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PRE.FACE. 

This paper descr:l,.bes · the implementation of a scientific subset .of 

the ALGOL 68 programming language, It is concerned with the. methods 

used to implement a translator system which generates code which is in­

terpretively executed. The system is written in the basic FORTRAN lan­

guage to allow machine independence, 

I would like to express my gratitude to my inajor advisor., Dr. G. e .. 

Redrick, for his advice and guid~nce during this project. Also, appreci­

ation is expressed to my other.committee members, Dr, Donald D. Fisher 

and Dr •. James R. Van I)oren, for thei'l:' Sl,\ggestions and assistance in the 

preparation of this paper. 
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CHAPTER I 

INTRODUCTION 

Objectives 

The ALGOL. 68. l.anguage is perhaps the most sophisticated progranuning 

language to be developed. Its designers have presented ALGOL 68 with a 

precise, although somewhat complicated, language definition :i,n the "Re­

port on the Algorithmic Language ALGOL 68." · (18} Features in the langu­

age allow virtually limitless expansion of the language to include what­

ever facilities an installation might require~ 

Incorporated within the ALGOL 68 language are many of .th.e desirable 

features of ALGOL 60, COEOL, FORTRAN""ana<!'L/T, along wi'th s91'1!4i!. features 

which are unique to ALGOL 68. Since it is a relaUvely young language, 

ALGOL 68 translators are scarce, A need was seen for a translator which 

could be used as an instructional, tool for teaching ALGOL 68, either by 

itself or as a transition from other progranuning language!;!, The transla­

tor would not need to be an imple~ntation of the enti.re .ALGOL 68 langu­

ange, but it should contain the.basic constructs of the langu~ge, 

To meet this purpose, a scientific subset of the ALGOL 68 language 

was selected for implementation, Contained within the subset are capa­

bilities for performing operations on si'l\lple numerical and logical 

values, along wd.th some limited character a11d string manipulations. This 

is sufficient to il:Lustrate many of the basic properties of ,A:L,GOL 68 and 

leads to an understanding of the more advanced features of the language, 
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Also, the subset is complete enough to be used for many scientific ap-

plicat;l.ons. Detailed err:or messages are·;l.p.cluded to all.ow easier under-: 

standing of specific ptogratnllii.ng examples. 

History of ALGOL 68 

Background ·· 
I 

The formal definition of ALGOL 68 was presented in a report to the 

General Assembly of the International Federation for Information Process-

ing (IFIP) in 1968. The repo,:t was pr~pared by Working Group 2.1 on 

ALGOL and was reviewed by Technical Committee 2 on Programming Languages 

for publication. The Report was subseqt,1ently publishe4 in Numedsche 

Mathematik in 1969. 

Since the publication of tbe Report, (18) confel;'ences have been 

held on the ALGOL 68 language and its implementati,on. Propo$als have 

arisen from these conferences concerning changes of the lai;i,guage. Some 

modifications have been made but the language.remains essentia!iy un-

changed. from its original definition •. 

ALGOL 68 Definitions 

The definit;Lons of .some essential A.LGOL 68 terms are .giv.en below. 

C~ercion. An implicit c~ange of the mode of an operand dependent 

upol'). syntactic position. 

Denotation. An ALGOL,68 constant or literal value. 

Descriptor,. A data structut;e consisting of an offse1t and a set of 

quintuples which describe a row of an array. 

Elaboration. Execution. 
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Environmental Engu:i.ry. A pre-defined constant supplying informa-
'' 

tion concerning a specific property of the implementation. 

Multiple Value. A multiple value is composed of a descriptor and 

any number of rows. 

Pragmat. An ALGOL 68 comment d:i.recting a particular implementation 

to take a specified action which lies outside the definition of the 

language. 

Row. The elements of one dimension of an array. 

Standard Prelude. A set of standard declarations which specify 

environmental enquiries, standard priorities (of operators), standard 

operations, standard mathematical constants or functions, or transput 

declarations. 

Transput. Input and output. 

Literature Review 

Much of the information relateq. to the implement;at:ion of ALGOL 68 

comes out of ,the formal and informal,. conferences on the language. Many 

of the papers presented at these·conferences were concerned with the 

theoretical aspects of the two level ALGOL 68 grammar and constructs 

dealing with the structure of ALGOL 68 programs. Others prop~sed solu-

tions to applications programming problems by the use of ALGOL 68. Of 

the papers which dealt with practical implementation, a great many were 

concerned with topics which were beyond the scope of this project. 

Of the existing ALGOL, 68 implementations, the earliest and perhaps 

most noteworthy is the ALGOL 68-R implementation at the Royal Radar Es-

tablishment in Malvern, England. (4,5,19,20) The implementation is de-

signed for the ICL 1907F computer. This one pass translator accepts a 
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large subset of the ALGOL 68 language and has e~tensive program library 

capabilities. 

At the Technical University of Munich, another ALGOL 68 subset is 

being implemente<;l. Hill, et al. (9) present a detailed deacription of 

the implementation techniques being used in this project. Use of this 

particular implementation will be limited since it is being written in 

machipe language for the Telefunke~ TR 4 computer. This machine is not 

in collllllQn use. 

Oklahoma State University has implemented a system which accepts an 

ALGOL 68 program and outputs PL/I source code which is equivalent to the 

ALGOL 68 program. (7) This system functions correctly for a scientific 

subset of ALGOL 68, but has the obvious disadvantage of having to com­

pile the program twice. 

In general, the implementations mentioned above.have.restricted 

ALGOL 68 transput to include only unformat;ted transmissio.n of data •. 

Berry (l,2,3) has implemented a eystem for formatted t;ranspu1;:. This 

system parses fot':mats at run time and uses interpretive execution to. 

effect their elaboration •. 

Smith, et al. (15) have developed an algorithm for t;he recognition 

of ·ALGOL 68 denotations using a finite state automaton. .Hedrick and 

Smith have published a comprehensive study of ALGOL ~8 context condi­

tions, (8) 

Problem Statement 

The purpose. of this· project is to implement a scientif:l..c subset. of 

the computer progratmning language ALGOL 68 •. The language tr~slator is 

written in 'IBM 'll'JO ba$i.C li'ORTRAN~· (20) and it generates 4-tuples (quad-
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ruples) of code which are interpretively executed, thus making the sys­

tem machine independent. 'rhe implementation is intended for use as an 

introduction to the ALGOL 68 language. 



CHPATER II 

IMPLEMENTATION CONSIDERATIONS 

IBM 1130 Implementation 

Selecting a Small Computer 

In order to offer a measure of portability, it was,decided to im­

plement the ALGOL 68 translator on a small computer. This insures that 

the translator is kept small due to thestotage limitations of .ntachine. 

Thue;;, it is possible to execute the translator on dit'ferent systems which 

are the same size or larger. An IBM :J:1.30 was available at Oklahoma State 

University, and it was suitable for this purpose. 

System Configuration 

The ALGOL 68 subset was implemented on an IBM 1130 computer with 8K 

words of core storage. The computer operates under Disk Moniter System 

Version 2, Modification 8, using an 1131 Single Disk Storage unit. (12) 

The principal input ,device is .a 14.42, card read/punch, while the princi­

pal output device is the console typewriter. 

Storage Considerations 

Limited core storage presented the most serious prob) .. ~m in imple­

menting the subset. The compiler had to be written in four distinct· 

phases with the interpretive executor as a fifth phase. As the execution 



of each phase is completed, a LINK instruction is issued to signal the 

core load bµilder to load and begin execution of the next phase. 

Efforts to conserve storage resulted in the use of data handling 

techniques which require a small amount of core storage. Thi.s does, 

however, result in increased.execution time. This is particularly evi­

dent in table lookups, where linear searches are used, 
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Data areas were frequently redefined with EQUIVALENCE statements to 

permit reuse of storage and more eff;icient access. The FORTRAN compiler 

on the 1130 does no subscript optimization for array references with 

constant subscripts, Therefore, equivalencing a specific array element 

to a simple variable na~e causes a direct, rather than indexed, refer­

ence in the FORTRAN object code. 

Although the 1130 core load builder is capable of creating core 

image programs with dynamic <Dverlays, this feature was avoided .whenever 

possible. The load on call, or LOCAL, facility allows shared use of cot'e 

storage by infrequently called subroutines, but significantly increases 

execution time due to disk accesses~ (12) Also, the system routine 

which loads LOCALed subroutines is quite large and in itself causes 

storage problems. Only in the parsing and code generation phase of the 

compiler and in the interpretive executor are LOCAL subroutines used, 

Storage requirements for these routines could not be met using other 

methods. 

1130 Problems 

Of the problems particular to the 1130, the first to occur during 

this implementation was that of representing special characters. The 

1130 FORTRAN compiler recognizes only a subset of the EBCDIC character 
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set. Therefore, some symbols which are an integral part of ALGOL 68 

(e •. g. , : , ; , II, ¢) must be defined with he,cidecimal or integer equiva-

lents of the FORTRAN Al EBCDIC values. Even when special characters are 

correctly defined.within the scanner, the standard I/0 routines cannot 

print them. To overcome this problem, the compiler formats its own 

print lines and calls an assembler language program to perform the out-

put. Besides supporting the full EBCDIC character set, this routine is 

considerably smaller than the FORTRAN formatting routines and permits 

overlap between output and computation. The assembly routines used by 

the compiler are contained in the ·IBM 1130 Commercial Subroutine Package. 

(11) These routines and their uses are given in Table I, 

Name 

FILL 

MOVE 

PACK 

READ 

TYPER 

UNPAC 

TABLE·! 

COMMERCIAL SUBROUTINE PACKAGE SUBPROGRAMS 
USED ON THE IBM 1130 

Description 

Propagates a character through a field. 

Moves characters from one integer array to ano~her. 

