
SIMULATION AND APL DESCRIPTION

OF THE PDP 11/40

By

ANAND VARDHA.N PANDIT
l/

Bachelor of Engineering

Osmania University

Hyderaba~, India

1973

Submitted to the Faclllty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE

July, 1975

7/Jes/s
/??:;;--
1~)1??5 -

(.} <-/';:'. < ·.~

SIMULATION AND APL DESCRIPTION

OF THE PDP 11/40

Thesis Approved:

Thesis Adviser

#~~

Dean of the Graduate College

923575
ii

OKLAHOMA

STATE UNIVERSfTY
LIBRARY

OCT 23 1875

PREFACE

This paper describes the implementation of an assembler­

simulator for the PDP 11/40 computer. It is concerned with methods

used to implement an assembler, to generate code which is inter­

pretively executed by a simulator. Program-controlled input/output

as well as device-initiated input, has been implemented. The

assembler-simulator programs are written in PL/l, and are implemented

on the IBM 360/65.

I would like to express my gratitude to my major adviser, Dr.

Donald D. Fisher, for his advice and guidance during this project.

Also, appreciation is expressed to my other committee members,

Dr. Donald W. Grace and Dr. George E. Hedrick, for their suggestions

and assistance in the preparation of this paper. Thanks are also due

to Mrs. Debbie Williams for typing the paper.

iii

Chapter

I.

II.

III.

IV.

v.

TABLE OF CONTENTS

INTRODUCTION. •·• •·•
PDP 11/40 ARCHITEC~URE •••••••••••••••••••••••••••••••••••••

System
Unibus

Organization •.•
Operation .••...

Memory Organization ••.•.•..•..
Processor
Processor
Interrupt

Status Word
Stack.• •..
Structure.

(PS) ••.

Interrupt Service••••.
Addressive and Instruction Set.
Input/Output and Peripherals •••

.

. ...

THE ASS'™BLER • ••••••••••••••••••.••••••.•••.••••••••••••.••••••

Scanner
Table Construction and Processing •..
Pass L ..
Pass II.
Assembler Directives.
Error Detection and Handling.
Assembler Output ..•••..•
Loader •.••..••...

THE SIMULATOR • ..•••.••..•••••••••.•••••• · .•••••.••••••.•.•••..•.

Instruction Fetch and Execution ••.•
Program-Controller Input/Output •..
Device-Initiated Inputs.
Error Detection •.
Debugging Aids ..•

APL DESCRIPTION OF THE PDP 11/40 •.
The Processor •.•.•..•...
Input/Output Interrupts.
Memory Access Program •..
Address Computation ••.••
Instruction Execution .••

iv

Page

1

6

6
7
9

10
12
14
16
18
22

24

25
31
33
35
'35
37
37
38

39

39
41
47
49
50

51

51
58
60
62
67

Chapter Page

VI. USERS . MANUAL ••• 86

The Assembly Language. 87
Input/Output and Debugging •••.••••..•..••••••..••••••• 91
Simulation of Device-Initiated Interrupts •••.•••.••••• 93
Control Cards and JCL. 93
Deck Setup and Output ••••••••••••••••••••••.•••••.••.• 94

VII. SUMMARY AND CONCLUSIONS. • 103

BIBLIOGRAPHY. . • • • . • • . • • . • . . • . . • • . . • • • • . • • • . . • • • • • • • • • • • . • • . . • • . . • •. • 105

APPENDIX A PROGRAM FLOWCHART • •••••••••••••••••••••• ·-. • • • • • • • • • • • • 107

APPENDIX B SAMPLE PROGRAM OUTPUT • . • • . • • • • • • • • . • • . . • • . • • . • 114

APPENDIX C - MACHINE OPCODE TABLE •••••••••.••••••••.•••..•..•••.•••. 128

v

Table

I.

II.

III.

IV.

v.
VI.

VII.

VIII.

IX.

x.
XI.

LIST OF TABLES

Condition Code Bits of the Processor Status Word ••••...•••.•

The State Transition Matrix

Syntactical Categories and Associated States •.•••.•••.••••.•

PDP 11/40 Assembler Directives •••••.••.•.•.••..••...•.•••..•

Device Register and Interrupt Vector Addresses .••.••••.•••.•

Function of Reader Control and Status Register Bits •...•••.•

Function of Punch Control and Status Register Bits •••••••.••

PROC ·Program Segm.ents • •••••.•••••••••.•.•.••••••••••••••••••

Instruction Classes

The Navigation Matrix .. .

Error Codes and Messages ·-

vi

Page

12

27

30

36

43

45

47

54

56

81

99

LIST OF FIGURES

Figure Page

· 1. PDP 11 Word as Used in the System Manuals................... 4

2. A Word as Treated in the APL Description (Chapter V)........ 4

3. Basic System Organization..................................... 7

4. The Unibus System ·-. 8

5. The PDP 11 Word... 10

6. Processor Status Word... 11

7. Processor Stacks. 13

8. Priority Interrupt Structure (11)........................... 15

9. Functional Description of Interrupt Control................. 17

10. Instruction Formats 19

11. Program Counter Modification in Branch Instructions......... 20

12. Peripheral Device Registers................................. 23

13. State Transl tion in a FSA. . • • . . . • . • . . • • . . . • • . . • • • . • • • • . 25

14. Finite State Automaton to Recognize Syntactical
Categories _ 28

15. Node Format in Operation Code Table......................... 31

16. Node Format in Address-Symbol Table......................... 32

17. Reader Device Registers _. 44

18. Punch Device -Registers ~ .. . 46

19. Queue for Device-Initiated Interrupt Simulation............. 49

20. The Processor System Program................................ 52

21. Input/Output Interrupt Generator............................ 59

vii

Figure

22.

23.

24.

Memory Access Operation •••••••• •·

25.

26.

27.

28.

Address Computation Operation ••
Instruction Decoding Matrices •• ·-
EXEC Routine ··

The JOB Card ••..•.............•..•••..••........•.•.•.

Deck Setup •••.•• •· •·
Program Setup

viii

Page

61

63

64

68

93

94

95

ADC

EXEC

IOIG

MAC

, PROO

c

D

F

I

M

N

R

u

U0"".)-5

u16.-33

U34,35

Dimension

16

5

16

85,10

8,16

LIST OF SYMBOLS

Function

Address computation defined operation

Instruction execution defined operation

I/O interrupt generator system program

Memory Access defined operation

Processor unit system program

Device control and status register

'Done' bit

Interrupt enable bit

Decoding matrices

Instruction fields

Instruction register

Word/byte instruction bit

Main memory

Navigation matrix

General registers

Processor stack pointer

Program counter

Unibus lines

Data lines

Address lines

Control lines

ix

Symbo*

a

b

e

g

h

i,j,k

m

n

p

Po 1 ,,

P2,3

P8,9,10

Dimension

2

5

2

10

16

Function

Bus request lines BR 7:4

effective address

first address

second address

local.variable

program except~ons/traps

odd addressing

reserved instructions

time out

trap instructions

trace trap

local variable

interrupt holder

exceptions

I/O interrupt

local variables

addressing mode

navigation vector

instruction class

entry line in EXEC

branch control in EXEC

Processor Status word

current operation mode

previous operation mode

Processor priority

x

Dimension

P12,13,14,15

q

r

s

u.v.w

5

5

2

Function

Trap (T) bit

Condition code

memory access queue

memory access request

selection vector

local vectors

xi

CHAPTER I

INTRODUCTION

The electronic computer affords a very powerful tool for system

simulation. It is not by chance, therefore, that the significant

increase in system simulations has almost paralleled the growth of

electronic computers.... T.he .. sy.s.tems ... that .. ar.e. simulated can. be business/

economic systems, social systems, environmental systems or even other

computer systems. One of the many reasons for simulating systems on

a digital computer is the rapidity ¥ith which results are obtained.
',/

Another reason is the provision it ;gives to consider the problem to

any level of detail.

The reasons for simulating a system can be many fold (9). Among

them are the facility of studying a dynamic system in either real

time, compressed or expanded time, the ability to study a complicated

system by breaking it into component subsystems, th~ provision it

gives to experiment with the system being simulated without actually

building a prototype.

Simulation of computer systems can be done either at the "macro"

level or at the "micro" level (8). At the macro level, the effects of

processing complete jobs are simulated, and each transaction may

represent a total job. This level of simulation may be used to study

the effects of an increase in the workload of the system, or the

quality of service measured in terms of the :burn-around time, quality

1

2

of service under a projected workload, etc.

Micro level simulation involves extremely fine level of detail.

The effect of each individual machine language instruction is simulated

At this level of simulation, a unit of real time requires many units

of simulated time. Therefore, micro level simulation can be

expensive, both in terms of programming and running times, and

requires a detailed understanding of the system.

During development of software packages for minicomputers, the

debugging stage performance may be severely limited by the computer

memory size, input-output facilities, or by the lack of translators

with dia,gnostic capabilities. It therefore becomes desirable to

simulate the minicomputer on a large host computer, in a qigher

level language, to get the software packages at least past the

debugging stage. Simulatipn .in a higher level language provides ease

with which data struc1ures can be manipulated. Even if the simulator

does not mimic the simulated machine in its entirety, it may be set

up to simulate a ~sizable sub~et of the assembler package. Such a

simulation has to be done at the micro level.

In this report a large subset of the PDP 11/40 assembly language

has been implemented on an IBM 360/65 host com~uter in PL/l. The

implementation also includes simulation of program controlled input/

output from peripheral devices like the teletype and papertape reader/

punch. Device-initiated interrupt simulation, using the computer

interrupt structure is also incorporated in the implementation.

Chapter II describes the PDP 11/40 computer. M0s,t of the descrip­

tion is based on the Digital Equipment Corporation system manuals of

the PDP 11/40 (10, 11, 12). The architecture, instruction formats,

processor operation, interrupt structure, and input-output are

covered.

3

The simulator itself is made up of an assembler and an interpreter.

The two pass assembler is described in Chapter III. The scanner, to

pick up symbols, symbol table construction during pass I and generation

of object code in pass II are covered. Assembly time error detection

is also discussed. A good description of the various methods adopted

for searching/sorting during table processing can be found in

Hellerman (2) and Wegner (14). The factors determining the choice of

the method are presented in Gear (1).

The object code generated by the assembler unit forms the input

to the interpreter. The object code is loaded into memory before

execution can begin. Chapter IV contains a description of instruction

fetch and execution, execution-time error checking and debugging

facilities, input-output, output formats, etc. The program setup

for simulating device-initiated interrupts is also described.

A formal descri~tion of the PDP 11/40 is presented in Chapter V.

The description is in APL (4) and models the description of the IBM

S/360 by Falkoff, Iverson and Sussenguth (5). Programs for processor

operation, interrupt handling, address calculation, instruction execu­

tion have been described. A word of caution has to be given at this

point. Arrays (registers, instruction words, etc.) as handled. in the

PDP 11/40 system manuals, have the least significant bit position

numbered O, and the most significant bit position numbered 15, as shown'

in Figure 1.

4

15 8 7 0

1 I I

Figure 1. A PDP 11 Word as Used in the System
Manuals

Since the simulator has been modeled on the descriptions in the

manuals, words have been treated as shown in Figure 1. However, in the

APL description in Chapter V, "words" are treated as shown in Figure 2,

to be consistent with the language terminology, with the most

significant bit numbered O, and the least significant bit numbered 15.

15 8 7

Figure 2. A Word as Treated in the APL
Description (Chapter V)

0

Chapter VI is a Users Manual and describes the deck setup and

optidns for using the assembler-simulator. The assembler output

format, error messages and codes, are also discussed. A summary and

conclusions are presented in Chapter VII. The program flowchart is

given in Appendix A.

run and the output.

5

Appendix B consists of a description of a sample

The machine operation code symbol table

is given in Appendix C.

CHAPTER II

PDP 11/40 ARCHITECTURE

The PDP 11/40 is a 16-bit general purpose, parallel logic

computer using two's complement arithmetic. The processor can address

directly 32K 16-bit words or 64K 8-bit bytes. All communications

among system components are performed on a single high-speed bus, the

Unibus. The processor contains 16 hardware registers, eight of which

are programmable. The eight nonprogrammable registers are used for

storage of a variety of functions including intermediate addresses,

source-destination data, console operation data, and the stack pointer

for the Memory Management option. The eight programmable general

purpose registers RO-R7 can be used as accumulators, pointers to

memory locations, or full word index registers, but their most

important function is to hold operand and result addresses. Two of

these registers R6 and R7 are used as processor stack pointer and

program counter, respectively. This means that the contents of R6

and R7 are changed automatically by various instructions and, hence,

cannot be used as general purpose registers.

System Organization

The whole computer is organized around a single bus called the

Unibus. The processor, memory and all peripheral devices share the

same high speed bus (Figure 3). Because of the bus concept, all

6

7

peripherals are compatible, and device~to-device transfers can be

accomplished at a fast rate. The Unibus enables the processor to

view peripheral devices as active memory locations and treat peripheral

device addresses exactly like (nonrelocatable) memory addresses, in

the basic system address space. The processor uses the same set of

signals to communicate with memory as with peripheral devices.

Memory locations, processor registers, device status and data registers

are each assigned a unique address. All instructions that can be

applied to date in core can be applied equally well to peripheral

device registers, enabling peripheral devices to be manipulated as

flexibly as memory.

. ., -< UNIBUS ,.. '' "

CPU Memory I/O ... I/O

Figure 3. Basic System Organization

Unibus Operation

Communication between system components is over the 56 lines of

the Unibus, 51 of which are bidirectional and 5 unidirectional. A

bidirectional line permits signal flow in both directions. The five

unidirectional bus grant (BG) lines are for priority bus control

signals (10, pp. 179). The function of the 56 lines is as follows:

(1) 16 bidirectional data lines which carry all

data transfers.

(2) 18 address lines. The same addressing scheme is used

for programmed I/O, programmed processor/memory transfers,

direct memory access (DMA).

(3) 22 control-logic and parity check lines.

8

Figure 4 shows the processor, memory and a peripheral device

connected to the Unibus. The peripheral device as has been inter­

faced for programmed instructions, direct memory access and interrupt.

Control (request/irant) Unibus

Address

Controller
Processor Memory

Peripheral device

Figure 4. The Unibus System (6)

Master/Slave Operation

All bus activity is asynchronous and depends on interlocking of

controlled signals. During transfer between two devices, the device

controlling the bus is termed the "master," and the other device the

"slave." Master-slave relationships are dynamic. Memory is always

a slave. The nature of interlocked communication requires that for

each control signal issued by the master, the slave issue a response

to complete the transfer.

Full 16-bit word or 8-bit byte information can be transferred on

the bus between master and slave. Bus operations can be classified

into data operations and control operations. The DATI, DATIP data

operations transfer data into the master, while the DATO, DATOB data

operations transfer data out of the master (10, pp. 182). The bus

request (BR) and nonprocessor requ~st (NPR) control signals are used

by devices to gain control of the bus. Bus control obtained under a

9

BR is for an interrupt whereas control obtained under an NPR is for a

direct memory access (DMA). A device can perform a DMA after acquiring

bus control via a BR. Transfer of bus control from one device to

another is made by a priority arbitration logic.

Memory Organization

PDP 11 memory can be addressed either as 16-bit words or 8-bit

bytes. Words always start at even numbered memory locations. A PDP

11 "word" is divided into a high byte and a low byte as shown in

Figure 5.

10

High Byte Low Byte l
Figure 5. The PDP 11 Word

Low bytes are stored at even numbered memory locations and high

bytes at odd numbered locations. Memory addresses 0-255 are reserved

for the system (interrupt vectors, trap vectors, etc.) and the top

4K words are reserved for general purpose registers, peripheral

device registers, etc. The user, therefore, has 28K of the 32K

directly addressable memory to program.

Processor Status Word (PS)

The processor status word, Figure 6, contains information about

the status of the machine. The status can be described by the

processor priority, current and previous operation modes and condi­

tion code.

current mode J _J
previous mode

Processor priority

Condition codes

j
Figure 6. Processor Status Word

The two modes of operation (11, pp. 2-4) Kernel and User modes

are available under the Memory Management option.

The processor can operate at any one of the 8 priority levels

0-7. The current priority is maintained in bits 7-5 of the PS.

The 4-bit condition code is set by any of a number of instruc-

11

tions, including many arithmetic instructions. The cond~t~on code is

set depending on the result of the instruction. Conditions setting

the bits are given in Table I.

12

TABLE I

CONDITION CODE BITS OF THE PROCESSOR STATUS WORD

Bit
PS bit name Condition setting the bit

3 N Result is negative

2 z Result is zero

1 v Arithmetic overflow

0 c Carry from the most
significant bit

The trace trap bit T can be set or cleared under program control.

When set, a processor trap will occur through location 14 on completion

of instruction execution and a new processor status word will be

loaded. The trace trap is a system debugging aid and is transparent

to the programmer.

