
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

REAL-TIME ADAPTIVE PULSE COMPRESSION ON RECONFIGURABLE,

SYSTEM-ON-CHIP (SOC) PLATFORMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

HERNAN SUAREZ
 Norman, Oklahoma

2015

REAL-TIME ADAPTIVE PULSE COMPRESSION ON RECONFIGURABLE,
SYSTEM-ON-CHIP (SOC) PLATFORMS

A DISSERTATION APPROVED FOR THE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Yan Zhang, Chair

Dr. Sesh Commuri

Dr. Caleb Fulton

Dr. Boon-Leng Cheong

Dr. John Dyer

Dr. John Albert

© Copyright by HERNAN SUAREZ 2015
All Rights Reserved.

Acknowledgements

I would like to gratefully thank my advisor, Dr. Yan Zhang, for his guidance,

support, and constant encouragement during my graduate study at University of

Oklahoma.

My gratitude to my doctoral committee: Dr. Sesh Commuri, Dr. Caleb Fulton,

Dr. Boon-Leng Cheong, Dr. John Dyer, and Dr. John Albert for their valuable

comments, suggestions and corrections.

In addition, I would like to extend my thanks to the Advanced Radar Research

Center (ARRC), its director Dr. Robert Palmer, faculty, staff and students, for their

generous assistance during my research at OU.

Last but not least, I would like to thank my parents, Ramon Suarez Castro and

Graciela Montalvo de Suarez; and my brothers Antonio, Anibal and Nicolas, for their

endless support and encouragement.

 iv

Table of Contents

Acknowledgements .. iv

Table of Contents .. v

List of Tables .. viii

List of Figures .. ix

Abstract ... xii

Chapter 1 Introduction .. 1

1.1 Expectations of High-Performance Embedded Computing (HPEC) in
Radar 4

1.2 Overview of Real-Time Signal Processing Technologies 6

1.3 Current State of FPGA Technology ... 9
1.3.1 Overview of Device Technologies ... 9
1.3.2 Design Flows .. 14
1.3.3 IP Cores ... 15

1.4 System on a Chip (SoC) ... 16
1.4.1 Introduction ... 16
1.4.2 Hardware/Software Partitioning ... 20
1.4.3 Advanced eXtensible Interface (AXI) Interconnect Technology
 22
1.4.4 Evaluation Platforms ... 23

1.5 Dissertation Outline .. 24

Chapter 2 Adaptive Pulse Compression (APC) and Implementations 26

2.1 Pulse Compression Waveforms .. 28
2.1.1 Frequency Modulated Waveforms .. 28
2.1.2 Phased-Coded Waveforms .. 30

 v

2.2 Adaptive Pulse Compression Algorithms .. 33

2.3 Real-Time Computational Load Requirements of Pulse Compression
Algorithms .. 37

2.4 State of the Art of Pulse Compression Implementations 41

2.5 Basic Considerations for Hardware Implementation 44
2.5.1 Number Representation Format .. 44

Chapter 3 FPGA Cores for Radar Signal Processing 47

3.1 Optimized Adder and Multiplier Designs .. 47

3.2 Matrix Multiplication ... 55
3.2.1 Acceleration Using Coprocessor .. 55
3.2.2 Design of Matrix Multiplication Coprocessor 58

3.3 Matrix Inversion ... 63

Chapter 4 FPGA implementation of Pulse Compression 69

4.1 Hardware Implementation of Pulse Compression 69
4.1.1 FPGA in Existing SDR platforms ... 69
4.1.2 Radar TR Control Layer ... 70

4.2 Architecture Design and Analysis for Real-Time Pulse Compression
Circuitry .. 72

4.3 FPGA Device Implementations of Real-Time Pulse Compression 78
4.3.1 Hardware Resource Utilization ... 78
4.3.2 Test and Validation Platforms .. 81

4.4 Experiment Results ... 83
4.4.1 System Outputs for Basic PC Waveform 83
4.4.2 Real-Time Pulse Compression for Random Waveform 86
4.4.3 Impact of Waveform Template Generation Scheme and Timing
Misalignment .. 88

4.5 Conclusions .. 89

Chapter 5 SoC Implementation of an Adaptive Radar Processor 91

5.1 Literature Review: Implementation of Traditional Adaptive Filters 93

5.2 System-on-Chip (SoC) Implementation of APC 95

 vi

5.3 LS-APC Multi-Coprocessor Architecture .. 96

5.4 Single LS-APC Processor ... 100

5.5 LS implementation based on Floating-Point Data Format 102

5.6 RMMSE-APC Co-Processor Architecture ... 109

5.7 Summary ... 119

Chapter 6 Conclusions ... 120

6.1 Achievements ... 120

6.2 Future Work .. 122
6.2.1 Technology Trend for FPGA-Based Signal Processing 123
6.2.2 Integration of the APC processor to a Radar System 125

Bibliography .. 129

Appendix - List Of Acronyms and Abbreviations ... 141

 vii

List of Tables

Table 1-1: List of Xilinx FPGA families and principal characteristics. 11
Table 1-2: Principal Specifications of Altera FPGA Families. 12
Table 2-1: Binary Barker Codes .. 31
Table 2-2: Comparison of different APC algorithms .. 36
Table 2-3: Computational cost of APC algorithms per stage. 40
Table 3-1: Hardware utilization for floating-point and fixed-point of matrix

multiplication. .. 59
Table 3-2: Hardware resource utilization for a pipelined design. 61
Table 3-3: Hardware resource utilization when pipelining and distributed memory

are considered in the design. .. 62
Table 3-4: Hardware utilization for floating-point and fixed-point of matrix

inversion... 65
Table 3-5: Comparison of hardware utilization for floating-point and fixed-point

implementation of matrix inversion. .. 67
Table 3-6: Comparison of timing results for floating-point and fixed-point

implementation of matrix inversion. .. 68
Table 4-1: Device Resource Utilization for two Xilinx FPGAs for the typical

matched filter implementation. .. 80
Table 4-2: Power consumption of pulse compression ... 81
Table 5-1: Total hardware resources for the matrix multiplication and matrix

inversion... 98
Table 5-2: Total hardware resources for pipelined version of matrix multiplication

and matrix inversion. ... 99
Table 5-3: Hardware utilization of LS fixed-point implementation using 16-bit

fixed-point format for Xilinx XC7k325t FPGA. ... 101
Table 5-4: Hardware utilization of LS fixed-point implementation using 32-bit

fixed-point format for Xilinx XC7k325t FPGA. ... 101
Table 5-5: FPGA resource utilization for floating-point implementation 103
Table 5-6: FPGA hardware resource utilization for pipelined floating point

implementation. ... 106
Table 5-7: FPGA hardware resource utilization for initiation interval of 50 clock

cycles ... 106
Table 5-8: RMMSE coprocessor synthesis results. ... 112
Table 5-9: Hardware resources for partially pipelined version of RMMSE

coprocessor. ... 115
Table 5-10: Hardware Resources for fully pipelined RMMSE coprocessor. 115

 viii

List of Figures

Figure 1-1: Typical functions of a radar receiver. ... 4
Figure 1-2: Computation load for an example GMTI radar [12] 6
Figure 1-3: Processing technologies classification. ... 7
Figure 1-4: Comparison of different technologies for DSP implementation. 8
Figure 1-5: Xilinx’s DSP48E1 architecture [16] ... 13
Figure 1-6: Xilinx’s carry logic slice architecture [18] ... 14
Figure 1-7: Traditional FPGA design flow. ... 15
Figure 1-8: Basic concept of a generic SoC architecture. 17
Figure 1-9: Block diagrams of a Xilinx MicroBlaze Processor [30] and an Altera

Nios II Processor [31]. ... 18
Figure 1-10: General SoC system implementation model. 20
Figure 1-11: Hardware/software partitioning .. 21
Figure 1-12: Top-level AXI interconnect [32]. ... 23
Figure 1-13: Testbed for the implementation of APC. It includes a Ku-band

transceiver, (a) Kintex-7 and (b) Avnet ZedBoard evaluation boards. 24
Figure 2-1: Estimation of computational load requirement for real-time matched

filter pulse compressor, with different signal bandwidths and pulse length.
Assuming 20% transmitter duty cycle for all cases. .. 39

Figure 2-2: Computational analysis of APC algorithms. ... 41
Figure 3-1: Operation of a conventional n-bit ripple carry adder. 47
Figure 3-2: Performance of two-operand adders using different implementations on

a Kintex-7 FPGA (xc7k325t-2-ffg900). (a) Number of LUTs, (b)
Combinational Delay. .. 49

Figure 3-3: Performance of sequential multi-operand adders for 16 and 64 bits
operands on a Kintex-7 FPGA. .. 51

Figure 3-4: Comparison of latency performance of three sequential multipliers
through implementation on Kintex-7 FPGA. .. 53

Figure 3-5: Comparison of combinational delay performance of different parallel
multipliers including designs using Xilinx commercial building blocks. 54

Figure 3-6: Schematic for an 8-bit 2’s complement adder on Kintex-7 FPGA. 55
Figure 3-7: High-level configuration of matrix multiplication coprocessor. 57
Figure 3-8: Matrix multiplication results from MicroBlaze with and without

coprocessor on Kinte-7 FPGA. Latency measured with a timer attached to the
AXI Lite bus. (a) 4x4 matrix multiplication. (b) 8x8 matrix multiplication. .. 58

Figure 3-9: Matrix multiplication total latency for floating point and fixed-point
implementation .. 60

 ix

Figure 3-10: Latency in terms of clock cycles for floating point and fixed point
implementation using different techniques. ... 63

Figure 3-11: High-level matrix inversion coprocessor. ... 64
Figure 3-12: Matrix inversion latency for single precision floating-point and fixed-

point <16, 1>. ... 66
Figure 4-1: (a) Existing FPGA configuration of N210/E110 from Ettus Research.

(b) Proposed FPGA configuration for Radar transceiver (with enhanced radar
transceiver Real-time range-Doppler processing blocks). 71

Figure 4-2: High-level block diagram for matched-filter pulse compression
implementation. ... 74

Figure 4-3: Hardware simulation of pulse compression, using 16-bit digital
representation. (a) Uncompressed input signal. (b) Compressed output signal.
 ... 75

Figure 4-4: Comparison between MATLAB and hardware (Kintex-7 FPGA)
simulations of pulse compression for different weighing windows. (a) No
window. (b) Kaiser (β = 2.23). (c) Hanning. (d) Hamming. 77

Figure 4-5: Comparison of pulse compression hardware simulation results using
different windows: Kaiser (β = 2.23), Hanning, and Hamming. The simulation
target is a Kintex-7 FPGA. .. 78

Figure 4-6: Examples of on-chip implementation results. (a) Simplified Vivado
RTL schematic for pulse compression. (b) The resulting layout of pulse
compression implementation (light blue area) on the XC7k325t-2-ffg990
FPGA. .. 79

Figure 4-7: Methods of hardware verification. (a) Complete hardware testbed, (b)
Using Vivado logic analyzer for probing internal signals. 82

Figure 4-8: Pulse compression results captured using Xilinx’s integrated logic
analyzer (ILA). External trigger with pulse duration of 500 ns, I and Q with
pulse duration of 20 µs and bandwidth of 10 MHz. .. 83

Figure 4-9: ILA samples of pulse compression output converted to logarithmic
scale (dB). .. 84

Figure 4-10: Comparison between uncompressed time domain input ((a), pulse
bandwidth = 10 MHz, pulse length = 20 µs), and compressed time domain
output pulse ((b), captured by DSO). ... 85

Figure 4-11: Pulse compressor output for multiple emulated targets. Captured by
DSO. .. 86

Figure 4-12: Real-time pulse compression of band-limited random noise with the
FPGA pulse compression implementation, (a) Input waveform (40 MHz signal
bandwidth), (b) Pulse compressor output captured using Vivado logic analyzer
(before DAC output), (c) Pulse compressor output converted to analog pulse
and captured by DSO. .. 87

Figure 4-13: Comparison between the PC outputs using internal waveform template
generation (without external waveform samples) and PC outputs with external
waveform templates and different bandwidths. ... 89

Figure 5-1: System elements of the proposed radar transceiver optimizer. 91
Figure 5-2: Transceiver optimizer System-on-Chip (SoC). 92
Figure 5-3: Multiple co-processor for LS-APC. .. 96

 x

Figure 5-4: Combined latency of matrix inversion and matrix multiplication
coprocessors for the sequential and pipelined versions. 99

Figure 5-5: Internal architecture of the single LS coprocessor option. 100
Figure 5-6: Estimated latency of LS coprocessor for different number of signal

samples with a constant number of range gates. The bar plot also shows the
range of variation (max and min) of latency estimation. Number of range gates
= 60. ... 102

Figure 5-7: Estimated latencies for different number of range gates for floating
point implementation, assuming the number of transmitted signal samples is 6
(a short pulse)... 104

Figure 5-8: Performance comparison between fixed-point and floating-point
implementation for different number of range gates. Comparison of Latency
Between Fixed-point and Floating Point Implementation 105

Figure 5-9: Comparison of latency in terms of clock cycles for different initiation
intervals when number of samples is 6. ... 107

Figure 5-10: Comparison of dynamic power consumption required by the LS
coprocessor. ... 108

Figure 5-11: Architecture for fixed-waveform architecture, where Coprocessor 1 is
only activated for the estimation of the filter coefficients. 109

Figure 5-12: RMMSE coprocessor architecture. ... 111
Figure 5-13: Latency estimation per range gate without optimization. 113
Figure 5-14: Latency comparison of implementation of RMMSE coprocessor. ... 114
Figure 5-15: Architecture of RMMSE processor. ... 117
Figure 5-16: Architecture of the matrix summation to compute the matrix ()C l R+

for a range gate. ... 118
Figure 6-1: Illustration from Xilinx. The new Zynq UltraScale+ architecture [138]

 ... 124
Figure 6-2: A general architecture of a radar processing system based on serial

technologies. .. 126
Figure 6-3: Simulation of a RapidIO-based network. ... 128

 xi

Abstract

New radar applications need to perform complex algorithms and process a large

quantity of data to generate useful information for the users. This situation has

motivated the search for better processing solutions that include low-power high-

performance processors, efficient algorithms, and high-speed interfaces. In this work,

hardware implementation of adaptive pulse compression algorithms for real-time

transceiver optimization is presented, and is based on a System-on-Chip architecture

for reconfigurable hardware devices. This study also evaluates the performance of

dedicated coprocessors as hardware accelerator units to speed up and improve the

computation of computing-intensive tasks such matrix multiplication and matrix

inversion, which are essential units to solve the covariance matrix. The tradeoffs

between latency and hardware utilization are also presented. Moreover, the system

architecture takes advantage of the embedded processor, which is interconnected with

the logic resources through high-performance buses, to perform floating-point

operations, control the processing blocks, and communicate with an external PC

through a customized software interface. The overall system functionality is

demonstrated and tested for real-time operations using a Ku-band testbed together

with a low-cost channel emulator for different types of waveforms.

 xii

Chapter 1

Introduction

The general operation of a pulsed radar system consists of transmitting

electromagnetic (EM) signals to an area of interest. The reflected EM signals from the

environment are captured by the antenna and transformed into electrical signals. The

radar receiver filters, amplifies and also transforms the radio frequency (RF) signal to

an intermediate frequency (IF) signal by mixing the RF signal with local oscillators. A

range profile can be generated based on the processed receive signal and its respective

round-trip delay time.

Modern radars demand bigger computing power as well as reconfigurable

flexibility, which is important for multiple functions. A good example is pulse

compression (PC), which is the main focus of this dissertation. Theoretically, in order

to increase the radar ability to distinguish nearby targets and maximize the detectable

range, it would be necessary to transmit a narrower pulse width with a higher peak

energy, which is infeasible due to power limitations of the transmitter, especially for

solid-state transmitters. To overcome this problem, the pulse compression technique

[1] has been used for decades.

It is known that a long pulse with frequency or phase modulation is able to

achieve equivalent spectral bandwidth to that of a narrow pulse. When applying pulse

 1

compression technique, the receiver can compress the modulated long pulse of

bandwidth B to a pulse width equal to 1/B, which improves not only the range

resolution but also the signal to noise ratio (SNR). Traditional pulse compression

commonly uses linear frequency modulation (LFM) due to its simplicity for

generation and processing; however, the resultant compressed pulse presents range

side lobes in the range gates adjacent to a strong target, which could potentially mask

any weak targets [2]. Space and Airborne radars are some example applications, for

which range side lobe mitigation is highly desired because the strong scatters from the

earth’s surface can distort the observations.

Different processing techniques have been investigated to suppress the range

side lobes [2-8]. These techniques consider the usage of weighting windows, special

waveforms, inverse filters, and adaptive filters. Other techniques are based on adaptive

pulse compression (APC) such as the least square (LS) method, as well as optimized

and recursive approaches. The reiterative minimum mean-square error (RMMSE)

algorithm, derived from the LS method, is a localized optimization-type estimation,

which can achieve good performance in terms of retrieving the ground truth [2].

APC algorithms require intensive computation of mathematical operations, for

instance, Fourier transforms, matrix multiplications, and matrix inversions. A real-

time, high-performance implementation of adaptive pulse compression is a huge

challenge to traditional processors due to their fixed architecture and sequential nature

of operation. Moreover, in airborne and spaceborne radar applications where size,

weight and power consumption (SWaP) are critical constraints, not only the

 2

implementation of efficient algorithms, but also the design of optimal hardware

architectures and the use of the appropriate technology are important.

Currently, thanks to the advancement of silicon technology, it is possible to

establish a variety of potential real-time and embedded processing solutions with

integrated computing resources. These solutions range from general purpose

processors (GPP) to application-specific integrated circuits (ASICs). As one of the

promising technologies, Field Programmable Gate Arrays (FPGAs) has evolved

during the past decades, and incorporated more logic resources, multipliers, memory,

high-speed transceivers, processors in a single chip device, and also allowed the

interaction between processing units through high-performance buses. The design

tools for FPGA have become more matured. In addition, the integration of hardware

and software solutions in a single device allowed the design and implementation of

customized architectures in a single device to achieve better SWaP, greater reliability

and reduced manufacturing cost.

In this dissertation, processor architectures of radar waveform processing,

including pulse compression and APC on reconfigurable platforms for radar

transceiver optimization are investigated. The objective for this work is to design high-

performance System-on-Chip (SoC) processors, which can provide improved target

sensing, reduced artifacts, accelerated result generations and reconfigurable capability

compared to traditional radar signal processors.

 3

1.1 Expectations of High-Performance Embedded Computing

(HPEC) in Radar

The main components of a radar system are the transmitter, antenna, and

receiver. Raw radar signals are then passed to the signal processors, which extract

useful information regarding targets or scene, and the data processor generates useful

information for the users [9]. A radar system can be configured to operate with pulsed

or continuous waveforms, with coherent or non-coherent modes [10].

Within a radar receiver, the received signal passes through different processing

components, which consist of analog transceivers, digital transceivers with real-time

and high computational capabilities, signal processors with efficient data

transportation protocol and interface control, and software programs running on CPUs

to perform system functions and missions. These characteristics are illustrated in

Figure 1-1.

Real-time
DSP/MCU

Reconfigurable
Digital

Transceivers

Antenna and RF
Transceivers

Software
Stacks

- RF Analog transceiver
- Real-time and high
computational
capabilities
- Highly reconfigurable

- Higher level
processing
- Data transportation
- Interface control

-System functions
and missions

Figure 1-1: Typical functions of a radar receiver.

Initially, radar systems were limited to target detection and range

determination functions. With the necessity of more advanced functions in a radar

 4

system, the complexity of digital radar receivers has been increased significantly,

which demands more memory, higher speed communication buses, and the

computation of large quantities of data in shorter time. Additionally, mobile radars and

airborne radars have more SWaP constraints. Modern radar application requires

multiple functions, and the computation capability is on the order of GFLOPs and

TeraFLOPs, with limited SWaP such as in unmanned aerial vehicle (UAV) and

airborne platforms. Furthermore, the digitization at the element level in future phased

array radars will increase the computational load to hundreds of TeraOPS for the

front-end processing and several TeraFLOPS for the back-end [11].

Surface moving target indicator (SMTI) radar, used to detect and track moving

targets on the earth’s surface, is a good example of a radar application where the

computational load is significant. The computational load for a 48-channel phased

array, sampled at 480MHz and 12 bits per sample was estimated in [12]. The

processing flow and the number of GOPS for each stage are illustrated in Figure 1-2.

It can be observed that pulse compression is one of the processing stages that demands

the greatest number of GOPS. The aggregate computational complexity of this system

is about 1TeraOPS.

 5

From
ADCs

Subband
Filtering

(478 GOPS)

Pulse
Fompression
(198 GOPS)

Doppler
Filtering

(66 GOPS)

STAP
(44 GOPS)

Adaptive
Beamforming
(140 GOPS)

Subband
Fombine

(76 GOPS)

FFAR
Detection
(6 GOPS)

~138 Dbps~104 Dbps ~28 Dbps ~28 Dbps

~55 Dbps~21 Dbps~16 Dbps~0.41 Dbps

From ADCs

To Dround
Station

Figure 1-2: Computation load for an example GMTI radar [12]

Historically, to meet these demanding new requirements, manufacturers have

been developing more powerful computers or processors by increasing the processor’s

clock speed, but this effort was constrained by physical limitations such as heat

dissipation. A new trend is incorporating more processing cores with the intention of

executing billions of instructions per second, but the power consumption is increased,

and an efficient software application that can take full advantage of all the cores is still

absent. This situation has motivated our investigation for hardware-based,

reconfigurable parallel computer technologies using FPGAs. The advantages of

FPGAs are reconfigurable, low-power, and the software re-programmability.

1.2 Overview of Real-Time Signal Processing Technologies

Gordon Moore estimated in 1965 that the number of transistors on integrated

circuits doubles every year [13]. But then in 1975, he updated his estimation to

doubling every two years. Nowadays, it is possible to find processing devices with

 6

billions of transistors in a single chip. The processing technologies can be classified in

two groups as ‘hardware-based’ and ‘software-based’ solutions.

The hardware-based solutions deliver higher performance with lower power

consumption. They can be grouped in application-specific integrated circuits (ASICs)

and field-programmable logic devices (FPLDs). On the other hand, the software-based

solutions are constituted by programmable processors which by nature execute the

instruction in a serial sequence from memory, and possess programmable flexibilities.

This group can be divided into two subgroups: the general-purpose processors and the

application-specific devices (such as digital signal processors (DSPs), general graphics

processing units (GPUs)).

- Application-Specific Integrated
Circuits

- Simple Programmable Logic Devices
- Complex Programmable Logic Devices
- Field Programmable Gate Arrays

- MicroControllers
- MicroProcessors

- Digital Signal Processors
- Graphics Processing Units
- Network Processors

Processing
Technology

SW

HW

Figure 1-3: Processing technologies classification.

 7

The selection of the appropriate device for a particular radar backend processor

is a challenging process because it requires the consideration of several factors such as

development cost, performance, hardware resources, power consumption, production

cost, time to market, and flexibility. In Figure 1-4, the principal characteristics of some

processing technologies are compared. An ideal processing system may incorporate a

combination of different technologies and take advantage of the strength of each one.

Figure 1-4: Comparison of different technologies for DSP implementation.