Converts values in an integer array from FORTRAN Al EBCDIC 
char ac te rs to AZ EBCDIC • 

Causes a card to be read on the 1442 card read/pun.ch into an 
integer array. Characters are represented in Al EBCDIC. 

Prints a line of .Al E~CDIC characters on the 1130 console 
typewriter. 

Converts values in an integer array from FORTRAN A2 EBCDIC 
characters to Al EBCDIC. 

Scratch files, used for temporary storage, presented another minor 
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problem on the 1130 in that temporary files cannot be formally passed 

between different phases of the compiler. This problem has been over­

·come by the way the 1130 Disk Monitor System allocates working storage 

'files, Files are always allocated starting at the same disk address, so 

by defining scratch files in the same order in each segment of the com­

piler, the files are allocated in the same place on the disk. Data with­

in the files is nc;,t changed during the loading of program phases. 

Virtual Memory System 

In order to allow the compilation and execution of large ALGOL 68 

programs on the 1130, a simple virtual memory $ystem was developed. Two 

80-word pages reside in memory during execution. One page is .a section 

of the object program, Since the object program is never modified during 

execution, no facility for storage into it has been included. Should an 

attempt be made to store into the program page a storage protection error 

is indicated, The second page is a segment from the dynamic storage 

area. It contains identifier stora.ge and program linkage information, 

When information is stored into this page it is recopied to disk before 

a new page is swapped in. 

All references to the 1130 virtual memory system are ~de with sub­

routine cails. It was.intended that the virtual memory system be re­

placed by in-core storage on systems with ample memory. Thier Clhange can 

.be made easily by intercepting subroutine calls to the fetch and store 

routines. 

As expected, the use of the virtual memory system results in sl.ow 

execution by the interpretive executor due to disk accesse~. It does, 

however, serve its intended purpose by allowing the definition of non-
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trivial ALGOL 68 programs. The performance of the virtual memory system 

could be improved by implementing a larger page size. 



CHAPTER III 

THE COMPILER 

Compiler Initialization 

Setting Compiler Options 

The compiler must initially prepare itself for a particular compila­

tion. Not only must internal pointers.and data tables be established, 

but the compiler also must recognize user controlled options to provide 

various levels of programmer support. These options range from a source 

listing of the user's program to a compiler dump of intermediate results 

during compilation. 

This particular implementation val;'ies somewhat from the formal def­

inition of the language since compiler options are set by parameters on 

a control card rather than with pragmats. The control card .1,11,ethod was 

selected because it separated compiler initialization from t)le scanning 

and program analysis phases. It also allows for easier keyword identi­

fication since options must be specified in a rigid format. 

Compiler option keywords are identified by performing a·linear 

search on a keyword table. Although the linear search technique is not 

particularly efficient, the relatively small list length allows for key­

woid identification within a reasonable time. A set of default options 

is provided for the user, so compiler options need be explicitly stated 

only when special compiler services are desired. The default options 
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are underlined in the list of compiler options in Table II. 

Due to the linear nature of the keyword list, modifications to it 

are relatively simple. Keywords can be added or deleted without regard 

to list order. The compiler options which a~e in effect are indicated· 

by a set of control flags. Simple options, which are either enabled or 

disabled (e.g., SOURCE/NOSOURCE), require only an array entry to desig­

nate which control flag should be set. Options which allow variable 

parameters (e.g., SORMGIN) require additional program coding to effect 

changes. 

Initializing Common Storage 

Parameters are passed between compiler phases through FORTRAN com­

mon storage. Since common storage cannot be data initializ.ed it is 

necessary to assign values at e:xecution time. The initiali.zation phase 

of the compiler is responsible for setting many of the pointers which 

are used during the compilation, 

The Scanne:i:-

Coding Atomic Symbols 

To facilitate the analysis of an ALGOL 68 program, atomic symbols 

are converted to integer values. This eliminates the problems involved 

with processing symbols of different lengths and allows classification 

of keywords and operators according to the way in which they are used. 

Negative integer values are used to denote identifiers while positive 

integers indicate operators and keywords, Classification of ~eywords 

according to use is achieved by assigning equivalent integer values with­

in a specified range (e.g., declaration tokens range from 401 to 499), 



Option 

SOURCE/NOSOURCE 

NEST/NPNEST 

OPLIST/NOOPLJ:ST 

ATR/NOATR 

XREF/NOXREF 

STMNT/NOSTMNT 

TRACiE/NOTRACE 

DUMP/NODUMP 

LIST/NOLIST 

SORMGIN=(xx,yy,zz) 

PASSWORD•JCJ~. 

* 
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TABLE II 

LIST OF COMPILER OPTIONS* 

Description 

Prints a listin$ of the source program 

Prints block nesting levels 

Lists compiler options which are in effect during 
a part:f,.cular cpmp::Llation 

Prints an attribute.listing for identifiers (not 
implemei:,.ted) 

Prints a cross.reference listing of identifiers 
(not implemented) 

Records statement numbers at run time 

Prints:the nt,tmber of a.statement before it is 
executed at run time 

Provides.an instructiQn trace and dump of memory 
before each instruction is executed 

Lists 4-tuples of the object code as they ;!re 
generated 

Defines the margins of the SO\ll;'Ce record, where 
xx is the starting column. (default 2); yy is the 
ending column· (default 72); and zz is a column 
containing a standard ANSI carriage control char­
acter which is us.ed to control the source listing 
(no default~ · 

D'1111PS intermediate code from the scanner for use 
by the implementer anc,i system programmers 

Defau~t options are underlined, 
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Recognizing Atomic Symbols 

Keywords and Identi.fiers. Identifiers and keywords are identified 

and isolated using a finite state automaton (Figure 1). A regular gram-

mar which is used for the recognition of identifiers is given in Table 

III. The process is started when an alphabetic character is recognized 

and continues as long as alphanumeric characters are input. The charac-

ter string is then truncated or padded with blanks to ei.ght characters. 

Although a few keywords are longer than eight characters in length, they 

can be identified uniquely by an eight character fragment. Identifiers 

may be of any length but they must be unique in the first eight charac-

ters. 

letter any other symbol 

letter, digit, 
space· 

Figure 1. Finite State Automaton for Isolating Identifiers 

In order to con!;lerve storage, identifiers are packed two characters 

per word into four words before they are entered into the symbol table. 

The symbol.table is searched linearly. Coded source program equivalents 

for identifiers are negative integers. 
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TABLE I;J:I 

A GRAMMAR FOR ISOLATING IDENTIFIERS 

identifier: tag. 

tag: letter; tag, letter; tag, digit token; tag, space~ 

letter: a; b; c; d; e; f; g; h; i; j; k; l.; m; n; o; p; q; r; s; t; u; 
v; w; :x:; y; z. 

' 
digit token~ O; 1; 2; 3; 4; 5; 6; 7; $; 9. 

space: 

Identification of keywords is kept to a minimum during the scan 

phase. Only keyworcls concel;'ned with comment;s.(COMMENT and CO) and block 

structure (BEGIN, END, !F, FI, CASE and ESAC) are iclentif:i,ed, All other 

keywords are treated as identifiers~ The keywop~s are distinguished 

from the identiUers during the keyword recognition phase. 

Operators. Special character operators are identified b~ .means of 

a table driven finite state at,itomaton. In an effort to save.storage, .the 

table is divided into two parts.. The first table (Table IV) is used to 

find a starting state. In some cae~s, an: operator consists of e:x:actly 

one syml:!ol and the information contained in the first table is sufficient 

to identify it. Otherwise the second table (Table V) is used-as a tran- · 

sition matri:x: for the fin:Lte state automaton~ Positive entr,i.es in the 

table indicate a transition is to be made to the.specified state. Nega-. 

tive entries indicate an opel;."ator has.been recognized. Table positions 

with no entry and characters not contained in the input set signify that 

the input character is not acceptable and an alternate list mµst be 

tested to determine if previously isolated symbols form a valid ope.rat or. 
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TMLE IV 

STARTING STATES FOR OPERATOR RECOGNITION 

input symbol: * I .... + < > ( I 
start state: 6 8 13 16 21 1 3 14 15 23 24 

input symbol: ... ) & ? ' 
@ 

coded symbol: -29 -2 -21 -28 -6 -36 -5 -28 

TABLE V 

TRANSITION TABLE FOR OPERATOR RECOGNITION 

Input: Symbol 

* I ... = ) 

State 1 2 -8 Alt, 
2 -7 
3 5 4 -11 
4 -9 
5 -10 
6 ..... 13 7 -14 
7 -12 
8 9 12 -415 -18 
9 10 -19 

10 -16 11 -20 
11 -17 
12 -15 
13 -22 -23 
14 -25 -24 
15 -,26 -27 
16 18 20 17 -35 
17 -32 -31 
18 19 
19 -34 
20 -33 -30 
21 -30 22 -39 
22 -30 -35 
23 -414 -1 
24 -38 -37 
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An error condition exists when an inval.id input symbol. is found and there 

is no entry in the alternate list. 

Given the standard set of operators for ALGOL 68, the finite state 

automaton is sufficient for operator identification with at most one 

symbol look ahead. If, however, the user is pe.rmitted to declare special 

character operators, this method may fail due to ambiguities in symbol 

combinations., 

Denotations., Denotations, or ALGOL 68 constants, are also recegni­

zed by a finite state automaton. The method used is similar to that pre­

sented by ~mith, et al. (15) for the recognition of denotations., The 

grammar corresponding to the finite state automaton for parsing denota­

tions is given in Table VI, A two character look ahead is sufficient to 

distinguish valid denotations, but in some instances it is not sufficient 

to recover when an error is detec;ted. As denotations are isolated, they 

are output as object code. Denotations are represented in the coded 

source program by a denotation ;indicator followed by the relative address 

of the denotation in the object code. 

