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NOMENCLATURE 

A - matrix 

A - area of piston 

~ - vector of nonlinear functions 

B - matrix of nonlinear functions 

b - viscous damping 

Ct - coefficient of leakage 

~ - vector of nonlinear functions 

£ - vector of Coriolis forces 

D(d) - diagonal matrix 
d 

d - differential operator, 
dt 

E - matrix 

g - error vector 

F1 - nonlinear function 

i - vector of nonlinear functions 

g - acceleration due to gravity 

g - vector of gravitational forces 

h - scalar field 

I - inertia of links 

i - servovalve current 

J - inertia matrix 

JN - cost function 

L h - Lie derivative of h 
[ • 1 • J 
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1 - length of links 

M - mass of piston 

N - number of inputs 

m - mass of links 

mL - mass of payload 

ni - degree of subsystem i 

Ps - supply pressure 

P1 - load pressure drop across cylinder 

P - covariance matrix 

p - pole of first order filter 

Q - flow rate 

g 1 - sampled value of D(d}y_ 

s - Laplace transform operator 

§ - vector function 

T - transformation matrix 

ts - sampling time 

1 - vector function 

y - input vector 

V - cost function 

Vt - volume of fluid under compression 

y - reference input 

dn-1" N - vector of ~ 

x - state vector 

X* - desired state vector 

x 1 - conversion of reactant 1 to reactant 2 

x 2 - dimensionless reactor temperature 

x - velocity 

xi 



y - output vector 

Yd - desired output vector 

z - z-transform operator 

i3 - bulk modulus 

ri - matrices of state feedback gains 

'Y - parameter 

.Ll - parameter 

~ - regressor vector 

~ - manipulator position vector 

~d - desired position vector 

0 - parameter vector 

A - forgetting factor 

A - parameter 

ro - exponential time decay constant 

~ - damping factor 

p - parameter 

wn - natural frequency 

A - denotes estimated values 
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CHAPTER I 

INTRODUCTION AND SUMMARY 

The very high performance required over wide operating 

ranges in many control applications has, in recent years, 

led to the development of nonlinear controllers for systems 

with known dynamics and adaptive controllers for linear 

systems with time varying parameters and constant, unknown 

parameters. The adaptive control of nonlinear systems with 

unknown dynamics is an area of current research activity. 

Statement of the Problem 

The adaptive feedback control of multi-input, multi­

output, linear-in-control, nonlinear systems with unknown 

dynamics is the subject of this study. Such systems occur 

naturally in many applications such as robotics and 

aircraft controls. 

The emphasis was on two very important aspects of 

adaptive control of nonlinear systems: minimization of the 

number of estimated parameters and the tracking of rapidly 

varying quantities. 

The problem considered involves the adaptive pole­

placement control of nonlinear systems of the form 

1 



where 

and 

J(y) D(d) y + ~(¢(d)y) = y 

~ E Rm, an unknown nonlinear function 

J E Rmxm, an unknown nonlinear matrix function 

d = differential operator, djdt 

D(d) = diag. {dni} i = 1,2, ... ,m 

ni = degree of the i-th diagonal element of D 

m = number of inputs = number of outputs 

y E Rm, input vector 

y E Rm, output vector 

I 

di 
¢(d) = 

2 

(1.1) 

The dynamic system described by Eq. (1.1) is a multi-input, 

multi-output system. Since the nonlinear functions ~ and J 

contain unknown quantities, the need for adaptive control 

arises. 

The following assumptions were made regarding the 

system (1.1): 

1. the degrees (ni's) of the sub-systems are known; 

2. the functions~ and J are analytic; and 

3. J(y) * 0 for ally 

A knowledge of the degrees of the sub-systems is essential 

for the pole-placement compensation scheme. A study of the 



uncertainty in the order of the sub-systems is beyond the 

scope of this study. 

The assumption regarding the analycity of the 

functions is essential from the view of the pole-placement 

compensation of nonlinear systems. The function J has to 

be inverted to obtain the input to the nonlinear system. 

Hence, J(y) is assumed to be non-singular. 

Objective of this study 

3 

The objective of this study was to develop an adaptive 

pole-placement control algorithm for nonlinear systems 

governed by Eq. (1.1). To meet this objective, it was 

necessary to develop on-line estimation methods for the 

unknown nonlinear functions ~ and J which minimize the 

number of estimated parameters. The criterion of 

performance for the estimation methods was established to 

be the ability of the adaptive pole-placement algorithm to 

overcome poor estimates of ~ and J and still produce good 

steady-state and dynamic performance. 

Exact Feedback Linearization 

A pole-placement scheme can be devised for nonlinear 

systems of the form (1.1) by using a method known as exact 

feedback linearization (Somer, 1980). The input for such a 

scheme is given by: 

y = ~ + Jy ( 1 . 2 ) 
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where 

( 1. 3) 

The ['s are chosen to yield the location of the closed-loop 

poles according to the characteristic equation 

JD(d) + fn_ 1 dn-1 + ... + f 0 J = 0 ( 1. 4) 

The method depends on complete knowledge of the nonlinear 

functions. If some parameters in the function f are 

unknown, the feedback linearization approach fails since f 

cannot be calculated explicitly. Further, when there is a 

mismatch between the actual and estimated values of f, a 

steady-state error is introduced which may not be overcome 

by the location of the poles alone. Illustrative examples 

are given in Chapter v. 

Adaptive Pole-Placement Algorithm 

The problem resulting from mismatch may be overcome by 

using an adaptive pole-placement scheme, which is achieved 

by replacing the actual values of f and J in (1.2) with 
A A 

their estimated values f and J. The input to the 

system is modified as: 

A A 

y = f + Jy (1.5) 

A A 
The values of f and J are estimated on-line. A brief 

description of the estimation schemes evaluated in this 
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study is given in this chapter and a detailed discussion is 

provided in later chapters. 

In this study, the function f was considered unknown. 

Recursive estimation schemes based on expanding f in a 

Taylor's series in terms of the state variables ¢(d)y and 

estimation of the coefficients of the series may result in 

a large number of coefficients being estimated. The number 

of coefficients depends on the number of state variables as 

well as on the order of the truncated Taylor's series. 

The first goal of this study was to reduce the number 

of parameters that must be estimated. To accomplish this 

goal in the estimation of f, the following differential 

equation model for f was used 

f = N(t) (1.6) 

where N(t) is a vector of random variables. An on-line 

integral feedback estimation method was devised based on 

this model, which eliminates the steady-state error due to 

a mismatch in the estimation of f. The function f can be 

estimated using an integral feedback approach as follows: 

' A Integration of (1.7) provides the est1mate of f. The 

characteristic equation (1.4) is modified to accommodate 

the estimated value as: 

ld (D(d) + r (d)) + r_ 1 i 0 (1.8) 
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This method is referred to as the modified pole-placement 

method. For very quick error reduction between the actual 

and desired output, f_ 1 should be as high as possible. The 

highest value of r_1 is constrained by equation (1.8). 

This method of estimating ~ works very well for step inputs 

as well as for smooth inputs. When square wave inputs are 

used, the performance is poor. 

The second goal of this study was to develop a 

control algorithm which provides for tracking of rapidly 

varying quantities; that is, a high performance estimator 

is needed. A steepest gradient algorithm should perform 

better than the integral feedback algorithm of (1.7) and 

(1.8). In this case, equation (1.7) is replaced by: 

(1.9) 

where 

§ = D(d)y -J-1 [y - f] (1.10) 

The steepest gradient algorithm remains alert to changes in 

~ over long periods of time and is also easy to implement. 

D(d)y is estimated using numerical differentiation. 

The matrix J-1 in (1.10) is estimated using the 

recursive least squares (RLS) algorithm or its variant, the 

exponentially weighted least squares (ELS) algorithm. The 

recursive least squares algorithm converges fast but does 

not track time-varying quantities. The exponentially 
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weighted least squares algorithm, though somewhat slower in 

convergence, tracks time-varying quantities well. 

