL

CALCULATE MEMBER AXIAL FORCF

FM = ABOLS{-CX#(JJ+1y 1I-CYRU(II+2, 1)-CLFULII+3, 1)
+CX*ULIKAL 3 1) #CYRULIK2 91 J+C25UTIK 3,1

IF { MN LT, 6 ) FM = 2%FM
IF { MN JEQull } FM = 2%FM
IF { MN LEQ.24 ) FM = 2%FM
IF ( MN JEQe34 ) FM = 2%Fv
IF £ MN JEQ.41.) FM = 2%FM
IF { MN .FQ.45 )} FM = 2%fM

PRINT 610, MN, JOINTI(MNI, JOINTRK(MN), FM
CALCULATE REACTIONS

TF ( JMN LT, 16 } G3 T3 700

I = JMN

REACTX{I} = REACTX(I) - FM * CX

REACTY{( [} = REACTY{I) - FM « (Y

REACTZ{I) = REACTZ{!} - FM * CZ

CONTINUE

PRINT 710

DU 725 I = 16,
PRINT 720, 1,
CONT INUE

PRINT 5

2

1
REAZTX(I) 4REACTY (L) ,REACTZ(T)

GC T3 200
STOP
END

SUBROJTINE MULTIPLY TWO MATRICES
SUBROUTINE MULT {X,YsZsMsN,K)
IMPLICIT REAL * 8 { A-H » 0-2 )
DIMENS ION  X{MyN)s YIN,K}y ZIM,K}
DO 130 I =1 4, M

DO 800 4 = 1 4 K

TEMP = (3.0

DO SO0 L =1 » N

TEMP = TEMP + X{I,L) * Y(L,J)
Z(1ed) = TEMP

CONT.INUE

RETURN

END

100

209

200

100

[aNe]

100

29
59
2U9

SUBROUTINE ADD SUBMATRIK INT3 A LARGE MATRIX
SUBRAUTINE ADSM { XeMenNaY s TodeKel }

IMPLICTIT RFAL * 3 { A-H , O-1 )

DIMENS ION X{MeN} » ¥ (1,3)

KK = K
o 220 11 =1 4, 1
L = L

DS 130 Jd =1 ,J

KKK Ll = XUKKyLLI + Y(1I 443}
L=ttt + 1

CONTINUE

KK = KK + 1

CONT INUT

RETURN

END

SUBRIJUTINE: REMIVE SUSHMATRIX FROM A LARGE MATRIX
SUBRTIUTINE  RMVSM { XeMyMaY el yJeKsl )

IMPLICIT REAL * 8 { A-H , 0-1 )

DIMENSION X(MyN} » YN

KK = K
03 130 1T =1, 1
tL =L

0D 200 Jd =1 4 J
YIITeddd = X{KK,LL)}
Lt =Lt ¢+ 1
CONTINUE

KK = KK + 1
CONTINUE

RETURN

END

SUBROUTINE PRNT { Xy MeN )
SUBRJUT INE PRNT { XeM,N '}
IMPLICIT REAL * 3 ( A-d , O-1 )
DIMENSION  X{¥,\)

K =1

KK = 8

IF { KK «G6Te N} KK = N
PRINT 1

PRINT 53, ( L 4 L=K , KK )

DO 101 =1 , ¥

PRINY 20y Iol X{1yJd)ed = K 5 KK }
CONT INUF

IF { KK «EQe N ) GC TO 200

K = KK+

KK = KK+8

IF { KK «G6Te N} KK =N

GC YO 100

FORMAT { 1HY )

FORMAY (/7 95Xe1 342X, 8{1PO13s 642X} )
FORMAT (/7 412X,3(13,12X),/}
CONTINUE

RETURN

LY



on

oo’

100

2Gu

[aXa)

wor

END

SUBROUTINES SET UP HMEMBER STIFFNTSS MATEIX

SUBRJUTINE  MEMSTF (CXeCY,CZWAETLS)