Processor Stack

To allow a programmer to make efficient use of frequently

accessed data a processor stack is maintained in memory. Register 6

serves as a pointer to the top of the stack. The stack can be

maintained anywhere in memory by initializing register 6 in the

program. A typical processor stack is built with addresses decreas-

ing from bottom to top as shown in Figure 7.

13

Stack top

007070

007072

007071J.

007076

007100

007074

ITEM 4 (SP ITEM 4
007075

ITEM 3 ITEM 3 007076

ITEM 2 ITEM 2
007077

ITEM 1 Stac k bottom ITEM 1
007100

(a) (b)

Figure 7. Processor Stacks (a) Word Stack (b) Byte Stack

Under the Memory Management option, the PDP 11 has two stacks

called the Kernel and User stacks. When the processor is operating

under the Kernel mode, it uses the Kernal stack and when operating

under User mode, the User stack. The stack overflow boundary is

at location 256. The Kernel stack boundary is a variable and is set

through a stack limit register. Once the Kernel stack exceeds its

boundary, the processor traps to location 4 after the current

instruction is executed.

The stack permits save and restore of the program counter and

status word in conjunction with subroutine calls and interrupts.

This feature allows reentrant codes and nesting of subroutines. Items

can be added or removed from the stack by using the autodecrement and

autoincrement addressing modes with register 6.

Interrupt Structure

Since all components use the same Unibus, a certain amount of

contention arises when more than one device requests to become bus

master. A multilevel automatic priority structure is imposed to

overcome this problem.

The Unibus contains 13 lines classified as priority transfer

lines. Five of these are the bus request (BR) lines BR (7:4) and NPR

and five are the corresponding bus grant (BG) lines BG (7:4) and NPG

which the processor uses to respond to a request.

The priority arbitration logic assigns highest priority to NPR

direct memory access data transfers. These requests are honored by

the processor between bus cycles of an instruction execution. BR7

14

is the next highest priority and BR4 the lowest. These requests are

honored by the processor between instructions. The priority is

hardwired into each device except the processor. For example, the

teletype and papertape reader/punch have a preassigned priority of BR4.

The processor priority can be set under program control to any

one of the levels. This inhibits granting of bus requests on the same

or lower levels and provides an effective masking technique. The

priority interrupt structure is shown in Figure 8.

15

Processor
Priority NPR

I I
7 DMA1 DMA2

BR7

I I
6 D6 D7

BR6

I I
5 D4 D5

BRS

I I
' 4 Dl D2. D~

-'

BR4

l I I
HSR HSP TTY

(Increasing Priority .

Figure 8. Priority Interrupt Structure (11)

Any number of devices can be chain-wired on each level, the

device nearer the processor having a higher priority than a device

16

farther away.

Each device on a particular priority level passes a grant signal

to the next device on the line unless it has requested bus control;

in this case the requesting device blocks the signal from the

following devices and assumes bus control. A device may cause inter­

rupt operation to occur any time it gains bus control on one of the BR

lines.

Interrupt Service

Each device has a unique interrupt vector address in memory. These

addresses are transmitted over the bus address lines. Two consecutive

words in memory, the starting address of the service routine and the

new PS are stored at the interrupt vector address. This unique

identification eliminates the necessity of device polling. The

operations required to service an interrupt can be described in APL

as shown in Figure 9.

The operations involve pushing the Program Status word on the

stack, lines O,l (Figure 9a), followed by pushing the program counter,

lines 2, 3. The new program counter, which is the address of the

service routine and the new Program Status word are loaded from the

interrupt vector address, lines 4,5. Upon completion of service, a

return from interrupt automatically restores the program counter and

the old PS.

----,;.
6 6 R + (16)T(.tR)-2

.rR6 ~+.rR6 8 M , + w /p, 8 (a /p)

6 6 R + (16)T(.tR)-2

6 6
M.rR , ~+.rR + w8 /R 7, (a8/R7)

R7 +Ml+a,Ma

M3+a ~+a
p+ '

(a)

Legend

a Interrupt vector address

M Memory

Mi . b t . J_S y e l

p Program Status word

0

1

2

3

4

5

R6 Register 6, the stack pointer

R7 Register 7, the Program counter

vR6 :::; vR7 :::; vp:: 16

(b)

Figure 9. Functional Description of
Interrupt Control

17

---+

18

Addressing and Instruction Set

Much of the power of the machine is derived from its wide

ranging addressing capabilities. Addressing can be done either at the

word level or the byte level and is performed through general registers

which can be used interchangeably as accumulators, index registers

or pointers to memory locations.

The five different instruction formats are as follows:

(1) Single operand

(2) Double operand

(3) Register-source/destination

(4) Branch instruction

(5) Operate instruction

These five formats are shown in Figure 10.

[

[

[

[

[

(a) Single Operand

~p code .. :. Mode . Reg
I

(b) Double Operand

Mode

Op code : Reg Mode
I L

(c) Register-source/destination

Op code ~ Off set

(d) Branch Instruction

Op code

(e) Operate Instruction

Figure 10. Instruction Formats

Reg

Reg

Each operand in 1), 2) and 3) is specified by a general purpose

register and the mode for using the register. The operand in Branch

instructions are specified by an 8-bit word offset; the resetting

of the program counter can be functionally represented in APL as

shown in Figure 11.

19

20

~ R7 + (16)T(iR7) + 2 x ((iw7/r) - Is x 27)

(a)

o~

Legend

I Instruction register

R7 Program counter

vI :: vR7 .:; 16

(b)

Figure 11. Program Counter Modification in Branch
Instruction

The off set in a branch instruction is the number of words from

the current contents of the PC. The offset, given by the last 7

bits of the instruction register, is treated as a two's complement

number. Since the PC expresses a byte address, the offset is

multiplied by 2, to express bytes, before it is added to the PC.

The Operate instructions do not require an operand and execution

proceeds immediately after instruction fetch.

Any of eight modes of addressing can be used to specify an

operand. These are as follows:

(1) Register mode - Mode 0: Register specified contains

the operand. Assembler syntax : Rn.

-

(2) Register deferred mode - Mode 1: Register specified

contains the operand address. Assembler syntax: @Rn or {Rn).

(3) Autoincrement mode - Mode 2: Register 5 used as a

pointer and then incremented: Assembler syntax: {Rn)+

If register specified is R7, the mode is "immediate" and the

operand follows the instruction. Assembler syntax: #n.

21

(4) Auto increment deferred - Mode 3: Register is used as

a pointer to word containing operand address and then;incremented.

Assembler syntax: @(Rn)+. If register specified is R7, the

mode is "absolute," and the absolute address follows the

instructi:on. Assembler syntax: @#A.

(5) Auto decrement - Mode 4: Register is decremented and

then used as pointer to operand. Assembler syntax: -(Rn).

(6) Auto decrement deferred - Mode 5: Register is

decremented (always by 2 even for byte instructions) and then

used as pointer to operand address. Assembler syntax: @-(Rn).

(7) Indexed - Mode 6: Word following the instruction is

added to the register contents to give operand address. Assembler

syntax: X(Rn). If register specified is R7, the mode is

"relative" and the relative address follows the instruction:

Assembler syntax: A.

(8) Index deferred - Mode 7: Word following instruction

added to register contents gives address of the address of the

operand. Assembler syntax: ®x(Rn). If the register specified

is R7, the mode is "relative deferred." Assembler syntax: @A.

In all variations of auto increment and auto decrement modes the

register contents are incremented/decremented by 2 for word

instructions and by 1 for byte instructions.

Some of the instructions can address both bytes and words. For

byte instructions the leftmost bit of the instruction is 1. An APL

description of the instruction set is given in Chapter V.

Input/Output and Peripherals

The Unibus permits a unified addressing structure in which

control, status and data registers for peripheral devices are

directly addressed as memory locations. The use of all memory

reference instructions on device registers greatly incre.ases the

flexibility of input/output programming.

All peripheral devices are specified by two types of registers.

These are 1) control and status registers, and 2) data registers

and are shown in Figure 12.

22

Each device has one or more control and status registers that

contain all the information necessary to communicate with that device.

Many devices require less than sixteen status bits, and some others

more than sixteen and, therefore, require additional registers.

The number and type of data registers associated with a device

is a function of the device. Papertape reader and punch use single

8-bit data buffer registers, whereas a disk uses 16-bit data buffer

registers.

PDP 11 Input/output devices include teleprinters, line printers,

teletypes, card readers, alphanumeric displays. Stor~ge devices range

from small reel magnetic tape units to mass storage tape and moving

or fixed head disk units.

23

,,
J

"W"

Errors

Busy

Unit select

Done or ready

InterI'Upt enable

Memory extension

Device function

Enable

(a) Control and Status Register Format

8 7

(b) Data Register Format

Figure 12. Peripheral Device Registers

CHAPTER III

THE ASSEMBLER

The first step in the simulation is the conversion of the program

source code into machine executable object code. This Chapter

contains a discussion of the assembly procedure, code generation,

error detection and processing and loading the generated code into

memory for execution.

To translate the source assembly language, the assembler must

(1) replace each mnemonic instruction with its equivalent binary

code, and (2) replace each symbolic address with its numerical

address. One way of doi~g the former is by keeping a list of all

mnemonic instructions in a table and consulting it to find the binary

code, once a mnemonic is read. The latter problem can be approached in

a similar manner by having a table of symbols and their addresses.

The assembly process can be subdivided into the following two

phases:

(1) Scanning of the symbolic input and transforming

symbolic names into corresponding codes.

(2) Assembling the codes for the mnemonics and

addresses.

The two phases usually require two scans of the source code. The

first scan determines which location is to be assigned to each symbo~

and on the second scan the assembler produces the binary object code.

24

Each phase is described in the following paragraph along with the

method used for its implementation.

Scanner

25

During each scan of the source code labels, identifiers,

numbers, operators, delimiters and assembler directives need to be

picked up for the assembly. This function is performed by a scanner.

The scanner, generally, is programmed as a subroutine which is called

upon by a higher level routine to perform the scanning.

In this report, a finite state automation (FSA) approach is

used for the scanner. Hopcroft and Ullman (3) define a finite auto­

maton Mover an alphabet 2: as "a system (K,2:,o,q0 ,F), where K is a

finite, nonempty set of states; 2: is a finite input alphabet; o is

a mapping of K x 2: into K; q0 in K is the initial state and F ~ K is

the set of final states." The interpretation of o(q,a) == p for q

and p in K and a in is that the FSA goes from state q to state p

if the input symbol scanned is a. This transition can be represented

graphically as in Figure 13.

Figure 13. State Transition in a FSA

26

An input symbol y is said to be accepted or recognized by an FSA

if o(q0 ,y) = p for some p in F.

In this report the FSA is set up to recognize identifiers, labels,

numbers, operators, assembler directives and delimiters, which form

the vocabulary of the PDP 11/40 assembler. As such, a final state is

associated with each of these classes of symbols. The alphabet of

the FSA is the character set of the PDP 11/40 assembler. The FSA as

set u.p consists of 21 states, 0 through 20, with state 0 being the

initial state. States 1, 2, (4,5), (8,10), 11, (12,13,14,15,16,17,18)

and 20 are the final states and correspond to the classes of identi­

fiers, labels, numbers, literals, directives, operators, and

delimiters respectively. Each character in the alphabet causes a

transition from one state to another. All possible transitions are

represented by a state transition matrix DELTA (Table II). The rows

correspond to the 21 states and the columns (0-21) to characters of

the alphabet. Each entry DELTA (I,J) = N in the table represents a

transition from state I to State N under input J. For transitions

which are not permitted N = -1. After such a transition the FSA goes

into state -1. Once the FSA transits to state -1, the scanning is

terminated and the symbol which has been recognized is returned to the

routine calling the scanning routine.

A graphical representation of the FSA is shown in Figure 14, where

each component unit recognizes a particular class of symbols. The

final states are shown as squares. Once a symbol is recognized, the

scanner routine returns the Sylnbol, the symbol class and the state

information of the FSA.

TABLE II

THE STATE TRANSITION MATRIX

OTHER / & "
STATES

0 -1 0 6 7 9 12 12 12 12 12 12 12 13

-I -I -1 -I -1 -1 -1 -I -I -I -I -1 -1 -1

2 -I -I -1 -1 -I -I -I -1 -1 -1 -I -I -I

3 -I -1 -I -I -1 -1 -1 -I -1 -1 -1 -1 -1 -I

-1 -1 -I -I -I -I -I -I -1 -1 -I -1 -1 -I

5 -1 -1 -I -I -L -1 -1 -1 -I -1 -1 -1 -1 -1

6 8 8 8 8 B 8 8 8 8 8 8 8

7 6 6 6 6 6 6 6 6 6 6 b 6 6

8 -I -I -I -I -I -1 -1 -I -I - I -1 -I -I -I

9 9 9 9 9 10 q 9 9 q 9 9 9

10 -I -I -I -1 -1 -1 -1 -I -I -I -I -1 -1 -1

11 -I -I -I -I -I -1 -1 -I -I -I -I -1 -1 -1

12 -I -I -I -1 -1 -I -1 -I -1 -1 -I -1 -1 -I

13 -I -I -1 -I -1 16 -I -1 -1 -I -1 -I -I

14 -I -I -I -1 -I -1 -I -1 -I 18 17 -1 -1 -1

15 -1 -1 -I -1 -L -I -I -1 -I -I 17 -1 -1 -I

16 -I -I -L -I -1 - I - L -I -I -I -I -1 -1 -I

17 -I -1 -I -I -I -I -1 -I -I -1 -I -1 -I

18 -1 -I -I -1 -1 -I -I -I -I -I -I -I -I -1

19 -1 - L -I -1 -I - I -I -I -I -t 17 -1 -I -I

20 -I -1 -1 -1 -I -1 -l -I -1 -I -I -I -I -1

NOlE - REPRESENTS A BLANK
-1 REPRESENTS AN INVALl~ TRANSIT[O~

15 20 20 -1

-1 -1 -1 2

-1 -I -1 -I

-I -I -I -1

-1 -I -I -1

-1 -I -1 -1

8 8 ti 8

6 6 6 6

-I -1 -1 -I

9 9 9 9

-I -I -1 -1

-1 -I -1 -1

-I -1 -1 -1

-I -1 -1 -1

19 -1 -1 -1

-I -I -1 -1

-1 -I -1

-I -I -1

-I -I -1 -I

-I -I -I -I

-1 -I -1 -1

11

-1

-I

5

5

-1

8

6

-I

9

-1

-1

-I

-1

-I

-1

-1

-I

-I

A-z. S 0-7 8 9 9

3

-1 -1 -1

3 3 3

3 3

-1 -1 -1

8 8 8

6 6

-1 -1 -1

9 9 9

-1 -1 -1

I l -I -I

-1 -I -1

-I -1

-I -1

-1 -1 -I

-1 -I

-1 -1 -I

-1 -1 -1

-1 -1

-1 -1 -1

I\)
-..J

~,d

(a) unit to recognize labels, identifiers

5

(b) unit to recognize numbers

"

(c) units to recognize literals

Figure 14. Finite State Automaton to Recognize Syntactical
Categories

28

(d) unit to recognize assembler directives

(e) unit to recognize operators

(f) unit to recognize delimiters

Legend: alphabet L: = b 111/+&f=#(%)@-,;:.$ABC .•• z¢123 .•. 9
9- = $,A,B,C .•• z
£ = any character in E
d = ¢,1,2, ... 9

Figure 14. (Continued)

29

TABLE III

SYNTACTICAL CATEGORIES AND ASSOCIATED STATES

State Symbols Recognized

-1 error state

1 identifiers

2 labels

4 octal numbers

5 decimal numbers

8,10 literals

11 directives

12-18 operators

20 delimiters

Examples of the symbol recognition process are described below.

£ii£amples

Numbers in the PDP 11/40 Assembler can either be octal or

decimal. Decimal numbers are terminated by the decimal point. 123,

147 are octal numbers whereas 123., 147. are decimal numbers.

Consider the number 123 as the input to the FSA. Figure 14b, the

unit to recognize numbers gives the transitions under different

inputs. Each character in the input causes a state transition. The

30

initial state of the FSA is state O. Under the first input character,

31

111, 11 the FSA changes its state to 4. The FSA remains in this state

for the input characters 11 211 and 11 3. 11 Since the input has been

exhausted and the FSA is in one of the final states, the number is a

valid number. Similarly for the decimal number 123., the FSA will be

in state 5 and the number will be recognized. Invalid octal numbers

like 184 or 987, which contain 8 and 9 will cause the FSA to transit to

intermediate state 3 and, therefore, will not be recognized. The

character A in the invalid number 12A3. will cause a transition to

state -1 and, therefore, cause an error.

Table Construction and Process=i:ng

The assembler basically has to deal with two types of symbols:

(1) Operation-code symbols

(2) Address symbols.

The binary code corresponding to operation-codes is specified by

an operation-code symbol table. The binary code for any mnemonic can

then be determined by a table look-up. The format of each node in

the operation code symbol table used in the implementation is shown

in Figure 15. The table itself is given in Appendix C.

