
UNIVERSITY OF OKLAHOMA 
 

GRADUATE COLLEGE 
 
 
 
 
 
 
 

REAL-TIME ADAPTIVE PULSE COMPRESSION ON RECONFIGURABLE, 

SYSTEM-ON-CHIP (SOC) PLATFORMS 

 
 
 
 
 
 

A DISSERTATION 
 

SUBMITTED TO THE GRADUATE FACULTY 
 

in partial fulfillment of the requirements for the 
 

Degree of 
 

DOCTOR OF PHILOSOPHY 

 
 
 
 
 
 
 
 
 

By 
 

HERNAN SUAREZ 
 Norman, Oklahoma 

2015 

  



 
 
 
 
 
 
 

REAL-TIME ADAPTIVE PULSE COMPRESSION ON RECONFIGURABLE, 
SYSTEM-ON-CHIP (SOC) PLATFORMS 

 
A DISSERTATION APPROVED FOR THE 

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING 
 
 
 
 
 
 
 

BY 
 
 
 

    ______________________________ 
Dr. Yan Zhang, Chair 

 
 

______________________________ 
Dr. Sesh Commuri 

 
 

______________________________ 
Dr. Caleb Fulton 

 
 

______________________________ 
Dr. Boon-Leng Cheong 

 
 

______________________________ 
Dr. John Dyer 

 
 

______________________________ 
Dr. John Albert  

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by HERNAN SUAREZ 2015 
All Rights Reserved. 

  



 

 

 

Acknowledgements 
 

I would like to gratefully thank my advisor, Dr. Yan Zhang, for his guidance, 

support, and constant encouragement during my graduate study at University of 

Oklahoma.  

My gratitude to my doctoral committee: Dr. Sesh Commuri, Dr. Caleb Fulton, 

Dr. Boon-Leng Cheong, Dr. John Dyer, and Dr. John Albert for their valuable 

comments, suggestions and corrections.  

In addition, I would like to extend my thanks to the Advanced Radar Research 

Center (ARRC), its director Dr. Robert Palmer, faculty, staff and students, for their 

generous assistance during my research at OU.  

Last but not least, I would like to thank my parents, Ramon Suarez Castro and 

Graciela Montalvo de Suarez; and my brothers Antonio, Anibal and Nicolas, for their 

endless support and encouragement. 

 

 

 

 iv 

 



 

 

 

Table of Contents 

Acknowledgements ...................................................................................................... iv 

Table of Contents .......................................................................................................... v 

List of Tables .............................................................................................................. viii 

List of Figures .............................................................................................................. ix 

Abstract ....................................................................................................................... xii 

Chapter 1 Introduction .......................................................................................... 1 

1.1 Expectations of High-Performance Embedded Computing (HPEC) in 
Radar 4 

1.2 Overview of Real-Time Signal Processing Technologies ...................... 6 

1.3 Current State of FPGA Technology ....................................................... 9 
1.3.1 Overview of Device Technologies ............................................. 9 
1.3.2 Design Flows ............................................................................ 14 
1.3.3 IP Cores ..................................................................................... 15 

1.4 System on a Chip (SoC) ....................................................................... 16 
1.4.1 Introduction ............................................................................... 16 
1.4.2 Hardware/Software Partitioning ............................................... 20 
1.4.3 Advanced eXtensible Interface (AXI) Interconnect Technology
 22 
1.4.4 Evaluation Platforms ................................................................. 23 

1.5 Dissertation Outline .............................................................................. 24 

Chapter 2 Adaptive Pulse Compression (APC) and Implementations ............ 26 

2.1 Pulse Compression Waveforms ............................................................ 28 
2.1.1 Frequency Modulated Waveforms ............................................ 28 
2.1.2 Phased-Coded Waveforms ........................................................ 30 

 v 

 



2.2 Adaptive Pulse Compression Algorithms ............................................ 33 

2.3 Real-Time Computational Load Requirements of Pulse Compression 
Algorithms ........................................................................................................ 37 

2.4 State of the Art of Pulse Compression Implementations ...................... 41 

2.5 Basic Considerations for Hardware Implementation ........................... 44 
2.5.1 Number Representation Format ................................................ 44 

Chapter 3 FPGA Cores for Radar Signal Processing ....................................... 47 

3.1 Optimized Adder and Multiplier Designs ............................................ 47 

3.2 Matrix Multiplication ........................................................................... 55 
3.2.1 Acceleration Using Coprocessor .............................................. 55 
3.2.2 Design of Matrix Multiplication Coprocessor .......................... 58 

3.3 Matrix Inversion ................................................................................... 63 

Chapter 4 FPGA implementation of Pulse Compression ................................. 69 

4.1 Hardware Implementation of Pulse Compression ................................ 69 
4.1.1 FPGA in Existing SDR platforms ............................................. 69 
4.1.2 Radar TR Control Layer ........................................................... 70 

4.2 Architecture Design and Analysis for Real-Time Pulse Compression 
Circuitry ............................................................................................................ 72 

4.3 FPGA Device Implementations of Real-Time Pulse Compression ..... 78 
4.3.1 Hardware Resource Utilization ................................................. 78 
4.3.2 Test and Validation Platforms .................................................. 81 

4.4 Experiment Results ............................................................................... 83 
4.4.1 System Outputs for Basic PC Waveform ................................. 83 
4.4.2 Real-Time Pulse Compression for Random Waveform ........... 86 
4.4.3 Impact of Waveform Template Generation Scheme and Timing 
Misalignment ........................................................................................ 88 

4.5 Conclusions .......................................................................................... 89 

Chapter 5 SoC Implementation of an Adaptive Radar Processor ................... 91 

5.1 Literature Review: Implementation of Traditional Adaptive Filters .... 93 

5.2 System-on-Chip (SoC) Implementation of APC .................................. 95 

 vi 

 



5.3 LS-APC Multi-Coprocessor Architecture ............................................ 96 

5.4 Single LS-APC Processor ................................................................... 100 

5.5 LS implementation based on Floating-Point Data Format ................. 102 

5.6 RMMSE-APC Co-Processor Architecture ......................................... 109 

5.7 Summary ............................................................................................. 119 

Chapter 6 Conclusions ....................................................................................... 120 

6.1 Achievements ..................................................................................... 120 

6.2 Future Work ........................................................................................ 122 
6.2.1 Technology Trend for FPGA-Based Signal Processing ......... 123 
6.2.2 Integration of the APC processor to a Radar System ............. 125 

Bibliography .............................................................................................................. 129 

Appendix - List Of Acronyms and Abbreviations ................................................. 141 
 

 
 
 
 

 vii 

 



 

 

 

List of Tables 
 

Table 1-1: List of Xilinx FPGA families and principal characteristics. .................. 11 
Table 1-2: Principal Specifications of Altera FPGA Families. ............................... 12 
Table 2-1: Binary Barker Codes .............................................................................. 31 
Table 2-2: Comparison of different APC algorithms .............................................. 36 
Table 2-3: Computational cost of APC algorithms per stage. ................................. 40 
Table 3-1: Hardware utilization for floating-point and fixed-point of matrix 

multiplication. .................................................................................................. 59 
Table 3-2: Hardware resource utilization for a pipelined design. ........................... 61 
Table 3-3: Hardware resource utilization when pipelining and distributed memory 

are considered in the design. ............................................................................ 62 
Table 3-4: Hardware utilization for floating-point and fixed-point of matrix 

inversion........................................................................................................... 65 
Table 3-5: Comparison of hardware utilization for floating-point and fixed-point 

implementation of matrix inversion. ................................................................ 67 
Table 3-6: Comparison of timing results for floating-point and fixed-point 

implementation of matrix inversion. ................................................................ 68 
Table 4-1: Device Resource Utilization for two Xilinx FPGAs for the typical 

matched filter implementation. ........................................................................ 80 
Table 4-2: Power consumption of pulse compression ............................................. 81 
Table 5-1: Total hardware resources for the matrix multiplication and matrix 

inversion........................................................................................................... 98 
Table 5-2: Total hardware resources for pipelined version of matrix multiplication 

and matrix inversion. ....................................................................................... 99 
Table 5-3: Hardware utilization of LS fixed-point implementation using 16-bit 

fixed-point format for Xilinx XC7k325t FPGA. ........................................... 101 
Table 5-4: Hardware utilization of LS fixed-point implementation using 32-bit 

fixed-point format for Xilinx XC7k325t FPGA. ........................................... 101 
Table 5-5: FPGA resource utilization for floating-point implementation ............. 103 
Table 5-6: FPGA hardware resource utilization for pipelined floating point 

implementation. ............................................................................................. 106 
Table 5-7: FPGA hardware resource utilization for initiation interval of 50 clock 

cycles ............................................................................................................. 106 
Table 5-8: RMMSE coprocessor synthesis results. ............................................... 112 
Table 5-9: Hardware resources for partially pipelined version of RMMSE 

coprocessor. ................................................................................................... 115 
Table 5-10: Hardware Resources for fully pipelined RMMSE coprocessor. ........ 115 

 

 viii 

 



 

 

 

List of Figures 
 

Figure 1-1: Typical functions of a radar receiver. ..................................................... 4 
Figure 1-2: Computation load for an example GMTI radar [12] ............................... 6 
Figure 1-3: Processing technologies classification. ................................................... 7 
Figure 1-4: Comparison of different technologies for DSP implementation. ........... 8 
Figure 1-5: Xilinx’s DSP48E1 architecture [16] ..................................................... 13 
Figure 1-6: Xilinx’s carry logic slice architecture [18] ........................................... 14 
Figure 1-7: Traditional FPGA design flow. ............................................................. 15 
Figure 1-8: Basic concept of a generic SoC architecture. ....................................... 17 
Figure 1-9: Block diagrams of a Xilinx MicroBlaze Processor [30] and an Altera 

Nios II Processor [31]. ..................................................................................... 18 
Figure 1-10: General SoC system implementation model. ...................................... 20 
Figure 1-11: Hardware/software partitioning .......................................................... 21 
Figure 1-12: Top-level AXI interconnect [32]. ....................................................... 23 
Figure 1-13: Testbed for the implementation of APC. It includes a Ku-band 

transceiver, (a) Kintex-7 and (b) Avnet ZedBoard evaluation boards. ............ 24 
Figure 2-1: Estimation of computational load requirement for real-time matched 

filter pulse compressor, with different signal bandwidths and pulse length. 
Assuming 20% transmitter duty cycle for all cases. ........................................ 39 

Figure 2-2: Computational analysis of APC algorithms. ......................................... 41 
Figure 3-1: Operation of a conventional n-bit ripple carry adder. ........................... 47 
Figure 3-2: Performance of two-operand adders using different implementations on 

a Kintex-7 FPGA (xc7k325t-2-ffg900). (a) Number of LUTs, (b) 
Combinational Delay. ...................................................................................... 49 

Figure 3-3: Performance of sequential multi-operand adders for 16 and 64 bits 
operands on a Kintex-7 FPGA. ........................................................................ 51 

Figure 3-4: Comparison of latency performance of three sequential multipliers 
through implementation on Kintex-7 FPGA. .................................................. 53 

Figure 3-5: Comparison of combinational delay performance of different parallel 
multipliers including designs using Xilinx commercial building blocks. ....... 54 

Figure 3-6: Schematic for an 8-bit 2’s complement adder on Kintex-7 FPGA. ...... 55 
Figure 3-7: High-level configuration of matrix multiplication coprocessor. .......... 57 
Figure 3-8: Matrix multiplication results from MicroBlaze with and without 

coprocessor on Kinte-7 FPGA. Latency measured with a timer attached to the 
AXI Lite bus. (a) 4x4 matrix multiplication. (b) 8x8 matrix multiplication. .. 58 

Figure 3-9: Matrix multiplication total latency for floating point and fixed-point 
implementation ................................................................................................ 60 

 ix 

 



Figure 3-10: Latency in terms of clock cycles for floating point and fixed point 
implementation using different techniques. ..................................................... 63 

Figure 3-11: High-level matrix inversion coprocessor. ........................................... 64 
Figure 3-12: Matrix inversion latency for single precision floating-point and fixed-

point <16, 1>. ................................................................................................... 66 
Figure 4-1: (a) Existing FPGA configuration of N210/E110 from Ettus Research. 

(b) Proposed FPGA configuration for Radar transceiver (with enhanced radar 
transceiver Real-time range-Doppler processing blocks). ............................... 71 

Figure 4-2: High-level block diagram for matched-filter pulse compression 
implementation. ............................................................................................... 74 

Figure 4-3: Hardware simulation of pulse compression, using 16-bit digital 
representation. (a) Uncompressed input signal. (b) Compressed output signal.
 ......................................................................................................................... 75 

Figure 4-4: Comparison between MATLAB and hardware (Kintex-7 FPGA) 
simulations of pulse compression for different weighing windows. (a) No 
window. (b) Kaiser (β = 2.23). (c) Hanning. (d) Hamming. ............................ 77 

Figure 4-5: Comparison of pulse compression hardware simulation results using 
different windows: Kaiser (β = 2.23), Hanning, and Hamming. The simulation 
target is a Kintex-7 FPGA. .............................................................................. 78 

Figure 4-6: Examples of on-chip implementation results. (a) Simplified Vivado 
RTL schematic for pulse compression. (b) The resulting layout of pulse 
compression implementation (light blue area) on the XC7k325t-2-ffg990 
FPGA. .............................................................................................................. 79 

Figure 4-7: Methods of hardware verification. (a) Complete hardware testbed, (b) 
Using Vivado logic analyzer for probing internal signals. .............................. 82 

Figure 4-8: Pulse compression results captured using Xilinx’s integrated logic 
analyzer (ILA). External trigger with pulse duration of 500 ns, I and Q with 
pulse duration of 20 µs and bandwidth of 10 MHz. ........................................ 83 

Figure 4-9: ILA samples of pulse compression output converted to logarithmic 
scale (dB). ........................................................................................................ 84 

Figure 4-10: Comparison between uncompressed time domain input ((a), pulse 
bandwidth = 10 MHz, pulse length = 20 µs), and compressed time domain 
output pulse ((b), captured by DSO). ............................................................... 85 

Figure 4-11: Pulse compressor output for multiple emulated targets. Captured by 
DSO. ................................................................................................................ 86 

Figure 4-12: Real-time pulse compression of band-limited random noise with the 
FPGA pulse compression implementation, (a) Input waveform (40 MHz signal 
bandwidth), (b) Pulse compressor output captured using Vivado logic analyzer 
(before DAC output), (c) Pulse compressor output converted to analog pulse 
and captured by DSO. ...................................................................................... 87 

Figure 4-13: Comparison between the PC outputs using internal waveform template 
generation (without external waveform samples) and PC outputs with external 
waveform templates and different bandwidths. ............................................... 89 

Figure 5-1: System elements of the proposed radar transceiver optimizer. ............ 91 
Figure 5-2: Transceiver optimizer System-on-Chip (SoC). .................................... 92 
Figure 5-3: Multiple co-processor for LS-APC. ...................................................... 96 

 x 

 



Figure 5-4: Combined latency of matrix inversion and matrix multiplication 
coprocessors for the sequential and pipelined versions. .................................. 99 

Figure 5-5: Internal architecture of the single LS coprocessor option. ................. 100 
Figure 5-6: Estimated latency of LS coprocessor for different number of signal 

samples with a constant number of range gates. The bar plot also shows the 
range of variation (max and min) of latency estimation. Number of range gates 
= 60. ............................................................................................................... 102 

Figure 5-7: Estimated latencies for different number of range gates for floating 
point implementation, assuming the number of transmitted signal samples is 6 
(a short pulse)................................................................................................. 104 

Figure 5-8: Performance comparison between fixed-point and floating-point 
implementation for different number of range gates. Comparison of Latency 
Between Fixed-point and Floating Point Implementation ............................. 105 

Figure 5-9: Comparison of latency in terms of clock cycles for different initiation 
intervals when number of samples is 6. ......................................................... 107 

Figure 5-10: Comparison of dynamic power consumption required by the LS 
coprocessor. ................................................................................................... 108 

Figure 5-11: Architecture for fixed-waveform architecture, where Coprocessor 1 is 
only activated for the estimation of the filter coefficients. ............................ 109 

Figure 5-12: RMMSE coprocessor architecture. ................................................... 111 
Figure 5-13: Latency estimation per range gate without optimization. ................. 113 
Figure 5-14: Latency comparison of implementation of RMMSE coprocessor. ... 114 
Figure 5-15: Architecture of RMMSE processor. ................................................. 117 
Figure 5-16: Architecture of the matrix summation to compute the matrix ( )C l R+  

for a range gate. ............................................................................................. 118 
Figure 6-1: Illustration from Xilinx. The new Zynq UltraScale+ architecture [138]

 ....................................................................................................................... 124 
Figure 6-2: A general architecture of a radar processing system based on serial 

technologies. .................................................................................................. 126 
Figure 6-3: Simulation of a RapidIO-based network. ........................................... 128 

 
 

 xi 

 



 

 

 

Abstract 
 

New radar applications need to perform complex algorithms and process a large 

quantity of data to generate useful information for the users. This situation has 

motivated the search for better processing solutions that include low-power high-

performance processors, efficient algorithms, and high-speed interfaces. In this work, 

hardware implementation of adaptive pulse compression algorithms for real-time 

transceiver optimization is presented, and is based on a System-on-Chip architecture 

for reconfigurable hardware devices. This study also evaluates the performance of 

dedicated coprocessors as hardware accelerator units to speed up and improve the 

computation of computing-intensive tasks such matrix multiplication and matrix 

inversion, which are essential units to solve the covariance matrix. The tradeoffs 

between latency and hardware utilization are also presented. Moreover, the system 

architecture takes advantage of the embedded processor, which is interconnected with 

the logic resources through high-performance buses, to perform floating-point 

operations, control the processing blocks, and communicate with an external PC 

through a customized software interface. The overall system functionality is 

demonstrated and tested for real-time operations using a Ku-band testbed together 

with a low-cost channel emulator for different types of waveforms. 
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Chapter 1  
 
Introduction 

 

The general operation of a pulsed radar system consists of transmitting 

electromagnetic (EM) signals to an area of interest. The reflected EM signals from the 

environment are captured by the antenna and transformed into electrical signals. The 

radar receiver filters, amplifies and also transforms the radio frequency (RF) signal to 

an intermediate frequency (IF) signal by mixing the RF signal with local oscillators. A 

range profile can be generated based on the processed receive signal and its respective 

round-trip delay time.  

Modern radars demand bigger computing power as well as reconfigurable 

flexibility, which is important for multiple functions. A good example is pulse 

compression (PC), which is the main focus of this dissertation. Theoretically, in order 

to increase the radar ability to distinguish nearby targets and maximize the detectable 

range, it would be necessary to transmit a narrower pulse width with a higher peak 

energy, which is infeasible due to power limitations of the transmitter, especially for 

solid-state transmitters. To overcome this problem, the pulse compression technique 

[1] has been used for decades.  

