IMPLEMENTATION OF A SCIENTIFIC

SUBSET OF ALGOL 68

By
JOHN CLUTE_gENSEN
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1971

Submitted to the Faculty of the Graduate College
of the Oklahoma State :University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
July, 1973

OKLAHOMA
STATE UNIVERSITY
LIBRARY

NOV 16 1973

IMPLEMENTATION OF A SCIENTIFIC

SUBSET OF ALGOL 68

Thesis Approved:

2. E el

N W e
S 20 Dok

/2) uikey

‘Dean of the Graduate College

867508

PREFACE

This paper describes the implementation of a sclentific subset of
the ALGOL 68 programming language, It 1is concerned with ;heﬁmethods
used to implement a translator system which generates code which is in-
terpretively executed. The syétgm is written in the basic FORTRAN lan-
guage to allow machine independence.

I would like to express my gratitude to my major advisor, Dr. G. E.
Hedrick, for his advice and guidance during this project. Also, appreci-
ation is expressed to my other committee members, Dr., Donald D. Fisher
and Dr., James R, Van Doren, for their suggestions and assistance in the

preparation of this paper.

144

Chapter

TABL.E OF CONTENTS

I. INTRODUCTION. . & « ¢ 4 « & « o &«

II. IMPLEMENTATION CONSIDERATIONS .. .

IIT. THE COMPILER. . « + « « « « .+ .

Compiler Initlalization. .

The Scanner. « « « « « « o &
Keyword Recognition. . . . ,
Parsing and Code Generationm.

IV. INTERPRETIVE EXECUTION.

The Interpretive Code. . . .
Storage Management
DISPLAYS 4 « « « o ¢ + ¢ « &
Run Time Symbol Table. . . .

V. USER'S GUIDE. . & &« « & o o & « o

VI. SYSTEM PROGRAMMER'S GUIDE ., . . .

VII. SUMMARY, CONCLUSIONS AND FUTURE

A SELECTED BIBLIOGRAPHY « + . .

APPENDIX A.
APPENDIX B.
APPENDIX C.

APPENDIX D.

CODED PROGRAM EQUIVALENTS. .

INTERPRETIVE OPERATION CODES .

THE ALGOL 68 SUBSET,

‘A SAMPLE ALGOL 68 PROGRAM, .

Page .

11
11
12
19
20
29
29
30
31
32
37
40
50
51
53
58
67

74

Table

II1.

IIT.

Iv,

VII,
VIII.

IX.

X1,
XII.
XIII.

XIV.

Xv,

XVII,
XVIII.
XIX.

XX'

XXII.

LIST OF TABLES

Commercial Subroutine Package Subprograms
11300 I L N e e & 4 ¢ e

List of Compiler Options. . , « « . . . e
A Grammar for Isolating Identifiers .
Starting States for Operation Recognition
Transition Table for Operator Recognition
A Grammarrfor Isolating Denotations . . .
A Grammar for Declarations.
A Grammar for Program Parsing ., .,
Compiler Option Abbreviations
Carriage Control Charactéfs o« s e e e
A Grammar for Procedure Declarations. . .
Coded Program Equivalents . . . , « « . .

MOde Indicator Values ¢ o ¢ o . L] ¢ e . ‘e

Key to Distruction Format Symbols

Dyadic Operation Codes, . 4 « & « o« &« o« &
Monadic Operation Codes . . . « ¢« « . . =
Complex to Real Monadic Operation Codes .,

Real to Integral Monadie Operation Codes,
The ALGOL 68 Subset Grammar « . .

Program Blocks. . « ¢« « ¢ v ¢« ¢ ¢ o ¢ ¢ o

Sample Declarations . . « o 0 o « ¢ & o o

Priorities for Standard Operators

Used of

the

IBM

Page

13
15
16
16
18
22
24
38
43
46
54
59
60
62
63
63
64
69
72

72
73

11.
12.

13.

LIST OF FIGURES.

Finite State Automaton for Isolating Identifiers ,

Finite State Automaton for Parsing Single Declarations .,
Code Generated for a Conditional Clause.
Storage Layout « « o ¢« o « s o 4 4 e 0 4 0 e 4w e s
DISPLAY for a Nesting Level of Three
Relation of Stacktop Pointers to DISPLAY Entries
Chaining of Previous Declarations. . . « « . . .« s ._...
Format of the Multiple Value Descriptor. . . « « « « « o
ALGOL 68 Control Cards for fhe IBM 1130. ¢ ¢ ¢ &« & « o &
Format of the :JOB Card. « « v o « ¢ ¢ o o o o« s o o o &
Fetch and Store Routines for Conversion to Core Storage.
Read and Print Routines for Conversion to Standard I/O .

Steps in Conversion to Linkage By Subroutine Call, . . .

xrd

Page
14
21
27
30
32
33
34
35
37
38
41
42

45

CHAPTER I
INTRODUCTION
Objectives.

The ALGOL 68 language 1s perhaps the most sophisticated programming
language to be developed. Its designers have presented ALGOL 68 with a
precise, although somewhat complicated, language definition in the 'Re~
port on the Algoritﬁmic Language ALGOL 68.'" (18) TFeatures in the langu-
age allow virtually limitless expansion of the language to include what~
ever facilities an installation might require,

Incorporated within the ALGOL 68"lan'guage"'are many of the desirable
features of ALGOL 60, COROL, FORTRAN“ﬁn&“PE/I, along with seme: features
which are unique to ALGOL 68; Since 1t is a relatively young language,
ALGOL 68 translators ére scarcé; A need was seen for a trgnslator which
could be used as an instructional‘ﬁool for teaching ALGOL 68, either by
itself or as a transition from othef programming languages. The transla-
tor would not need to be an implementation of the entire ALGOL 68 langu-
ange, but if sﬁould contain the basic constructs of the language.

To meet this purpose, a scientific subset of the ALGOL 68 language
was selected for impleméntatioh. Contained within the subset are capa-
bilities for performing operations on simple numerical and logical
values, along with some Iimited chéracter and string manipulations. This
is sufficient to illustrate many of the basic properties of ALGOL 68 and

leads to an understanding of the more advanced features of the language.

Also, the subset is complete enough to be used for many scientific ap-—
plications. Detailed error messages are included to allow easier under-

standing of specific programming examples,

History of ALGOL 68

Background

The formal definition of ALGOL 68 was presented in é report to the
General Assembly of the International Federation for Information Process—
ing (IFIP) in 1968. The‘report was prepared by Working Group 2.1 on
ALGOL and was reviewed by Technical‘Committee 2 on Programming Languages
for publication. The Report was subsequently published in Numerische
Mathematik in 1969.

Since the publication of ‘the Report, (18) conferences have been
held on the ALGOL 68 language and its'implementation, Proposals have
arisen from these conferences concerning changes of the language. Some
modifications have been made bﬁt the language remains essentially un~-

changed from its original definition.

ALGOL 68 Definitions

The definitions of some essential ALGOL 68 terms are given below.

Coercion., An implicit chénge of the mode of an operand dependent
upon syntactic position,

Denotation; An ALGOL .68 constant or literal value.

Descriptor, Abdata structure consisting of an offset and a set of
quintupies which describe a row of an array.

Elaboration. Execution.

Environmental Enquiry. A pre-defined constant supplying informa-

tion concerning a specific property of the implementation.

Multiple Value. A multiple value is composed of a deseriptor and
any number of rows.

Pragmat. An ALGOL 68 comment directing a particular implementation
to take a épecified action which iies outside the definition of the
language.

Row. The elements of one dimension of an array.

Standard Prelude. A set of standard declarations which specify

environmental enquiries, standard priorities (of operators), standard
operations, standard mathematical constants or functions, or transput.
declarations.

Transput. Input and output.
Literature Review

Much of the information related to the implementation of ALGOL 68
comes out of the formal and informal conferences on the language. Many
of the papers presented at these conferences were concerned with the
theoretical aspects of the two level ALGOL 68 grammar and constructs
dealing with the structure of ALGOL 68 programs. Others propesed solu-
tions to applications programming Pfoblems by the use of ALGOL 68. Of
the papers which dealt with practical implementation, a great many were
concerned with topics which were beyond the scope of thig project.

Of the existing ALGOL 68 implementations, the earliest and perhaps
most noteworthy is the ALGOL 68-R implementation at the Royal Radar Es~
tablishment in Malvern, England. (4,5,19,20) The implementation is de-

signed for the ICL 1907F computer. This one pass translator accepts a

large subset of the ALGOL 68 language and has extensive program library
capabilities,

At the Technical University of Munich, another ALGOL 68 subset is
being implemented. H1ll, et al. (9) present a detailed description of
the implemeﬁtation techniques being used in this project. TUse of this
particular implementation will be limited since it 1is being written in
machine language for the Telefunkeﬁ TR 4 computer., This machine is not -
in common use.

Oklahoma State Universitf has implemented a system which accepts an.
ALGOL 68 program and outputs PL/I source code which is equivalent to the
ALGOL 68 program., (7) This system functions correctly for a scientific
subset of ALGOL 68, but has the obvious disadvantage of having to com-
pile the program twice.

In general, the implementafions mentioned above have restricted
ALGOL 68 transput to include only unformatted transmission of data.
Berry (1,2,3) has implemented a system for formatted transput. This
system parses formats at run time and uses interpretive execution to
effect their elaboration.

Smith, et al., (15) have developed an algorithm for the recognition
of ‘ALGOL 68 denotations using a finite state automaton, Hedrick and
Smith have published a comprehensive study of ALGOL 68 context condi-

tions. (8)
Problem Statement

The purpose of this project is to implement a scientifiec subset of
the computer programming language ALGOL 68.. The language translator is

written in IBM 1130 basic FORTRAN, (20) and it generates 4-tuples (quad-

ruples) of code which are interpretively executed, thus making the sys-
tem machine independent. The implementation is intended for use as an

introduction to the ALGOL 68 language.