Number of Operation Mnemonic
Mnemonic o erands Link code t e

6 bytes 1 byte 2 bytes 4 bytes 1 byte

Figure 15. Node Format in Operation Code Table

32

Address symbols have their codes assigned to them by the

assembler. Addresses may be data addresses, assigned according to

the storage allocation scheme used for date, or instruction addresses,

assigned by determining the address of the instruction having the

symbol as its label. An address symbol table is constructed during

pass I of the assembly. The format for a node in the address symbol

table is shown in Figure 16.

Symbol Link

6 bytes 2 bytes

r Symbol
_ value

2 bytes

TYJ?e
1 bit

Figure 16. Node Format in Address-Symbol Table

The scheme adopted for symbol table construction and lookup

uses a hashing function. The hashing function partitions the

symbols into 16 pseudo-randomly determined classes. The hashing

function used is

HASH ADDR + 24 I 5 + S.

S, the sum of the characters in the symbol taken two at a time

from the leftmost position, is shifted 5 bits to the right. The

result is divided by 16 and the remainder of the division, a number

between 0 and 15, gives the hash address.

The address generated places the symbol into one of 16 buckets

0-15. Synonym generation is handled by placing the symbol into a

node in an auxiliary table and linking the node to the bucket to

which the SYl!lbol is hashed. Each table is, therefore, essentially

16 linked lists. Symbol table lookup involves hashing the symbol to

obtain the bucket, and a serial search of the linked list of that

bucket.

Pass I

The prime task of the first pass is to construct the address

symbol table. A location counter is maintained in both the passes

33

in order to determine the final location of a line of code. After

each instruction is translated, the location counter is incremented by

the length of the instruction.

The first step is to read a new line of the source for transla­

tion. Since the second pass needs to reread the input file, a copy of

the input is produced on an auxiliary storage device. Once a source

line is read, the assembler extracts various fields from it to form

labels, mnemonics, and addresses.

~abel Field

The symbol found in the label field is placed in the address

symbol table along with its address value. Checking for multiple

definitions of a label involves a table lookup to see if the label is

already present in the table.

34

Mnemonic Field

An instruction mnemonic is recognized by the scanner as any

other identifier. To see if the mnemonic is valid, an operation code

table lookup is performed. If the mnemonic is not present in the

table, the error is noted. If present, the address field is scanned.

Assembler directives, recognized by the scanner, are treated as

a different class of symbols, distinct from identifiers. During pass

I the address field of assembler directives is scanned. The MEND

directive terminates pass I.

Address Field

This field differs from instruction to instruction and may

contain a number of subfields separated by commas. Each subfield

may contain an expression involving names, numbers, and/or

arithmetic operators.

Since the length of a PDP 11/40 instruction is determined by the

"mode" of addressing and not by the mnemonic, the address field is

scanned to determine the amount by which the location counter is to

be incremented. The mode of addressing can be any one of eight

different modes (Chapter II). Each operand, addressed by the

indexed, relative, immediate or absolute modes requires an extra

word. Instructions can, therefore, depending on the mode of

addressing, require one, two or at most three words. During pass I

the address field is scanned to determine the mode of addressing

and hence the instruction length.

35

Evaluating Expressions in Address Fields

PDP 11/40 assembler allows only the + and - arithmetic operators

in operand expressions. Parentheses are not permitted. Expression

evaluation can therefore proceed from left to right. Evaluation

may involve conversion of nlll11.bers or characters to binary.

Pass II

The purpose of this pass is to translate the source language into

binary by using the symbol table constructed in Pass I to convert the

addresses, and the operation-code table to convert the mnemonics. A

line of code is read in and many of the steps of Pass I repeated. The

label field, which is handled completely in Pass I is ignored. The

mnemonic field is examined and its binary code fetched by a table

lookup. Expressions in the address field are converted to binary.

Pass II also is terminated by the .END directive.

Ass:embler Directives

Assembler directives fall into four classes. Directives for the

PDP 11/40 are listed in Table IV.

TABLE IV

PDP 11/40 ASSEMBLER DIRECTIVES

Class

Data loading

Location counter
control

Table entry

Character conversion

Directive

.WORD

.BYTE

.-

=

.ASCII

Action

Load data in decimal
or octal

Set location counter

Enter name with given
definition in table

Convert character
string to ASCII

36

For the data loading directives it is necessary to determine how

many words of storage will be occupied by the data in the directive

so that the location counter may be incremented during Pass I. For

.WORD and .BYTE, this requires the address field be scanned to

determine the number of data words provided, by counting commas.

Character conversion-loading requires a count of the characters in the

string, to increment the location counter.

Location counter control directive sets the location counter to

a specific value. This requires evaluation of the expression on the

right of the relational operator, and assigns the value to the

counter. Table entry directives also require expression evaluation.

The symbol name is entered into the table along with the expression

value.

37

During Pass II the address-field expression is converted to binary

according to the rules of the directive. Character conversion can be

done by a lookup on a table of characters and associated ASCII codes.

Error Detection and Handling

Error detection is done in both the passes. Invalid symbols

are caught by the scanner. Other syntactical errors are caught

during operand-field expression evaluation. Error handling is done

by placing an error code into an error table along with the statement

number. Every type of error has an error code associated with it.

The type can be determined from the error detecting mechanism built

into the program. As an example, if an invalid mnemonic is picked

up in a statement, the error code associated with the error, code 9,

along with the statement number, are stored in an error table. The

error code is printed in the assembly listing, immediately after the

statement causing the error. A list of error codes and associated

diagnostic messages is given in Chapter IV.

Assembler Output

In addition to code generation the assembler usually produces

a printed output. The output consists of the object code in octal,

statement number and a listing of the source statement. Errors, if

any, are indicated on the output by an error code, immediately

following the statement in error. The diagnostic message for an

38

error can be obtained by looking up the code in Table XI, in Chapter

VI. Immediately following the source listing, symbols and associated

values (in octal) are printed.

Loader

The binary code generated during assembly is saved on a secondary

device to be used by the loader. Once the second pass is terminated,

the generated code is loaded into memory for execution. Loading is

done only if the assembly is error free. The scheme for loading uses

a nonrelocatable loader. Loading begins from location 128 unless

the :le-'c11~t:ttr .. T' ~ounter is set to a high value. The first 128 locations,

locations (0-127), are reserved for the system. Once loading is

complete, the program is ready for execution.

CHAPTER IV

THE SIMULATOR

The binary code generated by the assembler is loaded into memory

for execution. This Chapter contains a description of instruction

fetch and execution, program-controlled input/output, device-

ini tiated interrupts, execution time error detection and debugging

aids.

Instruction Fetch and Execution

During the loading process the address of the first instruction is

placed in the program counter. During instruction fetch, the word

in memory at the location given by the contents of the program counter

(PC) are placed into the instruction register (IR). The contents of

the PC are incremented by 2, to point to the next instruction. The

order in which instructions are fetched and executed is determined by

the statements of the program.

Having fetched the instruction from memory into the IR, it is

necessary to decode the instruction in order to determine its type.

The leftmost bit of the IR, specifies if the instruction is to

operate on word or byte operands. The remaining 15 bits of the

instruction are divided into five 3-bit fields FO-F4. Instruction

decoding is done on the basis of these five fields.

for the purpose of instruction decoding and execution, the

39

4o

instruction set is divided into Single operand instructions, Double

operand instructions which include Register-source/destination and

Extended Instruction Set (EIS) instructions, Branch instructions and

Operate instructions. Once the type is determined by the five fields,

instruction execution begins.

The first step during execution is the operand fetch. Each

operand in the single and double operand instructions is specified by

a register and a mode for using the register. The mode gives the

type of addressing used to fetch the operand. For single operand

instructions the operand is fetched into the memory buff er register

(MBR). For double operand instructions the source and destination

operands are fetched into the memory buff er register-source operand

(MBR S) and MBR.

The second step in the execution phase is to operate on the

operands in the MBR and MBR_S and nodify them as called for by the

particular instruction being executed. Thus, instruction ADD, adds

the contents of the two registers, whereas CLR clears MBR. The

result of the operation is stored at the address specified in the

instruction. For single operand instructions this address is the

same as the address of the operand, and. for double operand instruc­

tions this address is the address of the destination operand.

Condition code bits are set/cleared if called for by the instruction.

For Branch instructions the operand address is specified as the

offset from the current contents of the PC. This offset is added

to/subtracted from the contents of the PC to affect the branch.

Branch instructions do not modify the condition code.

41

Operate instructions do not require operand fetch. Some operate

instructions change the condition code.

A detailed APL description of instruction fetch/execution is given

in Chapter V.

Program-Controlled Input/Output

Peripheral device registers are treated by the Unibus as non­

relocatable memory addresses. Therefore, operations on these

registers, such as transferring information into or out of them, or

manipulating data within them, are performed by normal memory

reference instructions.

All devices are specified by a pair of registers. These are

(1) a control and status register that contains all information

necessary to communicate with the device, and (2) a data buffer regis­

ter which temporarily holds data to be transferred into or out of the

memory.

Input/output from teletype, papertape reader and papertape

punch has been simulated in this report. All program controlled I/O

is done by using the interrupt system of the computer. An interrupt

request is made to the processor when information is ready to be

input/output. Priorities permitting the processor accepts the

request.

rout~ne.

Control passes to the appropriate interrupt service

When I/p is complete, the processor regains control and

exec~tion of the interrupted program is r~sumed.

I/O devices, which have been simulated, are all on the lowest

priority level--bus request BR4. Among the devices on this level,

highest priority is given to the papertape reader, followed by the

42

punch and teletype. Interrupt requests are honored by the processor

if its operating priority level is less than 4. Once a request is

honored for a device on this level, the processor priority is raised

to 4, thus, prohibiting any other device on this level to interrupt.

After the interrupt has been serviced, the processor priority is

lowered to its previous value. The raising/lowering of processor

priority, which provides an efficient interrupt mask, is done by

loading a new Processor Status word each time the processor is

interrupted. The location from which the PS is loaded is unique to

the device interrupting. Each device has a unique two-word interrupt

vector address. The second word contains the address of the interrupt

service routine. When an interrupt request is honored, the old

program counter and PS are pushed onto the processor stack and the

service routine address and the new PS are loaded.

For the devices simulated in this report, the addresses in

memory of the device interrupt vector, control and status register

and the device data register are summarized in Table V.

TABLE V

DEVICE REGISTER AND INTERRUPT
VECTOR ADDRESSES (OCTAL)

