
IMPLEMENTATION OF A SCIENTIFIC

SUBSET OF ALGOL 68

By

JOHN CLVT~ JENSEN .. q

Bachelo; of Science

Oklahoma State Vniversity

Stillwat~r, Oklahoma

1971

Submitted to the Faculty of the .Graduate College
of the Oklahqma State University

in partial fulfill~e~t of the requirements
for the pegree of
MASTER OF SCIENCE

July, 1973

!MPLEME_NTATION OF A. SCIEN'l'IFIC.

SUBSET OF ALGOL 68

Thesis Approved:

Dean of the Giac;iuate College

OKLAHOMA
STATE UNIVERSITY

LIBRARY

NOV I 6 i9 '1:3

PRE.FACE.

This paper descr:l,.bes · the implementation of a scientific subset .of

the ALGOL 68 programming language, It is concerned with the. methods

used to implement a translator system which generates code which is in­

terpretively executed. The system is written in the basic FORTRAN lan­

guage to allow machine independence,

I would like to express my gratitude to my inajor advisor., Dr. G. e ..

Redrick, for his advice and guid~nce during this project. Also, appreci­

ation is expressed to my other.committee members, Dr, Donald D. Fisher

and Dr •. James R. Van I)oren, for thei'l:' Sl,\ggestions and assistance in the

preparation of this paper.

TABLE OF CONTENTS

Chapter

I. INTRODUCT J;O;N. • • • • , , , , • •

II.

III.

IMPLEMENTATION CONSIDERATlONS, • • . . . f • . . .
Tlm COMPILER •. • •

Compiler Init~alization, •. ' . •,
The Scanner. . • • • • • • ·• •. • • ,
:Keyword Recognition. • , • • • • • • • •
Parsing and Code G~ner~tion. • , , , • , •

. . .
• ti •

. . . "
IV. INTERPRETIVE". EXECUTION.. ~. , •. '. . . '· _• ,· .:•: . . ' .

. . . ~. . "· . ·• The Interpretive Code. ·•
Sto~age Manage~ent •••
DISP!J\.YS , , , , ~ · , , ,
Run Time Srmbol Table. ,

. '·
v. USER'S GUIDE. . , •. . . •. . .•. . 4' • •. • • •

VI. SYSTEM PROGRAMMER'S GUIDE . . • •
VII. SUMMARY, CONCLUS:t:ONS AND FU'l;'URE WORK. • •.

A SELECTED BIBLIOGRAPHY • • • . , , • • .•

4PPENDIX A.

APPEND:CX B,

CODED PROGRAM EQUIVALENTS. ,

INTERPRETIVE OPERATION CODES.

• • • •

'· . •, ' .
APPENDIX C. THE ALGOL 68 SUBSET, • , , •1 • ' • • • •

APPENDIX D. A SAMPLE ALGOL 68 PROGRAM.

. . , . .
. " . .

. .

Page.

1

6

11

11
12
19
20

29

29
30
31
32

37

40

50

51

53

58

67

74

LIST OF TABLE,S

Table Page

I. Commercial Subro~tine Pac~ge Subprogr~ms Use~ of the IBM
1130 •, • • ·• •. . • • ·• • . • • • • • 8 . . • . ' .

II.. List of Compiler Options. • • • • . .
III. A Grammar for Isolating identifiers.
IV. Starting States for Operation Recognition ~ ..
v •. Transition Table for Operatqr Recognition •

VI., A Grammar foir t~olating DenQt:ations •• . . .,
VIL A Grammar for Declarations., • • • • • • . ·...

VIII. A Gratniilar for Progtam Parsing .• , • • • •. • • -·
IX. Compiler Option Abbreviations. ., '.
x. Carriage Control Charact~rs. • • '·,

XI. A Grammar for Procedure Declatations.

XII. Coded Pro~rram Equ;tvale;i.ts • ,, ,• .. • '·

Xl.Il. Mo~e Indicator Values • , • .. •,,• ... •,.• .. ,
XIV, Key to Distruction Format Symbols. •. '' •, ' .

XV, Dyadic Operation Codes~ • ~ . •, '. •, . •, . II! ., •..•• ,, •, .•

XVI. Monadic Operation Codes . . . • • • •• • • . '.
XVII •. Complex to Real MonEil.dic ,Operation Codes •.• . •,

XVIII. Real to Integral Monadic Operation Codes, • •
XIX, The ALGOL 68 Subset Grammar. •. • '1 •
xx.

XXI.

XXII.

Pr~gram Blocks •••

Sample Declarations

• •

l'-riorities for Standard Operatol!'s

v

. . ~ '
·• .. , . . . ' . .

. . •, ' .

13

15

16

16

18

22

24

38

43

46

54

59

60

62

63

63

64

69

72

72

73

LIST OJ? FIGURES.

Figure

1., Finite State Automaton for Isolating Identifiers • • , . .
Page

14

2. Finite State Automaton for Parsing Single.Declarations 21

3. Code GeneratE\!-d for a Conditional Clat,1se •• •, ,.
4.

5.

6.

7 •.

8.

9.

Storage Layout • , ~ ••••••• •.
DISPLAY for a Nesting Level of Three . ' . .
Relation of Stacktop Pointers to DISPLAY Entries , . . ~ .
Chaining of Previous De'rlarations. • , • •

Format of the Mt,1ltiple Value Descriptor ••

ALGOL 68 Control Cards for the IBM 1130 ••

. . .
• • '! • ·': •

.
10. Format of the :JOB Card, .• ~

27

30

32

33

34

35

37

38

11. Fetch and Store Routines for Conversion to Core Storage, • 41

12.

13.

Read and Print Routines for Conversion to Standard I/0

Steps in Conversion to Link.age By Subroutine Call,

i.7'1

. . 42

45

CHAPTER I

INTRODUCTION

Objectives

The ALGOL. 68. l.anguage is perhaps the most sophisticated progranuning

language to be developed. Its designers have presented ALGOL 68 with a

precise, although somewhat complicated, language definition :i,n the "Re­

port on the Algorithmic Language ALGOL 68." · (18} Features in the langu­

age allow virtually limitless expansion of the language to include what­

ever facilities an installation might require~

Incorporated within the ALGOL 68 language are many of .th.e desirable

features of ALGOL 60, COEOL, FORTRAN""ana<!'L/T, along wi'th s91'1!4i!. features

which are unique to ALGOL 68. Since it is a relaUvely young language,

ALGOL 68 translators are scarce, A need was seen for a translator which

could be used as an instructional, tool for teaching ALGOL 68, either by

itself or as a transition from other progranuning language!;!, The transla­

tor would not need to be an imple~ntation of the enti.re .ALGOL 68 langu­

ange, but it should contain the.basic constructs of the langu~ge,

To meet this purpose, a scientific subset of the ALGOL 68 language

was selected for implementation, Contained within the subset are capa­

bilities for performing operations on si'l\lple numerical and logical

values, along wd.th some limited character a11d string manipulations. This

is sufficient to il:Lustrate many of the basic properties of ,A:L,GOL 68 and

leads to an understanding of the more advanced features of the language,

2

Also, the subset is complete enough to be used for many scientific ap-

plicat;l.ons. Detailed err:or messages are·;l.p.cluded to all.ow easier under-:

standing of specific ptogratnllii.ng examples.

History of ALGOL 68

Background ··
I

The formal definition of ALGOL 68 was presented in a report to the

General Assembly of the International Federation for Information Process-

ing (IFIP) in 1968. The repo,:t was pr~pared by Working Group 2.1 on

ALGOL and was reviewed by Technical Committee 2 on Programming Languages

for publication. The Report was subseqt,1ently publishe4 in Numedsche

Mathematik in 1969.

Since the publication of tbe Report, (18) confel;'ences have been

held on the ALGOL 68 language and its implementati,on. Propo$als have

arisen from these conferences concerning changes of the lai;i,guage. Some

modifications have been made but the language.remains essentia!iy un-

changed. from its original definition •.

ALGOL 68 Definitions

The definit;Lons of .some essential A.LGOL 68 terms are .giv.en below.

C~ercion. An implicit c~ange of the mode of an operand dependent

upol'). syntactic position.

Denotation. An ALGOL,68 constant or literal value.

Descriptor,. A data structut;e consisting of an offse1t and a set of

quintuples which describe a row of an array.

Elaboration. Execution.

3

Environmental Engu:i.ry. A pre-defined constant supplying informa-
''

tion concerning a specific property of the implementation.

Multiple Value. A multiple value is composed of a descriptor and

any number of rows.

Pragmat. An ALGOL 68 comment d:i.recting a particular implementation

to take a specified action which lies outside the definition of the

language.

Row. The elements of one dimension of an array.

Standard Prelude. A set of standard declarations which specify

environmental enquiries, standard priorities (of operators), standard

operations, standard mathematical constants or functions, or transput

declarations.

Transput. Input and output.

Literature Review

Much of the information relateq. to the implement;at:ion of ALGOL 68

comes out of ,the formal and informal,. conferences on the language. Many

of the papers presented at these·conferences were concerned with the

theoretical aspects of the two level ALGOL 68 grammar and constructs

dealing with the structure of ALGOL 68 programs. Others prop~sed solu-

tions to applications programming problems by the use of ALGOL 68. Of

the papers which dealt with practical implementation, a great many were

concerned with topics which were beyond the scope of this project.

Of the existing ALGOL, 68 implementations, the earliest and perhaps

most noteworthy is the ALGOL 68-R implementation at the Royal Radar Es-

tablishment in Malvern, England. (4,5,19,20) The implementation is de-

signed for the ICL 1907F computer. This one pass translator accepts a

4

large subset of the ALGOL 68 language and has e~tensive program library

capabilities.

At the Technical University of Munich, another ALGOL 68 subset is

being implemente<;l. Hill, et al. (9) present a detailed deacription of

the implementation techniques being used in this project. Use of this

particular implementation will be limited since it is being written in

machipe language for the Telefunke~ TR 4 computer. This machine is not

in collllllQn use.

Oklahoma State University has implemented a system which accepts an

ALGOL 68 program and outputs PL/I source code which is equivalent to the

ALGOL 68 program. (7) This system functions correctly for a scientific

subset of ALGOL 68, but has the obvious disadvantage of having to com­

pile the program twice.

In general, the implementations mentioned above.have.restricted

ALGOL 68 transput to include only unformat;ted transmissio.n of data •.