CHPATER 1II
IMPLEMENTATION CONSIDERATIONS
IBM 1130 Implementation

Selecting,a Sma11 Computer

In order to offer a measure of portability, it was.decided to im-
plement the ALGOL 68 translator on a small computer. This insures that
the translator is kept small due to the storage Ilimitations of machine.
Thus, it is possible to execute the translator on different systems which
are the same size or largeé. An IBM 1130 was available at Oklahoma State

University, and it was suitable for this purpose.

System Configuration

The ALGOL 68 subset was implemented on an IBM 1130 computer with 8K
words of core storage. The computer operates under Disk Moniter System
Version 2, Modification 8, using an 1131 Single Disk Storage unit., (12)
The principal input .device 1is.a 1442 card read/punch, while the princi-

pal output device is the console typewriter,

Storage Consgiderations

Limited core storage presented the most serious problem in imple-
menting the subset. The compiler had to be written in four distinct

phases with the interpretive executor as a fifth phase, As the execution

of each phase 1s completed, a LINK instruction is issued to signal the
core load builder to load and begin execution of the next phase.

Efforts to conserve stérage resulted in the use of data handling
techniques which require a small amount.of core storage. This does,
however, result in increased execution time. This is particularly evi-
dent in tabie lookups, where linear searches are used.

Data areas were frequently redefined with EQUIVALENCE statements to
permit reuse of storage and more efficient access. The FORTRAN compiler
on the 1130 does no subscrift optimization for array references with
constant subscripts. Therefore, equivalencing a specific array element
to a simple variable name causes a direct, rather than indexed, refer-
ence in the FORTRAN object code.

Although the 1130 core load builder i1s capable of creating core
image programs with dynamic ovefiays, this feature was avoided whenever
possible. The load on call, or LOCAL, facility allows shared use of core
storage by infrequently called s@broutines, but significantly increases
execution time due to disk accesses, (12) Also, the system routine
which loads LOCALed subroutines is quite large and in itself causes
storage problems. Only in the parsing and code generation phase of the
compiler and in the interpretive executor are LOCAL subroutines used,
Storage requirements for these foutines could not be met using other

methods.

1130 Problems

Of the problems particular to the 1130, the first to occur during
this implementation was that of representing special charag¢ters. The

1130 FORTRAN compiller recognizes only a subget.of the EBCDIC character.

set, Therefore, some gymbols which are an integral part of ALGOL 68
(eegey 3, 35 #, ¢) must be defined with hexidecimal or integer equiva-
lents of the FORTRAN Al EBCDIC values. Even when special characters are
correctly defined within the scanner, the standard I/0 routines cannot
print them. To overcome this problem, the compiler formats its own
print lines‘and calls an assembler language program to perform the out-
put. Besides supporting the full EBCDIC character set, this routine is
considerably smaller than the FORTRAN formatting routines and permits
overlap between output and computation. The assembly routines used by
the compiler are contained in the IBM 1130 Commercial Subroutine Package.

(11) These routines and their uses are given in Table I.

TABLE ‘1

COMMERCIAL SUBROUTINE PACKAGE SUBPROGRAMS
USED ON THE IBM 1130

Name r ‘Description
FILL Propagates a character through a field,
MOVE Moves characters from one integer array to another,
PACK Converts values in an integer array from FORTRAN Al EBCDIC

characters to AZ EBCDIC.

READ Causes a card to be read on the 1442 card read/punch into an
integer array. Characters are represented in Al EBCDIC.

TYPER Prints a line of Al EBCDIC characters on the 1130 console
typewriter.
UNPAC Converts values in an integer array from FORTRAN A2 EBCDIC

characters to Al EBCDIC.

Scratch files, used for temporary storage, presented another minor

problem on the 1130 in that temporary files cannot be formally passed
between different phases of the compiler. This problem has been over-
‘come by the way the 1130 Disk Monitor System allocates working storage
1files, Files are always allocated starting at the same disk address, so
by defining scratch files in the same order in each segment of the com-
piler, the files are allocated iﬁ the same place on the disk. Data with-

in the files 1is not changed during the loading of program phases,

Virtual Memory System

In order to allow the compilation and execution of large ALGOL 68
programs on the 1130, a simple virtual memory system was developed. . Two
80-word pages reside in memory during execution. One page 1s .a section
of the object program. Since the object program is never modified during
execution, no facility for storage into it has been included. Should an
attempt be made to store into the program page a storage protection error
is indicated., The second page 1s a segment from the dynamic storage
area. It contains identifier storage and program linkage information.
When information is stored into ‘this page it 1s recopiled to disk before
a new page 1s swapped 1in.

All references to the 1130 virtual memory system are made with sub-
routine calls. It was.intendeduﬁhat the virtual memory system Be re=-
placed by in-core storage on systéms with ample memory. This change can
be made easily by intercepting subroutine calls to the fetch and store
routines.

As expected, the use of the virtual memory system results in slow
execution by the interpretive executor due to disk accesses. It does,

however, serve its intended purpose by allowing the definition of non-

10

trivial ALGOL 68 programs. The performance of the virtual memory system

could be improved by implementing a larger page size.

CHAPTER IIL
THE COMPILER
Compiler Initialization

Setting Compiler Options

The compiler must initially prepare itself for a particular compila-
tion. Not only must internal pointers and data tables be established,
but the compiler also must recognizé»user»controlled.options to provide
various levels of programmer support. These options range from a source
listing of the user's program to a compiler dump of intermediate results
during compilation.

This particular implementation varies somewhat from the formal def-
inition of the language since compiler options are set by parameters on
a control card rather than with ﬁfagmats, The control card method was
selected because 1t separated csapiler initfalization from the scanning
and program analysis phases. ‘It also allows for easier keyword identi-
fiéation sinée b?tions must be specified in a rigid format.

Compiler option keywords(are identified by performing a Iinear.
search on a keyword table. Although the linear search technique is not
particularly efficient, the relatively small list length a;lqws for key-
word identification within a féasonable time. A set of default optioms
is provided for the user, so compiler options need be explicitly stated

only when special compiler services are desired. The default options

12

are underlined in the list of compiler options in Table II.

Due to the linear nature of the keyword ligt, modifications to it
are relatively simple. Keywords can be added or deleted without regard
to list order. The compiler options which are in effect are indicated
by a set of control flags., Simple options, which are either enabled or
disabled (e.g., SOURCE/NOSOURCE), require only an array entry to desig-
nate which control flag should be set. Options which allow wvariable
parameters (e.g,, SQRMGIN) requiré additional program coding to effect

changes.

Initializipng Common Storage

Parameters are passed between compiler phases through FORTRAN com—
mon storage. Since common‘storage cannot be data initialized it is
necessary to assign values at execution time. The initialization phase.
of the compiler is responsibie for setting many of the pointers which

are used during the compilation,
The Scanner

Coding Atomic Symbols

To facilitate the analysis of an ALGOL 68 program, atomic.symbols
are converted to integer values, This eliminates the problems involved
with processing symbols of different lengths and allows classification
of keywords and operators according to the way in which they are used.
Negative integer values are used to denote identifiers while positive
integers indicate operators and keywords. Classification of keywords
according to use is achieved by assigning equivalent integer values with-

in a specified range (e.g., declaration tokens range from 401 to 499).

13

TABLE II

LIST OF COMPILER OPTIONS*

Description

Option

SOURCE/NOSOURCE Prints a listing of the source program

NEST/NONEST Prints block nesting levels

OPLIST/NQOPLIST Lists compiler options which are in effect during
a particular compilation

ATR/NOATR Prints an attribute. listing for identifiers (not
implemented)

XREF /NOXREF Prints a cross reference listing of identifiers
(not implemented)

STMNT /NOSTMNT Records statement numbers at run time

TRACE /NOTRACE Prints.the number of a statement before it is
executed at run time

DUMP /NODUMP Provides an instruction trace and dump of memory
before each instruction is executed

LIST/NOLIST Lists 4-tuples of the object code as they are
generated

SORMGIN=(xx,yy,zz) Defines the margins of the source record, where
xx 1s the starting column. (default 2); yy is the
ending column (default 72); and zz is a column
containing a standard ANSI carriage control char-
acter which is used to control the source listing
(no default)

PASSWORD=JCJ! Dumps intermediate code from the scanner for use

by the implementer and system programmers

*
‘Default options are underlined.

14

Recognizing Atomic Symbpls

Keywords and Identifiers. Identifiers and keywords are identified

and isolated using a finite state automaton (Figure 1). A regular gram-
mar which is used for the recognition of identifiers is given in Table
III. The process is started when an alphabetic character 1s recognized
and continues as long as alphanumeric characteérs are input. The charac~
ter string is theﬁ truncated or padded with blaﬁks to eight characters,
Although a few keywords are longer than eight charadfers in length, they
can be identified uniquely by an eight character fragment., Identifiers
may be of any length but they must be unique in the first eight charac-

ters.

letter any other symbol

letter, digit,
space-

Figure 1. Finite State Automaton for Isolating Identifiers

In order to conserve storage, identifiers are packed two characters
per word into four words before they are entered into the symbol table,.
The symbol table is searched linearly. Coded source program equivalents

for identifiers are negative integers.

15

TABLE III

A GRAMMAR FOR ISOLATING IDENTIFIERS

!

identifier: tag.
tag: letter; tag, letter; tag, diglt token; tag, space.

letter: aj; b; c; d; e; £5 g; hy 15 35 k; 1; my n; 03 p; q3 T3 85 tj ug
vV W3 X3 V3 Z.

digit token: O0; 1; é; 3; 4; 535 63 7; 83 9.

space: .

Identification of keywords is kept to a minimum during the scan
phase. Only keywords concerned with comments . (COMMENT and CO) and block
structure (BEGIN, END, IF, FI, CASE and ESAC) are identified, All other
keywords are treated as identifiers, The keywords are distinguished

from the identifiers during the keyword recognitibn phase.