The theory of nonlinear transformations used to obtain 

the input (1.2) is discussed in Chapter III. The use of 

nonlinear transformations highlights the reasons why f and 

J should be analytic. 

The methods described in this section were applied to 

two example problems: a two-link manipulator with revolute 

joints and an electrohydraulic velocity control system with 

a nonlinear load. The two-link manipulator has two inputs 

and two outputs and hence is considered to be a multi­

input, multi-output system. The electro-hydraulic velocity 

control system is a single-input, single-output system. 

The dynamic equations for these systems are of the form 

(1.1). Studies were conducted through computer 

simulations. 

Example Problem: Manipulator 

A two-link manipulator in which the links are of equal 

length and geometry was considered. The load at the end of 

the manipulator was assumed to be unknown. The formulation 

of this problem is presented in Chapter v. 

Pole-placement compensation using the exact 

linearization approach of Somer (1980} performed very well 

when all the functions and parameters were known. When 

some of the parameters were not known, this approach 

performed poorly. To illustrate the disadvantages of exact 
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linearization when some parameters were unknown, the load 

at the end of the manipulator was assumed to be zero when 

it actually was not. The presence of this uncertainty in 

the load introduced a steady-state error when a step-input 

was applied to the second joint with the first joint fixed. 

To improve the steady~state performance, the modified 

pole-placement method (equations (1.7) and (1.8)) developed 

in this study was used. The steady-state error was 

eliminated. This method performed very well for smooth 

inputs. When square wave inputs were applied to both 

joints, the performance of the modified pole-placement 

scheme was poor because the nonlinear functions ~ were not 

estimated quickly. 

The use of the steepest gradient algorithm alleviated 

the problem associated with slow estimation of ~. The 

steepest gradient algorithm performed very well for both 

smooth and square-wave inputs. 

The matrix J, which corresponds to the inertia matrix 

for the manipulator, varies with the angle of the second 

link. The recursive least squares (RLS) algorithm did not 

track this variation in the values of the inertia. The use 

of the ELS algorithm mitigated this difficulty. 

The values of D(d)y in equation (1.10) were obtained 

by numerical differentiation from the next lower 

derivatives. The performance of the numerical 

differentiation in the presence of noise was very poor. 

The use of a filter reduced the effects of the noisy 
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measurements. The trade-offs involved in filter selection 

are discussed in Chapter V. 

Example Problem: Electrohydraulic 

Velocity Control System 

The electrohydraulic velocity control system 

considered is modeled as second-order in the velocity with 

nonlinear coefficients that are dependent on the velocity 

and the fluid bulk modulus. The load on the system is 

nonlinear in the velocity. Air entrapment in the system 

and air entrainment in the hydraulic fluid result in 

considerable uncertainty in the effective value of the bulk 

modulus of the fluid. Typical values of bulk modulus 

encountered in practice vary between 1.372 X 108 Njm2 

(20,000 psi) and 1,715 X 10 3 Njm2 (250,000 psi). In this 

example, the value of the bulk modulus was considered 

unknown. The formulation of the problem is described in 

Chapter V. 

A conventional PID controller was designed for a bulk 

modulus value of 6.86 X 108 Njm2 (100,000 psi) to satisfy 

the ITAE criterion (D'Azzo and Houpis). This bulk modulus 

value is approximately in the middle of the range of 

variations of the bulk modulus. The performance of this 

PID controller is good at the design value of 6.86 X 108 . 
Njm 2 (25,000 psi) but is not good at bulk modulus values of 

1.715 X 108 N/m2 and 13.12 X 108 N/m2 . Since it is not 



possible to predict the value of the bulk modulus exactly, 

the need for adaptive control arises. 

10 

An adaptive controller using the steepest gradient 

algorithm for estimation of 1 and the recursive least 

squares algorithm for estimation of J-1 was developed for 

this system. The adaptive controller performed well over a 

range of values of bulk modulus. Detailed results are 

presented in Chapter v. 



CHAPTER II 

BASIS FOR STUDY 

Background 

There are many approaches for designing controllers 

for systems with nonlinear dynamics. The most common 

approach is to linearize the system about a nominal 

operating point and design a linear controller for the 

linearized system. This approach provides a design that 

has a limited operating range. That is, if the operating 

,point strays too far from the nominal point, the system 

performance could be adversely affected. 

A less common approach is to approximate the input­

output characteristics of the nonlinear system with 

sinusoidal input describing functions and to design a 

linear controller for the approximate characteristics. 

While this approach produces a design with a somewhat 

expanded operating range, the result often is not 

sufficient. 

Motivated by these concerns, two different approaches have 

been attempted in recent years. One approach used the 

simultaneous stabilization theory (Vidyasagar, 1982). 

Taylor (1983) and Nassirharand, et al. (1988) have used 

this theory and describing functions to find a class of 

11 
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linear compensators that satisfy a particular set of 

performance criteria at multiple nominal operating ranges. 

The approach has the drawback that it produces compensators 

with orders very much higher than that of the plant. Model 

reduction techniques have to be used to approximate the 

compensator. The design method is carried out off-line. 

Another approach is to find nonlinear transforms that 

globally linearize the nonlinear systems for any given 

operating point; a nonlinear controller that satisfies 

linear control performance specifications is synthesized. 

Somer (1980) proposed a method that transforms a nonlinear 

system of the form 

. 
~ = .£(~) + B(~)g ( 2. 1) 

to a phase-variable canonical form. 

The terms in ( 2. 1) are defined as 

Z E Rn is the state vector 

!,! E Rm is the input vector 

..£ E Rn is a vector of nonlinear functions 

l2 E Rnxm is a matrix of nonlinear functions 

A pole-placement feedback controller is designed in the 

transformed domain and transformed back to the original 

domain. Certain integrability conditions have to be 

satisfied for the inverse transform to exist. 

Hunt, et al. (1983) proposed a global linearization 

procedure about the origin that transforms a nonlinear 

system into a linear one over the whole state space. They 
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obtained conditions for the existence of the transform. 

This method was generalized by Reboulet and Champetier 

(1984) whose "pseudolinearization" procedure transforms the 

nonlinear system into a linear one over the whole state 

space for any given operating point. The method consists 

of linearizing the system about a general operating point 

and transforming the system into a linear controller form 

as in Kailath (1980). The linear transform is then 

integrated to obtain a nonlinear transform. The 

transformed canonical system has the same characteristic 

equation as the locally linearized system. 

A similar idea has been used by Baumann and Rugh 

(1986) to develop an "extended linearization" procedure 

which finds the feedback gains using Ackermann's formula 

and then integrates the gains to find the nonlinear input 

to the system. These ideas of global linearization are 

summarized in Zak and MacCarley (1986), who also proposed a 

non-unique partial linearization procedure which improves 

the performance of the system. 

The global linearization methods require exact 

knowledge of the nonlinear functions and parameters. When 

unknown parameters are considered, constructing the 

linearizing transforms becomes a very difficult task (Nam 

and Arapostathis, 1987). Further, the computation of the 

nonlinear functions may turn out to be too complicated for 

on-line implementation. These considerations form the 

basis for the development of an adaptive pole-placement 



feedback controller. The motivation for considering 

nonlinear systems with unknown functions or parameters is 

provided later in this chapter. 

The general type of nonlinear system for which the 

methods of this study are applicable is described by Eq. 

(2.1). This type of nonlinear system occurs naturally in 

many situations. They arise in aircraft control (Su and 

Hunt, 1984), open loop robotic manipulators (Nam and 

Arapostathis, 1987), as well as in radar tracking (Bowles 

and Cartreli, 1983). 

The specific type of nonlinear system considered in 

this study is a sub-class of (2.1) and is described by: 

14 

J(y) D(d) y + i(~(d)y) = y ( 2. 2) 

where 

i is an unknown nonlinear function 

and J is an unknown matrix function. 

