
THE DESIGN OF A BIBLIOGRAPHIC 

DATA BASE SYSTEM 

By 

PERRY LEE BALL 
~ 

Bachelor of Science 

Northwestern State University of Louisiana 

Natchitoches, Louisiana 

1973 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 
MASTER OF SCIENCE 

May, 1975 





THE DESIGN OF A BIBLIOGRAPHIC 

DATA BASE SYSTEM 

Thesis Approved: 

Thesis Adviser 

tJ0~tJ~ 

Dean of the Graduate College 

916258 
ii 

OKLAHOMA 
STATE U~-iiVERSITY 

LJBRARY 

SEP 12 1975 



PREFACE 

This report presents a definition of a data base and describes 

the major concepts considered in the design of a data base system. 

Demonstrating these concepts is an implemented data base system 

involving bibliographic data pertaining to computer science topics. 

I wish to thank Dr. J. R. Van Doren and Dr. D. W. Grace for 

their suggestions for improvement of this report. A special thanks 

goes to my adviser, Dr. G. E. Hedrick, for his valuable guidance and 

assistance. 

My final thanks goes to my wife, whose patience, understanding, 

and encouragement played an important role in my completion of this 

last year of study. 

iii 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION 

II. CLASSIFICATION OF DATA BASE SYSTEMS. 

Host Language Systems . . 
Self-Contained Systems .. 

III. DATA BASE FEATURES I • 

Data Structures • . . • . 
Linked Structures . 

Singly Linked List . 
Doubly Linked List • 
Circular Linked List • • 
Inverted List •.. 
Multilinked List 

Tree Structures . 

Binary Trees . 
AVL Trees ••. 
B-Trees. 

Summary •.. 

IV. DATA BASE FEATURES II. 

Data Definition •..•. 
Data Administrator. 
Storage Structures and Methods of Access. 

Sequential Structure 
Direct (Random). 
Direct Access •.•. 
Table Look-Up. . .. 
Hashing. . . . . . . . . . . . . . . . . . 
Regional (PL/l Direct Structures). 
Indexed Sequential . . . . . • . 

S'UJDDlary • • • • • • • • • 

iv 

Page 

1 

6 

6 
7 

9 

10 
11 

12 
13 
15 
17 
19 

21 

23 
26 
27 

29 

31 

31 
34 
34 

35 
36 
37 
37 
38 
39 
40 

41 



Chapter 

V. DATA BASE FUNCTIONS ••• 

Creation. . . . . . . . . 
Updating. . . . 
Interrogation . 
Programming Facilities. 
Summary .. 

VI. SUBJECT ANALYSIS • 

Abstracting . 
Indexing ... 
Summary ..• 

VII. A BIBLIOGRAPHIC DATA BASE SYSTEM . 

Data Administrator. • • • • . • • •• 
Data Structures • • • . . . . . 
Data Definitions •.• 
Storage Structures. 
Creation. • • • • • 
Updating. • • • •. 
Interrogation . . . 
Subject Analysis .• 
Summary . . . . . . 

VIII. SUMMARY AND RECOMMENDATIONS •• 

SELECTED BIBLIOGRAPHY 

APPENDIX A - GLOSSARY . 

APPENDIX B - DEFINITION OF THE BIBLIOGRAPHIC DATA 
BASE SYSTEM. . • • • • • 

APPENDIX C - USER'S GUIDE .•.••••• 

APPENDIX D - DATA ADMINISTRATOR'S GUIDE • 

APPENDIX E - PROGRAM FLOWCHART ••• 

APPENDIX F - PROGRAM OUTPUT . • • 

v 

Page 

43 

44 
45 
47 
49 
50 

52 

53 
54 
57 

59 

63 
64 
67 
68 
71 
72 
78 
79 
81 

82 

86 

88 

90 

92 

96 

108 

124 



LIST OF FIGURES 

Figure 

1. Singly Linked List . 

2. Doubly Linked List • 

3. 

4. 

5. 