Operators. Special character operators are ldentified by means of
a table driven finite state automaton. In an effort to save . storage, .the
table is divided into two parts, The first table (Table IV) 1s used to
find a starting state. In some céses, an operator consists of exactly
one symhol and the informat;on contaiﬁed in the first table is sufficient
to identify it. Otherwise the second table (Table V) is usedkas a tran—-
sition matrix for the findite stateﬂéutomatonq Positive entries in the
table indicate a transition ié'to be made to the specified state. Nega-.
tive entries indicate an 0peratof has been recognized. Table positions
with no entry and characters not contained in the input set signify that
the input character is not acceptable and an alternate list mpst»be

tested to determine if previously isolated symbols form a valid operator.

TABLE IV

STARTING STATES FOR OPERATOR RECOGNITION

input symbol: |/ -t : - > (
start state: 6 8 13 16 21 1 15 23
input symbol: =) & @ H
coded symbols =29 -2 =21 -36 =5
TABLE V
TRANSITION TABLE FOR OPERATOR RECOGNITION
Input -Symbol
* / - = : .)
State 1) 2 1 -8 Alt,
2 -7
3 5 4 -11
4 -9
5 -10
6 13 7 -14
7 -12
8 9 12 ~4150 -18
9 10 -19
10 -16 11 ~20
11 -17
12 -15
13 =22 =23
14 -25 =24
15 -26 ~27
16 18 20 17 -35
17 -32 -31
18 19
19 =34
20 -33 ~-30
21 ~30 22 -39
22 -30 -35
23 =414 -1
24 -38 -37

17

An error condition exists when an invalid input symbol is found and there
is no entry in the alternate list.

Given the standard set of operators for ALGOL 68, the finite state
automaton is sufficient for operator identification with at most one
symbol look ahead. If, however, the user is permitted to declare special
character dperators, this method may fail due to ambiguities in symbol

combinations.

Denotations., Denotations, or ALGOL 68 constants, are also recogni-
zed by a,finite_state automaton. The.method used is similar to that pre-
sented by Smith, et al. (15) for the recognition of denotations.., The
grammar corresponding to the finite state automaton for parsing denota-
tions is given in Table VI. A two‘character look ahead is sufficient to
distinguish valid denotations, but in some instances it is not sufficient
to recover when an error is detected. As denotations are isolated, they
are output as object code. Denotations are represented in the coded
source program by a denotation indi;ator followed by the relative address
of the denotation in the object code.

String denotations are defined to be a multiple value. Therefore,

a descriptor is output with each string denotation. The address of the
string denotation in the coded source program is actually that of its
descriptor. Although format denotations are not multiple values, they
also are output with a descriptor; The descriptor is used only to con-
tain length information for the:format denotation. Formats are not
parsed by the compiler. They are stored in character form so they may

be analyzed at run time.

18 .

TABLE VI

A GRAMMAR FOR ISOLATING DENOTATIONS

denotation: integral denotation; real denotation; string denotatiom;
format denotation,.

integral denotation: digit token; integral denotation, digit token.
real denotation: variable point numeral; floating.point numeral,

variable point numeral: integral denotation, fractional part; fraction-
al part, '

fractional part: point symbol, integral denotation.

point symbol: .o

floating poiﬁt numeral: stagnant part, exponent part.

stagnant part: ‘integral denotation; variable point numeral.

exponent part: times ten to the power choice, power of ten.

times ten to the power choice: E,

power of ten: plusminus, integral denotation; integral denotation.
plusminus: +; -,

string denotation: quote symbol, string item sequence, quote symbol.
quote symbol: ".

string item sequence: string item; string item sequence, string item.

string item: ¢ any symbol except the quote symbol ¢; quote symbol, quote
symbol, ' ”

19
Keyword Recognition

Keyword Identificatiqn

Keyword identification is performed in a phase separate from the
scanner. This 1s due primarily to storage cgnsiderations. The 1ist of
ALGOL 68 reserved words is lengthy and could not have been included eas-
11y with the scanner.

Regardless of how many times a keyword is used in a program, there
is only one entry in the symbol,ﬁable for it. Only oné‘search of the
keyword table must be made to ideﬁtify i1t throughout the entire program.
The keyword search is performed by determining the length of the symbol
and using a linear search of a table of fixed length entries,. When a
keyword is identified an entry is ﬁade into an array. The array is then
used to map identifier codes to the correct keyword code during a fix-up
pass through the coded source program.

The separate pass through the coded source program to -identify key~-
words does not appear . to significan;ly affect the performance of the
compiler unless a large number of identifiers and keywords are used with~
in a single ALGOL 68 program. Improved symbol table techniques could be
employed to improve performances in these cases, Also, the extra pass
through.the coded source program allows the identification of labels and‘

an analysis of the block structure of the progfam.

Label Recognition and Block Analysis

Due to the manner in which branching i1s controlled in the code gen-
eration phase, it is important to know which identifiers are used as

labels as well as where they are declared., This requires an extra pass

20

through the program, but it has been combined with the keyboard recogni-
tion pass in this implementation. Labels are identified as an identifier
followed by a colon symbol, where they do not occur within a row declara-
tion. When a label is found, a symbol table entry indicating the block
in which the label is defined is made.

Program blocks are numbered consecutively by counting open symbols
("('") and their equivalents (BEGIN, IF and CASE). TFor each block in the
program a table entry is made indicating the number of the block which
immediately contains it. From this table, and from the block number of
a label in the symbol table, the code generation routine can determine

if a jump is wvalid.

Envi;bnmental Enquiries

Accordiqg to the formal definition of ALGOL 68, environmental en-
quiries and pre-defined constants are identifiers which are declared and
initialized in the standard érelﬁde. (18) This implementation handles
them in exactly this manner. When an environmental enquiry or pre-de-
fined constant is used within a particular program, code is generated
to allocate and initialize it outside of the first bloék of the uger's

program,
Parsing and Code Generation

Parsing

Declarations. In an effort to make parsing of declarations simple,

declarations have been limited to simple data types and arrays. Expres-

sions are not allowed within a declaration. Furthermore, all identifiers

must be declared and declarations may only appear at the beginning of a

21

block, . The grammar used for parsing declarations is given in Table VII.
The restricted declaration format makes it possible to parse decla-
rations by means of a finite state automaton with only one symbol look
ahead (Figure 2). This look ahead, however, is not sufficient to re-
cover from error conditions, in which case the remainder of the declara~-
tion 1s ignored. Error states are recognized by invalid input symbols.
Since a run time symbol table is maintained, code must be generated
for each symbol declared. The code generated is an inst¥uction which
makes the appropriate run time symbol table entry. No address resolu-
tion is necessary at compile time since the address is determined from
the symbol table at execution time. Identifiers are, in effect, address-

ed by their symbol (a negative integer).

id or
denotation

Figure 2, TFinite State Automaton for Parsing Single Declarations. The
DK's represent arbitrary states in the automaton '

22

TABLE VII

A GRAMMAR FOR DECLARATIONS.

declaration prelude sequence: single declaration; declaration prelude
sequence, single declaration.

single declaration: simplemode, decl 1list, gsemicolon symbol; sub symbol,
rows of, bus symbol, simplemode, identifier list, semicolon symbol.

semicolon symbol: ;.

sub symbol: (/.

bus symbol: /).

simplemode: INT; REAL; COMPL; COMPLEX; BOOL; GHAR.
rows of: row of; rows of, comma symbol, row of.
comma symbol: ,.

row of: bound, colon symbol, bound; bound.

colon symbol: :.

bound: integral identifier; integral denotation.
decl 1ist: decl; decl list, comma symbol, decl,

decl: identifier, becomes symbol, identifier; identifier, becomes sym-
bol, denotation; identifier.

becomes symbol: =,

identifier list: didentifier; identifier list, comma.symbol, identifier,

23

Associated with multiple values (rows or arrays) is a descriptor.
(18) As a row declaration is parsed, a descriptor template is output
with the object code. When the row declaration is elaborated at execu~-
tion time, the template is used to supply bound information for the

actual descriptor.

Program Parse. The ALGOL 68 program is parsed using a combination

of top-down and bottom—upvmethods. The overall program structure,
specifically the block structure, is examined from the top down. Indi-
vidual statements (expressions) of the program are parsed from the bottom
up. This method is posgible because every identifier, operator and ex-
ternal object (e.g., serial clause) is said to possess a value upon its
elaboration. (18) Therefore, it is never necessary to consider anything
more comﬁlicated than two single values and the effect of an operator on
them. Whether a value is from é reference-to-integral-mode~identifier

or a_strohg-conditional—void-CIause is insignificant. Table VIII con-
tains a grammar for parsing the body of the ALGOL 68 program,

Expressions are analyzed by means of a modified postfix Polish con-
version routine. Output from the routine consists of interpretive code
which will cause the evaluation of the expression at run time.

Delimiting symbols (e.g.; (|, :, ») present no problem for the
parse. They are assigned a priority and are processed in the same man-
ner as other operators. Simiiarly, érocedure calls are treated as monad-

ic operators which are applied to their parameter lists.

Recursive Descent., In order to consider only a single value at a

time during the parse, it is necesgsary to consider each block in the

ALGOL 68 program separately. Whenever an open symbol is encountered,

24

TABLE VIII

A GRAMMAR FOR PROGRAM PARSING

particular program: begin symbol, serial clause, end symbol; left par-
enthesis symbol, serial clause, right parenthesis symbol; if sym-
bol, serial clause, then symbol, unitary clause list, else symbol,
unitary clause list, fi symbol; if symbol, serial clause, then sym—
bol, unitary clause list, fi symbol,

serlal clause: declaration prelude sequence, unitary clause list, uni-
tary clause list,

unitary clause list: wunitary clause; unitary clause list, semicolon sym-
bol, unitary clause.

unitary clause: 1label, colon symbol; unitary clause; expression; jump.
jump: goto symbol, label; label.

label: didentifier.

goto symbol: GO, TO; GOIO.

expression: formula.

formula: formula, pl operator, p2 operand; p2 operand.