Available Methods 

For the case of unknown i and J, the "pseudo­

linearization" procedure of Reboulet and Chempetier (1984) 

and the "extended linearization" procedure of Baumann and 

Rugh (1986) provide possible ways of finding the unknown 

transform. The unknown functions could be assumed to be in 

Taylor's series form and the unknown coefficients of the 

Taylor's series could be estimated on-line. In the 

development of an adaptive control procedure for multi­

input, multi-output systems, it is desirable to minimize 
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the number of parameters that must be estimated on-line 

(Elliott and Wolovich, 1983). The drawback of trying to 

apply the "pseudo-linearization" and "extended 

linearization" procedures to estimate the unknown f and J 

is that a large number of parameters must estimated on-

line. For example, if Baumann and Rugh's "extended 

linearization" procedure is used, then approximately 

m 
~ (n2i (i2+1)) 

i=1 

parameters must be estimated on-line. 

Another characteristic of the type of nonlinear system 

considered is the rapid change in the quantities~ and J. 

Chen and Norton (1987) describe various techniques for 

tracking rapid parameter changes. The methods are 

basically of the recursive least squares (RLS) type with 

modifications to detect parameter changes. Fortescu et al. 

(1981) proposed a "variable forgetting factor" scheme in 

which the weighting in the Recursive Weighted Least Squares 

(RWLS) method is adjusted so that old data is discarded in 

an orderly manner. This method does not distinguish 

between errors caused by large variations in parameters and 

a large noise level. 

Anderson (1985) has proposed a Bayesian update method 

for "adaptive forgetting through multiple models" (AFMM) in 

which several parameter models with different probability 

densities are averaged to provide a single model parameter 



estimate. The number of estimated parameters increases 

linearly with the number of models used. 

16 

Isaksson (1987) proposed an adaptive Kalman filtering 

technique in which _knowledge about likely variations of the 

parameters is assumed. Zheng (1987) and Xianya and Evans 

(1984) proposed methods based on Taylor's series expansion 

of the time-varying terms and co-variance resetting. The 

likely variations in parameters are characterized by the 

second moment or co-variance matrix. 

Motivation 

In practical situations, it is not possible to obtain 

the values of every relevant parameter exactly. In such a 

case, the linearizing transforms and describing function 

methods fail to provide a satisfactory solution. It may 

also not be possible to measure the values of the 

parameters on-line. 

As an example, consider the two-link manipulator shown 

in Figure 1 (Appendix) . It consists of two links of 

similar geometry having rotary joints about the same axis 

and carrying an unknown payload at its end. The dynamics 

of the manipulator is dependent on the payload. Hence, for 

control of the manipulator using any of the global 

linearization methods, an accurate estimate of the payload 

is essential. A method for measuring the mass of the 

payload on-line has been suggested by Paul (1981, pp. 225-

9) under the assumption that the center of mass of the 
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payload coincides with the center of the end-effector. For 

a two-link manipulator, this is equivalent to the center of 

mass of the payload being at the tip of the second link. 

This assumption may not be valid under all circumstances. 

Since the mass of the payload enters the dynamic equations 

in a nonlinear manner, the assumption that the functions 

are linear in the unknown parameters is also invalid. 

Youcef-Toumi, et al. (1987) discuss a method to adaptively 

control manipulators having unknown dynamics. 

Another example arises in the modeling of a continuous 

stirred tank reactor (CSTR) . Reactants produce an 

exothermic reaction. The heat of reaction is removed by a 

coolant flowing in the surrounding jacket (Figure 2, 

Appendix) . On the assumption that the flow rate in is 

equal to the flow rate out, the mathematical model could be 

stated as follows (Ray, p. 7 and Stephanopoulos, pp. 59-

64) : 

where 

x 1 = conversion of product 1 to product 2 

x 2 = dimensionless reactor temperature 

~,A,p and ~ are parameters 

u = jacket coolant temperature (input) 

(2.3) 

(2.4) 



d 1 disturbance in feed reactant concentration 

d 2 = disturbance in feed temperature 

The parameter A is dependent on the activation energy and 

cannot be determined accurately. The margin for error in 
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estimating the value of A is about 25 percent and its value 

affects the stability of the equations. Thus, one is faced 

with the situation of having to estimate uncertain 

nonlinear parameters. 

A third example is the electrohydraulic velocity 

control system subjected to unknown disturbances (Yun and 

Cho, 1988) . A schematic of the control system consisting 

of a servovalve and a cylinder driving a load is shown in 

Figure 3 (Appendix). The load F1 is a nonlinear function 

of the velocity x and the control objective is to make the 

velocity follow a desired trajectory. 

The mathematical model for this system is: 

MD 2x + BDx + afjax Dx + ~ A2x = ~ A[KiV(Ps-P1 )-CtP1 J 
vt vt (2.5) 

Equation (2.5) is a second-order differential equation in 
. 

the velocity x and the coefficients are nonlinear functions 

of x and its derivatives. The parameter ~ is seldom known 

accurately. 

These three examples illustrate cases of nonlinear 

systems in which the models have coefficients which are 

rapidly varying and cannot be determined accurately 
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beforehand. In such cases, an adaptive control approach is 

likely to be preferable over a non-adaptive approach. 



CHAPTER III 

THEORETICAL DEVELOPMENT 

Very high performance control systems are developed 

using the exact linearization method on the assumption that 

all functions and parameters are known. Exact 

linearization is achieved through the use of linearizing 

transforms and output feedback. It may not be possible to 

determine the linearizing transforms if some parameters of 

the nonlinear functions are not known. However, the input 

determined through the use of linearizing transforms is 

useful in adaptive control. The theory of the linearizing 

transforms as well as effect of unmodeled dynamics on the 

exact linearization method are discussed in this chapter. 

The adaptive pole-placement control algorithm developed in 

this study is outlined. 

Linearizing Transforms 

In this section, a method for global feedback 

linearization which is directly applicable to the system 

under consideration is presented. The theory given by Zak 

and Maccarley (1986) for the global linearization of 

nonlinear systems is summarized. The linearization aspect 

20 



leads to the pole-placement control law. A nonlinear 

system is considered which is described by: 

where 

.9:(:~) + B(~)y(t) 

Y. = £(~) 

~ E Rn, a state vector 

.9:(~) E Rn, smooth functions of ~ 

B(~) E Rnxm, smooth matrix functions of ~ 

£(~) E Rm, smooth vector functions of ~ 

y E Rm, the input vector 

y E Rm, the output vector 
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( 3 .la) 

( 3. lb) 

It is desired to transform this system (3.1), to a globally 

state equivalent linear system 

•* * ~ = A~ + Dy ( 3 • 2) 

where 

~* E Rn, the new state vector 

(A,E), a controllable pair 

y E Rm, the new reference input 

Notation: 

For two vector functions g and ~ E Rn, the Lie bracket 

[g,~] is defined by: 
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.§. -
ax ax 

The Lie bracket is also denoted by: 

The Lie derivative of a scalar field h with respect to a 

vector field .§. is: 

The Lie derivative is also denoted as: 

A useful result is: 

or 

<dh,[.§.,.t]> = <d<dh,.t>,§.>- <d<dh,,e>,.t> 

Under the assumption that 

LbiL~c = 0, k = O,l, ... ,ni -1 

the transformation, 
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n-1 T(K) = [£, La£, ... ,La £] (K) ( 3 • 3) 

and the input, 

( 3. 4) 

applied to the system (3.1) leads to (3.2). 

As pointed out in Chapter II, the system of equations 

considered in this study are of the form: 

J(y)D(d)y + f(¢(d)y) = g(t) ( 3 • 5) 

The orders (ni) of all subsystems are assumed to be equal. 