A traditional microprocessor (µP) is one of the most common processing

solutions in many applications, because of its flexibility to be reprogrammed and

relatively low development cost. Most µPs are based on Von Neumann architecture

and have inferior computing performance compared to DSPs. Microcontrollers are

usually targeted for applications with limited processing requirements. However, some

microcontrollers include signal processing engine (SPE) units, such as the Freescale

MPC5500 family, which are designed for automotive applications [14].

Low

High

 8

Because multiply and accumulate (MAC) operations are common to signal

processing, DSP devices include dedicated MAC units with particular instructions to

accelerate computation. Modern DSPs use Very Long Instruction Word (VLIW)

architecture and single instruction multiple data (SIMD) extensions to enhance the

levels of data and instruction parallelism.

ASICs and FPGAs are used commonly in applications that require high

throughput, especially as front-end signal processors in digital receivers because of

their capabilities to handle a large amount of data samples from ADCs. ASIC designs

are optimized for specific operations, which can achieve relative small latency and low

power consumption, but the fabrication process demands longer time and higher costs,

and once the design is fabricated, it cannot be modified. In contrast, FPGAs have the

advantage of re-configurability and low power consumption, which are important

characteristics for a technology to be considered as a radar front-end signal processor.

Moreover, FPGA’s computing capabilities are increased if the hard-processor is

tightly coupled to create a SoC solution.

1.3 Current State of FPGA Technology

1.3.1 Overview of Device Technologies

The Field Programmable Gate Array (FPGA) was originally developed in the

1980s, and since then it has evolved significantly. The technology has migrated from a

simple programmable-logic prototype device to a complex system that includes many

hardware resources, such as a large quantity of programmable logic units, dedicated

 9

DSP blocks, embedded processors, block random access memory (BRAM), phase-

locked loop (PLL), high-speed gigabit transceivers, and other components. FPGAs are

widely used in different areas; the range of applications can be from small digital

circuits to larger advanced systems. One important characteristic of FPGAs is re-

configurability, which allows the modification of the processing blocks and rerouting

of the interconnections to perform a different function without the necessity of

powering off. Some FPGAs also offer partial re-configuration capabilities, in which

specific areas of the FPGA are modified at the run-time while keeping the other areas

operating, which increases silicon reusability significantly.

For a long period, the programmable-logic market was dominated by two

vendors, Xilinx and Altera [15]. The XC2000 family was the first FPGA developed by

Xilinx and it was comprised of programmable logic units attached to programmable

interconnects, and programmable I/O. Altera’s first FPGA was based on a PLD

structure. The manufacturers have evolved their initial architectures and their

programming technologies. Xilinx and Altera FPGAs are based on static random-

access memory (SRAM) technology, while Microsemi (previously known as Actel)

uses flash and antifuse technology.

The fundamental structure of an FPGA is called ‘logic block’, which is

distributed across the FPGA fabric and interconnected via programmable switches.

Xilinx uses the name configurable logic block (CLB), and Altera uses logic element

(LE). The content of a logic block also differs from manufacturer to manufacturer.

Xilinx’s CLB is constituted by two slices; each slice contains a number of look-up

 10

tables (LUTs), storage elements, and multiplexers. For instance, in the Xilinx 7 series

FPGAs each slice contains four 6-input LUTs and eight flip-flops [16].

The majority of Xilinx FPGAs are based on 6-input LUTs. Kintex Ultra and

Virtex Ultra are the latest families when this dissertation is written, which are based on

16 nm and 20 nm technologies. The on-chip memory size of Spartan and Virtex-4

family is 18 Kbits, while it is 36 Kbits for the 7 Series and UltraScale family. The

principal characteristics and the year of introduction of Xilinx and Altera FPGAs are

listed in Table 1-1 and Table 1-2, respectively.

Table 1-1: List of Xilinx FPGA families and principal characteristics.

Family LUT Input Multiplier BRAM (Kbits) µP Year Tech (nm)

Spartan 3 4 18x18 18

2003 90

Virtex 4 4 18x18 18 PPC 2004 90

Virtex 5 6 25x18 36 PPC 2006 65

Spartan 6 6 18x18 18

2009 45

Virtex 6 6 25x18 36

2009 40

Artix 7 6 25x18 36

2010 28

Kintex 7 6 25x18 36

2010 28

Virtex 7 6 25x18 36

2010 28

Zynq-7K 6 25x18 36 ARM 2011 28

Kintex Ultra 6 27x18 36

2014 20

Virtex Ultra 6 27x18 36

2014 20

Currently, Altera offers four FPGA families, which are called Cyclone series,

Stratix series, Arria series, and Max10 series. As shown in Table 1-2, these FPGAs

incorporate memory blocks of different sizes such as M512 (512-bit), M4K (4Kb),

 11

M9K (9Kb), M144K (144Kb), MRAM (512Kb), MLAB (640b ROM/320b RAM),

M20K [17].

Table 1-2: Principal Specifications of Altera FPGA Families.

Family LUT Input Multiplier BRAM (Kbits) µP Year Tech(nm)

Cyclone II 4 18x18 4

2004 90

Stratix II 8 18X18 0.5,4,512

2004 90

Stratix III 8 18X18 0.624, 9, 144

2006 65

Cyclone III 4 18x18 9

2007 65

Arria 8 18X18 576

2007 90

Stratix IV 8 18X18 0.624, 9, 144

2008 40

Arria II 8 18X18 9

2009 40

Cyclone IV 4 18x18 9

2009 60

Stratix V 8 27X27 0.640, 20

2010 28

Cyclone V 8 27X27 10

2011 28

Arria V 8 27X27 10 ARM 2011 28

Arria 10 8 27x27 0.640, 20 ARM 2013 20

Stratix 10 8 27x27

ARM 2013 14

Because multipliers and accumulators are essential operations for the

implementation of signal processing algorithms, FPGA vendors have included small

DSP blocks into the fabric of the FPGA to improve the performance of arithmetic

operations and release the logic resources (flip-flops, look-up tables) for other

functions. Each Xilinx’s DSP block contains two DSP slices. A DSP slice can perform

logic and arithmetic functions such as multiply-accumulator, multiply-adder, and

counter. DSP slices can also be cascaded to implement more sophisticated functions

such as complex multipliers or n–tap FIR filters, thus achieving higher clock rates.

 12

The DSP blocks included in Xilinx FPGAs are called DSP48s, each DSP is mainly

composed of a pre-add/subtract unit, a multiplier, and an add/subtract/accumulate

engine. Each family of Xilinx’s FPGA has a different version of the DSP with some

variations in its architecture. DSP48As are included in Xilinx Spartan-3A devices,

which consist of an 18-bit pre-adder, followed by an 18x18-bit signed multiplier and a

48-bit add/subtract/accumulate engine. In the Spartan-6 family, it is called DSP48A1,

or DSP48E in Virtex-5, and also called DSP48E1 in the Virtex-6 and the 7 series

families. The architecture of a DSP48E1 is shown in Figure 1-5, where the main

components are a 25-bit pre-adder, 25x18 multiplier, and pattern detector. In the

Xilinx UltraScale family, it is called DSP48E2s, and the multiplier and pre-adder

width is increased to 27x18 bits and 27 bits, respectively.

+/-

X +-Pre-adder

25x18
Multiplier

Pattern
Detector

=

48-bit
Accumulator/

Logic unit P

A

B

C

D

Figure 1-5: Xilinx’s DSP48E1 architecture [16]

Another important resource included in an FPGA is fast carry circuitry to

perform faster arithmetic operations.

 13

For instance, Xilinx includes dedicated carry logic blocks, called CARRY4

[18]. The logic elements of each block are shown in Figure 1-6.

Figure 1-6: Xilinx’s carry logic slice architecture [18]

1.3.2 Design Flows

The traditional FPGA design flow is shown in Figure 1-7. The design starts

with the description of the system architecture using a hardware description language

(HDL), which may include prebuilt functions or intellectual property cores (IPs). HDL

design files are synthesized to register-transfer level (RTL), then an implementation

process is performed, which consists of three steps: translate, map, place and route.

 14

Finally, a bitstream file is generated, which is downloaded and used to configure the

FPGA device.

HDL

Synthesis

Bitstream
generation

Translate

Map

Place&Route

Implementation

IPs

User
Constraints

Figure 1-7: Traditional FPGA design flow.

1.3.3 IP Cores

Intellectual property (IP) cores are prebuilt functions that provide solutions to

enhance system implementation productivity. IP cores are available for a variety of

general functions from simple arithmetic operations to microprocessors, as well as for

specific applications such as signal processing, video, networking, storage, and other

areas. FPGA vendors offer both own and third-party IP libraries, including IP

programs such the Xilinx Alliance program and the Altera Megafunctions Partner

Program (AMPP). IP cores can be classified as soft IP, firm IP, or hard IP. A soft IP

 15

core is distributed as synthesizable files describing the register transfer logic of a

design. The advantages of a soft IP include flexibility, scalability and portability. A

firm IP is delivered in the form of synthesized netlists, which has a certain type of

technology dependence. A hard IP core is presented as a mask layout with

characteristics such as high performance and predictable functionality, but limited

flexibility for system optimization.

1.4 System on a Chip (SoC)

1.4.1 Introduction

According to [19], the evolution of digital design styles occurred in three

stages. The first stage, system-on-backplanes, was based on several printed boards

with specific functions interconnected through the backplane to form a system. This

architecture evolved to system-on-board, in which processing components were

mounted on a single board. And the third stage, system-on-chip (SoC), integrates the

board-level functionalities into a single device, resulting in a design with more

efficient data exchange between processing units, better computing performance, and

improved SWaP compared to a system of discrete components [20].

A SoC design includes at least one microprocessor to run the software

component of the system, memory attached to the processor for temporary storage of

data and instructions, and peripherals, which can be a coprocessor, a soft-core/hard-

core IP, additional memory, or general input and output ports. Processor and

peripherals are interconnected via standard buses. A general representation of a SoC

solution is shown in Figure 1-8.

 16

ProcessorMemory

Peripheral 1 Peripheral 2 Peripheral 2

Figure 1-8: Basic concept of a generic SoC architecture.

Early studies proposed different reconfigurable architectures which combined

reconfigurable fabric and a programmable processor. For instance, the hybrid

architecture Garp was proposed in [21]; the system included a reconfigurable co-

processor which was connected to a MIPS-II processor in the same die. The co-

processor was also able to access the processor’s data memory and the external shared

memory through dedicated interconnections. In [22], the authors proposed a

reconfigurable architecture called PipeRench; this reconfigurable fabric allowed

pipelined reconfiguration of the processing blocks through a hardware virtualization

process. A drawback of this architecture was the bandwidth limitations between the

main memory, the PipeRench fabric, and the host processor, since PipeRench was

connected as a coprocessor. Chimaera architecture was proposed in [23]; this

architecture consisted of a small reconfigurable functional unit integrated into a

microprocessor itself, reducing the communication bottleneck and taking advantage of

the reconfigurable fabric to general-purpose computing. Other reconfigurable systems

 17

were proposed in: PRISM [24], PRISM-II [25], OneChip [26], REMARC [27],

MOLEN [28], XiRISC [29], etc.

Xilinx and Altera offer processors in the form of soft-core IP or hard-core IP.

Soft-processors are built from logic resources of the FPGA. Xilinx’s soft-processor is

called MicroBlaze, which is a 32-bit processor with reduced instruction set computing

(RISC) architecture. Similar architecture is adopted for Altera’s soft-processor, Nios

II, which has three different versions: Nios II/f (performance), Nios II/s (performance

and low cost), and Nios II/e (low cost).

MicroBlaze

MFSL

DXCL_M

Program
Counter

Instruction
Buffer

Special
Purpose
Registers

Register File
32x32b

Bus
IF

I-C
ach

e

Bus
IF

D
-C

ach
e

Instruction
Decode

ALU
Shift

Barrel Shift
Multiplier

Divider
FPU

ILMB

IXCL_S

IXCL_M

IOPB

DOPB

DXCL_S

DLMB

SFSL

(a)

Nios II Processor Core

ALU Data
Cache

MMU

Instruction
Cache

External
Interrupt
Controller

Internal
Interrupt
Controller

Exception
Controller

Program
Controller
Address

Generation

Custom
Instruction

Logic
Custom I/O

Memory
Protection

Unit

Instruction
Regions

Data
Regions

GP-
Registers

Control
Registers
Shadow
Register

Sets

JTAG
Debug

Module
JTAG interface

rst

clk

Irq[31..0]

Eic_por_data[44..0]

Instruction
Memory

Data Memory

Translation
Lookaside

Buffer

(b)

Figure 1-9: Block diagrams of a Xilinx MicroBlaze Processor [30] and an Altera Nios

II Processor [31].

Some FPGA families incorporate hard microprocessors into their logic fabrics.

For this type, there are commercial FPGA families available in the market such as

Xilinx Zynq, Microsemi SmartFusion, and Altera Arria. Earlier Xilinx Virtex families

include PowerPC processors, which are based on Harvard architecture and can run up

to 550 MHz. The Xilinx Zynq architecture comprises two main units: the Processing

 18

System (PS) and the Programmable Logic (PL), which are interconnected through

dedicated Advanced eXtensible Interface (AXI) buses. The PS unit is basically a dual-

core ARM Cortex-A9 processor operating at clock speeds up to 1 GHz. Each core is

connected to optimized computational units, such as a media processing engine (MPE)

or a floating-point processing unit (FPU). Different cache levels are also part of the

system, which are controlled by a memory management unit (MMU). A snoop control

unit (SCU) interfaces the L1 and L2 caches to ensure consistency of data between

them. The processor includes separate L1 caches for data and instructions with a size

of 32 KB. The two cores also share a larger L2 cache of 512 KB for instruction and

data. In addition, there is 256KB of on-chip memory within the application processing

unit (APU).

A SoC design involves hardware logic and programmable processors. Figure

1-10 shows a general overview of the process to implement a SoC solution. This

process starts with the specifications of the system, followed by modelling the

algorithm. Partition of the design between hardware and software is then performed.

Hardware and software partitions follow independent paths first, then they are

integrated to obtain the final product and ensure all the parts are tightly coupled.

 19

System
Specifications

Algorithm
Modeling

HW/SW
partitioning

HW design
process

SW design
process

HW/SW
Integration

Production

Figure 1-10: General SoC system implementation model.

1.4.2 Hardware/Software Partitioning

The hardware/software (HW/SW) partitioning, or hardware/software co-

design, involves the identification of tasks that are more suitable for hardware or

software implementation. HW/SW partitioning is a key process in the design of an

embedded system because it can have a considerable impact on the performance of the

 20

overall system. There is no tool that can do this process automatically. Due to its

parallel nature, programmable hardware is preferred for tasks that are repetitive, and

can be efficiently split into multiple and concurrent tasks. Dynamic and unpredictable

tasks are better suited for a software-based implementation [20].

Dynamic range is another important factor when deciding the appropriate

partition implementation. Traditionally, a general-purpose processor (GPP) has been

used for floating-point tasks, due to their special math engines and dedicated floating

point units. On the other hand, FPGAs used to be mostly for fixed-point

implementations, since floating-point implementations demand much more logic

resources. However, in modern FPGAs this is compensated with the increased number

of logic resources and DSPs. Therefore, tasks that require floating-point format

representation can be implemented in either software or hardware.

Task1

Task2

Task5

Task6

Task3

Task4

Task7

Task8

Task1

Task5

Task4

Task7

Task2

Task6

Task3 Task8

Hardware

Software

Embedded
System

Figure 1-11: Hardware/software partitioning

 21

1.4.3 Advanced eXtensible Interface (AXI) Interconnect Technology

Another essential component in a SoC design is the bus interconnection that

coordinates and moves data between the different processing units within the FPGA.

Xilinx’s interconnect technology prior to the 7 series family is based on the IBM

CoreConnect standard, which includes three types of buses: the processor local bus

(PLB) for high-speed transactions, the On-chip Peripheral Bus (OPB) for I/O devices,

and the device control register (DCR) for configuration and status.

The Xilinx 7 series and UltraScale FPGAs are based on the AXI AMBA 4

standard. AXI was proposed by ARM Holdings public limited company (ARM). This

standard defines three types of buses: AXI4, AXI4 Stream, and AXI-Lite. AXI4 is a

high-performance bus for memory mapped links, and supports data burst transfer up to

256 data words with data width from 32 to 1024 bits. AXI4-Stream is a non-address

based bus with unlimited data bursts, and AXI-lite interconnect is intended to

interconnect slow peripherals or control/monitor signals from processing units.

Figure 1-12 shows the top-level architecture of the AXI interconnect core. The

core consists of slave interface, master interface, and processing blocks. The crossbar

routes the traffic on the AXI channels between the devices connected to the master

and slave interface [9].

 22

R
eg

is
te

r
S

lic
es

U
p-

si
ze

rs

C
lo

ck
 C

on
ve

rt
er

s

D
ow

n-
si

ze
rs

D
at

a
F

IF
O

s

D
at

a
F

IF
O

s

U
p-

si
ze

rs

C
lo

ck
 C

on
ve

rt
er

s

D
ow

n-
si

ze
rs

P
ro

to
co

l C
on

ve
rt

er
s

R
eg

is
te

r
S

lic
es

AXI Interconnect

SI Hemisphere MI Hemisphere

Crossbar

Master 0 Slave 0

Master 1 Slave 1

Slave
Interface

Master

Interface

Figure 1-12: Top-level AXI interconnect [32].

1.4.4 Evaluation Platforms

Today’s FPGAs are gaining more and more computing power. Xilinx claims

987 GFLOPS peak computing power in a single Virtex-7 980XT FPGA and Altera

claims close to 1 TFLOPS peak computing performance for the Stratix V FPGA. The

same design and implementation procedure developed in this work can be applied to

different and smaller devices. Specifically, we have used two different platforms in

most of this dissertation: the KC705 DSP evaluation board and the Avnet ZedBoard

7020 baseboard.

The KC705 board includes an XC7k325t-2-ffg990 FPGA, which has 356K

logic cells, BRAMs memory with a total of 16,020KB, and 840 DSP blocks. The

ZedBoard’s FPGA is the XC7Z020-CLG484-1, which includes a dual-core ARM

Cortex-A9 and 85K logic slices, 4,480KB of BRAM, and 220 DSP blocks. Figure

1-13 shows the photos of KC705 and ZedBoard evaluation boards.

 23

(a)

(b)

Figure 1-13: Testbed for the implementation of APC. It includes a Ku-band

transceiver, (a) Kintex-7 and (b) Avnet ZedBoard evaluation boards.

1.5 Dissertation Outline

The main contribution of this work is developing a general FPGA based SoC

framework for radar signal processing, and demonstration of this framework through

Xilinx FPGA devices, for specific pulse compression algorithms.

This dissertation is organized as follows: Chapter 2 provides an overview of

pulse compression technologies and algorithms. This chapter also introduces the

concept of adaptive pulse compression (APC) and its application to modern radar

systems. Different algorithms, as well as their computational load requirements are

summarized.

Chapter 3 describes the principal processing cores used for the implementation

of APC (and other adaptive processing). Hardware implementation of linear algebra

operations, such as matrix multiplication and matrix inversion are also discussed.

 24

The details of FPGA implementation of traditional pulse compression is

presented in chapter 4. Tradeoffs between different specific design approaches are also

discussed.

Chapter 5 focuses on APC processing implementations, and compares various

SoC architectures based on basic units of Chapter 4, summarizes design considerations

and hardware design results. The achieved performance of the SoC implementations

of APC are also discussed.

Finally, Chapter 6 addresses the long-term roadmap of embedded processors

and proposed future work for high performance, embedded radar processors.

 25

Chapter 2

Adaptive Pulse Compression (APC) and Implementations

The range (R) between a pulsed Doppler radar and a point target is calculated

based on the round-trip travel time of the pulse (T): / 2R cT= , where (c) is the

speed of light. The radar’s range resolution is defined as the ability of the radar to

resolve objects in range [10]. The maximum detection range can be increased by

transmitting a longer pulse width, since more energy is transmitted in the pulse, but a

longer pulse can degrade the range resolution (R∆). In order to improve the radar

range resolution and maximize the detectable range, it would be necessary to transmit

a narrower pulse width with a higher peak energy, which is generally not feasible due

to power limitations of the transmitter, especially for solid-state transmitters. Pulse

compression overcomes this problem by using a long pulse modulated in frequency or

phase to achieve a similar spectral bandwidth of a short pulse, the long pulse is then

“compressed” by the receiver to a width equal to 1/ B , and the range resolution is

improved to / 2R c B∆ ≈ . This improvement can also be represented by a factor called

pulse compression ratio (CR), which is approximately the multiplication between the

pulse width (τ) and the bandwidth (B), and it is usually much larger than unity.

However, traditional pulse compression presents some drawbacks since it uses linear

frequency modulated waveforms. In recent years, there are numerous waveform

 26

modulations and processing techniques that have been developed in order to overcome

hardware constraints, and improve target detection, interference mitigation, and others.

In general, the radar waveform modulation scheme can be classified as

frequency and phase modulation. Frequency modulation waveforms can use either

linear or nonlinear modulations. On the other hand, phase modulation can use either

biphase or polyphase waveforms.

A filter that maximizes the SNR at the radar receiver is referred to as the

matched filter, which is derived from the transmit waveform. Waveform properties

such as SNR, range resolution, and Doppler tolerance can be defined in terms of the

matched filterer response [10]. The output of the matched filter is equivalent to the

cross-correlation between the received signal and the transmit signal. The matched

filter is expressed as [1]:

 '() *()r RMF s t s t T df
∞

−∞

= −∫ (2.1)

where, ()rs t is the received signal, ()s t is the transmit signal, '
RT is the estimate of the

time delay, and *() denotes the complex conjugate.

The traditional matched filter can generate significant sidelobes in the range

gates adjacent to a strong target, which could potentially mask the presence of smaller

targets. For applications such as satellite-borne weather radar the range sidelobes

generated from the earth surface can distort the measurements, so that low range

sidelobes are highly desired [33], preferably lower than 60dB for light rain

measurements [34]. Different types of waveforms, which are designed to achieve low

 27

sidelobe levels, have been studied in [7, 33, 35-37], each type of waveform has

advantages and drawbacks.

The characteristics of a radar waveform such as range resolution, range

sidelobe level, spacing and range ambiguities, Doppler resolution, Doppler sidelobe

level, and spacing of Doppler ambiguities [35], can be described by the ambiguity

function (AF). AF is derived from equation (2.1) by replacing 0() () exp(2)s t u t j f tp= ,

and obtaining:

2

2 2(,) () *() dj f t
df u t u t e dtπχ tt

∞

−∞
= +∫ (2.2)

In which ()u t is the complex envelop of the signal, τ is the time delay, and df

is the Doppler frequency which is the difference between the received signal and the

nominal values expected by the matched filter.

2.1 Pulse Compression Waveforms

2.1.1 Frequency Modulated Waveforms

The most common pulse compression waveform that has been used in radar

systems is the linear frequency modulated waveform (LFM) because it is easy to

generate and process. The LFM waveform with rectangular shape, bandwidth (B),

and pulse width T is represented as:

 21() Rect() exp()ts t j Kt
TT

p= (2.3)

 28

in which K is the slope frequency which is equal to the ratio between the bandwidth

(B) and the pulse width (T). Using equation (2.2) to find the ambiguity function of

()s t , the following expression is obtained:

2

2 2 21(,) () () exp(())d
t tf Rect Rect i Kt j K t T

T T T
tct p p

∞

−∞

+
= − +∫ (2.4)

Therefore, the ambiguity function of an LFM waveform can be written as:

 ()
2

2(,) (1) (())d df sinc f K T
T
τ

c τ π τ τ= − − − , ; 0 elsewhereTτ ≤ (2.5)

Here τ is the shift in time, and df is the Doppler shift defined as the difference

between the received signal and the nominal values expected by the matched filter.