P2 operand: P2 operand, P2 operator, p3 operand; p3 operand.

p3 oﬁerand: p3 operand, p3 operator, p4 operand; p4 operand.

p4 operand: p4 operand, p4 operator, p5 operand; p5 operand.
p5 operand: ' p5 operand, p> operator, p6 operand; pbé operand.

p6 operand: p6 operand, p6 operator, p7 operand; p7 operand.

p7 operand: p7 operand, p7 operator, p8 operand; p8 operand,

p8 operand: p8 operand, p8 operator, p9 operand; p9 operand,

p9‘0perand:' P9 operand, p9 operator, monadic operand;

monadic operand.
monadic operand: monadic operator, monadic operand; primary.
primary: didentifier; denotation; selector, primary; slice; particular

program; standard procedure, left parenthesis symbol, parameter
list, right parenthesis symbol; cast.

25

TABLE VIII (Continued)

i

selector: RE; IM,
slice: identifier, sub symbol, indexer 1list, bus symbol.
indexer list: dindexer; indexer list, comma symbol, indexer.

parameter list: wunitary clause list; parameter list, comma symbol, uni-
tary clause list,

begin symbol: BEGIN.

end symbol: END.

left parenthesis symbol: (.
right parenthesis symbol:).
1f symbol: IF.

fi symbol: FI.

then symbol: THEN,

else symbol: ELSE.

the parse literally:starts over with a new program, Only the symbol
table reflects the existence of containing blocks. Each block is assum-—
ed to contain a complete program which returns a value.

When restarting the parse at the entry to a block, it is necessary
to preserve the status of the parse of the containing block. This is
done by making entries to the symbol and operator stacks used by the
Polish string routine. The operator stack entry contains a priority low
enough to prevent the code generation routine from acting on it. along
with the block number of the containing block. The symbol atack entry
contains information as to where the parse left off. After flags have
been reset, the parse starts over. At block exit, the flags are reset

from the information which was stacked, and the parse resumes. This

26

method allows block nesting to occur to an unspecified and theoretically

limitless depth.

Code Generation. Each operator 1s assigned a priority to specify

when an operation is to be performed in relation to other operators.

The Polish string conversion routine maintains this relationship. Opera-
tors and their priorities are passed to this routine and are stacked on
the operator stack so that thelr priorities are strictly non—decfeasing.
If necessary, the code generation routine pops a higher priority opera-
tor from the operator stack,‘along with any assoclated operands from the
symbol stack, so that this order is preserved. As an operator is popped
by the code generation routine, an instruction is generated to perform

that operation at run time.

Transfer of Control. Programmer directed jumps and branching

associated with conditional clauses also are controlled by the Polish
string conversion routine. Jumps, or GOTO's, are indicated by an identi~-
fier on the symbol stack with mode label (actually, reference-to-proce-
dure), If the label identifier is defined within a containing block, a
branch instruction is generated.‘ Otherwise an error condition is indi-
cated. Since the branch is to a label identifier, no address resolution
is necessary during the code generation phase. The address 1s determin-
ed by the parser and entered into the run time symbol table before execu-
tion.

Conditional branching is somewhat more complex. As previously
stated, the delimiters THEN, ELSE and ELSF are treated as operators.
Each generate a branch instruction as they are placed on the operator

stack and each carries with it the address of that instruction so that

27

the branch address can be resolved when code generation for the clause
is complete,

When a then-symbol is found, an instruction is generated which
causes a jump 1f the result of the boolean if-clause is false. The
branch address is left unresolved until an else-symbol is found. (If
there is no else clause, the fi-symbol resolves the address). At that
time, an unconditional branch 1s generated to skip over the else clause,
and the branch address for the then-symbol ié resolved. When the fi-
symbol is found, the unconditional branch address preceeding the else
clause is resolved, Using this methéd, no fix up pass through the object
code i1s needed since all addresses‘are resolved during the parse. The
codg generated to control branching in a conditional clause can be seen

in Figure 3.

BLOCK ENTRY IF
expression expression
BRANCH IF FALSE THEN
then clause then clausge
BRANCH ELSE
else clause else clause
Ly BLOCK EXIT ‘ FI

Figure 3. Code Generated for a Conditionali Clause

28

Mode Coercion and Subscripting. Included in the standard prelude

for operators are provisions for operations between operands of differ-
ent modes, Specifically, it allows widening, or coercion from integral
to real and from real to complex. Rather than supply each operator in
the éxecutor with widening capabilities, an op code was defined to ef-
fect widening. This instruction is genmerated automatically when mode
conflicts are noted and widening-1is appropriate.

Slicing, or subscripting, is accomplished by means of a "load sub-
scripted” instruction which ﬁlaceS'the'addreSS'of'a single row element
into the run time symbol taBié”for a temporary identifier entry. The

row element can then be addressed directly through the identifier.

Error Recovery

In an effort to assist the ALGOL 68 programmer, the compiler initi-
ates correctional actions to try to continue the parse. The actions are
based on the concept of maintaining a correct relationship between opera-
tors on the operator stack and syﬁbois on the symbol stack, Dummy opera-
tors and operands are generated as needed for this purpose.

The scanner converts the user's program to a coded form to facili-
tate program analysis. Parsing of .the ALGOL 68 program is performed in
two passes using a combination of top down and bottom up methods. Object
code consisting of 4—tup1es.tobbe interpretively executed is output.
Address entries for all labels'&efined in the ALGOL 68 program are made

in the run time symbol table before execution is passed to the executor.

CHAPTER 1V
INTERPRETIVE EXECUTION
The Use of FORTRAN

In an effort to make the ALGOL 68 implementation machine independ-
ent, IBM 1130 basic FORTRAN was selected for the implementation of in-
terpretive execution. (10) Sinée FORTRAN is a universal language, code
generated by the compiler can be-executed on virtually any system through
the executor. Also, the object code can be produced by one machine and
executed by another,

Using FORTRAN interpretation, it is possible tp utilize the func~
tions in the FORTRAN subroutine library. This made implementation on.
much. easier in that existing procedures could be used for computational
as well as input/output functions. Although the original implementation
uses only standard subroutines, 1t 1s possible to modify the executor to
include available software. One such change might be to use the complex
arithmetic software of a system, rathef than depeﬁd on the routines in

the executor,
The Interpretive Code

Each instruction of interpretive code consists of a 4—tuple of in-
teger values. The first value consists of the operation code and the

mode of the instruction. The use of the remaining three values is de-

pendent upon the instruction. They may contain addresses of up to three

24Q

30

operands, or additional mode or operation information. The operation

codes are listed in Appendix B.
Storage Management

The execution time layout of storage is shown in.Figure 4. The ob-
ject program resides in the low end of the storage area. This area is
fixed and is not modified during program execution. The remaining stor-
age 1s used to contain two stacks. Dynamic storage for identifiers and
system linkage needs is allocated from the execution stack., Heap stor-
age, for identifiers with tﬁe HEAP attribute, is allocated in a stack-

like manner from the other end of storage.

Stackend Stacktop Heapend Heapend
Object Execution Heap
Program Stack (free storage) Storage

b <

Figure 4. Storage Layout

The limits of storage are set by the stackend and heapend pointers.
The heapend pointer is set to reflect the absolute limit.of the storage
area and the stackend pointer indicates the end of the program area.
The limits of allocation are also maintained by pointers. The stacktop
pointer is incremented as storage is allocated so that it points to the
next available storage location., Similarly, the heaptop poilnter is
: decremented as heap storage is allocated. Stack overflow occurs when

the stacktop pointer 1s greater than the heaptop pointer, but this occurs

31

only when every available storage location has been used.

The storage area for the executor is addressed in three different
ways. Addresses which refer to a constant value or a fixed branch ad-
dress are absolute, relative to the beginning of the storage area. These
addresses -are represented in the operand fields of the interpretive in-
structions as positive values. References to values possessed by identi-
fiers are indirect and must-be resolved from the run time symbol table.

A reference to an identifier i1s indicated by a negative operand value
which refers to a relative position in the symbol table. Temporary
storage for intermediate results‘is allocated as needed from the top of
the execution stack and is referenced by an operand with a value of zero.
Addresses for values on the top of the stack are computed from the stack~
top pointer and the mode information contained within an instruction.
Stack temporaries are automatically allocated or released as they are
referenced., Regardless of the type of addressing which is used, a sub~-

routine call is made to determine the absolute address of an operand.
DISPLAYS

The block structure of a program is maintained through the use of
DISPLAYS. (6) The DISPLAY provides a convenient mechanism for maintain-
ing system linkages when=st6rage is allocated in a stack-like manner.
Contained within the DISPLAY are pointers to DISPLAYS for all containing
blocks as well as a pointer to the head of a linked list of identifiers

declared within the block.

32

DISPLAY [0]

DISPLAY [1]

DISPLAY [2]

DISPLAY [3]

IDENTIFIER LINK

Figure 5. DISPLAY for a Nesting
Level of Three

The pointers to higher level DISPLAYS provide a means by which no
storage need be explicitly released at a block exit. (17) The entry
pointing to the current DISPLAY is actually the stacktop pointer before
the most recent block entry was made. Restoring the old stacktop point—
er automatically releases storage allocated by the block. Similarly,
multiple block exists, needed when control is transferred to an outer
block, can be effected by restoring the appropriate stacktop pointer
(Figure 6). This method for multiple exists is not used in this imple-
mentation, however, because the run time symbol table must be restored

at the exit from each block.
Run Time Symbol Table

Decla:ing Identifiers

As a declaration is elaborated, storage 18 allocated for the identi-
fier and the run time symbol table is updated to reflect the new declara—
tion. Previous declarations are preserved by storing the symbol table

entries on the execution stack in a linked list. The DISPLAY for each

DISPLAY [0]

DISPLAY [1]

IDENTIFIER LINK

Dynamic Storage
for Block 1

DISPLAY [0]

DISPLAY [1]

DISPLAY [2]

IDENTIFIER LINK

Dynamic Storage
for Block 2

free storage

~_____—ff”////’————-——~_———

0ld Stacktop Pointer

Current Stacktop
Pointer

Figure 6. Relation of Stacktop Pointers to DISPLAY

Entries

33

34

block contains a pointer to the head of the linked list for all identi-
fiers declared within the block (Figure 7). At block exit, the symbol
table is restored from the previous symbol table entries in the linked

list.