String denotations are defined to be a multiple value. Therefore, 

a descriptor is output .with each string denotation. The address of the 

string denotation in the coded source program is actually that of its 

descriptor~ Although format denotations are not multiple values, they 

also are output with a descriptor. The descriptor is used only to con­

tain length information for the format denotation. Formats ar~ not 

parsed by tq.e compiler. They ar,e stored in ch.aracter form so they may 

be analyzed at run time. 



TABLE VI 

A GR.AMMAR FOR ISOLATING DE:NOTATIONS 

denotation: integral denotation; real denotation; string denotation; 
format denotation. 

integral denotation: digit.token; integral denotation, digit token. 

real denotation: variable point numeral; floating point nume.ral. 

18 

variable point numeral:. integra.1 denotation, fractional part; fraction­
al part~ 

fractional part: point symbol, integral denotat:lon. 

point symbol: 

floating point numeral: stagnant part, exponent part, 

stagnant part: integral denotation; variable point numeral. 

exponent part: times ten to the power choice, power of ten. 

times ten. to the power choice:. E. 

power of ten: plusminus, integral denotation; integral denotation, 

plusminus: +· -' 
string denotation: quote symbol, string item sequence, quote symbol. 

quote symbol: " 

string item sequence: string item; string item sequence, string item. 

string item:. ¢ any symbol except the quote symbol¢; quote symbol, quote 
symbol, 
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Keyword Recognition 

Keyword Identification ,, 

Keyword identification is performed in a phase separate from the 

scanner. This is due primarily to storage considerations. The list of 

ALGOL 68 reserved words is lengthy and could not have been included eas-

ily with the scanner. 

Regardless of how many times a keyword is used i11. a progr1:1.m, there 

is only one entry in the symbol table for it. Only one search of the 

keyword table must be made to identify it throt.1ghout the entire program. 

The keyword search is performed by determining the length of, the symbol 

and using a linear search o~ a table of fixed length,entries, When a 

keyword is identified an entry is made into an array. The array is then 

used to map identifier codes to the correct keyword code during a fix-up 

pass through the coded source program. 

The,separate pass through the coded source program to identify key..-

words does not appear to significantly affect the performance of the 

compiler unless a large number of identifiers and keywords are used with-

in a single ALGOL 68 program. Improved symbol table techniques could be 

employed to improve performances in these cases. Also, the extra pass 

through the coded source program allows the ide11.tification of labels and 

an analysis of the block structure of the program. 

Label Recognition and Block Analysis 

Pue to the manner in which branching is controlled in the code gen-

eration phase, it is important to know which identifiers are used as 

labels as well as where they are declared. This requires an extra pass 
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through the program, but it has been combined with the keyboard recogni-

tion pass in this implementation. Labels are identified as an identifier 

followed by a colon symbol, where they do not occur within a row declara-

tion. When a label is found, a symbol table entry indicating the block 

in which the label is defined is made. 

Program blocks are numbered consecutively by counting open symbols 

(' (') and their equivalents (BEGIN, IF and CASE). For each block in the 

program a table entry is made indicating t~e number of the block which 

i1!llllediately contains it. From this table, and from the .block number of 

a label in the symbol table, the code generation routine can determine 

if a jump is valid. 

' 

Environmental Enquiries 

According to the formal definition of ALGOL 68, environmental en-

quiries and pre-defined constants are identifiers which are declared and 

initialized in the standard prelude. (18) This implementation handles 

them in exactly this manner. When an environmental enquiry or pre-de-

fined constant is used within a particular program, code is generated 

to allocate and initialize it outside of the first block of the user's 

program. 

Parsing and Code Generation 

Parsing 

Declarations. In an effort to ma~e parsing of declarations simple, 

declarations have been limited to simple data types and arrays. Expres-

sions are not allowed within a declaration. Furthermore, all identifiers 

must be declared and declarations may only appear at the beginning of a 
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block. The grammar used for parsing declarations is given in Table VII. 

The restricted declaration for~at makes it possible to parse decla-

rations by means of a finite state automaton with only one symbol look 

ahead (Figure 2). This look ahead, however, is not sufficient to re-

cover from error conditions, in which case the remainder of the declara-

tion is ignored. Error states are recognized by invalid input symbols. 

Since a run time symbol table is maintained, code must be generated 

for ea.ch symbol declared. The code generated is an instruction which 

makes the appropriate run time symbol table entry. No addre~s resolu­

tion is necessary at compile time since the address is determined from 

the symbol table at execut;i.on time. Identifiers are, in effect, address-

ed by their symbol (a negative integer). 

Figure 2. Finite State Automaton for Parsing Single Declarations. The 
DK's represent arbitrary states in the automaton 



TABLE. VII 

A GRAMMAR FOR DE.CLARATIONS . 

declaration prelude sequence: single declaration.; declaration prelude 
sequence, single declaration. 
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single declaration: simplemode, decl list, semicolon symbol; sub symbol, 
rows of, bus symbol, simplemode, identifier list, semicolon symbol. 

semicolon symbol: 

sub symbol: (/. 

bus symbol:. /). 

. 
' . 

simplemode: INT; REAL; COMPL; COMPLEX; BOOL; .CHAR. 

rows of: row of; rows of, comma symbol, row of. 

comma symbol: ' . 
row of: bound, colon symbol, bound; bound. 

colon symbol: : • 

bound: integral identifier; integral denotation. 

decl list: decl; decl list, comma symbol, decl, 

4ecl: identifier, becomes symbol, identifier; identifier, becomes sym­
bol, 4enotation; identifier. 

becomes symbol: :. •. 

identifier list: identifier; identifier list, comma symbol, identifier. 
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Associated with multiple values (rows or arrays) is a descriptor. 

(18) As a row declaration is parsed, a descriptor template is output 

with the object code. When the row declaration is elaborated at execu­

tion time, the template is used to supply bound information for the 

actual descriptor. 

Program Parse. The ALGOL 68 program is parsed using a combination 

of top-down and bottom-up methods. The overall program structure, 

specifically the block structure, is examined from the top down. Indi­

vidual statements (expressions) of the program are parsed from the bottom 

up. This method, is possible because every identifier, operator and ex­

ternal object (e.g., serial clat1se) is said to possess a value upon its 

elaboration. (18) Therefore, it is never necessary to consider anything 

more complicated than two single values and the effect of an operator on 

them. Whether a value is from a reference-to-integral-mode-identifier 

or a strong-conditional-void-clause is insignificant. Table VIII con­

tains a grammar for parsing the body of the ALGOL 68 program. 

E;xpressions are analyzed by means of a modified postfix Polish con­

version routine. Output from the routine consists of interpretive code 

which will cause the evaluation of the expression at run time. 

Delimiting symbols (e.g., (, I, ; , ,) present no problem for the 

parse. They are assigned a priority and are processed in the same man­

ner as other operators. Similarly, procedure calls are treated as monad­

ic operators which are applied to their parameter lists. 

Recursive Descent. In order to consider only a single value at a 

time during the parse, it is necessary to consider each block in the 

ALGOL 68 program separately. Whenever an open symbol is encountered, 
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TABLE VIII 

A GRAMMAR FOR PROGRAM PARSING 

particular pro gram:. begin symbol, serial clause, end symbol; left par­
enthesis symbol, serial clause, right parenthesis symbol; if sym­
bol, serial clause, then symbol, unitary clause list, else symbol, 
unitary clause list, fi symbol; if .symbol, serial clause, then sym .... 
bol, unitary clause list, fi symbol, 

serial claus.e: declaration prelt1de sequence, unitary clause list, uni­
tary clause list •. 

unitary clause list: unitary clause; unitary clause list, semicolon sym­
bol, unitary clause. 

unitary clause: l.abel, colon symbol, unitary clause; expression; jump. 

jump: goto symbol, label; label. 

l,.abel: identifier. 

goto symbol: GO, TO; GOTO. 

expression: formula. 

formula: formula, pl operator, p2 operand; p2 operand. 

p2 operand:. p2 operand, p2 operator, p3 operand; p3 operand. 

p3 operand: p3 operand, p3 operator, p4 operand; p4 operand, 

p4 operand: p4 operand, p4 operator, p5 operand; p5 operand~ . 

p5 operand:. p5 operand, p5 operator, p6 operand; p6 operand. 

p6 operand: p6 operand, p6 operator, p7 operand; p7 operand, 

p7 opetand: p7 operand, p7 operator, p8 operand; p8 operand, 

p8 operand: p8 operand, p8 operator, p9 operand; p9 operand, 

p9 operand: p9 operand, p9 operatol;', monadic operand; 
I 

monadic operand. 

monadic operand: monadic operator, monadic operand; primary, 

primary: identifier; denotation.; selector, primary; slice; particular 
pragram; standard procedure, left parenthesis symbol, parameter 
list, right parenthesis.symbol; cast. 
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TABLE VIII (Continued) 

selector: RE; IM. 

slice: identifier, sub symbol, indexer list, bus symbol, 

indexer list: indexer; indexer list, comma symbol, indexer. 

parameter list: unitary clause list; parameter list, comma symbol, uni­
tary clause list. 

begin symbol: BEGIN. 

end symbol: E.ND. 

left parenthesis SY,1llbol: (. 

right parenthesis symbol: ). 

if symbol: IF. 

fi symbol: FI. 

then symbol: THE~. 

else symbol: E.LSE. 

the parse literally starts over with a new program. Only the symbol 

table reflects the existence of containing blocks. Each block is assum-

ed to contain a complete program which returns a value. 

When restart:ing the parse at the entry to a block, it is necessl,'l.'X'Y 

to.preserve the status of the paise of the containing block. This is 

done by making entries to the symbol and operator stacks used by the 

Polish string routine. The opeiator stack entry contains a priority loW' 

enough to prevent the code generation routine from acting on it. along 

with the block number of the containing block. The symbol stack entry 

contains information as to where the parse left off. After flags have 

been reset, the parse starts over. At block exit, the flags are reset 

from the information which was stackeq, and the parse resumes. This 
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method allows block nesting to occur to an unspecified and theoretically 

limitless depth. 