IMPLICIT REAL * 8 ( A=-H , 0-L }

DIMENSION St 646}

CALL ZERD (S+ 645 )

SET UP SPACE TRUSS MEMBER STIFFNESS MATRIX AND ROTATIIN MATIIX
Q = DSQRT (CX*CX + CZ*CZ )

IF | Q@ «LT. 1.00-04 )} GO TO 200

S{Y,1) = AEDL * Cx * (X
S{1,2) = AECL * Cx* CY
S(1,433) = AEOL * CX *= CZ
St2y1l) = S(1,2) .
S{2,2) = AEOL * CY * CY
$(2,3) = AEOL * Cy % CZ
S{3,1) = S(1,3)°

S(3,2) = S(243)

S{3,3) = AEDL * C1 % CZ
D0 1201 =1, 3

00 100 J =1, 3

ST = S(1,J)

S(I,J+3) = - ST
S{I+3,4) = - ST
S{1+¢3,J4¢3) = ST
CONTINUE

GO 1O 320

ST = AECL * CY *CY
St2,2) = ST

S(542) = -ST

S(2+8) = =ST

.815,5) = ST

CONT INUE

RE TURN

END

SUBROUTINE: TO SET UP GROUP ST IFFNESS MATRIX
SUBROUTINE GRPSTF { SyND oL yM¢NsGS,TEMPL,TEMP2,52221,52223,522 )
IMPLICIT REAL * 8 { A-H 4 O-Z )

DIMENSIIN S{63,63),S11115525),512015,18) yS13015,12) 4S21{13,15),
$22(18,+18),523(18+121,531(12,15),532(12,18),532(12,12),
GS{2T427) y TEMPL{15,18) 4TEMP2(12,13) 4A{15,15),8(15,12),D(12,12},
BT (12,151,X(15,18),2012,18}

DIMENSION S2221(18,151%, 52223(18,12}

K= N#+L
INTTIALIZE
CALL ZERO (AsN,N)
CALL ZERO (8sNyL)
CALL ZERD (DsisL)

10

23
30

42

50
&0

70

CALL
caLt
CALL
CaLt
CaiL
caLL

NPl

CaLL
CALL
caLL
caLL
caLL
CALL
caLL
cALL
CALL
caLL
CALL
CaLL
caLL
CALL
CALL
CALL
CALL
CALL
CALL
cALL
CALL
CALL
CALL
caLL
CALL
CALL
caLL

ZERD (BT oLy W)
ZERD (TENMPYL N, 4)
Zexn P2yl a4)
IFRC 1KyK}
LERD (XeNgM)
ZFRO (ZyLoM)

=N+ 1
NPMP 1

= N+M+l

RMVSM (SoNDsNCsS11aNeMely1 }
RMYSM {S,NDeNDySY2 s NyeMyel yNPL )
AMVSM (S)NIWNDyS134NsL, 1,NPMPL)
RMY SM (SyNDyNCyS21 oMeNsNPL, Y )
RMVSM ( SeND NG9 S22 9MgeMaNPL (NPL )
RMYSM (S NDsNDeS23, My LoNP1,NPMPY)
RMVSM {SyNDsND9S3Y Lo Ny NOMPL, 1)
RMVSM ( SoNOsNDyS32sL s MyNPMPLyNPY }
SMVSM (SyNDyNCeS339LyLeNPMP L, NPYUP L)
INVERT ( S22 o M}

MULT (S1245220XeNsM M)

DUPL (X TEMPLyN,M)

MULT (X9S21 9A¢NyM,N)

ADSUB (S11sA0A¢NeNs=~1 )

MULT (X523 93yNeMsL )

ADSUB (S1343+ByNsty-1)

MULT (S324522¢Z4LeMeM)

DUPL (ZyTENP2 4L ,M}

MULT (Z9S23,04L ML)

ADSUB {5334DsDpLeLy-1])

TRAN ( B s BT 4NoL )

ADSM {GSsKeKeAsNeNslyl)

ADSM (GS¢KeKyBaNsLy lyN+1)