[LIST HEAD

d IDENTIFIER | ADDRESS | MODE | LINK |

_IDENTIFIER | ADDRESS | — MODE | TINK b

Figure 7. Chaining of Previous Declarations

The use of the run time symbol table eliminates the problems involv~
ing the reach of a declaration. Only the most recent declaration is
available from the symbol table. Previocus declarations are not available
until the block containing new declarations 1is exited. Also, identifiers
which have not been declared before they are referenced can be detected

easlly by invalid addresses in the run time symbol table.

Subscripting

Reference to a single element of a multiple value is effected
througﬁ a special symbol table entry. Identifiers are generated by the
comﬁiler to contain the address of the element. An instruction is used
to compute the address using information contained in the multiple value
descriptor (Figure 8) and the subscripts which are in temporary storage

on top of the execution stack.

35

C Offset
L Lower Bound
U Upper Bound
This quintuple occurs
D Stride once for each row of
' the array
S Lower State
T Upper State

Figure 8., Format of the Multiple Value Descriptor

Subscript checking occurs automatically during interpretive execu-
tion. Subscript bound information is obtained from the descriptor for
the multiple value. Upon recognition of a subscripting error, a message
is printed and execution is terminated. 1If all subscripts are within
the correct bounds, the address is‘computed as an offset from the first
elemant in the array and the address is stored into the symbol table

under an entry for a special identifier.
Error Processing

Run time error checking provides a mechanism for detecting errors
which can not be detected easily by the compiler. This is limited pri~
marily to operations which are not defined between arguments of certain
modes, These errors are detected automatically during instruction of
code decoding and execution is terminated.

Other run time error checking involves testing for idemtifiers

which have not been declared. This is accomplished through the use of

36

the run time symbol table., Mode checking is not performed at execution
time since all mode conflicts are resolved by the compiler.

Execution error messages are printed by a separate abnormal termina-
tion routine. The correct error message is determined frqp~the comple-
tion code which is set by the executor. As a user specified option,
statement numbers are retainéa during execution to make error analysis
easier, The abnormal termination routine also dumps internal pointers
when debugging alds are enabled. This facilitates detection of system
errors.,

The 4~tuples of code generated by the compiler are interpretively
executed. Dynamic storage is administered in a stack-like manner by the
executor. A run time symbolfféble is maintained for address resolution

of identifiers.

CHAPTER V
USER'S GUIDE
Control Cards

The control cards necessary for execution of the ALGOL 68 subsget

compiler on the IBM 1130 are shown in Figure 9.

// JOB
// XEQ ALG68
:JOB

ALGOL 68 Source Program

¢ENTRY

Program Data (if any)

¢ IBSYS

Figure 9, ALGOL 68 Control
Cards for the
IBM 1130

The :JOB card initiates program input. Compiler options (Table ITI)
may be specified uging the format specified in Figure 10. A blank term—
inates the scan of the :JOB card and the remainder of the card is treat-
ed as comments. Table IX contains a list of abbreviations which may be

used to specify compiler options. The word NO may be used in front of

a7

38

abbreviations as well as keywords, where appropriate, to turn off un-

wanted options.

columns 1-4 the characters :JOB
columns 6~22 accounting information (not used)
columns 23- compiler options, each preceeded by

a comma and containing no embedded
blanks

Figure 10. Format of the :JOB Card

TABLE IX

COMPILER OPTION ABBREVIATIONS

Abbreviation Keyword

SOURCE
NEST
OPLIST
ATR*
XREF#*
STMNT
TRACE
DUMP
LIST
SORMGIN
PASSWORD

J o 3unxK o wn
S% H :>"Uz

*
ATR/XREF have not been imple-
mented,

Restrictions

The following restrictions have been applied to the ALGOL 68 sub-
set:
1. All ALGOL 68 keywords are reserved;

2. Keywords must be separated from identifiers, denotations and

39

other keywords by at least one blank;

3. Keywords, multiple symbol operators and denotations may not
contain embedded blanks}

4. All identifiers must be declared before they are referenced.
All declarations must appear at the front of a block;

5. Identifiers may not contain embedded blanks, but the break
character or underline () may be used to improve readability;

6. Comments may appear anywhere a blank may appear, but they must
start and end with the same symbol;

7. A label may be defined only once within a program and may not
subsequently be declared as an identifiery

8. Conditional clauses must be balanced by the programmer;

9. Identifier initializations may contain no expressions and must
be of the correct mode;

10, Bounds on array declarations must be simple integral denotations

or identifiers.

Programming Tips

The user should avold the use of unnecessary parenthesis and BEGIN-
END blocks. A considerable amount of overhead is involved with block
entry and exit,

Subscripting for multiply dimensioned arrays is significantly slow-
er than for singly dimensioned arrays. Where possible, the number of
dimensions should be kept to a minimum.

When the 1130's virtual memory system is in use, multi-dimensional
arrays should be initialized in row order to minimize the number of page

faults.

CHAPTER VI

SYSTEM PROGRAMMER'S GUIDE

Compiler Modification

Changing Symbol Table Sizes

In all phases of the compiler, as well as the interpretive executor,
the symbol table is the last entry in the COMMON storage area. The sym-
bol table size can be modified by changing the array dimension for SYMTB,
(In the forth phase of the compiler, STACK is EQUIVALENCEd to SYMTB so
its dimension also should be changed.) References to the length of the
symbol table are made by a reference to the intéger variable SLEN, so
1ts DATA initialized value must be changed to correspond to the symbol
table dimension.

The parsing and code generation phase of the compiler indirectly re-
fers to the run time symbol table length of the executor through the
integer variable MAXSM. This value represents the maximum number of
symbols which can be entered into the symbol table during program execu-
tion. Siﬁce symbol table entrieskrequire two words, MAXSM has a value

equal to one half of the run time symbol table length,

Converting to In-core Storage

On systems with sufficient core storage, the 1130 virtual memory

system should be eliminated to increase the gpeed of execution. A single

AN

41

region of storage is required for the compiler's memory needs and ideal-
ly it should be addressable from all routines. This could be achieved
using labeled COMMON or by appending the additional storage on the end
of the system's blank COMMON.

Fetching and storing into memory is performed by the subroutines
ALGFE and ALGST, respectively, These routines would have to be re~-
written to allow the direct reference to gtorage. The coding of these

routines for use with storage in labeled COMMON is shown in Figure 11.

SUBROUTINE ALGFE(TADDR,BUFFER,LENG)

C FETCH ROUTINE
INTEGER BUFFER (1)
COMMON/MEMRY/ M(8000)
K=IADDR+LENG-1
J=1
DO 10 I-IADDR,K
BUFFER(J)=M (1)

10 J=J+1 '

RETURN
END

SUBROUTINE ALGST (IADDR,BUFFER,LENG)

C STORE ROUTINE
INTEGER BUFFER(1)
COMMON/MEMRY/ M(8000)
K=TADDRALENG~1

 Jel
DO 10 I=IADDR,K
M(I)=BUFFER(J)
10 J=J+1

RETURN
END

Figure 11. Fetch and Store Routines for Con-
version to Core Storage

Converting I/0 Routines

The routines used on the 1130 to perform input and output are, by

42

necessity, system dependent. Therefore, calls to these routines are
made in such a manner that I/0O routines could be written easily for any
system to perform these functions., All input and output is done in
terms of Al EBCDIC character strings stored in integer arrays. The com~
piler does all of its own formatting and data conversion. Suggested

routines to convert to standard I/O are in Figure 12,

SUBROUTINE ALGPR (LINE,LENG)
C PRINT ROUTINE
INTEGER LINE(1)
DATA IOUT/..../
WRITE (IOUT,10) (LINE(I),I=1,LENG)
10 FORMAT(120A1)
RETURN
END

SUBROUTINE READ (CARD,START,STOP,EOF)
C READ ROUTINE
INTEGER CARD (80) , START,STOP, EQF
DATA IN/..../ o
. READ(IN,10,END=30) (CARD(I),I=START,STOP)
10 FORMAT (80AL)
20 RETURN
C . END-OF-FILE
30 EOF-1
GO TO 20
END

Figure 12. Read and Print Routines for Conver-
sion to'Standard I/0

Card input involves reading characters from a card and storing them
into specified positions of an integer array. This function is perform-
ed by subroutine READ. This subroutine contains a parameter to indicate
a last card, or end-of-file, sequence on the 1442 read/punch, but this
parameter is not actually used by the compiler.

Output is generated one line at a time and is passed to subroutine

43

ALGPR to be printed. The print line is a variable length integer array
of FORTRAN Al EBCDIC characters, the first of which is for carriage con-
trol., The carriage control characters are not printed and are standard

ANSI carriage control characters as shown in Table X,

TABLE X

CARRTAGE CONTROL CHARACTERS

Character Action
(blank) single space
0 double space
- triple space
+ no advance
1 new page

Program Linkage

The IBM 1130 implementation consists of distinet program segments
which are loaded and executed as needed. It is never necessary to have
any portion of a previous phase in core during the execut#gn of a sub-
sequent phase. (Some subroutines are used in more than ene phase, but
each'core”image'pfﬁgram containsmits'ownfcopy“of such“routiqgs;)

The loading of compiler phééés is program controlled en the 1130 by
the system LINK instruction.”(iZ) This dinstruction signals the core
load builder to load and begin execution of a specified program, namely
the next phase of the compiler. Parameters in COMMON storage are pre-
served during the LINK operation,

When converting to other systems, overlay capabilities of a linkage
editor could be used to achieve the effect of the 1130 LINK instruction.

Each segment of the compller could be overlayed when it is no longer

44

needed. Provisions would have to be made concerning subroutines which
are shared by different program segments. This could involve keeping
them resident in core of by supplying a new copy with each overlay.
Values in COMMON storage must remaln unchanged during program segment
overlaying.