Code Generation. Each operator is assigned a priority to specify 

when an operation is to be performed in relation to other operators. 

The Polish string conversion routine maintains this relationship. Opera­

tors and their priorities are passed to this routine and are stacked on 

the operator stack so that their priorities are strictly non-decreasing. 

If necessary, the code generation routine pops a higher priority opera­

tor from the operator stack, along with any associated operands from the 

symbol stack, so that this order is preserved. As an operator is popped 

by the code generation routine, an instruction is generated to perform 

that operation at run time. 

Transfer of Control. Progranuner directed jumps and branching 

associated with conditional clauses also are controlled by the Polish 

string conversion routine. Jumps, or GOTO's, are indicated by an identi­

fier on the symbol stack with mode label (actually, reference-to-proce­

dure), If the label identifier is defined within a containing block; a 

branch instruction is generated. Other't,;rise an error condition is indi­

cated. Since the branch is to a label identifier, no address resolution 

is necessary during the code generation phase. The address is deter'!llin­

ed by the parser and entered into the run time symbol table before execu­

tion. 

Conditional branching is somewhat more complex, As previously 

stated, the delimiters THEN, ELSE and ELSF are treated as operators. 

Each generate a branch instruction as they are placed on the operator 

stack and each carries with it the address of that instruction so that 



the branch address can be resolved when code generation for the clause 

is complete. 
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When a then-symbol is found, an instruction is generated which 

causes a jump if the result of the boolean if-clause is false. The 

branch address is left unresolved until an else-symbol is found. (If 

there is no else clause, the fi-symbol resolves the address). At that 

time, an unconditional branch is generated to skip over the else clause, 

and the branch address for tpe then-symbol is resolved. When the fi­

symbol is found, the unconditional branch address pl;'eceeding ;he else 

clause is resolved. Using this method, no fix up pass through the object 

code is needed since.all addresses are resolved dur:j.ng the parse. The 

code generated to control branching in a cqnditional clause can be seen 

in Figu:i:-e 3. 

BLOCK ~.L'fJ.'.ltY IF 

expression expression 

BRANCH IF FALSE - THEN 

then clause then clause 

- BRANCH ELSE 

----else claus.e else clause 

---II BLOCK EXIT FI 

Figure 3. Code Generated for a ConditionaL Clause 
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Mode Coercion and Subscripting. Included in the standard prelude 

for operators are p;ovisions for operations between operands of differ­

ent modes. Specifically, it allows widening, or coercion from integral 

to real and from real to complex. Rather than supply each operator in 

the executor with widening capa~ilities, an op code was defined to ef­

fect widening. This instruction is generated automatically when mode 

conflicts are noted and widening·is appropriate. 

Slicing, or subscripting, is accomplished by means of a "load sub­

scripted" instruction which places ·the address·of·a single.:rew element 

into the run time symbol table for a temporary identifier entry. The 

row element can then be addressed directly through the identifier. 

Error Recovery 

In an effort to assist the ALGOL 68 programmer, the compiler initi­

ates correctional actions to try to continue the parse. The actions are 

based on the concept of maintaining a correct relationship be;ween opera­

tors on.the opera.tor stack and symbols on the symbol stack. Dummy opera­

tors and operands are generated as needed for this purpose. 

The scan11er converts the user's program to a coded form to facili­

tate program analysis. Parsing of .the ALGOL 68 program is performed in 

two passes using a combinat.ion of top down and bottom up methods. Object 

code consisting of 4~tuples to be interpretively executed is output. 

Address entries fpr all labels defined in the ALGOL 68 program are made 

in the run time symbol table before execution is passed to the executor. 



CHAPTER IV 

INTERPRETIVE EXECUTION 

The Use of FORTRAN 

In an effort to make the ALGOL 68 implementation machine independ­

ent, IBM 1130 basic FORTRAN was selected for the implementation of in­

terpretive execution. (10) Since FORTRAN is a universal language, code 

generated by the compiler can be executed on virtually any system through 

the executor. Also, the object code can be produced by one machine and 

executed by another. 

Using FORTRAN interpretation, it is possible to utiltze the func­

tions in the FORTRAN subrc:;,utine library, This made implementation on 

much easier in that ~xisting procedures could be used for computational 

as well as input/output functions. Although the original implementation 

uses only standard subroutines, it is possible to modify the executor to 

include available software. One such change might be to use the complex 

arithmetic software of a.system, rather than depend on the routines in 

the executor. 

The Interpretive Code 

Each instruction of interpretive code consists. of a 4-tuple of in­

teger values. The first value consists of the operation code and the 

mode of the instruction. The use of the remaining three values is de­

pendent upon the instruction, They may contain addresses of up to three 

?Q 
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operands, or additional mode or operation information. The operation 

codes are 1;1.sted i'.Q. Appendix B. 

Storage Management 

The execution time layout of storage is shown in Figure 4. The ob-

ject program resides in the low end of the storage area. Th:Ls area is 

fixed and is '.Q.Ot modified during program execution. The remaining stor-

age is. used to contain two stacks. Dynamic storage for identifiers and 

system linkage needs is allocated from the execution stack. Heap star-

age, for identifiers with the HEAP attribute, is allocated in a stack-

like manner from the other end of storage. 

Stackend 
v 

Object 
Program 

Stack top 
v 

Execution 
Stack (free 

Heapend 
v 

storage) 

Figure 4. Storage Layout 

Heap end 
v 

Heap 
Storage 

The limits of storage are set by the stackend and heapend pointers. 

The heapend pointer is set to reflect the absolute limit·: of the storage 

area and the stackend pointer indicates the end of the program area. 

The limits of allocation are also maintained by pointers. The stacktop 

pointer is incremented as storage is allocated so that it points to the 

next available storage location. Similarly, the heaptop pointer is 

decremented as heap storage is allocated. Stack overflow occurs when 

the stacktop pointer is greater than the heaptop pointer, but this occurs 
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only when every available storage location has been used. 

The storage area for the executor is addressed in three different 

ways. Addresses which refer to a constant value or a fixed branch ad­

dress are absolute, relative to tqe beginning of the storage area. These 

addresses are represented in the operand fields of the interpretive in­

structions as positive values. References to values possessed by identi­

fiers are indirect and must-be resolved from the run time SYI!lbol table. 

A reference to an identifier is indicated by a negative operand value 

which refers to a relative position in the symbol table. T~mporary 

storage for intermediate results is allocated as needed from t~e top of 

the execution stack and is referenced by an operand with a value of zero. 

Addresses for values on the top of the stack are computed from the stack­

top pointer and the mode information contained within an instruction. 

Stack temporaries are automatically allocated or released as they are 

referenced. Regardless of the type of addressing which is used, a sub­

routine call is made to determine the absolute address of an operand. 

DISPLAYS 

The block structure of a program is maintained through tne use of 

DISPLAYS. (6) The 'DISP1..AY provides a convenient mechanis,m ·for maintain­

ing system linkages when sto;rage is allocated in a stack-like manner. 

Contained within the DISPLAY are pointers to DISPLAYS for all containing 

blocks as well as a pointer to the head of a linked list of identifiers 

declared within the block, 
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DISPLAY [o] 

DISPLAY [1] 

DISPLAY [2] 

DISPLAY [3] 

IDENTIFIER LINK 

Figure 5. DISPLAY for a Nesting 
Level of Three 

The pointers to higher level DISPLAYS provide a means by which no 

storage need be explicitly released at a block exit, (17) The entry 
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pointing to the current DISPLAY is actually the stacktop pointer before. 

t~ most recent block entry was made. Restoring the old stacktop point-

er automatically releases storage allocated by the block. Similarly, 

11U1ltiple block exists, nee4ed when control is transferred to an outer 

block, can be effected by restoring the appropriate stacktop pointer 

(Figure 6). This method for multiple exists is not used in this imple~ 

mentation, however, because the run time symbol table must be restored 

at the exit from each block. 

Run Time Symbol Table 

Declaring Iden ti fie rs 

As a declaration is elaborated, storage is allocated for the identi-

fier and the run time symbol table is updated to reflect the new declara-

tion. Previous declarations are preserved by storing the symbol table 

entries on the execution stack in a linked list. The DISPLAY for each 
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DISPLAY [o] 

DISPLAY [1] 

IDENTIFIER LINK 

Dynamic Storage 
for Block 1 

DISPLAY [O] 

DISPLAY [1] 

DISPLAY [2] 

IDENTIFIER LINK 

Dynamic Storage 
I 

for Block 2 

free storage 

~ 

-... 

-

~ .. 
I 

Old Stacktop Pointer 

Current Stacktop 
Pointer 

Figure 6. Relation of Stacktop Pointers to DISPLAY 
Entries 
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block contains a pointer to the head of the li.nked list for all identi­

fiers declared within the block (Figure 7). At block exit, the symbol 

table is restored from the previous symbol table entries iq the linked 

list. 

LIST HEAD 

IDENTIFIER ADDRESS MODE LINK 

. IDENTIFIER ADDRESS MODE L NK 

Figure 7. Chaining of Previous Declarations 

The use of the run time symbol table eliminates the problems involv­

ing the reach of a declaration. Only the most recent declaration is 

available from the symbol table. Previous declarations are no.t available 

until the b.lock containing ne:w &eclai;iations is exited. Also, identifiers 

which have not been declared before they are referenced can be detected 

easily by invalid addresses in the run time symbol table. 