Berry (l,2,3) has implemented a eystem for formatted t;ranspu1;:. This

system parses fot':mats at run time and uses interpretive execution to.

effect their elaboration •.

Smith, et al. (15) have developed an algorithm for t;he recognition

of ·ALGOL 68 denotations using a finite state automaton. .Hedrick and

Smith have published a comprehensive study of ALGOL ~8 context condi­

tions, (8)

Problem Statement

The purpose. of this· project is to implement a scientif:l..c subset. of

the computer progratmning language ALGOL 68 •. The language tr~slator is

written in 'IBM 'll'JO ba$i.C li'ORTRAN~· (20) and it generates 4-tuples (quad-

5

ruples) of code which are interpretively executed, thus making the sys­

tem machine independent. 'rhe implementation is intended for use as an

introduction to the ALGOL 68 language.

CHPATER II

IMPLEMENTATION CONSIDERATIONS

IBM 1130 Implementation

Selecting a Small Computer

In order to offer a measure of portability, it was,decided to im­

plement the ALGOL 68 translator on a small computer. This insures that

the translator is kept small due to thestotage limitations of .ntachine.

Thue;;, it is possible to execute the translator on dit'ferent systems which

are the same size or larger. An IBM :J:1.30 was available at Oklahoma State

University, and it was suitable for this purpose.

System Configuration

The ALGOL 68 subset was implemented on an IBM 1130 computer with 8K

words of core storage. The computer operates under Disk Moniter System

Version 2, Modification 8, using an 1131 Single Disk Storage unit. (12)

The principal input ,device is .a 14.42, card read/punch, while the princi­

pal output device is the console typewriter.

Storage Considerations

Limited core storage presented the most serious prob) .. ~m in imple­

menting the subset. The compiler had to be written in four distinct·

phases with the interpretive executor as a fifth phase. As the execution

of each phase is completed, a LINK instruction is issued to signal the

core load bµilder to load and begin execution of the next phase.

Efforts to conserve storage resulted in the use of data handling

techniques which require a small amount of core storage. Thi.s does,

however, result in increased.execution time. This is particularly evi­

dent in table lookups, where linear searches are used,

7

Data areas were frequently redefined with EQUIVALENCE statements to

permit reuse of storage and more eff;icient access. The FORTRAN compiler

on the 1130 does no subscript optimization for array references with

constant subscripts, Therefore, equivalencing a specific array element

to a simple variable na~e causes a direct, rather than indexed, refer­

ence in the FORTRAN object code.

Although the 1130 core load builder is capable of creating core

image programs with dynamic <Dverlays, this feature was avoided .whenever

possible. The load on call, or LOCAL, facility allows shared use of cot'e

storage by infrequently called subroutines, but significantly increases

execution time due to disk accesses~ (12) Also, the system routine

which loads LOCALed subroutines is quite large and in itself causes

storage problems. Only in the parsing and code generation phase of the

compiler and in the interpretive executor are LOCAL subroutines used,

Storage requirements for these routines could not be met using other

methods.

1130 Problems

Of the problems particular to the 1130, the first to occur during

this implementation was that of representing special characters. The

1130 FORTRAN compiler recognizes only a subset of the EBCDIC character

8

set. Therefore, some symbols which are an integral part of ALGOL 68

(e •. g. , : , ; , II, ¢) must be defined with he,cidecimal or integer equiva-

lents of the FORTRAN Al EBCDIC values. Even when special characters are

correctly defined.within the scanner, the standard I/0 routines cannot

print them. To overcome this problem, the compiler formats its own

print lines and calls an assembler language program to perform the out-

put. Besides supporting the full EBCDIC character set, this routine is

considerably smaller than the FORTRAN formatting routines and permits

overlap between output and computation. The assembly routines used by

the compiler are contained in the ·IBM 1130 Commercial Subroutine Package.

(11) These routines and their uses are given in Table I,

Name

FILL

MOVE

PACK

READ

TYPER

UNPAC

TABLE·!

COMMERCIAL SUBROUTINE PACKAGE SUBPROGRAMS
USED ON THE IBM 1130

Description

Propagates a character through a field.

Moves characters from one integer array to ano~her.

Converts values in an integer array from FORTRAN Al EBCDIC
char ac te rs to AZ EBCDIC •

Causes a card to be read on the 1442 card read/pun.ch into an
integer array. Characters are represented in Al EBCDIC.

Prints a line of .Al E~CDIC characters on the 1130 console
typewriter.

Converts values in an integer array from FORTRAN A2 EBCDIC
characters to Al EBCDIC.

Scratch files, used for temporary storage, presented another minor

9

problem on the 1130 in that temporary files cannot be formally passed

between different phases of the compiler. This problem has been over­

·come by the way the 1130 Disk Monitor System allocates working storage

'files, Files are always allocated starting at the same disk address, so

by defining scratch files in the same order in each segment of the com­

piler, the files are allocated in the same place on the disk. Data with­

in the files is nc;,t changed during the loading of program phases.

Virtual Memory System

In order to allow the compilation and execution of large ALGOL 68

programs on the 1130, a simple virtual memory $ystem was developed. Two

80-word pages reside in memory during execution. One page is .a section

of the object program, Since the object program is never modified during

execution, no facility for storage into it has been included. Should an

attempt be made to store into the program page a storage protection error

is indicated, The second page is a segment from the dynamic storage

area. It contains identifier stora.ge and program linkage information,

When information is stored into this page it is recopied to disk before

a new page is swapped in.

All references to the 1130 virtual memory system are ~de with sub­

routine cails. It was.intended that the virtual memory system be re­

placed by in-core storage on systems with ample memory. Thier Clhange can

.be made easily by intercepting subroutine calls to the fetch and store

routines.

As expected, the use of the virtual memory system results in sl.ow

execution by the interpretive executor due to disk accesse~. It does,

however, serve its intended purpose by allowing the definition of non-

10

trivial ALGOL 68 programs. The performance of the virtual memory system

could be improved by implementing a larger page size.

CHAPTER III

THE COMPILER

Compiler Initialization

Setting Compiler Options

The compiler must initially prepare itself for a particular compila­

tion. Not only must internal pointers.and data tables be established,

but the compiler also must recognize user controlled options to provide

various levels of programmer support. These options range from a source

listing of the user's program to a compiler dump of intermediate results

during compilation.

This particular implementation val;'ies somewhat from the formal def­

inition of the language since compiler options are set by parameters on

a control card rather than with pragmats. The control card .1,11,ethod was

selected because it separated compiler initialization from t)le scanning

and program analysis phases. It also allows for easier keyword identi­

fication since options must be specified in a rigid format.

Compiler option keywords are identified by performing a·linear

search on a keyword table. Although the linear search technique is not

particularly efficient, the relatively small list length allows for key­

woid identification within a reasonable time. A set of default options

is provided for the user, so compiler options need be explicitly stated

only when special compiler services are desired. The default options

12

are underlined in the list of compiler options in Table II.

Due to the linear nature of the keyword list, modifications to it

are relatively simple. Keywords can be added or deleted without regard

to list order. The compiler options which a~e in effect are indicated·

by a set of control flags. Simple options, which are either enabled or

disabled (e.g., SOURCE/NOSOURCE), require only an array entry to desig­

nate which control flag should be set. Options which allow variable

parameters (e.g., SORMGIN) require additional program coding to effect

changes.

Initializing Common Storage

Parameters are passed between compiler phases through FORTRAN com­

mon storage. Since common storage cannot be data initializ.ed it is

necessary to assign values at e:xecution time. The initiali.zation phase

of the compiler is responsible for setting many of the pointers which

are used during the compilation,

The Scanne:i:-

Coding Atomic Symbols

To facilitate the analysis of an ALGOL 68 program, atomic symbols

are converted to integer values. This eliminates the problems involved

with processing symbols of different lengths and allows classification

of keywords and operators according to the way in which they are used.

Negative integer values are used to denote identifiers while positive

integers indicate operators and keywords, Classification of ~eywords

according to use is achieved by assigning equivalent integer values with­

in a specified range (e.g., declaration tokens range from 401 to 499),

Option

SOURCE/NOSOURCE

NEST/NPNEST

OPLIST/NOOPLJ:ST

ATR/NOATR

XREF/NOXREF

STMNT/NOSTMNT

TRACiE/NOTRACE

DUMP/NODUMP

LIST/NOLIST

SORMGIN=(xx,yy,zz)

PASSWORD•JCJ~.

*

13

TABLE II

LIST OF COMPILER OPTIONS*

Description

Prints a listin$ of the source program

Prints block nesting levels

Lists compiler options which are in effect during
a part:f,.cular cpmp::Llation

Prints an attribute.listing for identifiers (not
implemei:,.ted)

Prints a cross.reference listing of identifiers
(not implemented)

Records statement numbers at run time

Prints:the nt,tmber of a.statement before it is
executed at run time

Provides.an instructiQn trace and dump of memory
before each instruction is executed

Lists 4-tuples of the object code as they ;!re
generated

Defines the margins of the SO\ll;'Ce record, where
xx is the starting column. (default 2); yy is the
ending column· (default 72); and zz is a column
containing a standard ANSI carriage control char­
acter which is us.ed to control the source listing
(no default~ ·

D'1111PS intermediate code from the scanner for use
by the implementer anc,i system programmers

Defau~t options are underlined,

14

Recognizing Atomic Symbols

Keywords and Identi.fiers. Identifiers and keywords are identified

and isolated using a finite state automaton (Figure 1). A regular gram-

mar which is used for the recognition of identifiers is given in Table

III. The process is started when an alphabetic character is recognized

and continues as long as alphanumeric characters are input. The charac-

ter string is then truncated or padded with blanks to ei.ght characters.

Although a few keywords are longer than eight characters in length, they

can be identified uniquely by an eight character fragment. Identifiers

may be of any length but they must be unique in the first eight charac-

ters.

letter any other symbol

letter, digit,
space·

Figure 1. Finite State Automaton for Isolating Identifiers

In order to con!;lerve storage, identifiers are packed two characters

per word into four words before they are entered into the symbol table.

The symbol.table is searched linearly. Coded source program equivalents

for identifiers are negative integers.

15

TABLE I;J:I

A GRAMMAR FOR ISOLATING IDENTIFIERS

identifier: tag.

tag: letter; tag, letter; tag, digit token; tag, space~

letter: a; b; c; d; e; f; g; h; i; j; k; l.; m; n; o; p; q; r; s; t; u;
v; w; :x:; y; z.