Figure 13 suggests a method by which use of overlays could be
avoided. This would involve changing the parameters of the 1130 FORTRAN
CALL LINK instructions from program names to integer values. Program
segments would be treated as subroutines whose execution is controlled
by a subroutine call 'LINK', Subréﬁﬁine-LINK is called when a transfer
of control to the next phase is‘desired. It should be noted that this
linkage method results in subroutine LINK being called recursively, thus
possibly destroying system linkage information. However, depending on
the operating system being used, this information may never be used,
since a normal return would never be executed., Program control is never
returned to a previous phase of the compiler. When the compiler or exe-
cutor has finished, a CALL EXIT command is issued to return to the oper-
ating system. If an operating system can regain control without using
the previously destroyed linkage information, this method could possibly

be used.

Data Alignment and Lengths

A1l numeric and character values, regardless of length, are treated
as elements of integer arrays. This requires the ability to redefine
different values aé integer arrays through the use of the EQUIVALENCE
statement. The manper in which this is done is highly machine dependent

due to system differences in storage and length requirements for each

data type.

43

1) Replace program names in CALL LINK instructions with the following
integer values:

Program
_name

ALGO2
ALGO3
ALGO4
ALGOS5
ALGAE
ALGCD
ALGCE

Integer

_value

N oUW N

Program function

scanner
keyword recognition

parsing and code generation
interpretive executor
abnormal termination handling
compiler debugging

compiler debugging

2) Change all of the above mainline routines to subroutines

3) 1Include the following program to control Iinkage:

10
20
30

50
60
70

SUBROUTINE LINK(N)

Go T0(10,20,30,40,50,60,70),N

CALL ALGO2
CALL ALGO3
CALL ALGO4
CALL ALGO5
CALL ALGAE
CALL ALGCD
CALL ALGCE
END

Figure 13,

Steps

in Conversion to Linkage by Subroutine Call

The length for each data type on a particular system is indicated

by an entry in the integer array LENGS,

This array contains five entries

which indicate the length in words of integral, real, complex, boolean

and character values, respectively. It should be noted that boolean and

character values are treated ag integer values, while complex values are

represented as a palr of real values.

46

Implementing Procedures

ParsingrProcedure Declarations

Since procedure declarations may contain expressions, procedures
must be parsed by the routine used for analyzing unitary clauses (ALGO04).
The declaration parsing routine (ALGDL) is simply not sophisticated
enough to handle the types of statements which could occur in procedures.
A suggester grammar for parsing procedure declarations is given in Table

s,

XI.

TABLE XI

A GRAMMAR FOR PROCEDURE DECLARATIONS

procedure declaration: proc symbol, identifier, formal parameter pack,
proc mode, colon symbol, unitary clause, semicolon symbol; proc
symbol, identifier, proc mode, colon symbol, unitary clause, senmi-
colon symbol.

formal parameter pack: left parenthesis symbol, formal parameter list,
- right parenthesis symbol,

formal parameter list: virtual parameter; formal parameter list, comma
symbol, virtual parameter.

virtual parameter: parameter mode, identifier list.

parameter mode: proc rows, simplemode; simplemode; reference-to symbol,
proc rows, simplemode; reference-to symbol, simplemode.

proc rows: sub symbol, rows, bus symbol; sub symbol, bus symbol.
rows: comma symbol; rows, comma symbol.

proc mode: simplemode; VOID.

proc symbol: - PROC.

reference-to symbol: REF.

47

It is suggested that procedure declarations be restricted to allow
no reference to identifiers which have not been previously declared by
the user, either in the parameter list or in a containing block of the
ALGOL 68 program. The mode of’all operands must be known before code
generation can occur. Therefore, if an identifier has not been declar-
ed, a valid instruction referencing it cannot be generated. An alterna-
tive to this restriction would be to make an extra pass through the coded

source program'to determine the modes of all identifiers in the program,

Additional Instructions

At least four additional instructions must be defined to effect
procedure calls: an instruction for passing parameters; an instruction
to link to a procedure; an instruction to return from a procedure; and
a branch instruction for abnormal exit from a procedure.

The passing of parameters‘could be handled easily through the run
time symbol table. All that would be involved would be to place the
addresses of the actual parameters in the calling statement into the
symbol table entries for the virtual parameters of the procedure declar-
ation. Since address resolution occurs at run time, there 1s no problem
as to which allocation of an identifier would be referenced., Only the
most recent declarations would be available from the symbol table.

Linking to a procedure 1is relatively simple. It involves storing
the return address on top of the execution stack and branching to the
first instruction of the procedure. At the procedure entry point, para-
meter addresses, also stored on the execution stack, would be retrieved,
Exit from the procedure would involve restoring the symbol table and

branching to the return address.

48

The use of DISPLAYS makes abnormal exits from procedures easy.
Since the nesting level of the block for each label is known, storage
release and transfer of control are greatly simplified. It is, however,
necessary to restore the run time symbol table to account for all decla-

rations elaborated within blocks which are exited.

Program Control Flag

An extra control flag is necessary to .indicate that a procedure
declaration 1is being parsed. This flag would be tested each.time a semi-
colon is found to determine if it ends a procedure declaration. If so,
an exit instruction would be generated to return to the calling state—
ment, This flag also could be used to signal that a parameter list is
being parsed, in which case an address, rather than a value, would be
loaded on the execution stack when a comma is found. Then, when a right
parenthesis 1s found the procédure call would be generated. This program
control flag would be stacked as is the block number during recursive

descent,

Error Checking

Detection of errors concerning procedure calls could become quite
complex. Minimally, a check must Be made to see if the number of para-
meters in a call matches the numbef in the procedure declaration. This
would be sufficient to prevenﬁ a system error but would require that.the
user be responsible for mode checking. Ideally, the parser should gen-
erate tables for mode checking of proéedure operands., This would elimin-

ate user errors involving referencing parameters.

49
Compiler Debugging Aids

Within the compiler are debugging facilities so the compiler and
executor can help to debug themselves, Thils allows system programmers
and the implementor to dump intermédiate values between phases of the
compiler, All values dumped are clearly labeled and indicate the status
of the compllation at various points.

The compiler debugging facility i1s not intended for use by the
application programmer. 'It does not provide him with any useful infor-
mation for debugging and ALGOL 68 program.

The debugging aids are enabled through the PASSWORD=JCJ! parameter
of the :JOB card. Also of interest to the system programmer are the
LIST and DUMP options. The LIST option prints 4~tuples of generated
code (some branch addresses will not be resolved). The DUMP option pro-
vides an execution trace, along with a complete dump of the dynamic
storage stack, before each instruction is executed. Use of the DUMP
option should be limited since poteﬁtially large amounts of output are

possible.

CHAPTER VII
SUMMARY, CONCLUSIONS AND FUTURE WORK

Using the methods outlined in this paper an ALGOL 68 subset has
been implemented at Oklahoma State University for the IBM 1130, It has
successfully compiled and executed programs of a scientific nature. To
a limited extent the translator has been used by undergraduate students
in an attempt to learn the language.

Future work on the system'will involve extengive testing and the
implementation of extended traﬁsput.capabilities. Additional compile-
time error checking would be desirable for instructional purposes.

This implementation seems to meet the basic needs for introducing
the student to the ALGOL 68 ianguage while it allows compilation and
execution of application programs of a scientific nature. This subset-
translator provides a suitable starting point for an understanding of

the complete ALGOL 68 language.

5N

(1)

(2)

3)

(4)

(5)

(6)

(7)

(8)

9)

(10)

(11)

(12)

(13)

A SELECTED BIBLIOGRAPHY

Berry, Roger. '"A BNF Grammar for Formats in ALGOL 68," Proceedings
of an ALGOL 68 Workshop, Oklahoma State University, 1973,

Berry, Roger. "A Practical Algorithm for the Implementation of
Formats in ALGOL 68," Proceedings of an ALGOL 68 Workshop,
Oklahoma State University, 1973.

Berry, Roger, !"'Transput in ALGOL 68,'" Proceedings of an ALGOL 68
Workshop, Oklahoma State University, 1973.

Currie, I. F., Susan G. Bond and J. D. Morrison. '"ALGOL 68-R,"
ALGOL 68 Implementation, ed. J. E. L. Peck. Proceedings of
the IFIP Working Conference on ALGOL 68 Implementation,
Munich, July, 1970. Amsterdam: North-Holland Publishing
Company, 1971.

Currie, I. F. and P. M. Woodward. '"Working Description of ALGOL
68-R," Royal Radar Establishment Memorandum, Malvern, England,
December, 1970. '

Gries, David. Compiler Construction for Digital Computers. New
York: John Wiley and Sons, Inc., 1971. ’

Hedrick, G. E. and B. R. Alexander., "A Transition from PL/I to
ALGOL 68," Proceedings of the Second Vancouver Conference on
ALGOL 68 Implementation, Vancouver, 1972.

Hedrick, G. E. and C. L. Smith, '"Context Conditions in ALGOL 68,"
Soken Kiyo, 3.1 (1973), pp. 1-28.

Hill, U., H. Scheidig and H. Woessner. "An ALGOL 68 Compiler,"
Technical Report, Technical University of Munich and Univer-
sity of British Columbia, 1972,

- IBM 1130/1800 Basic FORTRAN IV Language (GC26-3718).

IBM 1130 Commercial Subroutine Package (1130-SE-25X), Version 3
Mod. 1-Program Reference Manual (GH20-0241).

IBM 1130 Disk Monitor System, Version 2, Programmer's and Opera-
tor's Guide (GC26-3717).

Jensen, John C. '"An ALGOL 68 Subset Compiler,”" Proceedings of an
ALGOL 68 Workshop, Oklahoma State University, 1973.

51

(14)

(15)

(16)

a7

(18)

(19)

(20)

52

Jensen, John C. '"Considerations for the Implementation of an
ALGOL 68 Subset on the IBM 1130," Proceedings of an ALGOL 68
Workshop, Oklahoma State University, 1973,

Smith, C. L., G. E, Hedrick and J. R. Van Doren. "A Scanning
Algorithm for ALGOL 68 Denotations,'" Proceedings of the
Second Vancouver Conference on ALGOL 68 Implementation, Van-
couver, 1972,

Peck, J. E. L. An ALGOL 68 Companion. Vancouver, British Colum-
bia: University of British Columbia, 1971.