It is known that a long pulse with frequency or phase modulation is able to 

achieve equivalent spectral bandwidth to that of a narrow pulse. When applying pulse 
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compression technique, the receiver can compress the modulated long pulse of 

bandwidth B to a pulse width equal to 1/B, which improves not only the range 

resolution but also the signal to noise ratio (SNR). Traditional pulse compression 

commonly uses linear frequency modulation (LFM) due to its simplicity for 

generation and processing; however, the resultant compressed pulse presents range 

side lobes in the range gates adjacent to a strong target, which could potentially mask 

any weak targets [2]. Space and Airborne radars are some example applications, for 

which range side lobe mitigation is highly desired because the strong scatters from the 

earth’s surface can distort the observations.  

Different processing techniques have been investigated to suppress the range 

side lobes [2-8]. These techniques consider the usage of weighting windows, special 

waveforms, inverse filters, and adaptive filters. Other techniques are based on adaptive 

pulse compression (APC) such as the least square (LS) method, as well as optimized 

and recursive approaches. The reiterative minimum mean-square error (RMMSE) 

algorithm, derived from the LS method, is a localized optimization-type estimation, 

which can achieve good performance in terms of retrieving the ground truth [2].  

APC algorithms require intensive computation of mathematical operations, for 

instance, Fourier transforms, matrix multiplications, and matrix inversions. A real-

time, high-performance implementation of adaptive pulse compression is a huge 

challenge to traditional processors due to their fixed architecture and sequential nature 

of operation. Moreover, in airborne and spaceborne radar applications where size, 

weight and power consumption (SWaP) are critical constraints, not only the 
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implementation of efficient algorithms, but also the design of optimal hardware 

architectures and the use of the appropriate technology are important.  

Currently, thanks to the advancement of silicon technology, it is possible to 

establish a variety of potential real-time and embedded processing solutions with 

integrated computing resources. These solutions range from general purpose 

processors (GPP) to application-specific integrated circuits (ASICs). As one of the 

promising technologies, Field Programmable Gate Arrays (FPGAs) has evolved 

during the past decades, and incorporated more logic resources, multipliers, memory, 

high-speed transceivers, processors in a single chip device, and also allowed the 

interaction between processing units through high-performance buses. The design 

tools for FPGA have become more matured. In addition, the integration of hardware 

and software solutions in a single device allowed the design and implementation of 

customized architectures in a single device to achieve better SWaP, greater reliability 

and reduced manufacturing cost. 

In this dissertation, processor architectures of radar waveform processing, 

including pulse compression and APC on reconfigurable platforms for radar 

transceiver optimization are investigated. The objective for this work is to design high-

performance System-on-Chip (SoC) processors, which can provide improved target 

sensing, reduced artifacts, accelerated result generations and reconfigurable capability 

compared to traditional radar signal processors. 
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1.1 Expectations of High-Performance Embedded Computing 

(HPEC) in Radar  

The main components of a radar system are the transmitter, antenna, and 

receiver. Raw radar signals are then passed to the signal processors, which extract 

useful information regarding targets or scene, and the data processor generates useful 

information for the users [9]. A radar system can be configured to operate with pulsed 

or continuous waveforms, with coherent or non-coherent modes [10]. 

Within a radar receiver, the received signal passes through different processing 

components, which consist of analog transceivers, digital transceivers with real-time 

and high computational capabilities, signal processors with efficient data 

transportation protocol and interface control, and software programs running on CPUs 

to perform system functions and missions. These characteristics are illustrated in 

Figure 1-1.  

 

Real-time 
DSP/MCU

Reconfigurable 
Digital 

Transceivers

Antenna and RF 
Transceivers

Software
Stacks

- RF Analog transceiver
- Real-time and high 
computational 
capabilities 
- Highly reconfigurable 

- Higher level 
processing 
- Data transportation
- Interface control

-System functions 
and missions

 

Figure 1-1: Typical functions of a radar receiver. 

 
Initially, radar systems were limited to target detection and range 

determination functions. With the necessity of more advanced functions in a radar 
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system, the complexity of digital radar receivers has been increased significantly, 

which demands more memory, higher speed communication buses, and the 

computation of large quantities of data in shorter time. Additionally, mobile radars and 

airborne radars have more SWaP constraints. Modern radar application requires 

multiple functions, and the computation capability is on the order of GFLOPs and 

TeraFLOPs, with limited SWaP such as in unmanned aerial vehicle (UAV) and 

airborne platforms. Furthermore, the digitization at the element level in future phased 

array radars will increase the computational load to hundreds of TeraOPS for the 

front-end processing and several TeraFLOPS for the back-end [11].  

Surface moving target indicator (SMTI) radar, used to detect and track moving 

targets on the earth’s surface, is a good example of a radar application where the 

computational load is significant. The computational load for a 48-channel phased 

array, sampled at 480MHz and 12 bits per sample was estimated in [12]. The 

processing flow and the number of GOPS for each stage are illustrated in Figure 1-2. 

It can be observed that pulse compression is one of the processing stages that demands 

the greatest number of GOPS. The aggregate computational complexity of this system 

is about 1TeraOPS.  
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Figure 1-2: Computation load for an example GMTI radar [12] 

 
Historically, to meet these demanding new requirements, manufacturers have 

been developing more powerful computers or processors by increasing the processor’s 

clock speed, but this effort was constrained by physical limitations such as heat 

dissipation. A new trend is incorporating more processing cores with the intention of 

executing billions of instructions per second, but the power consumption is increased, 

and an efficient software application that can take full advantage of all the cores is still 

absent. This situation has motivated our investigation for hardware-based, 

reconfigurable parallel computer technologies using FPGAs. The advantages of 

FPGAs are reconfigurable, low-power, and the software re-programmability.  

1.2 Overview of Real-Time Signal Processing Technologies  

Gordon Moore estimated in 1965 that the number of transistors on integrated 

circuits doubles every year [13]. But then in 1975, he updated his estimation to 

doubling every two years. Nowadays, it is possible to find processing devices with 
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billions of transistors in a single chip. The processing technologies can be classified in 

two groups as ‘hardware-based’ and ‘software-based’ solutions.  

The hardware-based solutions deliver higher performance with lower power 

consumption. They can be grouped in application-specific integrated circuits (ASICs) 

and field-programmable logic devices (FPLDs). On the other hand, the software-based 

solutions are constituted by programmable processors which by nature execute the 

instruction in a serial sequence from memory, and possess programmable flexibilities. 

This group can be divided into two subgroups: the general-purpose processors and the 

application-specific devices (such as digital signal processors (DSPs), general graphics 

processing units (GPUs)). 

 

- Application-Specific Integrated 
Circuits

- Simple Programmable Logic Devices 
- Complex Programmable Logic Devices
- Field Programmable Gate Arrays

- MicroControllers
- MicroProcessors

- Digital Signal Processors
- Graphics Processing Units
- Network Processors

Processing 
Technology

SW

HW

 

Figure 1-3: Processing technologies classification. 
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The selection of the appropriate device for a particular radar backend processor 

is a challenging process because it requires the consideration of several factors such as 

development cost, performance, hardware resources, power consumption, production 

cost, time to market, and flexibility. In Figure 1-4, the principal characteristics of some 

processing technologies are compared. An ideal processing system may incorporate a 

combination of different technologies and take advantage of the strength of each one.  

 

Figure 1-4: Comparison of different technologies for DSP implementation. 

 
A traditional microprocessor (µP) is one of the most common processing 

solutions in many applications, because of its flexibility to be reprogrammed and 

relatively low development cost. Most µPs are based on Von Neumann architecture 

and have inferior computing performance compared to DSPs. Microcontrollers are 

usually targeted for applications with limited processing requirements. However, some 

microcontrollers include signal processing engine (SPE) units, such as the Freescale 

MPC5500 family, which are designed for automotive applications [14]. 

Low 

High 
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Because multiply and accumulate (MAC) operations are common to signal 

processing, DSP devices include dedicated MAC units with particular instructions to 

accelerate computation. Modern DSPs use Very Long Instruction Word (VLIW) 

architecture and single instruction multiple data (SIMD) extensions to enhance the 

levels of data and instruction parallelism.  

ASICs and FPGAs are used commonly in applications that require high 

throughput, especially as front-end signal processors in digital receivers because of 

their capabilities to handle a large amount of data samples from ADCs. ASIC designs 

are optimized for specific operations, which can achieve relative small latency and low 

power consumption, but the fabrication process demands longer time and higher costs, 

and once the design is fabricated, it cannot be modified. In contrast, FPGAs have the 

advantage of re-configurability and low power consumption, which are important 

characteristics for a technology to be considered as a radar front-end signal processor. 

Moreover, FPGA’s computing capabilities are increased if the hard-processor is 

tightly coupled to create a SoC solution.  

 

1.3 Current State of FPGA Technology 

1.3.1 Overview of Device Technologies 

The Field Programmable Gate Array (FPGA) was originally developed in the 

1980s, and since then it has evolved significantly. The technology has migrated from a 

simple programmable-logic prototype device to a complex system that includes many 

hardware resources, such as a large quantity of programmable logic units, dedicated 
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DSP blocks, embedded processors, block random access memory (BRAM), phase-

locked loop (PLL), high-speed gigabit transceivers, and other components. FPGAs are 

widely used in different areas; the range of applications can be from small digital 

circuits to larger advanced systems. One important characteristic of FPGAs is re-

configurability, which allows the modification of the processing blocks and rerouting 

of the interconnections to perform a different function without the necessity of 

powering off. Some FPGAs also offer partial re-configuration capabilities, in which 

specific areas of the FPGA are modified at the run-time while keeping the other areas 

operating, which increases silicon reusability significantly. 

For a long period, the programmable-logic market was dominated by two 

vendors, Xilinx and Altera [15]. The XC2000 family was the first FPGA developed by 

Xilinx and it was comprised of programmable logic units attached to programmable 

interconnects, and programmable I/O. Altera’s first FPGA was based on a PLD 

structure. The manufacturers have evolved their initial architectures and their 

programming technologies. Xilinx and Altera FPGAs are based on static random-

access memory (SRAM) technology, while Microsemi (previously known as Actel) 

uses flash and antifuse technology.  

The fundamental structure of an FPGA is called ‘logic block’, which is 

distributed across the FPGA fabric and interconnected via programmable switches. 

Xilinx uses the name configurable logic block (CLB), and Altera uses logic element 

(LE). The content of a logic block also differs from manufacturer to manufacturer. 

Xilinx’s CLB is constituted by two slices; each slice contains a number of look-up 
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tables (LUTs), storage elements, and multiplexers. For instance, in the Xilinx 7 series 

FPGAs each slice contains four 6-input LUTs and eight flip-flops [16]. 

The majority of Xilinx FPGAs are based on 6-input LUTs. Kintex Ultra and 

Virtex Ultra are the latest families when this dissertation is written, which are based on 

16 nm and 20 nm technologies. The on-chip memory size of Spartan and Virtex-4 

family is 18 Kbits, while it is 36 Kbits for the 7 Series and UltraScale family. The 

principal characteristics and the year of introduction of Xilinx and Altera FPGAs are 

listed in Table 1-1 and Table 1-2, respectively. 

 

Table 1-1: List of Xilinx FPGA families and principal characteristics. 

Family LUT Input Multiplier BRAM (Kbits) µP Year Tech (nm) 

Spartan 3 4 18x18 18 

 

2003 90 

Virtex 4 4 18x18 18 PPC 2004 90 

Virtex 5 6 25x18 36 PPC 2006 65 

Spartan 6 6 18x18 18 

 

2009 45 

Virtex 6 6 25x18 36 

 

2009 40 

Artix 7 6 25x18 36 

 

2010 28 

Kintex 7 6 25x18 36 

 

2010 28 

Virtex 7 6 25x18 36 

 

2010 28 

Zynq-7K 6 25x18 36 ARM 2011 28 

Kintex Ultra 6 27x18 36 

 

2014 20 

Virtex Ultra 6 27x18 36 

 

2014 20 

 

Currently, Altera offers four FPGA families, which are called Cyclone series, 

Stratix series, Arria series, and Max10 series. As shown in Table 1-2, these FPGAs 

incorporate memory blocks of different sizes such as M512 (512-bit), M4K (4Kb), 
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M9K (9Kb), M144K (144Kb), MRAM (512Kb), MLAB (640b ROM/320b RAM), 

M20K [17].  

 

Table 1-2: Principal Specifications of Altera FPGA Families. 

Family LUT Input Multiplier BRAM (Kbits) µP Year Tech(nm) 

Cyclone II 4 18x18 4 

 

2004 90 

Stratix II 8 18X18 0.5,4,512 

 

2004 90 

Stratix III 8 18X18 0.624, 9, 144 

 

2006 65 

Cyclone III 4 18x18 9 

 

2007 65 

Arria 8 18X18 576 

 

2007 90 

Stratix IV 8 18X18 0.624, 9, 144 

 

2008 40 

Arria II 8 18X18 9 

 

2009 40 

Cyclone IV 4 18x18 9 

 

2009 60 

Stratix V 8 27X27 0.640, 20 

 

2010 28 

Cyclone V 8 27X27 10 

 

2011 28 

Arria V 8 27X27 10 ARM 2011 28 

Arria 10 8 27x27 0.640, 20 ARM 2013 20 

Stratix 10 8 27x27 

 

ARM 2013 14 

 

Because multipliers and accumulators are essential operations for the 

implementation of signal processing algorithms, FPGA vendors have included small 

DSP blocks into the fabric of the FPGA to improve the performance of arithmetic 

operations and release the logic resources (flip-flops, look-up tables) for other 

functions. Each Xilinx’s DSP block contains two DSP slices. A DSP slice can perform 

logic and arithmetic functions such as multiply-accumulator, multiply-adder, and 

counter. DSP slices can also be cascaded to implement more sophisticated functions 

such as complex multipliers or n–tap FIR filters, thus achieving higher clock rates. 
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The DSP blocks included in Xilinx FPGAs are called DSP48s, each DSP is mainly 

composed of a pre-add/subtract unit, a multiplier, and an add/subtract/accumulate 

engine. Each family of Xilinx’s FPGA has a different version of the DSP with some 

variations in its architecture. DSP48As are included in Xilinx Spartan-3A devices, 

which consist of an 18-bit pre-adder, followed by an 18x18-bit signed multiplier and a 

48-bit add/subtract/accumulate engine. In the Spartan-6 family, it is called DSP48A1, 

or DSP48E in Virtex-5, and also called DSP48E1 in the Virtex-6 and the 7 series 

families. The architecture of a DSP48E1 is shown in Figure 1-5, where the main 

components are a 25-bit pre-adder, 25x18 multiplier, and pattern detector. In the 

Xilinx UltraScale family, it is called DSP48E2s, and the multiplier and pre-adder 

width is increased to 27x18 bits and 27 bits, respectively. 

+/-

X +-Pre-adder

25x18 
Multiplier

Pattern 
Detector

=

48-bit 
Accumulator/

Logic unit P

A

B

C

D

 

Figure 1-5: Xilinx’s DSP48E1 architecture [16] 

 
Another important resource included in an FPGA is fast carry circuitry to 

perform faster arithmetic operations.  
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For instance, Xilinx includes dedicated carry logic blocks, called CARRY4 

[18]. The logic elements of each block are shown in Figure 1-6. 

 

Figure 1-6: Xilinx’s carry logic slice architecture [18]  

 

1.3.2 Design Flows  

The traditional FPGA design flow is shown in Figure 1-7. The design starts 

with the description of the system architecture using a hardware description language 

(HDL), which may include prebuilt functions or intellectual property cores (IPs). HDL 

design files are synthesized to register-transfer level (RTL), then an implementation 

process is performed, which consists of three steps: translate, map, place and route. 

 14 

 



Finally, a bitstream file is generated, which is downloaded and used to configure the 

FPGA device. 

 

HDL

Synthesis

Bitstream 
generation

Translate

Map

Place&Route

Implementation

IPs

User
Constraints

 

Figure 1-7: Traditional FPGA design flow. 

 

1.3.3 IP Cores 

Intellectual property (IP) cores are prebuilt functions that provide solutions to 

enhance system implementation productivity. IP cores are available for a variety of 

general functions from simple arithmetic operations to microprocessors, as well as for 

specific applications such as signal processing, video, networking, storage, and other 

areas. FPGA vendors offer both own and third-party IP libraries, including IP 

programs such the Xilinx Alliance program and the Altera Megafunctions Partner 

Program (AMPP). IP cores can be classified as soft IP, firm IP, or hard IP. A soft IP 
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core is distributed as synthesizable files describing the register transfer logic of a 

design. The advantages of a soft IP include flexibility, scalability and portability. A 

firm IP is delivered in the form of synthesized netlists, which has a certain type of 

technology dependence. A hard IP core is presented as a mask layout with 

characteristics such as high performance and predictable functionality, but limited 

flexibility for system optimization.  

 

1.4 System on a Chip (SoC) 

1.4.1 Introduction  

According to [19], the evolution of digital design styles occurred in three 

stages. The first stage, system-on-backplanes, was based on several printed boards 

with specific functions interconnected through the backplane to form a system. This 

architecture evolved to system-on-board, in which processing components were 

mounted on a single board. And the third stage, system-on-chip (SoC), integrates the 

board-level functionalities into a single device, resulting in a design with more 

efficient data exchange between processing units, better computing performance, and 

improved SWaP compared to a system of discrete components [20].  

A SoC design includes at least one microprocessor to run the software 

component of the system, memory attached to the processor for temporary storage of 

data and instructions, and peripherals, which can be a coprocessor, a soft-core/hard-

core IP, additional memory, or general input and output ports. Processor and 

peripherals are interconnected via standard buses. A general representation of a SoC 

solution is shown in Figure 1-8. 

 16 

 



 

ProcessorMemory

Peripheral 1 Peripheral 2 Peripheral 2
 

Figure 1-8: Basic concept of a generic SoC architecture. 

 
Early studies proposed different reconfigurable architectures which combined 

reconfigurable fabric and a programmable processor. For instance, the hybrid 

architecture Garp was proposed in [21]; the system included a reconfigurable co-

processor which was connected to a MIPS-II processor in the same die. The co-

processor was also able to access the processor’s data memory and the external shared 

memory through dedicated interconnections. In [22], the authors proposed a 

reconfigurable architecture called PipeRench; this reconfigurable fabric allowed 

pipelined reconfiguration of the processing blocks through a hardware virtualization 

process. A drawback of this architecture was the bandwidth limitations between the 

main memory, the PipeRench fabric, and the host processor, since PipeRench was 

connected as a coprocessor. Chimaera architecture was proposed in [23]; this 

architecture consisted of a small reconfigurable functional unit integrated into a 

microprocessor itself, reducing the communication bottleneck and taking advantage of 

the reconfigurable fabric to general-purpose computing. Other reconfigurable systems 
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were proposed in: PRISM [24], PRISM-II [25], OneChip [26], REMARC [27], 

MOLEN [28], XiRISC [29], etc.  

Xilinx and Altera offer processors in the form of soft-core IP or hard-core IP. 

Soft-processors are built from logic resources of the FPGA. Xilinx’s soft-processor is 

called MicroBlaze, which is a 32-bit processor with reduced instruction set computing 

(RISC) architecture. Similar architecture is adopted for Altera’s soft-processor, Nios 

II, which has three different versions: Nios II/f (performance), Nios II/s (performance 

and low cost), and Nios II/e (low cost).  
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Figure 1-9: Block diagrams of a Xilinx MicroBlaze Processor [30] and an Altera Nios 

II Processor [31]. 

 
Some FPGA families incorporate hard microprocessors into their logic fabrics. 

For this type, there are commercial FPGA families available in the market such as 

Xilinx Zynq, Microsemi SmartFusion, and Altera Arria. Earlier Xilinx Virtex families 

include PowerPC processors, which are based on Harvard architecture and can run up 

to 550 MHz. The Xilinx Zynq architecture comprises two main units: the Processing 

 18 

 



System (PS) and the Programmable Logic (PL), which are interconnected through 

dedicated Advanced eXtensible Interface (AXI) buses. The PS unit is basically a dual-

core ARM Cortex-A9 processor operating at clock speeds up to 1 GHz. Each core is 

connected to optimized computational units, such as a media processing engine (MPE) 

or a floating-point processing unit (FPU). Different cache levels are also part of the 

system, which are controlled by a memory management unit (MMU). A snoop control 

unit (SCU) interfaces the L1 and L2 caches to ensure consistency of data between 

them. The processor includes separate L1 caches for data and instructions with a size 

of 32 KB. The two cores also share a larger L2 cache of 512 KB for instruction and 

data. In addition, there is 256KB of on-chip memory within the application processing 

unit (APU). 

A SoC design involves hardware logic and programmable processors. Figure 

1-10 shows a general overview of the process to implement a SoC solution. This 

process starts with the specifications of the system, followed by modelling the 

algorithm.  Partition of the design between hardware and software is then performed. 

Hardware and software partitions follow independent paths first, then they are 

integrated to obtain the final product and ensure all the parts are tightly coupled.  
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Figure 1-10: General SoC system implementation model. 

 

1.4.2 Hardware/Software Partitioning 

The hardware/software (HW/SW) partitioning, or hardware/software co-

design, involves the identification of tasks that are more suitable for hardware or 

software implementation. HW/SW partitioning is a key process in the design of an 

embedded system because it can have a considerable impact on the performance of the 
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overall system. There is no tool that can do this process automatically. Due to its 

parallel nature, programmable hardware is preferred for tasks that are repetitive, and 

can be efficiently split into multiple and concurrent tasks. Dynamic and unpredictable 

tasks are better suited for a software-based implementation [20].  

Dynamic range is another important factor when deciding the appropriate 

partition implementation. Traditionally, a general-purpose processor (GPP) has been 

used for floating-point tasks, due to their special math engines and dedicated floating 

point units. On the other hand, FPGAs used to be mostly for fixed-point 

implementations, since floating-point implementations demand much more logic 

resources. However, in modern FPGAs this is compensated with the increased number 

of logic resources and DSPs. Therefore, tasks that require floating-point format 

representation can be implemented in either software or hardware. 
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Task4

Task7

Task8

Task1

Task5

Task4

Task7

Task2

Task6

Task3 Task8

Hardware
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Embedded 
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Figure 1-11: Hardware/software partitioning 
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1.4.3 Advanced eXtensible Interface (AXI) Interconnect Technology 

Another essential component in a SoC design is the bus interconnection that 

coordinates and moves data between the different processing units within the FPGA. 

Xilinx’s interconnect technology prior to the 7 series family is based on the IBM 

CoreConnect standard, which includes three types of buses: the processor local bus 

(PLB) for high-speed transactions, the On-chip Peripheral Bus (OPB) for I/O devices, 

and the device control register (DCR) for configuration and status.  

The Xilinx 7 series and UltraScale FPGAs are based on the AXI AMBA 4 

standard. AXI was proposed by ARM Holdings public limited company (ARM). This 

standard defines three types of buses: AXI4, AXI4 Stream, and AXI-Lite. AXI4 is a 

high-performance bus for memory mapped links, and supports data burst transfer up to 

256 data words with data width from 32 to 1024 bits. AXI4-Stream is a non-address 

based bus with unlimited data bursts, and AXI-lite interconnect is intended to 

interconnect slow peripherals or control/monitor signals from processing units.  

Figure 1-12 shows the top-level architecture of the AXI interconnect core. The 

core consists of slave interface, master interface, and processing blocks. The crossbar 

routes the traffic on the AXI channels between the devices connected to the master 

and slave interface [9]. 
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Figure 1-12: Top-level AXI interconnect [32]. 

 

1.4.4 Evaluation Platforms 

Today’s FPGAs are gaining more and more computing power. Xilinx claims 

987 GFLOPS peak computing power in a single Virtex-7 980XT FPGA and Altera 

claims close to 1 TFLOPS peak computing performance for the Stratix V FPGA. The 

same design and implementation procedure developed in this work can be applied to 

different and smaller devices. Specifically, we have used two different platforms in 

most of this dissertation: the KC705 DSP evaluation board and the Avnet ZedBoard 

7020 baseboard.  

The KC705 board includes an XC7k325t-2-ffg990 FPGA, which has 356K 

logic cells, BRAMs memory with a total of 16,020KB, and 840 DSP blocks. The 

ZedBoard’s FPGA is the XC7Z020-CLG484-1, which includes a dual-core ARM 

Cortex-A9 and 85K logic slices, 4,480KB of BRAM, and 220 DSP blocks. Figure 

1-13 shows the photos of KC705 and ZedBoard evaluation boards. 
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(a) 

 
(b) 

Figure 1-13: Testbed for the implementation of APC. It includes a Ku-band 

transceiver, (a) Kintex-7 and (b) Avnet ZedBoard evaluation boards. 

 

1.5 Dissertation Outline 

The main contribution of this work is developing a general FPGA based SoC 

framework for radar signal processing, and demonstration of this framework through 

Xilinx FPGA devices, for specific pulse compression algorithms. 

This dissertation is organized as follows: Chapter 2 provides an overview of 

pulse compression technologies and algorithms. This chapter also introduces the 

concept of adaptive pulse compression (APC) and its application to modern radar 

systems. Different algorithms, as well as their computational load requirements are 

summarized.  

Chapter 3 describes the principal processing cores used for the implementation 

of APC (and other adaptive processing). Hardware implementation of linear algebra 

operations, such as matrix multiplication and matrix inversion are also discussed.  
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The details of FPGA implementation of traditional pulse compression is 

presented in chapter 4. Tradeoffs between different specific design approaches are also 

discussed. 

Chapter 5 focuses on APC processing implementations, and compares various 

SoC architectures based on basic units of Chapter 4, summarizes design considerations 

and hardware design results. The achieved performance of the SoC implementations 

of APC are also discussed. 

Finally, Chapter 6 addresses the long-term roadmap of embedded processors 

and proposed future work for high performance, embedded radar processors.  
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Chapter 2  
 
Adaptive Pulse Compression (APC) and Implementations 
 

The range (R) between a pulsed Doppler radar and a point target is calculated 

based on the round-trip travel time of the pulse (T ): / 2R cT= , where ( c ) is the 

speed of light. The radar’s range resolution is defined as the ability of the radar to 

resolve objects in range [10]. The maximum detection range can be increased by 

transmitting a longer pulse width, since more energy is transmitted in the pulse, but a 

longer pulse can degrade the range resolution ( R∆ ). In order to improve the radar 

range resolution and maximize the detectable range, it would be necessary to transmit 

a narrower pulse width with a higher peak energy, which is generally not feasible due 

to power limitations of the transmitter, especially for solid-state transmitters. Pulse 

compression overcomes this problem by using a long pulse modulated in frequency or 

phase to achieve a similar spectral bandwidth of a short pulse, the long pulse is then 

“compressed” by the receiver to a width equal to 1/ B , and the range resolution is 

improved to / 2R c B∆ ≈ . This improvement can also be represented by a factor called 

pulse compression ratio (CR), which is approximately the multiplication between the 

pulse width (τ ) and the bandwidth ( B ), and it is usually much larger than unity. 

However, traditional pulse compression presents some drawbacks since it uses linear 

frequency modulated waveforms. In recent years, there are numerous waveform 
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modulations and processing techniques that have been developed in order to overcome 

hardware constraints, and improve target detection, interference mitigation, and others.  

In general, the radar waveform modulation scheme can be classified as 

frequency and phase modulation. Frequency modulation waveforms can use either 

linear or nonlinear modulations. On the other hand, phase modulation can use either 

biphase or polyphase waveforms.  

A filter that maximizes the SNR at the radar receiver is referred to as the 

matched filter, which is derived from the transmit waveform. Waveform properties 

such as SNR, range resolution, and Doppler tolerance can be defined in terms of the 

matched filterer response [10]. The output of the matched filter is equivalent to the 

cross-correlation between the received signal and the transmit signal. The matched 

filter is expressed as [1]: 

 '( ) *( )r RMF s t s t T df
∞

−∞

= −∫  (2.1) 

where, ( )rs t  is the received signal, ( )s t  is the transmit signal, '
RT  is the estimate of the 

time delay, and *( )  denotes the complex conjugate. 

The traditional matched filter can generate significant sidelobes in the range 

gates adjacent to a strong target, which could potentially mask the presence of smaller 

targets. For applications such as satellite-borne weather radar the range sidelobes 

generated from the earth surface can distort the measurements, so that low range 

sidelobes are highly desired [33], preferably lower than 60dB for light rain 

measurements [34]. Different types of waveforms, which are designed to achieve low 
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sidelobe levels, have been studied in [7, 33, 35-37], each type of waveform has 

advantages and drawbacks.  

The characteristics of a radar waveform such as range resolution, range 

sidelobe level, spacing and range ambiguities, Doppler resolution, Doppler sidelobe 

level, and spacing of Doppler ambiguities [35], can be described by the ambiguity 

function (AF). AF is derived from equation (2.1) by replacing 0( ) ( ) exp( 2 )s t u t j f tp= , 

and obtaining:  

 
2

2 2( , ) ( ) *( ) dj f t
df u t u t e dtπχ tt

∞

−∞
= +∫   (2.2) 

In which ( )u t  is the complex envelop of the signal, τ  is the time delay, and df  

is the Doppler frequency which is the difference between the received signal and the 

nominal values expected by the matched filter.  

 

2.1 Pulse Compression Waveforms 

2.1.1 Frequency Modulated Waveforms 

The most common pulse compression waveform that has been used in radar 

systems is the linear frequency modulated waveform (LFM) because it is easy to 

generate and process. The LFM waveform with rectangular shape, bandwidth ( B ), 

and pulse width T  is represented as:  

 21( ) Rect( ) exp( )ts t j Kt
TT

p=   (2.3) 
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in which K  is the slope frequency which is equal to the ratio between the bandwidth 

( B ) and the pulse width (T ). Using equation (2.2) to find the ambiguity function of 

( )s t , the following expression is obtained: 

 
2

2 2 21( , ) ( ) ( ) exp( ( ) )d
t tf Rect Rect i Kt j K t T

T T T
tct  p p

∞

−∞

+
= − +∫   (2.4) 

Therefore, the ambiguity function of an LFM waveform can be written as: 

 ( )
2

2( , ) (1 ) ( ( ) )d df sinc f K T
T
τ

c τ π τ τ= − − − ,  ; 0 elsewhereTτ ≤   (2.5) 

Here τ  is the shift in time, and df  is the Doppler shift defined as the difference 

between the received signal and the nominal values expected by the matched filter. 

The autocorrelation of the LFM waveform is essentially a sinc function shape 

with high peak sidelobes of approximately -13.2 dB, and sidelobe levels decreasing at 

a rate of -4 dB per sidelobe interval. The common method for mitigation of the high 

sidelobe levels is applying weighting functions to the signal spectrum, but this method 

may cause SNR loss and degradation of the range resolution. In [7], range sidelobe of 

-55 dB was achieved by weighting the amplitude of the transmit waveform using a 

half-wave sinusoidal function, with the transmitter operating in the linear rather than 

saturation region. However, in order to avoid power efficiency degradation in the 

transmitters, it is preferable to perform the weighting process only on the receiver. The 

common window functions are Hamming, Kaiser, Hanning, Blackman, etc. Details 

about their characteristics can be found in [38, 39]. 
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Another method to achieve low range side lobes is through the design of 

specific non-linear frequency modulated waveform (NLFM) with a suitable matched-

filter signal spectrum, where the non-linear rate of the frequency variation plays the 

same role as amplitude weighting of the spectrum without affecting the radar 

transmitter efficiency. The complexity of an NLFM might be higher than LFM 

waveform, but it can provide low sidelobes without the SNR loss caused by a 

mismatched filter [1]. The literature about NLFM design is vast. For example, [8] 

described a method for NLFM pulse compression waveform with a truncated Gaussian 

spectrum, achieving sidelobes of -46 dB for 1000TB = . [33] proposed a piecewise 

NLFM waveform with range sidelobes less than -60 dB. This design was then 

improved [40] to a continuous NLFM waveform with side lobes of better than -70dB. 

More information about other implementations can be found in [41-43].  

 

2.1.2 Phased-Coded Waveforms 

Phased-coded waveforms are used widely in airborne radars and even in 

ground-based weather radars recently, e.g. the Next Generation Weather Radar 

(NEXRAD) system. The waveform is constituted of a sequence of sub-pulses, also 

known as ‘chips’; the phase modulation has finite states among these chips. The 

characteristics of phased-coded waveforms are fundamentally dependent on the coding 

sequence employed [10]. These types of waveforms can be classified into two groups: 

biphase and polyphase-coded waveforms.  
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The phases of a biphase-coded waveform are usually either 0  or π . A well-

known binary set of codes is the Barker codes, for which the sidelobe levels of the 

compressed pulse are equal. The periodic autocorrelation function is given by the 

following equation: 

 
1

0

, 0 (mod )
( ,0)

, 0 (mod )

N

k k m
k

N m N
m c c

a N m N
c

−

+
=

=
= =
 < ≠

∑   (2.6) 

where N  represents the code length. The seven Barker codes and their principal 

characteristics are listed in Table 2-1, where ‘1’ indicates 0  phase and ‘0’ means π   

radian phase, and the relationship between the peak side lobe level and the code length 

is given by: 2

110log( )
N

 [1].  

Table 2-1: Binary Barker Codes 

Code 
Symbol 

Code 
Length Code Side Lobe 

level (dB) 
Integrated Sidelobe 

Levels(dB) 

B2 2 11/10 -6 -3 

B3 3 110 -9.5 -6.5 

B4 4 1110/1101 -12 -6 

B5 5 11101 -14 -8 

B7 7 1110010 -16.9 -9.1 

B11 11 11100010010 -20.8 -10.8 

B13 13 1111100110101 -22.3 -11.5 

 

Another type of binary code is the Maximal Length Sequence (MLS), which is 

generated using an n-stage linear feedback register. The length of the binary sequence 
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is 2 1nN = − , where n  is an integer, and the typical sidelobes are approximately 

110log( )
N

 [10].  

When the phases of the sub-pulses are not limited to the two phases of 0  and π, 

the code scheme is called polyphase code, and the sidelobe levels are lower than for 

the binary codes. The Frank code, which is described in [44], is a popular polyphase 

code. Variants of the Frank code are the P-codes; P1 and P2 are described by Lewis 

and Kretschmer in [45]. However, due to the very low Doppler tolerance of P1 and P2, 

two new codes were then developed: P3 and P4 codes [46]. The k-phase value of P3 

and P4 codes are defined in the following equations:  

 
2

( 3 ) ( 1)
k

k

BT

π −
Φ =   (2.7) 

 
2

(4) ( 1) ( 1)k
k k
BT

π π−
Φ = − −   (2.8) 

In [47], Felhauer proposed the P(n,k) codes, which are derived by step 

approximation of the phase function of an NLFM waveform, and can improve the 

peak sidelobe ratio and the tolerance of low Doppler shifts.  

Numerous pulse compression waveform designs can also be found in the 

literature, each design with advantages and limitations. Some examples are: Costas 

codes [48], Welti Codes [49], complementary codes [50], Hoffman codes [37], and 

others.  
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2.2 Adaptive Pulse Compression Algorithms 

In the previous section, several types of waveforms designed to mitigate 

masking problem of the high range sidelobes were introduced. Although those 

waveforms can achieve low sidelobes, the implementation is constrained to tradeoffs 

among range sidelobe level, range resolution, energy efficiency, Doppler tolerance, 

and other hardware-related factors such as the nonlinearity of power amplifiers and 

calibration errors [51]. In general, optimal waveform design can achieve low-sidelobes 

but the waveform can become very complicated, and be specific to a particular radar 

transmitter chain operation state. To further improve the range sidelobe reduction with 

“waveform independent” ground truth estimation, several adaptive processing 

techniques have been proposed: mismatched filtering [52], least-squares estimation 

[53], and inverse filtering [54]. A waveform-independent approached was proposed in 

[2], which is based on adaptive estimation at each range cell, while reducing the range 

sidelobes to level of the noise floor.  

The basic Least Squares Estimator (LSE) [55] assumes N samples of the time-

waveforms are transmitted, denoted as: 0 1 2 1[    ...  ]T
Ns s s s s −= , where, ( )T⋅  indicates 

the transpose operation. The received signal is given by: y S x η= + , where the range 

profile is [ (0) (1) ( 1)]Tx x x x L= − , η  is the noise vector, and S  is the ( 1)L N xL+ −  

matrix of the transmitted waveform  

 

 33 

 



 

0

0

1

1

0

1

0 0

0
0 0

0 0 0

N

N

N

s
s

s
s

S

s

s

−

−

−

 
 
 
 
 
 =  
 
 
 
  
 

 

 

 

 

  

 

   

 

          (2.9) 

It is also assumed that the range profile of the ground truth x  has length L, and 

the received signal vector [ (0) (1) ... ( 2)]Ty y y y L N= + −  is the convolution between 

the transmitted waveform and the ground truth. Therefore, the estimation of ground 

truth is given by the following equation [56]: 

 1 1ˆ ( )H H
LSx S R S S R y− −=   (2.10) 

R  is the covariance matrix of the noise vector η : [ ( ) ( )]HR E l lη η= . This 

estimation requires the complete range profile, which may demand more computing 

power and larger memory size. An optimized version, truncated LS (TLS), is based on 

the segmentation of the received signal into k-blocks: 1 1ˆ ( )T T
TLS k k k k k kx S R S S R y− −= , and 

processing of each individual block.  

Another adaptive APC algorithm, which is based on minimal mean-squared 

error (MMSE) criteria related to the following cost function ( ( )c l ), was introduced 

first in [56]. 

 
2

( ) ( ) ( ) ( )Hc l E x l w l Y l = −  
  (2.11) 

where, ( ) [ ( ) ( 1) ( 1)]Y l y l y l y l N= + + − . Taking the partial derivative of equation 

(2.11) with respect to Hw , the MMSE filter weights are obtained:  
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 1( ) ( [ ( ) ( )]) [ ( ) ( )]Hw l E Y l Y l E Y l x l−=  (2.12) 

It is also known that ( ) ( )Y l A l s η= + , where ( )A l  represents the matrix of the 

range profile: 

 

( ) ( 1) ( 1)
( 1) ( )

( )
( 1)

( 1) ( ) ( )

x l x l x l N
x l x l

A l
x l

x l N x l N x l

− − + 
 − =
 −
 

− + − 



 

  



  (2.13) 

The simplified format for the MMSE filter is derived as: 

 
1

2 2 1

1
( ) ( ) ( ( ) )

N
H

n n
n N

w l x l x l i s s R s
−

−

=− +

= + +∑   (2.14) 

Further details can be found in [2]. In addition, [3] proposed a reduced-

dimension algorithm for the MMSE adaptive pulse compression. The reduction is 

based on two forms of dimensionality reduction: decimation and contiguous blocking.  

The different adaptive pulse compression algorithms can be grouped into two 

groups: global deconvolution-type solution and localized optimization-type 

estimation. Their computational complexity and features are summarized in Table 2-2. 
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Table 2-2: Comparison of different APC algorithms 

Algorithm (1D) Computational complexity  Features 

Matched Filter 
(MF)[1]  

O(N) Per range/angular cell 

N as the length of waveform 

Simplest and standard 

Global deconvolution-type solution 

Normal LSE [55] O( 2L ) per gate, L is total 
number of range gates 

Large computation load 
and sensitive to errors 

Segmented LSE[57] 2( ( ) )LO M
M

 per gate, M is 

number of segments 

Loss of information due 
to segmentation (can be 
improved using random 
segmentation) 

RLS[55] 3( )O N  Per range/angular cell Reiterative LS 

Improved RLS[58] 2( )O N  Per range/angular cell Reduced computation of 
RLS 

MF-RLS 2( )O N  Per range/angular cell RLS use MF output as 
input 

conjugate gradient 
(CG)[59] 

1.5( )O L  , L is total number of 
range gates 

Another method to 
reduce computational 
load of LS 

Localized optimization-type estimation 

RMMSE (APC)[2] 3( )O N  Per range/angular cell Reiterative MMSE with 
no prior knowledge of 
GT 

MF-RMMSE[51]  3( )O K N K+  per gate, K is 
filter length 

RMMSE use MF output 
as input, usually K<<N 

 

Certain radar systems require the completion of these FLOPs operations within a 

strict time window. For example, Multi-functional Phased Array Radar (MPAR).  
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2.3 Real-Time Computational Load Requirements of Pulse 

Compression Algorithms 

The computation complexity of an algorithm can be measured by estimating the 

number of floating-point operations (FLOPs). A FLOP is considered any floating-

point operation such as add, subtract, multiply, or divide. For instance, the addition of 

two complex numbers requires two real additions, while complex multiplication 

requires six operations, including four real multiplications and two real additions. In 

matrix computation, the number of FLOPs is generally estimated by the amount of 

arithmetic associated with the most deeply nested statement. In this work, the notation 

for the number of FLOPs per second is FLOPS. 

Traditional digital pulse compression can be implemented in the time-domain 

by using cross-correlation, in which the number of FLOPS is given by: 

gates tapsK N N PRF , where K  = 8 and represents the total number of FLOPs for a 

complex multiplication and addition. gatesN  and tapsN  are the number of gates and 

number of taps, respectively. PRF is pulse repetition frequency. In practice, it is more 

efficient to implement pulse compression in the frequency domain using Fast Fourier 

Transforms (FFTs).  

Assuming pulse compression is applied to a single receive channel, the 

computational complexity of the frequency-domain pulse compression can be roughly 

estimated by this formula [12]:  

 (2 )pc fft pc mult fft pcF C C N PRF− −= +  (2.15) 
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where, fft pcN −  is the number of samples used in FFT/IFFT, fft pcC −  is the complexity of 

the FFT/IFFT for the fft pcN −  complex signal samples, and multC  is the complexity of 

the point-wise complex multiplication.  

fft pcN − , fft pcC − , and multC  are factors related to the specific fixed-point 

implementation architecture and waveforms based on the required number of addition 

and multiplication. For the basic fixed-point implementations, we have: 

 25 log ( )fft pc fft pc fft pcC N N− − −≈   (2.16) 

The design of waveform diversity that supports pulse compressor must 

consider the possible reconfigurable capability requirement in terms of fft pcN − . In 

general, the constraint of fft pcN −  is defined by: 

 2 *fft pc pN BW T− >   (2.17) 

where pT  is the pulse length (duration in µs), and BW  is the baseband waveform 

modulation bandwidth expressed in MHz. 
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Figure 2-1: Estimation of computational load requirement for real-time matched filter 

pulse compressor, with different signal bandwidths and pulse length. Assuming 20% 

transmitter duty cycle for all cases. 

 

Based on equations (2.15)-(2.17), an estimation of real-time computing load 

requirement for basic matched filter type pulse compression with different waveform 

parameters can be performed, and some examples are plotted in Figure 2-1. The graph 

of the estimation presents a stair-stepped shape due to the fixed number of points 

(power of two) required by the FFT operations. As is seen, for normal weather radar 

operations, the computational load for a single channel is generally less than 1 

GFLOPS, while for wideband noise radar and high-resolution SAR/STAP, the real-

time computational load can easily reach more than 40 GFLOPS. A complete digital 
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processor would also need front-end FIR filtering and implementation of clutter 

suppression, which can add more computational loads to the processor.  

For APC algorithms, much higher computational loads are demanded. The 

computational cost per stage of the adaptive algorithms is shown in Table 2-3. Where, 

N is the length of the transmitted waveform, M is the number of subgroups, and K is 

the length of the MF-RMMSE filter. 

 

Table 2-3: Computational cost of APC algorithms per stage. 

Algorithm Computational Cost (per stage) 

Matched Filter (time-domain) N  

RMMSE (APC) [2] 26 14N N+  

RMMSE (FAPC) [3] 
23 1 13(1 ) (1 )N N

M M M
+ + +  

RMMSE (Parallelized) 2
2

5 13( ) (4 )N N
M M

+ +  

MF-RMMSE [51] ( 1)(2 1)
2

K KK N −
+ +  

 

An example of the estimation of numbers of complex FLOPS for each APC 

algorithm is shown in Figure 2-2. This example assumes 100 range gates, 30 signal 

samples, M=5, K=3, and PRF=1 KHz. It can be noticed that the RMMSE algorithm 

requires a significant number of FLOPS, and the MF_RMMSE approach is able to 

reduce the complexity to a reasonable number of FLOPs. 
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Figure 2-2: Computational analysis of APC algorithms. 
 

Certain radar systems require the FLOPs be computed in a specific and strict 

time window, which are usually termed as hard real-time requirement. For example, 

the Multi-functional Phased Array Radar (MPAR) potentially requires pulse 

compression processing to be completed in a time on the order of milliseconds 

(depending on the coherent processing interval (CPI)). Real-time requirements pose 

big challenges to the implementation of pulse compression algorithms in radar 

processors.  

 

2.4 State of the Art of Pulse Compression Implementations 

One of the devices that has been used for the implementation of pulse-

compression is the surface acoustic wave device (SAW) [60-63]. MESL Microwave 
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Ltd. [64] offers products based on SAW technology for pulse compression. However, 

with the advances of silicon technology, digital devices have become an attractive 

option for the implementation of pulse compression, DSPs, GPPs, GPUs, and FPGAs 

are some examples. The early implementations usually included more than one chip 

due to the limited processing capabilities of the processing units; for instance, a 

dedicated chip for FFT, and others for adders and multiplies. In the example of [65], 

the radar processor had 64 signal processing (SP) nodes with a maximum sampling 

rate of 10 MHz. Each node included a TI TMS320C30 DSP, which was connected to a 

co-processor TMC2310 through a dual-port RAM. The coprocessor was able to 

execute a 1024-point FFT in 512 µs. [66] proposed a design based on TMS320C25 

DSP interconnected to IMS A100 DSP, which performed the LFM pulse compression 

for small time-bandwidth products, and 8-bit samples with 2.5 MHz sampling 

frequency. In [67, 68], a prototype of a digital pulse compressor in a single printed-

circuit board was presented. The system was clocked at 36 MHz, and power 

consumption was about 10 W. The PDSP16515 processor was the main component of 

the system, which was capable of executing 256 and 1024-point radix-4 FFT in 22 µs 

and 110 µs, respectively. The processor was also connected to an external erasable 

programmable read-only memory (EPROM), which was used to store the waveforms. 

In [69], a processing system for phase coded pulse compression was developed 

using four INMOS A100 DSPs, a microprocessor and Altera EPLD’s. The core 

structure of this processor was similar to a standard non-recursive filter. The 

processor’s maximum clock speed was 30 MHz. Their design was only tested with 

simulated data and had some limitations in the functionality such as coherent 
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integration. But the processor architecture was then integrated into a single device in 

[70], in which AlteraFLEX10KA100 was the selected device, and configured with a 

clock frequency of 40 MHz.  

DPC using a TMS320C6201 DSP was implemented in [71]. The system 

included two 12-bit ADCs, clocked at 40 MHz, which were interconnected to the DSP 

through a synchronous FIFO. The authors indicated that with the DSP clocked at 200 

MHz, the digital pulse compressor based on radix-2 FFTs can execute 512 samples 

within 124 µs.  

A multi-processor architecture was studied in [72]. The system included four 

ADSP-21160 DSPs with 80 MHz clock, 16-bit ADC sampling at 6.6 MHz, and shared 

external SDRAM where sampled data was stored. Four different approaches to 

perform the pulse compression in the frequency domain were studied, achieving a 

processing latency of 1.086 ms for a signal with pulse duration of τ =18 µs and PRF = 

833.3 Hz. 

As part of the Next-Generation Precipitation Radar (PR-2), [73, 74] designed a 

radar processor on an Annapolis Wildstar board which contained three Virtex 

XCV1000-4 FPGAs. Four channels of 12-bit were sampled at 20 MHz with a 

bandwidth of 4 MHz. The pulse compressor was able to perform 20 GOPS, and the 

architecture was a 256-tap non-symmetric FIR with a signal template of the 50 µs 

LFM waveform. An antifuse-based Actel 1280 FPGA was used to mitigate radiation-

induced errors in the Xilinx FPGAs, since SRAM-based FPGAs are susceptible to a 

single event upset (SEU) caused by space radiation. 
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In [75], a 2-D pulse compressor was implemented on a Xilinx XC2V6000 

FPGA, where a MicroBlaze processor was used to control and monitor the system. 

This architecture was configured to load raw data into a 512 MB DDR SDRAM, and 

data was then transferred to the pulse compressor’s buffers by a DMA controller.   

In [76], the implementation of pulse compression in a multi-core platform was 

presented. The platform included TI C66-core DSPs. The implementation was 

executed on a TI 6678 evaluation board clocked at 1 GHz, where the compression of 

4K samples was performed in 9 µs, with 10 W of power consumption.  

 

2.5 Basic Considerations for Hardware Implementation 

The selection of the appropriate number representation format for the 

implementation of the DPC processor is an important step, since characteristics such 

as accuracy, dynamic range, and stability can affect the performance of the system, as 

well as software development costs,  hardware system speed, and SWaP.  

 

2.5.1 Number Representation Format 

An unsigned fixed-point number is usually expressed in terms of a positive 

radix (r), the number of digits for the whole part (k) and the fractional part (l). The 

implicit data set is in the range {0,1, ... , 1}r −  [77]. The mathematical representation is 

given by the following equation: 

 
1

1 2 1 0 1 2( ... . ... )
k

i
k k l r i

i l
x x x x x x x x r

−

− − − − −
=−

= ∑  (2.18) 

Thus, the binary representation ( 2r = ) of a number can be written as: 
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k k l
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i l i
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− + −

−
−

=− =

=∑ ∑  (2.19) 

However, to implement arithmetic operations in hardware it is more efficient 

to use the 2’s complement representation, since facilities the computation of arithmetic 

operation that involves signed numbers. The 2’s complement representation of a 

number is obtained as: 

 
1 2

2' 1
1

0
2 2 [ 2 2 ]

k k l
si l k l i

i k i
i l i

x x x
− + −

− + −
−

=− =

→ − +∑ ∑   (2.20) 

In (1.20), k and l determine the numerical resolution: 2 l− , range 

1 1[ 2 , 2 2 ]k k l− − −− − , and accuracy 12 l− − . For the purpose of this work, a fixed number is 

denoted as ,k l< > , where k  is the total number of bits for the word and l  the number 

of bits for the integer part.  

The main disadvantage of fixed-point format is the limited dynamic range, 

which is ~6dB per bit. Fixed-point arithmetic operations also require additional 

operations to prevent or reduce underflow and overflow, which represents a cost in the 

development and implementation of the design. For instance, in order to guarantee that 

the sum of M numbers of N-bits does not overflow, it will be necessary to use 

N+log2(M) bits. Moreover, the dot product of M-element vectors of N-bits will require 

2N+log2(M) bits, since the multiplication operation doubles the number of bits. A 

simple method to prevent overflow is to downscale the operands by shifting some bits 

prior to the computation, but this approach reduces precision. Other techniques are 

based on scaling in stages, trying to minimize the precision loss while reducing or 

avoiding overflow.  
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As mentioned in the previous chapter, thanks to the advances in silicon 

technology, modern FPGAs have integrated more logic resources and dedicated cores 

in a single device, enabling the implementation of floating point arithmetic operations, 

which has increasingly been practical rather than fixed-point [10]. The advantage of 

using floating point format is that it can provide high resolution over a large dynamic 

range. The representation of a floating point number is: 

 ( 1) 1. 2s EX m= −   (2.21) 

where s  represents the sign, m  denotes the mantissa, and E  is the exponent A 

floating-point operation generally demands more hardware resources, since it involves 

different formatting stages. The Xilinx FPGAs support both single-precession floating 

point and double-precision floating point. Xilinx’s Single-precision floating point 

format uses a bit for sign, 24-bit fraction and 8-bit exponent [78]. 
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Chapter 3  
 
FPGA Cores for Radar Signal Processing  

 

3.1 Optimized Adder and Multiplier Designs 

Addition is a fundamental arithmetic operation. A traditional architecture for 

adding two numbers is the ripple-carry adder (RCA), in which the carry is propagated 

from one stage to the next. The RCA architecture is illustrated in Figure 3-1, in which 

1 2 1 0...n na a a a a− −=   and 1 2 1 0...n nb b b b b− −=  are the two n-bit operands, 1 2 1 0...n ns s s s s− −=  

is the sum. inc  and outc  are carry-in and carry-out, respectively.  

FA FAFA ...
cout cin 

an-1 bn-1 a1 b1 a0 b0 

sn-1 s1 s0

c0  cn-1 c1

 

Figure 3-1: Operation of a conventional n-bit ripple carry adder. 

 
The RCA architecture has a total computation time of carrynT , where carryT  is 

the delay to generate the carry (e.g., 1ic − ) in each stage. Therefore, the computation 
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time for this architecture increases linearly with the number of digits, which is a 

problem when adding larger numbers. Different architectures have been proposed to 

reduce the path delay between inc and outc  in order to achieve shorter computation 

time. Examples of the fast adder architectures include carry-skip, carry-select, radix-

2k, and conditional-sum [77, 79]. Other architectures such as the carry-look-ahead 

compute the carries at different levels. Assuming: 

 ( , ) , ( , )i i i i i i i i i ip a b a b g a b a b= ⊕ =    (3.1) 

Thus, inc  can be expressed as: 

 1 ( , ) ( , ) ( , )i i i i i i i ic p a b c p a b g a b+ = ⋅ + ⋅   (3.2) 

Three optional architectures, ripple-carry adder, carry select adder and carry-

skip adder, were implemented on a Kintex-7 FPGA (xc7k325t-2-ffg900). The timing 

and hardware resource estimations are obtained from the synthesis result. Performance 

in terms of LUT utilizations and combinational delay (delay of the critical path in the 

circuit) are shown in Figure 3-2. 
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(b) 

Figure 3-2: Performance of two-operand adders using different implementations on a 

Kintex-7 FPGA (xc7k325t-2-ffg900). (a) Number of LUTs, (b) Combinational Delay.  
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Compared to the other two architectures, the ripple-carry architecture requires 

fewer LUTs and achieves lower latency for operands with a relatively low number of 

bits. The ripple carry adder takes advantage of the embedded carry logic circuitry and 

the regular structure of FPGAs. The advantages of the carry select adder and carry-

skip adder are explicit when the number of bits is larger than 200, which is, however, 

not very common for the radar processors we develop.  

Multiple operands are required when computing inner products and other 

applications. The addition of k  n-bit operands, using a tree of two-operand ripple-

carry adders requires a computation in the order of ( log )O n k+ . 

A technique to improve the multi-operand computation is called carry-save 

adders (CSA), in which instead of propagating the carry during each addition, the 

carry is passed to the next operand, thus reducing the number of inputs from 3 to 2 for 

computation of each digit. Sequential architectures for CSA and RCA adders were 

implemented on a Kintex-7 FPGA, and performance for 16-bit and 64-bit word length 

are presented in Figure 3-3.  
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(b) 

Figure 3-3: Performance of sequential multi-operand adders for 16 and 64 bits 

operands on a Kintex-7 FPGA.  

 51 

 



 
The performance results show that CSA achieves lower latency but demands 

slightly more LUTs than the RCA. The performance difference is more evident for 

longer word-lengths and larger numbers of operands. 

Multiplication is another important arithmetic operation, which can be 

implemented through multi-operand additions. Consider a multiplicand 

1 2 1 0...n na a a a a− −= , and a multiplier: 1 2 1 0...n nb b b b b− −= . The product of a  and b  

generates a 2n -bit product 2 1 2 2 1 0...n np p p p p− −= . 

According to [77], two different approaches can be used to improve 

multiplication computation: (a) High-radix multipliers to reduce the number of 

operands, since having a higher radix representation requires fewer number of digits. 

To further reduce the number of partial products, special encodings such as the booth 

encoding [80, 81] can be used. (b) Using faster hardware structures to reduce the time 

required to add the partial products, such as full-tree multipliers (e.g. Wallace’s tree 

[82] and Dadda’s tree [83]), partial-tree multipliers, array multipliers, and others [77]. 

In addition, redundancy representation techniques [84] can be used to have more than 

one possible representation and provide carry-free additions with a latency 

independent of the word length, as described in [85-87]. 

Sequential multipliers can be implemented with the partial-product addition 

based on optimized architectures such as the shift-add, booth encoding, or carry-save 

adder. The performance of these three architectures implemented on a Kintex-7 FPGA 

is compared in Figure 3-4. We can see that the CSA-based sequential multiplier has 

the lowest latency compared to the other two solutions. 
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Figure 3-4: Comparison of latency performance of three sequential multipliers through 

implementation on Kintex-7 FPGA.  

 
In the next steps, the performance of a parallel multiplier using basic designs 

of CSA and RCA architectures is also compared with that of the commercial designs 

using Xilinx’s dedicated hardware resources/building blocks, including LUT, DSP and 

CARRY4. The combinational delay for different word lengths is shown in Figure 3-5.   
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Figure 3-5: Comparison of combinational delay performance of different parallel 

multipliers including designs using Xilinx commercial building blocks.  

 
The results show that the design based on Xilinx’s multiplier, which uses 

dedicated LUTs and DSPs, achieves shorter combinational time delay compared to the 

basic CSA and RCA architectures. The reason is that the multipliers based on Xilinx’s 

commercial building blocks are optimized to be more suitable for the structure of the 

specific FPGA, with faster interconnection and efficient carry chain circuitry. 

Therefore, CSA is recommended as a good multiplier design for generic hardware 

while using the Xilinx LUT is more suitable for implementing basic arithmetic 

operations on Xilinx’s specific FPGA devices.  
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The register-transfer level (RTL) schematic of an 8-bit simple 2’s complement 

adder, using Xilinx Vivado tool, is shown in Figure 3-6. This implementation also 

includes input/output buffers (IBUF, OBUF), and dedicated carry propagation blocks 

(CARRY4). 

 

Figure 3-6: Schematic for an 8-bit 2’s complement adder on Kintex-7 FPGA. 

 

3.2 Matrix Multiplication 

3.2.1 Acceleration Using Coprocessor  

Consider matrix ( )ijA a=  and ( )jkB b=  with a dimension of m n×  and n p× , 

respectively. The matrix multiplication between matrices A  and B  is expressed in the 

following equation: 
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 1 1 2 2
1

,
m

ik ij jk i k i k in nk
j

c a b a b a b a b
=

= = + + +∑    (3.3) 

in which ...i = 1, ,m , ...j = 1, ,n , ...k = 1, , p . Each element of matrix C  is the dot 

product of the ith row of matrix A  with the jth column of matrix B . The traditional 

algorithm for computing matrix multiplication requires the execution of three loops in 

which the innermost loop performs an addition and multiplication, resulting in a 

computational complexity of 2mnp  FLOPs.  

Matrix multiplication is an essential step for the implementation of the 

adaptive pulse compression. As mentioned in Chapter 1 and Chapter 2, the 

computation complexity ( 3( )O n ) of such algorithms requires a large number of 

multipliers and adders. For real-time embedded systems, an important model for 

acceleration is keeping a reasonable load on the main processor, and letting the main 

processor collaborate with dedicated coprocessors that are designed to perform 

specific and intensive computing tasks, such as inner products.  

A coprocessor was implemented on a Kintex-7 FPGA (XC7k325tffg900-2). 

The architecture of the coprocessor is based on a direct matrix multiplication method 

fully sequential mode, with buffers as an interface to the buses. More details of this 

co-processor design will be given shortly. The matrix multiplication coprocessor is 

attached to a soft-core RISC CPU (MicroBlaze in this case) via the AXI Stream Buses 

and unidirectional point-to-point links. Two different matrices are stored in the local 

memory, and matrix multiplication can be computed with and without the coprocessor. 

A timer module is connected to the slow speed AXI bus, and computation results are 
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streamed to the PC through the universal asynchronous receiver/transmitter (UART) 

port. 

 

uP
Matrix

Multiplication

M1[m][n]]

M2[n][p]

MM[m][p]

FPGA

 

Figure 3-7: High-level configuration of matrix multiplication coprocessor. 

 
The comparison results of matrix multiplication with and without coprocessor 

are shown in Figure 3-8. The latency includes a number of clocks that the processor 

takes to write/read data from memory to the AXI bus. To measure the latency, a timer 

was implemented on the FPGA and attached to the host processor via the AXI Lite 

bus. For the 4x4 matrix multiplication, the execution time without the coprocessor is 

3823 clock cycles, while using the hardware coprocessor it only takes 362 clock 

cycles, speeding up the computation by about 10 times. Similar performance is 

achieved for the multiplication of 8x8 matrices, in which the execution time on the 

processor is 28980 clock cycles, while it is 2557 clock cycles when the hardware 

coprocessor is used.  
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(a) 

 
(b) 

Figure 3-8: Matrix multiplication results from MicroBlaze with and without 

coprocessor on Kinte-7 FPGA. Latency measured with a timer attached to the AXI 

Lite bus. (a) 4x4 matrix multiplication. (b) 8x8 matrix multiplication. 

 

3.2.2 Design of Matrix Multiplication Coprocessor 

The fully sequential coprocessor was implemented with fixed-point and 

floating-point format. The fixed-point representation of a m-bit number is <m, n>, 

where n denotes the number of bits for the whole part. Table 3-1 shows the hardware 

utilization for different matrix sizes. For both number representations, this architecture 

requires the same number of BRAMs, but more DSPs, FFs, and LUTs for floating-

point, since additional processing for format conversion is performed. 
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Table 3-1: Hardware utilization for floating-point and fixed-point of matrix 

multiplication. 

 
Floating-point Fixed-point <16,1> 

Matrix 
Size BRAM DSP48E FF LUT BRAM DSP48E FF LUT 

8x8 
2  

(~0%) 
5  

(~0%) 
533  

(~0%) 
848  

(~0%) 
2  

(~0%) 
1  

(~0%) 
93  

(~0%) 
131  

(~0%) 

10x10 
2  

(~0%) 
5  

(~0%) 
538  

(~0%) 
858  

(~0%) 
2  

(~0%) 
1  

(~0%) 
98  

(~0%) 
141  

(~0%) 

12x12 
2  

(~0%) 
5  

(~0%) 
538  

(~0%) 
866  

(~0%) 
2  

(~0%) 
1  

(~0%) 
98  

(~0%) 
149  

(~0%) 

14x14 
2 

(~0%) 
5  

(~0%) 
539  

(~0%) 
866  

(~0%) 
2  

(~0%) 
1  

(~0%) 
99  

(~0%) 
149  

(~0%) 

16x16 
2  

(~0%) 
5  

(~0%) 
543  

(~0%) 
875  

(~0%) 
2  

(~0%) 
1  

(~0%) 
103  

(~0%) 
158  

(~0%) 

18x18 
2  

(~0%) 
5  

(~0%) 
549  

(~0%) 
883  

(~0%) 
2  

(~0%) 
1  

(~0%) 
109  

(~0%) 
166  

(~0%) 

20x20 
2  

(~0%) 
5  

(~0%) 
549  

(~0%) 
885  

(~0%) 
2  

(~0%) 
1  

(~0%) 
109  

(~0%) 
168  

(~0%) 
 

A hardware implementation that demands a minimum number of hardware 

resources is valuable because it allows the integration of more functionalities in the 

FPGA fabric, but it is also important to take into consideration the timing performance 

in order to meet the real-time requirement. This design was targeted to a clock of 100 

MHz, but it can reach a maximum clock frequency of 119 MHz and 128 MHz for 

floating-point and fixed-point, respectively. Figure 3-9 shows the latency in term of 

clock cycles for different size of matrices. For this architecture, the latency of the 

floating point implementation is about 2.5 times higher than the fixed-point 

implementation. 

 

 59 

 



6 8 10 12 14 16 18 20 22
0

1

2

3

4

5

6

7
x 10

4

Matrix Size

C
lo

c
k
 C

y
c
le

s

 

 

Floating Point
Fixed-point<16,1>

 

Figure 3-9: Matrix multiplication total latency for floating point and fixed-point 

implementation 

 
In order to reduce the processing latency, some modifications in the design are 

necessary but at the same time it is important to consider that the hardware resources 

in a FPGA are limited. The first approach uses pipelining techniques to increase the 

concurrency in the execution of equation (3.3) with one clock cycle of initiation 

interval. The initiation interval (II) is defined as the rate at which the coprocessor can 

begin process a new set of data [88]. The synthesis result, presented in Table 3-2, 

shows that 10 DSP48Es are required for the floating-point implementation, while for 

fixed-point format the number of DSPs increases linearly with the size of the matrix. 
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And two more BRAMs are required for the floating-point implementation compare to 

the previous design. 

 

Table 3-2: Hardware resource utilization for a pipelined design.  

 
Floating-point Fixed-point<16,1> 

Matrix 
Size BRAM DSP48E FF LUT BRAM DSP48E FF LUT 

8x8 4 
(~0%) 

10 
(1%) 

1544 
(~0%) 

2222 
(1%) 

2 
(~0%) 

8 
(~0%) 

155 
(~0%) 

216 
(~0%) 

10x10 4 
(~0%) 

10 
(1%) 

1779 
(~0%) 

2339 
(1%) 

2 
(~0%) 

10 
(1%) 

183 
(~0%) 

268 
(~0%) 

12x12 4 
(~0%) 

10 
(1%) 

1812 
(~0%) 

2481 
(1%) 

2 
(~0%) 

12 
(1%) 

200 
(~0%) 

379 
(~0%) 

14x14 4 
(~0%) 

10 
(1%) 

2074 
(~0%) 

2721 
(1%) 

2 
(~0%) 

14 
(1%) 

222 
(~0%) 

427 
(~0%) 

16x14 4 
(~0%) 

10 
(1%) 

1956 
(~0%) 

2756 
(1%) 

2 
(~0%) 

16 
(1%) 

248 
(~0%) 

430 
(~0%) 

18x18 4 
(~0%) 

10 
(1%) 

2124 
(~0%) 

2795 
(1%) 

2 
(~0%) 

18 
(2%) 

272 
(~0%) 

501 
(~0%) 

20x20 4 
(~0%) 

10 
(1%) 

2092 
(~0%) 

2984 
(1%) 

2 
(~0%) 

20 
(2%) 

288 
(~0%) 

562 
(~0%) 

 

A reduction in the latency can be achieved when the Block RAMs are replaced 

by distributed memories (FFs, LUTs), and pipelining equation (3.3) with an initiation 

interval of one clock cycle so that concurrency in the execution is increased by 

demanding more DSP48Es, as shown in Table 3-3. 
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Table 3-3: Hardware resource utilization when pipelining and distributed memory are 

considered in the design. 

 
Floating-point Fixed-point<16,1> 

Matrix 
Size DSP48E FF LUT DSP48E FF LUT 

8x8 
40  

(4%) 
8019 
(1%) 

9864 
(4%) 

8 
(0%) 

2285 
(~0%) 

2267 
(1%) 

10x10 
50  

(5%) 
11310 
(2%) 

13322 
(6%) 

10 
(1%) 

3497 
(~0%) 

3138 
(1%) 

12x12 
60  

(7%) 
40908 
(10%) 

11920 
(5%) 

12 
(1%) 

10621 
(2%) 

1765 
(~0%) 

14x14 
70  

(8%) 
55195 
(13%) 

13926 
(6%) 

14 
(1%) 

14404 
(3%) 

1979 
(~0%) 

16x16 
80 

(9%) 
63673 
(15%) 

17931 
(8%) 

16 
(1%) 

18162 
(4%) 

3596 
(1%) 

18x18 
90 

(10%)  
89407 
(21%) 

20237 
(9%) 

18 
(2%) 

23471 
(5%) 

3759 
(1%) 

20x20 
100 

(11%) 
109324 
(26%) 

23758 
(11%) 

20 
(2%) 

28716 
(7%) 

4912 
(2%) 

 

A comparison of latencies for the three approaches is presented in Figure 3-10. 

It can be noticed that this implementation achieves lower latency compared to the 

other two approaches. For fixed-point and floating-point representations, the use of 

pipelining and distributed memories improves the latency in a linearly increasing 

factor compare to the pure sequential architecture. The speed up factors for floating-

point and fixed-point implementations are in the range of [15, 39] and [13, 31], 

respectively.  
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Figure 3-10: Latency in terms of clock cycles for floating point and fixed point 

implementation using different techniques. 

 

3.3 Matrix Inversion  

Matrix inversion is also a critical processing element in the implementation of 

adaptive signal processing algorithms. There is vast amount of literature discussing 

hardware implementation of matrix inversions. The most popular methods to calculate 

the inverse of a matrix are based on techniques such as the QR decomposition 

(orthogonal matrix (Q) and upper triangular matrix (R)), the Cholesky factorization, 

and the singular value decomposition (SVD).  
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Through extensive comparisons, the Cholesky method is adopted as the key 

approach to implement matrix inversion in this work, the computational cost of the 

decomposition for an n-by-n matrix is approximately 
3

3
n  FLOPs, plus forward and 

back substitution process 22n  FLOPs. Similar to a matrix multiplier, the hardware 

implementation takes the form of a coprocessor. The high-level configuration of the 

coprocessor is shown in Figure 3-11. 
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Figure 3-11: High-level matrix inversion coprocessor. 

 
The initial implementation of matrix inversion through Xilinx Vivado 

integrated design environment is based on “non-optimized” architecture, which seeks 

to minimize area by reusing a small number of hardware resources to compute the 

matrix inversion. The hardware utilization for both fixed-point and floating-point 

representations is listed in Table 3-4. 
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Table 3-4: Hardware utilization for floating-point and fixed-point of matrix inversion. 

  Floating-point Fixed-point<16,1> 
Matrix  
Size BRAM DSP48E FF LUT  BRAM DSP48E FF LUT 

8x8 7  
(~0%) 

5  
(~0%) 

1796  
(~0%) 

3687  
(1%) 

5  
(~0%) 

28  
(3%) 

1987 
(~0%) 

3328 
(1%) 

10x10 7  
(~0%) 

5  
(~0%) 

1836  
(~0%) 

3763  
(1%) 

5  
(~0%) 

28  
(3%) 

2048 
(~0%) 

3406 
(1%) 

12x12 7  
(~0%) 

5  
(~0%) 

1696  
(~0%) 

3828  
(1%) 

5  
(~0%) 

28  
(3%) 

2088 
(~0%) 

3472 
(1%) 

14x14 7  
(~0%) 

5  
(~0%) 

1911  
(~0%) 

3821  
(1%) 

5  
(~0%) 

28  
(3%) 

2103 
(~0%) 

3466 
(1%) 

16x16 7 
 (~0%) 

5  
(~0%) 

1847  
(~0%) 

3804  
(1%) 

5  
(~0%) 

28  
(3%) 

2044  
(~0%) 

3469 
(1%) 

18x18 7  
(~0%) 

5  
(~0%) 

1898  
(~0%) 

3878  
(1%) 

5  
(~0%) 

28  
(3%) 

2096  
(~0%) 

3545 
(1%) 

20x20 7  
(~0%) 

5  
(~0%) 

1891  
(~0%) 

3880  
(1%) 

5  
(~0%) 

28  
(3%) 

2089 
(~0%) 

3548 
(1%) 

 

The estimation of latency for single precision floating point and fixed-point 

<16, 1> are presented in Figure 3-12. It can be observed that for both representations, 

the latency increases exponentially with the number of elements in the matrix, while 

the floating point version sees faster increase.  
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Figure 3-12: Matrix inversion latency for single precision floating-point and fixed-

point <16, 1>. 

 
The reduction of latency involves the usage of distributed memory, as well as 

instantiating multiple hardware resources and pipelining the computation in order to 

accept new input samples every 600 clock cycles. The result is an overall lower 

latency at the expense of using more hardware resources, as can be observed in Table 

3-5 and Table 3-6. 
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Table 3-5: Comparison of hardware utilization for floating-point and fixed-point 

implementation of matrix inversion. 

  Floating-point Fixed-point  
Matrix 
Size BRAM DSP48E FF LUT BRAM DSP48E FF LUT 

8x8 0 
(~0%) 

5  
(~0%) 

10957 
 (2%) 

11115  
(5%) 

0 
(0%) 

736  
(87%) 

237444  
(58%) 

261095 
(128%) 

10x10 0 
(~0%) 

10 
(1%) 

15718 
 (3%) 

16412  
(8%) 

0 
(0%) 

1270 
(151%) 

375672  
(92%) 

414140 
(203%) 

12x12 0 
(~0%) 

10 
(1%) 

22546  
(5%) 

22634 
(11%) 

0 
(0%) 

1992 
(237%) 

547720 
(134%) 

607940 
(298%) 

14x14 0 
(~0%) 

15 
(1%) 

29735  
(7%) 

32064 
(15%) 

3 
(~0%) 

2653 
(315%) 

176881 
(43%) 

223846 
(109%) 

16x16 0 
(~0%) 

25 
(2%) 

37032  
(9%) 

45544 
(22%) 

3 
(~0%) 

3656 
(435%) 

212347 
(52%) 

27767 
 (136%) 

18x18 0 
(~0%) 

30 
(3%) 

46442 
(11%) 

60657 
(29%) 

3 
(~0%) 

4863 
(578%) 

250993 
(61%) 

33698 
 (165%) 

20x20 3 
(~0%) 

40 
(4%) 

56020 
(13%) 

79859 
(39%) 

3 
(~0%) 

6290 
(748%) 

294530 
(72%) 

403065 
(197%) 

 

Table 3-6 summarizes the latency for the best (Lat_TMin) and worst case 

(Lat_TMax) for floating-point as well as fixed-point versions. The range of 

initialization interval (II-T) is also summarized. We can observe that Lat_TMin  and 

Lat_TMax are equal for cases in which the synthesis process achieved the specific 

initiation interval value (600 clock cycles). In the other cases, the synthesis tool 

optimized as much as it could to achieve the targeted initiation interval, but from 

Table 3-6 it can be observed that for a matrix size larger than 12×12, using fixed-point 

representation is not able to be fully optimized with the Xilinx synthesis tool, resulting 

in a higher latency compared with the latency of the floating-point implementation. 

 

 67 

 



Table 3-6: Comparison of timing results for floating-point and fixed-point 

implementation of matrix inversion. 

 
Floating-point Fixed-point<16,1> 

Matrix 
Size 

Lat_T 
Min 

Lat_T 
Max 

II_T 
Min 

II_T 
Max 

Lat_T 
Min 

Lat_T 
Max 

II_T 
Min 

II_T 
Max 

8x8 511 511 512 512 822 822 600 600 

10x10 557 557 558 360 1105 1105 600 600 

12x12 868 868 600 600 1378 1378 600 600 

14x14 988 988 600 600 1266 21986 1267 21987 

16x16 1037 1037 600 600 1270 30338 1571 30339 

18x18 1256 1256 600 600 1906 40426 1907 40427 

20x20 1416 1416 600 600 2274 52394 2275 52395 
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Chapter 4  
 
FPGA implementation of Pulse Compression 

 

4.1 Hardware Implementation of Pulse Compression 

In this chapter, a unified digital pulse compression processor is presented as a 

radar-application-specific-processor (RASP) architecture for the next generation of 

adaptive radar. Based on traditional pulse compression matched filter and correlation 

receiver, the processor integrates specific designs to handle waveform diversities, 

which includes both frequency modulation and randomized waveforms, as well as 

digital transceiver self-reconfiguration for adaptive radars. The prototype of this 

processor is implemented with Xilinx FPGA devices and tested with an RF 

spaceborne radar transceiver testbed developed at the University of Oklahoma’s Radar 

Innovations Laboratory (RIL). Validation results show the effectiveness of real-time 

processing and the engineering concepts. 

 

4.1.1 FPGA in Existing SDR platforms 

As mentioned in Chapters 1 and 2, there are strong potentials for the FPGA 

implementation of real-time pulse compressions. FPGA has been used extensively not 

only in the traditional HPEC systems but also in newly-emerged commercial software-
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defined radio/radar (SDR) platforms [89, 90]. The reconfigurable capability of FPGA 

naturally enables the SDR platforms. For example, the Universal Software Radio 

Peripheral (USRP) platform from Ettus Research [91] has been using both Altera and 

Xilinx FPGAs in the digital transceiver physical layer. Various FPGA devices have 

been used in other current SDR platforms [92, 93].  

 

4.1.2 Radar TR Control Layer  

Although there have been some attempts to use commercial SDRs for radar 

applications [94, 95], the success of these efforts is largely limited by the real-time 

capability of these platforms. Figure 4-1(a) shows an existing USRP-FPGA 

implementation, which includes the DDC, UDC, FIR filters, numerical-controlled 

oscillator (NCO), and PC interface control. These functional blocks just ensure the 

basic transceiver functions, but the radar processing functions will have to be 

implemented in software (for this particular example, it is GNU Radio and USRP 

hardware driver (UHD)). For ground-based radar with low-computational 

requirements such as weather radars, software-based radar processor implementations 

have been popular [96, 97], which also use real-time Linux and Graphic Processor 

Unit (GPU) acceleration when it is possible.  

As discussed in previous chapters, for low SWaP (Space, Weight and Power) 

radar applications and the reconfigurable platforms, PC-based processors do not meet 

the requirements. A novel aspect of the proposed FPGA implementation scheme is the 

combination of the hardware-based radar processing functions and SDR architectures, 

especially for the GNU and USRP type of radio system platforms. The “core” radar 
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processor hardware includes the TR controller, pulse compressor, and spectrum 

analyzer. These core blocks are most desired for real-time processors and are used in 

cognitive radios, etc.  The concept of this extension is illustrated in Figure 4-1(b).  

 

x Decim.
FIR

DDC

x Interp. 
and CIC FIR

UDC

UHD
FSM
and
BUS

IF

ADC

DAC

 
(a) 

Digital
Transceiver

Transmitter
Timing 

And waveform
controller

Receiver
Timing control

Pulse compressor
And FFT/IFFT UHD

FSM
and
BUS

IF

 
(b) 

Figure 4-1: (a) Existing FPGA configuration of N210/E110 from Ettus Research. (b) 

Proposed FPGA configuration for Radar transceiver (with enhanced radar transceiver 

Real-time range-Doppler processing blocks). 
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4.2 Architecture Design and Analysis for Real-Time Pulse 

Compression Circuitry 

Pulse compression can be implemented as a time-domain correlator (as in 

noise radar’s correlation receiver), or a frequency-domain matched filter, which is 

implemented with FFT/IFFT as shown in Figure 4-2.  

The output of the matched filter ( )y n  using typical time-domain correlation 

can be expressed as: 

 
1

0
( ) ( ) ( ) ( )* ( )

M

r r
m

y n x m x n m x m x n
−

=

= − =∑   (4.1) 

In equation (4.1) rx  represents the received signal, and x  is the radar 

waveform template. It is known that the convolution of two signals in the time-domain 

is equivalent to the multiplication of the signals in the frequency domain. The pulse 

compression can, therefore, be implemented by converting the received signal and the 

transmitted signal (matched filter function) to the frequency domain using FFTs. Once 

they are in the frequency domain, a vector multiplication of them can be performed, 

followed by an inverse Fourier transform to convert the result back into time domain.  

As stated in Chapter 2, frequency-domain matched filter implementation is 

much more efficient than time-domain correlator for pulse compression. For instance, 

an N -tap filter in the time-domain requires N  complex multipliers for each output 

sample. And when assuming N -point FFT transform and frequency-domain template 

in memory, 2 log( ) 1N +  complex multipliers per output samples are needed. In 
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addition, the FFT transform is a power of two point size (N), which needs to satisfy 

the following conditions: 

 2 1 2kN p q and q Bτ= ≥ + − ≥  (4.2) 

In the above equation k  is a positive integer, p  is the number of samples of the 

incoming signal, and q  is the number of samples of the reference signal. Note that in 

Figure 4-2, the reference waveform template can also be pre-calculated and stored in 

the internal memory of the FPGA, which as we will point out, may not be the best 

option when the waveform bandwidth is large, and it also introduces the possibility of 

mismatching. 

Figure 4-2 shows the high-level architecture of pulse compression 

implementation, which incorporates different schemes for matched filter 

implementation. This architecture includes an optional pre-processing block which 

translates the incoming IF signal to baseband, eliminates undesired frequencies, and 

reduces the sampling rate. The circuit then temporally store the samples in first in, first 

out (FIFO) buffers, which are activated by an external trigger and controlled by a 

counter, which controls the writing and reading operations. The N-point FFT is 

applied to the buffered samples and then multiplied by a reference pulse spectrum, 

which can be obtained from three different sources: (a) Pre-processing the waveform 

template using the same input channel, thus the hardware resources can be saved; (b) 

Real-time samples collected from a dedicated input channel while the transceiver is 

operating (this scheme demands more hardware resources); (c) Pre-calculated 

spectrum coefficients stored in the on-chip memory. A weighing function block is 

required when using scheme (a) or (b). The compressed time-domain pulse is obtained 
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by applying an N-point inverse Fourier transform (IFFT) to the result of the complex 

multiplier. The samples of the compressed pulse may then be sent to the DAC for 

displaying purposes. Depending on the availability of hardware resources and device 

capabilities, further processing can be performed in the same device. Otherwise, 

samples may be sent to another processing unit through high-speed links such as serial 

RapidIO (SRIO). 
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Figure 4-2: High-level block diagram for matched-filter pulse compression 

implementation. 

 
The FFT processing blocks are based on fixed-point operations and configured 

as radix-2 butterfly stages with distributed memories, in which the stages are pipelined 

so that data can be continuously streamed. Before a hardware bitstream is generated, 

fixed-point simulations are performed at different levels.  

Using Xilinx’s software development tools, the target device for hardware 

simulations was a Kintex-7 FPGA (XC7k325t-2-ffg990), in which the incoming signal 

was an LFM waveform with BW = 5 MHz and τ  = 20 µs. The results of hardware 
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simulation are shown in Figure 4-3, in which the uncompressed input signal and the 

compressed output signal are represented with 16 bits. 

 

 
(a) 

 

 
(b) 

Figure 4-3: Hardware simulation of pulse compression, using 16-bit digital 

representation. (a) Uncompressed input signal. (b) Compressed output signal. 
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Additionally, three different weighting functions: Kaiser (β = 2.23), Hamming, 

and Hanning were considered. The comparison between hardware and MATLAB 

simulations is shown in Figure 4-4. The uncompressed pulse was a chirp signal with a 

bandwidth of 10 MHz and a pulse duration of 20 µs. The results show that hardware 

simulations achieve similar sidelobe levels as the sidelobe levels from theoretical 

predictions. As expected, weighting functions reduce the range sidelobe levels at 

expenses of range resolution degradation. 
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Figure 4-4: Comparison between MATLAB and hardware (Kintex-7 FPGA) 

simulations of pulse compression for different weighing windows. (a) No window. (b) 

Kaiser (β = 2.23). (c) Hanning. (d) Hamming. 

 
The results also show a slight mismatch due to quantization errors, and scale 

factors applied in the different processing stages, as presented in Figure 4-5. The peak 
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range sidelobe of the hardware simulations when using no window is -13.28 dB, 

Kaiser (β = 2.23) is -19.38 dB, Hanning is -31, 32 dB, and Hamming is -41.64 dB. 
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Figure 4-5: Comparison of pulse compression hardware simulation results using 

different windows: Kaiser (β = 2.23), Hanning, and Hamming. The simulation target is 

a Kintex-7 FPGA. 

 

4.3 FPGA Device Implementations of Real-Time Pulse 

Compression  

4.3.1 Hardware Resource Utilization  

The target device for this implementation was the XC7k325t-2-ffg990 FPGA. 

The platform was attached to a 14-bit dual-channel ADC (ADS62P49) and a 16-bit 

dual-channel DAC (DAC3283) FMC daughter board, which includes an external 
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trigger port. The sampling rate was 246 MSPS, which was configured from the FPGA 

through the Serial Peripheral Interface (SPI). The input samples were formatted to 

two’s complement 16-bit representation. Figure 4-6 shows typical on-chip 

implementation result including the simplified RTL diagram and the resulting layout. 

The pulse compression system clock runs at 246 MHz.  

 

 
(a) 

 
(b) 

Figure 4-6: Examples of on-chip implementation results. (a) Simplified Vivado RTL 

schematic for pulse compression. (b) The resulting layout of pulse compression 

implementation (light blue area) on the XC7k325t-2-ffg990 FPGA. 

 

The post-implementation resource utilization, in terms of FFs, LUTs, BRAMs 

and DSPs, is summarized in Table 4-1. This table only considers the pulse 

compression processing block with 8192-point FFT and IFFT, FIFO buffers, and pre-

calculated complex coefficients for the reference pulse spectrum. It can be observed 

that BRAMs, (17% of the total available for that device is used) are the most 
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demanding hardware resource for this implementation, and FFT/IFFT operations use 

the majority of them. Other architectures for FFTs may be considered to reduce the 

number of hardware resources at expenses of data throughput. 

 

Table 4-1: Device Resource Utilization for two Xilinx FPGAs for the typical matched 

filter implementation. 

Operations\HW Resources LUTs FFs BRAMs DSPs 

FFT 4407 6876 23 25 

IFFT 6962 10901 27 42 

Complex Multiplier 236 523 0 12 

Others: counters, add/subs, relational, 
registers, etc. 73 231 22 2 

Total 
11678 

(6%) 

18531 

(5%) 

72 

(17%) 

81 

(10%) 

 

The total on-chip power consumption for this implementation was 1.838 W, 

from which the dynamic power and static power were 1.659 W and 0.179 W, 

respectively. The pulse compressor block only consumes 0.783 W, which represents 

~43% of the total power. The power consumption in each processing block is detailed 

in Table 4-2.  
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Table 4-2: Power consumption of pulse compression 

Operations Power (W) 

FFT 0.295 (16%) 

IFFT 0.38 (21%) 

Complex Multiplier 0.037 (2%) 

Others  

(counters, add/subs, relational, registers, etc.) 
0.071 (4%) 

Total Power of DPC 0.783 (43%) 

 

4.3.2 Test and Validation Platforms 

The pulse compression processor implementation can be tested and validated 

through different methods. For hardware-level tests, two options were used as shown 

in Figure 4-7. The first option is a complete hardware testbed, in which the FPGA 

platform, an actual RF transceiver, DSP platform, and PC are all connected as a real-

time radar platform. The compressed pulse is sent out of the FPGA platform through 

the DAC, and is measured as a short analog pulse. This signal is then acquired by the 

digital storage oscilloscope (DSO) for further verifications.  

Another method for hardware verification is using a software-based logic 

analyzer. For this implementation, Vivado Logic Analyzer, which includes virtual I/O 

(VIO) and integrated logic analyzer (ILA) IP cores, was inserted into the design in 

order to collect a number of bits from the FPGA through the JTAG interface and 

displays signals and waveforms, which allows debugging during each step of the 
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processing with respect to the driving clock. This method is also used for test and 

verification.  
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(a) 

 

 
(b) 

Figure 4-7: Methods of hardware verification. (a) Complete hardware testbed, (b) 

Using Vivado logic analyzer for probing internal signals. 

 

 82 

 



4.4 Experiment Results 

4.4.1 System Outputs for Basic PC Waveform 

 
Pulse compression processing results of an up-chirp LFM signal, with a pulse 

duration of 20 µs and bandwidth of 10 MHz, are shown in Figure 4-8. The target 

return, in this case, is a simple duplication of the transmit pulse aligned with the 

waveform template. This figure shows the external trigger with a pulse duration of 500 

ns, the in-phase (I) and quadrature-phase (Q) input signals, and the output signal 

captured by ILA. A slight distortion can be observed in the low-frequency domain of 

the IQ signals, which is caused by the DC filter in the ADC. For displaying purposes, 

the compressed pulse is shown in linear scale based on the addition of the power of 

two of the real and imaginary components: 2 2Im Re+ . 

 

 

Figure 4-8: Pulse compression results captured using Xilinx’s integrated logic 

analyzer (ILA). External trigger with pulse duration of 500 ns, I and Q with pulse 

duration of 20 µs and bandwidth of 10 MHz. 
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Figure 4-9 shows the resulting compressed pulse after converting the samples 

of the compressed pulse to logarithmic scale. As is observed, the peak sidelobe level is 

similar to the HW and MATLAB simulations (around -13.3dB).  
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Figure 4-9: ILA samples of pulse compression output converted to logarithmic scale 

(dB). 

 
The pulse compression result in digital form is then converted to an analog 

pulse output through the DAC with a resolution of 16 bits, which is captured by the 

Digital Storage Oscilloscope (DSO) and shown in Figure 4-10. The compressed 

analog pulse is identical to the digital result in Figure 4-9, and the overall processing 

latency is about 28.8 µs, which justifies the real-time processing. On the other hand, it 

can be noticed in Figure 4-10 that some distortion was introduced by the DAC during 

the digital-to-analog conversion process.  
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(a) 

 
(b) 

Figure 4-10: Comparison between uncompressed time domain input ((a), pulse 

bandwidth = 10 MHz, pulse length = 20 µs), and compressed time domain output 

pulse ((b), captured by DSO). 

 
Figure 4-11 includes the analog amplitude outputs from the pulse compression 

processor, when there are two emulated targets adjacent to each other and using a 
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short pulse of 2 µs. The two targets are approximately separated by 300 meters and are 

assumed to be identical point targets.  

 

 
 

Figure 4-11: Pulse compressor output for multiple emulated targets. Captured by DSO. 

 

4.4.2 Real-Time Pulse Compression for Random Waveform 

Compared to the chirp/LFM waveform, random waveforms are usually 

designed to use wider bandwidth. The FPGA implementation of pulse compression for 

random waveforms has a limitation on the instantaneous signal bandwidth it can 

handle, which originates from the limitation of ADC sampling rate and clock 

frequency. For XC7k325t platform implementation, the largest allowable signal 

bandwidth is about 100 MHz. The FPGA itself, on the other hand, can process signals 

with larger bandwidth as long as the computation load fits in the device capacity.  

Figure 4-12 (a) shows a sample of a random-noise waveform with 40 MHz 

modulation bandwidth and about 20 µs pulse length. The significant difference 

between this waveform and the normal chirp waveform is the large amplitude dynamic 
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range, so the ADC/DAC distortions will have impacts on the output. In Figure 4-12 

(b), the digital pulse compressor results (captured using Vivado logic analyzer) show 

good overall sidelobe performance. For the FPGA system’s analog output, which is 

shown in Figure 4-12 (c), the impact of the distortion of the DAC and RF channel can 

be clearly observed.  
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(c) 

Figure 4-12: Real-time pulse compression of band-limited random noise with the 

FPGA pulse compression implementation, (a) Input waveform (40 MHz signal 

bandwidth), (b) Pulse compressor output captured using Vivado logic analyzer (before 

DAC output), (c) Pulse compressor output converted to analog pulse and captured by 

DSO. 
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4.4.3 Impact of Waveform Template Generation Scheme and Timing 

Misalignment 

A waveform template (or local replica) is needed for pulse compression 

receivers. This template can be either generated locally (within chip) assuming the 

waveform parameters are all known, or can be sampled from a transmitter 

coupled/loop back signal. Sometimes the precise transmit waveform is not available 

and can only be estimated from other ways. This may happen when a pulse 

compression processor needs to be added into an existing operational radar. 

Obviously, there is potential mismatching between the received actual signals and the 

local-generated waveform templates, which can cause degradation in PC results, 

especially on sidelobes. For hardware implementation, another issue with internally 

generated templates is the timing misalignment between the two signals. One example 

is shown in Figure 4-13 (a), where the waveform parameters in terms of bandwidth 

and pulse length are known, but due to timing (phase) misalignment, the mismatching 

still causes strong sidelobes (dotted line). Again, adding windowing can mitigate this 

effect at the cost of resolution.  
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(b) 

Figure 4-13: Comparison between the PC outputs using internal waveform template 

generation (without external waveform samples) and PC outputs with external 

waveform templates and different bandwidths. 

 

When an external source of the waveform template is available, and it is 

“synchronized” with the received pulse, the FPGA output and the sidelobe are much 

more stable. Figure 4-13 (b) shows compressed output with 5 MHz BW (same as (a)) 

chirp waveform and 50 MHz BW chirp waveform when a waveform template is 

acquired from the external waveform generator (the same as the source to the RF 

transceiver).  

 

4.5 Conclusions 

This chapter presents results about real-time FPGA implementation of a 

software-defined radar signal processor. The core of this processor is the real-time 

pulse compression processor, realized as a fixed-point matched filter. As a software-

defined IP core, the pulse compression can be easily reconfigured to process different 
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waveforms on different devices or platforms. The two examples – narrowband chirp 

waveform for solid-state weather radar, as well as wideband random noise waveform 

processing, are presented. The capability of processing the noise waveform is largely 

limited by the ADC speed and DAC dynamic range, while the FPGA devices on the 

market have enabled the real-time pulse compression and radar controllers for 

wideband or even ultra-wideband waveforms. It is found that conversions between 

analog and digital signals can cause distortions in the pulse compression result, and 

some of these distortions are not necessarily deleterious. Also, generation of waveform 

templates with adequate timing-alignment is important to the real-time performance. 
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Chapter 5  
 
SoC Implementation of an Adaptive Radar Processor 

 

The proposed adaptive radar processor is part of the solid-state radar 

transceiver optimizer which is composed of different processing blocks, such as 

adaptive pulse compressor (APC), pre-distorter, general-purpose processor, 

coprocessors, and peripherals. The goal of designing, testing and investigation of these 

building blocks is to integrate them into a single chip and to achieve the lowest C-

SWaP, and support airborne and spaceborne platform deployments.  

 

 
Figure 5-1: System elements of the proposed radar transceiver optimizer. 

The overall on-chip system requires one or more processors to execute the 

software, control program, data transfer, and information processing. The 
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interconnection architecture of the transceiver optimizer processor, based on Xilinx 

SoC technology, is shown in Figure 5-2. The modularity of this architecture makes it 

possible to be applied to different FPGA devices or radar platforms.  
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Figure 5-2: Transceiver optimizer System-on-Chip (SoC). 

 
The system collects samples from the ADC, and streams data into the FPGA 

where filtering, decimation, and direct pulse compression are performed first. Using 

AXI Interconnection, the compressed pulse samples are then sent to an on-chip 

microprocessor, which computes the adaptive pulse compression and it is supported 

by custom coprocessors designed to accelerate the computation process. The APC 

output results can be transferred to another external device through high-speed serial 

interconnections with multiple lanes.  
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The transceiver optimizer also performs digital baseband pre-distortion, for 

which the transmitted feedback signal is pre-processed, and then stored in a specific 

area of the shared memory. These samples along with the pre-distorter output are read 

by the main processor through the AXI interconnect buses, in order to compute and 

update the coefficients of the pre-distorter. The primary focus on this chapter is SoC 

implementation of the APC building block.  

 

5.1 Literature Review: Implementation of Traditional Adaptive 

Filters 

The most common adaptive algorithms used to calculate the filter weights are 

based on the least-mean-squares (LMS) and the recursive least-squares (RLS). They 

have been used in different applications [98-109]. It is also known that RLS offers 

faster convergence over LMS, since it is independent of the spread of the eigenvalues 

of the correlation matrix. These algorithms and their variants are extensively covered 

in [110-113].  

In general, real-time implementation of adaptive algorithms is limited by 

different factors such as complexity, accuracy, numerical stability, dynamic range, etc. 

The low complexity and regular structure of the LMS algorithm make it suitable for 

being implemented on hardware. For instance,  two variants of the Delayed LMS 

[114] algorithm were implemented in [107]: the DF-DLMS(direct form) and TF-

DLMS (transposed form) predictors. The targeted device was a Virtex XCV300-6 

FPGA, achieving about 10 times speedup compared to the traditional LMS. The 

pipelined implementation of TF-DLMS demanded a huge area compare to DF-LMS 
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and LMS. For 8-bit and 8 taps, the achieved clock frequency was 12 MHz for 

traditional LMS, 68 MHz for TF-LMS, and 120 MHz for DF-LMS. In [115], a 

software implementation of D-LMS in a DSP core (SPXK5) is described, achieving a 

speed of 1 cycle per tap. 

 On the other hand, the RLS algorithm suffers from the computation of the 

correlation matrix and its inverse. In [116], RLS with fixed-point format was 

implemented for a 4-element MMSE adaptive array antenna.  

The two principal methods to reduce the computational complexity are based 

on the application of the matrix inversion lemma or the QR-decomposition recursive 

least-squares (QRD-RLS) technique. The QRD-RLS approach has been studied for 

several decades, as well as its performance in different applications [117-127]. In 

[128], the implementation of matrix inversion using the QR technique, fixed-point, 

was implemented on a Spartan 3 FPGA XC3S1000, achieving a maximum clock 

speed of 13.6 MHz, using 25% of the hardware resources, and the maximum matrix 

size dimension was 23x23 performed in 253 µs. [124] presents a hierarchical 

architecture of QRD-RLS for digital beamforming, in which techniques such as look-

ahead, pipelining and folding were applied to increase the throughput, reduce area, and 

power consumption.  

Numerical format analysis of RLS is described in [125, 129, 130]. For 

instance, [130] proposed a derived Kalman algorithm and compared with traditional 

RLS, their performance was analyzed for fixed-point and floating-point representation, 

in which it also used a modified floating-point format to take advantage of the 18-bit 

multipliers in the Virtex-5 FPGA family.  
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 A variation of this QR-RLS is called systolic array QR-RLS [131, 132], which 

is also known as Givens rotation or Coordinate Rotate Digital Computer (CORDIC)-

based RLS algorithms. In [133], the authors described an architecture of VLSI systolic 

array for an adaptive nulling processor based on the CORDIC algorithm in a systolic 

architecture, in which the function of a CORDIC cell is to update the Cholesky factor 

of the correlation matrix every 22 ms. It was estimated that 96 CORDIC cells can be 

capable of updating a 64-element weight vector for 300 observations in 6.7 ms. [100] 

presents 16-bit QR decomposition for 4x4 matrices, achieving 10x and 100x speedup 

compared to an Intel i7 processor (3.6 GHz) and ARM Cortex A-9 (533 MHz). 

Another method to improve the RLS algorithm is based on dichotomous coordinate 

descendent iterations (RLS-DCD), which was implemented on a Xilinx Virtex-II Pro 

XC2VP30 in [134]. The results shows that the transversal RLS-DCD can update a 64-

tap adaptive filter at a rate of 74 KHz, occupying an area of 1306 slices. Other 

adaptive methods such as the Levenberg-Marquardt algorithm to solve non-linear LS, 

was implemented on a Virtex-5 FPGA in [102], obtaining an execution time of 60 µs 

operating with a clock frequency of 200 MHz. 

 

5.2 System-on-Chip (SoC) Implementation of APC 

As described in Chapter 2, adaptive pulse compression is a series of radar 

signal processing algorithms that are independent of waveforms and achieve an 

optimal estimation of ground-truth. These algorithms have been shown to work for 

both point-target and distributed-target scenarios. In this chapter, hardware 

implementation of the basic APC algorithms, LSE and RMMSE, for real-time 
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transceiver optimization is presented. The same architecture as well as design 

guidelines can be extended naturally to other APC algorithms. An important parameter 

to evaluate the design is the latency, which is the number of clock cycles that a 

processing unit takes to generate the outputs from corresponding inputs. Also, since 

hardware resources are limited in an FPGA, the estimation of the silicon area 

demanded by a design is also important. This is expressed in terms of DSP48E units 

(DSPs), flip-flops (FFs), and look-up tables (LUTs). 

 

5.3 LS-APC Multi-Coprocessor Architecture 

The output of the LS algorithm is given by equation (2.10). It can be seen that 

matrix multiplication and matrix inversion are the two main operations for the LS 

algorithm. In order to accelerate the computation of these two matrix operations, two 

independent coprocessors are considered in this first architecture, they communicate 

with the host processor via dedicated AXI buses. 

 

uP

Matrix
Multiplication

M1[m][n]]

M2[n][p]

MM[m][p]

FPGA

Matrix
Inversion

M[k][k]

M_inv[k][k]

 

Figure 5-3: Multiple co-processor for LS-APC. 
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As shown in Figure 5-3, the two coprocessors were independently studied and 

tested in the previous chapter. The host processor initializes the process, and passes 

data to the multiplication coprocessor to calculate the HS S  term; results are then sent 

back to the main processor to execute the matrix inversion in the second coprocessor. 

Since the matrix coprocessor considers square matrices, the output from the matrix 

inversion will need to be filled with zeros to form an 1L N+ −  x 1L N+ −  matrix, a 

similar modification is performed for the HS  matrix. Both reshaped matrices are sent 

to the first coprocessor for multiplication to obtain the LS filter weights which will be 

applied to the incoming signal y . As it can be noticed, when the three processors are 

connected, the total execution time is determined not only by the coprocessors’ 

processing latency, but also by the time needed to execute the processor instructions 

(fetch, decode, execute), transfer data from memory to coprocessors and vice versa. 

For example, when the MicroBlaze processor is configured without caches, the 

average latency for transferring a value from memory to AXI Stream port is about six 

clock cycles (CPU), and reading from the port and storing in memory takes about five 

clock cycles (CPU), which can limit the performance of this architecture. A traditional 

method to reduce data transfer latency is to use a dedicated unit called direct-access 

memory (DMA). The DMS unit can efficiently perform burst transfers. 

A summary of the total hardware resources of the matrix multiplication and 

matrix inversion coprocessors, for a sequential architecture with minimum silicon area 

occupancy, is shown in Table 5-1.  
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Table 5-1: Total hardware resources for the matrix multiplication and matrix 
inversion. 

 Floating Point 
Size BRAM DSP48E FF LUT 
8x8 9 (1%) 10 (1%) 2329 (~0%) 4535 (2%) 

10x10 9 (1%) 10 (1%) 2374 (~0%) 4621 (2%) 

12x12 9 (1%) 10 (1%) 2234 (~0%) 4694 (2%) 

14x14 9 (1%) 10 (1%) 2450 (~0%) 4687 (2%) 

16x16 9 (1%) 10 (1%) 2390 (~0%) 4679 (2%) 

18x18 9 (1%) 10 (1%) 2447 (~0%) 4761 (2%) 

20x20 9 (1%) 10 (1%) 2440 (~0%) 4765 (2%) 

 

Replacing the BRAMs for distributed memory and pipelining the hardware 

architecture in each coprocessor, the combined latency is reduced by a factor that 

varies linearly with the number of matrix elements, as shown in Figure 5-4. The speed 

up factor for the considered matrix sizes in the figure is in the range of 18 to 66. 
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Figure 5-4: Combined latency of matrix inversion and matrix multiplication 

coprocessors for the sequential and pipelined versions. 

 
However, the number of DSP48Es, FFs and LUTs is much more than the 

sequential architecture. Table 5-2 summarizes the total hardware resources for the 

implementation of the two coprocessors with lower latency. 

 

Table 5-2: Total hardware resources for pipelined version of matrix multiplication and 
matrix inversion. 

Size DSP48E FF LUT 
8x8 45 (5%) 18976 (4%) 20979 (10%) 

10x10 60 (7%) 27028 (6%) 29734 (14%) 

12x12 70 (8%) 63454 (15%) 34554 (16%) 

14x14 85 (10%) 84930 (20%) 45990 (22%) 

16x16 105 (12%) 100705 (24%) 63475 (31%) 

18x18 120 (14%) 135849 (33%) 80894 (39%) 

20x20 140 (16%) 165344 (40%) 103617 (50%) 

 

 99 

 



5.4 Single LS-APC Processor 

The second type of implementation utilizes a single LS processor, which 

communicates with the main processor through the AXI stream buses. The samples 

from the transmitted waveform s  and the received signal y  are buffered first, and 

then the LS algorithm is applied to estimate the output vector, _x LS . The 

architecture performs the processing in a sequential manner, as is shown in Figure 5-5. 

The performance of both fixed-point and floating-point implementations has been 

studied. The system clock speed for this design was targeted at 100 MHz.  
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Figure 5-5: Internal architecture of the single LS coprocessor option. 

 
The summary of hardware utilization for 16-bit fixed-point single co-processor 

implementations is shown in Table 5-3. The implementation requires 13 DSP48Es 

which represents about the 1% of the total available for XC7k325t device. The 

estimated dynamic power consumption, considering only the coprocessor, is between 

95 mW and 133 mW for the number of range gates listed in the table. 
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Table 5-3: Hardware utilization of LS fixed-point implementation using 16-bit fixed-

point format for Xilinx XC7k325t FPGA. 

Gates BRAMs DSP48Es FFs LUTs 

10 8 (~0%) 13 (1%) 1905 (~0%) 3508 (1%) 

20 8 (~0%) 13 (1%) 2040 (~0%) 3808 (1%) 

30 13 (1%) 13 (1%) 2087 (~0%) 3881 (1%) 

40 18 (2%) 13 (1%) 2077 (~0%) 3969 (1%) 

50 34 (3%) 13 (1%) 2431 (~0%) 4402 (2%) 

 

When the number of bits is increased to 32, the implementation requires 

slightly more logic resources, and four times more DSPs than the 16-bit 

implementation. The dynamic power consumption of the coprocessor is between 213 

mW and 261 mW. 

 

Table 5-4: Hardware utilization of LS fixed-point implementation using 32-bit fixed-

point format for Xilinx XC7k325t FPGA. 

Gates BRAMs DSP48Es FFs LUTs 

10 8 (~0%) 56 (6%) 3709 (~0%) 5935 (2%) 

20 10 (1%) 56 (6%) 3706 (~0%) 6085 (2%) 

30 21 (2%) 52 (6%) 3513 (~0%) 5780 (2%) 

40 35 (3%) 56 (6%) 3753 (~0%) 6184 (3%) 

50 67 (7%) 56 (6%) 4107 (1%) 6590 (3%) 

 

The number of clock cycles required by the LS coprocessor to produce an 

output (latency) versus different number of signal samples is shown in Figure 5-6. For 

this experiment, the number of range gates was maintained constant as 60. It can be 
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observed that the latency varies linearly with respect to the number of waveform 

signal samples.  
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Figure 5-6: Estimated latency of LS coprocessor for different number of signal 

samples with a constant number of range gates. The bar plot also shows the range of 

variation (max and min) of latency estimation. Number of range gates = 60. 

 

5.5 LS implementation based on Floating-Point Data Format  

The same co-processor architecture in Figure 5-5 is also implemented using 

floating-point data formatting, wherein we used single precision floating-point format 

containing 32 bits: one sign bit, eight exponent bits, and 23 fractional bits. In this 

initial approach, the coprocessor performs in a fully sequential mode the estimation of 
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the ground truth. Table 5-5 summarizes the hardware resource utilization of the 

floating point co-processor implementation. The dynamic power is in the range of 127 

mW to 141 mW. 

Table 5-5: FPGA resource utilization for floating-point implementation 

Gates BRAMs DSP48Es FFs LUTs 

8 8 (~0%) 10 (~1%) 2753 (~0%) 5126 (~2%) 

10 8 (~0%) 10 (~1%) 2765 (~0%) 5198 (~2%) 

12 8 (~0%) 10 (~1%) 2841 (~0%) 5308 (~2%) 

14 8 (~0%) 10 (~1%) 2910 (~0%) 5369 (~2%) 

16 8 (~0%) 10 (~1%) 2853 (~0%) 5363 (~2%) 

18 8 (~0%) 10 (~1%) 2901 (~0%) 5426 (~2%) 

20 8 (~0%) 10 (~1%) 2894 (~0%) 5441 (~2%) 

22 11 (~0%) 10 (~1%) 3190 (~0%) 5784 (~2%) 

24 16 (~0%) 10 (~1%) 2966 (~0%) 5586 (~2%) 

 

The impact of number of range gates on the latencies of floating-point LS 

implementation is shown in Figure 5-7. The maximum clock frequency for this 

implementation is 125 MHz. 
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Figure 5-7: Estimated latencies for different number of range gates for floating point 

implementation, assuming the number of transmitted signal samples is 6 (a short 

pulse). 

 
The latency for fixed-point and floating-point architectures is compared in 

Figure 5-8. The fixed-point with 16-bit configuration results in a better performance 

(smaller latency) compared to the 32-bit fixed-point implementation. As expected, it 

also shows all fixed point implementations have lower latency than that of the 

floating-point implementation. It can be also seen again that the latency of the 

floating-point architecture increases more rapidly compared to the other two 

architectures.  
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Figure 5-8: Performance comparison between fixed-point and floating-point 

implementation for different number of range gates. Comparison of Latency Between 

Fixed-point and Floating Point Implementation 

Signal Samples = 6. 

 
As we have seen in the previous results, the latency of LS implementations is 

usually large and also varies in certain ranges. Implementations of the single co-

processor LS gate-level architecture are then studied. The methodology includes 

pipelining and parallelizing the design, and replacing BRAMs with distributed 

memory in order to reduce latency and improve throughput. As a result from these 

improvements, the first architecture is able to accept a new set of data (initiation 

interval) every 100 clock cycles. The hardware utilization is shown in Table 5-6.  
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Table 5-6: FPGA hardware resource utilization for pipelined floating point 

implementation. 

Gates DSP FF LUT 

8 15 (1%) 8058 (1%) 6858 (3%) 

10 25 (2%) 10654 (2%) 10418 (5%) 

12 33 (3%) 17314 (4%) 14312 (7%) 

14 40 (4%) 21800 (5%) 18440 (9%) 

16 50 (5%) 27983 (6%) 23696 (11%) 

18 63 (7%) 36310 (8%) 31360 (15%) 

20 73 (8%) 45917 (11%) 39112 (19%) 

22 88 (10%) 56486 (13 %) 46986 (23%) 

 

Now, assuming that a new set of data is received every 50 clock cycles, the 

throughput of the coprocessor then needs to be increased by about two times. This 

improvement will results in at least 1.5 times more hardware resource utilization, as 

shown in Table 5-7. 

Table 5-7: FPGA hardware resource utilization for initiation interval of 50 clock 

cycles 

Gates DSP FF LUT 

8 30 (3%) 10850 (2%) 11116 (5%) 

10 40 (4%) 16748 (4%) 15892 (7%) 

12 58 (6%) 25108 (6%) 22429 (11%) 

14 78 (9%) 33792 (8%) 30522 (14%) 

16 118 (14%) 57179 (14%) 48594 (23%) 

18 143 (17%) 70028 (17%) 59304 (29%) 

20 173 (20%) 82783 (20%) 71352 (35%) 

22 191 (22%) 94045 (23%) 82545 (40%) 
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The performance of these two designs in terms of latency is compared in 

Figure 5-9, which shows the number of clock cycles required by the coprocessor to 

compute the _x LS  output vs number of range gates. Decreasing the initiation interval 

by a factor of two reduces the latency for number of range gates larger than 16 (or LS 

matrices larger than 16×16).  
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Figure 5-9: Comparison of latency in terms of clock cycles for different initiation 

intervals when number of samples is 6. 

 
It has been shown that the low latency version of the LS occupies more silicon 

area, which can lead to more power consumption. An estimation of the dynamic power 

consumption is presented in Figure 5-10. The estimations are calculated using the 

Xilinx Power Estimation (XPE) tool. The dynamic power consumption for the 
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pipelined versions is clearly higher than the non-pipelined version, and also the 

implementation with II=50 consumes about 1.5 to 2 times more power than the II=100 

version, due to the additional hardware resources demanded.  
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Figure 5-10: Comparison of dynamic power consumption required by the LS 

coprocessor. 

 
If the waveform is fixed (no adaptive or dynamic waveforms), an improvement 

to the LS architecture is to pre-calculate the matrix HS  and 1( )HS S − , store them in 

on-chip memory and then apply to the received signal vector y , as shown in Figure 

5-11. This approach will not only maximize the throughput but also minimize the 

latency, which will be mainly dependent on a matrix-vector multiplication with 

2L NL L+ −  multiplications.  
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Figure 5-11: Architecture for fixed-waveform architecture, where Coprocessor 1 is 

only activated for the estimation of the filter coefficients.  

 

5.6 RMMSE-APC Co-Processor Architecture 

 
The RMMSE algorithm is described in [2]. The algorithm requires the 

calculation of matrix 
1

1
( ) ( 1)

n N
H

n n
n N

C l l n N s sρ
= +

=− +

= + + −∑  and matrix inversion 1( )C R −+  

for each range gate. Here ρ  is defined as the target signal power for the range bins, ns  

represents the n-samples, shifted version of the waveform s , and R  is the noise 

covariance matrix.  
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The hardware architecture for the RMMSE co-processor is presented in Figure 

5-12. The matrices R  and ( )SS n  are pre-calculated and stored in on-chip memory, 

and ( ) H
n nSS n s s= , where [ 1, 1]n N N∈ − + − . The vectors y , ρ  and s  are also put 

into the on-chip memory. The values of ρ  are updated in each iteration, and reduced 

in size by N-1 elements.  

The filter weights for a range gate are estimated by matrix-vector 

multiplication operation and scaled by the value of ρ , as follows: 

1( 1) ( )w l N C R sρ −= + − + . These weights are applied to the incoming signal vector to 

obtain the estimated ground truth. The operation can be represented by an N-vector 

multiplication: [ ( ( 1)( 1)) ( ( 1))]Tx w y l k N y l k N= + − − + −

 . The target signal power 

for the range bins is scaled by a constant value [0, 2]η∈  to guarantee convergence 

stability. This last step is performed in software.  
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Figure 5-12: RMMSE coprocessor architecture. 
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The synthesis results for this architecture are shown in Table 5-8. The 

coprocessor performs the computation in a sequential mode using minimal hardware 

resources, in which hardware resources are reused in the different processing blocks 

for the estimation of the range gates. 

 

Table 5-8: RMMSE coprocessor synthesis results. 

N (Samples) BRAM DSP48E FF LUT 
8 9 (1%) 12 (1%) 2726 (~0%) 4482 (2%) 

10 13 (1%) 12 (1%) 2792 (~0%) 4630 (2%) 

12 17 (1%) 12 (1%) 2823 (~0%) 4661 (2%) 

14 25 (2%) 12 (1%) 2905 (~0%) 4700 (2%) 

16 25 (2%) 12 (1%) 2789 (~0%) 4635 (2%) 

18 42 (4%) 12 (1%) 2866 (~0%) 4783 (2%) 

20 42 (4%) 12 (1%) 2864 (~0%) 4792 (2%) 

22 74 (8%) 12 (1%) 2994 (~0%) 4907 (2%) 

 

For this design, the achieved clock frequency was 118.76 MHz. The latency, 

which is number of clock cycles for a range gate estimation, versus the length of 

waveform s  is displayed in Figure 5-13. It can be observed that the latency is on the 

order of 510  clock cycles, with maximum and minimum latency generated by the 

matrix inversion execution and increasing with the number of elements. Considering 

the achieved clock frequency, 500 range gates, and three iterations, the total latency 

over a range profile when N=16 would be approximately 1.6 seconds.  
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Figure 5-13: Latency estimation per range gate without optimization.  

 
Moreover, for this implementation, besides matrix inversion, the scaling block 

and matrix addition units require 24% and 34% of the total latency, respectively. To 

reduce the critical path in the computation process, three different architectures were 

considered. In the first architecture, called partial pipelined, the matrix inversion is 

maintained in sequential mode, while the other processing units are pipelined. The 

initiation interval for the second and third architecture is constrained to be less than 

2000 and 1000 clock cycles, respectively. As can be observed, latencies of the 

pipelined architectures, shown in Figure 5-14, are lower than those achieved in the 

sequential configuration. The latency reduction factor also varies smoothly linear with 

the number of samples (N). For instance, when N=16 the fully pipelined architectures 
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performs about 7 and 15 times faster than the partially pipelined and the sequential 

architecture respectively, which represents a latency of 94 ms, considering 8.42 ns of 

clock period, 500 range gates, and 3 iterations.   
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Figure 5-14: Latency comparison of implementation of RMMSE coprocessor.  

 
In terms of hardware resource utilization, the partially pipelined architecture 

occupies more silicon area. 
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Table 5-9: Hardware resources for partially pipelined version of RMMSE coprocessor. 

N 
(Samples) BRAM DSP48 FF LUT 

8 12 (1%) 17 (2%) 5906 (1%) 7794 (3%) 

10 16 (1%) 17 (2%) 7139 (1%) 8937 (4%) 

12 20 (2%) 17 (2%) 8907 (2%) 11093 (5%) 

14 28 (3%) 17 (2%) 10682 (2%) 12887 (6%) 

16 28 (3%) 17 (2%) 12637 (3%) 16868 (8%) 

18 45 (5%) 17 (2%) 15005(3%) 18289 (8%) 

20 45 (5%) 17 (2%) 17560 (4%) 21314 (10%) 

22 77 (8%) 17 (2%) 20592 (5%) 25243 (12%) 

 

However, constraining the initiation interval of the matrix inversion to be less 

than a determined number of clock cycles conditions the synthesis tool to use much 

more logic resources, as seen in Table 5-10.  

 

Table 5-10: Hardware Resources for fully pipelined RMMSE coprocessor. 

N 
(Samples) BRAM DSP48 FF LUT 

8 6 (~0%) 15 (1%) 12601 (3%) 14592 (7%) 

10 8(~0%) 15 (1%) 17999 (4%) 21019 (10%) 

12 12 (1%) 15 (1%) 24860 (6%) 30410 (14%) 

14 20 (2%) 15 (1%) 32916 (8%) 42041 (20%) 

16 20 (2%) 20 (2%) 40003 (9%) 53124 (26%) 

18 37 (4%) 20 (2%) 49827 (12%) 65934 (32%) 

20 37 (4%) 25 (2%) 59307 (14%) 83710 (41%) 

22 69 (7%) 30 (3%) 70851 (17%) 106517 (52%) 
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Preserving a balance between latency and hardware resource utilization can let 

us find a better approach in order to reduce the processing latency by instantiating 

multiple processing units (PUs). In which, for each range gate estimation, a set of ρ  

values are streamed through a bidirectional bus to scale the matrix SS  and form the 

N N×  matrix C . 2( )( 1)Tr L M k N= + − −  and 

[ ( 1)( 1) ( 1)]Tw Tr k N Tr k N= + − − + − . The number of concurrent PUs is 

determined by the hardware resources available in the FPGA. 
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Figure 5-15: Architecture of RMMSE processor. 
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It has been also noticed that the addition of multiple matrices to form ( )c l R+  

also demands an equivalent number of clock cycles to that of the matrix inversion 

process. An alternative architecture to improve the latency is shown in Figure 5-16. 

The sum of 2N matrices, including the noise covariance matrix, is performed in the 

lSM  processing block. This matrix addition architecture requires a total of 

2log ( )m N=  stages, and the computation of N
q

 N N× -matrix additions in parallel 

per stage, where 1 q m≤ ≤ . The total latency for this block is determined by m  times 

the latency of the addition of two matrices. 

2N-1 Matrices

+ +
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+
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m
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( )C l R+
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Figure 5-16: Architecture of the matrix summation to compute the matrix ( )C l R+  for 

a range gate. 
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Using this architecture and a sequential micro-architecture for two-input matrix 

addition, the latency is reduced by about seven times compared to the sequential 

computation of matrix additions. Moreover, when the two-input matrix addition’s 

micro-architecture is parallelized, the latency is reduced by about 25 times, but the 

number of hardware resources needed is increased significantly. 

 

5.7 Summary  

This chapter discusses the implementation of basic APC algorithms on FPGA 

as a part of the overall radar transceiver optimization processor. The flexibility of a 

SoC platform allows the implementation of different architectures in a single device. 

There are many different options. The first proposed architecture demonstrates that 

matrix multiplication and matrix inversion, as key operations for the implementation 

of APC algorithms, can be attached to the on-chip host processors to speed up the 

APC computation. The feasibility of implementing floating point version on FPGA is 

also validated, at the expense of more hardware resources, compared to the fixed point 

representation. Different techniques can improve the real-time performance of the on-

chip system and reduce the overall latency, but demand more FPGA resources and 

power consumption. Hand tuning in the optimization for fixed-point implementation is 

required, especially when the computation involves arithmetic operations other than 

multiplication and addition. The focus at this point is Least-Squares (LS) operation 

while an initial RMMSE co-processor architecture is also presented.  
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Chapter 6  
 
Conclusions 

 

Adaptive Pulse Compression (APC) is a series of radar signal processing 

algorithms that are independent of waveforms and achieves an optimal estimation of 

ground-truth. APC algorithms have been shown to work for both point target and 

distributed target scenarios. The performance APC comes with the cost of 

computational load. In this dissertation, the performance of different fast arithmetic 

architectures on the Xilinx Kintex-7 FPGA is studied. Hardware accelerators were 

developed as coprocessors for APC, achieving performance improvements. Hardware 

implementation of pulse compression is presented. This study also seeks an optimal 

configuration for the tradeoffs between latency and hardware utilization for the 

implementation of APC, for which the RMMSE and LS algorithms are considered. 

The system architectures are based on the embedded processor which is 

interconnected with the logic resources through the on-chip AXI buses. 

 

6.1 Achievements 

The major innovative contributions of this work are summarized as follows: 

(1) The performance of fast adder and multiplier architectures on a Kintex-7 

FPGA device was rigorously investigated. It was also shown that LUT-
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based/DSP-based adder and multiplier achieved better performance 

compared to the other fast architectures. 

(2) The use of matrix multiplication and Cholesky-based matrix inversion as 

coprocessor units for embedded systems to accelerate intensive 

computational algorithms was studied. The feasibility of implementing 

floating-point matrix operations on an FPGA and the performance were 

analyzed. 

(3) A waveform-independent, real-time pulse compression (matched filter) 

processor architecture was implemented on FPGA. Different windowing/ 

weighting functions were also included in the architecture, which can 

mitigate range sidelobes in real-time. Implementation of the architecture 

was demonstrated on a Kintex-7 FPGA, as a part of a Ku-band spaceborne 

radar transceiver testbed. As an IP-Core, this pulse compression processor 

can be easily reconfigured or used as a part of the SoC system architecture.  

(4) Established a complete radar RF/IF transceiver processor based on SoC 

system architectures. A proposed implementation example, which is based 

on Xilinx Zynq, has included adaptive pulse compression and adaptive pre-

distortion processing in the system. The example implementation laid out a 

basic framework for future more completed SoC implementations.  

(5) Designed and developed different FPGA hardware implementations for 

typical adaptive pulse compression processing, i.e., LS and RMMSE. 

Architectures for these implementations are analyzed; these architectures 

 121 

 



can significantly reduce the overall processing latency at the expenses of 

more hardware resources. 

 

6.2 Future Work 

(1) The integration of the APC architecture with adaptive pre-distortion will 

lead to a complete transceiver optimization system as shown in Figure 5-2. 

This system will improve detection, and will be very useful in airborne 

radars, such as the High-Altitude Imaging Wind and Rain Airborne Profiler 

(HIWRAP) [135], whose backend system is based on Virtex-5 FPGA and 

Power PC processor, and where strict size, weight and power constraints 

are required. 

(2) Place-and-route improvements to achieve maximum throughput and 

reduced latencies. In addition, to reduce critical paths and achieve a higher 

computing clock frequency, the insertion of registers may also be required. 

(3) Implementation of an optimized version of adaptive pulse compression 

with reduced matrix sizes can be considered.  

(4) Other multiprocessor architectures with multiple cache levels for reducing 

memory latencies should be studied.  

(5) Expand the SoC architecture to support 2D-LS and 2D-RMMSE 

processing and mitigate the sidelobes from both pulse compression and 

antenna pattern [136]. 

(6) As part of the future work, two aspects that need to be taken into 

consideration are the trends in the technology process of the semiconductor 
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devices, and also how the APC processor can be interfaced with the other 

elements of the system. This will be further elaborated in the following 

sections.  

 

6.2.1 Technology Trend for FPGA-Based Signal Processing  

As mentioned in Chapter 1, innovations in the semiconductor technology will 

allow the integration of more transistors in a single die. This scaling process will allow 

the incorporation of more hardware resources in a single FPGA, which will also 

improve the implementation and execution of more sophisticated radar algorithms in a 

single device using not only fixed-point numbers but also floating-point 

representation, and overcoming any dynamic range and scaling issues. Semiconductor 

companies have been working on shrinking a die even more. To the date of this work, 

the latest Xilinx’s devices, called UltraScale+, are based on the 16 nm FinFET+ 

technology. For instance, the new Zynq UltraScale+, known as the multiprocessing 

system-on-chip (MPSoC) device, includes an application processing unit (dual-core 

ARM v8-based Cortex-R5 processor), a real-time processing unit (quad-core ARM 

Cortex A-53 processor), a graphic processing unit (ARM Mali-400 MP2 GPU), and 

the logic fabric which is based on the UltraScale+ architecture [137]. Moreover, Altera 

has introduced its new high-end FPGAs, the Stratix 10, based on the Intel 14nm 

technology, which also includes a quad-core ARM Cortex A-53 processor, and 

claimed to achieve up to 10 Tera FLOPS of IEEE 754 single-precision floating-point 

operations. Figure 6-1 shows the hardware architecture of the new Zynq device which 

includes the processing system and the programmable logic. 
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Figure 6-1: Illustration from Xilinx. The new Zynq UltraScale+ architecture [138] 

 
Even smaller process technologies will still be possible, as stated in the 

International Technology Roadmap for Semiconductor (ITRS), which is published by 

a group of semiconductor experts, in which it was projected that the 7 nm technology 

will be reached by 2017, and the 5 nm technology by 2019 [139]. Up to the date of 

this work, Xilinx is planning to introduce its new FPGA family based on the 7 nm 

technology by 2017 [140]. However, with the increased complexity of new devices, 
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hardware implementation of advanced algorithms will also require more sophisticated 

software tools and pose bigger challenges to designers.  

 

6.2.2 Integration of the APC processor to a Radar System 

How the APC processor can be interfaced with other elements of the system is 

another important topic to consider. The use of a serial transceiver has been essential 

to move data efficiently within the system. A serial transceiver is generally comprised 

of serializer/deserializer (SerDes), buffers, encoder/decoder, PLLs, and data flow 

controllers. The new FPGAs families also incorporate more efficient and faster serial 

transceivers. The maximum number of transceivers included in a Xilinx Virtex 

UltraScale+ family is 128 with a speed of up to 32 Gbps per lane [137]. Figure 6-2 

shows an open architecture for an airborne radar system based on the serial 

transceivers which can also be extended for other radar application such as phased 

array radars.  
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Figure 6-2: A general architecture of a radar processing system based on serial 

technologies. 

 
Using a serial interface will provide some benefits such as lower number of I/O 

pins, smaller package size, and lower power consumption. A typical interconnection 

between ADC/DAC and FPGA has been through simple low-voltage differential 

signaling (LVDS) links. However, due to the increasing bandwidth needs of new radar 

applications, the new interfaces are based on multi-gigabit serial data link standard 

such as JESD204B which can achieve a speed rate of 12.5 Gbps per lane. The standard 

is developed by the Joint Electron Device Engineering Council (JEDEC) [141].  

A similar situation can be observed when an embedded processor needs to 

interface with external memory. Due to limitations in the storage capacity and speed 

of the conventional double data rate memory (DDR), several serial memory 

technologies have been developed such as Bandwidth Engine (BE), Ternary Content 

Addressable Memory (TCAM), High Bandwidth Memory (HBM), and Hybrid 
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Memory Cube (HMC). The HMC technology (HMC 2.0), supported by the HMC 

consortium group, can use up to four 16-lane serialized links with a speed of 30 Gbps 

per lane, and provide up to 320 GB/s effective bandwidth with low power 

consumption [142]. 

Another important aspect to consider is the capacity for communicating 

efficiently with other processing elements of the system. Therefore, in order to 

increase the scalability, robustness and network performance of the system, several 

standards based on switched serial interconnects have been utilized. Some of those 

standards are Gigabit Ethernet (GbE), RapidIO (RIO) [143], PCI Express (PCIe), and 

InfiniBand (IB) [144]. However, the Serial RapidIO (SRIO) standard has been 

presented as a suitable technology for interconnecting elements in the backplane, 

providing low latency, high reliability, and routable interconnections. This technology 

is developed and supported by the RapidIO Trade Association [143]. The link width 

options for SRIO Gen2 are 1x, 2x, 4x, 8x, and 16x, with five possible lane speeds: 

1.25, 2.5, 3.125, 5.0, and 6.25 Gbaud; up to 10.3125 Gbaud for SRIO Gen3 and 25 

Gbaud for its next generation. The implementation of Xilinx’s SRIO Gen2 IP for one 

lane requires about 5650 LUTs, 6050 FFs, and 2900 Slices [145]. SRIO is generally 

characterized in a three layer architectural hierarchy: physical, transport, and logical 

layer. The physical layer defines the electrical connection of devices on a board or 

across a backplane. The transport layer provides the route information to move packet 

from end to end in the system. The logical layer defines the overall protocol and 

packet format, and also initializes and completes transactions [146]. 
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Figure 6-3: Simulation of a RapidIO-based network. 

 
A simulated RapidIO-based network is shown in Figure 6-3, using Integrated 

Device Technology (IDT)‘s SRIO modeling tool [147], where the end-points EP1x 

and EP2x stream data to be computed in EP31 and EP33, respectively, through the 

switches (SWx). The results are then streamed to EP32. 
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Appendix - List Of Acronyms and Abbreviations 
 

APC Adaptive Pulse Compression 

AXI Advanced eXtensible Interface 

AMBA Advanced Microcontroller Bus Architecture 

AMPP Altera Megafunctions Partner Program 

AF Ambiguity Function 

ADC Analog-to-Digital Converter 

APU Application Processing Unit 

ASIC Application-Specific Integrated Circuit 

BW Bandwidth 

BRAM Block Random Access Memory 

CSA Carry-Save Adder 

CPU Central Processing Unit 

CPI Coherent Processing Interval 

CMOS Complementary Metal-Oxide Semiconductor 

CLB Configurable Logic Block 

C-SWaP Cost, Size, Weight and Power 

DCR Device Control Register 

DSP Digital Signal Processor 

DSO Digital Storage Oscilloscope 

DAC Digital-to-Analog Converter 

DMA Direct Memory Access 

EPLD Erasable Programmable Logic Device 

EPROM Erasable Programmable Read-Only Memory 

FFT Fast Fourier Transform 

FIR Finite Impulse Response 

FPGA Field Programmable Gate Array 
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FPLD Field-Programmable Logic Device 

FLOPs Floating-Point Operations 

FLOPS Floating-Point Operations per Second 

FPU Floating-Point Unit 

GPP General Purpose Processor 

GPU Graphics Processing Unit   

HDL Hardware Description Language 

IQ In-phase Quadrature 

I/O Input-Output 

IC Integrated Circuit 

IP Intellectual Property 

IF Intermediate Frequency 

IFFT Inverse Fast Fourier Transform 

LS Least Square 

LFM Linear Frequency Modulation 

LE Logic Element 

LUT Look Up Table  

LUT LookUp Table 

MHz Mega Hertz 

MMU Memory Management Unit 

MMSE Minimum Mean Squared Error 

MPAR Multifunction Phased Array Radar 

MAC Multiply Accumulate 

NEXRAD Next Generation Weather Radar 

NLFM Non-Linear Frequency Modulation 

OPB On-chip Processor Bus 

OS Operating System 

PLL Phase-Locked  Loop 

PR Precipitation Radar 

PS Processing System 

PLB Processor Local Bus 
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PL Programmable Logic 

PLD Programmable Logic Device  

PRF Pulse Repetition Frequency 

QRD-RLS QR-Decomposition Recursive Least-Squares 

RF Radio Frequency 

RISC Reduced Instruction Set Computing 

RTL Register-Transfer Level 

RMMSE Reiterative Minimum Mean Squared Error 

RCA Ripple-Carry Adder 

SRIO Serial RapidIO 

SPE Signal Processing Engine 

SNR Signal to Noise Ratio 

SIMD Single Instruction Multiple Data 

SVD Singular Value Decomposition 

SWaP Size, Weight and Power 

SCU Snoop Control Unit 

SDR Software Defined Radio 

STAP Space-Time Adaptive Processing 

SAW Surface Acoustic Wave 

SDRAM Synchronous Dynamic Random Access Memory 

SAR Synthetic Aperture Radar 

SoC System-on-Chip 

TTL Transistor-Transistor Logic 

UART Universal Asynchronous Receiver/Transmitter 

USRP Universal Software Radio Peripheral 

UAV Unmanned Aerial Vehicle  

VLIW Very Long Instruction Word 

VLSI Very-Large-Scale Integration 

VHDL VHSIC Hardware Description Language 

XPE Xilinx Power Estimator 
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