43

2-Word Control & Status
Interrupt Register

Vector Actual Address in Device

~~~~~~~~~--A~d~d=r_e_s_s_~AS-dress Simulator 

Data 
Register 

Actual address in 
Address Simulator 

Teletype 
a) Keyboard/reader 60 177560 134 177562 136 
b) Printer/punch 64 177564 140 177566 142 

Papertape Reader 70 177550 124 177552 126 

Papertape Punch 74 177554 130 177556 132 

For the purpose of simulation the actual control register and 

data register addresses were converted to smaller addresses, so that 

simulation could be done even with a part of the 32K-word addressable 

memory. The top 128 words of the memory are reserved for the system 

and contain the interrupt vector addresses and addresses of the device 

control registers and device data registers. 

I/O from the four devices simulated can be broken down into 

(1) Input from teletype keyboard/reader and papertape reader and 

(2) Output to teletype printer/punch and papertape punch. 

Teletype Keyboard/Reader and Papertape Reader 

Input from these two devices is similar in most respects. The 



44 

Control and Status register and data buffer register for these 

devices are shown in Figure 17. 

15 7 6 0 

Ii' ~ ....... _..___.___,~Jb-~--· .... _.._.._.....___,~_,___._..L..-..&.-.i--..+' .. 
Busy 

Done 

Interrupt Enable 

Reader Enable 

(a) Control and Status Register 

15 8 7 0 

J _______ _..I 
Data 

(b) Data Buffer Register 

Figure 17. Reader Device Registers 



Bit(s) Name 

11 Busy 

7 Done 

TABLE VI 

FUNCTION OF READER CONTROL 
AND STATUS REGISTER BITS 

Ftlllction 

Set during reception of information bits 

Set when character available in buffer; 
cleared when reader enable is set or 
data buffer referenced; causes interrupt 
when interrupt enable is set. 

6 Interrupt Enables interrupt 
Enable 

0 Reader 
Enable 

Enables reader (not keyboard) to read 
read one character 

Input can be initiated by setting the interrupt and reader 

enable bits in the status register. Setting the reader enable bit 

causes a character to be read into the buffer. When the character 

is available, the done bit is set, which causes an interrupt. The 

interrupt sequence is initiated and control passes to the service 

routine. When the buffer is referenced in the service routine, to 

transfer data from it into some location in memory, the done bit is 

cleared. 



46 

Teletype Printer/Punch and Papertape Punch 

The manner in which output is handled by these devices is 

similar. The control and status registers and the data register are 

·shown in Figure 18. 

12 

~ 
6 

p I [ 
Ready 

Interrupt Enable 

(a) Control and Status Register 

8 0 

Data 

(b) Data Buffer Register 

Figure 18. Print/Punch Device Registers 

The function of the bits of the control and Status register is 

summarized in Table VII. 



TABLE VII 

FUNCTION OF PUNCH CONTROL 
AND STATUS REGISTER BITS 

Bit Name Function 

7 Ready Punch available; cleared when buffer 
loaded; set when punching complete. 

6 Interrupt Enables "Ready" to cause interrupt 
Enable 

During simulation the ready bit of the status register is set 

as part of the initialization process so that the printer/punch is 

available. To start output, the interrupt enable bit is set. This 

47 

causes an interrupt and the interrupt sequence is initiated resulting 

in a branch to the service routine. When the buffer is loaded by the 

service routine, the ready bit is cleared and punching initiated. 

When punching is complete, the ready bit is set again. 

Device-Initiated Inputs 

In contrast to program controlled I/O, device-initiated 

interrupts are treated as nonprocessor request (NPR) type interrupts 

and, therefore, given the highest priority. NPR requests are honored 

by the Unibus between bus cycles and are generally for direct memory 



48 

accesses. This is generally done by a cycle-steal process. Since 

cycle stealing in no way disturbs the program sequence, there is no 

need to save register contents and other information as with program 

interrupts. As simulated in this report, device-initiated interrupts 

are used only to input data into the computer from the interrupting 

devices. Device-initiated interrupts and non-processor requests are 

used synonymously. 

The setup to simulate device-initiated inputs included a queue. 

Each element of the queue represents one NPR. The elements of the 

queue are initialized before the simulation begins. Each element 

consists of the interrupt time in cycles, the locatioµ in memory 

where the data is to be input, the number of characters to be 

input, and the unit number of the interrupting device for purpose 

of identification, as shown in Figure 19. The elements in the queue 

are arranged in increasing order of their interrupt times. A cycle 

counter is maintained as well as a next time to interrupt (NTTI). 

NTTI is the minimum of all interrupt times in the queue elements. 

Since the queue elements are arranged in incr•asing order of their 

interrupt times, NTTI is the interrupt time of the elements beginning 

from the first and proceeding to the rear of the queue. 



I 
I 

T M 
I 

I 
------r--------------------------------~ 

N U 

Element 1 Element 2 Element 3 

T: time to interrupt 
M: memory address where data is to 

be input 
N: number of characters to be input 
U: unit identification number 

Figure 19. Queue for Device-Initiated Interrupt 
Simulation 

'When the cycle counter, which is incremented by one after each 

cycle, equals NTTI, the signals from the device interrupting, are 

input via a cycle-steal. For this simulation study the external 

signals are supplied from a file called EXTIN. After one NPR is 

honored, NTTI is set to the interrupt time of the next element in 

the queue. Values of T, M, N. U for each element in the queue 

49 

are user supplied. The format and deck setup are given in Chapter VI. 

Error Detection 

Execution time errors are caught by the simulator and 

appropriate messages output. These errors may be due to addressing 



50 

a word on a byte boundary, overflow/underflow, usa~e of registers/ 

modes not permitted in some instructions, etc. Most of the execution 

time errors are terminal errors and execution is suspended in those 

cases. 

Debugging Aids 

To facilitate debugging of programs, debugging aids have been 

provided in the simulator. Apart from the assembly time and execution 

time error detection, these aids help detect nonsyntactical execution 

time errors. Post-execution register and memory dumps are provided. 

An instruction trace facility is also provided. The instructions 

SET and CLT, set and clear the trace at (T) in the Processor Status 

word. When set, the instruction which is executed is traced. Tracing 

includes a dump"-of the general purpose registers, program counter, 

processor stack pointer, pieudo registers and the processor Status 

word. Setting and clearing the T-bit can be done under program 

control and provides a powerful debugging tool. 



CHAPTER V 

APL DESCRIPTION OF PDP 11/40 

An APL description of the PDP 11/40 is presented.in.this Chapter. 

The computer system is described as seen by a programmer, and the 

description is independent of any particular hardware implementation. 

Iverson (4) gives a complete definition of the notation used. The 

description is based on the PDP 11/40 System Manual (11) and the 

Processor Handbook (10), and consists of a set of programs and tables. 

The programs are either system programs or defined operations. 

All system programs operate concurrently and continuously, with one 

line active in each program. The defined operation program operates 

only when invoked by another program. In the description presented, 

PROC and IOIG are system programs, whereas ADC, EXEC, and MAC are 

defined operations. The description covers only those aspects of the 

system operation, which have been implemented in the assembler­

simulator, and therefore, does not describe the PDP 11/40 completely. 

The Processor 

The PROC program, Figure 20, describes the sequencing and execu­

tion of instructions and the servicing of interrupts. The program 

segments, their functions and the state of the processor during 

each function are summarized in Table VIII. 

51 



52 

PROO t sys em program 

-
Li 1 : ip.R, 0 

e + ; (6) 1 ~ 

1 7 MAC (.LR ,2,f;I) 2 

R? + ( 16) T2 + .LR 7 3 

,,, = 1 : v/e 4 
I~ 

F, i + Uw 3 /a 4 /I) , (i.w 3 /a 7 /I ) , ( .Lw 3 /a lO /I ) , 

(.La3/w0/I), (.Lw3/I) ,o 5 

i+(((F0=0)A(F1~5))xO)+(((Fo#O)A(Fcf7))xl) 

, +( (F0=7)x2)+( ( (o=v/(i1 (7)/I)A(F2~1,3) )x4) 

+((O=v/a 1(13)/I) x5)+(( (O= v/a 1(7)/I)A(F2=2) 

x6)+(((F0=0)A(F1~3))x3) 6 

S0 ,1+( (F1,F 2), (I0,F 0) ,(F 0,F J}, (F1,/3;F2> 3;4/), 

(F1,F2),(F3,F4),(/F3;F3=o;6/,/F4; 

F3=0;0/))i 7 

j + i So 8 DS 
1 

i + jI 
0 8a 

n + rf . 9 

+(11,13,14,16,17) 10 
no 

DOP ADC(Fl;F2;Io;aJ] 11 

11 = 1 : v /e 12 ,, 

al +F2 13 

Figure 20. The Processor System Program 



53 

SOP ADC(F3;F4;Io;a2) 14 

~ 1 : v/e 15 

B a1 +(.LR?)+ 2x ((.l(J}/I) - r8x 27) 16 

EXEC 17 

6 4 + P11 18 

0 : V/e 19 
~ 

h0+1 20 
. = , 0 : Vjh 21 ~ 

1 6 MAC (.LR , 4, s; p , R7) 22 
1 MAC ((4,8,4,28,12, 18 .. 34 

w /a /U)((e,hl)/io)o, 

4,f;R7,p) 23 

h(h/10)0+ ~ 24 I-> 

Figure 20. (Continued) 



TABLE VIII 

"PROC" PROGRAM SEGMENTS 

Lines Function Major State 

1- 4 Instruction fetch } FETCH 
5- 9 Instruction interpretation 

10-16 Effective address computation SOURCE 
DESTINATION 

17-18 Instruction execution EXECUTE 

19-24 Trap interrupt service SERVICE 

The processor can be described in terms of five major states. 

In the FETCH major state the instruction is fetched from memory. 

SOURCE and DESTINATION states obtain the source and destination 

operands, respectively. In the EXECUTE state the machine performs 

the action specified by the instruction, and the in SERVICE state, 

interrupts and traps are handled. In every major state the machine 

performs several minor operations, and a minor state is associated 

with each operation. For example, the FETCH major state consists 

of the minor operations: (1) retrieve the instruction from memory; 

(2) update the program counter; (3) load the instruction register; 

and (4) decode the instruction. 

54 



55 

Instruction Fetch 

The first step in program execution is to fetch the instruction 

from memory. In order to prepare for instruction fetch, the excep­

tions vector is initialized to zero (line 1). The 2-byte instruction 

is fetched from memory at the address given by the program counter, and 

placed in the instruction register (line 2). The program counter is 

incremented by 2 (line 3) and in case of any exceptions during 

instruction fetch, control branches to line 19. Exceptions during 

fetch may be due to errors in addressing. 

Instruction Interpretation 

To determine the operation specified by the instruction, the 

instruction is decoded next. The instruction is divided into five 

fields, specified by the five components of the vector F (line 5). 

Instruction interpretation is done on the basis of these fields. The 

instructions are divided into five different classes, and i takes the 

value of the class of the current instruction (line 6). Table IX 

summarizes the five classes. 



TABLE IX 

INSTRUCTION CLASSES 

Class i 

s Single operand o,4 
D Double operand 1 

R Register-source/destination 2 

B Branch 3 
0 Operate 5,6 

The components of the selection vector, S, take on values of 

the fields depending on i (line 7). Lines 8,9 interpret the 

instruction by selecting a row Ni from the navigation matrix N, 

(Table X), to specify the vector n used in subsequent control of the 

instruction execution. The row of N selected, is determined by an 

element of a particular decoding matrix D, Figure 24, specified by 

the instruction class i, and the selection vector S. For example, if 

the instruction is 020314, the five fields F0-F4 have the values 

2,0,3,1,4 respectively. Therefore, at line 6, i is assigned the value 

1. Consequently, s0, s1 take on the values of r0 and F0 at line 7. 

The lower diagonal entry (I0=0) in the second column (S1=2) of the 

zeroth row (I0=0) in the 1D decoding matrix gives the instruction, 

CMP. The entry in the element of the matrix, 41 in this cas~, gives 



57 

the row in the navigation matrix N. 

Effective-address Computation 

Address computation is done by the defined operation ADC. 

Computation depends on the instruction class. For double operand 

instructions, the address of the source 9perand (line 11) and the 

address of the destination operand (line 14) need to be calculated. 

For single operand instructions, only the address of the destination 

(line 14) is required. For the Register-Source/destination class of 

instructions, the register used (line 13) and the destination operand 

address (line 14) need to be computed. In the branch instruction, 

address calculation is done in line 16. Operate instructions 

do not need an operand and are executed immediately after instruction 

decode. Any exceptions during address computation abort execution 

(line 15). 

Instruction Execution 

Execution is done by the EXEC defined operation. The entry 

point in EXEC for any instruction depends on the component n1 , This 

is indicated informally by giving the instruction mnemonics on the 

left hand margin of the EXEC routine. Execution also may involve 

setting of the condition code. If the trap bit is set after execu­

tion, the exception is entered in e (line 18). 



Interrupt Service 

Servicing of exceptions is given priority over I/O interrupt 

service. In case of any exception the bit (0 for exceptions, 1 for 

I/O interrupt) in the interrupt holder his set (line 20). The 

interrupt service sequence is initiated, if at least one interrupt 

is pending (line 21). The sequence consists of pushing the processor 

status word (PS) and the program counter (PC) onto the processor 

stack (line 22), and loading the new PS and PC from the interrupt 

vector address (line 23). The interrupt vector address is selected 

from one of the six fixed locations in memory. The interrupt vector 

address of the peripheral device, is obtained from the address lines of 

the Unibus, when the processor accepts the request. The element of h, 

which caused the interrupt is reset. 

Input/Output Interrupts 

The IOIG system program, Figure 21, determines presence of 

interrupt requests by peripheral devices, and sets the bit in the 

interrupt holder, h, accordingly, line 1. The qwell at line 0 checks 

for interrupts on the Unibus bus request line BR(7:4). When an 

interrupt request is detected, the processor priority is compared 

against the request level, line 1. If the processor priority is less 

than the request level, the bit in the interrupt holder is set. This 

prohibits further interrupts until a new program counter and a 

processor status word is loaded and the interrupt holder bit reset 

(PROO lines 22-24). 



59 

IOIG: I 0 interru t enerator 

4 44 
1 : v/ w /a /U 0 

. 4 44 0 
hl +- (1.p8,9,10)<( (w /a /U)/i. )0 1 

= 1 : hl 2 

Figure 21. Input/Output Interrupt Generator 



60 

Memory Access Program 

The MAD operation, Figure 22, fetches or stores a specified 

number of bytes from the memory at a given address. The general form 

of the operation is MACi(j;~), where i specified the device requesting 

access; j is a three component vector specifying the address in 

memory- (j 0), number of bytes to be accessed (j1 ) and type of operation 