Van Doren, James R. "A Conceptual Model for Dynamic Storage Ad-
ministration in Block Structured Languages,' Technical Note,
Oklghoma State University, 1972,

van Wijngaarden, A., ed., B. J. Mailloux, J. E. L. Peck and C. H.
A. Koster, '"Report on the Algorithmic Language ALGOL 68,"
Numerische Mathematik, 14 (1969), pp. 457-519.

Woodward, P. M. "Primer of ALGOL 68-R," Royal Radar Establishment
Memorandum, Malvern, England, 1970.

Woodward, P. M. and Susan G. Bond. User's Guide to ALGOL 68-R.
Malvern, England: Royal Radar Establishment, 1971. '

APPENDIX A

CODED PROGRAM EQUIVALENTS

51

54

TABLE XII

CODED PROGRAM EQUIVALENTS

Action Tokens

Description Keyword Symbol Equivalent
minus and becomes symbol MINUSAB —i= 7
minus symbol - 8
plus and becomes symbol PLUSAB +im 9
prus and becomes symbol PRUS - +=: 10
plus "symbol + 11
times and becomes symbol TIMES %1 : 12
up symbol Up *k 13
times symbol * 14
divide and becomes symbol DIV /= 15
over and becomes symbol OVERB //:= 16
modulo and becomes symbol MODB [le:= 17
divide symbol _ / 18
over symbol OVER !/ 19
modulo symbol MOD /1: 20
and symbol AND & 21
not equal symbol NE = 22
not symbol NOT - 23
less than symbol LT < 24
less than or equal symbol LE <= 25
greater than or equal symbol GE > 26
greater than symbol GT > 27
plus i times symbol. ' 28
plus 1 times symbol ? 28
equals symbol EQ = 29
becomes symbol 1= 30
becomes symbol = 30
becomes symbol o= 30
conforms to symbol CT e 31
conforms to and becomes CTAB 1= 32
is symbol I8 = 33
isnt symbol ISNT taLH 34
or symbol OR 35

Syntactic and Sequencing Tokens

Description Kexgord Symbol Equivalent
begin symbol BEGIN

(
case symbol CASE (
if symbol IF (
end symbol END)
esac symbol ESAC)
fi symbol FI)

DN

55

TABLE XII (Continued)

Description Keyword Symbol Equivalent
semicolon symbol : 5
comma symbol , 6
colon symbol : 35
colon symbol - 35
at symbol AT @ 36
else symbol. ELSE | 37
out symbol oUT | 37
then symbol THEN | 37
in symbol IN | 37
else if symbol ELSF | : 38
completion symbol . 39
sub symbol (/ 414
bus symbol /) 415

Environmental Enquiries and
Pre—defined Constants

Name Equivalent
BITSLENGTH 201
BITSWIDTH 202
BYTESLENGTH. 203
BYTESWIDTH 204
INTLENGTHS 205
FALSE 206
NMAXFACT 207
NULLCHAR 208
REALLENGTHS 209
TRUE 210
MAXINT 211
NIL 212
MAXREAL 213
SMALLREAL 214

PI 215

Standard Procedures

Name Equivalent
CMPLXSQRT 301
NEXTRANDOM 302
ARCCOS 303
ARCSIN 304
ARCTAN 305
CLEAR 306
ENTIER 307
LOG10 308

MATCH - 309

TABLE XII (Continued)

56

Name

PRINT
RANDOM
ROUND
ABS
ARG
BIN
CONJ
Ccos
ELEM
FXP
GET
INF
LOG2
LWB
LWS
0DD
OUTF
PUT
READ
REPR
SET
SIGN
SIN
SQRT -
TAN
UPB
UPS

LN

Name
COMPLEX
COMPL
EITHER
FORMAT
STRING
BOOL
CHAR
FLEX
HEAP
INT
PROC
REAL

REF
VOID

Deglaration Iokens

Equivalent

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

Eguivalent

401
401
402
403
404
405
406
407
408
409
410
411

412
413

TABLE XII (Continued)

57

Name

PRAGMAT
PR
WHILE
FOR
FROM
GOTO
SKIP

BY

DO

GO

OF

TO
STANDIN
STANDOUT
EXIT

Special Tokens

Equivalent

601
601
602
603
604
605
606
607
608
609
610
612
613
614
615

APPENDIX B

INTERPRETIVE OPERATION CODES

g0

APPENDIX B
INTERPRETIVE OPERATION CODES
Introduction

All interpretive instructions are composed of four integer values.,
The formats of the instructions Qary with different operations but con-
tained within each instruction is the operation code, the operands, the
modes of the operands and the lécation for the result. In some opera-
tions, the low order digit of the first operand is used to specify mode
informétion, For these instruétions, the two values in the first oper-
and are parenthesized. Tgble XIII is a key for the values of the mode
indicator. Table XIV explains tﬁe meanings of most of the symbols which

describe the instructions.

TABLE XIII

MODE INDICATOR VALUES.

Value Mode
1 integral
2 real
3 complex
4 boolean
5 character

Y]

60

TABLE XIV

KEY TO INSTRUCTION FORMAT SYMBOLS

Symbol Description

argl,arg?2 the symbolic addresses for arguments

arg3 the symbolic address of the location into
which the result 1s to be stored

array identifier the gymbolic address of the descriptor
for an array

mode the mode of an operation

op the operation code

rows the number of rows in an array

System Instructions

Block Entry

General format: 010,0,0,0
The linkage operations necessary for a block entry are performed by

i

the executor.
Block Exit

General formgt: 020,mode,0,0
The linkage operations necessary for a block exit are performed by
the executor. The mode is the mode of an operand which is to be return-

ed on the execution stack. If no value is to be returned, mode i1s zero.

Jumg

General format: 030,branch code,argl,arg3

61

If the branch code 1is one, an unconditional branch to the address
of arg3 1s executed. If the branch code is two, the boolean value spec-
ified by argl is examined. If the value is false, the branch 1s taken.
Otherwise, normal instruction processing continues with the next instruc-

tion,

Allocate Symbol

General format: 040,mode,0,identifier
Storage for the specified identifier is allocated from the execu-
tlon stack and the run time symbol table 1s updated to reflect the cur-

rent allocation.

Update Statement Number

General format: 050,stmnt,0,0

The statement number indicator is replaced by the value of 'stmnt.'
Print

General format: 060,mode,0,argl

The value of the operand 1s output on the standard output device.
Becomes

General format: 070,mode,argl,arg3
The value of argl is stored into-arg3. The value is also stored

on top of the execution stack for further use.
Dyadic Operators

General format: (op,mode),argl,arg2,arg3

62

The operation is performed between argl and arg2 and the result is

stored in arg3, Table XV lists the set of dyadic op codes.

TABLE XV

DYADIC OPERATION CODES

op Operation

10 add

11 subtract

12 divide

13 multiply

14 exponentiation

15 modulo

16 plus and becomes.
17 prus '

18 minus and becomes
19 divide and becomes
20 pultiply and becomes
21 modulo and becomes
22 not equal

23 less than

24 less than or equal
25 greater than or equal
26 greater than

27 equal

28 and

29 or

Monadic Qperators

Simple Monadic Operators

General format: (30,mode),op,argl,arg3.

Simple monadic operations are monadic operations and standard pro-
cedure calls in which the mode of the result is the same as the mode of
the argument. The operation is applied to argl and the result is stored

into arg3. Table XVI lists the simple monadic operator operation codes.

TABLE XVI

MONADIC OPERATION CODES

01
02
03
04
05
06
07
08
09
10
11
12
13
14

Operation

unary plus

unary minus
absolute value
square root
exponential function
natural logarithm
base two logarithm
base ten logarithm
sine function
cosine function
tangent function
arcsine function
arccosine function
arctangent function
conjugate value

Complex Argument, Real Result

General format: 313,o0p,argl,arg3

63

The operationm is applied to the complex argument argl and the real

result is stored into arg3.

TABLE XVII

COMPLEX TO REAL MONADIC
OPERATION CODES

01
02
03

04

Operation

complex absolute value
argument function

real part of a complex
value

imaginary part of a
complex value

Operation codes are given in Table XVII,

64

Real Argument, Iqtegral Result

General format: 322,op,argl,arg3
The operation is applied to the real argument argl and the integral

result 1s stored into arg3. Operation codes are given in Table XVIII,

TABLE XVIII

REAL TO INTEGRAL MONADIC
OPERATION CODES.

Op Operation

01 entier (floor function)

02 lower bound (floor func~
tion)

03 round

04 sign

05 upper bound (ceiling
function)

Integral Argument, Boa}ean Result

0dd Function.

General format: 331,1,argl,arg3
If the value of the integral argument argl is odd, a value of true

1s stored into arg3. Otherwise, a value of false 1s stored into arg3.

No_Argument, Real Result

RANDOM.

General format: 342,1,0,arg3
A pseudo-random number between 0.0 and 1.0 is generated and stored

into arg3.

65

Charscter Argument, Integral Result

Character Absolute Value.

General format:; 344,l,argl,arg3
The position in the collating sequence of the character value of

argl is stored into arg3.
Integral Argument, Character Result
REPR Function.

General format: 351,1,argl,arg3
The integral value of .argl is used to index the string of characters
in the collating sequence. The character value for the selected position

is stored into arg3.
Row Operations

Allocate Descriptor

General format: (50,mode),array identifier, rows, template
A descriptor is created for the identifier specified using informa-
tion stored in the descriptor template. The array is then allocated and

the run time symbol table 1s updated to reflect the new allocation.

Load Subscripted

General format: 510,rows,array identifier,arg3
The address of a single element of the specified array is placed
into the symbol table entry for arg3. Index values are on top of the

execution stack.

66

Coercion

General format: (61,mode),input mode,output mode,argl

The value of argl is widened from the input mode to the output mode
and 1s stored on the execution stack. If 'mode' 1s nonzero, the value
on the top of the stack is saved before coercion occurs and is restored

afterwards.