'
digit token~ O; 1; 2; 3; 4; 5; 6; 7; $; 9.

space:

Identification of keywords is kept to a minimum during the scan

phase. Only keyworcls concel;'ned with comment;s.(COMMENT and CO) and block

structure (BEGIN, END, !F, FI, CASE and ESAC) are iclentif:i,ed, All other

keywords are treated as identifiers~ The keywop~s are distinguished

from the identiUers during the keyword recognition phase.

Operators. Special character operators are identified b~ .means of

a table driven finite state at,itomaton. In an effort to save.storage, .the

table is divided into two parts.. The first table (Table IV) is used to

find a starting state. In some cae~s, an: operator consists of e:x:actly

one syml:!ol and the information contained in the first table is sufficient

to identify it. Otherwise the second table (Table V) is used-as a tran- ·

sition matri:x: for the fin:Lte state automaton~ Positive entr,i.es in the

table indicate a transition is to be made to the.specified state. Nega-.

tive entries indicate an opel;."ator has.been recognized. Table positions

with no entry and characters not contained in the input set signify that

the input character is not acceptable and an alternate list mµst be

tested to determine if previously isolated symbols form a valid ope.rat or.

16

TMLE IV

STARTING STATES FOR OPERATOR RECOGNITION

input symbol: * I + < > (I
start state: 6 8 13 16 21 1 3 14 15 23 24

input symbol: ...) & ? '
@

coded symbol: -29 -2 -21 -28 -6 -36 -5 -28

TABLE V

TRANSITION TABLE FOR OPERATOR RECOGNITION

Input: Symbol

* I ... =)

State 1 2 -8 Alt,
2 -7
3 5 4 -11
4 -9
5 -10
6 13 7 -14
7 -12
8 9 12 -415 -18
9 10 -19

10 -16 11 -20
11 -17
12 -15
13 -22 -23
14 -25 -24
15 -,26 -27
16 18 20 17 -35
17 -32 -31
18 19
19 -34
20 -33 -30
21 -30 22 -39
22 -30 -35
23 -414 -1
24 -38 -37

17

An error condition exists when an inval.id input symbol. is found and there

is no entry in the alternate list.

Given the standard set of operators for ALGOL 68, the finite state

automaton is sufficient for operator identification with at most one

symbol look ahead. If, however, the user is pe.rmitted to declare special

character operators, this method may fail due to ambiguities in symbol

combinations.,

Denotations., Denotations, or ALGOL 68 constants, are also recegni­

zed by a finite state automaton. The method used is similar to that pre­

sented by ~mith, et al. (15) for the recognition of denotations., The

grammar corresponding to the finite state automaton for parsing denota­

tions is given in Table VI, A two character look ahead is sufficient to

distinguish valid denotations, but in some instances it is not sufficient

to recover when an error is detec;ted. As denotations are isolated, they

are output as object code. Denotations are represented in the coded

source program by a denotation ;indicator followed by the relative address

of the denotation in the object code.

String denotations are defined to be a multiple value. Therefore,

a descriptor is output .with each string denotation. The address of the

string denotation in the coded source program is actually that of its

descriptor~ Although format denotations are not multiple values, they

also are output with a descriptor. The descriptor is used only to con­

tain length information for the format denotation. Formats ar~ not

parsed by tq.e compiler. They ar,e stored in ch.aracter form so they may

be analyzed at run time.

TABLE VI

A GR.AMMAR FOR ISOLATING DE:NOTATIONS

denotation: integral denotation; real denotation; string denotation;
format denotation.

integral denotation: digit.token; integral denotation, digit token.

real denotation: variable point numeral; floating point nume.ral.

18

variable point numeral:. integra.1 denotation, fractional part; fraction­
al part~

fractional part: point symbol, integral denotat:lon.

point symbol:

floating point numeral: stagnant part, exponent part,

stagnant part: integral denotation; variable point numeral.

exponent part: times ten to the power choice, power of ten.

times ten. to the power choice:. E.

power of ten: plusminus, integral denotation; integral denotation,

plusminus: +· -'
string denotation: quote symbol, string item sequence, quote symbol.

quote symbol: "

string item sequence: string item; string item sequence, string item.

string item:. ¢ any symbol except the quote symbol¢; quote symbol, quote
symbol,

19

Keyword Recognition

Keyword Identification ,,

Keyword identification is performed in a phase separate from the

scanner. This is due primarily to storage considerations. The list of

ALGOL 68 reserved words is lengthy and could not have been included eas-

ily with the scanner.

Regardless of how many times a keyword is used i11. a progr1:1.m, there

is only one entry in the symbol table for it. Only one search of the

keyword table must be made to identify it throt.1ghout the entire program.

The keyword search is performed by determining the length of, the symbol

and using a linear search o~ a table of fixed length,entries, When a

keyword is identified an entry is made into an array. The array is then

used to map identifier codes to the correct keyword code during a fix-up

pass through the coded source program.

The,separate pass through the coded source program to identify key..-

words does not appear to significantly affect the performance of the

compiler unless a large number of identifiers and keywords are used with-

in a single ALGOL 68 program. Improved symbol table techniques could be

employed to improve performances in these cases. Also, the extra pass

through the coded source program allows the ide11.tification of labels and

an analysis of the block structure of the program.

Label Recognition and Block Analysis

Pue to the manner in which branching is controlled in the code gen-

eration phase, it is important to know which identifiers are used as

labels as well as where they are declared. This requires an extra pass

20

through the program, but it has been combined with the keyboard recogni-

tion pass in this implementation. Labels are identified as an identifier

followed by a colon symbol, where they do not occur within a row declara-

tion. When a label is found, a symbol table entry indicating the block

in which the label is defined is made.

Program blocks are numbered consecutively by counting open symbols

(' (') and their equivalents (BEGIN, IF and CASE). For each block in the

program a table entry is made indicating t~e number of the block which

i1!llllediately contains it. From this table, and from the .block number of

a label in the symbol table, the code generation routine can determine

if a jump is valid.

'

Environmental Enquiries

According to the formal definition of ALGOL 68, environmental en-

quiries and pre-defined constants are identifiers which are declared and

initialized in the standard prelude. (18) This implementation handles

them in exactly this manner. When an environmental enquiry or pre-de-

fined constant is used within a particular program, code is generated

to allocate and initialize it outside of the first block of the user's

program.

Parsing and Code Generation

Parsing

Declarations. In an effort to ma~e parsing of declarations simple,

declarations have been limited to simple data types and arrays. Expres-

sions are not allowed within a declaration. Furthermore, all identifiers

must be declared and declarations may only appear at the beginning of a

21

block. The grammar used for parsing declarations is given in Table VII.

The restricted declaration for~at makes it possible to parse decla-

rations by means of a finite state automaton with only one symbol look

ahead (Figure 2). This look ahead, however, is not sufficient to re-

cover from error conditions, in which case the remainder of the declara-

tion is ignored. Error states are recognized by invalid input symbols.

Since a run time symbol table is maintained, code must be generated

for ea.ch symbol declared. The code generated is an instruction which

makes the appropriate run time symbol table entry. No addre~s resolu­

tion is necessary at compile time since the address is determined from

the symbol table at execut;i.on time. Identifiers are, in effect, address-

ed by their symbol (a negative integer).

Figure 2. Finite State Automaton for Parsing Single Declarations. The
DK's represent arbitrary states in the automaton

TABLE. VII

A GRAMMAR FOR DE.CLARATIONS .

declaration prelude sequence: single declaration.; declaration prelude
sequence, single declaration.

22

single declaration: simplemode, decl list, semicolon symbol; sub symbol,
rows of, bus symbol, simplemode, identifier list, semicolon symbol.

semicolon symbol:

sub symbol: (/.

bus symbol:. /).

.
' .

simplemode: INT; REAL; COMPL; COMPLEX; BOOL; .CHAR.

rows of: row of; rows of, comma symbol, row of.

comma symbol: ' .
row of: bound, colon symbol, bound; bound.

colon symbol: : •

bound: integral identifier; integral denotation.

decl list: decl; decl list, comma symbol, decl,

4ecl: identifier, becomes symbol, identifier; identifier, becomes sym­
bol, 4enotation; identifier.

becomes symbol: :. •.

identifier list: identifier; identifier list, comma symbol, identifier.

23

Associated with multiple values (rows or arrays) is a descriptor.

(18) As a row declaration is parsed, a descriptor template is output

with the object code. When the row declaration is elaborated at execu­

tion time, the template is used to supply bound information for the

actual descriptor.

Program Parse. The ALGOL 68 program is parsed using a combination

of top-down and bottom-up methods. The overall program structure,

specifically the block structure, is examined from the top down. Indi­

vidual statements (expressions) of the program are parsed from the bottom

up. This method, is possible because every identifier, operator and ex­

ternal object (e.g., serial clat1se) is said to possess a value upon its

elaboration. (18) Therefore, it is never necessary to consider anything

more complicated than two single values and the effect of an operator on

them. Whether a value is from a reference-to-integral-mode-identifier

or a strong-conditional-void-clause is insignificant. Table VIII con­

tains a grammar for parsing the body of the ALGOL 68 program.

E;xpressions are analyzed by means of a modified postfix Polish con­

version routine. Output from the routine consists of interpretive code

which will cause the evaluation of the expression at run time.

Delimiting symbols (e.g., (, I, ; , ,) present no problem for the

parse. They are assigned a priority and are processed in the same man­

ner as other operators. Similarly, procedure calls are treated as monad­

ic operators which are applied to their parameter lists.

Recursive Descent. In order to consider only a single value at a

time during the parse, it is necessary to consider each block in the

ALGOL 68 program separately. Whenever an open symbol is encountered,

24

TABLE VIII

A GRAMMAR FOR PROGRAM PARSING

particular pro gram:. begin symbol, serial clause, end symbol; left par­
enthesis symbol, serial clause, right parenthesis symbol; if sym­
bol, serial clause, then symbol, unitary clause list, else symbol,
unitary clause list, fi symbol; if .symbol, serial clause, then sym
bol, unitary clause list, fi symbol,

serial claus.e: declaration prelt1de sequence, unitary clause list, uni­
tary clause list •.

unitary clause list: unitary clause; unitary clause list, semicolon sym­
bol, unitary clause.

unitary clause: l.abel, colon symbol, unitary clause; expression; jump.

jump: goto symbol, label; label.

l,.abel: identifier.

goto symbol: GO, TO; GOTO.

expression: formula.

formula: formula, pl operator, p2 operand; p2 operand.

p2 operand:. p2 operand, p2 operator, p3 operand; p3 operand.

p3 operand: p3 operand, p3 operator, p4 operand; p4 operand,

p4 operand: p4 operand, p4 operator, p5 operand; p5 operand~ .

p5 operand:. p5 operand, p5 operator, p6 operand; p6 operand.

p6 operand: p6 operand, p6 operator, p7 operand; p7 operand,

p7 opetand: p7 operand, p7 operator, p8 operand; p8 operand,

p8 operand: p8 operand, p8 operator, p9 operand; p9 operand,

p9 operand: p9 operand, p9 operatol;', monadic operand;
I

monadic operand.

monadic operand: monadic operator, monadic operand; primary,

primary: identifier; denotation.; selector, primary; slice; particular
pragram; standard procedure, left parenthesis symbol, parameter
list, right parenthesis.symbol; cast.