Sub.scripting 

Reference to a single element of a multiple value is effected 

through a special symbol table entry. Identifiers are generated by the 

compiler to contain the address of the element. An instruction is used 

to compute the address using information contained in the multiple value 

descriptor (Figure 8) and the subscripts which are in temporary storage 

on top of the execution stack. 
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L 

u 

D 

s 

T 

Offset 

Lower Bound 

Upper Bound 

Stride 

Lower State 

Upper State 

This quintuple occurs 
once for each row of 
the array 

Figure 8. Format of the Multiple Value De$criptor 
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Subscript checking occurs automatic~lly during interpretive execu-

tion. Subscript bound information is obtained from the desc.riptoll' for 

the multiple value. Upon recognition of .a subscripting error, a message 

is printed and execution is terminated. If all sub1:1cripts are within 

the correct bound11, the address il!I computed as an offset from the first 

element in the array and the address is stored into the symbol table 

under an entry for a special identifier. 

Error Processing 

Run time error checking provides a mechanism for detecting errors 

which can not be detected easily by the compiler. This is li.mited pri-

marily to operations which are not defined between arguments of certain 

modes. These errors are detected automati~ally during instruction of 

code decoding and execution is terminated. 

Other run time error checking involves testing for ide.ntifiers 

which have not been declared. This is accomplished through the use of 
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the run time symbol table. Mode checking is nQt performed at execution 

time since all mode conflicts are resolved by the compiler. 

Execution ~rror messages are printed by a separate abnormal termina­

tion routine, The correct error message is determined fro?-,the comple­

tion code which is set by the executor. As a user specifiep, option, 

statement numbers are retained during execution to make error analysis 

easier. The abnormal termination routine also dumps internal pointers 

when debugging aids are enabled. This facilitates detection of system 

errors. 

The 4-tuples of code generate~ by the compiler are interpretively 

executed. Dynamic storage is a4ministered in a stack-like manner by the 

executor. A run time symbol table is maintained for address resolution 

of identifiers. 



CHAPTER V 

USER'S GUIDE 

Control Cards 

The control cards necessary for execution o:f the ALGOL 68 subset 

compiler on the IBM 1130 are shown in Figure 9. 

II JOB 
II XEQ ,I\.LG68 
:JOB 

ALGOL 68 Source Program 

:ENTRY 

Program Data (if any) 

: IBSYS 

Figure 9. ALGOL 68 Control 
Cards for the 
IBM l,130 

The :JOB card initiates program input. Compiler options (Table II) 

may be specified using the format specified in Figure 10. A blank term-

;i.nates the.scan of the :JOB card and the remainder of the card is treat-

ed as conunents. Table IX contains a list of abbreviations which may be 

used to specify compiler options. The word NO may be used in front of 

,.,..,. 



abbreviations as well as keywords, where appropriate, to turn off un~ 

wanted options. 

set: 

columns 1-4 the characters :JOB 

columns 6-22 accounting information (not used) 

columns 23- compiler options, each preceeded by 
a comma and containing no embedded 
blanks 

Figure 10. Format of the :JOB Card 

TABLE IX 

COMPILER OPTION ABBREVIATIONS 

Abbreviation 

s 
N 
OP 
A 
x 
ST 
T 
D 
L 
SM 
PW 

Keyword 

SOURCE 
NEST 
OPLIST 
ATR* 
XREF* 
S'I'MNT 
TRAC:E 
DUMP 
LIST 
SORMGIN 
PASSWORD 

* ATR/XREF have not been imple-
mented. 

Restrictions 

The following restrictions have been applied to the ALGOL 68 sub-

1. All ALGOL 68 keywords are reserved; 

2. Keywords must be separated from identifiers, denotations and 
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other keywords by at least one blank; 

3. Keywords, multiple symbol operators and denotations may not 

contain embedded blanks; 

4. All identifiers must be declared before they are referenced. 

All declarations must appear at the front of a block; 

5. Identifiers may not contain embedded blanks, but the break 

character or underline (_) may be used to imp.rove readability; 
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6. Conunents may appear anywhere a blank may appear, but they must 

start and end with the same symbol; 

7. A label may l;>e defined on:(.y once within a program and may not 

subsequently be declared as an identifier; 

8. Conditional clauses must be balanced by the prograimner; 

9. Identifier initializations may contain no expressions and must 

be of the correct mode; 

10. Bounds on array decla:i:;ations must be simple integral denotations 

or identifiers. 

Programming Tips 

The user should avoid the use of unnecessary parenthesis and BEGIN­

END blocks. A considerable amount of overhead is involved with block 

entry and exit. 

Subscripting for multiply dimensioned arrays is significantly slow­

er than for singly dimensioned arrays. Where possible, the number of 

dimensions should be kept to a minimum. 

When the 1130's virtual memory system is in use, multi-dimensional 

arrays should be initialized in row order to minimize the number of page 

faults, 



CHAPTER VI 

SYSTEM PROGRAMMER'S GUIDE 

Compiler Modification 

Changing Symbol Table Sizes 

In all phases of .the compiler, as well as the interpretive executor, 

the symbol table is the last entry in the COMMON storage area. The sym~ 

bol table size can be modified by changing the array dimension for SYMTB. 

(In the forth phase of the compiler, STACK is EQU~VALENCEd to SYMTB so 

its dimension also should be ah~nged.) References to the length of the 

symbol table are made by a reference to the integer variable SLEN, so 

its DATA initialized.value must be changed to correspond to the symbol 

table dimension. 

The parsing and code generation phase of the compiler indirectly re­

fers to the run time symbol table length of the executor through the 

integer variable MAX.SM. This value represents the maximum number of 

symbols which can be entered into the symbol table during program execu­

tion. Since symbol table entries require two words, MAX.SM has a value 

equal to one half of the run time symbol.table length, 

Converting to.In-core Storage 

On systems with sufficient core storage, the 1130 virtual1t11amory 

system should be eliminated to increase the speed of execution. A single 

[,.() 
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region of storage is required for the compiler's memory needs and ideal-

ly it should be addressable from all routines. This could be achieved 

using labeled C.OMMON or by appending the additional storage on the end 

of the system's blank COMMON. 

Fetching and atoring into memory is performed by the subroutines 

ALGFE and ALGST, respectively. These routines would have to be re-

written to allow the direct reference to storage. The coding of these 

routines for use with storage in labeled COMMON is shown in Figure 11~ 

SUBROU'.UNE ALGFE ( IADDR, BUFFER, LENG) 
C FETCH ROUTI:~lE 

INTE~;F;R. BUFFER(!) 
COMMON/MEMRY/ M(8000) 
K•IADDR+LENG-1 
J=l 
DO 10 I-IAPDR,K 
BUFFER(J).;.M(I) 

10 J•J+l r 

RETURN 
END 

SUBROUTINE ALGST(IADDR,BUFFER,LENG) 
C STORE ROUT:tNE 

INTEGER Bl]fFER(l) 
COMMON/ME;MRY/ M(8000) 
K•IADPR+LENG-l . , 
J•l 
DO 10 I:11IA,DDR,K 
M(I)=~UFFER(J) 

10 J=J+l 
RE.TURN 
END 

Figure 11. Fetch and Store Routines for Con­
version to Core Storage 

Converting I/0 Routines 

The routines used on the 1130 to perform input and output are, by 
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necessity, system dependent. Therefore, calls to these routines are 

made in such a manner that I/0 routines could be written easily for any 

system to perform these functions. All input and output is done in 

terms of Al EBCDIC character strings stored in integer arrays. The com~ 

piler does all of its own fo~matting and d.ata conversion. Suggested 

routines to convert to standard I/0 are in Figure 12. 

StJBR.OJ.JT !NE ALGPR. (LINE., LENG) 
C PRINT ROUTINE 

INTEGER. LINE(!) 
DA,i'.A. I.OUT/ •••• I 
WRITE(IOUT,lO)(LINE(I),I•l,LENG) 

10 FORMAT(120Al) 
RETURN 
END 

SUBROUTINE READ(CARD,START,STOP,EOF) 
C READ ~OUTINE 

INTEGER·CARD(SO),START,STOP,EQF 
D~TA "WI •• ., I . 
READ(IN,10,END~30)(CARD(I),I•START,STOP) 

10 FOR.MAT(80Al,) 
20 RETURN 

C END-OF-FILE 
30 EOF...;1 

GO TO 20 
END 

Figure 12. Read and Print Routine.a for Conver­
sion to Standard I/0 

Card input involves reading charactEjlrs from a card and storing them 

into specified positions of an integer array. This function is perform-

ed by subroutine READ. This subroutine contains a parameter to indicate 

a last card, or end-of-file, sequence on the 1442 read/punch, but this 

parameter is not actually used by the compiler. 

Output is generated one line at a time and is passed to subroutine 
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ALGPR to be printed. The print line is a variable length integer array 

of·FORTRAN Al EBCPJ:C characters, the first of which is for carriage con-

trol. The carriage control characters are not printed and are standard 

ANSI carriage control characters as shown in Table X •. 

Program Linkage 

TABLE X 

CARRIAG~ CONTROL CHARACTERS 

Character 

(blank) 
0 

+ 
1 

Action 

si.ngle space 
double space 
triple space 
no advance 
new page 

The IBM 1130 implementation consi$ts of distinct progrl!lm segments 

which are loaded and executed as needed. It is never nec~ssary to have 

any portion of a previous phase in core during the executiqm of a sub->\ 

sequent phase. (Some subroutines are used in more t.han one phase, but 

ea:ch core image program contains it:s own~·copy-of such routit},~~'~) 

The loading of .compiler phases is program controlledon the 1130 by 

the system L.INK instruction.· (12) This instruction signals the core 

load builder to load and begin execution of a specified program, namely 

the next phase of the compiler. Parameters in COMMON storage are pre-

served during the LINK operation. 

When converting to other systems, overlay capabilities of a linkage 

editor could be used to achieve tµe effect of the 1130 LINK instruction. 

Each segment of the compiler ~ould be overlayed when it is no longer 



needed. Provisions would have to be made concerning subroutines which 

are shared by different program segments, This could involve keeping 

them resident in core of by supplying a new copy with each overlay. 