The autocorrelation of the LFM waveform is essentially a sinc function shape

with high peak sidelobes of approximately -13.2 dB, and sidelobe levels decreasing at

a rate of -4 dB per sidelobe interval. The common method for mitigation of the high

sidelobe levels is applying weighting functions to the signal spectrum, but this method

may cause SNR loss and degradation of the range resolution. In [7], range sidelobe of

-55 dB was achieved by weighting the amplitude of the transmit waveform using a

half-wave sinusoidal function, with the transmitter operating in the linear rather than

saturation region. However, in order to avoid power efficiency degradation in the

transmitters, it is preferable to perform the weighting process only on the receiver. The

common window functions are Hamming, Kaiser, Hanning, Blackman, etc. Details

about their characteristics can be found in [38, 39].

 29

Another method to achieve low range side lobes is through the design of

specific non-linear frequency modulated waveform (NLFM) with a suitable matched-

filter signal spectrum, where the non-linear rate of the frequency variation plays the

same role as amplitude weighting of the spectrum without affecting the radar

transmitter efficiency. The complexity of an NLFM might be higher than LFM

waveform, but it can provide low sidelobes without the SNR loss caused by a

mismatched filter [1]. The literature about NLFM design is vast. For example, [8]

described a method for NLFM pulse compression waveform with a truncated Gaussian

spectrum, achieving sidelobes of -46 dB for 1000TB = . [33] proposed a piecewise

NLFM waveform with range sidelobes less than -60 dB. This design was then

improved [40] to a continuous NLFM waveform with side lobes of better than -70dB.

More information about other implementations can be found in [41-43].

2.1.2 Phased-Coded Waveforms

Phased-coded waveforms are used widely in airborne radars and even in

ground-based weather radars recently, e.g. the Next Generation Weather Radar

(NEXRAD) system. The waveform is constituted of a sequence of sub-pulses, also

known as ‘chips’; the phase modulation has finite states among these chips. The

characteristics of phased-coded waveforms are fundamentally dependent on the coding

sequence employed [10]. These types of waveforms can be classified into two groups:

biphase and polyphase-coded waveforms.

 30

The phases of a biphase-coded waveform are usually either 0 or π . A well-

known binary set of codes is the Barker codes, for which the sidelobe levels of the

compressed pulse are equal. The periodic autocorrelation function is given by the

following equation:

1

0

, 0 (mod)
(,0)

, 0 (mod)

N

k k m
k

N m N
m c c

a N m N
c

−

+
=

=
= =
 < ≠

∑ (2.6)

where N represents the code length. The seven Barker codes and their principal

characteristics are listed in Table 2-1, where ‘1’ indicates 0 phase and ‘0’ means π

radian phase, and the relationship between the peak side lobe level and the code length

is given by: 2

110log()
N

 [1].

Table 2-1: Binary Barker Codes

Code
Symbol

Code
Length Code Side Lobe

level (dB)
Integrated Sidelobe

Levels(dB)

B2 2 11/10 -6 -3

B3 3 110 -9.5 -6.5

B4 4 1110/1101 -12 -6

B5 5 11101 -14 -8

B7 7 1110010 -16.9 -9.1

B11 11 11100010010 -20.8 -10.8

B13 13 1111100110101 -22.3 -11.5

Another type of binary code is the Maximal Length Sequence (MLS), which is

generated using an n-stage linear feedback register. The length of the binary sequence

 31

is 2 1nN = − , where n is an integer, and the typical sidelobes are approximately

110log()
N

 [10].

When the phases of the sub-pulses are not limited to the two phases of 0 and π,

the code scheme is called polyphase code, and the sidelobe levels are lower than for

the binary codes. The Frank code, which is described in [44], is a popular polyphase

code. Variants of the Frank code are the P-codes; P1 and P2 are described by Lewis

and Kretschmer in [45]. However, due to the very low Doppler tolerance of P1 and P2,

two new codes were then developed: P3 and P4 codes [46]. The k-phase value of P3

and P4 codes are defined in the following equations:

2

(3) (1)
k

k

BT

π −
Φ = (2.7)

2

(4) (1) (1)k
k k
BT

π π−
Φ = − − (2.8)

In [47], Felhauer proposed the P(n,k) codes, which are derived by step

approximation of the phase function of an NLFM waveform, and can improve the

peak sidelobe ratio and the tolerance of low Doppler shifts.

Numerous pulse compression waveform designs can also be found in the

literature, each design with advantages and limitations. Some examples are: Costas

codes [48], Welti Codes [49], complementary codes [50], Hoffman codes [37], and

others.

 32

2.2 Adaptive Pulse Compression Algorithms

In the previous section, several types of waveforms designed to mitigate

masking problem of the high range sidelobes were introduced. Although those

waveforms can achieve low sidelobes, the implementation is constrained to tradeoffs

among range sidelobe level, range resolution, energy efficiency, Doppler tolerance,

and other hardware-related factors such as the nonlinearity of power amplifiers and

calibration errors [51]. In general, optimal waveform design can achieve low-sidelobes

but the waveform can become very complicated, and be specific to a particular radar

transmitter chain operation state. To further improve the range sidelobe reduction with

“waveform independent” ground truth estimation, several adaptive processing

techniques have been proposed: mismatched filtering [52], least-squares estimation

[53], and inverse filtering [54]. A waveform-independent approached was proposed in

[2], which is based on adaptive estimation at each range cell, while reducing the range

sidelobes to level of the noise floor.

The basic Least Squares Estimator (LSE) [55] assumes N samples of the time-

waveforms are transmitted, denoted as: 0 1 2 1[...]T
Ns s s s s −= , where, ()T⋅ indicates

the transpose operation. The received signal is given by: y S x η= + , where the range

profile is [(0) (1) (1)]Tx x x x L= − , η is the noise vector, and S is the (1)L N xL+ −

matrix of the transmitted waveform

 33

0

0

1

1

0

1

0 0

0
0 0

0 0 0

N

N

N

s
s

s
s

S

s

s

−

−

−

 
 
 
 
 
 =  
 
 
 
  
 

 

 

 

 

  

 

   

 

 (2.9)

It is also assumed that the range profile of the ground truth x has length L, and

the received signal vector [(0) (1) ... (2)]Ty y y y L N= + − is the convolution between

the transmitted waveform and the ground truth. Therefore, the estimation of ground

truth is given by the following equation [56]:

 1 1ˆ ()H H
LSx S R S S R y− −= (2.10)

R is the covariance matrix of the noise vector η : [() ()]HR E l lη η= . This

estimation requires the complete range profile, which may demand more computing

power and larger memory size. An optimized version, truncated LS (TLS), is based on

the segmentation of the received signal into k-blocks: 1 1ˆ ()T T
TLS k k k k k kx S R S S R y− −= , and

processing of each individual block.

Another adaptive APC algorithm, which is based on minimal mean-squared

error (MMSE) criteria related to the following cost function (()c l), was introduced

first in [56].

2

() () () ()Hc l E x l w l Y l = −  
 (2.11)

where, () [() (1) (1)]Y l y l y l y l N= + + − . Taking the partial derivative of equation

(2.11) with respect to Hw , the MMSE filter weights are obtained:

 34

 1() ([() ()]) [() ()]Hw l E Y l Y l E Y l x l−= (2.12)

It is also known that () ()Y l A l s η= + , where ()A l represents the matrix of the

range profile:

() (1) (1)
(1) ()

()
(1)

(1) () ()

x l x l x l N
x l x l

A l
x l

x l N x l N x l

− − + 
 − =
 −
 

− + − 



 

  



 (2.13)

The simplified format for the MMSE filter is derived as:

1

2 2 1

1
() () (())

N
H

n n
n N

w l x l x l i s s R s
−

−

=− +

= + +∑ (2.14)

Further details can be found in [2]. In addition, [3] proposed a reduced-

dimension algorithm for the MMSE adaptive pulse compression. The reduction is

based on two forms of dimensionality reduction: decimation and contiguous blocking.

The different adaptive pulse compression algorithms can be grouped into two

groups: global deconvolution-type solution and localized optimization-type

estimation. Their computational complexity and features are summarized in Table 2-2.

 35

Table 2-2: Comparison of different APC algorithms

Algorithm (1D) Computational complexity Features

Matched Filter
(MF)[1]

O(N) Per range/angular cell

N as the length of waveform

Simplest and standard

Global deconvolution-type solution

Normal LSE [55] O(2L) per gate, L is total
number of range gates

Large computation load
and sensitive to errors

Segmented LSE[57] 2(())LO M
M

 per gate, M is

number of segments

Loss of information due
to segmentation (can be
improved using random
segmentation)

RLS[55] 3()O N Per range/angular cell Reiterative LS

Improved RLS[58] 2()O N Per range/angular cell Reduced computation of
RLS

MF-RLS 2()O N Per range/angular cell RLS use MF output as
input

conjugate gradient
(CG)[59]

1.5()O L , L is total number of
range gates

Another method to
reduce computational
load of LS

Localized optimization-type estimation

RMMSE (APC)[2] 3()O N Per range/angular cell Reiterative MMSE with
no prior knowledge of
GT

MF-RMMSE[51] 3()O K N K+ per gate, K is
filter length

RMMSE use MF output
as input, usually K<<N

Certain radar systems require the completion of these FLOPs operations within a

strict time window. For example, Multi-functional Phased Array Radar (MPAR).

 36

2.3 Real-Time Computational Load Requirements of Pulse

Compression Algorithms

The computation complexity of an algorithm can be measured by estimating the

number of floating-point operations (FLOPs). A FLOP is considered any floating-

point operation such as add, subtract, multiply, or divide. For instance, the addition of

two complex numbers requires two real additions, while complex multiplication

requires six operations, including four real multiplications and two real additions. In

matrix computation, the number of FLOPs is generally estimated by the amount of

arithmetic associated with the most deeply nested statement. In this work, the notation

for the number of FLOPs per second is FLOPS.

Traditional digital pulse compression can be implemented in the time-domain

by using cross-correlation, in which the number of FLOPS is given by:

gates tapsK N N PRF , where K = 8 and represents the total number of FLOPs for a

complex multiplication and addition. gatesN and tapsN are the number of gates and

number of taps, respectively. PRF is pulse repetition frequency. In practice, it is more

efficient to implement pulse compression in the frequency domain using Fast Fourier

Transforms (FFTs).

Assuming pulse compression is applied to a single receive channel, the

computational complexity of the frequency-domain pulse compression can be roughly

estimated by this formula [12]:

 (2)pc fft pc mult fft pcF C C N PRF− −= + (2.15)

 37

where, fft pcN − is the number of samples used in FFT/IFFT, fft pcC − is the complexity of

the FFT/IFFT for the fft pcN − complex signal samples, and multC is the complexity of

the point-wise complex multiplication.

fft pcN − , fft pcC − , and multC are factors related to the specific fixed-point

implementation architecture and waveforms based on the required number of addition

and multiplication. For the basic fixed-point implementations, we have:

 25 log ()fft pc fft pc fft pcC N N− − −≈ (2.16)

The design of waveform diversity that supports pulse compressor must

consider the possible reconfigurable capability requirement in terms of fft pcN − . In

general, the constraint of fft pcN − is defined by:

 2 *fft pc pN BW T− > (2.17)

where pT is the pulse length (duration in µs), and BW is the baseband waveform

modulation bandwidth expressed in MHz.

 38

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

BW (MHz)

C
o
m

p
u
ta

ti
o
n
a
l
L
o
a
d
 (

G
F

L
O

P
S

)

Tp=0.5us
Tp=100us
Tp=1s

Figure 2-1: Estimation of computational load requirement for real-time matched filter

pulse compressor, with different signal bandwidths and pulse length. Assuming 20%

transmitter duty cycle for all cases.

Based on equations (2.15)-(2.17), an estimation of real-time computing load

requirement for basic matched filter type pulse compression with different waveform

parameters can be performed, and some examples are plotted in Figure 2-1. The graph

of the estimation presents a stair-stepped shape due to the fixed number of points

(power of two) required by the FFT operations. As is seen, for normal weather radar

operations, the computational load for a single channel is generally less than 1

GFLOPS, while for wideband noise radar and high-resolution SAR/STAP, the real-

time computational load can easily reach more than 40 GFLOPS. A complete digital

 39

processor would also need front-end FIR filtering and implementation of clutter

suppression, which can add more computational loads to the processor.

For APC algorithms, much higher computational loads are demanded. The

computational cost per stage of the adaptive algorithms is shown in Table 2-3. Where,

N is the length of the transmitted waveform, M is the number of subgroups, and K is

the length of the MF-RMMSE filter.

Table 2-3: Computational cost of APC algorithms per stage.

Algorithm Computational Cost (per stage)

Matched Filter (time-domain) N

RMMSE (APC) [2] 26 14N N+

RMMSE (FAPC) [3]
23 1 13(1) (1)N N

M M M
+ + +

RMMSE (Parallelized) 2
2

5 13() (4)N N
M M

+ +

MF-RMMSE [51] (1)(2 1)
2

K KK N −
+ +

An example of the estimation of numbers of complex FLOPS for each APC

algorithm is shown in Figure 2-2. This example assumes 100 range gates, 30 signal

samples, M=5, K=3, and PRF=1 KHz. It can be noticed that the RMMSE algorithm

requires a significant number of FLOPS, and the MF_RMMSE approach is able to

reduce the complexity to a reasonable number of FLOPs.

 40

MF LS RLS RMMSE MF_RMMSE
10

-6

10
-4

10
-2

10
0

10
2

10
4

G
F

L
O

P
S

Figure 2-2: Computational analysis of APC algorithms.

Certain radar systems require the FLOPs be computed in a specific and strict

time window, which are usually termed as hard real-time requirement. For example,

the Multi-functional Phased Array Radar (MPAR) potentially requires pulse

compression processing to be completed in a time on the order of milliseconds

(depending on the coherent processing interval (CPI)). Real-time requirements pose

big challenges to the implementation of pulse compression algorithms in radar

processors.

2.4 State of the Art of Pulse Compression Implementations

One of the devices that has been used for the implementation of pulse-

compression is the surface acoustic wave device (SAW) [60-63]. MESL Microwave

 41

Ltd. [64] offers products based on SAW technology for pulse compression. However,

with the advances of silicon technology, digital devices have become an attractive

option for the implementation of pulse compression, DSPs, GPPs, GPUs, and FPGAs

are some examples. The early implementations usually included more than one chip

due to the limited processing capabilities of the processing units; for instance, a

dedicated chip for FFT, and others for adders and multiplies. In the example of [65],

the radar processor had 64 signal processing (SP) nodes with a maximum sampling

rate of 10 MHz. Each node included a TI TMS320C30 DSP, which was connected to a

co-processor TMC2310 through a dual-port RAM. The coprocessor was able to

execute a 1024-point FFT in 512 µs. [66] proposed a design based on TMS320C25

DSP interconnected to IMS A100 DSP, which performed the LFM pulse compression

for small time-bandwidth products, and 8-bit samples with 2.5 MHz sampling

frequency. In [67, 68], a prototype of a digital pulse compressor in a single printed-

circuit board was presented. The system was clocked at 36 MHz, and power

consumption was about 10 W. The PDSP16515 processor was the main component of

the system, which was capable of executing 256 and 1024-point radix-4 FFT in 22 µs

and 110 µs, respectively. The processor was also connected to an external erasable

programmable read-only memory (EPROM), which was used to store the waveforms.

In [69], a processing system for phase coded pulse compression was developed

using four INMOS A100 DSPs, a microprocessor and Altera EPLD’s. The core

structure of this processor was similar to a standard non-recursive filter. The

processor’s maximum clock speed was 30 MHz. Their design was only tested with

simulated data and had some limitations in the functionality such as coherent

 42

integration. But the processor architecture was then integrated into a single device in

[70], in which AlteraFLEX10KA100 was the selected device, and configured with a

clock frequency of 40 MHz.

DPC using a TMS320C6201 DSP was implemented in [71]. The system

included two 12-bit ADCs, clocked at 40 MHz, which were interconnected to the DSP

through a synchronous FIFO. The authors indicated that with the DSP clocked at 200

MHz, the digital pulse compressor based on radix-2 FFTs can execute 512 samples

within 124 µs.

A multi-processor architecture was studied in [72]. The system included four

ADSP-21160 DSPs with 80 MHz clock, 16-bit ADC sampling at 6.6 MHz, and shared

external SDRAM where sampled data was stored. Four different approaches to

perform the pulse compression in the frequency domain were studied, achieving a

processing latency of 1.086 ms for a signal with pulse duration of τ =18 µs and PRF =

833.3 Hz.

As part of the Next-Generation Precipitation Radar (PR-2), [73, 74] designed a

radar processor on an Annapolis Wildstar board which contained three Virtex

XCV1000-4 FPGAs. Four channels of 12-bit were sampled at 20 MHz with a

bandwidth of 4 MHz. The pulse compressor was able to perform 20 GOPS, and the

architecture was a 256-tap non-symmetric FIR with a signal template of the 50 µs

LFM waveform. An antifuse-based Actel 1280 FPGA was used to mitigate radiation-

induced errors in the Xilinx FPGAs, since SRAM-based FPGAs are susceptible to a

single event upset (SEU) caused by space radiation.

 43

In [75], a 2-D pulse compressor was implemented on a Xilinx XC2V6000

FPGA, where a MicroBlaze processor was used to control and monitor the system.

This architecture was configured to load raw data into a 512 MB DDR SDRAM, and

data was then transferred to the pulse compressor’s buffers by a DMA controller.

In [76], the implementation of pulse compression in a multi-core platform was

presented. The platform included TI C66-core DSPs. The implementation was

executed on a TI 6678 evaluation board clocked at 1 GHz, where the compression of

4K samples was performed in 9 µs, with 10 W of power consumption.

2.5 Basic Considerations for Hardware Implementation

The selection of the appropriate number representation format for the

implementation of the DPC processor is an important step, since characteristics such

as accuracy, dynamic range, and stability can affect the performance of the system, as

well as software development costs, hardware system speed, and SWaP.

2.5.1 Number Representation Format

An unsigned fixed-point number is usually expressed in terms of a positive

radix (r), the number of digits for the whole part (k) and the fractional part (l). The

implicit data set is in the range {0,1, ... , 1}r − [77]. The mathematical representation is

given by the following equation:

1

1 2 1 0 1 2(...)
k

i
k k l r i

i l
x x x x x x x x r

−

− − − − −
=−

= ∑ (2.18)

Thus, the binary representation (2r =) of a number can be written as:

 44

1 1

0
2 2 2

k k l
i l i

i i l
i l i

x x
− + −

−
−

=− =

=∑ ∑ (2.19)

However, to implement arithmetic operations in hardware it is more efficient

to use the 2’s complement representation, since facilities the computation of arithmetic

operation that involves signed numbers. The 2’s complement representation of a

number is obtained as:

1 2

2' 1
1

0
2 2 [2 2]

k k l
si l k l i

i k i
i l i

x x x
− + −

− + −
−

=− =

→ − +∑ ∑ (2.20)

In (1.20), k and l determine the numerical resolution: 2 l− , range

1 1[2 , 2 2]k k l− − −− − , and accuracy 12 l− − . For the purpose of this work, a fixed number is

denoted as ,k l< > , where k is the total number of bits for the word and l the number

of bits for the integer part.

The main disadvantage of fixed-point format is the limited dynamic range,

which is ~6dB per bit. Fixed-point arithmetic operations also require additional

operations to prevent or reduce underflow and overflow, which represents a cost in the

development and implementation of the design. For instance, in order to guarantee that

the sum of M numbers of N-bits does not overflow, it will be necessary to use

N+log2(M) bits. Moreover, the dot product of M-element vectors of N-bits will require

2N+log2(M) bits, since the multiplication operation doubles the number of bits. A

simple method to prevent overflow is to downscale the operands by shifting some bits

prior to the computation, but this approach reduces precision. Other techniques are

based on scaling in stages, trying to minimize the precision loss while reducing or

avoiding overflow.

 45

As mentioned in the previous chapter, thanks to the advances in silicon

technology, modern FPGAs have integrated more logic resources and dedicated cores

in a single device, enabling the implementation of floating point arithmetic operations,

which has increasingly been practical rather than fixed-point [10]. The advantage of

using floating point format is that it can provide high resolution over a large dynamic

range. The representation of a floating point number is:

 (1) 1. 2s EX m= − (2.21)

where s represents the sign, m denotes the mantissa, and E is the exponent A

floating-point operation generally demands more hardware resources, since it involves

different formatting stages. The Xilinx FPGAs support both single-precession floating

point and double-precision floating point. Xilinx’s Single-precision floating point

format uses a bit for sign, 24-bit fraction and 8-bit exponent [78].

 46

Chapter 3

FPGA Cores for Radar Signal Processing

3.1 Optimized Adder and Multiplier Designs

Addition is a fundamental arithmetic operation. A traditional architecture for

adding two numbers is the ripple-carry adder (RCA), in which the carry is propagated

from one stage to the next. The RCA architecture is illustrated in Figure 3-1, in which

1 2 1 0...n na a a a a− −= and 1 2 1 0...n nb b b b b− −= are the two n-bit operands, 1 2 1 0...n ns s s s s− −=

is the sum. inc and outc are carry-in and carry-out, respectively.

FA FAFA ...
cout cin

an-1 bn-1 a1 b1 a0 b0

sn-1 s1 s0

c0 cn-1 c1

Figure 3-1: Operation of a conventional n-bit ripple carry adder.

The RCA architecture has a total computation time of carrynT , where carryT is

the delay to generate the carry (e.g., 1ic −) in each stage. Therefore, the computation

 47

time for this architecture increases linearly with the number of digits, which is a

problem when adding larger numbers. Different architectures have been proposed to

reduce the path delay between inc and outc in order to achieve shorter computation

time. Examples of the fast adder architectures include carry-skip, carry-select, radix-

2k, and conditional-sum [77, 79]. Other architectures such as the carry-look-ahead

compute the carries at different levels. Assuming:

 (,) , (,)i i i i i i i i i ip a b a b g a b a b= ⊕ =  (3.1)

Thus, inc can be expressed as:

 1 (,) (,) (,)i i i i i i i ic p a b c p a b g a b+ = ⋅ + ⋅ (3.2)

Three optional architectures, ripple-carry adder, carry select adder and carry-

skip adder, were implemented on a Kintex-7 FPGA (xc7k325t-2-ffg900). The timing

and hardware resource estimations are obtained from the synthesis result. Performance

in terms of LUT utilizations and combinational delay (delay of the critical path in the

circuit) are shown in Figure 3-2.

 48

50 100 150 200 250
10

1

10
2

10
3

Bits

N
um

be
r o

f L
U

Ts

Ripple-Carry Adder
Carry Select Adder
Carry-Skip Adder

(a)

50 100 150 200 250

1

1.5

2

2.5

3

3.5

4

4.5

Bits

C
om

bi
na

tio
na

l D
el

ay
 (n

s)

Ripple-Carry Adder
Carry Select Adder
Carry-Skip Adder

(b)

Figure 3-2: Performance of two-operand adders using different implementations on a

Kintex-7 FPGA (xc7k325t-2-ffg900). (a) Number of LUTs, (b) Combinational Delay.