25

TABLE VIII (Continued)

selector: RE; IM.

slice: identifier, sub symbol, indexer list, bus symbol,

indexer list: indexer; indexer list, comma symbol, indexer.

parameter list: unitary clause list; parameter list, comma symbol, uni­
tary clause list.

begin symbol: BEGIN.

end symbol: E.ND.

left parenthesis SY,1llbol: (.

right parenthesis symbol:).

if symbol: IF.

fi symbol: FI.

then symbol: THE~.

else symbol: E.LSE.

the parse literally starts over with a new program. Only the symbol

table reflects the existence of containing blocks. Each block is assum-

ed to contain a complete program which returns a value.

When restart:ing the parse at the entry to a block, it is necessl,'l.'X'Y

to.preserve the status of the paise of the containing block. This is

done by making entries to the symbol and operator stacks used by the

Polish string routine. The opeiator stack entry contains a priority loW'

enough to prevent the code generation routine from acting on it. along

with the block number of the containing block. The symbol stack entry

contains information as to where the parse left off. After flags have

been reset, the parse starts over. At block exit, the flags are reset

from the information which was stackeq, and the parse resumes. This

26

method allows block nesting to occur to an unspecified and theoretically

limitless depth.

Code Generation. Each operator is assigned a priority to specify

when an operation is to be performed in relation to other operators.

The Polish string conversion routine maintains this relationship. Opera­

tors and their priorities are passed to this routine and are stacked on

the operator stack so that their priorities are strictly non-decreasing.

If necessary, the code generation routine pops a higher priority opera­

tor from the operator stack, along with any associated operands from the

symbol stack, so that this order is preserved. As an operator is popped

by the code generation routine, an instruction is generated to perform

that operation at run time.

Transfer of Control. Progranuner directed jumps and branching

associated with conditional clauses also are controlled by the Polish

string conversion routine. Jumps, or GOTO's, are indicated by an identi­

fier on the symbol stack with mode label (actually, reference-to-proce­

dure), If the label identifier is defined within a containing block; a

branch instruction is generated. Other't,;rise an error condition is indi­

cated. Since the branch is to a label identifier, no address resolution

is necessary during the code generation phase. The address is deter'!llin­

ed by the parser and entered into the run time symbol table before execu­

tion.

Conditional branching is somewhat more complex, As previously

stated, the delimiters THEN, ELSE and ELSF are treated as operators.

Each generate a branch instruction as they are placed on the operator

stack and each carries with it the address of that instruction so that

the branch address can be resolved when code generation for the clause

is complete.

27

When a then-symbol is found, an instruction is generated which

causes a jump if the result of the boolean if-clause is false. The

branch address is left unresolved until an else-symbol is found. (If

there is no else clause, the fi-symbol resolves the address). At that

time, an unconditional branch is generated to skip over the else clause,

and the branch address for tpe then-symbol is resolved. When the fi­

symbol is found, the unconditional branch address pl;'eceeding ;he else

clause is resolved. Using this method, no fix up pass through the object

code is needed since.all addresses are resolved dur:j.ng the parse. The

code generated to control branching in a cqnditional clause can be seen

in Figu:i:-e 3.

BLOCK ~.L'fJ.'.ltY IF

expression expression

BRANCH IF FALSE - THEN

then clause then clause

- BRANCH ELSE

----else claus.e else clause

---II BLOCK EXIT FI

Figure 3. Code Generated for a ConditionaL Clause

28

Mode Coercion and Subscripting. Included in the standard prelude

for operators are p;ovisions for operations between operands of differ­

ent modes. Specifically, it allows widening, or coercion from integral

to real and from real to complex. Rather than supply each operator in

the executor with widening capa~ilities, an op code was defined to ef­

fect widening. This instruction is generated automatically when mode

conflicts are noted and widening·is appropriate.

Slicing, or subscripting, is accomplished by means of a "load sub­

scripted" instruction which places ·the address·of·a single.:rew element

into the run time symbol table for a temporary identifier entry. The

row element can then be addressed directly through the identifier.

Error Recovery

In an effort to assist the ALGOL 68 programmer, the compiler initi­

ates correctional actions to try to continue the parse. The actions are

based on the concept of maintaining a correct relationship be;ween opera­

tors on.the opera.tor stack and symbols on the symbol stack. Dummy opera­

tors and operands are generated as needed for this purpose.

The scan11er converts the user's program to a coded form to facili­

tate program analysis. Parsing of .the ALGOL 68 program is performed in

two passes using a combinat.ion of top down and bottom up methods. Object

code consisting of 4~tuples to be interpretively executed is output.

Address entries fpr all labels defined in the ALGOL 68 program are made

in the run time symbol table before execution is passed to the executor.

CHAPTER IV

INTERPRETIVE EXECUTION

The Use of FORTRAN

In an effort to make the ALGOL 68 implementation machine independ­

ent, IBM 1130 basic FORTRAN was selected for the implementation of in­

terpretive execution. (10) Since FORTRAN is a universal language, code

generated by the compiler can be executed on virtually any system through

the executor. Also, the object code can be produced by one machine and

executed by another.

Using FORTRAN interpretation, it is possible to utiltze the func­

tions in the FORTRAN subrc:;,utine library, This made implementation on

much easier in that ~xisting procedures could be used for computational

as well as input/output functions. Although the original implementation

uses only standard subroutines, it is possible to modify the executor to

include available software. One such change might be to use the complex

arithmetic software of a.system, rather than depend on the routines in

the executor.

The Interpretive Code

Each instruction of interpretive code consists. of a 4-tuple of in­

teger values. The first value consists of the operation code and the

mode of the instruction. The use of the remaining three values is de­

pendent upon the instruction, They may contain addresses of up to three

?Q

30

operands, or additional mode or operation information. The operation

codes are 1;1.sted i'.Q. Appendix B.

Storage Management

The execution time layout of storage is shown in Figure 4. The ob-

ject program resides in the low end of the storage area. Th:Ls area is

fixed and is '.Q.Ot modified during program execution. The remaining stor-

age is. used to contain two stacks. Dynamic storage for identifiers and

system linkage needs is allocated from the execution stack. Heap star-

age, for identifiers with the HEAP attribute, is allocated in a stack-

like manner from the other end of storage.

Stackend
v

Object
Program

Stack top
v

Execution
Stack (free

Heapend
v

storage)

Figure 4. Storage Layout

Heap end
v

Heap
Storage

The limits of storage are set by the stackend and heapend pointers.

The heapend pointer is set to reflect the absolute limit·: of the storage

area and the stackend pointer indicates the end of the program area.

The limits of allocation are also maintained by pointers. The stacktop

pointer is incremented as storage is allocated so that it points to the

next available storage location. Similarly, the heaptop pointer is

decremented as heap storage is allocated. Stack overflow occurs when

the stacktop pointer is greater than the heaptop pointer, but this occurs

31

only when every available storage location has been used.

The storage area for the executor is addressed in three different

ways. Addresses which refer to a constant value or a fixed branch ad­

dress are absolute, relative to tqe beginning of the storage area. These

addresses are represented in the operand fields of the interpretive in­

structions as positive values. References to values possessed by identi­

fiers are indirect and must-be resolved from the run time SYI!lbol table.

A reference to an identifier is indicated by a negative operand value

which refers to a relative position in the symbol table. T~mporary

storage for intermediate results is allocated as needed from t~e top of

the execution stack and is referenced by an operand with a value of zero.

Addresses for values on the top of the stack are computed from the stack­

top pointer and the mode information contained within an instruction.

Stack temporaries are automatically allocated or released as they are

referenced. Regardless of the type of addressing which is used, a sub­

routine call is made to determine the absolute address of an operand.

DISPLAYS

The block structure of a program is maintained through tne use of

DISPLAYS. (6) The 'DISP1..AY provides a convenient mechanis,m ·for maintain­

ing system linkages when sto;rage is allocated in a stack-like manner.

Contained within the DISPLAY are pointers to DISPLAYS for all containing

blocks as well as a pointer to the head of a linked list of identifiers

declared within the block,

-
DISPLAY [o]

DISPLAY [1]

DISPLAY [2]

DISPLAY [3]

IDENTIFIER LINK

Figure 5. DISPLAY for a Nesting
Level of Three

The pointers to higher level DISPLAYS provide a means by which no

storage need be explicitly released at a block exit, (17) The entry

32

pointing to the current DISPLAY is actually the stacktop pointer before.

t~ most recent block entry was made. Restoring the old stacktop point-

er automatically releases storage allocated by the block. Similarly,

11U1ltiple block exists, nee4ed when control is transferred to an outer

block, can be effected by restoring the appropriate stacktop pointer

(Figure 6). This method for multiple exists is not used in this imple~

mentation, however, because the run time symbol table must be restored

at the exit from each block.

Run Time Symbol Table

Declaring Iden ti fie rs

As a declaration is elaborated, storage is allocated for the identi-

fier and the run time symbol table is updated to reflect the new declara-

tion. Previous declarations are preserved by storing the symbol table

entries on the execution stack in a linked list. The DISPLAY for each

-
DISPLAY [o]

DISPLAY [1]

IDENTIFIER LINK

Dynamic Storage
for Block 1

DISPLAY [O]

DISPLAY [1]

DISPLAY [2]

IDENTIFIER LINK

Dynamic Storage
I

for Block 2

free storage

~

-...

-

~ ..
I

Old Stacktop Pointer

Current Stacktop
Pointer

Figure 6. Relation of Stacktop Pointers to DISPLAY
Entries

33

34

block contains a pointer to the head of the li.nked list for all identi­

fiers declared within the block (Figure 7). At block exit, the symbol

table is restored from the previous symbol table entries iq the linked

list.