Values in COMMON storage must remain unchanged during program segment 

overlaying. 
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Figure 13 suggests a method by which use of overlays could be 

avoided. This would involve changing the parameters of the .1130 FORTRAN 

CALL LINK instructions from program names to integer values. Program 

segments would be treated as subroutines whose execution is controlled 

by a subroutine call 'LINK'. Subroutine LINK is called whep a transf~r 

of control to the next phase is desired. It should be noted that this 

linkage method results in subroutine LINK being called recursively, thus 

poseibly destroying system linkage information. However, depending on 

the operating system being used, this information may never be used, 

since a normal return would never be executed. Program control is never 

returned to a previous phase of the compiler. When the compiler or exe­

cutor has finished, a CALL ~IT command is issued to return to the oper­

ating system. If an operating system can regain control without using 

the previously destroyed linkage information, this method could possibly 

be used. 

Data Alignment and Lengths 

All numeric and character values, regardless of length, are treated 

as elements of integer arrays. This requires the ability to redefine 

different values as int~ger arrays through the use of the EQUIVALENCE 

statement, The manner in which this is done is highly machine dependent 

due to system differences in storage and length requirements.for each 



data type. 

1) Replace prqgram names in CALL LINK instructions with the following 
integer values:, 

Program 
name 

Integer 
value Program function 

scanner 
keyword recognition 
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ALG02 
ALG03 
ALG04 
ALGOS 
ALGAE 
AL.GC.D 
ALGCE 

1 
2 
3 
4 
5 
6 
7 

parsing and code $eneration 
interpretive executor 
abnonnal termination handling 
c.ompiler debugging 
compi1'3r debugging 

2) Change all of the above mainline routines to subroutines 

3) Include the following program to control linkage: 

SUBROUtI~E LI:m<(N) 
GO TO(l0,20,30,40,50,60,70),N 

10 CALL ALGO 2 
20 CALL ALG03 
30 CA.LL ALG04 
40 CALL ALG05 
50 CALL ALGAE 
60 CALL ALGCD 
70 CA.LL ALGCE 

END 

Figure 13. Steps in Conversion to Linkage by Subroutine Call 

The length for each data.type on a particular system is indicated 

by an entry in the integer array LENGS~ This array contains five entries 

which indicate the length in words of integral, real, comple:is., boolean 

aad character values, respectiv.ely. It should be noted that ,boolean and 

character values are treated as integer values, while complex values are 

represented as a pair of real values. 



46 

Implementing Procedures 

Parsing Procedure Declarations 

Since proced1,1re declarations may contain e~pressions, procedures 

must be parsed by the routine used for analyzing unitary clauses (ALG04) •. 

The declaration parsing routine (ALGDL) is simply not sophisticated 

enough to handle the types of st;:atements which coul.d occur in procedures. 

A suggester granunar for parsing procequre .declarations is given in Table 

XI. 

TABLE XI 

A GRAM:MM, FOR PROC.EDUR~ DECLARATIONS 

procedure declaration: proc symbol, identifier, formal parameter pack, 
proc mode, colon symbol, unit$ry clause, semicolon symbol; proc 
symbol, identifier, proc mode, colon symbol, unitary clause, semi­
colon symbol. 

formal parameter pack: left parenthesis symbol, formal parameter list, 
right parenthesis symbol. 

formal parameter list: virtual parameter; formal parameter list, .comma 
symbol, virtual parameter. 

virtual parameter: parameter mode, .identifier list. 

parameter mode: proc rqws, simplemode; simplemode; reference-to symbol, 
proc rows, simplemode; reference-to symbol, simplemode. 

proc rows: sub symbol, rows, bus sytp.pol; sub symbol, bus symbol. 

rows: conuna symbol; rows, comma symbol. 

proc mod~: simplemode; VOID. 

proc symbol: PROC. 

reference-to symbol: REF. 



47 

It is suggested that procedure declarations be restricted to allow 

no reference to identifiers which have not been previously declared by 

the user, either in the parameter list or in a conta::Lning .block of the 

ALGOL 68 program. The mode of all operands must be known before code 

generation can occur. Therefore, if an identifier has not been declar­

ed, a valid instruction referencing it cannot be generated, An alterna­

tive to this restriction would be tq make an extra pass through the coded 

source program to determine the modes of all identifiers in the program, 

Additional Instructions 

At least four additional instructions must be defined to effect 

procedure calls: an instruction for passing para.meters; an instruction 

to link to a procedure; an instruction to return from a procedure; and 

a branch instruction for abnormal exit from a procedure. 

The passing of parameters could be handled easily through the run 

time symbol table, All that would be involved would be to place the 

addresses of the actual parameters in the calling statement into the 

symbol table entries for the virtual parameters of the procedure declar­

ation. Since address resolution occurs at run time, there. is no problem 

as to which allocation of an identifier would be referenced. Only the 

most recent declarations would be available from the symbol table. 

Linking to a procedure is relatively simple. It involves storing 

the return address on top of the execution stack and branching to the 

first instruction of the procedure. At the procedure entry point, para­

meter addresses, also stored on the execution stack, would be retrieved, 

Exit from the procedure would involve restoring the symbo;I. table and 

branching to the return address. 
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The use of DISPLAYS makes abnormal exits from procedures easy. 

Since the nesting level of the block for each label is known, storage 

release and transfer of control are greatly simplified. It is, however, 

necessary to restore the run time symbol table to account for all decla­

rations elaborated within blocks.which are exited. 

Program Control Flag 

An extra control flag is necessa'l;'y to indicate that a procedure 

declaration is being parsed. This flag would be tested each.time a semi­

colon is found to determine if it ends a procedure declaration, If so, 

an exit instruction would be generated to return to the calling state­

ment. This flag also could be used to signal that a parameter list is 

being parsed, in which case an address, rather than a value, would be 

loaded on the execution stack when a comma is found, Then, when a right 

parenthesis is found the procedure call would be generated, This program 

control flag would be stacked as is the block number during recursive 

descent. 

Error Checking 

Detection of errors concerning procedure calls could become quite 

complex. Minimally, a check must be made to see if the number of para­

meters in a call matches the number in the procedure declaration. This 

would be sufficient to prevent a system error but would require that.the 

user be responsible for mode checking, Ideally, the parser should gen­

erate tables for mode checking of procedure operands. This would elimin­

ate user errors involving referencing parameters. 
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Compiler Debugging Aids 

Within the compiler are debugging facilities so the compiler and 

executor can help to debug themselves. This allows system programmers 

and the implementor to dump intermediate values between phases of the 

compiler. All values dumped are clearly labeled and indicate the status 

of the compilation at various points. 

The compiler debugging facility is not intended for use by the 

application programmer. It does not provide him with any useful infor­

mation for debugging and ALGOL 68 program. 

The debugging aids are enabled through the PASSWORD~JCJ~ parameter 

of the :JOB card. Also of interest to the system program.mer.are the 

LIST and DUMP options, The LIST option prints 4-tuples of generated 

code (some branch addresses will not be resolved). The DUMP option pro.­

vides an execution trace, along with a complete dump of the dynamic 

storage stack, before each instruction is executed. Use of the DUMP 

option should be limited since potentially large amounts of output are 

possible. 



CHAPTER VII 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

Using the methods outlined in this paper an ALGOL 68 subset.has 

been implemented at Oklahoma State University fqr the IBM 1130, It has 

successfully compiled and executed programs of a.scientific nature, To 

a limited extent the translator has been used by undergr~d~ate students. 

in an attempt to learn the language, 

Future .work on the system will :f,.nvolve extensive test,ing and the, 

implementation of extended transput .capabilit:1.e,, Additional comp:1,.le · 

time error checlting would be desirable for instructional purp.oses, 

This implementation seems to meet the basic needs for int:toducing 

the student to the ALGOL 68 language while it allows comJ>ilat:ion and 

execution of application programs of a scientific nature, .This subset· 

translator provides a. sµitable starting point for an understanding of 

the complete ALGOL 68 language, 
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CODED PROGRAM EQUIVALENTS 



TABLE XII 

CODED PROGRAM EQUIVALENTS 

Description 

minus and becomes symbol 
minus symbol 
plus and becomes symbol 
prus and becomes symbol 
plus symbol 
times and becomes SYl'IDOl 
up symbol 
times symbol 
divide and becomes symbol 
over and becomes symbol 
modulo and becomes symbol 
divide symbol 
over symbol 
modulo symbol 
and symbol 
not equal symbol 
not symbol 
less .. than symbol 
less than or equal symbo 1 
greater than or equal symbol 
greater than symbol 
plus i times symbol 
plus i times symbol 
equals symbol 
becomes symbol 
becomes symbol 
becomes symbol 
conforms to symbol 
conforms to and becQmes 
is symbol 
isnt symbol 
or symbol 

Action Tokens 

Keyword 

MINUSAB 

'PLUSAB 
PRUS· 

TIMES 
UP 

DIV 
OVERB 
MODB 

OVER 
MOD 
AND 
NE 
NOT 
LT 
LE 
GE 
GT 

EQ 

CT 
CTAB 
IS 
ISNT 
OR 

Symbol 

-:= 

+:=­
+=: 
+ 

*:= 
** 
* I:~ 

II:= 
I I::= 
I 

II 
I I: 

& ,;::: 
... 
< 
<= 

> 

? 
= 

:= 
.= .. :::, .. . . . ·­.. -
:=: 
:,=: 

Syntactic and Sequenc~ng Tokens 

Description 

begin symbol 
case symbol 
if symbol 
end symbol 
esac symbol 
fi symbol 

Keyword 

BEGIN 
CASE 
IF 
END 
ESAC 
FI 

Symbol 

( 
( 
( 
) 
) 
) 
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Equivalent 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
28 
29 
30 
30 
30 
31 
32 
33 
34 
35 

Equivalent 

1 
1 
1 
2 
2 
2 



Description 

semicolon symbol 
conuna symbol 
colon symbol 
colon symbol 
at symbol 
else symbol .. 
out symbol 
then symbol 
in symbol 
else if symbol 
completion symbol 
sub symbol 
bus symbol 

TABLE XII (Continued) 

Keyword 

AT 
ELSE 
OUT 
THEN 
IN 
ELSF 

Symbol 

.. 
@ 

I 
I 
I 
d . 
(/ 
/) 

Environmental Enq'l,liries and 
Pre~defined Constants 

Name -
BITSLENGTH 
BITSWIDTH 
BYTESLENGTH. 
BYTESWIDTH 
INTLENGTHS 
FALSE 
NMAXFACT 
NULLCHAR 
REALL.ENGTHS 
TRUE 
MAX INT 
NIL 
MAXREAL 
SMALLREAL 
PI 

Name 

CMPLXSQRT 
NEXTRANDOM 
ARC COS 
ARCS IN 
ARC TAN 
CLEAR 
ENTIER 
LOG IO 
MATCH 

Standard Procedures 

Equival~nt 

201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 

Equivalent 

301 
302 
303 
304 
305 
306 
307 
308 
309 
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Equivalent 

5 
6 

35 
35 
36 
37 
37 
37 
37 
38 
39 

414 
415 



Name -
PRIN'.): 
RANDOM 
ROUND 
ABS 
ARG 
BIN 
CONJ 
cos 
ELEM 
EXP 
GE,T 
INF 
LOG2 
LWB 
LWS 
ODD 
OUTF 
PUT 
READ 
REPR 
SET 
SIGN 
SIN 
SQRT· 
TAN 
UPB 
UPS 
IM 
liN 
RE 

Name -
COMPLEX 
CO~L 
EITHER 
FORMAT 
STRING 
BOOL 
CHAR 
FLEX 
HEAP 
INT 
PROC 
REAL 
REF 
VOID 

TABLE XII (Continued) 

Declaration Tokens 

Equivalent 

310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 

Equivalent 

401 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
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Name 

PRAGMAT 
PR 
WHILE 
FOR 
FROM 
GOTO 
SKIP 
BY 
DO 
GO 
OF 
TO 
STANDrN 
STANDOUT 
EXIT 

TABLE XII (Continued) 

Special Tokens 

Equivalent 
I 

601 
601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
612 
613 
614 
61.5 
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APPENDIX B 

INTERPRETIVE OPERA.TIO~ CODES 

Introduction 

Al.l interpretive instl;'uct:l,ons,are c;amposed of four integer values. 

The formats of the instructions vary with different op~rations but cqn~ 

tained within each instruction is the operaUon code, the operands, the 

modes of the operands and the location for the result. In some opera~ 

tions, the low order digit of the first operand is used to spe~ify mode 

information~ For these instructions, the two valu~s in the first oper-

and are parenthesized. T~ble X·III is a key for the values of the mode 

indicator. Ta~1e .XIV explains the meanings of most of the symbols which 

describe the instructions. 

TABLE XIII 

MODE INDICATOR V,ALUES 

Valu1;1 

1 
2 
3 
4 
5 

c.a 

Mode 

integral 
real 
complex 
boolean 
character 



60 

TABLE XIV 

KEY TO INSTRUCTION FORMAT SYMBOLS 

Symbol Description 

argl,arg2 the symbolic addresses for arguments 

arg3 the symbolic address of the location into 
which the result is to be stored 

array identifier the symbolic address of the descriptor 
for an array 

mode the mode of an operation 

op the operation code 

rows the number of rows in an array 

System Instructions 

Block Entry 

General format: 010,0,0,0 

The linkage operations necessa:i:-y for a block entry are performed by 
' 

thei exec;.utor. 

Block Exit 

General format: 020,mode,O,O 

The linkage operations necessary for a block exit are performed by 

the ~xecutor. The mode is the mode of an operand which is to be return-

ed on the execution stack. If no value is to be returned, mode is zero. 

General format: 030,branch code,argl,arg3 



lf the branch code is one, an unconditional branch to the address 

of arg3 is exe~uted. If the branch code is twp, the boolean va1ue spec­

ified by aral is examined. If the value is false, the branch is taken~ 

Otherwise, normal instruction processing continues with the next instruc-

tion, 

Allocate Symbol . 

General format: 040,mode,O,identifier 

Storage for the specified identifier is allocated from the execu-

tion stack and the run time symbol table is updated to reflect the cur-

rent allocation. 

Update Statement Number 
. .. . I 

General fo,:mat: 050,stmnt,O,O 

'l'he statement number iadicator is replaced by the value of 'stmnt •. ' 

Print 

General format: 060,mode,O,argl 

The value of the operand is oueput .on the standard output device. 

Becomes 

General format:. 070,mode,argl,arg3 

The value of argl is stored into ·arg3. The va.lue is also stored 

on top of the execution stack for further use. 

Dyadic Operators 

General fol=1D,at: (op,mode),argl,arg2,arg3 
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; 

The operation is performed between argl and arg2 and the result is 

stored in arg3, Table XV lists the set of dyadic op ~odes. 

OP 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Simple Monadic Operators 

TABLE XV 

DYADIC OPERATION CODES 

Operation 

add 
subtract 
divide 
multiply 
exponentiation 
modulo 
plus and becomes 
p:rus 
minus and becomes 
divide and be~omes 
~ultiply apd becomes 
m.odulo and becom,es 
not equal 
less than 
less than or equal 
greater than or equal 
greater than 
equal 
and 
or 

Monadic Operators 

General format: (30,mode},op,arg1,arg3 

Simple monadic operations are monadic operations and standard pro-

cedure calls in which the mode of the result is the same as the mode of 

the argument. The operation is applied to argl and the result is stored 

into arg3. Table XVI lists the simple monadic operator operation codes. 



TABLE XVI 

MONADIC OPER,ATION CODES 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 

Complex Argument, Real Result 

Operation 

unary plus 
unary minus 
absolute vaiue 
square roQt 
exponential function 
natural logarithm 
base two logarithm 
base ten logarithm 
sine function 
cosine function 
tangent functic:m 
arcsine f unc.tlon 
arccoliline function 
arcta~gent function 
conjug~te va].ue 

General format: 313,op,argl,arg3 
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The operation is applied to the complex argument argl and the real 

result is stored into arg3. Operation codes are given in Table XVII. 

TABLE XVII 

C.OMPLEX TO REAL MONAD):C 
OPElR,ATlON CODES 

.Q.E. Operation 

01 complex absolute value 
02 argument function, 
03 real part of a complex 

value 
04 imagina1;y p'art of a 

complex value 
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Real Argument, I11;tegral Result 

General format: 322,op,argl,ar~3 

The operation is applied to the real argument argl and the integral 

result is stored into arg3. Operation codes are given in Table XVIII, 

TABLE XVIII 

REAL TO INTEGRAL MONADIC 
OPERATION CODES 

.QE.. Operation 

01 entier (floor function) 
02 lower bound (floor func-

t:i,on) 
03 round 
04 sign 
05 upper bound (ceiling 

function) 

Inte~ral Argument, Boolean Result 

Odd Functiona 

General format:. 331,1,argl,arg3 

If the value of the integral argument argl is odd, a value of true 

is stored into arg3. Otherwise, a value of false is stored into arg3. 

No Argument, Real Result 

RANDOM, 

General format: 342,l,O,arg3 

A pseuc;lo-random number between 0.0 and 1.0 is generated and stored 

into arg3. 



Character Atsument. Integral Result, 

Character Absolute Value. 

General format; 344,l,argl,arg3 

The position in the collating sequence of the character value of 

argl is stored into ·arg3. 

Integral Argument, Character Result 

REPR Fune tion o. 

General format: 351,1,argl,arg3 
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The integral value of .argl is used to index the string of chal;'acters 

in the collating sequence. The character value for the selected position 

is stored into arg3. 

Row Operations 

Allocate Descrietor 

General format; (50,mode),array identifier, rews, template 

A de~criptor is created for the identifier specified using in~orma­

tion storec;l in the descriptor tE:)mplate. The array is then allocated and. 

the run time symbol table is updated to ·reflect the new allocation. 

Load Subscripted. 

General format: 510,rows,array identifier,arg3 

The address of a single element of the specified array is placed 

into the syJllhql table entry for arg3. Index valuea are on. top pf the 

execution stijck. 
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co,rcion 

General format:. (61,mode) ,input mode,output mode,al;'gl 

The value of argl is widened from the input mode to the output mode 

and is stored on the execution stack. If 'mode' is nonzero, the value 

o.n the top of the stack is saved before coercion occurs and is restored 

afterwards. 
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APPENDIX C 

!HE ALGOL 68 SUBSE.T 

Description 

A grammar for the scientific subset of ALGOL 68 ieJ given in ·Table 

XIX. The subset is int;ended to re:f;lect the bl.ock atructu:e of the langu­

age as well as many of the c~pa'bi1:i,t:1,.es fo.,:- arithtnE!tiC e~press-ions •. 

Although.colll111ents are not de~ined by the subset grammar, they are 

permitted to allow prog'J;'am documentation~ Comments may appe,.r anywheie 

a blank may appear.e~cept within a string de~otation. Tpe iepresenta­

tions for the comment symbol are¢,#, COMMENT and co. A comment m~st 

begin and end with the same representation of the comment sy1t1,bol. 

The block st;rl!,ctu.,:e of an Ali.GOL 68 program is spe~i,fiec;l by cl,oses 

clauses (BEGIN~END blocks) and conditional clauses (IF.,-FI and CASE-ESAC). 

The extension allowing BEGJ;N, IF and CASE to be replaced by a left 

parenthesis symbol, and E;ND, FI and ESAC by a right parenthesis symbol 

is included in this implementation. Similarly, THEN, ELSE, IN and OUT 

may be represented symbolicly by a vertical bar (I). The ELSF (or I : ) 
symbol is permit;:ted as an abbreviation for the symbols E.LSE IF. No FI 

symbol is required after an ELSf clause. Some examples pf program 

blocks are given in Table XX. 