ADSM (GSsKeKyBT yLyNyN¢1,1}

ADSM (GS,KiKeDeLyLe Nt LyN+Y )}

MULT (522+521,52221,18, 18415 1}
MULT (S522,523,5222318,18,12 )

RETURN

END

SUSROUT INE ADSUB (X, Yy ZsMeN o1 SIGNY
IMPLICIT REAL % 3 { A=H,0-Z )

DIMENSI ON XUM N} YN N o Z{M,N

IF (ISIGN) 19,40, 70

DG .30 I=1,4

00 20 J
Z{1s3}

CONTINUE

=1N
XUIyd) = Yi1.J)

GG TO 130

D0 460 I=

19 M

N3 50 J=i,N
Z(Iydd= =X T14d)

CONTINUF

G0 1O 100

DD 99 I=

1eM

47



[a XY= Xaks)

cnoo

s X2kaXaKsel

8J
99
100

19

1

00 30 J=1,N
Zilyd)=X(1ed) + YL J)
CUNTINUE

RETURN

END

#* ok ok % ok & ok & K % % & o % ¥ & % ¥ X ¥ ok x ok K 4 X ¥ ok X Kk ¥ K

SJBRIUTINE TRAN T3 TRANSPISE X(M X N} AS YN X ™)
ok & % Ok K K % % % X ¥ R X K K X R ¥ k B ¥ X £ Kk £ K £ ¥ £ & kA

SUBROUT INE TRAN ( Xy YeMyN)
IMPLICIT REAL * 8 ( &-H,0-2 )
DIMENSIDN  X{OMoN}yYIN,M)
00 20 I=14M
B2 10 J=1l,N
Yldsl) = X(1+J}
CONT INJ €
RETURN
END

Bk R K K % kK K K K K K K K K Kk Kk K £ K k kK £ K & % % K K K £ % %
SUBROUTINE ZERC T3 MAKE AtL ELEMENTS OF :
MATRIX X{M X N) ZERD

Kk K K K K K X K £ F & K K K K X Kk KKK E K K KT Kk EEF K KK
SUBROUTINE ZERO (XyMyN)

IMPLICIT REAL * 8 ( A-H,0-7 |}
DIMENSION X {M,N)

00 10 I=1.M

D0 10 J=1,N

X{leJd) =040

CONTINUE

RETURN

END

Z &k %k % Kk %k %k kK Kk X k k ok k & % k %k ¥ k k¥ ¥ k *k ¥ k ¥ #£ % %k & € ¥
SUBRUUTINE DUPL TGO DUPL ICATE MATRIX Y AS X{M X N}
* R K ok Kk & K Kk K K K &% K K B K ¥ & X % ok & &k Kk Kk & X % kK ¥ k¥ %
SUBROUTINE DUPL { Xy YsMN)
IMPLICIT REAL * 8 ( A-Hy0-Z }
DIMENSION X(™MyN) e Y{MyN).
DC 10 I=1,M
DC 10 J=i,N
YL J)=X{1ed}
CONT INUE
RETURN
END

ok ok & X K K & X K K K K K K & K E K & ¥ F E K & %H K & % €k & & &

SUBROUTINE INVERT T3 REPLACE X(M X M} AS [TS INVERT
£k Kk %k X k % K k % ¥ k k %X kK k Kk X & £ & & ¥k & ¥ & £ %k ¥ £ &k k %

SUBROUTINE INVERT (XM
IMPLICIT REAL * 8 { A-H , 0-Z ) .
CIMENSION X (M,M) . ™~

o0 sy I=1,.M
S=1.0/X(T,1)
Dy 10 J=t,m
10 X(Ivd)=X({l,u) = S
X(1,01 = S
0 60 J=1,M
IF (J +7Q. 1) GO TD 60
S=X(JeI}
X(Jdy11=9.0
DU 50 K=1,M
SU K JsKI=XTdyK) =S%X (1 4K)
60 CONTINJZ
PETUAN
END

SENTRY

6
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