LIST HEAD

IDENTIFIER ADDRESS MODE LINK

. IDENTIFIER ADDRESS MODE L NK

Figure 7. Chaining of Previous Declarations

The use of the run time symbol table eliminates the problems involv­

ing the reach of a declaration. Only the most recent declaration is

available from the symbol table. Previous declarations are no.t available

until the b.lock containing ne:w &eclai;iations is exited. Also, identifiers

which have not been declared before they are referenced can be detected

easily by invalid addresses in the run time symbol table.

Sub.scripting

Reference to a single element of a multiple value is effected

through a special symbol table entry. Identifiers are generated by the

compiler to contain the address of the element. An instruction is used

to compute the address using information contained in the multiple value

descriptor (Figure 8) and the subscripts which are in temporary storage

on top of the execution stack.

c

L

u

D

s

T

Offset

Lower Bound

Upper Bound

Stride

Lower State

Upper State

This quintuple occurs
once for each row of
the array

Figure 8. Format of the Multiple Value De$criptor

35

Subscript checking occurs automatic~lly during interpretive execu-

tion. Subscript bound information is obtained from the desc.riptoll' for

the multiple value. Upon recognition of .a subscripting error, a message

is printed and execution is terminated. If all sub1:1cripts are within

the correct bound11, the address il!I computed as an offset from the first

element in the array and the address is stored into the symbol table

under an entry for a special identifier.

Error Processing

Run time error checking provides a mechanism for detecting errors

which can not be detected easily by the compiler. This is li.mited pri-

marily to operations which are not defined between arguments of certain

modes. These errors are detected automati~ally during instruction of

code decoding and execution is terminated.

Other run time error checking involves testing for ide.ntifiers

which have not been declared. This is accomplished through the use of

36

the run time symbol table. Mode checking is nQt performed at execution

time since all mode conflicts are resolved by the compiler.

Execution ~rror messages are printed by a separate abnormal termina­

tion routine, The correct error message is determined fro?-,the comple­

tion code which is set by the executor. As a user specifiep, option,

statement numbers are retained during execution to make error analysis

easier. The abnormal termination routine also dumps internal pointers

when debugging aids are enabled. This facilitates detection of system

errors.

The 4-tuples of code generate~ by the compiler are interpretively

executed. Dynamic storage is a4ministered in a stack-like manner by the

executor. A run time symbol table is maintained for address resolution

of identifiers.

CHAPTER V

USER'S GUIDE

Control Cards

The control cards necessary for execution o:f the ALGOL 68 subset

compiler on the IBM 1130 are shown in Figure 9.

II JOB
II XEQ ,I\.LG68
:JOB

ALGOL 68 Source Program

:ENTRY

Program Data (if any)

: IBSYS

Figure 9. ALGOL 68 Control
Cards for the
IBM l,130

The :JOB card initiates program input. Compiler options (Table II)

may be specified using the format specified in Figure 10. A blank term-

;i.nates the.scan of the :JOB card and the remainder of the card is treat-

ed as conunents. Table IX contains a list of abbreviations which may be

used to specify compiler options. The word NO may be used in front of

,.,..,.

abbreviations as well as keywords, where appropriate, to turn off un~

wanted options.

set:

columns 1-4 the characters :JOB

columns 6-22 accounting information (not used)

columns 23- compiler options, each preceeded by
a comma and containing no embedded
blanks

Figure 10. Format of the :JOB Card

TABLE IX

COMPILER OPTION ABBREVIATIONS

Abbreviation

s
N
OP
A
x
ST
T
D
L
SM
PW

Keyword

SOURCE
NEST
OPLIST
ATR*
XREF*
S'I'MNT
TRAC:E
DUMP
LIST
SORMGIN
PASSWORD

* ATR/XREF have not been imple-
mented.

Restrictions

The following restrictions have been applied to the ALGOL 68 sub-

1. All ALGOL 68 keywords are reserved;

2. Keywords must be separated from identifiers, denotations and

38

other keywords by at least one blank;

3. Keywords, multiple symbol operators and denotations may not

contain embedded blanks;

4. All identifiers must be declared before they are referenced.

All declarations must appear at the front of a block;

5. Identifiers may not contain embedded blanks, but the break

character or underline (_) may be used to imp.rove readability;

39

6. Conunents may appear anywhere a blank may appear, but they must

start and end with the same symbol;

7. A label may l;>e defined on:(.y once within a program and may not

subsequently be declared as an identifier;

8. Conditional clauses must be balanced by the prograimner;

9. Identifier initializations may contain no expressions and must

be of the correct mode;

10. Bounds on array decla:i:;ations must be simple integral denotations

or identifiers.

Programming Tips

The user should avoid the use of unnecessary parenthesis and BEGIN­

END blocks. A considerable amount of overhead is involved with block

entry and exit.

Subscripting for multiply dimensioned arrays is significantly slow­

er than for singly dimensioned arrays. Where possible, the number of

dimensions should be kept to a minimum.

When the 1130's virtual memory system is in use, multi-dimensional

arrays should be initialized in row order to minimize the number of page

faults,

CHAPTER VI

SYSTEM PROGRAMMER'S GUIDE

Compiler Modification

Changing Symbol Table Sizes

In all phases of .the compiler, as well as the interpretive executor,

the symbol table is the last entry in the COMMON storage area. The sym~

bol table size can be modified by changing the array dimension for SYMTB.

(In the forth phase of the compiler, STACK is EQU~VALENCEd to SYMTB so

its dimension also should be ah~nged.) References to the length of the

symbol table are made by a reference to the integer variable SLEN, so

its DATA initialized.value must be changed to correspond to the symbol

table dimension.

The parsing and code generation phase of the compiler indirectly re­

fers to the run time symbol table length of the executor through the

integer variable MAX.SM. This value represents the maximum number of

symbols which can be entered into the symbol table during program execu­

tion. Since symbol table entries require two words, MAX.SM has a value

equal to one half of the run time symbol.table length,

Converting to.In-core Storage

On systems with sufficient core storage, the 1130 virtual1t11amory

system should be eliminated to increase the speed of execution. A single

[,.()

41

region of storage is required for the compiler's memory needs and ideal-

ly it should be addressable from all routines. This could be achieved

using labeled C.OMMON or by appending the additional storage on the end

of the system's blank COMMON.

Fetching and atoring into memory is performed by the subroutines

ALGFE and ALGST, respectively. These routines would have to be re-

written to allow the direct reference to storage. The coding of these

routines for use with storage in labeled COMMON is shown in Figure 11~

SUBROU'.UNE ALGFE (IADDR, BUFFER, LENG)
C FETCH ROUTI:~lE

INTE~;F;R. BUFFER(!)
COMMON/MEMRY/ M(8000)
K•IADDR+LENG-1
J=l
DO 10 I-IAPDR,K
BUFFER(J).;.M(I)

10 J•J+l r

RETURN
END

SUBROUTINE ALGST(IADDR,BUFFER,LENG)
C STORE ROUT:tNE

INTEGER Bl]fFER(l)
COMMON/ME;MRY/ M(8000)
K•IADPR+LENG-l . ,
J•l
DO 10 I:11IA,DDR,K
M(I)=~UFFER(J)

10 J=J+l
RE.TURN
END

Figure 11. Fetch and Store Routines for Con­
version to Core Storage

Converting I/0 Routines

The routines used on the 1130 to perform input and output are, by

42

necessity, system dependent. Therefore, calls to these routines are

made in such a manner that I/0 routines could be written easily for any

system to perform these functions. All input and output is done in

terms of Al EBCDIC character strings stored in integer arrays. The com~

piler does all of its own fo~matting and d.ata conversion. Suggested

routines to convert to standard I/0 are in Figure 12.

StJBR.OJ.JT !NE ALGPR. (LINE., LENG)
C PRINT ROUTINE

INTEGER. LINE(!)
DA,i'.A. I.OUT/ •••• I
WRITE(IOUT,lO)(LINE(I),I•l,LENG)

10 FORMAT(120Al)
RETURN
END

SUBROUTINE READ(CARD,START,STOP,EOF)
C READ ~OUTINE

INTEGER·CARD(SO),START,STOP,EQF
D~TA "WI •• ., I .
READ(IN,10,END~30)(CARD(I),I•START,STOP)

10 FOR.MAT(80Al,)
20 RETURN

C END-OF-FILE
30 EOF...;1

GO TO 20
END

Figure 12. Read and Print Routine.a for Conver­
sion to Standard I/0

Card input involves reading charactEjlrs from a card and storing them

into specified positions of an integer array. This function is perform-

ed by subroutine READ. This subroutine contains a parameter to indicate

a last card, or end-of-file, sequence on the 1442 read/punch, but this

parameter is not actually used by the compiler.

Output is generated one line at a time and is passed to subroutine

43

ALGPR to be printed. The print line is a variable length integer array

of·FORTRAN Al EBCPJ:C characters, the first of which is for carriage con-

trol. The carriage control characters are not printed and are standard

ANSI carriage control characters as shown in Table X •.

Program Linkage

TABLE X

CARRIAG~ CONTROL CHARACTERS

Character

(blank)
0

+
1

Action

si.ngle space
double space
triple space
no advance
new page

The IBM 1130 implementation consi$ts of distinct progrl!lm segments

which are loaded and executed as needed. It is never nec~ssary to have

any portion of a previous phase in core during the executiqm of a sub->\

sequent phase. (Some subroutines are used in more t.han one phase, but

ea:ch core image program contains it:s own~·copy-of such routit},~~'~)

The loading of .compiler phases is program controlledon the 1130 by

the system L.INK instruction.· (12) This instruction signals the core

load builder to load and begin execution of a specified program, namely

the next phase of the compiler. Parameters in COMMON storage are pre-

served during the LINK operation.

When converting to other systems, overlay capabilities of a linkage

editor could be used to achieve tµe effect of the 1130 LINK instruction.

Each segment of the compiler ~ould be overlayed when it is no longer

needed. Provisions would have to be made concerning subroutines which

are shared by different program segments, This could involve keeping

them resident in core of by supplying a new copy with each overlay.

Values in COMMON storage must remain unchanged during program segment

overlaying.