69 

TABLE XIX 

THE ALGOL 68 SU'BS:e;T GRAMMAR 

particular program: begin symbol, serial clause, end symbol; left pa­
renthesis symbo:)c, serial clause, right parenthesis symbol; if sym .... 
bol, serial clause, then symbol, unitary clat.J.se list, else symbol, 
unitary clause list, fi symbol; if symbol, serial clause, then 
symbol, unitary clause list, fi symbol. 

serial clause: declaration prelude sequence, unitary clause list; uni­
tary clause list. 

declaration prelude sequence: single declaration; declaration prelude 
sequence, single declaration. 

single declaration: simplemode, d·ecl list, semicolon symbc;,l; sub symbol, 
rows of, bus symbol, simplemode, identifier list, semicolon symbol, 

simplemode: INT;. REAL; COMPL; COMPLJJJ{; BOOL; CHAR. 

rows of: row of; rows of, comi.na symbol, row of. 

comma symbol: ' . 
row of: bound, colon symbol, bound; bo1,.1.nd. 

bound: integral identifier; integral denotation. 

decl list: decl; decl 1:ist, comma symbol, deal,. 

decl: identifier, becomes symbol, identifier; id,entifier, becomes sym­
bol, denotation; identifier. 

becomes symbol: :=. 

identifier list: identifier; identifier list, comma symbol, identifier. 

identifier: tag. 

tag: letter; tag, letter; tag, digit token; tag, space. 

letter: a; b; c; d; e; f; g; h; i; j; k; 1; m; n; o; p; q; r; s; t; u; 
v; w; x; y; z. 

digit token: O; 1; 2; 3; 4; 5; 6; 7; 8; 9. 

space: 

denotation: integral denotation; real denotation; string denotation; 
format denotation. 
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TABLE XIX (Continued) 

integral denotation: digit token; integral denota.t:f,.on, digit token. 

real denotation,: variable point numeral; floating point numeral. 

variable point numeral: integral denotation, fractional part; fraction­
al. part. 

fractional part: point symbol, integral denotation, 

point symbol: 

floating point p.umeral: stagnant part, exponent part. 

stagnant part: integral denotation; .variable poip.t numeral. 

exponent part:. times ten to the power choice, power. of ten. 

times ten to the power choice: E. 

power of.ten: plusminus, integral denot~tion; integral denotation, 

plusminus :. +• -' 
string denotation: quote symbol, string item seq1.,1ence, quote symbol. 

quote symbol: II 

string item sequence: string item; string item sequence, str:f,.ng item. 

string item: ¢ any symbol except the quote symbol¢; quote symbol, 
quote symbol. 

unitary clause list: unitary clause; unitary clause list, semicolon 
symbol, unitary clause. 

semicolon symbol: 

unitary clause: 

colon symbol: . . . 

' . 
label, colon symbol, unitary clause; expression; jump. 

jump: goto symbol, label; label. 

label: identifier. 

goto symbol: GO, TO; GOTO. 

expression: formula. 

formula: formula, pl operator, p2 operand; p2 operand. 
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TABLE XIX (Continued) 

p2 operand: p2 operand, p2 operator, p3 operand; p3 operand. 

p3 operand~ p3 operand, p3 operator, p4 operand; p4 operand. 

p4 operand: p4 operand, p4 operator, pS operand; pS operand, 

p5 operand: p5 operand, p5 operator, p6 operand; p6 operand. 

p6 operartd :. p6 operand, p6 operator, p7 operand; p7 operand. 

p7 operand: p7 ope'):'and, p7 ope1;ator, p8 operand; p8 operand. 

p8 operand: p8 operand, p8 operator, p9 operl:!,nd; p9 operand. 

p9 operand: p9 operand, p9 operator, monadic operand; 
monadic operand. 

monadic operand; monadic .operator, monadic operand; primary. 

primary: ide·ntifier; denotation; s.e;l,ector, primary; slice; particular 
program; standard procedure, left parenthesis symbol, parameter 
list, right parenthesis symbol; caat. 

selector: RE; IM~ 

slice: identifier, sub symbol, indexer list, bus symbol. 

sub symbol: (/. 

bus symbol :. /) • 

indexer list: indexer; indexer list, coill11la symbol, indexer. 

parameter list: unitary clause list; paremeter list, comma symbol, uni­
tary clause list. 

begin symbol: BEGIN. 

end symbol: E.ND. 

left parenthesis. symbol: (. 

right parenthesis symbol: ). 

if symbol: IF. 

fi symbol: FI. 

then symbol: THEN. 

else symbol: ELSE. 



T~LE XX 

PROGRAM·BLOCKS 

#· The following are closed clauses # 
BEGIN , •• END 
( . . . ) 
# The following a;e conditional clauses # 
IF••• THEN••• FI. 
IF O • • THE,N •, • • ELSE , • • FI 
CASE • ,, • IN • • • OUT •• • ESAC 
IF •• , THEN • • • ELSF • , • THEN • • • EVSE •. • • FI 
c •.••. 1 •.•• _1 •.•• > 

The subset includes only simple fo~s of .declarations, The basic 
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data types which are allowed are IN'r, REAL, COMPLEX, BOOL ap.c:l C:HAR. Al ... 

so, identifiers may be declared as an array with any nuwber of rows for 

the basic data types. Declarations may not contain expressions or 

i~itializations requiring mode coercion. Sample declarations are shown 

in Table XXI. 

TABLE XXI 

SAMPLE·DECLARATIONS 

INT I,J,K,M:=3; 
REAL A,B; 
COMPL Z; 
(/ .0:10 /) INT ROW OF INTEGRAL; 
(/ M,M /) CHAR ROW OF"ROW...:,OF_CHARA~TER; 

Expressions comprise the remainder of the ALGOL 68 subset. The 

subset grammar describes the syntax of expressions but not the semantics. 

This is due to mode considerations which are not easily describable by 

the context free.grammar, Fc,,r example, the and operator(&) applied to 
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two complex values is syntactically correct, but is semantically unde-

fined. A set of standarq operators and procedures has been implemented 

for use in writing expressions, The standard op~rators are shown with 

their priorities in Table XXII. A list of the standard procedures which 

are implemented is given in Appendix A. 

TABLE XXII 

PRIORITIES FOR STANDARD OPERATORS 

dyadic monadic 

1 2 3 4 s 6 7 8 9 (10) 

-:= OR & = < * ** + -; REPR 
+·-·- ., ::;, <= + I ? ABS 
*::::::; >= II UPB LWB 
I:~ > //: ODD SIGN ROUND 
//:= RE IM CONJ 
//11-.. -
+=: 
:= 



APPElmIX D 

A SAMPLE ALGOL 68 PROGRAM 

""II. 
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# THIS SAMPLE PROGRAM BUiiDs A BINARY SEARCH TREE FOR INTEGRAL KEYS 
WHICH ARE READ FROM PUNCHED CARDS. THREE ARE NO DUPLICATE KEYS A.ND A 
KEY OF ZERO INDICATES THE ENP OF THE INPUT DATA. 

DEFINITION OF VARIABLES--

BEGIN 

AVAIL-- THE AVAILABLE STORAGE POINTER 
KEY-- THE ARRAY OF KEYS IN THE TREE 
LLINK- THE "ARRAY OF LEFT-·LrJ:U<··poINTERS 
NEW_ KEY-.;. THE .. IQ':Y BEING INSERTED 
RLINK-- THE AR.RAY OF RIGHT LINK POINTERS 
ROOT-- THE ROOT POINTER 

(/ 200 /) INT LLINK, KEY, RLINK; 
INT ROOT:=O, AVAIL:=O; 

BEGIN 
INT NEW_KEY, I, J; 

READ AND TEST: 
- READ (NEW_ KEY) ; 

# TE.ST FOR ZERO END OF DATA INDICATOR # 
IF NEW_KEY=O THEN ¢GOTO¢ BUILT FI; 

# TEST FOR FIRST KEY ENTRY- # 
IF ROOT=O THEN KEY(/ ROOT:=AVAIL+:=i /):=NEW KEY; 

, LLINK(/ ROOT /) :=RLINK(/ ROOT-/) ::i:O; 
GO TO READ_AND_TEST 
FI; 

I:=ROOT; 

TRAVERSE: 
IF NEW KEY>KEY(/ I/) THEN 

IF RLINK(/ I /)...., = 0 THEN 
I:=RLINK(/ I/); 
TRAVERSE 

ELSE KEYS(/ RLINK(/ I /):~J:=AVAIL+:=1 /):=NEW_KEY; 
LLINK(l J /) :•RLINK(/ J /) :=.O; 
~EAD AND TEST 

FI 

ELSF LL INK(/ I /)-,""' 0 THEN 
I:=LLINK(/ I/); 
TRAVERSE 

ELSE KEYS(/ LLINK(/ I /) :=-J:=AVAIL+:=1 /) :=NEW_KEY; 
LLINK(/ J/):=RLINK(/ J /):=O; 
READ AND TEST 

FI 
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BUILT: 
II AT THIS POINT THE TREE HAS BEEN CREATED II 

END 

END 



VITA 

John Clute Jensen 

Candidate for the Degree of 

Master of Science 

Thesis: IMPLEME:NTAT!ON OF A SCIENTIFIC.SUBSET OF ALGOL 68 

Major Field: Computing and Information Sciences 

Biographical: 

Pe1;sonal Data: Born in Tulsa, Oklahoma, May 28, 1949, the son of 
Mr. and Mrs. Clute Jensen. 

Education: Graduated from Tulsa Centrai High School, Tulsa, Okla­
homi!, in May, 196 7; received Bachelo;r of Scienc.e degree in 
Mathematics from OklahoI:lla State Unive1;:sity in 1971; completed 
requirements for the Master of Science degree at Oklahoma. 
State University in July, 1973. 