APPENDIX C

THE ALGOL 68 SUBSET

67

APPENDIX C
THE ALGOL 68 SUBSET
Description

A grammar for the sclentific subset of ALGOL 68 1is given in Table
XIX. The subget 13 intended to reflect the block gtructure of the langu-
age as well as many of the capabilities for arithmetic expressions.

Although comments are not defined by the subset grammar, they are
permitted to allow program documentation. Comments may appear anywhere
a blank may appear except within a string denotation. The representa-
tions for the comment symbol are ¢, #, COMMENT and CO. A comment must
begin and end with the same representation of the comment symbol.

The block structure of an ALGOL 68 program is specified by closes
clauses (BEGIN-END blocks) and conditiomal clauses (IF-FI and CASE-ESAC).
The extension allowing BEGIN, IF and CASE to be replaced by a left
parenthesis symbol, and END, FI and ESAC by a right parenthesis symbol
is included in this implementation. Similarly, THEN, ELSE, IN and OUT

)

may be represented symbolicly by a vertical bar (|). The ELSF (or
symbol 1s permitted as an abbreviation for the symbols ELSE IF, No FI
symbol is required after an ELSF clause, Some examples of program

blocks are given in Table XX.

AR

69

TABLE XIX

THE ALGOL 68 SUBSET GRAMMAR

particular program: begin symbol, serial clause, end symbol; left pa-
renthesis symbol, serial clause, right parenthesis symbol; if sym-
bol, serial clause, then symbol, unitary clause list, else symbol,
unitary clause list, fi symbol; if symbol, serial clause, then
symbol, unitary clause list, £1i symbol.

serial clause: declaration prelude sequence, unitary clause list; uni-
tary clause list,

declaration prelude sequence: single declaration; declaration prelude
sequence, single declaration.

single declaration: simplemode, decl list, semicolon symbol; sub symbol,
' rows of, bus symbol, simplemode, identifier list, semicolon symbol,

simplemode: INT; REAL; COMPL; COMPLEX; BOOL; CHAR.
vrowssof: row of: rows of, comma symbol, row of,
comma symbol: ,.

row of: bound, colon symbol, bound; bound.

bound: integral identifier; integral denotation.
decl list: decl; decl list, comma symbol, decl.

decl: didentifier, becomes symbol, identifier; identifier, becomes sym-—
bol, denotation; identifier.

becomes symbol: :=.

identifier 1ist: didentifier; identifier list, comma symbol, identifier.
identifier: tag.

tag: letter; tag, letter; tag, digit token; tag, space.

letter: aj; b; c; d; e; £3 g; hy 15 j; k3 13 m; n; o3 p; q;3 r; 85 t; u;
Vs W3 X5 V5 2.

digit tokem: O3 1; 2; 3; 4; 5; 63 73 8; 9.
spacet

denotation: integral denotation; real denotation; string denotation;
format denotation.

70

TABLE XIX (Continued)

integral denotation: digit token; integral denotation, digit token.
real denotation: variable point numeral; floating point numeral.

varlable point numeral: dintegral denotation, fractional part; fraction-
al part.

fractional part: point symbol, integral denotation,

point symbol: ..

floating point numeral: stagnant part, expoment part,

stagnant part: integral denotation; variable point numeral.

exponent part: times ten to the power choice, power.of ten.

times ten to the power choice: E.

power of ten: plusminus, integral denotation; integral denotation,
plusminus: +; =-.

string denotation: quote symbol, string item sequence, quote symbol,
quote symbol: ",

string item sequence: string item; string item sequence, string item,

string item: ¢ any symbol except the quote symbol ¢; quote symbol,
quote symbol,

unitary clause list: unitary clause; unitary clause list, semicolon
symbol, unitary clause,

semicolon symbol: ;.

unitary clause: . label, colon symbol, unitary clause; expression; Jump.
colon symbol: :.

jump: - goto symbol, label; label.

label: identifier,

goto symbol: GO, TO; GOTO.

expression: formula.

formula: formula, pl operator, p2 operand; p2 operand.

71

TABLE XIX (Continued)

p2 operand: p2 operand, p2 operator, p3 operand; p3 operand.
p3 operand: p3 operand, p3 operator, p4 operand; p4 operand.
p4 operand: p4 operand, p4 operator, p5 operand; p5 operand,
p5 operand: p5 operand, p5 operator, p6 operand; p6 operand,
p6 operand: p6 operand, p6 operator, p7 operand; p7 operand.
p7 operand: p7 operand, §7 operator, p8 operand; p8 operand.
p8 operand: p8 opérand, p8 operator, P9 operand; p9 operand.
P9 operand: p9 operand, p9 operator, monadic operand;

monadic operand.

monadic operand; monadic operator, monadic operand; primary.

primary: i1dentifier; denotation; selector, primary; slice; particular
program; standard procedure, left parenthesis symbol, parameter
list, right parenthesis symbol; cast.

selector: RE; IM,

slice: didentifier, sub symbol, indexer list, bus symbol.

sub symbol: (/.

bus symbol: /).

indexer list: dindexer; indexer list, comma symbol, indexer.

parameter list: unitary clause list; paremeter 1list, comma symbol, uni-
tary clause list.

begin symbol: BEGIN.

end symbol: END.

left parenthesis symbol: (.
right parenthesis symbol:).
if symbol: IF.

fi symbol: FI.

then symbol: THEN.
else symbol: ELSE.

72

TABLE XX

PROGRAM - BLOCKS

.# The following are closed clauses #
BEGIN ,.. END
(uuu)

f# The following are conditional clauses #
IF ... THEN ... FI.

IF ... THEN ... ELSE .., FI

CASE ... IN ... OUT .., ESAC

IF ..,!THEN].. ELSF .,. THEN ... ELSE ... FI
Cove | ave | oea)

The subset includes only simple forms of declarations. The basic
data types which are allowed are INT, REAL, COMPLEX, BOOL and CHAR. AI-
so, identifiers may be déclared as an array with any number of rows for
the basic data types. Declérations may not contain expressions or
initializations requiring mode coercion. Sample declarations are shown

in Table XXI.

TABLE XXI

SAMPLE DECLARATTONS

INT I,J,K,M:=3;

REAL A,B;

COMPL Z;

(/ 0:10 /) INT ROW_OF INTEGRAL;

(/ M,M /) CHAR ROW OF ROW_OF CHARACTER;

Expressions comprise the remainder of the ALGOL 68 subset., The
subset grammar describes the syntax of expressions but not the semantics.

This is due to mode considerations which are not easily describable by

the context free grammar, For example, the and operator (&) applied to

73

two complex values 1s syntactically correct, but is semantically unde-
fined. A set of standard operators.and procedures has been implemented
for use in writing expressions., The standard operators are shown with
their priorities in Table XXII. A list of the standard procedures which

are implemented is given in Appendix A,

TABLE XXII

PRIORITIES FOR STANDARD OPERATORS

dyadic monadic

1 2 3 4 5 6 7 8 9 (10)

—-1= OR & = < - % Fk ! -~ + =4 REPR
+i= 9= <= + [? ABS

*:= ‘ >= !/ UPB LWB

/= > /1 ODD - SIGN ROUND
//z:= RE IM CONJ

APPENDIX D

A SAMPLE ALGOL 68 PROGRAM

75

THIS SAMPLE PROGRAM BUILDS A BINARY SEARCH TREE FOR INTEGRAL KEYS
WHICH ARE READ FROM PUNCHED CARDS. THREE ARE NO DUPLICATE KEYS AND A
KEY OF ZERO INDICATES THE END OF THE INPUT DATA.

DEFINITION OF VARIABLES~~
AVAIL-~ THE AVAILABLE STORAGE POINTER
KEY-- THE ARRAY OF KEYS IN THE TREE
LLINK-~ THE ARRAY OF LEFT LINK POINTERS
NEW_KEY-~ THE KEY BEING INSERTED
RLINK-- THE ARRAY OF RIGHT LINK POINTERS
ROOT-~ THE ROOT POINTER #

BEGIN
(/ 200 /) INT LLINK, KEY, RLINK;
INT ROOT:=0, AVAIL:=0;

BEGIN
INT NEW KEY, I, J;

READ_AND_TEST:
READ (NEW_KEY) ;

TEST FOR ZERO END OF DATA INDICATOR
IF NEW_KEY=0 THEN ¢GOTOg¢ BUILT FI;

TEST FOR FIRST KEY ENTRY.

IF ROOT=0 THEN KEY(/ ROOT:=AVAIL+:=1 /) :=NEW_KEY;
. LLINK(/ ROOT /):=RLINK(/ ROOT /):=0;
GO TO READ_AND TEST
FI;

I:=ROOT;

TRAVERSE:
IF NEW _KEY>KEY(/ I /) THEN
IF RLINK(/ I /)™= O THEN

I:=RLINK(/ I /);
TRAVERSE

ELSE KEYS(/ RLINK(/ I /):=J:=AVAIL+:=1 /):=NEW_KEY;
LLINK(/ J /) «+=RLINK(/ J /) :=0;
READ_AND_TEST

FI

ELSF LLINK(/ I /)™= O THEN
I:=LLINK(/ I /);
TRAVERSE
ELSE KEYS(/ LLINK(/ I /):=J:=AVAIL+:=1 /):=NEW KEY;
LLINK(/ J/):=RLINK(/ J /):=0;
READ_AND_TEST
FI

BUILT:
#

END

END

AT THIS POINT THE TREE HAS BEEN CREATED

#

76

VITA
John Clute Jensen
Candidate for the Degree of

Magter of Science

Thesis: IMPLEMENTATION OF A SCIENTIFIC. SUBSET OF ALGOL 68
Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Tulsa, Oklahoma, May 28, 1949, the son of
Mr. and Mrs. Clute Jensen.

Education: Graduated from Tulsa Central High School, Tulsa, Okla-
homa, in May, 1967; received Bachelor of Science degree in
Mathematics from Qklahoma State University in 1971; completed

requirements for the Master of Sc¢lence degree at Oklahoma
State University in July, 1973,