 49

Compared to the other two architectures, the ripple-carry architecture requires

fewer LUTs and achieves lower latency for operands with a relatively low number of

bits. The ripple carry adder takes advantage of the embedded carry logic circuitry and

the regular structure of FPGAs. The advantages of the carry select adder and carry-

skip adder are explicit when the number of bits is larger than 200, which is, however,

not very common for the radar processors we develop.

Multiple operands are required when computing inner products and other

applications. The addition of k n-bit operands, using a tree of two-operand ripple-

carry adders requires a computation in the order of (log)O n k+ .

A technique to improve the multi-operand computation is called carry-save

adders (CSA), in which instead of propagating the carry during each addition, the

carry is passed to the next operand, thus reducing the number of inputs from 3 to 2 for

computation of each digit. Sequential architectures for CSA and RCA adders were

implemented on a Kintex-7 FPGA, and performance for 16-bit and 64-bit word length

are presented in Figure 3-3.

 50

20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

Number of operands

LU
Ts

16b-Ripple-Carry Seq.
16b-CSA Seq.
64b-Ripple-Carry Seq.
64b-CSA Seq.

(a)

20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000

Number of Operands

To
ta

l L
at

en
cy

 (n
s)

16b-Ripple-Carry Seq.
16b-CSASeq.
64b-Ripple-Carry Seq
64b-CSASeq

(b)

Figure 3-3: Performance of sequential multi-operand adders for 16 and 64 bits

operands on a Kintex-7 FPGA.

 51

The performance results show that CSA achieves lower latency but demands

slightly more LUTs than the RCA. The performance difference is more evident for

longer word-lengths and larger numbers of operands.

Multiplication is another important arithmetic operation, which can be

implemented through multi-operand additions. Consider a multiplicand

1 2 1 0...n na a a a a− −= , and a multiplier: 1 2 1 0...n nb b b b b− −= . The product of a and b

generates a 2n -bit product 2 1 2 2 1 0...n np p p p p− −= .

According to [77], two different approaches can be used to improve

multiplication computation: (a) High-radix multipliers to reduce the number of

operands, since having a higher radix representation requires fewer number of digits.

To further reduce the number of partial products, special encodings such as the booth

encoding [80, 81] can be used. (b) Using faster hardware structures to reduce the time

required to add the partial products, such as full-tree multipliers (e.g. Wallace’s tree

[82] and Dadda’s tree [83]), partial-tree multipliers, array multipliers, and others [77].

In addition, redundancy representation techniques [84] can be used to have more than

one possible representation and provide carry-free additions with a latency

independent of the word length, as described in [85-87].

Sequential multipliers can be implemented with the partial-product addition

based on optimized architectures such as the shift-add, booth encoding, or carry-save

adder. The performance of these three architectures implemented on a Kintex-7 FPGA

is compared in Figure 3-4. We can see that the CSA-based sequential multiplier has

the lowest latency compared to the other two solutions.

 52

20 40 60 80 100 120

10
1

10
2

10
3

Number of Bits

T
ot

al
 L

at
en

cy
 (

ns
)

Shift-Add
Booth Radix-4
CSA

Figure 3-4: Comparison of latency performance of three sequential multipliers through

implementation on Kintex-7 FPGA.

In the next steps, the performance of a parallel multiplier using basic designs

of CSA and RCA architectures is also compared with that of the commercial designs

using Xilinx’s dedicated hardware resources/building blocks, including LUT, DSP and

CARRY4. The combinational delay for different word lengths is shown in Figure 3-5.

 53

20 40 60 80 100 120
10

0

10
1

10
2

10
3

Number of Bits

C
om

bi
na

tio
na

l D
el

ay
 (n

s)

Ripple-Carry
CSA
 LUT-based
 DSP-based

Figure 3-5: Comparison of combinational delay performance of different parallel

multipliers including designs using Xilinx commercial building blocks.

The results show that the design based on Xilinx’s multiplier, which uses

dedicated LUTs and DSPs, achieves shorter combinational time delay compared to the

basic CSA and RCA architectures. The reason is that the multipliers based on Xilinx’s

commercial building blocks are optimized to be more suitable for the structure of the

specific FPGA, with faster interconnection and efficient carry chain circuitry.

Therefore, CSA is recommended as a good multiplier design for generic hardware

while using the Xilinx LUT is more suitable for implementing basic arithmetic

operations on Xilinx’s specific FPGA devices.

 54

The register-transfer level (RTL) schematic of an 8-bit simple 2’s complement

adder, using Xilinx Vivado tool, is shown in Figure 3-6. This implementation also

includes input/output buffers (IBUF, OBUF), and dedicated carry propagation blocks

(CARRY4).

Figure 3-6: Schematic for an 8-bit 2’s complement adder on Kintex-7 FPGA.

3.2 Matrix Multiplication

3.2.1 Acceleration Using Coprocessor

Consider matrix ()ijA a= and ()jkB b= with a dimension of m n× and n p× ,

respectively. The matrix multiplication between matrices A and B is expressed in the

following equation:

 55

 1 1 2 2
1

,
m

ik ij jk i k i k in nk
j

c a b a b a b a b
=

= = + + +∑  (3.3)

in which ...i = 1, ,m , ...j = 1, ,n , ...k = 1, , p . Each element of matrix C is the dot

product of the ith row of matrix A with the jth column of matrix B . The traditional

algorithm for computing matrix multiplication requires the execution of three loops in

which the innermost loop performs an addition and multiplication, resulting in a

computational complexity of 2mnp FLOPs.

Matrix multiplication is an essential step for the implementation of the

adaptive pulse compression. As mentioned in Chapter 1 and Chapter 2, the

computation complexity (3()O n) of such algorithms requires a large number of

multipliers and adders. For real-time embedded systems, an important model for

acceleration is keeping a reasonable load on the main processor, and letting the main

processor collaborate with dedicated coprocessors that are designed to perform

specific and intensive computing tasks, such as inner products.

A coprocessor was implemented on a Kintex-7 FPGA (XC7k325tffg900-2).

The architecture of the coprocessor is based on a direct matrix multiplication method

fully sequential mode, with buffers as an interface to the buses. More details of this

co-processor design will be given shortly. The matrix multiplication coprocessor is

attached to a soft-core RISC CPU (MicroBlaze in this case) via the AXI Stream Buses

and unidirectional point-to-point links. Two different matrices are stored in the local

memory, and matrix multiplication can be computed with and without the coprocessor.

A timer module is connected to the slow speed AXI bus, and computation results are

 56

streamed to the PC through the universal asynchronous receiver/transmitter (UART)

port.

uP
Matrix

Multiplication

M1[m][n]]

M2[n][p]

MM[m][p]

FPGA

Figure 3-7: High-level configuration of matrix multiplication coprocessor.

The comparison results of matrix multiplication with and without coprocessor

are shown in Figure 3-8. The latency includes a number of clocks that the processor

takes to write/read data from memory to the AXI bus. To measure the latency, a timer

was implemented on the FPGA and attached to the host processor via the AXI Lite

bus. For the 4x4 matrix multiplication, the execution time without the coprocessor is

3823 clock cycles, while using the hardware coprocessor it only takes 362 clock

cycles, speeding up the computation by about 10 times. Similar performance is

achieved for the multiplication of 8x8 matrices, in which the execution time on the

processor is 28980 clock cycles, while it is 2557 clock cycles when the hardware

coprocessor is used.

 57

(a)

(b)

Figure 3-8: Matrix multiplication results from MicroBlaze with and without

coprocessor on Kinte-7 FPGA. Latency measured with a timer attached to the AXI

Lite bus. (a) 4x4 matrix multiplication. (b) 8x8 matrix multiplication.

3.2.2 Design of Matrix Multiplication Coprocessor

The fully sequential coprocessor was implemented with fixed-point and

floating-point format. The fixed-point representation of a m-bit number is <m, n>,

where n denotes the number of bits for the whole part. Table 3-1 shows the hardware

utilization for different matrix sizes. For both number representations, this architecture

requires the same number of BRAMs, but more DSPs, FFs, and LUTs for floating-

point, since additional processing for format conversion is performed.

 58

Table 3-1: Hardware utilization for floating-point and fixed-point of matrix

multiplication.

Floating-point Fixed-point <16,1>

Matrix
Size BRAM DSP48E FF LUT BRAM DSP48E FF LUT

8x8
2

(~0%)
5

(~0%)
533

(~0%)
848

(~0%)
2

(~0%)
1

(~0%)
93

(~0%)
131

(~0%)

10x10
2

(~0%)
5

(~0%)
538

(~0%)
858

(~0%)
2

(~0%)
1

(~0%)
98

(~0%)
141

(~0%)

12x12
2

(~0%)
5

(~0%)
538

(~0%)
866

(~0%)
2

(~0%)
1

(~0%)
98

(~0%)
149

(~0%)

14x14
2

(~0%)
5

(~0%)
539

(~0%)
866

(~0%)
2

(~0%)
1

(~0%)
99

(~0%)
149

(~0%)

16x16
2

(~0%)
5

(~0%)
543

(~0%)
875

(~0%)
2

(~0%)
1

(~0%)
103

(~0%)
158

(~0%)

18x18
2

(~0%)
5

(~0%)
549

(~0%)
883

(~0%)
2

(~0%)
1

(~0%)
109

(~0%)
166

(~0%)

20x20
2

(~0%)
5

(~0%)
549

(~0%)
885

(~0%)
2

(~0%)
1

(~0%)
109

(~0%)
168

(~0%)

A hardware implementation that demands a minimum number of hardware

resources is valuable because it allows the integration of more functionalities in the

FPGA fabric, but it is also important to take into consideration the timing performance

in order to meet the real-time requirement. This design was targeted to a clock of 100

MHz, but it can reach a maximum clock frequency of 119 MHz and 128 MHz for

floating-point and fixed-point, respectively. Figure 3-9 shows the latency in term of

clock cycles for different size of matrices. For this architecture, the latency of the

floating point implementation is about 2.5 times higher than the fixed-point

implementation.

 59

6 8 10 12 14 16 18 20 22
0

1

2

3

4

5

6

7
x 10

4

Matrix Size

C
lo

c
k
 C

y
c
le

s

Floating Point
Fixed-point<16,1>

Figure 3-9: Matrix multiplication total latency for floating point and fixed-point

implementation

In order to reduce the processing latency, some modifications in the design are

necessary but at the same time it is important to consider that the hardware resources

in a FPGA are limited. The first approach uses pipelining techniques to increase the

concurrency in the execution of equation (3.3) with one clock cycle of initiation

interval. The initiation interval (II) is defined as the rate at which the coprocessor can

begin process a new set of data [88]. The synthesis result, presented in Table 3-2,

shows that 10 DSP48Es are required for the floating-point implementation, while for

fixed-point format the number of DSPs increases linearly with the size of the matrix.

 60

And two more BRAMs are required for the floating-point implementation compare to

the previous design.

Table 3-2: Hardware resource utilization for a pipelined design.

Floating-point Fixed-point<16,1>

Matrix
Size BRAM DSP48E FF LUT BRAM DSP48E FF LUT

8x8 4
(~0%)

10
(1%)

1544
(~0%)

2222
(1%)

2
(~0%)

8
(~0%)

155
(~0%)

216
(~0%)

10x10 4
(~0%)

10
(1%)

1779
(~0%)

2339
(1%)

2
(~0%)

10
(1%)

183
(~0%)

268
(~0%)

12x12 4
(~0%)

10
(1%)

1812
(~0%)

2481
(1%)

2
(~0%)

12
(1%)

200
(~0%)

379
(~0%)

14x14 4
(~0%)

10
(1%)

2074
(~0%)

2721
(1%)

2
(~0%)

14
(1%)

222
(~0%)

427
(~0%)

16x14 4
(~0%)

10
(1%)

1956
(~0%)

2756
(1%)

2
(~0%)

16
(1%)

248
(~0%)

430
(~0%)

18x18 4
(~0%)

10
(1%)

2124
(~0%)

2795
(1%)

2
(~0%)

18
(2%)

272
(~0%)

501
(~0%)

20x20 4
(~0%)

10
(1%)

2092
(~0%)

2984
(1%)

2
(~0%)

20
(2%)

288
(~0%)

562
(~0%)

A reduction in the latency can be achieved when the Block RAMs are replaced

by distributed memories (FFs, LUTs), and pipelining equation (3.3) with an initiation

interval of one clock cycle so that concurrency in the execution is increased by

demanding more DSP48Es, as shown in Table 3-3.

 61

Table 3-3: Hardware resource utilization when pipelining and distributed memory are

considered in the design.

Floating-point Fixed-point<16,1>

Matrix
Size DSP48E FF LUT DSP48E FF LUT

8x8
40

(4%)
8019
(1%)

9864
(4%)

8
(0%)

2285
(~0%)

2267
(1%)

10x10
50

(5%)
11310
(2%)

13322
(6%)

10
(1%)

3497
(~0%)

3138
(1%)

12x12
60

(7%)
40908
(10%)

11920
(5%)

12
(1%)

10621
(2%)

1765
(~0%)

14x14
70

(8%)
55195
(13%)

13926
(6%)

14
(1%)

14404
(3%)

1979
(~0%)

16x16
80

(9%)
63673
(15%)

17931
(8%)

16
(1%)

18162
(4%)

3596
(1%)

18x18
90

(10%)
89407
(21%)

20237
(9%)

18
(2%)

23471
(5%)

3759
(1%)

20x20
100

(11%)
109324
(26%)

23758
(11%)

20
(2%)

28716
(7%)

4912
(2%)

A comparison of latencies for the three approaches is presented in Figure 3-10.

It can be noticed that this implementation achieves lower latency compared to the

other two approaches. For fixed-point and floating-point representations, the use of

pipelining and distributed memories improves the latency in a linearly increasing

factor compare to the pure sequential architecture. The speed up factors for floating-

point and fixed-point implementations are in the range of [15, 39] and [13, 31],

respectively.

 62

8 10 12 14 16 18 20
10

2

10
3

10
4

10
5

Matrix Size

C
lo

ck
 C

yc
le

s

FP: No optimization
FxP: No optimization
FP: Pipelining
FxP: Pipelining
FP: Pipeling+DM
FxP: Pipelining+DM
FP: Pipelining2+DM
FxP:Pipeling2+DM

Figure 3-10: Latency in terms of clock cycles for floating point and fixed point

implementation using different techniques.

3.3 Matrix Inversion

Matrix inversion is also a critical processing element in the implementation of

adaptive signal processing algorithms. There is vast amount of literature discussing

hardware implementation of matrix inversions. The most popular methods to calculate

the inverse of a matrix are based on techniques such as the QR decomposition

(orthogonal matrix (Q) and upper triangular matrix (R)), the Cholesky factorization,

and the singular value decomposition (SVD).

 63

Through extensive comparisons, the Cholesky method is adopted as the key

approach to implement matrix inversion in this work, the computational cost of the

decomposition for an n-by-n matrix is approximately
3

3
n FLOPs, plus forward and

back substitution process 22n FLOPs. Similar to a matrix multiplier, the hardware

implementation takes the form of a coprocessor. The high-level configuration of the

coprocessor is shown in Figure 3-11.

M[n][n]

M_inv[n][n]
uP

FPGA

Matrix Inversion

 Decomposition

Forward
Substituti

on

Backward
Substituti

on

Lower
Triangular

Upper
Triangular

Figure 3-11: High-level matrix inversion coprocessor.

The initial implementation of matrix inversion through Xilinx Vivado

integrated design environment is based on “non-optimized” architecture, which seeks

to minimize area by reusing a small number of hardware resources to compute the

matrix inversion. The hardware utilization for both fixed-point and floating-point

representations is listed in Table 3-4.

 64

Table 3-4: Hardware utilization for floating-point and fixed-point of matrix inversion.

 Floating-point Fixed-point<16,1>
Matrix
Size BRAM DSP48E FF LUT BRAM DSP48E FF LUT

8x8 7
(~0%)

5
(~0%)

1796
(~0%)

3687
(1%)

5
(~0%)

28
(3%)

1987
(~0%)

3328
(1%)

10x10 7
(~0%)

5
(~0%)

1836
(~0%)

3763
(1%)

5
(~0%)

28
(3%)

2048
(~0%)

3406
(1%)

12x12 7
(~0%)

5
(~0%)

1696
(~0%)

3828
(1%)

5
(~0%)

28
(3%)

2088
(~0%)

3472
(1%)

14x14 7
(~0%)

5
(~0%)

1911
(~0%)

3821
(1%)

5
(~0%)

28
(3%)

2103
(~0%)

3466
(1%)

16x16 7
 (~0%)

5
(~0%)

1847
(~0%)

3804
(1%)

5
(~0%)

28
(3%)

2044
(~0%)

3469
(1%)

18x18 7
(~0%)

5
(~0%)

1898
(~0%)

3878
(1%)

5
(~0%)

28
(3%)

2096
(~0%)

3545
(1%)

20x20 7
(~0%)

5
(~0%)

1891
(~0%)

3880
(1%)

5
(~0%)

28
(3%)

2089
(~0%)

3548
(1%)

The estimation of latency for single precision floating point and fixed-point

<16, 1> are presented in Figure 3-12. It can be observed that for both representations,

the latency increases exponentially with the number of elements in the matrix, while

the floating point version sees faster increase.

 65

6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5
x 10

5

Matrix Size

C
lo

c
k
 C

y
c
le

s

Matrix inversion: Latency

Floating Point
Fixed-point<16,1>

Figure 3-12: Matrix inversion latency for single precision floating-point and fixed-

point <16, 1>.

The reduction of latency involves the usage of distributed memory, as well as

instantiating multiple hardware resources and pipelining the computation in order to

accept new input samples every 600 clock cycles. The result is an overall lower

latency at the expense of using more hardware resources, as can be observed in Table

3-5 and Table 3-6.

 66

Table 3-5: Comparison of hardware utilization for floating-point and fixed-point

implementation of matrix inversion.

 Floating-point Fixed-point
Matrix
Size BRAM DSP48E FF LUT BRAM DSP48E FF LUT

8x8 0
(~0%)

5
(~0%)

10957
 (2%)

11115
(5%)

0
(0%)

736
(87%)

237444
(58%)

261095
(128%)

10x10 0
(~0%)

10
(1%)

15718
 (3%)

16412
(8%)

0
(0%)

1270
(151%)

375672
(92%)

414140
(203%)

12x12 0
(~0%)

10
(1%)

22546
(5%)

22634
(11%)

0
(0%)

1992
(237%)

547720
(134%)

607940
(298%)

14x14 0
(~0%)

15
(1%)

29735
(7%)

32064
(15%)

3
(~0%)

2653
(315%)

176881
(43%)

223846
(109%)

16x16 0
(~0%)

25
(2%)

37032
(9%)

45544
(22%)

3
(~0%)

3656
(435%)

212347
(52%)

27767
 (136%)

18x18 0
(~0%)

30
(3%)

46442
(11%)

60657
(29%)

3
(~0%)

4863
(578%)

250993
(61%)

33698
 (165%)

20x20 3
(~0%)

40
(4%)

56020
(13%)

79859
(39%)

3
(~0%)

6290
(748%)

294530
(72%)

403065
(197%)

Table 3-6 summarizes the latency for the best (Lat_TMin) and worst case

(Lat_TMax) for floating-point as well as fixed-point versions. The range of

initialization interval (II-T) is also summarized. We can observe that Lat_TMin and

Lat_TMax are equal for cases in which the synthesis process achieved the specific

initiation interval value (600 clock cycles). In the other cases, the synthesis tool

optimized as much as it could to achieve the targeted initiation interval, but from

Table 3-6 it can be observed that for a matrix size larger than 12×12, using fixed-point

representation is not able to be fully optimized with the Xilinx synthesis tool, resulting

in a higher latency compared with the latency of the floating-point implementation.

 67

Table 3-6: Comparison of timing results for floating-point and fixed-point

implementation of matrix inversion.

Floating-point Fixed-point<16,1>

Matrix
Size

Lat_T
Min

Lat_T
Max

II_T
Min

II_T
Max

Lat_T
Min

Lat_T
Max

II_T
Min

II_T
Max

8x8 511 511 512 512 822 822 600 600

10x10 557 557 558 360 1105 1105 600 600

12x12 868 868 600 600 1378 1378 600 600

14x14 988 988 600 600 1266 21986 1267 21987

16x16 1037 1037 600 600 1270 30338 1571 30339

18x18 1256 1256 600 600 1906 40426 1907 40427

20x20 1416 1416 600 600 2274 52394 2275 52395

 68

Chapter 4

FPGA implementation of Pulse Compression

4.1 Hardware Implementation of Pulse Compression

In this chapter, a unified digital pulse compression processor is presented as a

radar-application-specific-processor (RASP) architecture for the next generation of

adaptive radar. Based on traditional pulse compression matched filter and correlation

receiver, the processor integrates specific designs to handle waveform diversities,

which includes both frequency modulation and randomized waveforms, as well as

digital transceiver self-reconfiguration for adaptive radars. The prototype of this

processor is implemented with Xilinx FPGA devices and tested with an RF

spaceborne radar transceiver testbed developed at the University of Oklahoma’s Radar

Innovations Laboratory (RIL). Validation results show the effectiveness of real-time

processing and the engineering concepts.

4.1.1 FPGA in Existing SDR platforms

As mentioned in Chapters 1 and 2, there are strong potentials for the FPGA

implementation of real-time pulse compressions. FPGA has been used extensively not

only in the traditional HPEC systems but also in newly-emerged commercial software-

 69

defined radio/radar (SDR) platforms [89, 90]. The reconfigurable capability of FPGA

naturally enables the SDR platforms. For example, the Universal Software Radio

Peripheral (USRP) platform from Ettus Research [91] has been using both Altera and

Xilinx FPGAs in the digital transceiver physical layer. Various FPGA devices have

been used in other current SDR platforms [92, 93].

4.1.2 Radar TR Control Layer

Although there have been some attempts to use commercial SDRs for radar

applications [94, 95], the success of these efforts is largely limited by the real-time

capability of these platforms. Figure 4-1(a) shows an existing USRP-FPGA

implementation, which includes the DDC, UDC, FIR filters, numerical-controlled

oscillator (NCO), and PC interface control. These functional blocks just ensure the

basic transceiver functions, but the radar processing functions will have to be

implemented in software (for this particular example, it is GNU Radio and USRP

hardware driver (UHD)). For ground-based radar with low-computational

requirements such as weather radars, software-based radar processor implementations

have been popular [96, 97], which also use real-time Linux and Graphic Processor

Unit (GPU) acceleration when it is possible.

As discussed in previous chapters, for low SWaP (Space, Weight and Power)

radar applications and the reconfigurable platforms, PC-based processors do not meet

the requirements. A novel aspect of the proposed FPGA implementation scheme is the

combination of the hardware-based radar processing functions and SDR architectures,

especially for the GNU and USRP type of radio system platforms. The “core” radar

 70

processor hardware includes the TR controller, pulse compressor, and spectrum

analyzer. These core blocks are most desired for real-time processors and are used in

cognitive radios, etc. The concept of this extension is illustrated in Figure 4-1(b).

x Decim.
FIR

DDC

x Interp.
and CIC FIR

UDC

UHD
FSM
and
BUS

IF

ADC

DAC

(a)

Digital
Transceiver

Transmitter
Timing

And waveform
controller

Receiver
Timing control

Pulse compressor
And FFT/IFFT UHD

FSM
and
BUS

IF

(b)

Figure 4-1: (a) Existing FPGA configuration of N210/E110 from Ettus Research. (b)

Proposed FPGA configuration for Radar transceiver (with enhanced radar transceiver

Real-time range-Doppler processing blocks).