44

Figure 13 suggests a method by which use of overlays could be

avoided. This would involve changing the parameters of the .1130 FORTRAN

CALL LINK instructions from program names to integer values. Program

segments would be treated as subroutines whose execution is controlled

by a subroutine call 'LINK'. Subroutine LINK is called whep a transf~r

of control to the next phase is desired. It should be noted that this

linkage method results in subroutine LINK being called recursively, thus

poseibly destroying system linkage information. However, depending on

the operating system being used, this information may never be used,

since a normal return would never be executed. Program control is never

returned to a previous phase of the compiler. When the compiler or exe­

cutor has finished, a CALL ~IT command is issued to return to the oper­

ating system. If an operating system can regain control without using

the previously destroyed linkage information, this method could possibly

be used.

Data Alignment and Lengths

All numeric and character values, regardless of length, are treated

as elements of integer arrays. This requires the ability to redefine

different values as int~ger arrays through the use of the EQUIVALENCE

statement, The manner in which this is done is highly machine dependent

due to system differences in storage and length requirements.for each

data type.

1) Replace prqgram names in CALL LINK instructions with the following
integer values:,

Program
name

Integer
value Program function

scanner
keyword recognition

45

ALG02
ALG03
ALG04
ALGOS
ALGAE
AL.GC.D
ALGCE

1
2
3
4
5
6
7

parsing and code $eneration
interpretive executor
abnonnal termination handling
c.ompiler debugging
compi1'3r debugging

2) Change all of the above mainline routines to subroutines

3) Include the following program to control linkage:

SUBROUtI~E LI:m<(N)
GO TO(l0,20,30,40,50,60,70),N

10 CALL ALGO 2
20 CALL ALG03
30 CA.LL ALG04
40 CALL ALG05
50 CALL ALGAE
60 CALL ALGCD
70 CA.LL ALGCE

END

Figure 13. Steps in Conversion to Linkage by Subroutine Call

The length for each data.type on a particular system is indicated

by an entry in the integer array LENGS~ This array contains five entries

which indicate the length in words of integral, real, comple:is., boolean

aad character values, respectiv.ely. It should be noted that ,boolean and

character values are treated as integer values, while complex values are

represented as a pair of real values.

46

Implementing Procedures

Parsing Procedure Declarations

Since proced1,1re declarations may contain e~pressions, procedures

must be parsed by the routine used for analyzing unitary clauses (ALG04) •.

The declaration parsing routine (ALGDL) is simply not sophisticated

enough to handle the types of st;:atements which coul.d occur in procedures.

A suggester granunar for parsing procequre .declarations is given in Table

XI.

TABLE XI

A GRAM:MM, FOR PROC.EDUR~ DECLARATIONS

procedure declaration: proc symbol, identifier, formal parameter pack,
proc mode, colon symbol, unit$ry clause, semicolon symbol; proc
symbol, identifier, proc mode, colon symbol, unitary clause, semi­
colon symbol.

formal parameter pack: left parenthesis symbol, formal parameter list,
right parenthesis symbol.

formal parameter list: virtual parameter; formal parameter list, .comma
symbol, virtual parameter.

virtual parameter: parameter mode, .identifier list.

parameter mode: proc rqws, simplemode; simplemode; reference-to symbol,
proc rows, simplemode; reference-to symbol, simplemode.

proc rows: sub symbol, rows, bus sytp.pol; sub symbol, bus symbol.

rows: conuna symbol; rows, comma symbol.

proc mod~: simplemode; VOID.

proc symbol: PROC.

reference-to symbol: REF.

47

It is suggested that procedure declarations be restricted to allow

no reference to identifiers which have not been previously declared by

the user, either in the parameter list or in a conta::Lning .block of the

ALGOL 68 program. The mode of all operands must be known before code

generation can occur. Therefore, if an identifier has not been declar­

ed, a valid instruction referencing it cannot be generated, An alterna­

tive to this restriction would be tq make an extra pass through the coded

source program to determine the modes of all identifiers in the program,

Additional Instructions

At least four additional instructions must be defined to effect

procedure calls: an instruction for passing para.meters; an instruction

to link to a procedure; an instruction to return from a procedure; and

a branch instruction for abnormal exit from a procedure.

The passing of parameters could be handled easily through the run

time symbol table, All that would be involved would be to place the

addresses of the actual parameters in the calling statement into the

symbol table entries for the virtual parameters of the procedure declar­

ation. Since address resolution occurs at run time, there. is no problem

as to which allocation of an identifier would be referenced. Only the

most recent declarations would be available from the symbol table.

Linking to a procedure is relatively simple. It involves storing

the return address on top of the execution stack and branching to the

first instruction of the procedure. At the procedure entry point, para­

meter addresses, also stored on the execution stack, would be retrieved,

Exit from the procedure would involve restoring the symbo;I. table and

branching to the return address.

48

The use of DISPLAYS makes abnormal exits from procedures easy.

Since the nesting level of the block for each label is known, storage

release and transfer of control are greatly simplified. It is, however,

necessary to restore the run time symbol table to account for all decla­

rations elaborated within blocks.which are exited.

Program Control Flag

An extra control flag is necessa'l;'y to indicate that a procedure

declaration is being parsed. This flag would be tested each.time a semi­

colon is found to determine if it ends a procedure declaration, If so,

an exit instruction would be generated to return to the calling state­

ment. This flag also could be used to signal that a parameter list is

being parsed, in which case an address, rather than a value, would be

loaded on the execution stack when a comma is found, Then, when a right

parenthesis is found the procedure call would be generated, This program

control flag would be stacked as is the block number during recursive

descent.

Error Checking

Detection of errors concerning procedure calls could become quite

complex. Minimally, a check must be made to see if the number of para­

meters in a call matches the number in the procedure declaration. This

would be sufficient to prevent a system error but would require that.the

user be responsible for mode checking, Ideally, the parser should gen­

erate tables for mode checking of procedure operands. This would elimin­

ate user errors involving referencing parameters.

49

Compiler Debugging Aids

Within the compiler are debugging facilities so the compiler and

executor can help to debug themselves. This allows system programmers

and the implementor to dump intermediate values between phases of the

compiler. All values dumped are clearly labeled and indicate the status

of the compilation at various points.

The compiler debugging facility is not intended for use by the

application programmer. It does not provide him with any useful infor­

mation for debugging and ALGOL 68 program.

The debugging aids are enabled through the PASSWORD~JCJ~ parameter

of the :JOB card. Also of interest to the system program.mer.are the

LIST and DUMP options, The LIST option prints 4-tuples of generated

code (some branch addresses will not be resolved). The DUMP option pro.­

vides an execution trace, along with a complete dump of the dynamic

storage stack, before each instruction is executed. Use of the DUMP

option should be limited since potentially large amounts of output are

possible.

CHAPTER VII

SUMMARY, CONCLUSIONS AND FUTURE WORK

Using the methods outlined in this paper an ALGOL 68 subset.has

been implemented at Oklahoma State University fqr the IBM 1130, It has

successfully compiled and executed programs of a.scientific nature, To

a limited extent the translator has been used by undergr~d~ate students.

in an attempt to learn the language,

Future .work on the system will :f,.nvolve extensive test,ing and the,

implementation of extended transput .capabilit:1.e,, Additional comp:1,.le ·

time error checlting would be desirable for instructional purp.oses,

This implementation seems to meet the basic needs for int:toducing

the student to the ALGOL 68 language while it allows comJ>ilat:ion and

execution of application programs of a scientific nature, .This subset·

translator provides a. sµitable starting point for an understanding of

the complete ALGOL 68 language,

A SELECTED BIBLIOGRAPHY

(1) Berry, Roger. "A BNF Grammar for Formats in ALGOL 68," Proceedings
of an ALGOL 68 Workshop, Oklahoma State University, 1973.

(2) Berry, Roger. "A Practical Algorithm for the Implementation of
Formats in ALGOL 68," Proceedings of an ALGOL 68 Workshop,
Oklahoma State University, 1973.

(3) Berry, Roger. "Transput in ALGOL 68," Proceedings of an ALGOL 68
Workshop, Oklahoma State University, 1973.

(4) Currie, I. F., Susan G. Bond and J. D. Morrison. "ALGOL 68..,.R,"
ALGOL 68 Implementation, ed. J. E, L. Peck. Proceedings of
the IFTP Working Conference on ALGOL 68 Implementation.
Munich, July, 1970. Amsterdam: North-Holland Publishing
Company, 1971.

(5). Currie, I. F. and P. M. Woodward, "Working Description of ALGOL
68-R," Royal Radar Establishment Memorandum, Malvern, England,
December, 1970.

(6) Gries, David. Compiler Construction for Digital Computers. New
York: John Wiley and Sons, Inc., 1971.

(7) Hedrick, G, E. and B. R. Alexander~ "A Transition from PL/I to
ALGOL 08," Proceedings of .the Second Vancouver Conference on
ALGOL 68 Implementation, Vancouver, 1972.

(8) Hedrick, G. E. and C, L, Smith. "Context Conditions in AL.GOL 68,"
Soken Kiyo, 3.1 (1973), pp. 1-28.

(9) Hill, U., H. Scheidig and I:l, Woessner. "An ALGOL 68 Compiler,"
Technical Report, Technical University of Munich and Univer­
sity of British Columbia, 1972.

(10) IBM 1130/1800 Basic FORTRAN IV Language (GC26-3718).

(11) IBM 1130 Commercial Subroutine Package (1130-SE-25X), Version 3
Mod. I-Program Reference Manual (GH20-0241).

(12) IBM 1130 Disk Monitor System, Version 2, Programmer's and Opera­
tor's Guide (GC26-3717).

(13) Jensen, John C. "An ALGOL 68 Subset Compiler," Proceedings of an
ALGOL 68 Workshop, Oklahoma State University, 1973.

Sl

52

(14) Jensen, John C. "Considerations for the I,mplementation of an
ALGOL 68 Subset on the IBM 1130," Proceedings of an ALGOL 68
Workshop, Oklahoma State University, 1973,

(15) Smith, C. L., G. E. Hedrick and J. R. Van Doren. "A Scanning
Algorithm for ALGOL 68 Denotations," Proceedings of the
Second Vancouver Conference on ALGOL 68 Implementation, Van­
couver, 1972.

(16) Peck, J.E. L. An ALGOL 68 Companion. Vancouver, British Colum­
bia: University of British Columbia, 1971.

(17) Van Doren, James R. "A Conceptual Model for Dynamic Storage Ad­
ministration in Block Structured Languages," Technical Note,
Oklahoma State University, 1972.