This implies that all the assumptions are satisfied and 

( 3 • 6) 

The input to the system is: 

g = 1 + Jy ( 3. 7) 

The reference input y is chosen as: 

+ r 0 (yd(t)-y(t)) = f(d) (yd- y) (3.8) 

where yd is the desired output vector. The closed loop 

characteristic equation is: 

IS(d) I = ID(d) + f(d) I = 0 ( 3. 9) 
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With the control law (3.7), the closed loop system is 

globally feedback equivalent to: 

S(d)y(t) = f(d) yd(t) (3.10) 

Effects of Unmodeled Dynamics 

In the previous section, the nonlinear functions i and 

J in (3.5) are completely compensated by the nonlinear 

feedback (3.7). No effort is made to account for the 

difference between the estimated values and the actual 

values of the nonlinear functions. The actual values could 

include unmodeled dynamics and such dynamics could 

seriously affect the performance of the system. 

"' "' Let J and i denote the estimated values of J and i 

respectively. The input to the system is: 

"' "' y = i + Jy ( 3 • 11) 

Substituting (3.11) into (3.5), the actual dynamics of the 

system under this control law is: 

(3.12) 

where 

-
i 

A 

i - i (3.13) 



25 

An analysis of the transients is very difficult. In the 

steady-state, the error is dependent on f, the difference 

between the actual and computed values of f. Since this 

method is based on exact compensation of i, either f 0 has 

to be very high or the nonlinear functions have to be 

estimated on-line. Some estimation schemes for i and J are 

discussed in Chapter IV. 

Modeling 

In case some parameters of the function f(~(d)y) are 

unknown 1 the feedback linearization approach fails 1 since 

the linearizing functions cannot be calculated explicitly. 

If the functions are linear in the unknown parameters, then 

it is possible to devise a method to estimate the unknown 

parameters on-line. such a scheme for estimation and 

control is developed by Nam and Arapostathis (1987). But, 

as explained in Chapter II, it may not be possible to 

express the nonlinear functions as linear in the unknown 

parameters. In such a case 1 the entire nonlinear function 

may have to be treated as unknown. 

Consider the case when i in (3.5) is unknown. 

Following Baumann and Rugh (1986), the functions i may be 

expanded in Taylor's series in terms of the state variables 

(~(d)y). The coefficients of the expansion could be 

considered unknown and a recursive estimation scheme 

devised to estimate the unknown coefficients. Depending on 



the order of the truncated Taylor's series, a large number 

of coefficients may have to be estimated. 
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A convenient method of reducing the number of 

parameters, that is commonly used for linear time-varying 

systems, is to assume differential equation models for the 

unknown parameters or functions. The differential equation 

model in this case is of the form: 

f = Gf + ~(t) (3.14) 

where ~(t) is a white noise process. Often G is taken to 

be zero and the noise w(t) introduces uncertainty about the 

consistency of f (Mendel, 1987). When G = o, (3.14) is of 

the form: 

f(t) = ~(t) (3.15) 

and only a few parameters are estimated on-line. 

A Modified Pole-Placement Scheme 

An evaluation of equation (3.12) shows that any 

mismatch in the computation of I leads to steady-state 

errors. An on-line estimation scheme to minimize the 

steady-state errors in the presence of such a mismatch is 

detailed in this section. A modified pole-placement scheme 

based on this estimation along with its limitations is also 

discussed in this section. 

Again looking at equation (3.12), if the estimation of 

I is tied to the error between the desired and actual 
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output values, then the steady-state error due to the 

mismatch in I can be eliminated. Such an estimator for I 

is given by: 

. 
i = J-1 r_1 <Yd - Y> ( 3. 16) 

• A The est1mate I obtained from this equation is then used 

as part of the control input to the system. The nonlinear 

functions I are not explicitly calculated on-line. 

Instead, integration of equation (3.16) provides the 

• A est1mates of 1_. 

In order to establish the selection of r_1 and its 

effects on the speed of convergence, let ~ = ¢(d)y denote 

the states of the system (3.5) under the influence of the 

control input (3.11). Then 

where 

A= diag {Ai} i = 1,2, ... ,m 

A· = l 

0 1 0 • 0 

0 0 1 0 0 E Rnixni 

1 

0 . . . . . . 0 

i = 1, 2, .... ,m 

i = 1,2, ..... ,m-1 

(3.17) 
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B1m = J-1 

B2 = col [B2iJ i = 1,2, . . 'm 

B2i = 0nixm i = 1,2, . . . , m-1 

B2m = J-1 .J-1 

Augmenting (3.16} with (3.17}, the combined system of 

equations is given by: 

where 

and OJ E Rmxn 

Ideally, f_ 1 should be as high as possible in order to 

quickly follow any mismatch between the desired output and 

the actual output. The highest value of r_1 is constrained 

by (3.18}. The characteristic equation for the augmented 

system (3.18} is given by 

ld(D(d) + f(d))+ r_1 i = o (3.19} 

The gain f_ 1 is also included in the characteristic 

equation. This leads to a constraint on f_ 1 that is 

similar to the stability problem using integral feedback 

for disturbance rejection in linear systems (Kailath, 1980} 

Equation (3.19} is the modified pole-placement scheme. 
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The effect of a mismatch in the estimated and the 

actual values of J affects only the transient performance 

of the system. A more elaborate scheme than the simple 

integral feedback scheme that is used for i is needed. The 

least squares scheme discussed in the next chapter is used 

for the estimation of J. 

Adaptive Pole-Placement Control 

The use of on-line estimation schemes for i and J and 

the application of these estimated values in the control 

law (3.11) along with the pole-placement equations (3.9) 

and (3.19) lead to an adaptive pole-placement controller. 

When the integral feedback is used as the estimator for f, 

(3.19) is used as the pole-placement equation to ensure the 

stability of the system. 

When faster convergence of i to the true value is 

desired, an estimation scheme like the gradient algorithm 

described in the next chapter could be used. In such a 

case, (3.9) is used for pole-placement. 

In the integral feedback scheme, the output converges 

only when the estimated value i converges to the true 

-value. In (3.12), when t~i, t~o and yd~y since D(d)y-o. 

-The rate of convergence of f~O may not be satisfactory in 

the case of varying f. 

The gradient algorithm and the recursive least squares 

algorithm and their properties and application to equation 

(3.5) are described in the next chapter. 



CHAPTER IV 

ESTIMATION METHODS 

The various parameter estimation methods used to 

• A 1\. I • 

estimate the funct1ons f and J 1n equat1on (3.11) are 

presented in this chapter. The steepest gradient algorithm 

• I • A 

1s used for est1mat1ng f and the recursive least squares 

(RLS) ·and exponentially weighted least squares (ELS)" 

algorithms are used for estimating J-1 . A ' ' J 1s obta1ned 

by the inversion of J-1 . The selection criteria for the 

gains of these algorithms are also provided. 

Steepest Gradient 

Suppose the parameters to be estimated are related to 

the system output as: 

Y = eT (t) met) ( 4. 1) 

where e represents the parameters, m(t) represents the 

inputs and y represents the outputs. The parameter 

"' estimates E>(t) must minimize a cost function of the form: 

( 4. 2) 

30 
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Let g denote the error vector introduced by not using the 

actual parameters, that is: 

(4.3) 

Then, (4.2) can be written as: 

(4.4) 

A 

Minimizing (4.4) with respect to 0, 0 must satisfy: 

av A [ a2v] + [0-®]T = 0 
ae ae2 

( 4. 5) 

Solving (4.5) for 0, 

A [ a2v rl av 
e = e -

ae2 ae 
( 4. 6) 

A 

e is the old estimate and e is the new estimate. 

For the steepest gradual algorithm, the Hessian matrix 

[ ::: ] 
is replaced by a constant 2/k. From (4.4) and (4.3), 



av 
ae = kg 
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= kecb'i' ( 4 0 7) 

For continuous time systems, equation (4.6) can be 

rewritten as: 

(4.8) 

A selection criterion for k is: 

2 
0< k < 

The steepest gradient algorithm exhibits superior 
/\ 

performance in the sense e has better global convergence 

than other algorithms. However, it converges very slowly 

in the vicinity of the minimum (Sorenson, p. 66). The 

algorithm is alert to variations in e with time as any 

error introduced is due to the wrong estimate of 0 and k is 

a constant. This property is useful for estimating the 

nonlinear function i in (3.5). The nonlinear functions 

vary with time and the algorithm needs to estimate i for 

any value. 

Recursive Least Squares 

Another parameter estimation method that is commonly 

used for systems of the type (4.1) is the recursive least 

squares algorithm. The algorithm involves updating the 

parameters as well as a related covariance matrix. Since 
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the estimation method is carried out on-line and it is not 

desirable to integrate too many quantities on-line, a 

discretized version of the method is presented. 

For a multi-output system, the output y is an m-

vector, the regressor ili is an n-vector and the parameter 

matrix 0 is of order n x m. The parameters are estimated 

by minimizing the following cost function: (Goodwin and 

Sin, p. 94) 

A N 
= 1/2 ~ (y- 0T ili)T (y- 0T ili) 

i=1 

A 

( 4. 9) 

The estimate 0 (N) is obtained by differentiating (4.9) 

with respect to 0, setting the derivative equal to zero and 

solving the resulting equation. 

N 
= - ~ (y - 9T ili) iliT 

i=1 
= 0 

e (N) = [ ~N ili(i)iliT (i)] - 1 ~Nili (i) YT (i) 
i=1 i=1 

A 

To obtain a recursive solution, consider 0 (N - 1) 

A 

0 (N-1) 

Defining, 

N-1 
= [ ~ 

i=1 

N 

N-1 
m <i>mT <i>J-1 ~ m<i> YT <i> 

i=1 

P-1 <N> ~ m<i> mT <i> 
i=1 

( 4. 10) 

(4.11) 

( 4. 12) 

(4.13) 



equation (4.11) can be rewritten as: 

/\ 

8(N) 
N-1 

= [P-1 (N-1) + ili (N) iliT (N)]-1 [ L 
i=1 
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( 4. 14) 

( 4. 15) 

Using the matrix inversion lemma, 

P(N-1) ili(N)iliT (N) P(N-1) 
= P(N-1) - (4.16) 

1 + mT (N) P(N-1) m(N) 

/\ N-1 
8(N) = p-1 (N) [Lm (i) YT (i) + m(N) iliT (N) ] 

i=1 

A P(N-1) m(N) §.T (N) 
= e (N-1) + (4.17) 

1 + mT (N) P(N-1) ili(N) 

Equations (4.16) and (4.17) form the recursive least 

squares algorithm. (4.17) updates the parameter estimates 

and (4.16) updates the associated covariance matrix based 

on the error between the current output measurement y(N) 

and the predicted output @T(N-1) m (N). 

The following key properties can be established for 

the least squares algorithm (Goodwin and Sin, pp. 60-61): 
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1. 
A A 

I IE> (t) - E> I 1 2 ~ k 1 I I E> < o) - E> I 1 2 ( 4. 18) 

where k 1 = condition number of P-1 (0) 

lim N gT (t) g (t) 
2 . 2: < 1 (4.19) 

n-+1 i=1 
1+ mT (t) p (t-1) m<t> 

lim g(t) 
3. = 0 (4.20) 

t-+1 
[1 + m<t - 1) mT (t-1)]1/2 

A A 

4. lim I IE>(t)-E>(t-k) I I = 0 for any finite k (4.21) 

t-+1 

A 

These properties imply that E>(N) converges to some 

value, but this value need not be the true value. The 

matrix P(N) in (4.16) tends to zero as N-+oo. This poses a 

problem in the estimation of time-varying parameters as 

P(N) should be non-zero for the parameters to be updated. 

Exponentially Weighted Least Squares 

For time varying systems, the recursive least squares 

algorithm is not suitable as the parameter estimates are 

not updated after a long period of time. To alleviate this 

problem, a weighted least squares algorithm in which the 

old data are weighted less as compared to the more recent 

data, is used. 

The cost function to be minimized is (Ljung and 

Soderstrom, 1983): 
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(4.22) 

where A is chosen to be less than 1. As N becomes very 

large, AN-i -+ 0, and the old data are weighted less 

compared to the new data. By proper selection of A, the 

old data can be effectively discarded. The parameter A is 

called the forgetting factor. Repeating the calculations 

of the previous section, the following parameter and 

covariance update equations are obtained: 

A A P(N-1)m(N) gT(N) 
8(N) = 8(N-1) + 

A+ mT(N)P(N-1)m(N) 
(4.23) 

P(N-1)m(N) mT(N)P(N-1) 
and P(N) = {P(N-1) - }/A 

A + mT(N)P(N-1)m(N) 
(4.24) 

A potential disadvantage of exponential forgetting is 

that old data are discounted even if there is no 

information in the new data. The algorithm does not behave 

very well where there are long periods with no excitation. 

The estimator will forget the proper values of the 

parameters and the uncertainties will grow. This is called 

estimator wind up (Astrom and Wittenmark, 1988) and can be 

understood from (4.24). If there is no information in the 

last measurement, then P(N-1)m(N) will be zero and (4.24) 

reduces to P(N) = (P(N-1)/A. Since A < 1, P(t) will grow 

exponentially until m changes. As P(N-1) also influences 

the parameter updates in (4.23), there may be large changes 



in the estimated parameters leading to a burst in the 

output. The parameter ~ is usually chosen close to 1, 

giving an exponential decay time constant of 
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1 

1-~ 
(4.25) 

Hence a prediction error older than T0 time units has a 

weight less than 36% of the most recent data. 

Application to Nonlinear Systems 

The methods of the three previous sections can be 

applied to nonlinear systems of the form (3.5). Since the 

nonlinear functions ~(¢(d)y) in (3.5) are time-varying and 

the algorithm has to be alert to these time variations, the 

steepest gradient algorithm is used to estimate them. The 

values of J are not critical for the steady state 

convergence of the outputs. Hence, the recursive least 

squares algorithm is used for the estimation of J(y). The 

algorithm for estimating f requires that J(y) be known and 

the estimation for J(y)requires ~(¢(d)y). Since these 

values are not known, the two algorithms are boot-strapped 

by using their estimated values in the algorithms. 

The estimation of ~(¢(d)y) is carried out using the 

steepest gradient algorithm. Rewriting (3.5) as: 

D(d)y (t) = J-1 (y) [Y- ~(¢(d) y)] (4.26) 



38 

the steepest gradient algorithm can be developed. The 

error vector is defined as: 

A 

g = D(d)y -J-1 (y) [u - i(¢(d)y] (4.27) 

and the cost function to be minimized is: 

V = [1/2]gT g 

The steepest gradient algorithm is: 

A 
kag 

i = -- g 
A 

(4.28) 
a1 

The partial derivative ae from (4.27) is: 
A 

a1 

A A 

agJoi = J-1 (y) (4.29) 

Substituting (4.29) into (4.28), 

(y) g (4.30) 

This equation is the steepest gradient algorithm for 

estimating f(¢(d)y). 

The estimation of J-1 (y) is carried out using the 

recursive least squares algorithm. The variable t in 

(4.26) could represent discrete instants of time. The 

error vector g is defined as in (4.27). The following 

equivalences could be made between (4.27) and (4.3). 

A A-1 eT = J 
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A 

.m [!! - IJ 

Thus, the recursive least squares algorithm can be used to 

estimate J-1 (y) after the necessary modifications have been 

made. 

Estimation of Highest Derivatives 

The steepest gradient and the recursive least squares 

estimation algorithms use the quantity D(d)y, the highest 

derivative of the outputs, in estimating the parameters. 

Often, the highest derivatives of the outputs are not 

available for measurement. In this section, two methods of 

estimating D(d)y are outlined. The first one is numerical 

differentiation in which the next lower derivative is 

differentiated to obtain D(d)y. The second is a filtering 

technique in which the next lower derivative of the output 

is passed through a filter to obtain D(d)y 

Numerical Differentiation 

Let 

g = D(d)y (4.31) 

denote the vector of the highest derivative of the outputs 

y. This vector has to be estimated from the measured 

states. Let ts be the sampling time and let 

(4.32) 



denote the vector of the next lower derivative that is 

measured. The vector g is obtained through numerical 

differentiation as: 
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g = (N(t) - ~(t-1))/ts (4.33) 

The numerical differentiation scheme is very easy to 

implement on a digital computer. In practice, measurement 

noise in the vector ~(t) could affect the estimate of g(t) 

and hence all the other estimated parameters. If the 

measurement noise is very high some filtering technique 

would have to be used. 

Filtering 

The vector g(t) is obtained by filtering the vector 

~(t). A first order filter with a pole at -p is used. 

Thus, g(t) is given by: 

1 
g(t) = ~(t) (4.34) 

s + p 

where s is the Laplace operator. Again, for purposes of 

digital computer implementation, this filter is 

discretized. In order to discretize the filter, Tustin's 

approximation (Astrom and Wittenmark, p. 176) is used. The 

Tustin's approximation is: 
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2 
s = 

( z-1) 

(z+1) 
(4.35) 

where z is the z-transform operator. Substituting (4.35) 

in ( 4. 3 4) , 

1 
g(t)= !:! (t) 

2 (z-1) 
--+ p 

ts (z+1) 

from which g(t) is given by: 

g(t) = {[!Y(t)+ !Y(t-1)]-(p-2/ts)~}/ (p + 2/ts) (4.36) 

The highest order derivative thus obtained could then be 

used in the estimation schemes of (4.30) and (4.3). 

The selection of the pole is dependent upon the 

frequency content of !Y(t). The rule of thumb is that p 

should be 10 times the bandwidth of !Y(t). The use of this 

filter helps in attenuating the effects of the measurement 

noise !Y(t) for estimation of g(t). It does not affect the 

feedback to the system. The filter would enhance the 

performance of the estimation methods in the presence of 

noise while diminishing the performance in the absence of 

measurement noise. 



CHAPTER V 

APPLICATIONS OF THE METHOD 

The dynamic equations of articulated robotic 

manipulators and electrohydraulic velocity control systems 

have the same structure as equation (3.5). A two-link 

manipulator whose dynamic equations are well documented 

(Brady, et. al, 1982) is used to demonstrate the 

applicability of the control algorithm developed. In 

addition, an electrohydraulic velocity control system whose 

dynamic equations were developed in Chapter 2, is used to 

demonstrate the versatility of the algorithm. 

Example Problem: Two-link manipulator 

Figure 1 shows a schematic of the two-link mainpulator. 

Assuming that the manipulator links are rigid, excluding 

the dynamics of the control devices, and neglecting 

friction and backlash, the equations of motion of a 

manipulator are a set of coupled, second-order, nonlinear 

differential equations. The equations include inertia 

loading, coriolis and centrifugal coupling forces between 

joints and gravity loading effects. The torquesjforces to 

be applied depend on the joint position, velocity and 

acceleration, as well as on the payload. 

42 
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For the two-link manipulator shown in Figure 1, let 

the vector ~ = [81 , 82 ]T denote the instantaneous position 

of the joints. Let ~ and ~( 2 ) denote the vectors of 

instantaneous joint velocities and joint accelerations 

respectively. The two links are assumed to be of equal 

length and to have the same geometry. The dynamic 

equations are given by: 

J(~) ~(2) + £(~, ~) + g(~) = y ( 5. 1) 

where J(~) is the inertia matrix whose elements are given 

by: 

(5.2) 

( 5. 3) 

(5.4) 

The term £(~, ~) is the vector of coriolis and 

centrifugal forces and is given by: 

( 5. 6) 

The term g(~) is the vector of gravitational forces 

and is given by: 



44 

(5.7) 

(5.8) 

The term g is the vector of torque inputs to the 

manipulator. 

The various parameters are: 

I = inertia of each link 

m mass of each link 

g =acceleration due gravity (9.8/mjsec.) 

1 = length of each link 

mL mass of payload 

In equation (5.1), the vector of Coriolis 

and centrifugal forces, Q(~, ~) is highly nonlinear and 

coupled. The gravitational loading effects, given by g(8), 

are dependent only on the instantaneous joint positions. 

The inertia loading matrix J(~) is also dependent only on 

the instantaneous joint positions. 

Equations (5.1 through ~~~) are used for simulation. 

When the applied torques g(t) are given, (5.1) is solved to 

obtain ~( 2 ) and then the equations are integrated 
~ 

simultaneously to obtain the actual motion ~(t) of the 

joints. From the viewpoint of controller design, equation 

(5.1) is of the form of equation (3.5). The sum of Q(~, ~) 

and g(~) is equivalent to~ in equation (3.5). The 
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nonlinear effects can be compensated exactly when all the 

parameters are known. 

The input to the manipulator is generated according to 

equation (3.7). Such a controller for manipulators was 

proposed by Freund (1982). In this study, the nonlinear 

forces I and the inertia matrix J are assumed to be unknown 

and are estimated on-line. The estimated values are then 

used to generate the input to the manipulator according to 

equation (3.11). 

The dynamics of open-loop robotic manipulators are 

representative of the complexity of the nonlinear systems 

considered in this study. Examples are presented in this 

section to illustrate the problems associated with feedback 

control through exact linearization and the advantages 

provided by adaptive control in overcoming such 

difficulties. The drawbacks of the adaptive control method 

when noisy measurements are used for estimation are also 

discussed. 

For the examples, the manipulator links were assumed 

to be of length 1 meter and mass 1 kg. The term f(d) in 

(3.8) is of the form: 

(5.9) 

where 

i=1,2 (5.10) 

r d . 2 
0 = lag {wni }, i=1,2 (5.11) 



The values of 'i and wni used were: ' 1=,2=1.0, 

wn1=wn2=10.0. 
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Various types of input trajectories ~d are used. The 

step input is used to illustrate that a steady-state error 

occurs when the exact linearization technique (3.7) is used 

and there is a mismatch between the estimated payload and 

its actual value. A continuous input is used to study how 

the modified pole-placement scheme tracks time-varying 

inputs. A square wave input is used to illustrate the 

deficiency of the integral feedback scheme. 

The use of the steepest gradient algorithm is shown to 

minimize the problem that occurs when i is time-varying. 

The effect of noisy measurements on the estimation of the 

accelerations and hence the overall performance is studied 

for the case of the integral feedback scheme. The use of a 

filter improves the performance in the presence of noise. 

Case 1. The Need for Adaptive Control 

The performance of the exact linearization method when 

all parameters are known as well as when some parameters 

are unknown is studied in this example. The system of 

equations (5.1) through (5.8) was simulated with the input 

being generated according to equation (3.7). The payload 

(mL) is 0.5 kg. The command is a step input to the second 

joint with the first joint in a fixed position. The 

payload and all other parameters are assumed to be known 

exactly. The terms J(~), Q(~,~) and g(~) in equations (5.2) 
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through (5.8) are calculated and then the input (equation 

(3.7) is calculated. The result is shown in Figure 4. The 

steady-state error is zero and there is no overshoot. The 

exact linearization approach works very well when the 

estimated and actual values of the nonlinear functions 

match. 

To illustrate the drawbacks of exact linearization and 

to demonstrate the need for adaptive control, a mismatch 

between the actual and estimated payload is considered. 

The terms J(~), Q(~,~) and g(~) in equation (5.2) through 

(5.8) are calculated based on an estimated payload of o kg 

and used for obtaining the input (equation (3.7)). The 

actual payload is 0.5 kg. The command is a step input 

input to the second joint with the first joint in a fixed 

position. The response is shown in Figure 5. There is a 

steady-state error of about 12 percent. Clearly, the 

nonlinear functions J(~) and ~ need to be estimated on-

line. 

Case 2. Adaptive Control Using 

Integral Feedback and RLS 

The performance of the adaptive control scheme using 

integral feedback and the recursive least squares (RLS) 

method is studied in this example. The values of ~ and J 

are considered unknown and are estimated on-line. A ' f lS 

obtained by integrating equation (3.17) and J is obtained 



using equations (4.16) and (4.17). The acceleration ~( 2 ) 

is obtained by numerical differentiation. 
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The response of the second joint when a step input is 

applied to it with the first joint in a fixed position is 

shown in Figure 6. The steady-state error is zero even for 

different payloads. The estimates of f 2 using equation 

(3.17) and the actual values of f 2 are shown in Figure 7. 

The transient adaptation is very poor. As the steady-state 

value is reached, the estimated value converges to the 

actual value. 

The response of both the joints to square-wave inputs 

is shown in Figures 8 and 9. The input to joint 1 varies 

from o to -1 with a period of 4 seconds. The input to 

joint 2 varies from 0 to 1 with a period of 5 seconds. The 

results indicate that the response of one joint is 

influenced by sudden changes in the input to the other 

joint. An examination of the actual and the estimated 

forces ~ at the two joints, shown in Figures 10 and 11, 

indicates that the force estimates do not track the actual 

forces. The gain r_1 used to estimate ~ is limited by 

equation (3.3). The estimated inertia values are shown in 

Figures 12 through 14. The estimated inertia values do not 

track the actual values. Since the estimates of both ~ and 

J do not converge, the overall system exhibits poor 

performance for square-wave inputs. 
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Case 3. Adaptive Control Using the 

Steepest Gradient Algorithm and RLS 

The performance of the adaptive pole placement scheme 

using the steepest gradient algorithm for estimation of ~ 

(Equation (4.30)) and the recursive least squares algorithm 

for the estimation of J, is studied in this example. The 

values of ~ and J are considered to be completely unknown. 

The acceleration ~( 2 ) is obtained by numerical 

differentiation. 

The inputs are smooth and given by: 

= {- 90 + 52.5 (1-cos(1.26t)), 

15.0 

= { 170- 60 (1-cos(1.26t)), 

50.0 

(5.12) 
t>2.5 

(5.13) 
t>2.5 

The output response for the smooth commands are exhibited 

in Figures 15 and 16. The algorithm performed very well in 

tracking for different loads. It is also able to overcome 

errors in the estimates of the initial output. The actual 

and estimated forces ~ are shown in Figures 17 and 18. The 

estimates follow the actual forces well except in the 

initial period. These results demonstrate that the 

adaptive control scheme using the steepest gradient 

algorithm is able to track time-varying quantities 

reasonably well. The actual and estimated inertias are 



shown in Figures 19 through 21. The inertia estimates do 

not converge. 
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The response of the joints to square wave inputs is 

shown in Figures 22 and 23. The input to joint 1 was 

varied from 0 to -1 with a period of 4 seconds and the 

input to joint 2 was varied from 0 to 1 with a period of 5 

seconds. The response of either joint is not affected by 

sudden changes in the input of the other joint. The actual 

and estimated values of the nonlinear forces i are compared 

in Figures 24 and 25. The estimates of i track the actual 

values·very closely, thus providing superior performance 

when compared with Case 2. The actual and estimated 

inertia values for J 11 are compared in Figure 26. The 

estimate converges to a mean value of the time-varying 

inertia, but does not track the time-varying nature of the 

inertias. This lack of tracking is a property of the 

recursive least squares algorithm. 

Case 4. Adaptive Control Using Steep­

est Gradient and ELS 

The performance of the adaptive pole-placement scheme 

using steepest gradient method for estimation of i and the 

exponentially weighted least squares (ELS) algorithm 

(equations (4.23) and 4.24)) is studied in this case. The 

responses of the joints to square-wave inputs of Case 3 are 

shown in Figures 27 and 28. There is no difference in the 

outputs as compared to the recursive least squares 
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• A 
using a constant est1mate for J is quite high, the need 

for adaptive control is clear. 

Case 5. Effect of Noise 

The performance of the adaptive control methods when 

measurement noise is present is studied in this example. 

The integral feedback method is used for estimating i and 

the RLS algorithm is used for estimating J. The desired 

inputs are the smooth inputs (equations (5.12) and (5.13)) 

given in Case 3. The noise is added to the velocity 

measurements. The response of joint 1 is shown in Figure 

35; the numerical differentiation method is used for 

obtaining the acceleration. Even at a signal-to-noise 

ratio (SNR) of about 33 to 1, the dynamic performance is 

very poor. 

A filter with a cut-off frequency of 100 radjsec also 

was used for estimation of the acceleration. The response 

of joint 1 with this filter is shown in Figure 36. The SNR 

is 10 to 1. The effects of noise are diminished and the 

system performance is improved. 

The response of joint 1 when the filter is used in the 

absence of noise is compared with the response obtained 

when numerical differentiation is used, in Figure 37. In 

the absence of noise, the performance when the filter is 

used is inferior to the performance when numerical 

differentiation is used. Thus, the selection of a method 
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to estimate the acceleration is dependent on the strength 

of the noise. 

The integral feedback scheme to estimate the nonlinear 

functions ~ used in conjunction with the recursive least 

squares scheme to estimate J works very well for set point 

regulation as well as for tracking smooth inputs. The 

A ' speed of adaptation of ~ 1n this scheme is constrained by 

the selection of f_ 1 . This limitation leads to problems in 

rejecting sudden disturbances at the other joints as 

evidenced by the performance of the method to square-wave 

inputs at both joints. 

The use of the steepest gradient algorithm alleviates 

the disturbance rejection problem. This algorithm also 

A ' improves the estimates of ~ and stays alert to changes 1n 

The use of numerical differentiation to estimate 

accelerations leads to poor performance in the presence of 

noise. The use of a first order filter in the estimation 

of the accelerations mitigates the effect of measurement 

noise. The use of the filter results in a sluggish 

response in the absence of noise. Thus, there is a trade-

off in using the filter to estimate the acceleration. 

Example Problem: Electrohydraulic 

Velocity Control System 

A schematic of an electrohydraulic velocity control 

system is shown in Figure 3. For a servovalve current, i, 
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supply pressure, Ps, and a load pressure across the 

cylinder, P1 , the flow rate, Q1 , through the servovalve is: 

(5.14) 

The continuity equation yields: 

(5.15) 

and the equation of motion of the piston is: 

AP1 = MDX + Bx + F1 (5.16) 

where 

A = Area of the piston 

M = Mass of the piston 

B viscous damping 

ct = coefficient of leakage 

vt = Volume of fluid under compression 

[3 = bulk modulus of the fluid 

D = djdt. 

. 
The load is a nonlinear function of the velocity x and 

contains many uncertain parameters 

(5.17) 

By combining equation (5.14) through (5.17) yields: 



Yun and Cho (1988) used this system to develop an adaptive 

model following control system for uncertain loads F1 . In 

this study, uncertain values of the bulk modulus ~ are 

considered. 

The values for the different parameters used in this 

example are (Yun and Cho, 1986): 

Mass, M 53.4 kg; 

Damping constant, B, 882 n-secjm; 

-3 3 Volume, vt, 1.79 x 10 m ; 

Area, A, 1.52 x 10-3 m3 ; 

Amplifier gain, K, 1.62 x 10-9 m4;secj(mA · N); 

Supply pressure, P 8 , 6.86 X 10 6 Njm2 (~ 1,000 psi); 

Leakage coefficient, Ct 2"24 x 10-12 m5;secj. 

The load F1 is nonlinear and is given by 
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(5.19) 

where c is 4.9 x 106 n-sec2;m2 

Equation (5.18) can be cast in the form of equation 

(3.5) by setting 

, , Vt , df . 4~ 2 , 4~A 
f(x, Dx)- [BDx+--.-Dx+---A x+----CtPl] 

4~AKVPs-Pl ax Vt Vt ( 5. 20) 

and J(X, Dx) = (5.21) 



An adaptive pole-placement was designed using the 

methods in this study and the results were compared to a 

linearized PID controller which was designed based on 

(5.18). 

A PID controller was designed for the linearized 

system (based on linearized form of Eq. (5.18) using the 

ITAE criterion. The fluid bulk modulus of 6.86 x 108 Njm2 

(100,000 psi) and the natural frequency was 234 radianjsec. 

Since the control was applied to a nonlinear system, the 

gains obtained from the linearized equations were adjusted 

to satisfy the overshoot and settling time of the third 

order ITAE criterion. The proportional gain constant was 

1892, the derivative gain was 7.29, and the integral gain 

was 109820. 
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An adaptive pole-placement controller was designed for 

a natural frequency of 234 radiansjsec. and a damping ratio 

of 0.707. The steepest gradient algorithm was used for 

estimation of the nonlinear functions f. The gain for the 

steepest gradient algorithm was 5.0. The recursive least 

squares (RLS) estimation scheme was used for estimating 

J- 1 . The performance of the PID controller and the 

adaptive controller for a step input is compared in Figures 

38-40. 

Figure 38 shows the response of the PID and adaptive 

controllers for a bulk modulus of 6.86 x 108 Njm2 . There 

is not much difference in the two responses since the PID 

controller was designed for this value. Figure 39 shows 



the response of the two controllers for a bulk modulus of 

13.72 x 108 Njm2 . The adaptive controller has a slower 

response time but a faster settling time than the PID 

controller. Figure 40 shows the response of the PID and 

adaptive controllers for a bulk modulus of 1.715 x 108 

N/m2 . Even though the rise time seems the same, the 

adaptive controller has a faster settling time. The PID 

controller has a very large settling time and a very high 

overshoot. The difference in the performance of the PID 

and adaptive controller is dramatic for the conditions 

considered. 
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The performance of the PID controller over wide ranges 

of the bulk modulus is poor. The performance of the 

adaptive controller is good over the same range of the bulk 

modulus. This shows the versatility of the applicability 

of the adaptive control algorithm and its superior 

performance compared to conventional PID control. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The objective of this study was the development of an 

adaptive feedback controller for multi-input, multi-output, 

linear-in-control, nonlinear systems with unknown 

functions. Specifically, the systems considered were 

assumed to be modeled by equations of the form: 

J(y)D(d)y + ~(~(d)y) = y ( 6. 1) 

The emphasis was on two very important aspects of adaptive 

control of nonlinear systems: minimization of the number of 

estimated and the tracking of rapidly varying quantities. 

The input to equation (6.1) was obtained as: 

(6.2) 

Various estimation schemes were used for the on-line 
/\ /\ 

estimation of f and J. The number of parameters 

estimated was reduced by estimating ~ on-line using a 

differential equation of the form: 

i = Y!_ (t) (6.3) 
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An integral feedback scheme that eliminated steady­

state errors and the steepest gradient algorithm were used 

for estimation of f. The integral feedback scheme 

(equation 1.7) was constrained by the selection of its 

gain. It eliminated steady-state errors but provided poor 

transient performance. The performance of the estimator 

was improved using the steepest gradient algorithm 

(equation (1.9)). 

The matrix J, whose values are dependent on the 

output, was estimated on-line using the recursive least 

squares (RLS) and exponentially weighted least squares 

(ELS) algorithms. When the RLS algorithm was used for 

estimation, the estimated values did not track the actual 

values. The use of the ELS algorithm mitigated this 

difficulty. 
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In this study, the nature of the nonlinear functions 

has been assumed to be unknown except for the order of the 

sub-systems. However, certain types of prior knowledge can 

be used. For example, if the nonlinear function i in (2.2) 

were composed of two components, one of which is known and 

the other unknown, i.e. 

i = iknown + iunknown (6.4) 

then, the algorithm can be applied by using 

(6.5) 
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and utilizing y' in estimation of 
A A 

the .f and J, as well 

as by redefining the input to the system as 

" " ]d .fknown + .f + Jy ( 6. 6) 

A 

is estimate .f the of the unknown portion of .f. 

Recommendations for Future Work 

In this study, the primary emphasis was on systems 

with known order and with no hard nonlinearities such as 

saturation. Hard nonlinearities violate the analycity 

assumption and hence the exact linearization procedure will 

fail. The nonlinearities cannot be cancelled using input 

feedback as in equation (3.7). However, the performance of 

the overall scheme could be studied from the bounded-input, 

bounded-output stability viewpoint. The input could be 

calculated according to equation (3.11) and the effect of 

saturation on the output need to be studied. 

The effects of uncertainties regarding the orders of 

the sub-systems were not considered in this study. The 

order of the characteristic equation (3.9) is dependent on 

the order of the sub-systems and the selection of the poles 

is affected by any uncertainty in the system order. The 

effects of uncertainties in the system order on the 

adaptive pole-placement control method require further 

study. 
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Figure 1. Schematic of a 
two-link 
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Figure 9. Response of joint 2 to square wave input; 
integral feedback method -.J 
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Figure 10. Comparison of actual and estimated 
forces at joint 1; integral 
feedback method 
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Figure 11. Comparison of actual and estimated 
forces at joint·2; integral 
feedback method 
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Figure 12. Comparison of actual and estimated 
inertias J 11 ; integral feedback 
method 
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Figure 13. Comparison of actual and estimated 

inertias J 12 ; integral feedback 
method 
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Figure 14. Comparison of actual and estimated 
inertias J 22 ; integral feedback 
method -.J 
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Figure 15. Response of joint 1 to smooth input; 
steepest gradient algorithm 
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Figure 16. Response of joint 2 to smooth input; 
steepest gradient algorithm 
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Figure 17. Comparison of actual and estimated 
forces at joint 1; steepest 
gradient algorithm 
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Figure 18. Comparison of actual and estimated 
forces at joint 2; steepest 
gradient algorithm 
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Figure 19. Comparison of actual and estimated 
inertias J 11 ; steepest gradient 
algorithm 
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Figure 20. Comparison of actual and estimated 
inertias J 12 ; steepest gradient 
algorithm 
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Figure 21. Comparison of actual and estimated 
inertias J 22 ; s~eepest gradient 
algorithm 
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Figure 22. Response of joint 1 to square wave 
input; steepest gradient algorithm (X) 
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Figure 23. Response of joint 2 to square wave 
input; steepest gradient algorithm 
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Figure 24. Comparison of actual and estimated 
forces at joint 1; steepest 
gradient algorithm 
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Figure 25. Comparison of actual and estimated 
forces at joint 2; steepest 
gradient algorithm 
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Figure 26. Comparison of actual and estimated 
inertias J 11 ; steepest gradient 
algorithm 
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Figure 27. Response of joint 1 to square wave 
input; steepest gradient for forces; 
ELS for inertias 
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Figure 28. Response of joint 2 to square wave 
input; steepest.gradient for forces; 
ELS for inertias 
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Figure 30. Response of joint 1 to square wave 
input of period 4 sees; Payload 
variation 0 to 0.5 kg; Recursive and 
exponentially weighted least squares 1.0 
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Figure 31. Response of joint 2 to square wave 
input of period 4 sees; Payload 
variation o to 0.5 kg; Recursive and 
exponentially weighted least squares \.0 
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Figure 32. Comparison of actual and estimated 
inertias; Recursive and exponentially 
weighted least squares \.0 
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Figure 33. Comparison of response of joint 1 
with constant and estimated inertias; 
mL=1.5 kg 
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Figure 34. Comparison of response of joint 2 
with constant and estimated inertias; 
mL=1.5 kg 1..0 
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Figure 35. Response of joint 1 with measurement 
noise; steepest gradient algorithm; 
numerical differentiation 
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Figure 36. Response of joint 1 with measuremen~ 
noise; steepest gradient algorithm 
filter 
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Figure 37. Comparison of response of joint 1 with 

and without the filter in the 
absence of noise 1-' 
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Figure 38. Comparison of response of PID and 
adaptive ~ontrollers; bulk modulus: 
6.86 X 10 Njm2 
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Figure 39. Comparison of response of PID and 
adaptive cgntro~lers; bulk modulus: 
13.72 X 10 Njm 
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Figure 40. Comparison of response of PID and 

adaptive contro~lers; bulk modulus: 
1. 715 X 108 N/m 
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