 71

4.2 Architecture Design and Analysis for Real-Time Pulse

Compression Circuitry

Pulse compression can be implemented as a time-domain correlator (as in

noise radar’s correlation receiver), or a frequency-domain matched filter, which is

implemented with FFT/IFFT as shown in Figure 4-2.

The output of the matched filter ()y n using typical time-domain correlation

can be expressed as:

1

0
() () () ()* ()

M

r r
m

y n x m x n m x m x n
−

=

= − =∑ (4.1)

In equation (4.1) rx represents the received signal, and x is the radar

waveform template. It is known that the convolution of two signals in the time-domain

is equivalent to the multiplication of the signals in the frequency domain. The pulse

compression can, therefore, be implemented by converting the received signal and the

transmitted signal (matched filter function) to the frequency domain using FFTs. Once

they are in the frequency domain, a vector multiplication of them can be performed,

followed by an inverse Fourier transform to convert the result back into time domain.

As stated in Chapter 2, frequency-domain matched filter implementation is

much more efficient than time-domain correlator for pulse compression. For instance,

an N -tap filter in the time-domain requires N complex multipliers for each output

sample. And when assuming N -point FFT transform and frequency-domain template

in memory, 2 log() 1N + complex multipliers per output samples are needed. In

 72

addition, the FFT transform is a power of two point size (N), which needs to satisfy

the following conditions:

 2 1 2kN p q and q Bτ= ≥ + − ≥ (4.2)

In the above equation k is a positive integer, p is the number of samples of the

incoming signal, and q is the number of samples of the reference signal. Note that in

Figure 4-2, the reference waveform template can also be pre-calculated and stored in

the internal memory of the FPGA, which as we will point out, may not be the best

option when the waveform bandwidth is large, and it also introduces the possibility of

mismatching.

Figure 4-2 shows the high-level architecture of pulse compression

implementation, which incorporates different schemes for matched filter

implementation. This architecture includes an optional pre-processing block which

translates the incoming IF signal to baseband, eliminates undesired frequencies, and

reduces the sampling rate. The circuit then temporally store the samples in first in, first

out (FIFO) buffers, which are activated by an external trigger and controlled by a

counter, which controls the writing and reading operations. The N-point FFT is

applied to the buffered samples and then multiplied by a reference pulse spectrum,

which can be obtained from three different sources: (a) Pre-processing the waveform

template using the same input channel, thus the hardware resources can be saved; (b)

Real-time samples collected from a dedicated input channel while the transceiver is

operating (this scheme demands more hardware resources); (c) Pre-calculated

spectrum coefficients stored in the on-chip memory. A weighing function block is

required when using scheme (a) or (b). The compressed time-domain pulse is obtained

 73

by applying an N-point inverse Fourier transform (IFFT) to the result of the complex

multiplier. The samples of the compressed pulse may then be sent to the DAC for

displaying purposes. Depending on the availability of hardware resources and device

capabilities, further processing can be performed in the same device. Otherwise,

samples may be sent to another processing unit through high-speed links such as serial

RapidIO (SRIO).

Buffer Block FFT
N-point

Complex
Multiplier

Block IFFT
N-point

Complex
Mixer Dec

Pre-calculated
Coefficients

Buffer Block FFT
N-point

Complex
Mixer Dec

Incoming
Signal

Reference

Weighting
Function

Compressed
Time domain

Pulse

uPDCM

FPGA

External
Trigger

tre-processing

tre-processing

Reference
tulse

Spectrum

Figure 4-2: High-level block diagram for matched-filter pulse compression

implementation.

The FFT processing blocks are based on fixed-point operations and configured

as radix-2 butterfly stages with distributed memories, in which the stages are pipelined

so that data can be continuously streamed. Before a hardware bitstream is generated,

fixed-point simulations are performed at different levels.

Using Xilinx’s software development tools, the target device for hardware

simulations was a Kintex-7 FPGA (XC7k325t-2-ffg990), in which the incoming signal

was an LFM waveform with BW = 5 MHz and τ = 20 µs. The results of hardware

 74

simulation are shown in Figure 4-3, in which the uncompressed input signal and the

compressed output signal are represented with 16 bits.

(a)

(b)

Figure 4-3: Hardware simulation of pulse compression, using 16-bit digital

representation. (a) Uncompressed input signal. (b) Compressed output signal.

 75

Additionally, three different weighting functions: Kaiser (β = 2.23), Hamming,

and Hanning were considered. The comparison between hardware and MATLAB

simulations is shown in Figure 4-4. The uncompressed pulse was a chirp signal with a

bandwidth of 10 MHz and a pulse duration of 20 µs. The results show that hardware

simulations achieve similar sidelobe levels as the sidelobe levels from theoretical

predictions. As expected, weighting functions reduce the range sidelobe levels at

expenses of range resolution degradation.

 76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-70

-60

-50

-40

-30

-20

-10

0

Time(us)

P
o
w

e
r(

d
B

)

SW: No Window
HW: No Window

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-70

-60

-50

-40

-30

-20

-10

0

Time(us)

P
ow

er
(d

B
)

SW: Kaiser
HW: Kaiser

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-70

-60

-50

-40

-30

-20

-10

0

Time(us)

P
ow

er
(d

B
)

SW: Hanning
HW: Hanning

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-70

-60

-50

-40

-30

-20

-10

0

Time(us)

P
ow

er
(d

B
)

SW: Hamming
HW: Hamming

(d)

Figure 4-4: Comparison between MATLAB and hardware (Kintex-7 FPGA)

simulations of pulse compression for different weighing windows. (a) No window. (b)

Kaiser (β = 2.23). (c) Hanning. (d) Hamming.

The results also show a slight mismatch due to quantization errors, and scale

factors applied in the different processing stages, as presented in Figure 4-5. The peak

 77

range sidelobe of the hardware simulations when using no window is -13.28 dB,

Kaiser (β = 2.23) is -19.38 dB, Hanning is -31, 32 dB, and Hamming is -41.64 dB.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-70

-60

-50

-40

-30

-20

-10

0

Time(us)

P
ow

er
(d

B
)

No Win
Kaiser
Hanning
Hamming

Figure 4-5: Comparison of pulse compression hardware simulation results using

different windows: Kaiser (β = 2.23), Hanning, and Hamming. The simulation target is

a Kintex-7 FPGA.

4.3 FPGA Device Implementations of Real-Time Pulse

Compression

4.3.1 Hardware Resource Utilization

The target device for this implementation was the XC7k325t-2-ffg990 FPGA.

The platform was attached to a 14-bit dual-channel ADC (ADS62P49) and a 16-bit

dual-channel DAC (DAC3283) FMC daughter board, which includes an external

 78

trigger port. The sampling rate was 246 MSPS, which was configured from the FPGA

through the Serial Peripheral Interface (SPI). The input samples were formatted to

two’s complement 16-bit representation. Figure 4-6 shows typical on-chip

implementation result including the simplified RTL diagram and the resulting layout.

The pulse compression system clock runs at 246 MHz.

(a)

(b)

Figure 4-6: Examples of on-chip implementation results. (a) Simplified Vivado RTL

schematic for pulse compression. (b) The resulting layout of pulse compression

implementation (light blue area) on the XC7k325t-2-ffg990 FPGA.

The post-implementation resource utilization, in terms of FFs, LUTs, BRAMs

and DSPs, is summarized in Table 4-1. This table only considers the pulse

compression processing block with 8192-point FFT and IFFT, FIFO buffers, and pre-

calculated complex coefficients for the reference pulse spectrum. It can be observed

that BRAMs, (17% of the total available for that device is used) are the most

 79

demanding hardware resource for this implementation, and FFT/IFFT operations use

the majority of them. Other architectures for FFTs may be considered to reduce the

number of hardware resources at expenses of data throughput.

Table 4-1: Device Resource Utilization for two Xilinx FPGAs for the typical matched

filter implementation.

Operations\HW Resources LUTs FFs BRAMs DSPs

FFT 4407 6876 23 25

IFFT 6962 10901 27 42

Complex Multiplier 236 523 0 12

Others: counters, add/subs, relational,
registers, etc. 73 231 22 2

Total
11678

(6%)

18531

(5%)

72

(17%)

81

(10%)

The total on-chip power consumption for this implementation was 1.838 W,

from which the dynamic power and static power were 1.659 W and 0.179 W,

respectively. The pulse compressor block only consumes 0.783 W, which represents

~43% of the total power. The power consumption in each processing block is detailed

in Table 4-2.

 80

Table 4-2: Power consumption of pulse compression

Operations Power (W)

FFT 0.295 (16%)

IFFT 0.38 (21%)

Complex Multiplier 0.037 (2%)

Others

(counters, add/subs, relational, registers, etc.)
0.071 (4%)

Total Power of DPC 0.783 (43%)

4.3.2 Test and Validation Platforms

The pulse compression processor implementation can be tested and validated

through different methods. For hardware-level tests, two options were used as shown

in Figure 4-7. The first option is a complete hardware testbed, in which the FPGA

platform, an actual RF transceiver, DSP platform, and PC are all connected as a real-

time radar platform. The compressed pulse is sent out of the FPGA platform through

the DAC, and is measured as a short analog pulse. This signal is then acquired by the

digital storage oscilloscope (DSO) for further verifications.

Another method for hardware verification is using a software-based logic

analyzer. For this implementation, Vivado Logic Analyzer, which includes virtual I/O

(VIO) and integrated logic analyzer (ILA) IP cores, was inserted into the design in

order to collect a number of bits from the FPGA through the JTAG interface and

displays signals and waveforms, which allows debugging during each step of the

 81

processing with respect to the driving clock. This method is also used for test and

verification.

AWG
Ku-band

Transceiver
Channel
Emulator

FPGA
platform

USRP-SDR
Radio platformPC

ISL5239/DSP
platform

(a)

(b)

Figure 4-7: Methods of hardware verification. (a) Complete hardware testbed, (b)

Using Vivado logic analyzer for probing internal signals.

 82

4.4 Experiment Results

4.4.1 System Outputs for Basic PC Waveform

Pulse compression processing results of an up-chirp LFM signal, with a pulse

duration of 20 µs and bandwidth of 10 MHz, are shown in Figure 4-8. The target

return, in this case, is a simple duplication of the transmit pulse aligned with the

waveform template. This figure shows the external trigger with a pulse duration of 500

ns, the in-phase (I) and quadrature-phase (Q) input signals, and the output signal

captured by ILA. A slight distortion can be observed in the low-frequency domain of

the IQ signals, which is caused by the DC filter in the ADC. For displaying purposes,

the compressed pulse is shown in linear scale based on the addition of the power of

two of the real and imaginary components: 2 2Im Re+ .

Figure 4-8: Pulse compression results captured using Xilinx’s integrated logic

analyzer (ILA). External trigger with pulse duration of 500 ns, I and Q with pulse

duration of 20 µs and bandwidth of 10 MHz.

 83

Figure 4-9 shows the resulting compressed pulse after converting the samples

of the compressed pulse to logarithmic scale. As is observed, the peak sidelobe level is

similar to the HW and MATLAB simulations (around -13.3dB).

0 0.5 1 1.5 2 2.5
-80

-70

-60

-50

-40

-30

-20

-10

0

Time (us)

po
w

er
 (d

B
)

Figure 4-9: ILA samples of pulse compression output converted to logarithmic scale

(dB).

The pulse compression result in digital form is then converted to an analog

pulse output through the DAC with a resolution of 16 bits, which is captured by the

Digital Storage Oscilloscope (DSO) and shown in Figure 4-10. The compressed

analog pulse is identical to the digital result in Figure 4-9, and the overall processing

latency is about 28.8 µs, which justifies the real-time processing. On the other hand, it

can be noticed in Figure 4-10 that some distortion was introduced by the DAC during

the digital-to-analog conversion process.

 84

(a)

(b)

Figure 4-10: Comparison between uncompressed time domain input ((a), pulse

bandwidth = 10 MHz, pulse length = 20 µs), and compressed time domain output

pulse ((b), captured by DSO).

Figure 4-11 includes the analog amplitude outputs from the pulse compression

processor, when there are two emulated targets adjacent to each other and using a

 85

short pulse of 2 µs. The two targets are approximately separated by 300 meters and are

assumed to be identical point targets.

Figure 4-11: Pulse compressor output for multiple emulated targets. Captured by DSO.

4.4.2 Real-Time Pulse Compression for Random Waveform

Compared to the chirp/LFM waveform, random waveforms are usually

designed to use wider bandwidth. The FPGA implementation of pulse compression for

random waveforms has a limitation on the instantaneous signal bandwidth it can

handle, which originates from the limitation of ADC sampling rate and clock

frequency. For XC7k325t platform implementation, the largest allowable signal

bandwidth is about 100 MHz. The FPGA itself, on the other hand, can process signals

with larger bandwidth as long as the computation load fits in the device capacity.

Figure 4-12 (a) shows a sample of a random-noise waveform with 40 MHz

modulation bandwidth and about 20 µs pulse length. The significant difference

between this waveform and the normal chirp waveform is the large amplitude dynamic

 86

range, so the ADC/DAC distortions will have impacts on the output. In Figure 4-12

(b), the digital pulse compressor results (captured using Vivado logic analyzer) show

good overall sidelobe performance. For the FPGA system’s analog output, which is

shown in Figure 4-12 (c), the impact of the distortion of the DAC and RF channel can

be clearly observed.

0 2000 4000 6000 8000 10000 12000 14000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

450 500 550

-50

-40

-30

-20

-10

0

Sample Index

dB

(b)

(c)

Figure 4-12: Real-time pulse compression of band-limited random noise with the

FPGA pulse compression implementation, (a) Input waveform (40 MHz signal

bandwidth), (b) Pulse compressor output captured using Vivado logic analyzer (before

DAC output), (c) Pulse compressor output converted to analog pulse and captured by

DSO.

 87

4.4.3 Impact of Waveform Template Generation Scheme and Timing

Misalignment

A waveform template (or local replica) is needed for pulse compression

receivers. This template can be either generated locally (within chip) assuming the

waveform parameters are all known, or can be sampled from a transmitter

coupled/loop back signal. Sometimes the precise transmit waveform is not available

and can only be estimated from other ways. This may happen when a pulse

compression processor needs to be added into an existing operational radar.

Obviously, there is potential mismatching between the received actual signals and the

local-generated waveform templates, which can cause degradation in PC results,

especially on sidelobes. For hardware implementation, another issue with internally

generated templates is the timing misalignment between the two signals. One example

is shown in Figure 4-13 (a), where the waveform parameters in terms of bandwidth

and pulse length are known, but due to timing (phase) misalignment, the mismatching

still causes strong sidelobes (dotted line). Again, adding windowing can mitigate this

effect at the cost of resolution.

 88

350 400 450 500 550 600

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Samples

P
ow

er
(d

B
)

Digital Pulse Compression: Hardware Test
Pulse BW: 5MHz

No Window
Window: Hamming
Window: Kaiser

(a)

200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

Samples

Pulse Compression
LFM Chirp(BW=5MHz)

200 300 400 500 600 700 800
0

500

1000

1500

2000

Samples

LFM Chirp(BW=50MHz)

(b)

Figure 4-13: Comparison between the PC outputs using internal waveform template

generation (without external waveform samples) and PC outputs with external

waveform templates and different bandwidths.

When an external source of the waveform template is available, and it is

“synchronized” with the received pulse, the FPGA output and the sidelobe are much

more stable. Figure 4-13 (b) shows compressed output with 5 MHz BW (same as (a))

chirp waveform and 50 MHz BW chirp waveform when a waveform template is

acquired from the external waveform generator (the same as the source to the RF

transceiver).

4.5 Conclusions

This chapter presents results about real-time FPGA implementation of a

software-defined radar signal processor. The core of this processor is the real-time

pulse compression processor, realized as a fixed-point matched filter. As a software-

defined IP core, the pulse compression can be easily reconfigured to process different

 89

waveforms on different devices or platforms. The two examples – narrowband chirp

waveform for solid-state weather radar, as well as wideband random noise waveform

processing, are presented. The capability of processing the noise waveform is largely

limited by the ADC speed and DAC dynamic range, while the FPGA devices on the

market have enabled the real-time pulse compression and radar controllers for

wideband or even ultra-wideband waveforms. It is found that conversions between

analog and digital signals can cause distortions in the pulse compression result, and

some of these distortions are not necessarily deleterious. Also, generation of waveform

templates with adequate timing-alignment is important to the real-time performance.

 90

Chapter 5

SoC Implementation of an Adaptive Radar Processor

The proposed adaptive radar processor is part of the solid-state radar

transceiver optimizer which is composed of different processing blocks, such as

adaptive pulse compressor (APC), pre-distorter, general-purpose processor,

coprocessors, and peripherals. The goal of designing, testing and investigation of these

building blocks is to integrate them into a single chip and to achieve the lowest C-

SWaP, and support airborne and spaceborne platform deployments.

Figure 5-1: System elements of the proposed radar transceiver optimizer.

The overall on-chip system requires one or more processors to execute the

software, control program, data transfer, and information processing. The

 91

interconnection architecture of the transceiver optimizer processor, based on Xilinx

SoC technology, is shown in Figure 5-2. The modularity of this architecture makes it

possible to be applied to different FPGA devices or radar platforms.

Coprocessors

M
S

AXI Interconnect

AXI Lite Interconnect

Status
IndicatorsUARTTimer

uP

DDR

Pulse
Compression

Pre-
Processing

AXI MM Interconnect
AXI Lite Interconnect

DCM

Coprocessors

Predistorter Waveform
Generator

Filtering

From ADC
(RX)

From ADC
(Feedback Signal)

To DAC
(TX)

Serial
Protocol

Serial
Transceiver

BRAM

DMA

N
Lanes

...

AXI MM Interconnect

Figure 5-2: Transceiver optimizer System-on-Chip (SoC).

The system collects samples from the ADC, and streams data into the FPGA

where filtering, decimation, and direct pulse compression are performed first. Using

AXI Interconnection, the compressed pulse samples are then sent to an on-chip

microprocessor, which computes the adaptive pulse compression and it is supported

by custom coprocessors designed to accelerate the computation process. The APC

output results can be transferred to another external device through high-speed serial

interconnections with multiple lanes.

 92

The transceiver optimizer also performs digital baseband pre-distortion, for

which the transmitted feedback signal is pre-processed, and then stored in a specific

area of the shared memory. These samples along with the pre-distorter output are read

by the main processor through the AXI interconnect buses, in order to compute and

update the coefficients of the pre-distorter. The primary focus on this chapter is SoC

implementation of the APC building block.

5.1 Literature Review: Implementation of Traditional Adaptive

Filters

The most common adaptive algorithms used to calculate the filter weights are

based on the least-mean-squares (LMS) and the recursive least-squares (RLS). They

have been used in different applications [98-109]. It is also known that RLS offers

faster convergence over LMS, since it is independent of the spread of the eigenvalues

of the correlation matrix. These algorithms and their variants are extensively covered

in [110-113].

In general, real-time implementation of adaptive algorithms is limited by

different factors such as complexity, accuracy, numerical stability, dynamic range, etc.

The low complexity and regular structure of the LMS algorithm make it suitable for

being implemented on hardware. For instance, two variants of the Delayed LMS

[114] algorithm were implemented in [107]: the DF-DLMS(direct form) and TF-

DLMS (transposed form) predictors. The targeted device was a Virtex XCV300-6

FPGA, achieving about 10 times speedup compared to the traditional LMS. The

pipelined implementation of TF-DLMS demanded a huge area compare to DF-LMS

 93

and LMS. For 8-bit and 8 taps, the achieved clock frequency was 12 MHz for

traditional LMS, 68 MHz for TF-LMS, and 120 MHz for DF-LMS. In [115], a

software implementation of D-LMS in a DSP core (SPXK5) is described, achieving a

speed of 1 cycle per tap.

 On the other hand, the RLS algorithm suffers from the computation of the

correlation matrix and its inverse. In [116], RLS with fixed-point format was

implemented for a 4-element MMSE adaptive array antenna.

The two principal methods to reduce the computational complexity are based

on the application of the matrix inversion lemma or the QR-decomposition recursive

least-squares (QRD-RLS) technique. The QRD-RLS approach has been studied for

several decades, as well as its performance in different applications [117-127]. In

[128], the implementation of matrix inversion using the QR technique, fixed-point,

was implemented on a Spartan 3 FPGA XC3S1000, achieving a maximum clock

speed of 13.6 MHz, using 25% of the hardware resources, and the maximum matrix

size dimension was 23x23 performed in 253 µs. [124] presents a hierarchical

architecture of QRD-RLS for digital beamforming, in which techniques such as look-

ahead, pipelining and folding were applied to increase the throughput, reduce area, and

power consumption.

Numerical format analysis of RLS is described in [125, 129, 130]. For

instance, [130] proposed a derived Kalman algorithm and compared with traditional

RLS, their performance was analyzed for fixed-point and floating-point representation,

in which it also used a modified floating-point format to take advantage of the 18-bit

multipliers in the Virtex-5 FPGA family.

 94

 A variation of this QR-RLS is called systolic array QR-RLS [131, 132], which

is also known as Givens rotation or Coordinate Rotate Digital Computer (CORDIC)-

based RLS algorithms. In [133], the authors described an architecture of VLSI systolic

array for an adaptive nulling processor based on the CORDIC algorithm in a systolic

architecture, in which the function of a CORDIC cell is to update the Cholesky factor

of the correlation matrix every 22 ms. It was estimated that 96 CORDIC cells can be

capable of updating a 64-element weight vector for 300 observations in 6.7 ms. [100]

presents 16-bit QR decomposition for 4x4 matrices, achieving 10x and 100x speedup

compared to an Intel i7 processor (3.6 GHz) and ARM Cortex A-9 (533 MHz).

Another method to improve the RLS algorithm is based on dichotomous coordinate

descendent iterations (RLS-DCD), which was implemented on a Xilinx Virtex-II Pro

XC2VP30 in [134]. The results shows that the transversal RLS-DCD can update a 64-

tap adaptive filter at a rate of 74 KHz, occupying an area of 1306 slices. Other

adaptive methods such as the Levenberg-Marquardt algorithm to solve non-linear LS,

was implemented on a Virtex-5 FPGA in [102], obtaining an execution time of 60 µs

operating with a clock frequency of 200 MHz.

5.2 System-on-Chip (SoC) Implementation of APC

As described in Chapter 2, adaptive pulse compression is a series of radar

signal processing algorithms that are independent of waveforms and achieve an

optimal estimation of ground-truth. These algorithms have been shown to work for

both point-target and distributed-target scenarios. In this chapter, hardware

implementation of the basic APC algorithms, LSE and RMMSE, for real-time

 95

transceiver optimization is presented. The same architecture as well as design

guidelines can be extended naturally to other APC algorithms. An important parameter

to evaluate the design is the latency, which is the number of clock cycles that a

processing unit takes to generate the outputs from corresponding inputs. Also, since

hardware resources are limited in an FPGA, the estimation of the silicon area

demanded by a design is also important. This is expressed in terms of DSP48E units

(DSPs), flip-flops (FFs), and look-up tables (LUTs).