(store: j 2=s; fetch: j 2=f), respectively; ~ specifiEis the vector into/ 

from'which the accessed data is to be stored/fetched. 

~11 data transfer operations are carried on the 56 lines of the 

Unib~s. The addresses, j 0 , are communicated over the 18 address lines, 

the data, contents of ~, are placed on the 16 data lines and the type 

of operation is determined by the signal on the two Unibus control 

lines. Since memory is always a slave, a store operation, j 2=s, 

transfers data from master to slave and corresponds to the DATO 

operation. Conversely, a feteh, j 2=f, requests data from a slave and 

corresponds to the DATI operation. A description of these operations 

and Unibus transactions is given in the Peripherals and Interfacing 
,. i 

Hand1:look ( 10) • 

Access to memory can be for a nonprocessor request (NPR) by one 

of the peripheral devices (isO) or by the CPU (i=l). The request for 

service is entered in the bus request vector, r, and in the queue if 

it is empty (line 0). The queue discipline is on a priority basis 

with the NPR having greater priority than the pPU. The program 

dwells at line 1 until i is recognized as the first nonzero entry in 

the queue Requests that are not entered at-lirie-0 a~e entered in · 



61 

MA.Ci .. t : defined o eration 

r. ,q.+ 1,"' v/q 0 
.l. l. 

i : 
0 

(q/1 )0 1 

r. +- O 2 
l. 

+-. > µM e2 Jo- 3 

eo +- o 'I- jl I jo . 4 

el+- (jo::;28 ) v (jo~57344) 5 

1 : v;e 6 = 
= j2 : s 7 

i+ E/(j0-i.ajl)//M 8 

J (Jo4-o)l )//M+ E(jl,8)\i 9 
-

qi+ r 1 = 1,r0Ar1 10 

Figure 22. Memory Access Operation 



62 

line 10. After the request has been honored, the entry in the request 

vector is blanked out (line 2). 

Any form of exceptions are noted (line 3,4,5), and entered in the 

exceptions vector, e. Time out errors (line 3), odd addressing 

errors (line 4), errors due to addressing reserved memory locations 

(line 5) are noted. If no exceptions occur, a fetch (line 8) or 

store (line 9) is performed. 

Address Computation 

The ADC operation, Figure 23, is used for effective address 

calculation of the operands. The general form for ADC is (m;r;b;a) 

where mis the mode of addressing (one of the possible eight), 

r is the register used for addressing, b gives the type of instruc­

tion byte (b=l) or word (b=O) and 'a' is the address returned by the 

operation. 

There are basically four types of addressing. These are register, 

auto-increment, auto~decrement and indexed. Each type can be direct 

or deferred. In the direct mode the register used in the addressing 

contains the oparand. In the deferred mode, the contents of the 

register contain the address of the operand. When the program 

counter is used as the register in addressing, variations of auto­

increment, auto-increment-deferred, index and index-deferred are 

called immediate, absolute,. relative and rel~tive-deferred, 

respectively. 



ADC(m;g;b;a) : defined operation 

~(1,2,3,3,8,8,13,13) 0 . m 

REG a+g 1 _...,,,. 

REG-DEF a+ .lRg 2 ---.;:. 

AUTO-INC a+ J.Rg 3 AUTO-INC-DEF 

Rg+ (16)T(2,1) (g~5 )Ab + J.Rg 4 
= 

m : 2 5 1-+AUTO-
INC 

1 MAC (a,2,f ;u) 6 

a+ .LU 7 ~AUTO-
INC-
DEF 

AUTO-DEC Rg+ (16)T(J.Rg)-(2,l)b 8 
AUTO-DEC-DEF 

a+ .tRg 9 

m : 4 10 ~AUTO-

1 MAC (a,2,f ;u) 
DEC 

11 

a+ .LU 12 ~AUTO-
DEC-
DEF 

INDX, 1 7 13 
INDX-DEF MAC (.LR ,2,f, ,;u) 

R7 +(16)T2 +.LR? 14 

a+ (.tu) + .tRg 15 

m : 6 16 ~INDX 

1 MAC (a,2,f ,;u) 17 

a+ .LU 1E ~INDX-
DEF 

Figure 23. Address Computation Operation 



64 

5 

6 

(a) Single Operand Instructions ~ o.~ 

0 1 2 3 4 5 6 7 

0 

1 

(b) Double Operand Instructions . ,,, 
,., 

7 
58 47 4 5 85 77 

2D 

(c) Register-Source/Destination Instructions 

Figure 24. Instruction Decoding Matrices 



(d) Branch Instructions 

(e) Single Operand Instructions 

0 

(f) Operate Instructions 

Figure 24. (Continued) 



66 

• 

4 

5 

6 

7 

(g) Operate Instructions 

LEGEND 

Figure 24. (Continued) 



67 

In the register mode (line 1) the register number is returned, 

and in the register deferred mode the contents of the register give 

the operand address (line 2). In auto-increment the contents of the 

register are incremented by (2,1), depending on the type of instruc-

tion (b), after using its contents as the address of the operand. 

In auto-increment-deferred the register contents give the address of 

the address of the operand (lines 6,7). In auto-decrement and auto-

decrement-deferred the register contents are first decremented and 

then used as the address (line 9) or address of the address (line 11, 

12) of the operand. In indexed and index-deferred the contents of 

the specified register (r) are added (line 15) to the contents of 

the word in memory after the instruction (line 13,14) to give the 

address (line 15) or the address of the address (line 17,18) of the 

operand. 

Instruction Execution 

The entry point in the EXEC, Figure 25, routine for an instruction 

is determined by n2 (line a0). Execution also involves setting up 

of the condition codes (if necessary) after the execution. 

Lines a -a8 1 

The TRAP, BPT, EMT, IOT instruction enter at a1 . In each case 

the program status word and the Program counter get stacked (lines a1 , 

a2) and the new PSW and PC are fetched from preassigned positions in 

memory (lines a4,a5). In RTI, RTT, the PC and PSW which were stacked 

are loaded back (lines a6 ,a7) and the stack pointer (R6) incremented 



68 

EXEC: definer o eration 

-+ Ili ao 

TRAP,BPT ~ 1 6 . 
EMT, IOT ---- MAC (.tR ,2, s;p) a1 

MAC1 ((.iR6 )-2,2,s;R7 ) a2 

R6+(16)T (.LR6 )-4 a3 
1 . 7 

MAC ((12,16,24,28) ,2,f;R ) a4 n2 

MAC1c(14,18,26,30) ,2,f;p) 
n2 a5 

RTI,RTT-----~ MAC1 (.iR6 ,2,f;R7) a6 

MAC1((2 + .tR6 ),2,f;p) a7 

R6 + (16)T4 + .iR6 
a8 

CLC,CLN,CLV 
p +(0,1) ba CLZ;SEC,SEN--~ 

SEV,SEZ n2 ~ 

scc,ccc-----~ P1 2 13 14 15 + ( E( 4 ) 'E( 4 ) ) n b1 -? 
' ' ' 3 

BR, JMP------~ R 7 + ( 16) T ( a1 , a2 ) n
2 co 

BPL,BCC/BHIS 
R7 +/R7 ;"P(12 13 14 15) ; (16 )Ta1/ c1 BNE,BVC -~ 

' ' ' n 2 

BEQ,BMI,BVS ~ 
R 7 + /R 7; p ( 12 13 14 15) ; ( 16) T a1 / c2 BCS/BLO --

' ' ' n 2 

BLT, BGE-----~ R 7 + /(16)Ta1 ;"P12<=,;i) nl14;R 7 / c3 

BET, BLE------..;.> R7 +/(16)Ta1;P13 v~ (p12(=,;i)n P14);R7/ C4 
2 

BHI, BLOS-----~ R7 + /R7; (p13vP15)=(0,1 )ri2; (16)Ta1/ c5 

:MARK----------> R6 + (16)T (.iR6 ) + 2 x . .iw6 /I do 

'.Figure 25 ..• EXEC Routine 



SOP 
Instr.-------~ 

0 : F3 

u + (Ra2,w8/Ra2)I 
0 

MAC1(a2 ,(2,1)I ,r;u) 
0 

<;,,----=- 1 : v / e 

CLR,CLRB 
COM, CDMB-----~ 
NEG,NEGB 

TST,TSTB-----~ 

INC,INCB,DEC 
DECB,ADC, --+ 
ADCB,SDC,SBCB 

INC,INCB 
SBC,SBCB 

ADC,ADCB 

u + (0,"'11, ( (16,8)I )r 1 + .L"U) 
. 0 n3 

k1 + (.Lu) - u0 x (216 ,28)I 
0 

P14 + (o,o, (k1= _J-5' k1= -27 )Io ,o)n3 

P14+ ((k1= ... 215)A(P15= 1),(k1= -2?)A(P15=1))Io e14 

Figure 25. (Continued) 



P15 +- (k1=0)A(p15= 1) e15 

DEC,DECB P14+-(k1=215_1,k1=27-1)I 0 16 0 

SBC,SBCB P15 +- ~( (k1=0)A(P15= 1 ) ) 

ASR,ASRB, _____ + 
ROR,RORB u, P1 5 +- ( 1 + u) , ( u1 5, ~)I 0 9 18 

uo +- ( u1 'u9' P15) n 
3 

9 19 

ASL,ASLB _____ ;i. 
ROL,ROLB u, p15 + ( 1 tu), u0 920 

(u15'~)I + P15 
0 

e21 

k1 +-{.Lu) - uO x (216 ,28)I 
0 

922 

P14 + ~cuo=P15) e23 

8 8 
e24 SWAB ---------_,. u + w /u, a. /u 

8 t!i + u8, 0 =.Lw /u e25 2, 13 

P14,15+o,O 9 26 

SXT------- -;. U +- P, X E ( llU) 
12 927 

113 +"'112 e28 

Pi2,13 +- uo,o = k e29 

1 0 : F3 9 30 

(Ra2, w8/Ra2)I +-u e31 --? 
0 

MAC1 (a2 ,(2,1)I ,s;u) 
0 

0 32 

Figure 25. (Continued) 



DOP Instr. 

0 : F1 

u+- (R81 ,w8/R81 )1 
0 

= 1 : v /e 

f. O : F3 

v+- (R82 ,w8/Ra2 )r0 

= 1 : v/e 

MOV,MOVE ----~ v +- u 

C:MP,CMPB 

k1 +- (J.u) - Y.o x (216 ,28) I 
0 

-- P12,13,14 +- (1lo),(kl=O),O 

16 8 16 8 k1+((J.u)-u0x(2 ,2 )10)-((J.v)-v0x(2 ,2 \) 

w+/(µvhk1 ;k1 < O; ~(µv)TI (1 + k1)/ r13 

P12, 13 + (kl< O)' (kl=O) .f14 

P14+-(uof. vo)A(wo = vo) f15 

Figure 25. (Continued) 

71 



ADD, SUB 

ADD 

BIS,BIC 
BIT --~ 

w7'(µv)Tk1 ;k1 <O;""(µv)T I (1+k1 )/ 

-+(f19'f21)n3 

P14+(uo = vo)A(uo ~ wo) 

P15+(uo = vo)A(wo= 1)v("b=O)A(u~o) 

P14+(uo ~ vo)A(uo = wo) 

p15 + ( (u0=v0 )A( w0=o)v(v0=1 )A(u0=v0 )) 

v + w 

16 8 
k1 + ( .L v) - v O x ( 2 , 2 ) I 

0 

16 8 
k1 + (.i(w,v,v)n3) - (wo,vo,vo)n3x(2 ,2 ~O f26 

p14 + O f27 

Figure 25. (Continued) 

72 



R-D Instr: MOL,DIV,ASH,ASHC,XOR 

~ . 

_,, ~ 
' 

--

~ ,. 

MOL,DIV 

MOL 

c+1 

O : F3 

v+Ra2 

MAC1(a2 ,2,f;v) 

+(g8,g8,g25'g25'g39)~ 

k2+ (.Lv) - vo x 216 

k 3 + k1 ( x,, .;. ) n2 k2 

+(g14'g19)n 
2 

+(g15'g16)c 

Ra1 ,Ra1+1 + /(32)Tk3;k3<0;~(32)TI (1+k3)/ 

R a1 + /(16) T216 !k3 ; (216 1 k3) <Q;~(16)'1'I (1+:£6ikj/ 

P14,15+0,(k3<-215)v(k3;e:215 - 1) 

Figure 25. (Continued) 

73 

go 

g1 

g2 = 

g3 

g4 
-f 

g5 

g6 

g7 

gs 

g9 

g10 

g11 

g12 

g13 

g14 

g15 

g16 

g17 



74 

MUL P12,13+(k3< O),(k3=0) g18 --+ 

DIV = 1 : p14 + ( I k1 ) > ( I k2 ) g19 

Ra1 + /(16)TLk3;""(k3<o) ;"'(16)T I (1+fk3)/ g20 

P12,13+k3<0, k3 = O g21 

k3 + ( I k2 ) I ( I k1 ) g22 

Ra1+1 + /(16)Tk3; k1<0;""(16)T!(1+k3)/ g23 

DIV P14,15+k2 = O g24 

6 6 -ASH,ASHC O : k1 + ( l.w /v) - v x 2 g25 10 

(g27'g28)n 
3 

g~6 

u+Ra1 
g27 

a1 a1+1 a1 
u + ((R ,R ) , R ) c g28 

-+ (~4' g30)k < 0 
1 

g29 

right k1+1k1 g30 

P14, 15 + o,u(µu)-k1 g31 

;17u+ k1 ~a: l/u g32 

k +1 ) a 1 /u+u0 x E(k1+1 g33 

P151k2+u(k -1)' uO 
1 

g34 

left u+k1 ;tu g35 

P14 +k2 f uO g36 

F:l.guro 25. ( Gontinmi<l) 



75 

P12,13+uo, (.LU)= 0 g37 
j 

a a +1 a 
ASH,ASHC ( (R 1,R 1 ) , R 1 ) +u g38 n3Ac 

a 
XOR u+R 1 

g39 

v+u 'f. v g40 

P12, 13, 14 +(vo),((.iv) = o) ,o g41 

.,. 0 : F3 g42 

a 
R 2 +v g43 

XOR MAC1(a2,2,s;v) g44 

SOB,JSR +(h1,h4)n2 ho 

SOB k1 + ( (.iR a1) - R a1 x 2 16) - 1 
0 h1 

a 
R 1 + /{16)Tk1; k1 <0;"'(16)T I (1+k1 )/ h1e. 

0 : k1 h2 = 

R 7 + ( 16) T (.LR 7) - 2x .Lw 6 /I h3 

JSR 0 : F3 h4 

v+Ra2 h5 

MAC1(a2 ,2,f';v) h6 

Figure 25. (Continued) 



76 

= 1 : v/e ~ --
1 6 a1 

MAC (.LR ,2,s;R ) h8 

a 
R 1 +-R7 

h9 

R? +-v h10 

JSR R6 +- (16)T(.LR6) - 2 h11 

Figure 25. (Continued) 



77 

(line a8). None of these instructions affect the condition codes. 

Instructions which clear and set the condition codes are executed 

here. Condition codes are cleared or set depending on n3 (line b0 ). 

For SCC and CCC all four condition code bits are set or cleared 

depending on n3• 

Branch Instructions get executed here. The address to which 

control transfers (PROC 15) is placed in the PC (R7) depending on the 

condition codes. 

For the MARK instruction the stack pointer is reinitialized 

by adding the value of the last six bits of I (line d0 ). From theit 

on execution of MARK and RTS is identical. The contents of the 

register specified are placed in the PC and the word on the top of 

the stack is placed in the register (line d2). The stack pointer is 

set to point to the top element. 

This is the entry point for single operand instructions. The 

destination operand is fetched from the register specified in the 

instruction if the mode is zero (line e1) or from memory (line e2 ). 

Execution is aborted in case of exceptions (line e3). The destination 



is cleared, complemented or negated (line e5) and two of the four CC 

bits set for CLR, COM, NEG instructions. The result is stored back 

at the destination address (lines e30- e32 ). 

In shift and rotate instructions the de.stination is shifted/ 

rotated right (lines e18 -e19) or left (lines e20 -;. e21). In SWAB 

the bytes of the destination are sqapped (line e24). 

The double operand instructions are executed here. The two 

operands are fetched from the registers specified if the mode is 

zero (lines f 1 ,f5) or from memory (lines f 2,f6). Execution proceeds 

if there are no exceptions (lines r3,f7). After the execution 

the result is stored back at the destination address (lines f 29-f31). 

The Register-Destination type instructions have an entry point 

at g0 . For MUL and ASHC the type of register used (even or odd) is 

determined (line g1 ). If an odd register is used in the DIV 

instruction, the execution is aborted and the specification noted 

(line g2). The destination operand vis fetched from a register 

(if mode is zero (line g5)) or from memory (line g6). In MUL and 

DIV the destination and source operands are treated as two's 

In the~Drv instruction the 

contents of the pair of even and odd registers is treated as a two's 

78 

.complement number (line g11). If an even register is used in MUL, 

the entire product is stored in a pair of registers (line g15 ). Rlse 



only the last 16 bits are stored back in the odd register specified 

(line g16 ). 

In DIV the results are not stored in case of an overflow 

(line g19). The quotient is stored in the even register (line g20 ) 

and the remainder in the odd register (line g23 ). 

In the arithmetic shift operations the last 6 bits of the 

destination operand are treated as a signed two's complement number 

79 

giving the amount of shift (line g25 ). A positive number indicates 

left shift (lines g35_37) and a negative number indicates right shift 

(lines g30_34). The source operand is fl,etched from the register speci­

fied in the instruction g27• In ASHC the source operand is treated 

as the contents of a single register or a pair of registers depending 

on whether the register used is odd or even (line g28 ). In right 

shift the sign bit is extended (lines 32,33). The results are stored 

back at the destination (line g38). 

In XOR the source and destination operands are exclusive and 

the result stored back at the destination address (lines g42_49). 

Two of the other R-D instructions SOB and JSR have an entry at 

h0 • In SOB the contents of the register are decremented by 1 and if 

the result is not zero, then PC is decremented by the amount given 

by two times the value of the last six bits of the instructiqn, thus 

affecting a branch. 

In JSR the destination operand is fetched from a register or 

memory (lines h5,h6) and execution pr~ceeds if no exception has been 



noted (line h7). The contents of the register are stacked (line h8, 

h11); the return address is stored in the register (line h9) and the 

subroutine address stored in the PC (line h10). 

80 



81 

TABLE X 

THE NAVIGATION MATRIX 

Octal Code 
non1n2n3n4 Index Mnemonic Name IoFoF1F2F3F4 Type 

2 eo 2 0 1 1 ADC Add carry 0 0 5 5 - - s 

2 eo 2 0 1 2 ADCB Add car:cy (byte) 1 0 5 5 - - s 

o f 0 2 o 3 ADD Add 0 6 - - - - D 

i g0 2 o 4 ASH Ari th. shift 0 7 2 - - - R 

1 g0 3 1 5 ASHC Ari th. shift combined 0 7 3 - - - R 

2 eo 4 6 ASL Ari th. shift left 0 0 6 3 - - s 

2 eo 4 7 ASLB Arith. shift left 1 0 6 3 - - s 
(byte} 

2 eo 3 0 8 ASR Arith~ shift right 0 0 6 2 - - s 

2 eo 3 1 9 ASRB Arith. shift right 1 0 6 2 - - s 
(byte) 

3 c1 3 10 BCC Branch if carry clear 1 0 3 - - - B 

3 c2 3 11 BCS Branch if carry set 1 0 3 - - - B 

3 c2 1 12 BEQ Branch if eqq.a.l 0 0 1 - - - B 
(to zero) 

3 c3 0 13 BGE Branch if.~O 0 0 2 - - - B 

3 C4 0 14 BGT Branch if >O 0 0 3 - - - B 

3 c5 0 15 BHI Branch if higher 1 0 1 .; - - B 

3 c1 3 16 BHIS Branch if higher 103--- B 
or same 

o f 0 3 1 17 BIC Bit clear 0 4 - - - - D 

o f 0 3 1 18 BICB Bit clear (byte) 1 4 - - - - D 

o f 0 3 2 19 BIS Bit set 05----. D 



o f 0 3 2 

o f 0 3 o 

o f 0 3 o 

3 C4 1 

3 c2 3 

. 3 c5 1 

3 c1 O 

4 a1 0 

3 co 0 

3 c1 2 

4 bl 0 

4 b0 15 o 

4 b0 12 o 

2 b0 o o 

2 eo 0 0 

3 b0 14 o 

20 

21 

22 

23 

24 

25 

26 

27 

2a 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

82 

TABLE X (Continued) 

Mnemonic 