(l~) van Wijngaarden, A., ed., B. J. Mailloux, J. E. L. Peck and C.H.
A. Ko,ster, "Report on the Algorithmic Language ALGOL 68,"
Numerische Mathematik, 14 (1969), pp. 457-519.

(19) Woodward, P. M. "Primer of ALGOL 68-R," Royal Radar Establ:i,.shment
Memorandum, Malvern, England, 1970.

(20) Woodward, P. M. and Susan G. Bond. Vser' s Guide to A~GOL 68-R.
Malvern, ~ngland :. Royal Radar Establishment, 1971.

APPEND IX A

CODED PROGRAM EQUIVALENTS

TABLE XII

CODED PROGRAM EQUIVALENTS

Description

minus and becomes symbol
minus symbol
plus and becomes symbol
prus and becomes symbol
plus symbol
times and becomes SYl'IDOl
up symbol
times symbol
divide and becomes symbol
over and becomes symbol
modulo and becomes symbol
divide symbol
over symbol
modulo symbol
and symbol
not equal symbol
not symbol
less .. than symbol
less than or equal symbo 1
greater than or equal symbol
greater than symbol
plus i times symbol
plus i times symbol
equals symbol
becomes symbol
becomes symbol
becomes symbol
conforms to symbol
conforms to and becQmes
is symbol
isnt symbol
or symbol

Action Tokens

Keyword

MINUSAB

'PLUSAB
PRUS·

TIMES
UP

DIV
OVERB
MODB

OVER
MOD
AND
NE
NOT
LT
LE
GE
GT

EQ

CT
CTAB
IS
ISNT
OR

Symbol

-:=

+:=­
+=:
+

*:=
**
* I:~

II:=
I I::=
I

II
I I:

& ,;:::
...
<
<=

>

?
=

:=
.= .. :::, ·­.. -
:=:
:,=:

Syntactic and Sequenc~ng Tokens

Description

begin symbol
case symbol
if symbol
end symbol
esac symbol
fi symbol

Keyword

BEGIN
CASE
IF
END
ESAC
FI

Symbol

(
(
(
)
)
)

54

Equivalent

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28
29
30
30
30
31
32
33
34
35

Equivalent

1
1
1
2
2
2

Description

semicolon symbol
conuna symbol
colon symbol
colon symbol
at symbol
else symbol ..
out symbol
then symbol
in symbol
else if symbol
completion symbol
sub symbol
bus symbol

TABLE XII (Continued)

Keyword

AT
ELSE
OUT
THEN
IN
ELSF

Symbol

..
@

I
I
I
d .
(/
/)

Environmental Enq'l,liries and
Pre~defined Constants

Name -
BITSLENGTH
BITSWIDTH
BYTESLENGTH.
BYTESWIDTH
INTLENGTHS
FALSE
NMAXFACT
NULLCHAR
REALL.ENGTHS
TRUE
MAX INT
NIL
MAXREAL
SMALLREAL
PI

Name

CMPLXSQRT
NEXTRANDOM
ARC COS
ARCS IN
ARC TAN
CLEAR
ENTIER
LOG IO
MATCH

Standard Procedures

Equival~nt

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Equivalent

301
302
303
304
305
306
307
308
309

55

Equivalent

5
6

35
35
36
37
37
37
37
38
39

414
415

Name -
PRIN'.):
RANDOM
ROUND
ABS
ARG
BIN
CONJ
cos
ELEM
EXP
GE,T
INF
LOG2
LWB
LWS
ODD
OUTF
PUT
READ
REPR
SET
SIGN
SIN
SQRT·
TAN
UPB
UPS
IM
liN
RE

Name -
COMPLEX
CO~L
EITHER
FORMAT
STRING
BOOL
CHAR
FLEX
HEAP
INT
PROC
REAL
REF
VOID

TABLE XII (Continued)

Declaration Tokens

Equivalent

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

Equivalent

401
401
402
403
404
405
406
407
408
409
410
411
412
413

56

Name

PRAGMAT
PR
WHILE
FOR
FROM
GOTO
SKIP
BY
DO
GO
OF
TO
STANDrN
STANDOUT
EXIT

TABLE XII (Continued)

Special Tokens

Equivalent
I

601
601
602
603
604
605
606
607
608
609
610
612
613
614
61.5

57

APPENDIX B

INTERPRETIVE OPERATION CODES

r::;o

APPENDIX B

INTERPRETIVE OPERA.TIO~ CODES

Introduction

Al.l interpretive instl;'uct:l,ons,are c;amposed of four integer values.

The formats of the instructions vary with different op~rations but cqn~

tained within each instruction is the operaUon code, the operands, the

modes of the operands and the location for the result. In some opera~

tions, the low order digit of the first operand is used to spe~ify mode

information~ For these instructions, the two valu~s in the first oper-

and are parenthesized. T~ble X·III is a key for the values of the mode

indicator. Ta~1e .XIV explains the meanings of most of the symbols which

describe the instructions.

TABLE XIII

MODE INDICATOR V,ALUES

Valu1;1

1
2
3
4
5

c.a

Mode

integral
real
complex
boolean
character

60

TABLE XIV

KEY TO INSTRUCTION FORMAT SYMBOLS

Symbol Description

argl,arg2 the symbolic addresses for arguments

arg3 the symbolic address of the location into
which the result is to be stored

array identifier the symbolic address of the descriptor
for an array

mode the mode of an operation

op the operation code

rows the number of rows in an array

System Instructions

Block Entry

General format: 010,0,0,0

The linkage operations necessa:i:-y for a block entry are performed by
'

thei exec;.utor.

Block Exit

General format: 020,mode,O,O

The linkage operations necessary for a block exit are performed by

the ~xecutor. The mode is the mode of an operand which is to be return-

ed on the execution stack. If no value is to be returned, mode is zero.

General format: 030,branch code,argl,arg3

lf the branch code is one, an unconditional branch to the address

of arg3 is exe~uted. If the branch code is twp, the boolean va1ue spec­

ified by aral is examined. If the value is false, the branch is taken~

Otherwise, normal instruction processing continues with the next instruc-

tion,

Allocate Symbol .

General format: 040,mode,O,identifier

Storage for the specified identifier is allocated from the execu-

tion stack and the run time symbol table is updated to reflect the cur-

rent allocation.

Update Statement Number
. .. . I

General fo,:mat: 050,stmnt,O,O

'l'he statement number iadicator is replaced by the value of 'stmnt •. '

Print

General format: 060,mode,O,argl

The value of the operand is oueput .on the standard output device.

Becomes

General format:. 070,mode,argl,arg3

The value of argl is stored into ·arg3. The va.lue is also stored

on top of the execution stack for further use.

Dyadic Operators

General fol=1D,at: (op,mode),argl,arg2,arg3

62

;

The operation is performed between argl and arg2 and the result is

stored in arg3, Table XV lists the set of dyadic op ~odes.

OP

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Simple Monadic Operators

TABLE XV

DYADIC OPERATION CODES

Operation

add
subtract
divide
multiply
exponentiation
modulo
plus and becomes
p:rus
minus and becomes
divide and be~omes
~ultiply apd becomes
m.odulo and becom,es
not equal
less than
less than or equal
greater than or equal
greater than
equal
and
or

Monadic Operators

General format: (30,mode},op,arg1,arg3

Simple monadic operations are monadic operations and standard pro-

cedure calls in which the mode of the result is the same as the mode of

the argument. The operation is applied to argl and the result is stored

into arg3. Table XVI lists the simple monadic operator operation codes.

TABLE XVI

MONADIC OPER,ATION CODES

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

Complex Argument, Real Result

Operation

unary plus
unary minus
absolute vaiue
square roQt
exponential function
natural logarithm
base two logarithm
base ten logarithm
sine function
cosine function
tangent functic:m
arcsine f unc.tlon
arccoliline function
arcta~gent function
conjug~te va].ue

General format: 313,op,argl,arg3

63

The operation is applied to the complex argument argl and the real

result is stored into arg3. Operation codes are given in Table XVII.

TABLE XVII

C.OMPLEX TO REAL MONAD):C
OPElR,ATlON CODES

.Q.E. Operation

01 complex absolute value
02 argument function,
03 real part of a complex

value
04 imagina1;y p'art of a

complex value

64

Real Argument, I11;tegral Result

General format: 322,op,argl,ar~3

The operation is applied to the real argument argl and the integral

result is stored into arg3. Operation codes are given in Table XVIII,

TABLE XVIII

REAL TO INTEGRAL MONADIC
OPERATION CODES

.QE.. Operation

01 entier (floor function)
02 lower bound (floor func-

t:i,on)
03 round
04 sign
05 upper bound (ceiling

function)

Inte~ral Argument, Boolean Result

Odd Functiona

General format:. 331,1,argl,arg3

If the value of the integral argument argl is odd, a value of true

is stored into arg3. Otherwise, a value of false is stored into arg3.

No Argument, Real Result

RANDOM,

General format: 342,l,O,arg3

A pseuc;lo-random number between 0.0 and 1.0 is generated and stored

into arg3.

Character Atsument. Integral Result,

Character Absolute Value.

General format; 344,l,argl,arg3

The position in the collating sequence of the character value of

argl is stored into ·arg3.

Integral Argument, Character Result

REPR Fune tion o.

General format: 351,1,argl,arg3

65

The integral value of .argl is used to index the string of chal;'acters

in the collating sequence. The character value for the selected position

is stored into arg3.

Row Operations

Allocate Descrietor

General format; (50,mode),array identifier, rews, template

A de~criptor is created for the identifier specified using in~orma­

tion storec;l in the descriptor tE:)mplate. The array is then allocated and.

the run time symbol table is updated to ·reflect the new allocation.

Load Subscripted.

General format: 510,rows,array identifier,arg3

The address of a single element of the specified array is placed

into the syJllhql table entry for arg3. Index valuea are on. top pf the

execution stijck.

66

co,rcion

General format:. (61,mode) ,input mode,output mode,al;'gl

The value of argl is widened from the input mode to the output mode

and is stored on the execution stack. If 'mode' is nonzero, the value

o.n the top of the stack is saved before coercion occurs and is restored

afterwards.

APPENDIX C

THE ALGOL 68 SUBSET

F,7

APPENDIX C

!HE ALGOL 68 SUBSE.T

Description

A grammar for the scientific subset of ALGOL 68 ieJ given in ·Table

XIX. The subset is int;ended to re:f;lect the bl.ock atructu:e of the langu­

age as well as many of the c~pa'bi1:i,t:1,.es fo.,:- arithtnE!tiC e~press-ions •.