5.3 LS-APC Multi-Coprocessor Architecture

The output of the LS algorithm is given by equation (2.10). It can be seen that

matrix multiplication and matrix inversion are the two main operations for the LS

algorithm. In order to accelerate the computation of these two matrix operations, two

independent coprocessors are considered in this first architecture, they communicate

with the host processor via dedicated AXI buses.

uP

Matrix
Multiplication

M1[m][n]]

M2[n][p]

MM[m][p]

FPGA

Matrix
Inversion

M[k][k]

M_inv[k][k]

Figure 5-3: Multiple co-processor for LS-APC.

 96

As shown in Figure 5-3, the two coprocessors were independently studied and

tested in the previous chapter. The host processor initializes the process, and passes

data to the multiplication coprocessor to calculate the HS S term; results are then sent

back to the main processor to execute the matrix inversion in the second coprocessor.

Since the matrix coprocessor considers square matrices, the output from the matrix

inversion will need to be filled with zeros to form an 1L N+ − x 1L N+ − matrix, a

similar modification is performed for the HS matrix. Both reshaped matrices are sent

to the first coprocessor for multiplication to obtain the LS filter weights which will be

applied to the incoming signal y . As it can be noticed, when the three processors are

connected, the total execution time is determined not only by the coprocessors’

processing latency, but also by the time needed to execute the processor instructions

(fetch, decode, execute), transfer data from memory to coprocessors and vice versa.

For example, when the MicroBlaze processor is configured without caches, the

average latency for transferring a value from memory to AXI Stream port is about six

clock cycles (CPU), and reading from the port and storing in memory takes about five

clock cycles (CPU), which can limit the performance of this architecture. A traditional

method to reduce data transfer latency is to use a dedicated unit called direct-access

memory (DMA). The DMS unit can efficiently perform burst transfers.

A summary of the total hardware resources of the matrix multiplication and

matrix inversion coprocessors, for a sequential architecture with minimum silicon area

occupancy, is shown in Table 5-1.

 97

Table 5-1: Total hardware resources for the matrix multiplication and matrix
inversion.

 Floating Point
Size BRAM DSP48E FF LUT
8x8 9 (1%) 10 (1%) 2329 (~0%) 4535 (2%)

10x10 9 (1%) 10 (1%) 2374 (~0%) 4621 (2%)

12x12 9 (1%) 10 (1%) 2234 (~0%) 4694 (2%)

14x14 9 (1%) 10 (1%) 2450 (~0%) 4687 (2%)

16x16 9 (1%) 10 (1%) 2390 (~0%) 4679 (2%)

18x18 9 (1%) 10 (1%) 2447 (~0%) 4761 (2%)

20x20 9 (1%) 10 (1%) 2440 (~0%) 4765 (2%)

Replacing the BRAMs for distributed memory and pipelining the hardware

architecture in each coprocessor, the combined latency is reduced by a factor that

varies linearly with the number of matrix elements, as shown in Figure 5-4. The speed

up factor for the considered matrix sizes in the figure is in the range of 18 to 66.

 98

8 10 12 14 16 18 20
10

2

10
3

10
4

10
5

10
6

Matrix Size

La
te

nc
y

(C
lo

ck
 C

yc
le

s)

Sequential HW Coprocessors: Avg. Latency
Sequential HW Coprocessors: Min. Latency
Sequential HW Coprocessors: Max. Latency
Pipelined HW Coprocessors Latency

Figure 5-4: Combined latency of matrix inversion and matrix multiplication

coprocessors for the sequential and pipelined versions.

However, the number of DSP48Es, FFs and LUTs is much more than the

sequential architecture. Table 5-2 summarizes the total hardware resources for the

implementation of the two coprocessors with lower latency.

Table 5-2: Total hardware resources for pipelined version of matrix multiplication and
matrix inversion.

Size DSP48E FF LUT
8x8 45 (5%) 18976 (4%) 20979 (10%)

10x10 60 (7%) 27028 (6%) 29734 (14%)

12x12 70 (8%) 63454 (15%) 34554 (16%)

14x14 85 (10%) 84930 (20%) 45990 (22%)

16x16 105 (12%) 100705 (24%) 63475 (31%)

18x18 120 (14%) 135849 (33%) 80894 (39%)

20x20 140 (16%) 165344 (40%) 103617 (50%)

 99

5.4 Single LS-APC Processor

The second type of implementation utilizes a single LS processor, which

communicates with the main processor through the AXI stream buses. The samples

from the transmitted waveform s and the received signal y are buffered first, and

then the LS algorithm is applied to estimate the output vector, _x LS . The

architecture performs the processing in a sequential manner, as is shown in Figure 5-5.

The performance of both fixed-point and floating-point implementations has been

studied. The system clock speed for this design was targeted at 100 MHz.

S
SSH 1()HS S −

1()H HS S S−

1()H HS S S y−

s

y

x_LS

SH

LS Coprocessor

uB

s[N]

y[L+N-1]

x_LS[L]

FPGA

Figure 5-5: Internal architecture of the single LS coprocessor option.

The summary of hardware utilization for 16-bit fixed-point single co-processor

implementations is shown in Table 5-3. The implementation requires 13 DSP48Es

which represents about the 1% of the total available for XC7k325t device. The

estimated dynamic power consumption, considering only the coprocessor, is between

95 mW and 133 mW for the number of range gates listed in the table.

 100

Table 5-3: Hardware utilization of LS fixed-point implementation using 16-bit fixed-

point format for Xilinx XC7k325t FPGA.

Gates BRAMs DSP48Es FFs LUTs

10 8 (~0%) 13 (1%) 1905 (~0%) 3508 (1%)

20 8 (~0%) 13 (1%) 2040 (~0%) 3808 (1%)

30 13 (1%) 13 (1%) 2087 (~0%) 3881 (1%)

40 18 (2%) 13 (1%) 2077 (~0%) 3969 (1%)

50 34 (3%) 13 (1%) 2431 (~0%) 4402 (2%)

When the number of bits is increased to 32, the implementation requires

slightly more logic resources, and four times more DSPs than the 16-bit

implementation. The dynamic power consumption of the coprocessor is between 213

mW and 261 mW.

Table 5-4: Hardware utilization of LS fixed-point implementation using 32-bit fixed-

point format for Xilinx XC7k325t FPGA.

Gates BRAMs DSP48Es FFs LUTs

10 8 (~0%) 56 (6%) 3709 (~0%) 5935 (2%)

20 10 (1%) 56 (6%) 3706 (~0%) 6085 (2%)

30 21 (2%) 52 (6%) 3513 (~0%) 5780 (2%)

40 35 (3%) 56 (6%) 3753 (~0%) 6184 (3%)

50 67 (7%) 56 (6%) 4107 (1%) 6590 (3%)

The number of clock cycles required by the LS coprocessor to produce an

output (latency) versus different number of signal samples is shown in Figure 5-6. For

this experiment, the number of range gates was maintained constant as 60. It can be

 101

observed that the latency varies linearly with respect to the number of waveform

signal samples.

5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9
x 10

6
La

te
nc

y
(C

lo
ck

 C
yc

le
s)

Signal Samples

Avg. Latency
Min. Latency
Max. Latency

Figure 5-6: Estimated latency of LS coprocessor for different number of signal

samples with a constant number of range gates. The bar plot also shows the range of

variation (max and min) of latency estimation. Number of range gates = 60.

5.5 LS implementation based on Floating-Point Data Format

The same co-processor architecture in Figure 5-5 is also implemented using

floating-point data formatting, wherein we used single precision floating-point format

containing 32 bits: one sign bit, eight exponent bits, and 23 fractional bits. In this

initial approach, the coprocessor performs in a fully sequential mode the estimation of

 102

the ground truth. Table 5-5 summarizes the hardware resource utilization of the

floating point co-processor implementation. The dynamic power is in the range of 127

mW to 141 mW.

Table 5-5: FPGA resource utilization for floating-point implementation

Gates BRAMs DSP48Es FFs LUTs

8 8 (~0%) 10 (~1%) 2753 (~0%) 5126 (~2%)

10 8 (~0%) 10 (~1%) 2765 (~0%) 5198 (~2%)

12 8 (~0%) 10 (~1%) 2841 (~0%) 5308 (~2%)

14 8 (~0%) 10 (~1%) 2910 (~0%) 5369 (~2%)

16 8 (~0%) 10 (~1%) 2853 (~0%) 5363 (~2%)

18 8 (~0%) 10 (~1%) 2901 (~0%) 5426 (~2%)

20 8 (~0%) 10 (~1%) 2894 (~0%) 5441 (~2%)

22 11 (~0%) 10 (~1%) 3190 (~0%) 5784 (~2%)

24 16 (~0%) 10 (~1%) 2966 (~0%) 5586 (~2%)

The impact of number of range gates on the latencies of floating-point LS

implementation is shown in Figure 5-7. The maximum clock frequency for this

implementation is 125 MHz.

 103

6 8 10 12 14 16 18 20 22 24 26
0

1

2

3

4

5

6

7

8
x 10

5

Number of Range Gates

C
lo

ck
 C

yc
le

s

Latency
k=6

Figure 5-7: Estimated latencies for different number of range gates for floating point

implementation, assuming the number of transmitted signal samples is 6 (a short

pulse).

The latency for fixed-point and floating-point architectures is compared in

Figure 5-8. The fixed-point with 16-bit configuration results in a better performance

(smaller latency) compared to the 32-bit fixed-point implementation. As expected, it

also shows all fixed point implementations have lower latency than that of the

floating-point implementation. It can be also seen again that the latency of the

floating-point architecture increases more rapidly compared to the other two

architectures.

 104

10 15 20 25 30 35 40 45 50 55
0

1

2

3

4

5

6

x 10
6

Number of Range Gates

La
te

nc
y

(C
lo

ck
 C

yc
le

s)

Fixed-point 32-bit
Floating-point
Fixed-point 16-bit

Figure 5-8: Performance comparison between fixed-point and floating-point

implementation for different number of range gates. Comparison of Latency Between

Fixed-point and Floating Point Implementation

Signal Samples = 6.

As we have seen in the previous results, the latency of LS implementations is

usually large and also varies in certain ranges. Implementations of the single co-

processor LS gate-level architecture are then studied. The methodology includes

pipelining and parallelizing the design, and replacing BRAMs with distributed

memory in order to reduce latency and improve throughput. As a result from these

improvements, the first architecture is able to accept a new set of data (initiation

interval) every 100 clock cycles. The hardware utilization is shown in Table 5-6.

 105

Table 5-6: FPGA hardware resource utilization for pipelined floating point

implementation.

Gates DSP FF LUT

8 15 (1%) 8058 (1%) 6858 (3%)

10 25 (2%) 10654 (2%) 10418 (5%)

12 33 (3%) 17314 (4%) 14312 (7%)

14 40 (4%) 21800 (5%) 18440 (9%)

16 50 (5%) 27983 (6%) 23696 (11%)

18 63 (7%) 36310 (8%) 31360 (15%)

20 73 (8%) 45917 (11%) 39112 (19%)

22 88 (10%) 56486 (13 %) 46986 (23%)

Now, assuming that a new set of data is received every 50 clock cycles, the

throughput of the coprocessor then needs to be increased by about two times. This

improvement will results in at least 1.5 times more hardware resource utilization, as

shown in Table 5-7.

Table 5-7: FPGA hardware resource utilization for initiation interval of 50 clock

cycles

Gates DSP FF LUT

8 30 (3%) 10850 (2%) 11116 (5%)

10 40 (4%) 16748 (4%) 15892 (7%)

12 58 (6%) 25108 (6%) 22429 (11%)

14 78 (9%) 33792 (8%) 30522 (14%)

16 118 (14%) 57179 (14%) 48594 (23%)

18 143 (17%) 70028 (17%) 59304 (29%)

20 173 (20%) 82783 (20%) 71352 (35%)

22 191 (22%) 94045 (23%) 82545 (40%)

 106

The performance of these two designs in terms of latency is compared in

Figure 5-9, which shows the number of clock cycles required by the coprocessor to

compute the _x LS output vs number of range gates. Decreasing the initiation interval

by a factor of two reduces the latency for number of range gates larger than 16 (or LS

matrices larger than 16×16).

8 10 12 14 16 18 20 22
200

250

300

350

400

450

500

550

600

Number of Range Gates

La
te

nc
y

(C
lo

ck
 C

yc
le

s)

II=50
II=100

Figure 5-9: Comparison of latency in terms of clock cycles for different initiation

intervals when number of samples is 6.

It has been shown that the low latency version of the LS occupies more silicon

area, which can lead to more power consumption. An estimation of the dynamic power

consumption is presented in Figure 5-10. The estimations are calculated using the

Xilinx Power Estimation (XPE) tool. The dynamic power consumption for the

 107

pipelined versions is clearly higher than the non-pipelined version, and also the

implementation with II=50 consumes about 1.5 to 2 times more power than the II=100

version, due to the additional hardware resources demanded.

8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

Number of Range Gates

D
yn

am
ic

 P
ow

er
 (W

)

Floating Point (Non-pipelined)
Floating Point (II=100)
Floating Point (II=50)

Figure 5-10: Comparison of dynamic power consumption required by the LS

coprocessor.

If the waveform is fixed (no adaptive or dynamic waveforms), an improvement

to the LS architecture is to pre-calculate the matrix HS and 1()HS S − , store them in

on-chip memory and then apply to the received signal vector y , as shown in Figure

5-11. This approach will not only maximize the throughput but also minimize the

latency, which will be mainly dependent on a matrix-vector multiplication with

2L NL L+ − multiplications.

 108

s

y

Coprocessor1
S

SH

SSH 1()HS S −

A

Ay

s

x_LS

y

Coprocessor2

Processor

X_LS

X

Figure 5-11: Architecture for fixed-waveform architecture, where Coprocessor 1 is

only activated for the estimation of the filter coefficients.

5.6 RMMSE-APC Co-Processor Architecture

The RMMSE algorithm is described in [2]. The algorithm requires the

calculation of matrix
1

1
() (1)

n N
H

n n
n N

C l l n N s sρ
= +

=− +

= + + −∑ and matrix inversion 1()C R −+

for each range gate. Here ρ is defined as the target signal power for the range bins, ns

represents the n-samples, shifted version of the waveform s , and R is the noise

covariance matrix.

 109

The hardware architecture for the RMMSE co-processor is presented in Figure

5-12. The matrices R and ()SS n are pre-calculated and stored in on-chip memory,

and () H
n nSS n s s= , where [1, 1]n N N∈ − + − . The vectors y , ρ and s are also put

into the on-chip memory. The values of ρ are updated in each iteration, and reduced

in size by N-1 elements.

The filter weights for a range gate are estimated by matrix-vector

multiplication operation and scaled by the value of ρ , as follows:

1(1) ()w l N C R sρ −= + − + . These weights are applied to the incoming signal vector to

obtain the estimated ground truth. The operation can be represented by an N-vector

multiplication: [((1)(1)) ((1))]Tx w y l k N y l k N= + − − + −

 . The target signal power

for the range bins is scaled by a constant value [0, 2]η∈ to guarantee convergence

stability. This last step is performed in software.

 110

...

SS(1) SS(2) SS(2N-1)

X

X

X

...

+

R

ρ

()k lρ

(1)k lρ +

(2 1)k l Nρ + −

...

1(())C l R −+

s

x

X
(1)k l Nρ + −

x
1()k lρ +

,k lR

PU

MA

,k ly

uP

,k ly

Figure 5-12: RMMSE coprocessor architecture.

 111

The synthesis results for this architecture are shown in Table 5-8. The

coprocessor performs the computation in a sequential mode using minimal hardware

resources, in which hardware resources are reused in the different processing blocks

for the estimation of the range gates.

Table 5-8: RMMSE coprocessor synthesis results.

N (Samples) BRAM DSP48E FF LUT
8 9 (1%) 12 (1%) 2726 (~0%) 4482 (2%)

10 13 (1%) 12 (1%) 2792 (~0%) 4630 (2%)

12 17 (1%) 12 (1%) 2823 (~0%) 4661 (2%)

14 25 (2%) 12 (1%) 2905 (~0%) 4700 (2%)

16 25 (2%) 12 (1%) 2789 (~0%) 4635 (2%)

18 42 (4%) 12 (1%) 2866 (~0%) 4783 (2%)

20 42 (4%) 12 (1%) 2864 (~0%) 4792 (2%)

22 74 (8%) 12 (1%) 2994 (~0%) 4907 (2%)

For this design, the achieved clock frequency was 118.76 MHz. The latency,

which is number of clock cycles for a range gate estimation, versus the length of

waveform s is displayed in Figure 5-13. It can be observed that the latency is on the

order of 510 clock cycles, with maximum and minimum latency generated by the

matrix inversion execution and increasing with the number of elements. Considering

the achieved clock frequency, 500 range gates, and three iterations, the total latency

over a range profile when N=16 would be approximately 1.6 seconds.

 112

8 10 12 14 16 18 20 22
0

1

2

3

4

5

6
x 10

5

N (Samples of Waveform Template)

La
te

nc
y

(C
lo

ck
 C

yc
le

s)

Avg. Latency
Min. Latency
Max. Latency

Figure 5-13: Latency estimation per range gate without optimization.

Moreover, for this implementation, besides matrix inversion, the scaling block

and matrix addition units require 24% and 34% of the total latency, respectively. To

reduce the critical path in the computation process, three different architectures were

considered. In the first architecture, called partial pipelined, the matrix inversion is

maintained in sequential mode, while the other processing units are pipelined. The

initiation interval for the second and third architecture is constrained to be less than

2000 and 1000 clock cycles, respectively. As can be observed, latencies of the

pipelined architectures, shown in Figure 5-14, are lower than those achieved in the

sequential configuration. The latency reduction factor also varies smoothly linear with

the number of samples (N). For instance, when N=16 the fully pipelined architectures

 113

performs about 7 and 15 times faster than the partially pipelined and the sequential

architecture respectively, which represents a latency of 94 ms, considering 8.42 ns of

clock period, 500 range gates, and 3 iterations.

8 10 12 14 16 18 20 22
10

2

10
3

10
4

10
5

10
6

N (Samples)

La
te

nc
y

(C
lo

ck
 C

yc
le

s)

Partial Pipelined: Avg. Latency
Partial Pipelined: Max. Latency
Partial Pipelined: Min. Latency
Fully Pipelined 1
Fully Pipelined 2

Figure 5-14: Latency comparison of implementation of RMMSE coprocessor.

In terms of hardware resource utilization, the partially pipelined architecture

occupies more silicon area.

 114

Table 5-9: Hardware resources for partially pipelined version of RMMSE coprocessor.

N
(Samples) BRAM DSP48 FF LUT

8 12 (1%) 17 (2%) 5906 (1%) 7794 (3%)

10 16 (1%) 17 (2%) 7139 (1%) 8937 (4%)

12 20 (2%) 17 (2%) 8907 (2%) 11093 (5%)

14 28 (3%) 17 (2%) 10682 (2%) 12887 (6%)

16 28 (3%) 17 (2%) 12637 (3%) 16868 (8%)

18 45 (5%) 17 (2%) 15005(3%) 18289 (8%)

20 45 (5%) 17 (2%) 17560 (4%) 21314 (10%)

22 77 (8%) 17 (2%) 20592 (5%) 25243 (12%)

However, constraining the initiation interval of the matrix inversion to be less

than a determined number of clock cycles conditions the synthesis tool to use much

more logic resources, as seen in Table 5-10.

Table 5-10: Hardware Resources for fully pipelined RMMSE coprocessor.

N
(Samples) BRAM DSP48 FF LUT

8 6 (~0%) 15 (1%) 12601 (3%) 14592 (7%)

10 8(~0%) 15 (1%) 17999 (4%) 21019 (10%)

12 12 (1%) 15 (1%) 24860 (6%) 30410 (14%)

14 20 (2%) 15 (1%) 32916 (8%) 42041 (20%)

16 20 (2%) 20 (2%) 40003 (9%) 53124 (26%)

18 37 (4%) 20 (2%) 49827 (12%) 65934 (32%)

20 37 (4%) 25 (2%) 59307 (14%) 83710 (41%)

22 69 (7%) 30 (3%) 70851 (17%) 106517 (52%)

 115

Preserving a balance between latency and hardware resource utilization can let

us find a better approach in order to reduce the processing latency by instantiating

multiple processing units (PUs). In which, for each range gate estimation, a set of ρ

values are streamed through a bidirectional bus to scale the matrix SS and form the

N N× matrix C . 2()(1)Tr L M k N= + − − and

[(1)(1) (1)]Tw Tr k N Tr k N= + − − + − . The number of concurrent PUs is

determined by the hardware resources available in the FPGA.

 116

...

SS(1) SS(2) SS(2N-1)

X

X

X

...

+

R

ρ

X

X

X

...

+...

(1)kρ

(2)kρ

(2 1)k Nρ −

... ...

1(2 2)Tρ Nρ + −

()k Tρρ

1(1)Tρρ +

1((1))C R −+ 1(())C Tρ R −+

s

x x
X X

()k Nρ (1)k Tρ Nρ + −...

x x

y

...

1()k Tρρ +

1(1)kρ +

,1ky

,k TRy

...

...

,1kR ,k TRR

1PU TρPU

1SM TρSM

Figure 5-15: Architecture of RMMSE processor.

 117

It has been also noticed that the addition of multiple matrices to form ()c l R+

also demands an equivalent number of clock cycles to that of the matrix inversion

process. An alternative architecture to improve the latency is shown in Figure 5-16.

The sum of 2N matrices, including the noise covariance matrix, is performed in the

lSM processing block. This matrix addition architecture requires a total of

2log ()m N= stages, and the computation of N
q

 N N× -matrix additions in parallel

per stage, where 1 q m≤ ≤ . The total latency for this block is determined by m times

the latency of the addition of two matrices.

2N-1 Matrices

+ +

...

+

...

+

+

m
 st

ag
es

...

+

+

+

...

()C l R+

1(2 1) Nl N Sρ −+ −2(2 2) Nl N Sρ −+ −3(2 3) Nl N Sρ −+ −3(2) Nl Sρ − ++ 4(3) Nl Sρ − ++2(1) Nl Sρ − ++1() Nl Sρ − +

+

R

Figure 5-16: Architecture of the matrix summation to compute the matrix ()C l R+ for

a range gate.

 118

Using this architecture and a sequential micro-architecture for two-input matrix

addition, the latency is reduced by about seven times compared to the sequential

computation of matrix additions. Moreover, when the two-input matrix addition’s

micro-architecture is parallelized, the latency is reduced by about 25 times, but the

number of hardware resources needed is increased significantly.

5.7 Summary

This chapter discusses the implementation of basic APC algorithms on FPGA

as a part of the overall radar transceiver optimization processor. The flexibility of a

SoC platform allows the implementation of different architectures in a single device.

There are many different options. The first proposed architecture demonstrates that

matrix multiplication and matrix inversion, as key operations for the implementation

of APC algorithms, can be attached to the on-chip host processors to speed up the

APC computation. The feasibility of implementing floating point version on FPGA is

also validated, at the expense of more hardware resources, compared to the fixed point

representation. Different techniques can improve the real-time performance of the on-

chip system and reduce the overall latency, but demand more FPGA resources and

power consumption. Hand tuning in the optimization for fixed-point implementation is

required, especially when the computation involves arithmetic operations other than

multiplication and addition. The focus at this point is Least-Squares (LS) operation

while an initial RMMSE co-processor architecture is also presented.

 119

Chapter 6

Conclusions

Adaptive Pulse Compression (APC) is a series of radar signal processing

algorithms that are independent of waveforms and achieves an optimal estimation of

ground-truth. APC algorithms have been shown to work for both point target and

distributed target scenarios. The performance APC comes with the cost of

computational load. In this dissertation, the performance of different fast arithmetic

architectures on the Xilinx Kintex-7 FPGA is studied. Hardware accelerators were

developed as coprocessors for APC, achieving performance improvements. Hardware

implementation of pulse compression is presented. This study also seeks an optimal

configuration for the tradeoffs between latency and hardware utilization for the

implementation of APC, for which the RMMSE and LS algorithms are considered.

The system architectures are based on the embedded processor which is

interconnected with the logic resources through the on-chip AXI buses.

6.1 Achievements

The major innovative contributions of this work are summarized as follows:

(1) The performance of fast adder and multiplier architectures on a Kintex-7

FPGA device was rigorously investigated. It was also shown that LUT-

 120

based/DSP-based adder and multiplier achieved better performance

compared to the other fast architectures.

(2) The use of matrix multiplication and Cholesky-based matrix inversion as

coprocessor units for embedded systems to accelerate intensive

computational algorithms was studied. The feasibility of implementing

floating-point matrix operations on an FPGA and the performance were

analyzed.

(3) A waveform-independent, real-time pulse compression (matched filter)

processor architecture was implemented on FPGA. Different windowing/

weighting functions were also included in the architecture, which can

mitigate range sidelobes in real-time. Implementation of the architecture

was demonstrated on a Kintex-7 FPGA, as a part of a Ku-band spaceborne

radar transceiver testbed. As an IP-Core, this pulse compression processor

can be easily reconfigured or used as a part of the SoC system architecture.

(4) Established a complete radar RF/IF transceiver processor based on SoC

system architectures. A proposed implementation example, which is based

on Xilinx Zynq, has included adaptive pulse compression and adaptive pre-

distortion processing in the system. The example implementation laid out a

basic framework for future more completed SoC implementations.

(5) Designed and developed different FPGA hardware implementations for

typical adaptive pulse compression processing, i.e., LS and RMMSE.

Architectures for these implementations are analyzed; these architectures

 121

can significantly reduce the overall processing latency at the expenses of

more hardware resources.

6.2 Future Work

(1) The integration of the APC architecture with adaptive pre-distortion will

lead to a complete transceiver optimization system as shown in Figure 5-2.

This system will improve detection, and will be very useful in airborne

radars, such as the High-Altitude Imaging Wind and Rain Airborne Profiler

(HIWRAP) [135], whose backend system is based on Virtex-5 FPGA and

Power PC processor, and where strict size, weight and power constraints

are required.

(2) Place-and-route improvements to achieve maximum throughput and

reduced latencies. In addition, to reduce critical paths and achieve a higher

computing clock frequency, the insertion of registers may also be required.

(3) Implementation of an optimized version of adaptive pulse compression

with reduced matrix sizes can be considered.

(4) Other multiprocessor architectures with multiple cache levels for reducing

memory latencies should be studied.

(5) Expand the SoC architecture to support 2D-LS and 2D-RMMSE

processing and mitigate the sidelobes from both pulse compression and

antenna pattern [136].

(6) As part of the future work, two aspects that need to be taken into

consideration are the trends in the technology process of the semiconductor

 122

devices, and also how the APC processor can be interfaced with the other

elements of the system. This will be further elaborated in the following

sections.

6.2.1 Technology Trend for FPGA-Based Signal Processing

As mentioned in Chapter 1, innovations in the semiconductor technology will

allow the integration of more transistors in a single die. This scaling process will allow

the incorporation of more hardware resources in a single FPGA, which will also

improve the implementation and execution of more sophisticated radar algorithms in a

single device using not only fixed-point numbers but also floating-point

representation, and overcoming any dynamic range and scaling issues. Semiconductor

companies have been working on shrinking a die even more. To the date of this work,

the latest Xilinx’s devices, called UltraScale+, are based on the 16 nm FinFET+

technology. For instance, the new Zynq UltraScale+, known as the multiprocessing

system-on-chip (MPSoC) device, includes an application processing unit (dual-core

ARM v8-based Cortex-R5 processor), a real-time processing unit (quad-core ARM

Cortex A-53 processor), a graphic processing unit (ARM Mali-400 MP2 GPU), and

the logic fabric which is based on the UltraScale+ architecture [137]. Moreover, Altera

has introduced its new high-end FPGAs, the Stratix 10, based on the Intel 14nm

technology, which also includes a quad-core ARM Cortex A-53 processor, and

claimed to achieve up to 10 Tera FLOPS of IEEE 754 single-precision floating-point

operations. Figure 6-1 shows the hardware architecture of the new Zynq device which

includes the processing system and the programmable logic.

 123

Figure 6-1: Illustration from Xilinx. The new Zynq UltraScale+ architecture [138]

Even smaller process technologies will still be possible, as stated in the

International Technology Roadmap for Semiconductor (ITRS), which is published by

a group of semiconductor experts, in which it was projected that the 7 nm technology

will be reached by 2017, and the 5 nm technology by 2019 [139]. Up to the date of

this work, Xilinx is planning to introduce its new FPGA family based on the 7 nm

technology by 2017 [140]. However, with the increased complexity of new devices,

 124

hardware implementation of advanced algorithms will also require more sophisticated

software tools and pose bigger challenges to designers.

6.2.2 Integration of the APC processor to a Radar System

How the APC processor can be interfaced with other elements of the system is

another important topic to consider. The use of a serial transceiver has been essential

to move data efficiently within the system. A serial transceiver is generally comprised

of serializer/deserializer (SerDes), buffers, encoder/decoder, PLLs, and data flow

controllers. The new FPGAs families also incorporate more efficient and faster serial

transceivers. The maximum number of transceivers included in a Xilinx Virtex

UltraScale+ family is 128 with a speed of up to 32 Gbps per lane [137]. Figure 6-2

shows an open architecture for an airborne radar system based on the serial

transceivers which can also be extended for other radar application such as phased

array radars.

 125

Front-end
Radar

Processor
SRIO

JESD204B

HM
C

X

Memory Banks

ADCs/DCAs

JESD204B

SR
IO

SRIO

Processors
Cluster

DSP
Farms

PC
Ie

Data

Figure 6-2: A general architecture of a radar processing system based on serial

technologies.

Using a serial interface will provide some benefits such as lower number of I/O

pins, smaller package size, and lower power consumption. A typical interconnection

between ADC/DAC and FPGA has been through simple low-voltage differential

signaling (LVDS) links. However, due to the increasing bandwidth needs of new radar

applications, the new interfaces are based on multi-gigabit serial data link standard

such as JESD204B which can achieve a speed rate of 12.5 Gbps per lane. The standard

is developed by the Joint Electron Device Engineering Council (JEDEC) [141].

A similar situation can be observed when an embedded processor needs to

interface with external memory. Due to limitations in the storage capacity and speed

of the conventional double data rate memory (DDR), several serial memory

technologies have been developed such as Bandwidth Engine (BE), Ternary Content

Addressable Memory (TCAM), High Bandwidth Memory (HBM), and Hybrid

 126

Memory Cube (HMC). The HMC technology (HMC 2.0), supported by the HMC

consortium group, can use up to four 16-lane serialized links with a speed of 30 Gbps

per lane, and provide up to 320 GB/s effective bandwidth with low power

consumption [142].

Another important aspect to consider is the capacity for communicating

efficiently with other processing elements of the system. Therefore, in order to

increase the scalability, robustness and network performance of the system, several

standards based on switched serial interconnects have been utilized. Some of those

standards are Gigabit Ethernet (GbE), RapidIO (RIO) [143], PCI Express (PCIe), and

InfiniBand (IB) [144]. However, the Serial RapidIO (SRIO) standard has been

presented as a suitable technology for interconnecting elements in the backplane,

providing low latency, high reliability, and routable interconnections. This technology

is developed and supported by the RapidIO Trade Association [143]. The link width

options for SRIO Gen2 are 1x, 2x, 4x, 8x, and 16x, with five possible lane speeds:

1.25, 2.5, 3.125, 5.0, and 6.25 Gbaud; up to 10.3125 Gbaud for SRIO Gen3 and 25

Gbaud for its next generation. The implementation of Xilinx’s SRIO Gen2 IP for one

lane requires about 5650 LUTs, 6050 FFs, and 2900 Slices [145]. SRIO is generally

characterized in a three layer architectural hierarchy: physical, transport, and logical

layer. The physical layer defines the electrical connection of devices on a board or

across a backplane. The transport layer provides the route information to move packet

from end to end in the system. The logical layer defines the overall protocol and

packet format, and also initializes and completes transactions [146].

 127

Figure 6-3: Simulation of a RapidIO-based network.

A simulated RapidIO-based network is shown in Figure 6-3, using Integrated

Device Technology (IDT)‘s SRIO modeling tool [147], where the end-points EP1x

and EP2x stream data to be computed in EP31 and EP33, respectively, through the

switches (SWx). The results are then streamed to EP32.

 128

Bibliography

[1] M. I. Skolnik, Introduction to radar systems, 3rd ed. Boston: McGraw Hill,
2001.

[2] S. D. Blunt and K. Gerlach, "Adaptive pulse compression via MMSE
estimation," Aerospace and Electronic Systems, IEEE Transactions on, vol. 42,
pp. 572-584, 2006.

[3] S. D. Blunt and T. Higgins, "Dimensionality Reduction Techniques for
Efficient Adaptive Pulse Compression," Aerospace and Electronic Systems,
IEEE Transactions on, vol. 46, pp. 349-362, 2010.

[4] S. D. Blunt, A. K. Shackelford, K. Gerlach, and K. J. Smith, "Doppler
Compensation & Single Pulse Imaging using Adaptive Pulse
Compression," Aerospace and Electronic Systems, IEEE Transactions on, vol.
45, pp. 647-659, 2009.

[5] K. Gerlach, A. K. Shackelford, and S. D. Blunt, "Combined Multistatic
Adaptive Pulse Compression and Adaptive Beamforming for Shared-Spectrum
Radar," Selected Topics in Signal Processing, IEEE Journal of, vol. 1, pp. 137-
146, 2007.

[6] S. D. Blunt and K. Gerlach, "Multistatic adaptive pulse compression,"
Aerospace and Electronic Systems, IEEE Transactions on, vol. 42, pp. 891-
903, 2006.

[7] A. Tanner, S. L. Durden, R. Denning, E. Im, F. K. Li, W. Ricketts, et al.,
"Pulse compression with very low sidelobes in an airborne rain mapping
radar," Geoscience and Remote Sensing, IEEE Transactions on, vol. 32, pp.
211-213, 1994.

[8] A. Johnston, "Improvements to a pulse compression radar matched filter,"
Radio and Electronic Engineer, vol. 53, pp. 138-140, 1983.

[9] M. Richards, Fundamentals of Radar Signal Processing: McGraw-Hill, 2005.

[10] M. A. Richards, J. Scheer, and W. A. Holm. (2010). Principles of modern
radar.

 129

[11] A. B. Robert and A. Masahiro, "Computational Characteristics of High
Performance Embedded Algorithms and Applications," in High Performance
Embedded Computing Handbook, ed: CRC Press, 2008, pp. 73-112.

[12] I. R. Albert and A. B. Robert, "Radar Signal Processing," in High Performance
Embedded Computing Handbook, ed: CRC Press, 2008, pp. 113-145.

[13] G. E. Moore, "Cramming More Components Onto Integrated Circuits,"
Proceedings of the IEEE, vol. 86, pp. 82-85, 1998.

[14] Freescale, "MPC5500 Family Overview," ed, 2006.

[15] L. Collins and C. Edwards, "Head to head," Engineering & Technology, vol. 4,
pp. 38-41, 2009.

[16] Xilinx, "7 Series FPGAs Overview (DS180)," ed, 2014.

[17] Altera, "Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT,
and ROM: 2-PORT) User Guide," ed, 2014.

[18] Xilinx, "7 series FPGAs Configurable Logic Block," 2014.

[19] C. Shang-Yi, "Foundries and the dawn of an open IP era," Computer, vol. 34,
pp. 43-46, 2001.

[20] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stwart, The Zynq
Book: Embedded processing with the ARM Cortex-A9 on the Xilinx-7000 All
Programmable SoC, 1st ed.: Strathclyde Academic Media, 2014.

[21] J. R. Hauser and J. Wawrzynek, "Garp: a MIPS processor with a
reconfigurable coprocessor," in Field-Programmable Custom Computing
Machines, 1997. Proceedings., The 5th Annual IEEE Symposium on, 1997, pp.
12-21.

[22] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R. Taylor,
"PipeRench: a reconfigurable architecture and compiler," Computer, vol. 33,
pp. 70-77, 2000.

[23] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, "The Chimaera
reconfigurable functional unit," in Field-Programmable Custom Computing
Machines, 1997. Proceedings., The 5th Annual IEEE Symposium on, 1997, pp.
87-96.

[24] P. M. Athanas, "A functional reconfigurable architecture and compiler for
adaptive computing," in Computers and Communications, 1993., Twelfth
Annual International Phoenix Conference on, 1993, pp. 49-55.

 130

[25] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, et al.,
"PRISM-II compiler and architecture," in FPGAs for Custom Computing
Machines, 1993. Proceedings. IEEE Workshop on, 1993, pp. 9-16.

[26] R. D. Wittig and P. Chow, "OneChip: an FPGA processor with reconfigurable
logic," in FPGAs for Custom Computing Machines, 1996. Proceedings. IEEE
Symposium on, 1996, pp. 126-135.

[27] T. Miyamori and K. Olukotun, "REMARC: reconfigurable multimedia array
coprocessor," presented at the Proceedings of the 1998 ACM/SIGDA sixth
international symposium on Field programmable gate arrays, Monterey,
California, USA, 1998.

[28] S. Vassiliadis, S. Wong, and S. Cotöfană, "The MOLEN ρμ-Coded Processor,"
in Field-Programmable Logic and Applications. vol. 2147, G. Brebner and R.
Woods, Eds., ed: Springer Berlin Heidelberg, 2001, pp. 275-285.

[29] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti, C. De Bartolomeis,
et al., "XiSystem: a XiRisc-based SoC with reconfigurable IO module," Solid-
State Circuits, IEEE Journal of, vol. 41, pp. 85-96, 2006.

[30] Xilinx, "MicroBlaze Processor Reference Guide," Xilinx, Ed., ed, 2013.

[31] Altera, "Nios II Classic Processor Reference Guide," 2015.

[32] Xilinx, "AXI Reference Guide (UG761)," ed, 2012.

[33] H. D. Griffiths, "Design of low-sidelobe pulse compression waveforms,"
Electronics Letters, vol. 30, pp. 1004-1005, 1994.

[34] T. Ihara, K. Okamoto, T. Kozu, J. Awaka, K. Nakamura, and M. Fujita,
"Development Of Key Devices For TRMM Rain Radar," in Geoscience and
Remote Sensing Symposium, 1991. IGARSS '91. Remote Sensing: Global
Monitoring for Earth Management., International, 1991, pp. 513-516.

[35] H. D. Griffiths, L. Vinagre, and W. K. Lee, "Developments in radar waveform
design," in Microwaves and Radar, 1998. MIKON '98., 12th International
Conference on, 1998, pp. 56-76 vol.4.

[36] A. S. Mudukutore, V. Chandrasekar, and R. J. Keeler, "Pulse compression for
weather radars," Geoscience and Remote Sensing, IEEE Transactions on, vol.
36, pp. 125-142, 1998.

[37] C. E. Cook and M. Bernfeld, Radar signals; an introduction to theory and
application. New York,: Academic Press, 1967.

 131

[38] A. H. Nuttall, "Some windows with very good sidelobe behavior," Acoustics,
Speech and Signal Processing, IEEE Transactions on, vol. 29, pp. 84-91,
1981.

[39] F. J. Harris, "On the use of windows for harmonic analysis with the discrete
Fourier transform," Proceedings of the IEEE, vol. 66, pp. 51-83, 1978.

[40] E. de Witte and H. D. Griffiths, "Improved ultra-low range sidelobe pulse
compression waveform design," Electronics Letters, vol. 40, pp. 1448-1450,
2004.

[41] J. M. Kurdzo, C. Boon Leng, R. D. Palmer, and Z. Guifu, "Optimized NLFM
pulse compression waveforms for high-sensitivity radar observations," in
Radar Conference (Radar), 2014 International, 2014, pp. 1-6.

[42] J. George, N. Bharadwaj, and V. Chandrasekar, "Considerations in Pulse
Compression Design for Weather Radars," in Geoscience and Remote Sensing
Symposium, 2008. IGARSS 2008. IEEE International, 2008, pp. V - 109-V -
112.

[43] M. N. Cohen, "An overview of high range resolution radar techniques," in
Telesystems Conference, 1991. Proceedings. Vol.1., NTC '91., National, 1991,
pp. 107-115.

[44] R. L. Frank, "Polyphase codes with good nonperiodic correlation properties,"
Information Theory, IEEE Transactions on, vol. 9, pp. 43-45, 1963.

[45] B. L. Lewis and F. F. Kretschmer, "A New Class of Polyphase Pulse
Compression Codes and Techniques," Aerospace and Electronic Systems,
IEEE Transactions on, vol. AES-17, pp. 364-372, 1981.

[46] B. L. Lewis and F. F. Kretschmer, "Linear Frequency Modulation Derived
Polyphase Pulse Compression Codes," Aerospace and Electronic Systems,
IEEE Transactions on, vol. AES-18, pp. 637-641, 1982.

[47] T. Felhauer, "Design and analysis of new p(n,k) polyphase pulse compression
codes," Aerospace and Electronic Systems, IEEE Transactions on, vol. 30, pp.
865-874, 1994.

[48] J. P. Costas, "A study of a class of detection waveforms having nearly ideal
range—Doppler ambiguity properties," Proceedings of the IEEE, vol.
72, pp. 996-1009, 1984.

[49] G. Welti, "Quaternary codes for pulsed radar," Information Theory, IRE
Transactions on, vol. 6, pp. 400-408, 1960.

[50] M. J. E. Golay, "Complementary series," Information Theory, IRE
Transactions on, vol. 7, pp. 82-87, 1961.

 132

[51] Z. Li, Z. Yan, S. Wang, L. Li, and M. Mclinden, "Fast adaptive pulse
compression based on matched filter outputs," IEEE Trans. on Aerospace and
Electronic Systems, Submitted.

[52] M. H. Ackroyd and F. Ghani, "Optimum Mismatched Filters for Sidelobe
Suppression," Aerospace and Electronic Systems, IEEE Transactions on, vol.
AES-9, pp. 214-218, 1973.

[53] T. Felhauer, "Digital signal processing for optimum wideband channel
estimation in the presence of noise," Radar and Signal Processing, IEE
Proceedings F, vol. 140, pp. 179-186, 1993.

[54] R. C. Daniels and V. Gregers-Hansen, "Code inverse filtering for complete
sidelobe removal in binary phase coded pulse compression systems," in Radar
Conference, 2005 IEEE International, 2005, pp. 256-261.

[55] J. M. Lewis, S. Lakshmivarahan, and S. K. Dhall, Dynamic Data Assimilation:
A Least Squares Approach. Cambridge, UK: Cambridge University Press,
2006.

[56] S. D. Blunt and K. Gerlach, "A novel pulse compression scheme based on
minimum mean-square error reiteration [radar signal processing]," in Radar
Conference, 2003. Proceedings of the International, 2003, pp. 349-353.

[57] R. D. Fierro, G. H. Golub, P. C. Hansen, and D. P. O'Leary, "Regularization by
truncated total least squares," SIAM Journal of Scientific Computing, vol. 18,
pp. 1223-1241, 1997.

[58] J. M. Cioffi and T. Kailath, "Fast, recursive-least-squares transversal filters for
adaptive filtering," IEEE Trans. on Acoustics, Speech and Signal Processing,
vol. 32, pp. 304-337, 1984.

[59] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for
Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999.

[60] J. W. Arthur, "Modern SAW-based pulse compression systems for radar
applications. 2. Practical systems," Electronics & Communication Engineering
Journal, vol. 8, pp. 57-78, 1996.

[61] J. W. Arthur, "Modern SAW-based pulse compression systems for radar
applications. I. SAW matched filters," Electronics & Communication
Engineering Journal, vol. 7, pp. 236-246, 1995.

[62] D. P. Morgan, "History of SAW devices," in Frequency Control Symposium,
1998. Proceedings of the 1998 IEEE International, 1998, pp. 439-460.

 133

[63] M. B. N. Butler, "Radar applications of s.a.w. dispersive filters,"
Communications, Radar and Signal Processing, IEE Proceedings F, vol. 127,
pp. 118-124, 1980.

[64] MESL. (2015, Jun 18). SAW pulse compression.
Available: http://www.meslmicrowave.com/saw-pulse-compression/our-
experience/

[65] J. J. Alter, J. B. Evins, J. L. Davis, and D. L. Rooney, "A programmable radar
signal processor architecture," in Radar Conference, 1991., Proceedings of the
1991 IEEE National, 1991, pp. 108-111.

[66] Z. Xinggan and Z. Zhaoda, "A pulse compression processor implementation
with DSP for airborne pulse Doppler radar," in Digital Avionics Systems
Conference, 1994. 13th DASC., AIAA/IEEE, 1994, pp. 421-425.

[67] P. Tortoli, F. Guidi, and C. Atzeni, "Digital vs. SAW matched filter
implementation for radar pulse compression," in Ultrasonics Symposium,
1994. Proceedings., 1994 IEEE, 1994, pp. 199-202 vol.1.

[68] M. Baldanzi, P. Tortoli, and C. Atzeni, "Programmable wideband signal
generation and matched filtering through a full digital approach," in Spread
Spectrum Techniques and Applications Proceedings, 1996., IEEE 4th
International Symposium on, 1996, pp. 42-46 vol.1.

[69] R. H. Day, R. Germon, and B. C. O'Neill, "A pulse compression radar signal
processor," in DSP Chips in Real-Time Instrumentation and Display Systems
(Digest No: 1997/300), IEE Colloquium on, 1997, pp. 4/1-4/5.

[70] R. H. Day, R. Germon, and B. C. O'Neill, "A real time digital signal
processing solution for radar pulse compression," in Digital Filters: An
Enabling Technology (Ref. No. 1998/252), IEE Colloquium on, 1998, pp. 6/1-
6/5.

[71] F. Li and T. Long, "A high-speed real-time digital pulse compression system
based on TMS320C6201," in Radar, 2001 CIE International Conference on,
Proceedings, 2001, pp. 557-561.

[72] H. Wei, H. Zhiming, L. Yajing, and X. Jingcheng, "Parallel processing
algorithm study for pulse compression in general-purpose radar signal
processing system," in Communications, Circuits and Systems and West Sino
Expositions, IEEE 2002 International Conference on, 2002, pp. 953-957 vol.2.

[73] R. Andraka and A. Berkun, "FPGAs make a radar signal processor on a chip a
reality," in Signals, Systems, and Computers, 1999. Conference Record of the
Thirty-Third Asilomar Conference on, 1999, pp. 559-563 vol.1.

 134

http://www.meslmicrowave.com/saw-pulse-compression/our-experience/
http://www.meslmicrowave.com/saw-pulse-compression/our-experience/

[74] A. C. Berkun, M. A. Fischman, and E. Im, "An advanced FPGA-based
processor and controller for the Next-Generation Precipitation Radar," in
Geoscience and Remote Sensing Symposium, 2002. IGARSS '02. 2002 IEEE
International, 2002, pp. 780-782 vol.2.

[75] Y. Xie and T. Long, "Implementation of two dimensional pulse compression
based on embedded processor in FPGA," in Radar Conference, 2009 IET
International, 2009, pp. 1-4.

[76] M. Bahtat, S. Belkouch, P. Elleaume, and P. Le Gall, "Efficient
implementation of a complete multi-beam radar coherent-processing on a
telecom SoC," in Radar Conference (Radar), 2014 International, 2014, pp. 1-
6.

[77] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs: Oxford
University Press, Inc., 2009.

[78] Xilinx, "LogiCORE IP Floating-Point Operator v7.0 (PG060)," ed, 2014.

[79] J. Sklansky, "Conditional-Sum Addition Logic," Electronic Computers, IRE
Transactions on, vol. EC-9, pp. 226-231, 1960.

[80] A. D. BOOTH, "A SIGNED BINARY MULTIPLICATION TECHNIQUE,"
The Quarterly Journal of Mechanics and Applied Mathematics, vol. 4, pp.
236-240, January 1, 1951 1951.

[81] H. Yajuan and C. Chip-Hong, "A New Redundant Binary Booth Encoding for
Fast-Bit Multiplier Design," Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 56, pp. 1192-1201, 2009.

[82] C. S. Wallace, "A Suggestion for a Fast Multiplier," Electronic Computers,
IEEE Transactions on, vol. EC-13, pp. 14-17, 1964.

[83] L. Dadda, "Some Schemes for Parallel Multipliers," Alta Frequenza, vol. 34,
pp. 349-356, August 1965.

[84] A. Avizienis, "Signed-Digit Numbe Representations for Fast Parallel
Arithmetic," Electronic Computers, IRE Transactions on, vol. EC-10, pp. 389-
400, 1961.

[85] Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa, and N. Takagi, "A high-
speed multiplier using a redundant binary adder tree," Solid-State Circuits,
IEEE Journal of, vol. 22, pp. 28-34, 1987.

[86] N. Takagi, H. Yasuura, and S. Yajima, "High-Speed VLSI Multiplication
Algorithm with a Redundant Binary Addition Tree," Computers, IEEE
Transactions on, vol. C-34, pp. 789-796, 1985.

 135

[87] H. Makino, Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara, and K.
Mashiko, "An 8.8-ns 54×54-bit multiplier with high speed redundant
binary architecture," Solid-State Circuits, IEEE Journal of, vol. 31, pp. 773-
783, 1996.

[88] J. P. Elliott. (1999). Understanding Behavioral Synthesis a Practical Guide to
High-Level Design. Available: SpringerLink http://dx.doi.org/10.1007/978-1-
4615-5059-4 MIT Access Only

[89] N. Instruments. (2015, Aug. 18). SDR Hardware Products.
Available: http://www.ni.com/sdr/products/

[90] Nutaq. (2015, Aug 21). SDR Comparison Chart.
Available: http://www.nutaq.com/sdr-comparison-chart

[91] E. R. LLC. (2013). Universal Software Radio Peripheral (USRP).
Available: https://www.ettus.com/product/details/UN210-KIT

[92] Datasoft. (2015). Microburst Software Defined Radio.
Available: http://www.datasoft.com/products/microburst/index.html

[93] Nuand. (2015, May 18). BladeRF- The USB 3.0 Superspeed Software Defined
Radio. Available: http://nuand.com/

[94] A. Prabaswara, A. Munir, and A. B. Suksmono, "GNU Radio based software-
defined FMCW radar for weather surveillance application," in
Telecommunication Systems, Services, and Applications (TSSA), 2011 6th
International Conference on, 2011, pp. 227-230.

[95] S. Heunis, Y. Paichard, and M. Inggs, "Passive radar using a software-defined
radio platform and opensource software tools," in Radar Conference (RADAR),
2011 IEEE, 2011, pp. 879-884.

[96] C. Boon Leng, R. Palmer, Z. Yan, M. Yeary, and Y. Tian-You, "A software-
defined radar platform for waveform design," in Radar Conference (RADAR),
2012 IEEE, 2012, pp. 0591-0595.

[97] A. L. Pazmany, J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, "A
Mobile Rapid-Scanning X-band Polarimetric (RaXPol) Doppler Radar
System," Journal of Atmospheric and Oceanic Technology, vol. 30, pp. 1398-
1413, 2013/07/01 2013.

[98] L. Chiou-Yng and P. K. Meher, "Efficient Subquadratic Space Complexity
Architectures for Parallel MPB Single- and Double-Multiplications for All
Trinomials Using Toeplitz Matrix-Vector Product Decomposition," Circuits
and Systems I: Regular Papers, IEEE Transactions on, vol. 62, pp. 854-862,
2015.

 136

http://dx.doi.org/10.1007/978-1-4615-5059-4
http://dx.doi.org/10.1007/978-1-4615-5059-4
http://www.ni.com/sdr/products/
http://www.nutaq.com/sdr-comparison-chart
https://www.ettus.com/product/details/UN210-KIT
http://www.datasoft.com/products/microburst/index.html
http://nuand.com/

[99] M. Yuelin, Y. Yamao, Y. Akaiwa, and Y. Chunlei, "FPGA Implementation of
Adaptive Digital Predistorter With Fast Convergence Rate and Low
Complexity for Multi-Channel Transmitters," Microwave Theory and
Techniques, IEEE Transactions on, vol. 61, pp. 3961-3973, 2013.

[100] N. Sufeng, W. Sizhou, S. Aslan, and J. Saniie, "Hardware and software design
for QR Decomposition Recursive Least Square algorithm," in Circuits and
Systems (MWSCAS), 2013 IEEE 56th International Midwest Symposium on,
2013, pp. 117-120.

[101] V. Mahalingam, K. Bhattacharya, N. Ranganathan, H. Chakravarthula, R. R.
Murphy, and K. S. Pratt, "A VLSI Architecture and Algorithm for
Lucas–Kanade-Based Optical Flow Computation," Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 18, pp. 29-38, 2010.

[102] A. Abba, A. Manenti, A. Suardi, A. Geraci, and G. Ripamonti, "Non-linear
least squares fitting in FPGA devices for digital spectroscopy," in Nuclear
Science Symposium Conference Record (NSS/MIC), 2009 IEEE, 2009, pp. 563-
568.

[103] L. Boher, R. Rabineau, and M. Helard, "FPGA Implementation of an Iterative
Receiver for MIMO-OFDM Systems," Selected Areas in Communications,
IEEE Journal on, vol. 26, pp. 857-866, 2008.

[104] I. LaRoche and S. Roy, "An efficient regular matrix inversion circuit
architecture for MIMO processing," in Circuits and Systems, 2006. ISCAS
2006. Proceedings. 2006 IEEE International Symposium on, 2006, p. 4 pp.

[105] C. Dick, F. Harris, M. Pajic, and D. Vuletic, "Real-Time QRD-Based
Beamforming on an FPGA Platform," in Signals, Systems and Computers,
2006. ACSSC '06. Fortieth Asilomar Conference on, 2006, pp. 1200-1204.

[106] A. Nakajima, K. Minseok, and H. Arai, "FPGA implementation of MMSE
adaptive array antenna using RLS algorithm," in Antennas and Propagation
Society International Symposium, 2005 IEEE, 2005, pp. 303-306 vol. 3A.

[107] T. Lok-Kee, R. Woods, and C. F. N. Cowan, "Virtex FPGA implementation of
a pipelined adaptive LMS predictor for electronic support measures receivers,"
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 13,
pp. 86-95, 2005.

[108] E. N. Frantzeskakis and K. J. R. Liu, "A class of square root and division free
algorithms and architectures for QRD-based adaptive signal processing,"
Signal Processing, IEEE Transactions on, vol. 42, pp. 2455-2469, 1994.

[109] Y. Zhu Liang, S. Wee, and S. Rahadja, "QR-RLS Based Minimum Variance
Distortionless Responses Beamformer," in Acoustics, Speech and Signal

 137

Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International
Conference on, 2006, pp. III-III.

[110] P. S. R. Diniz, Adaptive Filtering, 2nd ed.: Boston : Kluwer Academic
Publishers, 1997.

[111] S. Haykin, Adaptive Filter Theory, 3rd ed.: Prentice-Hall, 1996.

[112] N. R. Shanbhag and K. K. Parhi, Pipelined adaptive digital filters. Boston:
Kluwer Academic Publishers, 1994.

[113] B. Widrow and S. D. Stearns, Adaptive signal processing. Englewood Cliffs,
N.J.: Prentice-Hall, 1985.

[114] L. Guoz-hu, L. Fuyun, and J. G. Proakis, "The LMS algorithm with delayed
coefficient adaptation," Acoustics, Speech and Signal Processing, IEEE
Transactions on, vol. 37, pp. 1397-1405, 1989.

[115] T. Kumura, M. Ikekawa, M. Yosbida, and I. Kuroda, "VLIW DSP for mobile
applications," Signal Processing Magazine, IEEE, vol. 19, pp. 10-21, 2002.

[116] N. Matsumoto, K. Ichige, and H. Arai, "Fixed-point digital processing of
recursive least-square algorithm toward FPGA implementation of MMSE
adaptive array antenna," in Signal Processing and Its Applications, 2003.
Proceedings. Seventh International Symposium on, 2003, pp. 615-617 vol.2.

[117] G. Jian-Feng, S. C. Chan, Z. Wei-Ping, and M. N. S. Swamy, "Joint DOA
Estimation and Source Signal Tracking With Kalman Filtering and
Regularized QRD RLS Algorithm," Circuits and Systems II: Express Briefs,
IEEE Transactions on, vol. 60, pp. 46-50, 2013.

[118] M. Shoaib, S. Werner, and J. A. Apolinario, "Multichannel Fast QR-
Decomposition Algorithms: Weight Extraction Method and Its Applications,"
Signal Processing, IEEE Transactions on, vol. 58, pp. 175-188, 2010.

[119] A. Elnashar, S. Elnoubi, and H. A. El-Mikati, "Performance Analysis of Blind
Adaptive MOE Multiuser Receivers Using Inverse QRD-RLS Algorithm,"
Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 55, pp.
398-411, 2008.

[120] S. D. Muruganathan and A. B. Sesay, "A QRD-RLS-Based Predistortion
Scheme for High-Power Amplifier Linearization," Circuits and Systems II:
Express Briefs, IEEE Transactions on, vol. 53, pp. 1108-1112, 2006.

[121] G. Rombouts and M. Moonen, "Fast QRD-lattice-based unconstrained optimal
filtering for acoustic noise reduction," Speech and Audio Processing, IEEE
Transactions on, vol. 13, pp. 1130-1143, 2005.

 138

[122] C. Shiunn-Jang and C. Chung-Yao, "Adaptive linearly constrained inverse
QRD-RLS beamforming algorithm for moving jammers suppression,"
Antennas and Propagation, IEEE Transactions on, vol. 50, pp. 1138-1150,
2002.

[123] M. Jun, K. K. Parhi, and E. F. Deprettere, "Annihilation-reordering look-ahead
pipelined CORDIC-based RLS adaptive filters and their application to adaptive
beamforming," Signal Processing, IEEE Transactions on, vol. 48, pp. 2414-
2431, 2000.

[124] L. Gao and K. K. Parhi, "Hierarchical pipelining and folding of QRD-RLS
adaptive filters and its application to digital beamforming," Circuits and
Systems II: Analog and Digital Signal Processing, IEEE Transactions on, vol.
47, pp. 1503-1519, 2000.

[125] K. J. Raghunath and K. K. Parhi, "Finite-precision error analysis of QRD-RLS
and STAR-RLS adaptive filters," Signal Processing, IEEE Transactions on,
vol. 45, pp. 1193-1209, 1997.

[126] S. F. Hsieh, K. J. R. Liu, and K. Yao, "A unified square-root-free approach for
QRD-based recursive-least-squares estimation," Signal Processing, IEEE
Transactions on, vol. 41, pp. 1405-1409, 1993.

[127] K. R. Liu, S. F. Hsieh, K. Yao, and C. T. Chiu, "Dynamic range, stability, and
fault-tolerant capability of finite-precision RLS systolic array based on Givens
rotations," Circuits and Systems, IEEE Transactions on, vol. 38, pp. 625-636,
1991.

[128] A. Rosado, T. Iakymchuk, M. Bataller, and M. Wegrzyn, "Hardware-efficient
matrix inversion algorithm for complex adaptive systems," in Electronics,
Circuits and Systems (ICECS), 2012 19th IEEE International Conference on,
2012, pp. 41-44.

[129] S. H. Ardalan, "Floating-point error analysis of recursive least-squares and
least-mean-squares adaptive filters," Circuits and Systems, IEEE Transactions
on, vol. 33, pp. 1192-1208, 1986.

[130] B. W. Robinson, D. Hernandez-Garduno, and M. Saquib, "Fixed and Floating-
Point Implementations of Linear Adaptive Techniques for Predicting
Physiological Hand Tremor in Microsurgery," Selected Topics in Signal
Processing, IEEE Journal of, vol. 4, pp. 659-667, 2010.

[131] J. G. McWhirter and I. K. Proudler, "A systolic array for recursive least
squares estimation by inverse updates," in Control, 1994. Control '94.
International Conference on, 1994, pp. 1272-1277 vol.2.

[132] M. Moonen and J. G. McWhirter, "Systolic array for recursive least squares by
inverse updating," Electronics Letters, vol. 29, pp. 1217-1218, 1993.

 139

[133] C. M. Rader, "VLSI systolic arrays for adaptive nulling [radar]," Signal
Processing Magazine, IEEE, vol. 13, pp. 29-49, 1996.

[134] Y. V. Zakharov, G. P. White, and L. Jie, "Low-Complexity RLS Algorithms
Using Dichotomous Coordinate Descent Iterations," Signal Processing, IEEE
Transactions on, vol. 56, pp. 3150-3161, 2008.

[135] L. Li, G. Heymsfield, J. Carswell, D. H. Schaubert, M. L. McLinden, J.
Creticos, et al., "The NASA High-Altitude Imaging Wind and Rain Airborne
Profiler," Geoscience and Remote Sensing, IEEE Transactions on, vol. PP, pp.
1-13, 2015.

[136] S. Wang, "Waveform and transceiver optimization for multi-functional
airborne radar through adaptive processin," University of Oklahoma, 2013.

[137] Xilinx, "UltraScale Architecture and Product Overview," in DS890(v2.3), ed,
2015.

[138] Xilinx. (2015, Oct. 15). Zynq UltraScale+ MPSoC Devices.
Available: http://www.xilinx.com/products/silicon-devices/soc/zynq-
ultrascale-mpsoc/silicon-devices.html

[139] ITRS. (2013). International Technology Roadmap for Semiconductors -
Executive Summary. Available: http://www.itrs.net/

[140] Xilinx. (2015, October 5). Xilinx Collaborates with TSMC on 7nm for Fourth
Consecutive Generation of All Programmable Technology Leadership and
Multi-node Scaling Advantage. Available: http://press.xilinx.com/2015-05-28-
Xilinx-Collaborates-with-TSMC-on-7nm-for-Fourth-Consecutive-Generation-
of-All-Programmable-Technology-Leadership-and-Multi-node-Scaling-
Advantage

[141] JEDEC. (2015, Aug. 18). Available: http://www.jedec.org/

[142] H. M. C. Consortium, "Hybrid Memory Cube Specification 2.0," ed, 2014.

[143] RapidIO. (2015, Aug. 18). Available: http://www.rapidio.org/

[144] InfiniBand. (2015, Aug. 18). Available: http://www.infinibandta.org/

[145] Xilinx, "Serial RapidIO Gen2 Endpoint v3.3," ed, 2015.

[146] S. H. Fuller and A. Gatherer, RapidIO : the embedded system interconnect.
Chichester, England ; Hoboken, NJ: Wiley, 2005.

[147] I. D. Technology. (2015, Aug. 15). IDT Serial RapidIO System Modeling Tool
software. Available: http://www.idt.com/products/interface-connectivity/serial-
rapidio-solutions/serial-rapidio-tools/SRIOGen2-ModelingTool

 140

http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc/silicon-devices.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc/silicon-devices.html
http://www.itrs.net/
http://press.xilinx.com/2015-05-28-Xilinx-Collaborates-with-TSMC-on-7nm-for-Fourth-Consecutive-Generation-of-All-Programmable-Technology-Leadership-and-Multi-node-Scaling-Advantage
http://press.xilinx.com/2015-05-28-Xilinx-Collaborates-with-TSMC-on-7nm-for-Fourth-Consecutive-Generation-of-All-Programmable-Technology-Leadership-and-Multi-node-Scaling-Advantage
http://press.xilinx.com/2015-05-28-Xilinx-Collaborates-with-TSMC-on-7nm-for-Fourth-Consecutive-Generation-of-All-Programmable-Technology-Leadership-and-Multi-node-Scaling-Advantage
http://press.xilinx.com/2015-05-28-Xilinx-Collaborates-with-TSMC-on-7nm-for-Fourth-Consecutive-Generation-of-All-Programmable-Technology-Leadership-and-Multi-node-Scaling-Advantage
http://www.jedec.org/
http://www.rapidio.org/
http://www.infinibandta.org/
http://www.idt.com/products/interface-connectivity/serial-rapidio-solutions/serial-rapidio-tools/SRIOGen2-ModelingTool
http://www.idt.com/products/interface-connectivity/serial-rapidio-solutions/serial-rapidio-tools/SRIOGen2-ModelingTool

Appendix - List Of Acronyms and Abbreviations

APC Adaptive Pulse Compression

AXI Advanced eXtensible Interface

AMBA Advanced Microcontroller Bus Architecture

AMPP Altera Megafunctions Partner Program

AF Ambiguity Function

ADC Analog-to-Digital Converter

APU Application Processing Unit

ASIC Application-Specific Integrated Circuit

BW Bandwidth

BRAM Block Random Access Memory

CSA Carry-Save Adder

CPU Central Processing Unit

CPI Coherent Processing Interval

CMOS Complementary Metal-Oxide Semiconductor

CLB Configurable Logic Block

C-SWaP Cost, Size, Weight and Power

DCR Device Control Register

DSP Digital Signal Processor

DSO Digital Storage Oscilloscope

DAC Digital-to-Analog Converter

DMA Direct Memory Access

EPLD Erasable Programmable Logic Device

EPROM Erasable Programmable Read-Only Memory

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

 141

FPLD Field-Programmable Logic Device

FLOPs Floating-Point Operations

FLOPS Floating-Point Operations per Second

FPU Floating-Point Unit

GPP General Purpose Processor

GPU Graphics Processing Unit

HDL Hardware Description Language

IQ In-phase Quadrature

I/O Input-Output

IC Integrated Circuit

IP Intellectual Property

IF Intermediate Frequency

IFFT Inverse Fast Fourier Transform

LS Least Square

LFM Linear Frequency Modulation

LE Logic Element

LUT Look Up Table

LUT LookUp Table

MHz Mega Hertz

MMU Memory Management Unit

MMSE Minimum Mean Squared Error

MPAR Multifunction Phased Array Radar

MAC Multiply Accumulate

NEXRAD Next Generation Weather Radar

NLFM Non-Linear Frequency Modulation

OPB On-chip Processor Bus

OS Operating System

PLL Phase-Locked Loop

PR Precipitation Radar

PS Processing System

PLB Processor Local Bus

 142

PL Programmable Logic

PLD Programmable Logic Device

PRF Pulse Repetition Frequency

QRD-RLS QR-Decomposition Recursive Least-Squares

RF Radio Frequency

RISC Reduced Instruction Set Computing

RTL Register-Transfer Level

RMMSE Reiterative Minimum Mean Squared Error

RCA Ripple-Carry Adder

SRIO Serial RapidIO

SPE Signal Processing Engine

SNR Signal to Noise Ratio

SIMD Single Instruction Multiple Data

SVD Singular Value Decomposition

SWaP Size, Weight and Power

SCU Snoop Control Unit

SDR Software Defined Radio

STAP Space-Time Adaptive Processing

SAW Surface Acoustic Wave

SDRAM Synchronous Dynamic Random Access Memory

SAR Synthetic Aperture Radar

SoC System-on-Chip

TTL Transistor-Transistor Logic

UART Universal Asynchronous Receiver/Transmitter

USRP Universal Software Radio Peripheral

UAV Unmanned Aerial Vehicle

VLIW Very Long Instruction Word

VLSI Very-Large-Scale Integration

VHDL VHSIC Hardware Description Language

XPE Xilinx Power Estimator

 143

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Chapter 1 Introduction
	1.1 Expectations of High-Performance Embedded Computing (HPEC) in Radar
	1.2 Overview of Real-Time Signal Processing Technologies
	1.3 Current State of FPGA Technology
	1.3.1 Overview of Device Technologies
	1.3.2 Design Flows
	1.3.3 IP Cores

	1.4 System on a Chip (SoC)
	1.4.1 Introduction
	1.4.2 Hardware/Software Partitioning
	1.4.3 Advanced eXtensible Interface (AXI) Interconnect Technology
	1.4.4 Evaluation Platforms

	1.5 Dissertation Outline

	Chapter 2 Adaptive Pulse Compression (APC) and Implementations
	2.1 Pulse Compression Waveforms
	2.1.1 Frequency Modulated Waveforms
	2.1.2 Phased-Coded Waveforms

	2.2 Adaptive Pulse Compression Algorithms
	2.3 Real-Time Computational Load Requirements of Pulse Compression Algorithms
	2.4 State of the Art of Pulse Compression Implementations
	2.5 Basic Considerations for Hardware Implementation
	2.5.1 Number Representation Format

	Chapter 3 FPGA Cores for Radar Signal Processing
	3.1 Optimized Adder and Multiplier Designs
	3.2 Matrix Multiplication
	3.2.1 Acceleration Using Coprocessor
	3.2.2 Design of Matrix Multiplication Coprocessor

	3.3 Matrix Inversion

	Chapter 4 FPGA implementation of Pulse Compression
	4.1 Hardware Implementation of Pulse Compression
	4.1.1 FPGA in Existing SDR platforms
	4.1.2 Radar TR Control Layer

	4.2 Architecture Design and Analysis for Real-Time Pulse Compression Circuitry
	4.3 FPGA Device Implementations of Real-Time Pulse Compression
	4.3.1 Hardware Resource Utilization
	4.3.2 Test and Validation Platforms

	4.4 Experiment Results
	4.4.1 System Outputs for Basic PC Waveform
	4.4.2 Real-Time Pulse Compression for Random Waveform
	4.4.3 Impact of Waveform Template Generation Scheme and Timing Misalignment

	4.5 Conclusions

	Chapter 5 SoC Implementation of an Adaptive Radar Processor
	5.1 Literature Review: Implementation of Traditional Adaptive Filters
	5.2 System-on-Chip (SoC) Implementation of APC
	5.3 LS-APC Multi-Coprocessor Architecture
	5.4 Single LS-APC Processor
	5.5 LS implementation based on Floating-Point Data Format
	5.6 RMMSE-APC Co-Processor Architecture
	5.7 Summary

	Chapter 6 Conclusions
	6.1 Achievements
	6.2 Future Work
	6.2.1 Technology Trend for FPGA-Based Signal Processing
	6.2.2 Integration of the APC processor to a Radar System

	Bibliography
	Appendix - List Of Acronyms and Abbreviations