BISB 

BIT 

BITB 

BLE 

BLO 

BLOS 

BLT 

BMI 

BNE 

BPL 

BPT 

BE 

BVC 

BVS 

CCC 

CLC 

CLN 

CLR 

CLRB 

CLV 

Octal Code 
Name IoF OF lF 2F l4 Type 

Bit set (byte) 1 5 - - - - D 

Bit test ' O 3 - - - - D 

Bit test {byte) 1 3 - - - - D 

Branch if ~o O O 3 - - - B 

Branch if lower 1 0 3 - - - B 

Branch if lower or 1 0 1 - - - B 
same 

Branch if <O 0 0 2 - - - B 

Branch if minus 1 0 0 - - - B 

Branch -if not equal 0 0 1 - - - B 
(to zero) 

Branch if plus 1 0 0 - - - B 

Break point trap 0 0 0 0 0 3 0 

Branch O O O - - - B 

Branch if overflow 1 0 2 - - - B 
clear 

Branch if overflow 1 0 2 - - - B 
set 

Clear condition codes 0 0 0 2 5 7 0 

Clear C 

Clear N 

Clear 

Clear (byte) 

Clear V 

0 0 0 2 4 1 0 

0 0 0 2 5 0 0 

0050-- s 

1 0 5 0 - - s 

0 0 0 2 4 2 0 



83 

TABLE X (Continued) 

Octal Code 
non1n2n3n4 Index Mnemonic Name· IoFoF1F2F3F4 Type 

3 b0 13 O= 40 CLZ Clear Z 0002~.4 0 

o r0 1 41 CMP Compare 0 2 ...; - - - D 

o r0 1 42 CMPB Compare (byte) 1 2 - - - - D 

2 e0 o 1 43 COM Complement 0 0 5 1 - - s 

2 eo 0 1 44 COMB Complement (byte) 1 0 5 1 - - s 

2 eo 2 1 0 45 DEC Decrement 0 0 5 3 - - s 

2 eo 2 1 0 46 DECB Decrement (byte) 1 0 5 3 - - s 

1 g0 1 47 DIV Divide 0 7 1 - - - R 

4 a1 2 48 EMT Emulator trap 1 0 4 0 0 0 0 
to 1 0 4 3 7 7 

4 49 HALT Halt 0 0 0 0 0 0 0 

1 eo 2 0 0 50 INC Increment 0 0 5 2 - - s 

2 eo 2 0 0 51 INCB · Increment (byte) 1 0 5 2 - - s 

4 a1 1 52 !OT I/O trap 0 0 0 0 0 4 0 

2 co 1 53 JMP Jump 0 0 0 1 - - s 

1 h0 1 54 JSR Jump to subroutine 0 0 4 - - - R 

4 d0 o 55 MARK Mark 0 0 6 4 - - s 

o r0 o 56 MOV Move 0 1 - - - - D 

o r0 o 57 MOVB Move ~byte) 1 1 - - - - D 

1 g0 o 58 MUL Multiply 0 7 0 - - - R 

2 e0 o 2 59 NEG Negate 0 0 5 4 - - s 

2 eo 0 2 60 NEGB Negate (byte) 1 0 5 4 - - s 

4 61 NOP No-op. 0 0 0 2 4 0 0 



84 

TABLE X {'Sontinued) 

Octal Code 
non1n2n3n4 Index Mnemonic Name I()F 0F l F 2F 3Fl.j. Type 

4 62 RESET Reset 0 0 0 0 0 5 0 

2 eo 4 63 ROL Rotate left 0 0 6 1 - - s 

2 eo 4 64 ROLB Rotate left (byte) 1 0 6 1 - - s 

2 eo 3 2 65 ROR Rotate right 0 0 6 0 - - s 

2 eo 3 2 66 RORB Rotate right (byte) 1 0 6 0 - - s 

4 a6 67 RT! Return from 0 0 0 0 0 2 0 
interrupt 

4 dl 1 68 RTS Return from sub- 0 0 0 2 0 - s 
routine 

4 a6 69 RTT Return from 0 0 0 0 0 6 0 
interrupt 

2 eo 2 1 1 70 SBC Subtract carry 0 0 5 6 - - s 

2 e0 2 1 1 71 SBCB Subtract carry 1 0 5 6 - - s 
(byte) 

4 bl 1 72 sec Set condition codes 0 0 0 2 7 7 0 

4 b0 15 1 73 SEC Set C 0 0 0 2 6 1 0 

4 b0 12 1 74 SEN Set N 0 0 0 2 7 0 0 

4 b0 14 1 75 SEV Set V 0 0 0 2 6 2 0 

4 b0 131 76 SEZ Set Z 0 0 0 2 6 4 0 

. 1 h 0 77 SOB Subtract 1 and 0 7 7 - - - R 0 branch if -f 0 

o f 0 2 1 78 SUB Subtract 1 6 - - - - D 

2 eo e 79 SWAB Swap bytes 0 0 0 3 - - s 

2 eo 6 80 SXT Sign extend 0 0 6 7 - - s 



TABLE.X (Continued) 

Octal Code 
ncf1n2n3n4 Index Mnemonic Name IOF(JF1F2F3F4 Type 

4 a1 3 81 TRAP Trap 1 0 4 ~ 0 0 0 
. to 1 0 4 7 7 7' 

2 eo 1 3 82 TST Test 0 0 5 7 - - s 

2 e0 1 3 83 TSTB Test byte 1 0 5 7 - - s 

4 84 WAIT Wait 0 0 0 0 0 1 0 

1 g0 4 85 XOR Exclusive OR 0 7 4 - - - R 



CHAPTER VI 

USERS MANUAL 

This manual is a reference for a programmer writing assembler 

language programs for the PDP 11/40 computer, using the assembler 

simulator described in this report. The assembler accepts a large 

subset of the standard assembler language and the execution time 

interpreter simulates almost the complete instruction set, with error 

checking, diagnostics and completion dump. 

The first part of the manual describes the assembly language 

commands permitted by the assembler-simulator and essentially notes the 

differences from the standard assembler language. The PDP-11 Paper 

Tape Software Handbook (11), the PDP 11/40 Processor Handbook (10), 

and the Peripherals and Interfacing Handbook (9), completely describe 

the standard assembly language, addressing, input, output, etc., 

which this manual closely follows. 

The second part describes input/output and debugging facilities 

available at execution time. 

The third part describes the control cards, JCL and deck setup 

required to assemble/execute programs. 

The fourth section describes the output from the assembler­

interpreter, including the listing, format of the dump, error messages 

during assembly and execution. 

86 



The Assembly Language 

This section describes the subset of the standard PDP 11/40 

assembly languages accepted by the assembler. Only those features 

which the assembler omits or treats differently are described. 

With some exceptions, any program which assembles and executes 

correctly under this simulator should do so using the standard soft­

ware. The assembler produces a listing of the source program, error 

messam:is, if any, and the location in memory into which the object 

deck is loaded. 

87 

Most of the section subheadings in this manual are taken from the 

Paper Tape Software Handbook (11). 

Character Set 

The Standard PDP 11/40 Character set is accepted except the 

characters for carriage return, tab, space, line feed and form feed. 

Statements 

Each statement of the program must be on a single card and 

within columns 1-40. Statement segments beyond column 40 are ignored, 

and may give assembly time errors. A statement may consist of label, 

opcode, operand, and comment fields. The label and comment fields 

are optional and operand(s) may or may not be required depending on 

the operator. A free format of the fields is acceptable. 

A label is a symbol terminated by a colon. No embedded blanks 

between the symbol and the colon are permitted. Multiple labels per 



statewent are acceptable. An example of a statement with 3 labels 

is given below: 

A:AB:LABEL: STATEMENT; 

88 

The opcode field contains an instruction mnemonic or an assembler 

directive. The opcode field is terminated by a semicolon or by two 

or more blanks or by any of the special characters. Examples, of 

opcode fields terminated by a semicolon and a special character are 

HALT; 

MOV#RDINT,R2; 

where the mnemonics are HALT and MOV. 

The operand field may contain one or more subfields, separated by 

commas. Embedded blanks are not permitted in this field. Operand 

subfield may contain symbols, expressions or numbers. The operand 

field is terminated by a semicolon or two or more blanks. The 

following assembler statement is an example • 

• WORD A,MN+2,-4, 1 I-3; 

The operand field in the example statement consists of four subfields. 

Comments may follow operand (5) and may extend up to column 80 

of the card. 

Symbols 

All labels and symbols used in the operand field have to be 

defined. Labels can be defined by using the label symbol in the label 

field. Other symbols may be defined by direct assignments. A symbol 

may be defined only once exc~pt in cases of direct assignments. Periods 

are not permitted in symbols. 



Direct Assignment 

Direct assignment statements assign values to symbols. A 

symbol may be defined/redefined by a direct assignment. The '=' 

operator must not be preceded or followed by one or more blanks. 

Forward referencing in direct assignments, such as 

is not acceptable. 

Register Symbols 

x=y 

y=2 

All variations of register symbols of the standard language are 

accepted except the following. Register symbols can take values 

between 0 and 7, the registers accessible to a programmer. They 

cannot be assigned values of their memory locations as can be done 

in the standard assembly language. 

Expressions 

Only arithmetic operators + and - are acceptable in expressions. 
' 

Logical operators & and I are ~ot supported. Expressions also may 

contain symbols, numbers, ASCI~ data, or location counter references. 

Expression evaluation is done from left to right. Parentheses 

and e~bedded blanks are not permitted. 

Locafdon Counter 

The location counter may be referenced in expressions. It also 



90 

can be set to a value by direct assignment. Setting the counter to 

less than 128 results in an error as the first 128 words are reserved 

for the system. 

Machine Instructions 

A large subset of the machine instructions is supported. The 

instructions EMT, TRAP, BPT, IOT, RTT, WAIT and RESET, however, are 

not supported. The extended instruction set (EIS) instructions MUL, 

DIV, ASH, ASHC are supported. All instructions are assembled on 

word boundaries. 

Assembler Directives 

The .EVEN, .END, .WORD, .BYTE and .ASCII directives are supported. 

The .END directive signifies end of the source program and must have 

an operand (a single symbol) which matches with the label on the 

first executable statement of the program and signifies the program 

entry point. Absence of either the operand or the label may cause 

assembly time errors. A .END directive is mandatory for every program. 

Operands of the .WORD and .BYTE directives can be symbols, 

expressions or numbers, and are sepa,rated by commas. Embedded blanks 

are not permitted. 

Addressing 

All 12 variations of the 8 different modes of addressing are 

accepted by the assembler. A detailed description and the assembler 

formats of these variations is given in Chapter II. 



91 

Stack Operation 

The processor stack is used to save data temporarily which might 

otherwise be altered. The stack is a series of memory locations, 

pointed to by a stack pointer (normally register 6). As such, the 

stack pointer has to be initialized at the beginning of each program, 

if the program makes use of the stack. 

A description of various programming techniques is given in 

Chapter 9 of the PDP 11 Paper Tape Software Programming Handbook (11). 

Suggestions for Improving Assembly Time 

Assembly time efficiency can be improved if the following 

suggestions are adopted in the program statements. 

(1) Semicolons are used immediately after the last operand 

subfield if one is present, or after the instruction mnemonic if no 

operand is required, to terminate a statement. 

(2) Decimal numbers are used, wherever possible, instead of 

octal numbers. This eliminates the conversion from octal to decimal. 

Input/Output and Debugging 

Input/output from the papertape reader/punch and teletype has 

been simulated using the system interrupt structure. A detailed 

description of I/O performed in this manner is given in the Peripherals 

and Interfacing Handbook (9). 

I/O is initiated by setting the device enable bit in the device 

control and status register. When the data is available in the 



92 

devic~ buffer, an interrupt request is made. If the request is 

honored, control branches to a service routine. All service routines 

are user supplied. The address of the device service routine, has 

to be loaded by the programmer, into the device interrupt vector, 

as part of program initialization. The example statements 

MOV #RDINT,@#48. 

MOV #PUNINT,@#52. 

illustrate this. The two statements move the addresses of the read 

and punch routines RDINT and PUNINT, to memory locations 48 and 52, 

which are the interrupt vector addresses of the teletype reader and 

punch, respectively. This information is used when an interrupt 

request is made. To effect a branch to the service routine, the 

program counter is loaded from the contents of the interrupt vector 

address. 

Numerous examples of service routines are available in the 

Peripherals and Interfacing Handbook (11). 

Debugging 

A pair of debuggin~ instructions SET and CLT is provided. These 

instructions are not supported by the standard assembly language. 

Instruction SET, sets the trace bit in the Processor Status word 

which causes a dump of all general purpose registers, pseudo registers 

and the Processor Status word, in octal. The dump is printed for 

each instruction executed after SET, until a CLT clears the trace bit. 

A post-execution memory dump is provided in octal which also 

includes a dump of all registers. In case of execution time errors, 



93 

the execution is terminated after a register and memory dump is 

printed. 

Simulation of Device-Initiated Interrupts 

~ +he simulator also supports simulation of up to a maximum of two 

device initiated interrupts, concurrently with program execution. 

The time at which the processor gets interrupted by a device is 

supplied by the programmer. Once the processor is interrupted, the 

programmer supplied data is input into user-defined memory locations. 

If input consists of more than 1 character they are placed in 

consecutive memory locations, beginning with the location defined by 

the programmer. 

A description of the deck setup is given in a later section. 

Control Cards and JCL 

Each program should begin with a JOB card. 

JOB card is shown in Figure 26. 

:7 123456789 
>>JOB 

Figure 26. The JOB Card 

The format for the 
I 



94 

Column 7 must contain either the character 'A' or the character 

'E. 1 Under option 'A,' the user program is assembled but not executed. 

The assembler listing and the symbol table are printed. Under option 

1E,' the user program is executed if it is error free. 

Deck Setup and Output 

The deck setup to use the assembler-interpreter is shown in 

Figure 27. 

/ Data for device initiated 
initiated simulation 

I //GO.EXTIN DD * 
/ Data for user program 

I //GO DATA DD * 

/ User program 

I >>JOB A 

/ Data for the assembler­
simulator package 

I //GO.SYSIN DD* 

/ Assembler-simulator package 
with JCL 

Figure 27. Deck Setup· 

The setup consists of the assembler-simulator package which 

operates on one or more user programs. Each user program begins with 



a >>JOB Card. Data for each user program is contained in the file 

DATA, on separate cards. Data for device-initiated interrupts is 

contained in file EXTIN. More than one job can be assembled and 

executed in one compilation of the assembler-simulator. The deck 

setup is as shown in Figure 28. Data for the jobs is given in file 

DATA. 

>>JOB E 

JO Bl 

>>JOB A 

JOB2 

.END JOBl 

.END JOB2f 

Figure 28. Program Setup 

95 



Data for Device-Initiated Interrupt Simulation 

At most two device-initiated interrupts can be simulated. 

Simulation is done only if option 'E' is specified on the job card. 

The interrupt gueue is generated at program execution time. Data 

for the queue, which includes interrupt time, number of characters to 

be input (device-initiated interrupts, as set up in the program, 

simulate direct memory accesses to input data from the interrupting 

devices), and the memory locations where the characters should be 

stored, is supplied on a header card in the file EXTIN. The 

format of the header card is as follows. 

(1) Columns 1-5, 18-22, contain the times to interrupt, in 

cycles, one for each interrupt. The interrupt times should be 

right justified in the fields and should be integer numbers greater 

than zero. The time of the first interrupt, in columns 1-5, should 

be smaller than the time of the second interrupt, columns 18-22; the 

queue is processed in a strictly sequential manner beginning with 

the first element and proceeding to the rear. When the cycle counter 

of the processor equals the interrupt time, the processor gets 

interrupted, and the number of characters supplied is input at the 

memory locations specified. If device initiated interrupt simulation 

is not required, the interrupt times should be set to negative numbers. 

(2) Columns 7-11, 24-28, contain the address of the memory 

location, in decimal, where the characters input are to be stored, 

one for each interrupt. If the number of characters is greater than 

one, the characters are stored in consecutive locations starting with 



the location specified. The location specified should be a number 

greater than 128, right justified. 

(3) Columns 13-15, 30-32, contain the number of characters to 

be input, one for each interrupt. The number should be greater than 

zero, right justified. 

(4) Column 17, 34 contain the unit number of the interrupting 

device, one for each interrupt. The unit number is solely for the 

purpose of identification, and assignment of unit numbers to devices 

is arbitrary. The unit number appears in the message in the simu-

lator output when the processor is interrupted. 

Following the header card are the data cards which contain the 

sets of characters to be input, one set for each interrupt. Each 

set begins on a new card. 

' The assembly listing produced by the assembler consists of the 

source statement, a statement number, the assembler code in octal 

and the location in memory where the instruction is loaded. Error 

messages are printed after each statement causing the messages. The 

error messages consist of a two-digit error code in the format 

***ERROR #NN 

where NN is the error code. The following section lists the codes 

97 

and messages issued by the assembler. The program will not be loaded 

into memory for execution even if a single error is detected. 

Immediately following the assembler listing, the sorted symbol 

table is printed along with the values associated with the symbols. 

The values are printed in octal. 

Output from the interpreter consists of the register dumps if 

SET and OLT are used in the program, plus a post execution memory 



dump. The format of the dump consists of 16 words printed per line 

with the memory location printed at the left. If device interrupted 

simulation is done, the output also consists of messages indicating 

the processor interrupt time, the unit number of the interruptive 

device and a list of characters which are input into the memory. 

The assembler error codes and messages are given in Table XI. 

Execution-time error messages are printed as soon as an error is 

detected. Most execution time errors cause termination of program 

execution. 



TABLE XI 

ERROR CODES AND :MESSAGES 

Code Message 

0 Invalid sequence of operators 

1 

2 

3 

4 

5 

6 

7 

The sequence of operators in an operand expression 
is illegal. A few senquences which may give this 
error are:@-, anything other than a blank or 1 , 1 

following ) or )+, # or @# preceding a register 
expression, -(exp)+, @#( or#(. 

Invalid symbol 

The construct of the symbol does not conform to 
the rules. 

Invalid label 

The construct of the label does not conform 
to the rules. 

Soubly defined label 

Either a label is used more than once or the 
first six characters of the label are identical 
to the first six characters of another label. 

Unidentifiable symbol 

Symbol in a statement is neither a label 
nor a machine opcode. 

Undecodable statement 

Symbol in a statement cannot be identified 
with any of the four fields of the statement. 

Invalid symbol in expression 

Symbol in an expression is not an arithmetic 
operator, number or a valid symbol. 

Relational operator missing 

The 1=1 operator is missing in a direct 
assignment. Statement is also flagged if 

99 



Code 

8 

9 

10 

11 

12 

13 

14 

15 

TABLE XI (Continued) 

Message 

one or more blanks precede or follow the 
1=1 operator. 

Illegal assembler directive 

Assembler directive used is not supported. 
Statement is also flagged if the label on 
the statement, if one is used, does not 
conform to the rules of label construct. 

Invalid mnemonic 

Instruction mnemonic used in the statement is 
not supported. Statement is also flagged if 
the label on the statement, if one is used, 
does not conform to the rules of label construct. 

Missing operand in e:icpression 

A number or sy.mbol is missing in an e:icpression 
with the result that two operators are 
consecutive. 

Invalid ASCII conversion in e:icpression 

ASCII conversion sy.mbol used is not supported. 
Only the ' conversion sy.mbol is supported. 

Invalid decimal number 

The period terminating a decimal number is 
missing. 

Missing operator 

Arithmetic operator in an e:icpression is 
missing. 

Invalid operator 

Arithmetic operator in an e:icpression is other 
than + or -. 

More than one '%' in register e:icpression 

A register e:icpression contains more than one 
register definition sy.mbol 1%. 1 only one 
is permissible. 

100 



Code 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

TABLE XI (Continued) 

Message 

Undefined symbol or label in expression 

Operand expression contains a symbol or 
label which has not been defined. 

'%' used on a register symbol 

The register definition symbol 1%1 is used on 
a symbol which has already been defined as a 
register symbol. 

Register expression evaluates to a value greater 
than 7 or less than 0. Only registers 0-7 are 
programmer accessible. 

Unmatched parenthesis 

Either a left or a right parenthesis is missing 
in the operand field. 

Extra operands 

Operand field contains operands which are in 
excess of the number required by the instruc­
tion mnemonic. Statement is also flagged if 
an unpermitted sequence of operators is used. 

Nested parenthesis 

Nested parenthesis encountered in an expression. 
Use of parenthes.is in e~ressions is illegal. 

Expression in the first operand subfield of a Register 
Destination type instruction evaluates to a 
value greater than 7 or less than O. Statement 
is also flagged if an unpermitted sequence of 
operators is used (as in code 0). 

Offset in a branch instruction evaluates to a value 
greater than 127 or less than -128. 

Absolute, Immediate or Indexed mode used for operand 
of a Branch instruction. 

No .END Statement in the program. 

101 



Code 

26 

27 

28 

29 

30 

31 

32 

33 

TABLE XI (Continued) 

Message 

Operand of an .END directive is an invalid symbol 
or is an undefined label. The operand of the 
.END directive should match the l~bel on the 
first executable statement in the"program. 

Register used in an RTS expression evaluates to a 
value greater than 7 or less than 0 

Register expression used in the indexed field of 
an operand. Only ordinary expressions are 
permissible (i.e. expressions with '%'). 

Second operand of a SOB instruction evaluates to 
a value less than -63 words, or is positive 
and may therefore cause branch in a forward 
direction. 

Expression in the second operand subfield of the 
SOB or MARK instruction is a register 
expression. Only an ordinary expression is 
permissible. 

Operand of MARK instruction is negative or 
greater than 63. 

Register symbol used in an operand field is 
undefined. 

Attempt to set the location counter to a value less 
than 128. The first 128 words are reserved 
for the system. 

102 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Using the methods outlined in this paper, an assembler-simulator 

package for the PDP 11/40 has been implemented. Two options have been 

provided for using the package. The option can be specified on the 

JOB card. Under option 1A1 the user-program is assembled only, and 

the source-program listing, the symbol table and diagnostic messages, 

if any, are printed. Under option 'E' the user program is executed 

after assembly. 

The package has also performed simulated input/output from 

teletype and papertape reader/punch. Software packages, that need to 

be developed for the PDP 11/40, can be tested using the package. 

Extensive assembly and execution time error checking is performed. 

Lucid diagnostic messages are printed in the assembler listing. Special 

debugging instructions have been added to the instruction set, to help 

in execution time error detection. A register and memory dump is 

printed at the termination of program execution. 

Device-initiated interrupt simulation, is also performed con­

current with program execution. Processor operation is interrupted at 

user-defined interrupt times, for a direct memory access, to input 

signals into memory. 

A formal description of the computer in APL gives in detail the 

processor operation, instruction interpretation and execution, 

103 



104 

interrupt servicing, etc. Beside providing a concise description of 

the complex operations, APL permits sufficient detail to describe 

operation at the hardware leYel. 

With some exceptions any program which assembles and executes 

under this package should do so using standard system software. 



BIBLIOGRAPHY 

(1) Gear, William C. Computer Organization and Programming. 
New York: McGraw-Hill, 1969. 

(2) Hellerman, H. Digital Computer System Principles. New York. 
McGraw-Hill, 1967. 

(3) Hopcroft, J. E. and J. D. Ullman. Formal Languages and Their 
Relation to Automata. Reading, Massachusetts: Addison­
Wesley, 196°9, pp. 26-27. 

(4) Iverson, Kenneth E. ! Programming Language. New York: 
John Wiley, 1962. 

(5) Iverson, Kenneth E. et al. ~1 Description .Q! System /360. 
New York: IBM Systems Journal, Vol. 3, No. 3, 1964. 

(6) KDll - ! Processor Manual DEC-11-HKDAA-A-D .. Maynard, 
Massachusetts: Digital Equipment Corporation, 1973· 

(7) Korn, Granino A. Minicomputers !Qr. Engineers ~ Scientists. 
New York: McGraw-Hill, 1973· 

(8) Maisel, H. and G. Gnugnoli. Simulation of Discrete Stochastic 
Systems. Chicago, Illinois: Science Research Associates, 
1972. 

(9) Naylor, Thomas H. ~ al. Computer Simulation Techniques. 
York: John Wiley, 1966. 

(10) !:!?f 11 Peripherals ~ Interfacing Handbook. Maynard, 
Massachusetts: Digital Equipment Corporation, 1971. 

New 

(11) ~ 1JL40 Processor Handbook. Maynard, Massachusetts: Digital 
Equipment Corporation, 1972. 

(12) ·~DP 11/40 Paper Tape Software Programming Handbook. Maynard, 
Massachusetts: Digital Equipment Corporation, 1973· 

(13) ~ 11/40 System Manual DEC-ll-H40SA-A-D. Maynard, Massachusetts: 
Digital Equipment Corpoation, 1973. 

(14) Soucek, Branko, Minicomputer.Ji in ~ Processing and Simulation. 
New York: Wiley-Interscience, 1972. 

105 



106 

(15) Wegner, Peter. Programming Languages, Information Structures ~ 
Machine Organization. New York: McGraw-Hill, 1968. 



APPENDIX A 

PROGRAM FLOWCHART 

107 



PASS I 
Ent 

Initializatio 

Initialize 
location 
counter 

Set 
error 

Read 
source 
code 

Clear 
error 
flags 

Scan 
source 

code 

Set 
error 

Set 
error 

T 

En table 

108 



Entable 
symbol and 
expression 
value 

Set 
error 

Scan operand, 
'>-T~~~~increment 

location 
counter 

Set 
error 

Prepare for 
>---PASS 2 

Increment 
location 
counter 

Write card 
....._~image & error 

on intermedi­
ate file 

PASS 1 of the Assembler 

F 

PASS 2 
T 

Set 
location 
counter' 

109 



PAss-2 
ent 

itialization 

Initialize 
location 
counter 

Read from 
intermediate 
file 

Scan 
source 

code 

F 

F 

Set up 
T address 

code 

must be a 
mnemonic 

110 



Set 
location 
counter 

Evaluate 
operand 
expression 

F 

Convert 
characters to 

ASCII 

must be .ASCII 

rint image 
and stop 

Store code 
with counter J---.....,.. 

.__ _ _...,. value on 
i:tttermediate 

Print code 
and card 
image 

PASS 2 of the Assembler 

111 



Branch 

Fetch 
operand 

cb 
Single-operand 

Execute 
.___ instruction 

Entry 

Initializatio 

Fetch 
instruction 

Decode 
instruction 

Fetch 
both operands 

Double-operand 

T 

Increment 
counter if 

: not branch 
instruction 

The Simulator 

Operate 

Fetch 
operand 

Register-
Source/Dest. 

Service 
interrupt 

112 



~T 

F 

Entry 

Initialize 
queue 

Set next 
time to 
interrupt 

Input equals 
from device 
into memory 

Simulation of Device-Initiated Interrupts 

113 



APPENDIX B 

SAMPLE PROGRAM OUTPUT 

114 



115 

APPENDIX B 

SAMPLE PROGRAM OUTPUT 

A description of two test cases for the assembler-simulator is 

presented. The first program, 'SAMPLE,' has been tested with option 

1E' on the JOB card. · The program is, consequently, assembled and 

executed. The second program, 'TEST,' has been tested under option 

1A,' and if, therefore, assembled only. 

The output of the first program, consists of the source-program 

listing followed by the symbol table. The symbol table contains 

symbols, followed by their values, printed in octal. The program com~ 

putes the sum of a series, converts the sum to ASCII, and prints 

the result using the teletype printer. Concurrent device-initiated 

interrupt servicing is also involved. The execution time output 

immediately follows the symbol table. 

Two device initiated interrupts have been serviced during execu­

tion. The first involved input of 14 characters and the second, an 

input of 10 characters into memory. The messages identify the 

interrupting device and contain the characters which are input. The 

register dump, which can be used as an execution time debugging aid, 

consists of register and pseudo-register contents, printed in octal. 

The processor status word is printed in memory. The sum of the 

series, computed by the program, is printed next. A register and 

memory dump terminates program execution. 



116 

The second program assembler listing and symbol table follow 

the output of the first program. No execution was necessary in this 

case. 

The deck setup for the test cases is given. 

111111111122222222223333333333444444 
Column 123456789d12345678901234567890123456789012345 

II JOB 
(IBM 360 JCL) 

CALL TO ASSEMBLER-SIMULATOR 

. 
//GO.SYSIN DD* 

. 
DATA/TABLES FOR ASSEMBLER-SIMULATOR 

»JOB E 

PROGRAM 'SAMPLE' 

»JOB A 

PROGRAM 'TEST' 
/* 
//GO.DATA DD* 

Data for programs 
/* 
//GO.EXTIN DD * 

/* 
//. 

. 
DATA for Device initiated interrupt simulation 



LOC CODE 

000000 
000001 
000002 
000003 
000004 
000005 
000006 
000007 
177564 
177566 

000200 012706 
001 750 

000204 012737 
000310 
000064 

000212 012702 
000636 

000216 012703 
000003 

000222 012204 
000224 006304 
000226 012205 
000230 006305 
000232 062205 
000234 006305 
000236 060504 
000240 077306 
000242 000265 
000244 010467 

000362 
000250 00024,; 
000252 012746 

000722 
000256 012746 

000004 
000262 010446 
000264 004767 

000046 
000270 016700 

000410 
000274 012702 

000706 
000300 012737 

000100 
177564 

000306 000000 

117 

5TMT SOURCE STMT PAGE 
DATE 061'12/75 

2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

THIS SAMPLE PROGRAM.1·.EVALUATES T~.E SUM OF THE SERIES 
SUM = 2 * SUMI + 4 • SUM2 WHERE 

SUMl = X(l) + X(3t + •••••·•••J•••• + X(2N+l) AND 
SUM2 = X(2) + X(4) + ••••••••~•••• + X(2N). 

THE SU~ IS THEN CONVERTED TO ASCII BY THE ROUTINE s1co. AND 
PRINTED BY USING THE TELETYPE PRINTER. 

RO=XO; 
Rl=X H 
R2=X2; 
R3=X~; 

R4=X4; 
R5=XS; 
SP=X61 
PC=X7; 
TPS=177564; 
TPB= 177566; 

.20 SAMPLE: MDV •1000 •• sP; INITIALIZE STACK POINTER 

21 MOV 

22 

23 

24 
25 
26 LOOP: 
27 
28 
29 
30 
31 
32 
33 

34 
35 

36 

37 
38 

39 

40 

41 

42 
43 

MDV 

MDV 

MOV 
ASL 
MOV 
ASL 
ADD 
ASL 
ADD 
SOB 
SET 
MDV 

CLT 
MDV 

MDV 

MDV 
JSR 

MOV 

MOV 

MDV 

HALT 

•PRTRTN.a•s2.; ADDRESS OF PRINT ROUTINE TO VECTOR ADDRESS 

•TABLEoR2; 

(R2 )+oR4; 
R4; 
CR2 I +oRS; 
~s; 

(R2)+oR5; 
RS; 
RS.R•; 
R3.LOOP; 

Af4 •• -(SP); 

ll4o-(SP); 
Pc.s1co; 

MlLENoRO; 

#MSG.R2; 

ADDRESS OF TABLE IN R2 

COUNT IN R3 

SUM· ·l·N R4 

GET NEXT NUMBER 
NUMBER * 2 
ADO NEXT TERM 
NUMBER * 2 
SUM IN REGISTER 4 
REPEAT IF MORE 

PREPARE TO CONVERT TO ASCII 

FIELD LENGTH ON STACK 

VALUE TO BE CONVERTED ON STACK 

ADDRESS OF MESSAGE AREA 

ENABLE PRINTER 



118 

LOC COOE STMT SOURCE STMT PAGE 2 

44 THE PRINTER SERVICE ROUTINE 
45 

000310 112237 46 PRTRTN: MOllB (R2 I +.<il•TPB; CHARACTER FROM AREA TO BUFFER 
177566 

000314 005300 47 DEC FCO; DECREMENT COUNT 
000316 00140 I 48 BE.O PUNOVR; 
000320 000002 49 RT I l 
000322 005037 50 PUNOVR: CLR ilMTPSl 

177564 
000326 000002 51 RT I; 

52 
53 
54 ROUTINE UCO TO CONVERT INTEGER TO ASCII 
55 ROUTINE soco TO CONVERT OCTAL TD, ASCII 
56 CALLING SEQUENCE : PUSH FIELD START LOCATION ON STACK 
57 PUSH FIE.LD LENGTH ON STACK 
58 PUSH llALUE ON STACK 
59 JSR PC.SICO(OR SOCOI 
60 ERROR ULL RETURN WITH c BIT SET ON 
61 NUTE - ROo R 1 o R2o R3 ARE DESTROYED 
62 
63 

J 00330 012700 64 socu: MOii #OCTS25-RELS25,RO; .POINT TO OCTAL TAtlLE 
000172 

000334 OC0402 65 BR GOS25: 
n00336 012700 66 s1co: NOV MDECS25-RELS25,RO; POINT TO DECIMAL TABLE 

0001<>0 
000342 010446 67 bilS25: MOii ,.4.-(SP); 
000344 016603 68 MOY 6.1 SPl.R3; GET FIELD START 

000 010 
000350 016602 69 MOV 6. CSP) oR2; GET FIELD LENGTH 

OOOC06 
000354 002003 70 BGE LPSS25l JUMP OF NOT NEG 
000356 005002 71 CLR R2i 
000360 005066 72 CLR 6e ( SPll 

000006 
000364 016604 73 LPSS25: MOii 4.CSP).R4i GET VALUE TO BE CONVERTED 

000004 
000370 012746 74 MOV •• .-CSP); CLEAR SIGN 

000040 
000374 020027 75 CMP RO.IOCTS25-RELS25l CHECK IF DOI.NG OCTAL 

000172 
0004 00 001 40 5 76 BEO POSS25 0 YES, GIVE MAGNITUDE RESULT 
000402 005704 77 TST R4t 
000404 002003 76 6GE FOSS25; .JUMP IF + 
000406 005404 79 r.EG R4; GET ABSOLUTE VALUE 
000410 012716 8() MOii M•-.aSP; SAVE -

o o~ o5s 
000414 005046 81 POSs2s: CLR -CSP); SET FENCE 
000416 062700 82 ADD M2 ••RO; 

000002 
000422 060700 83 ADD PCeRO; 

84 RELS25: 
000424 00571 0 85 TSTS25! TST iiRO; 
000426 001420 66 BEQ MOVS25; JUMP IF ALL POWERS DONE 
0 00430 005001 67 cu~ tc 1: 



LOC COlJE 

000432 011005 
000434 005405 
000436 060504 
000440 002402 
000442 005201 
000444 000772 
000446 062004 
000450 005701 
000452 001002 
000454 005716 
000456 0017b2 
0 00460 062701 

000060 
000464 010146 
00046b 000756 
0004 70 060203 
0004 72 062.704 

000060 
0004 76 I 10443 
000500 005302 
000502 003410 
000504 112643 
0005 06 001374 
000510 112613 
000512 005302 
000514 001410 
000516 112743 

000040 
000522 000773 
000524 005726 
000526 001011 
000530 022726 

000040 
000534 001011 
000536 012604 
000540 01266b 

000004 
000544 005726 
000546 006126 
000550 000207 
0 0 0552 0 05 ·120 
000554 001376 
000556 005726 
0~0560 016603 

0 00 0 I 0 
ooo::.64 11272.i 

000032 
000570 005366 

000006 
OG0574 003373 
OOOS76 005166 

000006 
000602 000755 
000604 023420 
000606 001750 
000610 000144 

STMT SOURCE STMT 

88 SU8$25: MOV 
89 NEG 
90 ADD 
91 tlL T 
92 INC 
93 BR 
94 ElAC$25: ADD 
95 TST 
96 BNE 
97 TST 
98 BEO 
99 NZES25: ADD 

100 MOV 
101 BR 
102 MOVS25: ADD 
103 AOD 

ilRO,RS; 
RS; 
RS, R4; 
BACS25; 
Rt; 
SUBS25; 
(RO-) +.R4; 
Rt; 
"ZES25; 
@SP; 
TST$25; 
#48.,Rt; 

RI, -(SP I; 
TSTS25; 
R2,R3; 
•48• ,R4; 

104 
105 DCRS25: 
106 

MOVB l«!>.-(R31; 
DEC R2; 

107 
108 
1 09 
110 FlLS25: 
111 
112 

113 

BLE FULS25; 
MOVB (SPJ+,-(R3); 
BNE DCRS25; 
MOVB (SP )+,QlR3; 
DEC R2; 
EEO CNES25; 
MOVB •• ,-(R3); 

BR 
114 FULS25: TST 
115 BNE 

F ILS25; 
ISPI+; 
ERRS25; 

116 CMP 

117 BNE 
118 ONES25: MDV 
119 MOV 

M' , (SP)+; 

STSS25-4 •; 
CSP)+,R4; 
(SP) +,4 • (SP); 

120 TST ISP)+; 
121 ROL (SPI+; 
122 RTS PC; 
123 E~RS25: TST (SP)+; 
1"'4 RNE ERRS25; 
125 TST CSP)+; 
126 MOV e.CSP),R3; 

127 ~Tss2s: MOVB •'*·(R31+; 

126 DEC 

12Q BGT STSS25; 
130 COM 6. (SP); 

131 BR CNES25; 

PAGE 

SEE IF CURRENT POWER WILL GO AGAIN 

BUMP OIGlT 

TOO MUCH, BACK UP 

JUMP IF DIGIT NOT 0 

JUMP OF NO; NON-ZERO DIGITS VET 
CONVERT Td; ASC 11 

POINT TO FIELD END 
CONVERT LEAST SIGNIFICANT DIGIT 

JUMP IF CC!UNT EXHAUSTED 
MOVE DIGIT 
JUMP IF NOT FENCE 
MOVE OUT THE SIGN 

JUMP IF FIELD FILLED 
MOVE IN LEADING BLANKS 

NUMBER TOC! BIG FOR FIELD 

MOVE RETURN UP 

FLUSH VALUE 
FLUSH FLAG ANO SET C BIT ON IF ERROR 

FLUSH SIGN 

FILL FIELD WITH * 

JUMP OF MORE TO DO 

132 OEC52S: .woRO 10000 •• 1qoo •• 100 •• 10 •• o; 

119 

3 



120 

LOC CODE STMT SOURCE STMT PAGE 4 

000612 000012 
000614 000000 

133 OCT$25: 
000616 I 00 000 134 .WORD 100000.10000.1000.100.10.0; 
000620 010000 
000622 001000 
000624 000100 
000626 000010 
000630 000000 

135 
136 
137 
138 STORAGE AREA 
139 

000632 000000 140 SUM: oWORC o; 
000634 000000 141 N: oWCRD o; 
000636 000005 142 TABLE: oWORC s •• 11s.,2a •• -46· •• 13.; 
000!>40 000163 
000642 000027 
000644 177722 
000646 000015 
000650 000020 143 eWORO 16 •• 97 •• -4a •• 60 •• -s •• ; 
000652 000141 
000654 177720 
000656 000074 
000660 177712 
000662 000101 144 ,WQRC 65 •• 44 •• -49 •• 56 •• 13.; 
000664 000054 
000666 177717 
000670 000070 
000672 000015 
000674 000002 14:;) .woRc 2 •• 19.,1s •• 21.; 
0 00676 000023 
000700 000017 
000702 000025 
000704 000022 146 MILEN: .woRC ta.; 
000706 124 147 MSG: • ASC 11 /THE SUM IS= / 
000707 110 
000710 105 
000711 040 
000712 12.S 
000713 125 
000714 115 
0007 lo 040 
000716 111 
0007 17 123 
000720 075 
000721 040 
00 0722 0 00 000 14<:1 ASCSUM: ,!MORO o.o.o; 
000724 000000 
000726 000000 

000200 149 ,ENO SAMPLE; 



SYMBOL TABLE 

SICO 000336 soco 00033C A SC SUM OC0722 8ACS25 000446 
FILS25 000512 FUL$25 000524 \iOS25 0 C0342 LOOP 000226 
N 0006::S4 NZES25 000400 OCT$25 OCC616 i"C 000007 
RO 000000 Hl 000001 R2 000002 R3 000003 
STS$25 OOO!b4 SUBS2!:> 000432 SUM OC0632 TABLE 000636 

DCRS25 000500 DECS25 000604 
LPSS25 000364 MOVS25 000470 
POSS25 000414 PR TR TN 000.310 
R4 000004 R5 000005 
TPB 177566 TPS 177564 

DNES25 000536 
MSG 000706 
PUNOVR 000322 
SAMPLE 000200 
TSTS25 000424 

ERRS25 
Ml LEN 
RELS25 
SP 

000552 
000704 
000424 
000006 

I-' 
I\) 
I-' 



EXECUTlON FULLLlwS 

PRUCcSSOR INTEWkUPTED av UNITS 
IDEVICc INITIATE~ INTERRUPT) 

9 8 6 5 2 7 4 3 0 2 4 5 

INTERRUPT SERVICED: NORMAL PROCESSING RESL~ES 

REGISTER OUMP AT LOCATiuN 000244 

IP 00026S MAH = G0024.! i\46R = O'J026S 

RO 0 JC. '.JOO RI = OJOu00 R2 = OCC~54 

«EGI STER DUMP AT LOCAT hll'. 000250 

IR 01046 7 MAR = oocooo MBR = OCllSO 

RO 000000 1-1 I = C:JOOOO R2 = OC06S4 

PROCESSOR INTERRUPTED ~y UNIT7 
(OEVICE !NITJATcD INTERRUPT) 

A E F N $ % < / 

INTERRUPT SERVICED: NURMAL PROCESSING RESL~ES 

THE SUM 15= 616 

REGISTER DUMP AT LOCATION 000306 

IR 000000 MAR = 000306 MBR = 000000 

RO OOOOv:J RI = 000061 R2 = OCC730 

PS = 0000000000010000 

R3 = 000000 R4 = OOl!SO RS 000402 R6 00!7SO R7 000244 

PS = 0000000000010000 

R3 = 000000 R4 = 0011 SO RS 000402 R6 0017SO R7 0002so 

' PS = 0000000000000000 

R3 = 000722 R4 = OOllSO RS 177766 R6 0017SO R7 000306 

O'.l0200 
000240 

012706 OJI750 Cl2737 000310 OOOC64 0127~2 000636 012703 000003 012204 006304 01220S 006305 062205 00630S 060504 
077306 000265 cl04o7 OOO~o2 )00245 012746 000722 012746 000004 010446 104767 000046 016700 000410 012702 000706 



PAGE 5 

000300 012737 0001 00 1775b4 000000 1122:!7 17756b 005300 001401 000002 005037 l 77564 000002 012700 000172 0 004-02 012700 
000340 OOOlbO 010446 Olb603 000010 016602 000006 002003 005002 005066 000006 016604 000004 Ol.!746 000040 020027 000172 
000400 00140&, 00570 .. 002003 00 ;>404 01211c OOOC55 OC5C46 062700 000002 060700 005710 0014.20 005001 011005 005405 060504 
000440 '002402 0052 01 00077,!_ 062004 0 05 70 l 001002 005716 001762 C6270l 000060 Ol014b 000 756 060203 062704 000060 110 ... 43 
J.'.)0500 0053.:12 003410 11264.3 001374 112fl3 005302 001410 112743 000040 000773 005726 001011 022.726 000040 001011 012004 
000540 012.66t> 0000 04 005726 006126 000207 005726 001376 005726 016603 000010 112723 000052 005366 000006 003373 005166 
000600 000006 00075:. 02.>420 001750 0 00 144 000012 000000 100000 010000 001000 000100 000010 000000 001150 000000 000005 
000640 000163 000027 177722 00001::> OOOC20 000141 177720 000074 177712 000101 000054 177717 000070 000015 000002 000023 
000700 000017 00 00.2':> 000022 044124 020 105 052523 020115 051511 020075 033040 033061 000000 017604. 000026 0 16114- 000066 



LOC CODE 

000000 
00000 1 
000002 
000003 
000004 
000005 
000006 
000007 

000200 012706 
001774 

000204 012746 
0 0006 7 

000210 000402 
000212 012746 

000471 
000216 010146 
000220 016601 

000010 
000224 066666 

000000 
000010 

000232 016666 
000004 
00()006 

000240 010066 
000004 

0"00244 010246 
000246 005046 
000250 005000 
000252 000265 
000254 112102 
000256 042702 

I 77600 
000262 120227 

000040 
C00266 000245 
000270 001004 
000272 020166 

000014 
000276 002766 
000300 000450 
000302 105766 

124 

STMT SOURCE STMT PAGE 
DATE 06/12/75 

2 
.3 
4 
5 
b 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 · 
22 
23 TEST: 

24 SOC!: 

25 
26 $!CI: 

27 G0$24: 
28 

29 

30 

31 

32 
33 
34 
35 
36 STTS24: 
37 

38 

39 
40 
41 

ROUTINE SICI TD CONVERT ASCII CHARACTERS TO INTEGERS 
ROUTINE SOC! TC CONVERT ASCII TO OCTAL 
THE CALLING SEQUENCE : PUSH CHARACTER FIELD START ON STACK 

PUSH CHARACTER FIELD LENGTH ON STACK 
JSR PCoSICICOR SOCll 

RETURNS •ITH INTEGER RESULT ON T.OP OF STACK 
ROUTINE TAKEN FROM FPMP- 11 USERS MANUAL, PP 106-108 

DIGITAL EQUIPMENT CORPORATION, 

Ra=xo; 
RI =XI; 
R2=ll:2; 
R3="J; 
R4=X4; 
R5=X5; 
SP=ll:t:l 
PC=X7; 
MOV •1020 •• SP; 

MOii 

BR 
MOV 

MDV 
MOV 

ADD 

MDV 

MDV 

•55,,-(SPI; 

GOS24; 
•471,-(SP>; 

Rlt-l!;iPI; 
8o(SPltRH 

6(SPlo8o(SP); 

4(5P),6(SP>; 

R0o4(5P); 

MOii R2 ,-(SP l; 
CLR -I SP I; 
CLR RO; 
SET 
MOVB (Rll+oR2; 
BIC Ml77600tR2; 

CMPB R2•*' ; 

CLT 
BNE 
CMP 

SGSS24l 
Rl,12.(SP); 

INITIALIZE STACK POINTER 

SET OCTAL FLAG'S 

SET DECIMAL FLAGS 

SAVE RI 
GET STRING START 

GET END + I 

FIDOLE RETURN POINTER 

SAVE RO 

SAVE R2 
CLEAR SIGN 
CLEAR WORKSPACE 

GET NEXT CHARACTER 

~UMP lF NOT BLANK 

42 BLT STTS24; JUMP IF MORE TD SC.AN 
DONE 43 BR SGNS24; 

44 SGSS24: TSTB 7o(SP); IF OCTAL CONVERSION 



125 

LOC CODE STMT SOURCE STMT PAGE 2 

000007 
000306 001002 45 BNE SN1S24; ·oo NOT PERMOT SIGNS 
000310 005216 46 INC asp; 'OCTAL - FAKE SIGN BIT 
000312 000420 47 BR "CKS24; GO TO PROCESS DIGIT 
000314 120227 48 SN1S24: CMPB R2el 1 +; 

000053 
000320 001443 49 BEQ FLOS24; JUMP IF + 
000322 120227 50 CMPB R2•••-; 

000055 
000326 001012 51 BNE "CKS24; JUMP IF NOT -
000330 005216 52 INC ilSP; SET SIGN -
000332 000436 53 BR FLOS24; 
000334 112102 54 NXTS24: MOVB (Rll+oR2; GET NEXT CHARACTER 
0003·36 042702 55 BIC •177600oR2; 

177600 
000342 120227 56 CMPB R2e•• ; 

000040 
000346 0 01002 57 BNE NCKS24; JUMP IF NOT BLANK 
000350 112702 58 MOVB •48e eR2; BLANK = ZERO 

000060 
000354 120227 59 NCKS24: CMPB R2e••o; 

000060 
000360 002444 60 BLT ERRS24; JUMP IF TOO SMALL 
000362 120266 61 CMPB R2o 6 • ( SPJ; 

000006 
000366 003041 62 BGT ERRS24; JUMP IF TOO BIG 
000370 162702 63 SUB .t48 •• R2; MAKE NUMERIC 

000060 
000374 105766 64 TSTB 7o(5PJ; OCTAL OR BINARY 

000007 
000400 001441 65 BEQ CCLS24; 
000402 000265 66 SET 
000404 006300 67 ASL AO; RO BASE * RO + R2 
000406 102431 68 BVS ERRS24; 
000410 160002 69 SUB R01R2; 
000412 006300 70 ASL RO; 
000414 102426 71 BVS ERRS24; 
000416 006300 72 ASL AO; 
000420 102424 73 BVS ERRS24; 
000422 160200 74 SUB R2oROl 
000424 000245 75 CLT 
000426 102421 76 BVS ERRS24; 
000430 020166 7'7 FLDS24: CMP Rl.12o(SPJ; 

000014 
000434 002737 78 BLT "XTS24; .JUMP IF MORE TO SCAN 
000436 006026 79 SGNS24: ROA (SP)+; TEST SIGN 
000440 000265 80 SET 
000442 103403 IH BCS ONES24; JUMP IF -
000444 005400 82 NEG RO; MAKE + 
000446 l 0.241.2 83 BVS NGMS24; .JUMP IF -NEG MAX 
000450 000241 84 CLC; SET SUCCESS FLAG 
000452 012602 85 DNES24: MDV (SP1+.R2; RESTORE R2 
000454 012601 86 MDV (SPl+.Rll RESTORE Rl 
000456 006126 87 ROL (SPl+l FLUSH FLAG AND SET C BIT IF ERROR 
000460 010060 88 . MDV R0.4 oC SP); RETURN RESULT 

000004 



126 

LOC CODE STMT SOURCE STMT PAGE 

000464 000245 89 CLT 
000466 012600 90 MOV (SP)+.RO; 
0 00470 000207 91 RTS PC; 
000472 005726 92 ERRS24: TST (SPI+; FLUSH SIGN 
000474 005000 93 NGMS24: CLR r:;o; 
000476 005166 94 COM 4.(SP); SET ERROR Ft.AG 

000004 
000502 000763 95 ER ONES24; 

96 
000504 006100 97 OCLS24: ROL RO; SHIFT 3 BITS LEFT, 
000506 103771 98 BCS ERRS24; CHECKING AS YOU GO 
000510 006100 99 l'OL FiOi 
000512 I 03767 100 BCS ERRS24l 
000514 006100 101 ROL RO; 
000516 103765 102 BCS ERRS24; 
000520 060200 103 ADD R211RO; ADO IN THE DIGIT 
000522 000'742 104 BR FLDS24l 

105 
106 

000200 107 .ENO TEST; 



51 Cl 0 00212 
NXT$24 0003.34 
R5 000005 

$0CI 000204 
OCL$24 000:.>04 
SGN$24 000436 

ONES24 000452 
PC 000007 

SYMBOL TABLE 

ERRS24 000472 
RO 000000 

SGS$24 000302· SN1S24 000314 

FLDS24 000430 
Rl 000001 
SP 000006 

GOS24 000216 
R2 000002 
STTS24 000254 

NCKS24 000354 
R3 
TEST 

000003 
000200 

NGMS24 000.74 
R4 000004 



APPENDIX C 

MACHINE OPCODE TABLE 

128 



129 

l\UM.OF 
S.NO MNEMONIC OPERANDS LINK OPCODE TYPE 

0 MOV 2 16 01---- D 
1 MUL 2 2 070--- R 

2 RTS 1 3 0002-- s 
3 ASH ·2 7 072--- R 
4 MOVB 2 38 11---- D 
5 ASHC 2 44 073--- R 

6 BR 1 0 0004-- B 
7 BVC 1 10 1020-- B 
8 CU< 1 48 0050-- s 
9 ASL 1 68 0063-- s 

10 SXT 1 0 0067-- s 
11 TSTS 1 15 1057-- s 
12 CLRB 1 75 1050-- s 
13 ASL8 1 82 1063-- s 
14 RESET 0 0 000005 0 
15 TRAP l 0 001044 a 
16 DEC 1 17 0053-- s 
17 BNE l 18 0010-- B 
18 COM 1 19 00~1-- s 
19 ADI..) 2 84 06---- D 

20 13LE l 21 0034-- B 

21 8.GT 1 22 0030-- B 

22 dLT 1 23 0024-- B 

23 BMI 1 24 1004-- B 

24 BPL 1 25 1000-- B 

25 BGE 1 26 0020-- 8 

26 t:ICC 1 27 1030-- B 

27 i) l v 2 28 071--- R 

28 BIT 2 29 03---- 0 

29 BIC 2 30 04---- 0 

30 ti HI 1 31 1010-- 8 

31 SBC 1 32 0056-- s 
32 BPr 0 33 000003 0 

33 SEV 0 34 000262 0 

34 SEC 0 35 000261 0 

35 SEN 0 36 000270 0 

36 SEZ 0 37 000264 0 

37 sec 0 0 000277 0 

38 DECi3 1 39 1053-- s 
39 COMB 1 40 1051-- s 
40 MAHK 1 41 0064-- s 
41 tlITB 2 42 13---- D 

42 ti I CB 2 43 14---- D 

43 SBCB 1 0 1056-- s 



130 

l\LM•OF 

Se NO MNEMu;\ilC OFEJ;;ANOS LINK OP CODI:. TYPt. 

44 dHIS 1 45 1030-- B 

4o SWAti 1 46 0003-- s 
46 tiALT 0 47 000000 0 

47 WA If 0 0 000001 0 

48 lNC l 49 0052-- s 
4q tJEll 1 50 0014-- B 

::>v ROL l 51 0061-- s 
.:; 1 CMP 2 52 02---- D 

02 JMP 1 53 0001-- s 
5.3 NcG 1 54 0054-- s 
54 ROr< l 55 006.0-- s 
~5 SOB 2 56 077--- R 

56 XUR 2 85 074--- R 

57 dCS 1 58 1034-- B 

58 BLO 1 59 1034-- B 
59 AOC 1 60 0055-- s 
60 BIS 2 61 05---- D 

61 EMT 0 62 001040 0 

62 IOT 0 63 000004 0 

63 CLC 0 64 000241 a 
64 CLV 0 65 000 242 a 
6::) CLN f) 66 000250 0 

66 CLZ 0 67 000244 0 

67 CCC 0 0 000257 0 

otl JSI~ 2 69 004--- R 

69 HTI 0 70 000002 0 

70 SUB 2 71 16---- D 

71 ASR 1 72 0062-- s 
72 t3V3 1 73 1024-- B 

73 1 ST 1 74 0057-- s 
74 '~TT 0 0 000006 0 

75 INCB l 76 1052-- s 
70 C.MPa 2 77 12---- D 

77 ~OLB 1 78 1061-- s 
7ti RO rm 1 79 1060-- s 
79 NEGt3 t ~o 1054-- s 
80 ADC cl 1 81 1055-- s 
a1 di SB 2 0 15---- D 

82 ASi~B 1 83 1062-- s 
83 ti Li.JS 1 1 1 1014-- B 

84 si::r 0 20 000265 0 

85 C:LT 0 86 000245 0 

86 NOP 0 57 000240 0 



VITA 

Anand Vardhan Pandit 

Candidate for the Degree of 

Master of Science 

Thesis: SIMULATION AND APL DESCRIPTION OF THE PDP 11/40 

Major Field: Computing and Information Sciences 

Biographical: 

Personal Data: Born in Hyderabad, India, June 11, 1951, the 
son of Mr. and Mrs. S. V. Pandit. 

Education: Graduated from St. Paul's High School, Hyderabad, 
in May, 1966; received Bachelor of Engineering degree 
in Electronics and Communication Engineering from 
Osmania University in 1973; completed requirements for 
Master of Science degree at Oklahoma State University in 
July, 1975· 