Although.colll111ents are not de~ined by the subset grammar, they are

permitted to allow prog'J;'am documentation~ Comments may appe,.r anywheie

a blank may appear.e~cept within a string de~otation. Tpe iepresenta­

tions for the comment symbol are¢,#, COMMENT and co. A comment m~st

begin and end with the same representation of the comment sy1t1,bol.

The block st;rl!,ctu.,:e of an Ali.GOL 68 program is spe~i,fiec;l by cl,oses

clauses (BEGIN~END blocks) and conditional clauses (IF.,-FI and CASE-ESAC).

The extension allowing BEGJ;N, IF and CASE to be replaced by a left

parenthesis symbol, and E;ND, FI and ESAC by a right parenthesis symbol

is included in this implementation. Similarly, THEN, ELSE, IN and OUT

may be represented symbolicly by a vertical bar (I). The ELSF (or I :)
symbol is permit;:ted as an abbreviation for the symbols E.LSE IF. No FI

symbol is required after an ELSf clause. Some examples pf program

blocks are given in Table XX.

69

TABLE XIX

THE ALGOL 68 SU'BS:e;T GRAMMAR

particular program: begin symbol, serial clause, end symbol; left pa­
renthesis symbo:)c, serial clause, right parenthesis symbol; if sym
bol, serial clause, then symbol, unitary clat.J.se list, else symbol,
unitary clause list, fi symbol; if symbol, serial clause, then
symbol, unitary clause list, fi symbol.

serial clause: declaration prelude sequence, unitary clause list; uni­
tary clause list.

declaration prelude sequence: single declaration; declaration prelude
sequence, single declaration.

single declaration: simplemode, d·ecl list, semicolon symbc;,l; sub symbol,
rows of, bus symbol, simplemode, identifier list, semicolon symbol,

simplemode: INT;. REAL; COMPL; COMPLJJJ{; BOOL; CHAR.

rows of: row of; rows of, comi.na symbol, row of.

comma symbol: ' .
row of: bound, colon symbol, bound; bo1,.1.nd.

bound: integral identifier; integral denotation.

decl list: decl; decl 1:ist, comma symbol, deal,.

decl: identifier, becomes symbol, identifier; id,entifier, becomes sym­
bol, denotation; identifier.

becomes symbol: :=.

identifier list: identifier; identifier list, comma symbol, identifier.

identifier: tag.

tag: letter; tag, letter; tag, digit token; tag, space.

letter: a; b; c; d; e; f; g; h; i; j; k; 1; m; n; o; p; q; r; s; t; u;
v; w; x; y; z.

digit token: O; 1; 2; 3; 4; 5; 6; 7; 8; 9.

space:

denotation: integral denotation; real denotation; string denotation;
format denotation.

70

TABLE XIX (Continued)

integral denotation: digit token; integral denota.t:f,.on, digit token.

real denotation,: variable point numeral; floating point numeral.

variable point numeral: integral denotation, fractional part; fraction­
al. part.

fractional part: point symbol, integral denotation,

point symbol:

floating point p.umeral: stagnant part, exponent part.

stagnant part: integral denotation; .variable poip.t numeral.

exponent part:. times ten to the power choice, power. of ten.

times ten to the power choice: E.

power of.ten: plusminus, integral denot~tion; integral denotation,

plusminus :. +• -'
string denotation: quote symbol, string item seq1.,1ence, quote symbol.

quote symbol: II

string item sequence: string item; string item sequence, str:f,.ng item.

string item: ¢ any symbol except the quote symbol¢; quote symbol,
quote symbol.

unitary clause list: unitary clause; unitary clause list, semicolon
symbol, unitary clause.

semicolon symbol:

unitary clause:

colon symbol: . . .

' .
label, colon symbol, unitary clause; expression; jump.

jump: goto symbol, label; label.

label: identifier.

goto symbol: GO, TO; GOTO.

expression: formula.

formula: formula, pl operator, p2 operand; p2 operand.

71

TABLE XIX (Continued)

p2 operand: p2 operand, p2 operator, p3 operand; p3 operand.

p3 operand~ p3 operand, p3 operator, p4 operand; p4 operand.

p4 operand: p4 operand, p4 operator, pS operand; pS operand,

p5 operand: p5 operand, p5 operator, p6 operand; p6 operand.

p6 operartd :. p6 operand, p6 operator, p7 operand; p7 operand.

p7 operand: p7 ope'):'and, p7 ope1;ator, p8 operand; p8 operand.

p8 operand: p8 operand, p8 operator, p9 operl:!,nd; p9 operand.

p9 operand: p9 operand, p9 operator, monadic operand;
monadic operand.

monadic operand; monadic .operator, monadic operand; primary.

primary: ide·ntifier; denotation; s.e;l,ector, primary; slice; particular
program; standard procedure, left parenthesis symbol, parameter
list, right parenthesis symbol; caat.

selector: RE; IM~

slice: identifier, sub symbol, indexer list, bus symbol.

sub symbol: (/.

bus symbol :. /) •

indexer list: indexer; indexer list, coill11la symbol, indexer.

parameter list: unitary clause list; paremeter list, comma symbol, uni­
tary clause list.

begin symbol: BEGIN.

end symbol: E.ND.

left parenthesis. symbol: (.

right parenthesis symbol:).

if symbol: IF.

fi symbol: FI.

then symbol: THEN.

else symbol: ELSE.

T~LE XX

PROGRAM·BLOCKS

#· The following are closed clauses #
BEGIN , •• END
(. . .)
The following a;e conditional clauses #
IF••• THEN••• FI.
IF O • • THE,N •, • • ELSE , • • FI
CASE • ,, • IN • • • OUT •• • ESAC
IF •• , THEN • • • ELSF • , • THEN • • • EVSE •. • • FI
c •.••. 1 •.•• _1 •.•• >

The subset includes only simple fo~s of .declarations, The basic

72

data types which are allowed are IN'r, REAL, COMPLEX, BOOL ap.c:l C:HAR. Al ...

so, identifiers may be declared as an array with any nuwber of rows for

the basic data types. Declarations may not contain expressions or

i~itializations requiring mode coercion. Sample declarations are shown

in Table XXI.

TABLE XXI

SAMPLE·DECLARATIONS

INT I,J,K,M:=3;
REAL A,B;
COMPL Z;
(/ .0:10 /) INT ROW OF INTEGRAL;
(/ M,M /) CHAR ROW OF"ROW...:,OF_CHARA~TER;

Expressions comprise the remainder of the ALGOL 68 subset. The

subset grammar describes the syntax of expressions but not the semantics.

This is due to mode considerations which are not easily describable by

the context free.grammar, Fc,,r example, the and operator(&) applied to

73

two complex values is syntactically correct, but is semantically unde-

fined. A set of standarq operators and procedures has been implemented

for use in writing expressions, The standard op~rators are shown with

their priorities in Table XXII. A list of the standard procedures which

are implemented is given in Appendix A.

TABLE XXII

PRIORITIES FOR STANDARD OPERATORS

dyadic monadic

1 2 3 4 s 6 7 8 9 (10)

-:= OR & = < * ** + -; REPR
+·-·- ., ::;, <= + I ? ABS
*::::::; >= II UPB LWB
I:~ > //: ODD SIGN ROUND
//:= RE IM CONJ
//11-.. -
+=:
:=

APPElmIX D

A SAMPLE ALGOL 68 PROGRAM

""II.

75

THIS SAMPLE PROGRAM BUiiDs A BINARY SEARCH TREE FOR INTEGRAL KEYS
WHICH ARE READ FROM PUNCHED CARDS. THREE ARE NO DUPLICATE KEYS A.ND A
KEY OF ZERO INDICATES THE ENP OF THE INPUT DATA.

DEFINITION OF VARIABLES--

BEGIN

AVAIL-- THE AVAILABLE STORAGE POINTER
KEY-- THE ARRAY OF KEYS IN THE TREE
LLINK- THE "ARRAY OF LEFT-·LrJ:U<··poINTERS
NEW_ KEY-.;. THE .. IQ':Y BEING INSERTED
RLINK-- THE AR.RAY OF RIGHT LINK POINTERS
ROOT-- THE ROOT POINTER

(/ 200 /) INT LLINK, KEY, RLINK;
INT ROOT:=O, AVAIL:=O;

BEGIN
INT NEW_KEY, I, J;

READ AND TEST:
- READ (NEW_ KEY) ;

TE.ST FOR ZERO END OF DATA INDICATOR #
IF NEW_KEY=O THEN ¢GOTO¢ BUILT FI;

TEST FOR FIRST KEY ENTRY- #
IF ROOT=O THEN KEY(/ ROOT:=AVAIL+:=i /):=NEW KEY;

, LLINK(/ ROOT /) :=RLINK(/ ROOT-/) ::i:O;
GO TO READ_AND_TEST
FI;

I:=ROOT;

TRAVERSE:
IF NEW KEY>KEY(/ I/) THEN

IF RLINK(/ I /)...., = 0 THEN
I:=RLINK(/ I/);
TRAVERSE

ELSE KEYS(/ RLINK(/ I /):~J:=AVAIL+:=1 /):=NEW_KEY;
LLINK(l J /) :•RLINK(/ J /) :=.O;
~EAD AND TEST

FI

ELSF LL INK(/ I /)-,""' 0 THEN
I:=LLINK(/ I/);
TRAVERSE

ELSE KEYS(/ LLINK(/ I /) :=-J:=AVAIL+:=1 /) :=NEW_KEY;
LLINK(/ J/):=RLINK(/ J /):=O;
READ AND TEST

FI

76

BUILT:
II AT THIS POINT THE TREE HAS BEEN CREATED II

END

END

VITA

John Clute Jensen

Candidate for the Degree of

Master of Science

Thesis: IMPLEME:NTAT!ON OF A SCIENTIFIC.SUBSET OF ALGOL 68

Major Field: Computing and Information Sciences

Biographical:

Pe1;sonal Data: Born in Tulsa, Oklahoma, May 28, 1949, the son of
Mr. and Mrs. Clute Jensen.

Education: Graduated from Tulsa Centrai High School, Tulsa, Okla­
homi!, in May, 196 7; received Bachelo;r of Scienc.e degree in
Mathematics from OklahoI:lla State Unive1;:sity in 1971; completed
requirements for the Master of Science degree at Oklahoma.
State University in July, 1973.