Circular Linked List • 

Inverted List 

Multilinked List •• 

6. A Tree • . . • 

7. A Binary Tree •• 

8. Typical Node for an AVL Tree . 

9. Order 4 B-Tree •.•••. 

Data Definition. 

Automatic Indexing • 

Present Data Base •• 

. . . 

Possible Future Data Base. 

. . . . . . . 

10. 

11. 

12. 

13. 

14. 

15. 

Inverted and Multilinked Structures in the Document File . 

Data Definitions ••••. 

16. Typical Input Document 

17. Sample Input •••.. 

18. 

19. 

20. 

21. 

System Count Locations • . 

Edit Files •..••. 

Typical Utility Input. 

Print Input. • • • • • • 

vi 

Page 

14 

14 

16 

18 

20 

23 

25 

27 

28 

32 

56 

61 

62 

67 

69 

74 

95 

98. 

101 

104 

106 



CHAPTER I 

INTRODUCTION 

Modern society continually produces and uses information. Most 

technical activity--in science, industry, commerce or government--now 

takes place in such a complex environment that it must be based on 

specially acquired information. At the same time, every act gives 

rise to information and recorded knowledge steadily grows. Finding the 

information one seeks within the huge mass now available becomes more 

difficult. If information is to be readily accessible it must be 

organized. 

Traditionally, data files have been assembled to serve individual 

applications, such as inventory control, payroll, manufacturing plan­

ning, and so on, each data file having been specifically designed 

with its own storage space within the computer, on tape, or direct 

access device. In many instances these data files included duplicate 

or redundant information. This often resulted in one file being 

current while the other remained static. Since each application 

program was tailored for its particular data file, extensive revision 

for each program was necessary whenever new types of information were 

introduced for the data set or new data management techniques become 

available; therefore, application programs could be in an almost 

perpetual state of change, adding appreciably to the overall cost of 

data processing. 

1 



These undesirable attributes of constant revision and higher 

data processing cost for data files have been eliminated to some 

extent by the advent of the "data base." The term data base does not 

have a single accepted definition and is quite often defined as what­

ever the designer chooses to call a data base. This report will 

adhere to the definition of a data base as a set of one or more files 

containing 11nonredundant11 interrelated data items which are proces­

sable by one or more applications (5, 9, 15, 16, 20). The goals 

achieved by a good data base system are: 

• Elimination of redundant data and implied consequent 

maintenance 

• Consistency through the use of the same data by all 

applications 

• Addition of data to an existing data base witho'ut 

modifications of existing application programs 

• Reduction of data processing cost. 

By ineluding with the data base facilities for file structuring, 

file updating, file modification, file interrogation, and report 

generation, a data base system is developed. The system described 

thus far is normally termed a generalized data base management system 

(GDBMS or GDMS). A variety of such systems are in operation today-­

for example, GIS (3, 5, 16), IDS (3, 5, 16), IMS (5), TDMS (2, 3, 

5, 16) and many others. Various other generic names used in the 

literature for GDMS are data management systems, information manage­

ment systems, and file management systems. If the system is not 

generalized it may be identified as "tailored." This implies that 

the data base is limited to data from a single subject and built 

2 



for a specific applicatd.on. For instance, an insurance package may 

be tailored to the processing of data concerning insurance policies, 

such as account number, renewal data, policy type, coverage, and 

so on. Another example is a "bibliographic" data base system which 

might be used by a library to process the information on the docu-

ments it contains, such as call number, author's name, abstracts, 

and so on. 

The primary objective of this paper is to present the concepts 

of a data base management system. A second object is to demonstrate 

some of these concepts in a practical application involving a biblio-

graphic data base system. 

In 1969 a study concerning GDMS was undertaken by the Codasyl 

System Committee. From this investigation have come two reports 

(4, 5). The first report described a list of the features that 

belong to GDMS; the second report expanded this list and described 

the features in further detail as they are supported in implemented 

1 systems. The later report established a distinct difference in 

the manner in which a GDMS provides facilities for the user to 

manipulate data. Because of this distinction GDMS's are separated 

into two classes. It is this classification that is presented in 

Chapter II. The major features that comprise a data base system 

~inker (16) also gives a review of several systems and 
their features. 

3 



are examined in Chapter III and Chapter IV, with the final data 

base concepts--the data base functions--being investigated in 

Chapter V. Since the above concepts comprise a complete overview of 

a data base system, the design of a particular data base system for 

a specific application may be evaluated. 

As in many bibliographic data base systems, such as NASA/RECON 

(27), TIP (MIT) (27), and SKI-KWOC (Ames) (10,27), subject analysis 

of the documents in the data base is required. Therefore, Chapter VI 

explains some of the techniques available in performing the analysis. 

In pursuing the second objective of demonstrating the major 

concepts of a data base system with a practical application, 

Chapter VII contains the description of an implemented bibliographic 

data base system. This is followed by the final chapter which 

provides a summary of the data base concepts presented in this paper 

and of the implemented bibliographic data base system. Also included 

in this chapter are recommendations for improvements to the imple­

mented data base system. 

The Appendices are provided to assist the reader, the user of 

the data base system, and the data administrator for the system. 

Definition of terms used in this paper pertaining to data bases 

and to the implemented bibliographic data base system are provided 

for the reader in Appendix A and Appendix B, respectively. 

In Appendix C, The User's Guide, requirements for interrogating 

the bibliographic data base are described. Appendix D examines 

in detail the features and functions of the bibliographic data base 

system. Therefore, it is used as the Data Administrator's Guide. 

Following the Administrator's Guide is Appendix E which provides 

4 



5 

flowcharts for all algorithms of the data base system and Appendix F 

which contains sample output from the implemented data base functions. 



CHAPTER II 

CLASSIFICATION OF DATA BASE SYSTEM:S 

In the second report of the Codasyl System Committee a significant 

distinction exists between system capabilities which are provided 

through system languages tailored to particular functions and capabil­

ities which are provided by augmenting a general purpose language, such 

as Cobol or PL/l (5). Capabilities in the former category are labeled 

self-contained capabilities and those in the latter category are 

called host language capabilities. 

Data base systems are classified into two groups according to 

the type of capabilities they support. These are self-contained systems 

and host language systems. Unless explicity stated otherwise, both 

types of systems incorporate the features described in Chapter III 

and Chapter IV in some form. 

Host Language Systems 

A host language system may be regarded as a conventional proce­

dural language, which provides the added capability of manipulating 

a data base. The host language features comprising the added capabil­

ities are described as programming facilities of a data base system 

(These are discussed in detail in Chapter III). These features do not 

constitute a complete language and must co-exist with the procedural 

language (referred to as the host language). Programming facilities 

6 



7 

which facilitate the use of more complex data structures are not 

easily obtained with the host language alone and for control and mani­

pulation of data not stored in primary storage. An individual using 

a host language system is still considered to be an application 

programmer, because he specifies the logical flow of the system through 

a coded set of statements. Although the programmer is insulated from 

the physical storage structures, he has the added flexibility of 

manipulating the data base with his own procedures. The degree of 

:flexibility allowed a user in manipulating a data base varies from one 

system to another. Usually, this flexibility corresponds directly 

with the degree of responsibility inherited by the user for maintaining 

the integrity of the data base. 

Self-Contained Systems 

In self-contained systems, sometimes classified as non-procedural, 

the user does not exercise control over the sequence of detailed steps 

the system uses to process the requirements. The basic aim of such a 

system is to make the system easier to use for an individual who does 

not have conventional programming expertise. The minimization of time 

and writing required by a user is achieved through special functions 

that are pre-programmed (or built-in processing algorithms) and may be 

treated as primitive functional capabilities. To invoke these functions 

each self-contained system must supply a set of commands often ref erred 

to as the query language or the user language. These commands reduce 

the duties of the non-programmer to invoking predefined algorithms and 

possibly providing values to any parameters they may require. A major 

disadvantage of easy-to-use systems is their lack of flexibility. The 



user must use only system routines to perform all of his functions, 

thus limiting the set of applications which can be handled. 

8 



CHAPTER III 

DATA BASE FEATURES I 

Whatever name a generalized data base management system carries 

it should provide the following data base features: 1) a description 

of the data, 2) logical structures for representing the data, 3) physi­

cal representation of the data on a storage medium and means of acces­

sing it, and 4) the assigned responsibility of data base management (3, 

5, 16). In the early days of computing these features were subordinate 

to program development. In fact, the focus for a particular applica­

tion tended to be on the design and development of a computer program 

to perform the required function, the organization of the data being 

a secondary consideration. The data files in a data base system should 

be organized in a fashion that permits their use in several applications 

rather than a single application; thus new programs are designed using 

the previously established data base. No matter how these features 

are implemented and emphasized among themselves, the principal objective 

of a data base system is to provide an efficient procedure in terms of 

time and storage for the manipulation of data in a variety of situa­

tions. 

Of the four features described for a data base, normally the one 

most often encountered by the user is the logical structure used to 

represent the data information. These structures are referred to as 

data structures. Because of their importance in determining the 

9 



10 

usefulness of the data base to the user, data st±-uctures are considered 

separately in this chapter. Although the remaining features are 

treated in the following chapter, they are not considered any less 

important to the data base system. 

Data Structures 

Data structures in a data base are determined by the logical 

arrangement of the information it contains and the means provided to 

enable the accessing of logically related records. The logical struc­

ture of a data base is one of the most important factors in determining 

the usefulness of the data base to the user. 

A user can establish a "logical1' data base consisting of subsets 

and concatenation of parts from the physical data base. When the 

storage structure of the physical data base is defined it must have 

provisions for all of the information needed to implement the logical 

data base. Most of these provisions take the form of pointer fields 

which set up logical connections between items within the same or 

different physical data base. The results of this linkage is a com­

plex network of a physical data base forming a system data base (This 

is illustrated in the implemented system). Data structures which 

facilitate the manipulation of logical relations by pointer fields 

are known as linked structures. 

A careful study of data structures used within a data base system 

to assist the user will reveal that some type of linked structure is 

usually incorporated. The most common linked structures are singly 

linked list, doubly linked list, circular list, multilinked list, 

inverted list, and tree structures. Structures other than those 



mentioned are possible for data bases, but upon investigation they 

frequently are found to be either combinations of methods examined 

in this section, or different names for the methods described here. 

11 

It should be noted that a data base system is not limited to any 

one type of linked structure. In fact, it is more likely for a 

particular system to employ different combinations of linked structures 

mentioned. Although the criterion for selecting a specific linked 

structure may be rapid access to data, the traditional space/time 

trade-offs that are common for all computational techniques and struc­

tures cannot be ignored. 

Linked Structures 

With this type of data structure related data items need not be 

stored in consecutive memory locations, but can be scattered throughout 

the storage medium. In essence a linked list structure is composed of 

numerous items called 11 nodes," each containing one or more Hfields. 11 

A field can contain a data item, such as a character string, fixed or 

floating point value, or it can contain a pointer to another node. A 

pointer or link is merely a means of identifying and manipulating a 

particular node. Representation of a node on the storage medium 

usually consists of a single llblock11 of storage in which its fields 

are stored side by side. The physical address of this block of 

storage is then utilized as a pointer. 

The various nodes in a linked list structure need not be the same 

size. In fact, the nodes may even contain different types of fields. 

However, it is considerably more difficult to handle a list which has 

a varying node structure. Storage allocation and processing are much 



12 

easier for a linked list if all its nodes are the same size and contain 

the same types of fields. Many systems, including the one reported in 

this paper, limit their linked structures to those which have a uni­

form node structure. 

Efficient utilization of memory space is one of the more signifi­

cant advantages of linked lists. Whenever a linked structure is used 

a special list of unused nodes called the availability list can be 

maintained (7, 11, 13). By removing nodes from this list and linking 

them as required, new lists are formed and new nodes can be added to 

existing lists. On the other hand, when a particular list, or part of 

a list, is no longer needed, it can be returned to the availability 

list. Subsequently, the same area may be reused to construct a new 

list or new nodes for the old list. Close control over the utilization 

of nodes allow free space to be returned to the availability list as 

soon as the nodes are no longer needed resulting in a significant 

saving in the amount of storage used. Such a cleanup operation is 

often called "gar'Qage collection11 (11, 13). 

Singly Linked List 

The type of linked list structure, where each node contains one 

pointer to indicate the next node in the list, is called a singly linked 

list (sometimes referred to as 11 chaining 11 ) (7, 11, 17, 20). The use of 

pointer with each node to identify the next node in the list allows 

the various nodes to be scattered in storage rather than in precisely 

the same physical order as that in which they are proyessed. Identifi­

cation of a unique list is accomplished by assigning a single variable 

representing a pointer to the location of the first entry of the list. 



13 

Figure 1 is an example of a singly linked list in which the 

records are stored in a logically sequential order. They are not 

necessarily in the same physical order. The first record is at loca­

tion 10, the second record at location 30, and the third at location 

45. The logically sequential organization is obtained by using the 

links shown in the diagram. "Head" is the variable containing the 

first entry of the list. In the last record (Record 3) of the list 

the pointer value is l· This special pointer value is called the 

"null" symbol. The null symbol is a value that cannot be confused 

with any valid pointer value. Since the null value cannot be inter­

preted as pointing to another node, we can employ such a device to 

identify the last node in the list. 

Doubly Linked List 

The number of links in a record is not limited to one; a varying 

number of links may be included in each record for different list 

structures. One such structure is a doubly linked list illustrated in 

Figure 2. A doubly linked list contains two link fields per node, the 

first field pointing to the successor node and the second pointing 

to the predecessor node. It is evident that the doubly linked list 

does not represent any more structural information than its equivalent 

singly linked list; however, the use of extra space required to store 

the links for a doubly linked list is justified by two advantages: the 

list can be searched in either a forward or backward direction, and 

insertion and deletion of nodes to the right or left of any node can 

be accomplished very easily. For example, if we use only a single 

link, the recognition of the predecessor of a particular node requires 



14 

HEAD 

10 

RECORD 1 30 

RECORD 2 

RECORD 3 l 

Figure 1. Singly Linked List 

HEAD 

Figure 2. Doubly Linked List 



15 

a linear search, beginning at the top node and progressing down 

through the list until a node is encountered whose link points to the 

designated node. If the list is a long one this can be a very costly 

and time-consuming operation. The inclusion of a backward pointing 

link eliminates this linear search at a cost of additional storage of 

a second link in each node. 

Circµlar LinJced List (Rings) 

A singly linked list may be used in forming circular linked list-­

sometimes referred to as rings. A circular list is simply a singly 

linked list that closes upon itself (7, 11, 17, 20). This is accom­

plished by replacing the null pointer of the last node's link field 

with the location of the head of the list. Figure 3 displays a singly 

linked list and doubly linked list in circular fc,rm. 

The advantage of such a structure stems from the fact that each 

node is accessible from any other node in the list. This characteristic 

makes the ring structure especially suitable for applications in which 

each record in a series must be processed. An operational data base 

system has been designed with these features (2, 5, 16). The system 

is known as Integrated Data Store (IDS), produced by General Electric 

(GE). IDS is a set of subroutines for processing rings; facilities to 

create and destroy, add to and delete from rings are provided (2, 5, 16). 



16 

TOP 1 TOP 2 

DATA - DATA 
!"' ,, 

DATA 
I I\ 

w w 

DATA DATA 

DATA 
{\ 

" " 
DATA DATA 

DATA 
{~ 

,, \I 

DATA DATA -
I"'-

1 r DATA 

a) Singly Linked List b) Doubly Linked List 

Figure 3. Circular Linked List 



17 

Inverted List 

An inverted list structure maintains an ordered list of the key 

terms extracted from search elements. Each value of the key term con­

tains an address of link to the particular data base entries that con­

tain the specific key (See Figure 4) (3, 7, 13, 17, 20). If an 

inverted list is kept on all fields of a record, the record is said to 

be "completely" inverted. When onJ:y selected fields are inverted, the 

term partially inverted is comm.only used. The benefit of a completely 

inverted structure is the ability to access the system through any 

desired field while partial structures only allow selected key fields. 

A data management system that has been designed around the inverted 

list structure is TDMS (Time-Shared Data Management System) produced 

by the System Development Corporation (5, 16, 24). TDMS uses completely 

inverted files with a hierarchical dictionary of several levels that 

is used to locate the inverted lists (5, 16, 24). 

Since an inverted list contains all references to a particular 

key in the data base system, a major advantage of rapid access only to 

the desired records is achieved. A second advantage, that of union and 

intersection operations on inverted lists, is facilitated if each list 

is maintained in collating order of the record addresses. In this case 

two lists can be intersected or their union can be found with one pass 

through both lists. To illustrate this facility,·assume that a query 

consisting of the conjunction of two items X and Y is required. The 

list of addresses for item X is intersected with the list of addresses 

for term B. This results in precisely the set of addresses that must 

be accessed in the file to satisfy the XY query. 



~Yl 

~Y2 

40 30 20 10 Record # 

10 

20 

30 

L--~~~~~~~~~~~~~~~~~ 40 

60 50 

'--~~~~~~~~~~~~~--,~ 50 
,__~~~~~~~~~~~-~60 

Figure 4. Inverted List 

The major disadvantage of inverted list structures is that they 

are difficult to update. There are two factors contributing to this 

problem. First, blocks of reserve space must be maintained in the 

18 

key term index to allow for the address list expansion or alternatively, 

a complicated scheme of linking blocks must be programmed. The second 

factor is that new addresses must be inserted in sequence in order to 

retain the efficiency of the union and intersection process. Therefore, 

inverted list structures are ideal for applications that require rapid 

retrieval of information and a relatively low update volume. 



19 

Multilinked List 

Multilinked list or knotted list consists of a sequential index 

that gives for each key the location of the start of a list that links 

together all records characterized by that key value (7, 11, 13, 17). 

A multilinked structure is conceptually an inverted file, where only the 

heading of each inverted list is kept in the index and the rest of each 

list is indicated by links among the records. 

As an illustration, suppose we consider a class of students for 

which we would like to have three different lists-- one classified 

according to student surnames sorted in alphabetical order, a second 

arranged in descending order according to final marks, and a third 

listing the student in ascending order of age. Each student in the 

class can be represented by a single record which contains six fields, 

one each for his name, final mark, and age, and three links. Each 

serves as a link for a different order. Three pointers must be 

maintained--one to the node representing the student whose name appears 

first in the alphabet, Hl; a second to the node representing the student 

with the highest score, H2; and a third identifying the node associated 

with the youngest student, H3 (See Figure 5). To proceed through the 

list in alphabetical sequence, one begins with the node designated by 

Hl, and follows the pointers in link 1 until we eventually reach the 

node containing the name which appears last in the alphabet (i.e., the 

node in which link 1 has the null symbol 0). Similarly for traversing 

the list in descending order of marks or ascending order of age, we 

begin with node H2 or H3, and follow link 2 or link 3 respectively. 



GOLDBRIC, H. 

INGLEBIRD, P. 

MANCHU, F. 

0 

INKWELL, F. 

0 

100 

75 

46 

NAME 

LINK 1 

Figure 5. Multilinked List 

0 

20 

40 

31 

MARK AGE 

LINK 2 LINK 3 



21 

Although multilinked structures were compared, conceptually, to 

inverted list structures the particular file characteristics of retrie­

val and updating are reversed. 1 Multilinked structures are easier to 

update than the inverted list because they avoid the necessity for 

complete reorganization of the sequentially allocated inverted list; 

however, retrievals are slower for the multilinked structures because 

the lists must be traversed to perform a retrieval. 

Tree Structures 

Tree structures comprise an important class of data structures 

included in information retrieval techniques. