UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

REAL-TIME ADAPTIVE PULSE COMPRESSION ON RECONFIGURABLE,

SYSTEM-ON-CHIP (SOC) PLATFORMS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
Degree of

DOCTOR OF PHILOSOPHY

By

HERNAN SUAREZ
Norman, Oklahoma
2015

REAL-TIME ADAPTIVE PULSE COMPRESSION ON RECONFIGURABLE,
SYSTEM-ON-CHIP (SOC) PLATFORMS

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Yan Zhang, Chair

Dr. Sesh Commuri

Dr. Caleb Fulton

Dr. Boon-Leng Cheong

Dr. John Dyer

Dr. John Albert

© Copyright by HERNAN SUAREZ 2015
All Rights Reserved.

Acknowledgements

I would like to gratefully thank my advisor, Dr. Yan Zhang, for his guidance,
support, and constant encouragement during my graduate study at University of
Oklahoma.

My gratitude to my doctoral committee: Dr. Sesh Commuri, Dr. Caleb Fulton,
Dr. Boon-Leng Cheong, Dr. John Dyer, and Dr. John Albert for their valuable
comments, suggestions and corrections.

In addition, | would like to extend my thanks to the Advanced Radar Research
Center (ARRC), its director Dr. Robert Palmer, faculty, staff and students, for their
generous assistance during my research at OU.

Last but not least, 1 would like to thank my parents, Ramon Suarez Castro and
Graciela Montalvo de Suarez; and my brothers Antonio, Anibal and Nicolas, for their

endless support and encouragement.

Table of Contents

ACKNOWIEAGEMENTSot ee e nns iv
TabIe OF CONTENTS.....cuiiiiie et sb e nreas Y
LISt OF TaDIES ... viii
TS o) B 1o U] TS RS OPT IX
ADSTFACT ...t Xii
Chapter 1 INEFOAUCTION ..o e 1
1.1 Expectations of High-Performance Embedded Computing (HPEC) in

Radar 4
1.2 Overview of Real-Time Signal Processing Technologies...........c.......... 6
1.3 Current State of FPGA Technologycccocoviiiiiiiiiiieieeeeecee e 9
1.3.1 Overview of Device Technologiescccccvevviieirerinnieinerienn 9
1.3.2 DeSIGN FIOWS ...c.eeeiiiiiiciieeees e 14
1.3.3 AP COTES... e 15
1.4 System on @ Chip (SOC)ooiiiiiiiiieiiee e e 16
141 INrOQUCTION....viiiiiiiiiiie e 16
1.4.2 Hardware/Software Partitioningcccccooevieeneninnieenesinnenn, 20
1.4.3 Advanced eXtensible Interface (AXI) Interconnect Technology

22

1.4.4 Evaluation Platforms..........ccooeviiiiinieee e 23
1.5 Dissertation OULIINE ..o 24
Chapter 2 Adaptive Pulse Compression (APC) and Implementations............ 26
2.1 Pulse Compression WavefOrms...........ccocveeiienesieneenesee e 28
2.1.1 Frequency Modulated Waveforms...........cccccevvvevveieiiennsiinnnnn, 28
2.1.2 Phased-Coded Waveforms.........ccocoeieeninieneenene e 30

\

2.2 Adaptive Pulse Compression Algorithmscccccovvvevininneenenennnenn, 33

2.3 Real-Time Computational Load Requirements of Pulse Compression

ALGOTTTNMS .. 37

2.4 State of the Art of Pulse Compression Implementations...................... 41

2.5 Basic Considerations for Hardware Implementationc.c.coc...... 44

2.5.1 Number Representation FOrmat...........ccccceveviverieniesieennsrinnnnns 44

Chapter 3~ FPGA Cores for Radar Signal Processingcccoceevvvevesinieeniennn 47
3.1 Optimized Adder and Multiplier DeSignsccccccervvervrieerineresiennnnn, 47

3.2 MatrixX MUIIPHCAtION ..o 55

3.2.1 Acceleration Using COProCESSOrccvevvreeereerieeieseesieaeeseens 55

3.2.2 Design of Matrix Multiplication COprocessorcccecveueeens 58

3.3 MArX INVEISION ..ottt 63
Chapter 4 FPGA implementation of Pulse Compressioncccccevevvvveieeinnen, 69
4.1 Hardware Implementation of Pulse Compression..........cccceeevevveienenn 69

4.1.1 FPGA in Existing SDR platforms.........ccccccevvviiiniiniininiieene 69

4.1.2 Radar TR CoNtrol LAYerccccoueivevieiieieee e 70

4.2 Architecture Design and Analysis for Real-Time Pulse Compression

(O] (o111 Y2 PSRRI 72

4.3 FPGA Device Implementations of Real-Time Pulse Compression78

4.3.1 Hardware Resource Utilization............cccocovvinieniiininniicicnieen, 78

4.3.2 Test and Validation Platformscccocevieeieninniniine e 81

4.4 EXPeriment RESUILS........covoiiiiiiiece e 83

4.4.1 System Outputs for Basic PC Waveformcccccoecvvvvivenennn 83

4.4.2 Real-Time Pulse Compression for Random Waveform 86

4.4.3 Impact of Waveform Template Generation Scheme and Timing

MiSAIIgNMENT.......oiiiiice e 88

A5 CONCIUSIONS ...ttt ettt nreas 89
Chapter5 SoC Implementation of an Adaptive Radar Processor 91

5.1 Literature Review: Implementation of Traditional Adaptive Filters....93

5.2 System-on-Chip (SoC) Implementation of APC..........ccccccevvevieiiennnn, 95

Vi

5.3 LS-APC Multi-Coprocessor ArchiteCtureccoceevvveviveeieeviieesieesinen, 96

5.4 SiNQle LS-APC PrOCESSOI.......cccveiieeieaiesiresiesiesieessesseesseesessseesseessennes 100

5.5 LS implementation based on Floating-Point Data Format................. 102

56 RMMSE-APC Co-Processor ArchiteCtureccocvvevenvnneieeinnnnenn 109

o5.7 SUMIMAIY ..ttt e et an et e seneeneeeenee s 119
Chapter 6 CONCIUSIONScoiiiiiciece et 120
6.1 ACNIBVEMENLS ...ttt 120

6.2 FULUIE WOTK. ..o 122

6.2.1 Technology Trend for FPGA-Based Signal Processing 123

6.2.2 Integration of the APC processor to a Radar System.............. 125

BIDHOGIapNY ... e 129
Appendix - List Of Acronyms and Abbreviations............cccooveveiienivenesie e 141

vii

List of Tables

Table 1-1: List of Xilinx FPGA families and principal characteristics. 11
Table 1-2: Principal Specifications of Altera FPGA Families.cccocvviiiiennenn. 12
Table 2-1: Binary Barker COUES........cccviieieeieiiese e ste e se et 31
Table 2-2: Comparison of different APC algorithms ..., 36
Table 2-3: Computational cost of APC algorithms per stage.ccccccevvevereennnn, 40
Table 3-1: Hardware utilization for floating-point and fixed-point of matrix
MUILIPIICALION. ... ne e 59
Table 3-2: Hardware resource utilization for a pipelined design.ccccoceveenen. 61
Table 3-3: Hardware resource utilization when pipelining and distributed memory
are considered IN the deSIgN.cccooi i 62
Table 3-4: Hardware utilization for floating-point and fixed-point of matrix
1 0)YZ=] 657 o] TSRS 65
Table 3-5: Comparison of hardware utilization for floating-point and fixed-point
implementation Of MAtriX INVEISION.ccceieiiiiieiieee e 67
Table 3-6: Comparison of timing results for floating-point and fixed-point
implementation Of MAtriX INVEISION.ccceveiiiiieiceee e e 68
Table 4-1: Device Resource Utilization for two Xilinx FPGAs for the typical
matched filter implementation. ... 80
Table 4-2: Power consumption of pulse COMPression..........cccccevveveieeneeieeseennnnn, 81
Table 5-1: Total hardware resources for the matrix multiplication and matrix
10N VZ=T] (o] o USROS TR 98
Table 5-2: Total hardware resources for pipelined version of matrix multiplication
AN MALFIX INVEISION. ..ttt et 99
Table 5-3: Hardware utilization of LS fixed-point implementation using 16-bit
fixed-point format for Xilinx XC7k325t FPGA.cccecoevveieiierr e 101
Table 5-4: Hardware utilization of LS fixed-point implementation using 32-bit
fixed-point format for Xilinx XC7k325t FPGA.cccocievveieeiere e 101
Table 5-5: FPGA resource utilization for floating-point implementation............. 103
Table 5-6: FPGA hardware resource utilization for pipelined floating point
IMPIEMENTALION. ... e 106
Table 5-7: FPGA hardware resource utilization for initiation interval of 50 clock
CYCIBS e et aeenes 106
Table 5-8: RMMSE coprocessor synthesis reSults.c.cccocvevviieeieeieseeseesiennnn 112
Table 5-9: Hardware resources for partially pipelined version of RMMSE
(010] 0] (0] 01=1SE o (OSSP P PR PPPRTPPR 115
Table 5-10: Hardware Resources for fully pipelined RMMSE coprocessor......... 115

viii

List of Figures

Figure 1-1: Typical functions of a radar reCeIVEr.ccocvvveviveveeeceere e 4
Figure 1-2: Computation load for an example GMT]I radar [12]........ccccoovrinrienene 6
Figure 1-3: Processing technologies classification.............cccccvveveiienienn e 7
Figure 1-4: Comparison of different technologies for DSP implementation. 8
Figure 1-5: Xilinx’s DSP48EL architecture [16]c.ccccoovvieerveierieiesieseese e 13
Figure 1-6: Xilinx’s carry logic slice architecture [18]cccoovviiiiiiniiiiiniiiennns 14
Figure 1-7: Traditional FPGA design fIOW..........cccoveiiiiiiieircc e 15
Figure 1-8: Basic concept of a generic SOC architecture.ccoccevovviereencninnnn, 17
Figure 1-9: Block diagrams of a Xilinx MicroBlaze Processor [30] and an Altera

NIOS T PrOCESSOF [3L]. .eiiieiiieiesiie sttt e 18
Figure 1-10: General SoC system implementation model.............cccccevvvieiviinennen, 20
Figure 1-11: Hardware/software partitioningccccceevereenenieneenesiee e 21
Figure 1-12: Top-level AXI interconnect [32].ccoevveierieeiree e 23
Figure 1-13: Testbed for the implementation of APC. It includes a Ku-band

transceiver, (a) Kintex-7 and (b) Avnet ZedBoard evaluation boards............. 24

Figure 2-1: Estimation of computational load requirement for real-time matched
filter pulse compressor, with different signal bandwidths and pulse length.

Assuming 20% transmitter duty cycle for all cases.........ccccovvvieeiiinniiinnnn, 39
Figure 2-2: Computational analysis of APC algorithms............cccoceviveieiiciiciiennn, 41
Figure 3-1: Operation of a conventional n-bit ripple carry adder.............ccccceenenen, 47

Figure 3-2: Performance of two-operand adders using different implementations on
a Kintex-7 FPGA (xc7k325t-2-ffg900). (a) Number of LUTs, (b)

Combinational Delay.ccceiveiiiiiiieee e 49
Figure 3-3: Performance of sequential multi-operand adders for 16 and 64 bits
operands on a KinteX-7 FPGA.ci e 51
Figure 3-4: Comparison of latency performance of three sequential multipliers
through implementation on KinteX-7 FPGA.ccccoceiiveie v 53
Figure 3-5: Comparison of combinational delay performance of different parallel
multipliers including designs using Xilinx commercial building blocks. 54
Figure 3-6: Schematic for an 8-bit 2’s complement adder on Kintex-7 FPGA....... 55
Figure 3-7: High-level configuration of matrix multiplication coprocessor. 57

Figure 3-8: Matrix multiplication results from MicroBlaze with and without
coprocessor on Kinte-7 FPGA. Latency measured with a timer attached to the
AXI Lite bus. (a) 4x4 matrix multiplication. (b) 8x8 matrix multiplication. ..58

Figure 3-9: Matrix multiplication total latency for floating point and fixed-point
IMPIEMENTALION ... e 60

Figure 3-10: Latency in terms of clock cycles for floating point and fixed point

implementation using different teChniques. ... 63
Figure 3-11: High-level matrix inVersion COProCESSOr.ciururreererieesreerieaeeseens 64
Figure 3-12: Matrix inversion latency for single precision floating-point and fixed-

POINE LB, 1>, i e et te e e be e reeene e 66

Figure 4-1: (a) Existing FPGA configuration of N210/E110 from Ettus Research.
(b) Proposed FPGA configuration for Radar transceiver (with enhanced radar

transceiver Real-time range-Doppler processing blocks).cccccvvvvevviienen. 71
Figure 4-2: High-level block diagram for matched-filter pulse compression
IMPIEMENTALION.eeiieie e enes 74

Figure 4-3: Hardware simulation of pulse compression, using 16-bit digital
representation. (a) Uncompressed input signal. (b) Compressed output signal.

Figure 4-4: Comparison between MATLAB and hardware (Kintex-7 FPGA)
simulations of pulse compression for different weighing windows. (a) No
window. (b) Kaiser (B = 2.23). (¢) Hanning. (d) Hamming..............cccccveruennen. 77

Figure 4-5. Comparison of pulse compression hardware simulation results using
different windows: Kaiser (B = 2.23), Hanning, and Hamming. The simulation
target is a KINteX-7 FPGA. ...t 78

Figure 4-6: Examples of on-chip implementation results. (a) Simplified Vivado
RTL schematic for pulse compression. (b) The resulting layout of pulse
compression implementation (light blue area) on the XC7k325t-2-ffg990

P G A e 79
Figure 4-7: Methods of hardware verification. (a) Complete hardware testbed, (b)
Using Vivado logic analyzer for probing internal signals.cccccevveene 82

Figure 4-8: Pulse compression results captured using Xilinx’s integrated logic
analyzer (ILA). External trigger with pulse duration of 500 ns, | and Q with

pulse duration of 20 pus and bandwidth of 10 MHz. ..., 83
Figure 4-9: ILA samples of pulse compression output converted to logarithmic
o7 1L (0| =) TR OSSPSR 84

Figure 4-10: Comparison between uncompressed time domain input ((a), pulse
bandwidth = 10 MHz, pulse length = 20 ps), and compressed time domain

output pulse ((b), captured by DSO).......ccovieiiiiiieiie e 85
Figure 4-11: Pulse compressor output for multiple emulated targets. Captured by
1515 SRS 86

Figure 4-12: Real-time pulse compression of band-limited random noise with the
FPGA pulse compression implementation, (a) Input waveform (40 MHz signal
bandwidth), (b) Pulse compressor output captured using Vivado logic analyzer
(before DAC output), (c) Pulse compressor output converted to analog pulse
and captured DY DSO.ooiiieiiee e 87

Figure 4-13: Comparison between the PC outputs using internal waveform template
generation (without external waveform samples) and PC outputs with external

waveform templates and different bandwidths. ..., 89
Figure 5-1: System elements of the proposed radar transceiver optimizer. 91
Figure 5-2: Transceiver optimizer System-on-Chip (SOC).ccooevenienieniiiinnnn, 92
Figure 5-3: Multiple co-processor for LS-APC.........cccooeiieireie e 96

Figure 5-4: Combined latency of matrix inversion and matrix multiplication
coprocessors for the sequential and pipelined Versions.ccccccevvveveivenenn. 99
Figure 5-5: Internal architecture of the single LS coprocessor option. 100
Figure 5-6: Estimated latency of LS coprocessor for different number of signal
samples with a constant number of range gates. The bar plot also shows the
range of variation (max and min) of latency estimation. Number of range gates
T B0, ettt ettt b te e re e ne et et e e s 102
Figure 5-7: Estimated latencies for different number of range gates for floating
point implementation, assuming the number of transmitted signal samples is 6
(B SNOMT PUISE)...ceeeieee e 104
Figure 5-8: Performance comparison between fixed-point and floating-point
implementation for different number of range gates. Comparison of Latency

Between Fixed-point and Floating Point Implementation.............cccccoeevenee. 105
Figure 5-9: Comparison of latency in terms of clock cycles for different initiation
intervals when number of SAMPIES IS 6.covveiiiiiiieice e 107
Figure 5-10: Comparison of dynamic power consumption required by the LS
(610] 0] (01 01TSE o | TP PP PR PP PP 108
Figure 5-11: Architecture for fixed-waveform architecture, where Coprocessor 1 is
only activated for the estimation of the filter coefficients............c.cccceeuee. 109
Figure 5-12: RMMSE coprocessor arChiteCture.cccveveveereerieseeseeeeseeseeenns 111
Figure 5-13: Latency estimation per range gate without optimization.................. 113
Figure 5-14: Latency comparison of implementation of RMMSE coprocessor.... 114
Figure 5-15: Architecture Of RMMSE ProCESSOF.covvviieriierieeienieesie e 117
Figure 5-16: Architecture of the matrix summation to compute the matrix C(l1)+R
TOr @ TaNQE QALE. ...eoieieiiee e 118
Figure 6-1: Illustration from Xilinx. The new Zynq UltraScale+ architecture [138]
... 124
Figure 6-2: A general architecture of a radar processing system based on serial
TECANOIOGIES. ... e e 126
Figure 6-3: Simulation of a RapidlO-based network.cccovevvviienviic e, 128

Xi

Abstract

New radar applications need to perform complex algorithms and process a large
quantity of data to generate useful information for the users. This situation has
motivated the search for better processing solutions that include low-power high-
performance processors, efficient algorithms, and high-speed interfaces. In this work,
hardware implementation of adaptive pulse compression algorithms for real-time
transceiver optimization is presented, and is based on a System-on-Chip architecture
for reconfigurable hardware devices. This study also evaluates the performance of
dedicated coprocessors as hardware accelerator units to speed up and improve the
computation of computing-intensive tasks such matrix multiplication and matrix
inversion, which are essential units to solve the covariance matrix. The tradeoffs
between latency and hardware utilization are also presented. Moreover, the system
architecture takes advantage of the embedded processor, which is interconnected with
the logic resources through high-performance buses, to perform floating-point
operations, control the processing blocks, and communicate with an external PC
through a customized software interface. The overall system functionality is
demonstrated and tested for real-time operations using a Ku-band testbed together

with a low-cost channel emulator for different types of waveforms.

xii

Chapter 1

Introduction

The general operation of a pulsed radar system consists of transmitting
electromagnetic (EM) signals to an area of interest. The reflected EM signals from the
environment are captured by the antenna and transformed into electrical signals. The
radar receiver filters, amplifies and also transforms the radio frequency (RF) signal to
an intermediate frequency (IF) signal by mixing the RF signal with local oscillators. A
range profile can be generated based on the processed receive signal and its respective
round-trip delay time.

Modern radars demand bigger computing power as well as reconfigurable
flexibility, which is important for multiple functions. A good example is pulse
compression (PC), which is the main focus of this dissertation. Theoretically, in order
to increase the radar ability to distinguish nearby targets and maximize the detectable
range, it would be necessary to transmit a narrower pulse width with a higher peak
energy, which is infeasible due to power limitations of the transmitter, especially for
solid-state transmitters. To overcome this problem, the pulse compression technique
[1] has been used for decades.

It is known that a long pulse with frequency or phase modulation is able to

achieve equivalent spectral bandwidth to that of a narrow pulse. When applying pulse

compression technique, the receiver can compress the modulated long pulse of
bandwidth B to a pulse width equal to 1/B, which improves not only the range
resolution but also the signal to noise ratio (SNR). Traditional pulse compression
commonly uses linear frequency modulation (LFM) due to its simplicity for
generation and processing; however, the resultant compressed pulse presents range
side lobes in the range gates adjacent to a strong target, which could potentially mask
any weak targets [2]. Space and Airborne radars are some example applications, for
which range side lobe mitigation is highly desired because the strong scatters from the
earth’s surface can distort the observations.

Different processing techniques have been investigated to suppress the range
side lobes [2-8]. These techniques consider the usage of weighting windows, special
waveforms, inverse filters, and adaptive filters. Other techniques are based on adaptive
pulse compression (APC) such as the least square (LS) method, as well as optimized
and recursive approaches. The reiterative minimum mean-square error (RMMSE)
algorithm, derived from the LS method, is a localized optimization-type estimation,
which can achieve good performance in terms of retrieving the ground truth [2].

APC algorithms require intensive computation of mathematical operations, for
instance, Fourier transforms, matrix multiplications, and matrix inversions. A real-
time, high-performance implementation of adaptive pulse compression is a huge
challenge to traditional processors due to their fixed architecture and sequential nature
of operation. Moreover, in airborne and spaceborne radar applications where size,

weight and power consumption (SWaP) are critical constraints, not only the

implementation of efficient algorithms, but also the design of optimal hardware
architectures and the use of the appropriate technology are important.

Currently, thanks to the advancement of silicon technology, it is possible to
establish a variety of potential real-time and embedded processing solutions with
integrated computing resources. These solutions range from general purpose
processors (GPP) to application-specific integrated circuits (ASICs). As one of the
promising technologies, Field Programmable Gate Arrays (FPGAs) has evolved
during the past decades, and incorporated more logic resources, multipliers, memory,
high-speed transceivers, processors in a single chip device, and also allowed the
interaction between processing units through high-performance buses. The design
tools for FPGA have become more matured. In addition, the integration of hardware
and software solutions in a single device allowed the design and implementation of
customized architectures in a single device to achieve better SWaP, greater reliability
and reduced manufacturing cost.

In this dissertation, processor architectures of radar waveform processing,
including pulse compression and APC on reconfigurable platforms for radar
transceiver optimization are investigated. The objective for this work is to design high-
performance System-on-Chip (SoC) processors, which can provide improved target
sensing, reduced artifacts, accelerated result generations and reconfigurable capability

compared to traditional radar signal processors.

1.1 Expectations of High-Performance Embedded Computing
(HPEC) in Radar

The main components of a radar system are the transmitter, antenna, and
receiver. Raw radar signals are then passed to the signal processors, which extract
useful information regarding targets or scene, and the data processor generates useful
information for the users [9]. A radar system can be configured to operate with pulsed
or continuous waveforms, with coherent or non-coherent modes [10].

Within a radar receiver, the received signal passes through different processing
components, which consist of analog transceivers, digital transceivers with real-time
and high computational capabilities, signal processors with efficient data
transportation protocol and interface control, and software programs running on CPUs
to perform system functions and missions. These characteristics are illustrated in

Figure 1-1.

Antenna and RF g Rec%]g%::able | Real-time »| Software
Transceivers Transceivers DSP/MCU Stacks
- Real-time and high Higher level :
- RF Analog transceiver i - RIgner leve -System functions
y computational processing and missions
capabilities - Data transportation
- Highly reconfigurable - Interface control

Figure 1-1: Typical functions of a radar receiver.

Initially, radar systems were limited to target detection and range

determination functions. With the necessity of more advanced functions in a radar

4

system, the complexity of digital radar receivers has been increased significantly,
which demands more memory, higher speed communication buses, and the
computation of large quantities of data in shorter time. Additionally, mobile radars and
airborne radars have more SWaP constraints. Modern radar application requires
multiple functions, and the computation capability is on the order of GFLOPs and
TeraFLOPs, with limited SWaP such as in unmanned aerial vehicle (UAV) and
airborne platforms. Furthermore, the digitization at the element level in future phased
array radars will increase the computational load to hundreds of TeraOPS for the
front-end processing and several TeraFLOPS for the back-end [11].

Surface moving target indicator (SMTI) radar, used to detect and track moving
targets on the earth’s surface, is a good example of a radar application where the
computational load is significant. The computational load for a 48-channel phased
array, sampled at 480MHz and 12 bits per sample was estimated in [12]. The
processing flow and the number of GOPS for each stage are illustrated in Figure 1-2.
It can be observed that pulse compression is one of the processing stages that demands
the greatest number of GOPS. The aggregate computational complexity of this system

is about 1 TeraOPS.

From ADCs Subband Adaptive Pulse
~104 Gbps Filtering [~138 Gbps } Beamforming | ~28 Gbpsy Compression | ~28 Gbps

(478 GOPS) (140 GOPS) (198 GOPS)
Doppler
Filtering

(66 GOPS)
To Ground
Station CFAR Subband STAP
<{~0.41 Gbps| Detection ~16 Gbps Combine [<~21 Gbps (44 GOPS) ~55 Gbps
(6 GOPS) (76 GOPS)

Figure 1-2: Computation load for an example GMT] radar [12]

Historically, to meet these demanding new requirements, manufacturers have
been developing more powerful computers or processors by increasing the processor’s
clock speed, but this effort was constrained by physical limitations such as heat
dissipation. A new trend is incorporating more processing cores with the intention of
executing billions of instructions per second, but the power consumption is increased,
and an efficient software application that can take full advantage of all the cores is still
absent. This situation has motivated our investigation for hardware-based,
reconfigurable parallel computer technologies using FPGAs. The advantages of

FPGAs are reconfigurable, low-power, and the software re-programmability.

1.2 Overview of Real-Time Signal Processing Technologies

Gordon Moore estimated in 1965 that the number of transistors on integrated
circuits doubles every year [13]. But then in 1975, he updated his estimation to

doubling every two years. Nowadays, it is possible to find processing devices with

billions of transistors in a single chip. The processing technologies can be classified in
two groups as ‘hardware-based’” and ‘software-based’ solutions.

The hardware-based solutions deliver higher performance with lower power
consumption. They can be grouped in application-specific integrated circuits (ASICs)
and field-programmable logic devices (FPLDs). On the other hand, the software-based
solutions are constituted by programmable processors which by nature execute the
instruction in a serial sequence from memory, and possess programmable flexibilities.
This group can be divided into two subgroups: the general-purpose processors and the
application-specific devices (such as digital signal processors (DSPs), general graphics

processing units (GPUs)).

- MicroControllers
- MicroProcessors

SW

- Digital Signal Processors
- Graphics Processing Units
- Network Processors

Processing
Technology

- Application-Specific Integrated
Circuits

HW

- Simple Programmable Logic Devices
- Complex Programmable Logic Devices
- Field Programmable Gate Arrays

Figure 1-3: Processing technologies classification.

The selection of the appropriate device for a particular radar backend processor
is a challenging process because it requires the consideration of several factors such as
development cost, performance, hardware resources, power consumption, production
cost, time to market, and flexibility. In Figure 1-4, the principal characteristics of some
processing technologies are compared. An ideal processing system may incorporate a

combination of different technologies and take advantage of the strength of each one.

High
Low
ASIC FPGA uP/ucC DSP
M Flexibility B Design Time H Power Consumption
B Performance B Development Cost ® Production Cost

Figure 1-4: Comparison of different technologies for DSP implementation.

A traditional microprocessor (pUP) is one of the most common processing
solutions in many applications, because of its flexibility to be reprogrammed and
relatively low development cost. Most pPs are based on Von Neumann architecture
and have inferior computing performance compared to DSPs. Microcontrollers are
usually targeted for applications with limited processing requirements. However, some
microcontrollers include signal processing engine (SPE) units, such as the Freescale

MPC5500 family, which are designed for automotive applications [14].

Because multiply and accumulate (MAC) operations are common to signal
processing, DSP devices include dedicated MAC units with particular instructions to
accelerate computation. Modern DSPs use Very Long Instruction Word (VLIW)
architecture and single instruction multiple data (SIMD) extensions to enhance the
levels of data and instruction parallelism.

ASICs and FPGAs are used commonly in applications that require high
throughput, especially as front-end signal processors in digital receivers because of
their capabilities to handle a large amount of data samples from ADCs. ASIC designs
are optimized for specific operations, which can achieve relative small latency and low
power consumption, but the fabrication process demands longer time and higher costs,
and once the design is fabricated, it cannot be modified. In contrast, FPGAs have the
advantage of re-configurability and low power consumption, which are important
characteristics for a technology to be considered as a radar front-end signal processor.
Moreover, FPGA’s computing capabilities are increased if the hard-processor is

tightly coupled to create a SoC solution.

1.3 Current State of FPGA Technology

1.3.1 Overview of Device Technologies

The Field Programmable Gate Array (FPGA) was originally developed in the
1980s, and since then it has evolved significantly. The technology has migrated from a
simple programmable-logic prototype device to a complex system that includes many

hardware resources, such as a large quantity of programmable logic units, dedicated

DSP blocks, embedded processors, block random access memory (BRAM), phase-
locked loop (PLL), high-speed gigabit transceivers, and other components. FPGAs are
widely used in different areas; the range of applications can be from small digital
circuits to larger advanced systems. One important characteristic of FPGAs is re-
configurability, which allows the modification of the processing blocks and rerouting
of the interconnections to perform a different function without the necessity of
powering off. Some FPGAs also offer partial re-configuration capabilities, in which
specific areas of the FPGA are modified at the run-time while keeping the other areas
operating, which increases silicon reusability significantly.

For a long period, the programmable-logic market was dominated by two
vendors, Xilinx and Altera [15]. The XC2000 family was the first FPGA developed by
Xilinx and it was comprised of programmable logic units attached to programmable
interconnects, and programmable 1/O. Altera’s first FPGA was based on a PLD
structure. The manufacturers have evolved their initial architectures and their
programming technologies. Xilinx and Altera FPGAs are based on static random-
access memory (SRAM) technology, while Microsemi (previously known as Actel)
uses flash and antifuse technology.

The fundamental structure of an FPGA is called ‘logic block’, which is
distributed across the FPGA fabric and interconnected via programmable switches.
Xilinx uses the name configurable logic block (CLB), and Altera uses logic element
(LE). The content of a logic block also differs from manufacturer to manufacturer.

Xilinx’s CLB is constituted by two slices; each slice contains a number of look-up

10

tables (LUTSs), storage elements, and multiplexers. For instance, in the Xilinx 7 series
FPGAs each slice contains four 6-input LUTSs and eight flip-flops [16].

The majority of Xilinx FPGAs are based on 6-input LUTSs. Kintex Ultra and
Virtex Ultra are the latest families when this dissertation is written, which are based on
16 nm and 20 nm technologies. The on-chip memory size of Spartan and Virtex-4
family is 18 Kbits, while it is 36 Kbits for the 7 Series and UltraScale family. The
principal characteristics and the year of introduction of Xilinx and Altera FPGAs are

listed in Table 1-1 and Table 1-2, respectively.

Table 1-1: List of Xilinx FPGA families and principal characteristics.

Family LUT Input Multiplier BRAM (Kbits) 4P Year Tech (nm)
Spartan 3 4 18x18 18 2003 90
Virtex 4 4 18x18 18 PPC 2004 90
Virtex 5 6 25x18 36 PPC 2006 65
Spartan 6 6 18x18 18 2009 45
Virtex 6 6 25x18 36 2009 40
Artix 7 6 25x18 36 2010 28
Kintex 7 6 25x18 36 2010 28
Virtex 7 6 25x18 36 2010 28
Zyng-7K 6 25x18 36 ARM 2011 28
Kintex Ultra 6 27x18 36 2014 20
Virtex Ultra 6 27x18 36 2014 20

Currently, Altera offers four FPGA families, which are called Cyclone series,
Stratix series, Arria series, and Max10 series. As shown in Table 1-2, these FPGAS

incorporate memory blocks of different sizes such as M512 (512-bit), M4K (4KDb),

11

MOK (9Kb), M144K (144Kb), MRAM (512Kb), MLAB (640b ROM/320b RAM),

M20K [17].

Table 1-2: Principal Specifications of Altera FPGA Families.

Family LUT Input Multiplier BRAM (Kbits) pP Year Tech(nm)

Cyclone 1l 4 18x18 4 2004 90
Stratix Il 8 18X18 0.5,4,512 2004 90
Stratix 111 8 18X18 0.624, 9, 144 2006 65
Cyclone 111 4 18x18 9 2007 65
Arria 8 18X18 576 2007 90
Stratix IV 8 18X18 0.624, 9, 144 2008 40
Arria 8 18X18 9 2009 40
Cyclone IV 4 18x18 9 2009 60
Stratix V 8 27X27 0.640, 20 2010 28
Cyclone V 8 27TX27 10 2011 28
ArriaV 8 27X27 10 ARM 2011 28
Arria 10 8 27x27 0.640, 20 ARM 2013 20
Stratix 10 8 27x27 ARM 2013 14

Because multipliers and accumulators are essential operations for the
implementation of signal processing algorithms, FPGA vendors have included small
DSP blocks into the fabric of the FPGA to improve the performance of arithmetic
operations and release the logic resources (flip-flops, look-up tables) for other
functions. Each Xilinx’s DSP block contains two DSP slices. A DSP slice can perform
logic and arithmetic functions such as multiply-accumulator, multiply-adder, and
counter. DSP slices can also be cascaded to implement more sophisticated functions

such as complex multipliers or n—tap FIR filters, thus achieving higher clock rates.

12

The DSP blocks included in Xilinx FPGAs are called DSP48s, each DSP is mainly
composed of a pre-add/subtract unit, a multiplier, and an add/subtract/accumulate
engine. Each family of Xilinx’s FPGA has a different version of the DSP with some
variations in its architecture. DSP48As are included in Xilinx Spartan-3A devices,
which consist of an 18-bit pre-adder, followed by an 18x18-bit signed multiplier and a
48-bit add/subtract/accumulate engine. In the Spartan-6 family, it is called DSP48A1,
or DSP48E in Virtex-5, and also called DSP48EL in the Virtex-6 and the 7 series
families. The architecture of a DSP48EL1 is shown in Figure 1-5, where the main
components are a 25-bit pre-adder, 25x18 multiplier, and pattern detector. In the
Xilinx UltraScale family, it is called DSP48E2s, and the multiplier and pre-adder

width is increased to 27x18 bits and 27 bits, respectively.

A
48-bit
25x18 Accumulator/
B Multiplier Logic unit If
jP;e—adder Q’
c | 4 H
Pattern
R Detector
D »

Figure 1-5: Xilinx’s DSP48E1 architecture [16]

Another important resource included in an FPGA is fast carry circuitry to

perform faster arithmetic operations.

13

For instance, Xilinx includes dedicated carry logic blocks, called CARRY4

[18]. The logic elements of each block are shown in Figure 1-6.

COUT (To MNext Slice)

[] Carry Chain Block
(CARRY4)

> DMUX/DO

) }D_|TD DMUX
D a}——Dba

(Optional)

> CMuX/ca

D&TDCMUX
b al——ca

(Optional)
> BMUX/BQ®

\D&TD BMUX
D al—— BQ

(Optional)

> AMUX/AQ™

DﬂTDAMUX
D QF—C=AQ

(Optional)

CIN (From Previous Slice)

Figure 1-6: Xilinx’s carry logic slice architecture [18]

1.3.2 Design Flows

The traditional FPGA design flow is shown in Figure 1-7. The design starts
with the description of the system architecture using a hardware description language
(HDL), which may include prebuilt functions or intellectual property cores (IPs). HDL
design files are synthesized to register-transfer level (RTL), then an implementation

process is performed, which consists of three steps: translate, map, place and route.

14

Finally, a bitstream file is generated, which is downloaded and used to configure the

FPGA device.
>
IPs =777~ » HDL
Y
Synthesis
User
Constraints v Translate
Impl tati
mplementation Map
Place&Route
Bitstream
generation
Figure 1-7: Traditional FPGA design flow.
1.3.3 IP Cores

Intellectual property (IP) cores are prebuilt functions that provide solutions to
enhance system implementation productivity. IP cores are available for a variety of
general functions from simple arithmetic operations to microprocessors, as well as for
specific applications such as signal processing, video, networking, storage, and other
areas. FPGA vendors offer both own and third-party IP libraries, including IP
programs such the Xilinx Alliance program and the Altera Megafunctions Partner

Program (AMPP). IP cores can be classified as soft IP, firm IP, or hard IP. A soft IP

15

core is distributed as synthesizable files describing the register transfer logic of a
design. The advantages of a soft IP include flexibility, scalability and portability. A
firm IP is delivered in the form of synthesized netlists, which has a certain type of
technology dependence. A hard IP core is presented as a mask layout with
characteristics such as high performance and predictable functionality, but limited

flexibility for system optimization.

1.4 System on a Chip (SoC)

1.4.1 Introduction

According to [19], the evolution of digital design styles occurred in three
stages. The first stage, system-on-backplanes, was based on several printed boards
with specific functions interconnected through the backplane to form a system. This
architecture evolved to system-on-board, in which processing components were
mounted on a single board. And the third stage, system-on-chip (SoC), integrates the
board-level functionalities into a single device, resulting in a design with more
efficient data exchange between processing units, better computing performance, and
improved SWaP compared to a system of discrete components [20].

A SoC design includes at least one microprocessor to run the software
component of the system, memory attached to the processor for temporary storage of
data and instructions, and peripherals, which can be a coprocessor, a soft-core/hard-
core IP, additional memory, or general input and output ports. Processor and
peripherals are interconnected via standard buses. A general representation of a SoC
solution is shown in Figure 1-8.

16

Memory L —| Processor

g Ul

Peripheral 1 Peripheral 2 Peripheral 2

Figure 1-8: Basic concept of a generic SoC architecture.

Early studies proposed different reconfigurable architectures which combined
reconfigurable fabric and a programmable processor. For instance, the hybrid
architecture Garp was proposed in [21]; the system included a reconfigurable co-
processor which was connected to a MIPS-I1 processor in the same die. The co-
processor was also able to access the processor’s data memory and the external shared
memory through dedicated interconnections. In [22], the authors proposed a
reconfigurable architecture called PipeRench; this reconfigurable fabric allowed
pipelined reconfiguration of the processing blocks through a hardware virtualization
process. A drawback of this architecture was the bandwidth limitations between the
main memory, the PipeRench fabric, and the host processor, since PipeRench was
connected as a coprocessor. Chimaera architecture was proposed in [23]; this
architecture consisted of a small reconfigurable functional unit integrated into a
microprocessor itself, reducing the communication bottleneck and taking advantage of

the reconfigurable fabric to general-purpose computing. Other reconfigurable systems

17

were proposed in: PRISM [24], PRISM-II [25], OneChip [26], REMARC [27],
MOLEN [28], XiRISC [29], etc.

Xilinx and Altera offer processors in the form of soft-core IP or hard-core IP.
Soft-processors are built from logic resources of the FPGA. Xilinx’s soft-processor is
called MicroBlaze, which is a 32-bit processor with reduced instruction set computing
(RISC) architecture. Similar architecture is adopted for Altera’s soft-processor, Nios
I1, which has three different versions: Nios II/f (performance), Nios Il/s (performance

and low cost), and Nios Il/e (low cost).

MicroBlaze Nios Il Processor Core

st | Program GP-
ok Controller Registers Ttruction

lopP8
f— i Mooy
A
- Address Control Instruction
\r JTAG Generation Registers Cache
el ALY Debug g

Shift Module | Excention Shadow

Program
K Special N Controller Register
Counter P Barrel Shift | —/

Purpose — Sets
Multiplier

IXCLS Registers | — Interrupt Instruction
Divider .
Controller Regions
FPU S
Fic_por_data[44.0] External Memory MMU
Bus Interrupt Protection
Controller Unit Translation

ayoed-|

ayoed-a

i

Internal

IF ﬁ U DLMB ot Lookaside
— b . ata
o :> Instrt;fctlon > B‘\;S Regions Buffer
Buffer
Instruction <i MFsL
Decode :> Register File Custom
32x32b Instruction
L Lonic AL Data oata Memory
8! Cache
(a) (b)

Figure 1-9: Block diagrams of a Xilinx MicroBlaze Processor [30] and an Altera Nios

I Processor [31].

Some FPGA families incorporate hard microprocessors into their logic fabrics.
For this type, there are commercial FPGA families available in the market such as
Xilinx Zyng, Microsemi SmartFusion, and Altera Arria. Earlier Xilinx Virtex families
include PowerPC processors, which are based on Harvard architecture and can run up

to 550 MHz. The Xilinx Zyng architecture comprises two main units: the Processing

18

System (PS) and the Programmable Logic (PL), which are interconnected through
dedicated Advanced eXtensible Interface (AXI) buses. The PS unit is basically a dual-
core ARM Cortex-A9 processor operating at clock speeds up to 1 GHz. Each core is
connected to optimized computational units, such as a media processing engine (MPE)
or a floating-point processing unit (FPU). Different cache levels are also part of the
system, which are controlled by a memory management unit (MMU). A snoop control
unit (SCU) interfaces the L1 and L2 caches to ensure consistency of data between
them. The processor includes separate L1 caches for data and instructions with a size
of 32 KB. The two cores also share a larger L2 cache of 512 KB for instruction and
data. In addition, there is 256KB of on-chip memory within the application processing
unit (APU).

A SoC design involves hardware logic and programmable processors. Figure
1-10 shows a general overview of the process to implement a SoC solution. This
process starts with the specifications of the system, followed by modelling the
algorithm. Partition of the design between hardware and software is then performed.
Hardware and software partitions follow independent paths first, then they are

integrated to obtain the final product and ensure all the parts are tightly coupled.

19

System
Specifications

L

Algorithm
Modeling

HW/SW
partitioning

HW design SW design
process process

\/

HW/SW
Integration

Production

Figure 1-10: General SoC system implementation model.

1.4.2 Hardware/Software Partitioning

The hardware/software (HW/SW) partitioning, or hardware/software co-
design, involves the identification of tasks that are more suitable for hardware or
software implementation. HW/SW partitioning is a key process in the design of an

embedded system because it can have a considerable impact on the performance of the

20

overall system. There is no tool that can do this process automatically. Due to its
parallel nature, programmable hardware is preferred for tasks that are repetitive, and
can be efficiently split into multiple and concurrent tasks. Dynamic and unpredictable
tasks are better suited for a software-based implementation [20].

Dynamic range is another important factor when deciding the appropriate
partition implementation. Traditionally, a general-purpose processor (GPP) has been
used for floating-point tasks, due to their special math engines and dedicated floating
point units. On the other hand, FPGAs used to be mostly for fixed-point
implementations, since floating-point implementations demand much more logic
resources. However, in modern FPGAs this is compensated with the increased number
of logic resources and DSPs. Therefore, tasks that require floating-point format

representation can be implemented in either software or hardware.

Hardware

Task4

Task7

Embedded
System

Task5

Taskl

Software

Figure 1-11: Hardware/software partitioning

21

1.4.3 Advanced eXtensible Interface (AXI) Interconnect Technology

Another essential component in a SoC design is the bus interconnection that
coordinates and moves data between the different processing units within the FPGA.
Xilinx’s interconnect technology prior to the 7 series family is based on the IBM
CoreConnect standard, which includes three types of buses: the processor local bus
(PLB) for high-speed transactions, the On-chip Peripheral Bus (OPB) for I/O devices,
and the device control register (DCR) for configuration and status.

The Xilinx 7 series and UltraScale FPGAs are based on the AXI AMBA 4
standard. AXI was proposed by ARM Holdings public limited company (ARM). This
standard defines three types of buses: AXI14, AXI4 Stream, and AXI-Lite. AXI4 is a
high-performance bus for memory mapped links, and supports data burst transfer up to
256 data words with data width from 32 to 1024 bits. AXI4-Stream is a non-address
based bus with unlimited data bursts, and AXI-lite interconnect is intended to
interconnect slow peripherals or control/monitor signals from processing units.

Figure 1-12 shows the top-level architecture of the AXI interconnect core. The
core consists of slave interface, master interface, and processing blocks. The crossbar
routes the traffic on the AXI channels between the devices connected to the master

and slave interface [9].

22

AXI Interconnect

S| Hemisphere MIHemisphere
Crossbar
4
Master 0 " 14 4 [} » Slave 0
g 2 4 » » gl ol [5]]3
s s iR Sl i S £l
1o I S N Lo 21 N 24
EE;EEEQEEE———'I:X:IhﬁiEEgE%E ' SH
a| |2 |2 |2] | & g2l (S]2l =] |2
ol |2 % <] “‘ o =) 5 o 3] =
9] 3 a] o o 8 a <} 5]
= s} 0 sl =
o
Slave Master
Interface Interface

Figure 1-12: Top-level AXI interconnect [32].

1.4.4 Evaluation Platforms

Today’s FPGAs are gaining more and more computing power. Xilinx claims
987 GFLOPS peak computing power in a single Virtex-7 980XT FPGA and Altera
claims close to 1 TFLOPS peak computing performance for the Stratix V FPGA. The
same design and implementation procedure developed in this work can be applied to
different and smaller devices. Specifically, we have used two different platforms in
most of this dissertation: the KC705 DSP evaluation board and the Avnet ZedBoard
7020 baseboard.

The KC705 board includes an XC7k325t-2-ffg990 FPGA, which has 356K
logic cells, BRAMs memory with a total of 16,020KB, and 840 DSP blocks. The
ZedBoard’s FPGA is the XC72020-CLG484-1, which includes a dual-core ARM
Cortex-A9 and 85K logic slices, 4,480KB of BRAM, and 220 DSP blocks. Figure

1-13 shows the photos of KC705 and ZedBoard evaluation boards.

23

Figure 1-13: Testbed for the implementation of APC. It includes a Ku-band

transceiver, (a) Kintex-7 and (b) Avnet ZedBoard evaluation boards.

1.5 Dissertation Outline

The main contribution of this work is developing a general FPGA based SoC
framework for radar signal processing, and demonstration of this framework through
Xilinx FPGA devices, for specific pulse compression algorithms.

This dissertation is organized as follows: Chapter 2 provides an overview of
pulse compression technologies and algorithms. This chapter also introduces the
concept of adaptive pulse compression (APC) and its application to modern radar
systems. Different algorithms, as well as their computational load requirements are
summarized.

Chapter 3 describes the principal processing cores used for the implementation
of APC (and other adaptive processing). Hardware implementation of linear algebra

operations, such as matrix multiplication and matrix inversion are also discussed.

24

The details of FPGA implementation of traditional pulse compression is
presented in chapter 4. Tradeoffs between different specific design approaches are also
discussed.

Chapter 5 focuses on APC processing implementations, and compares various
SoC architectures based on basic units o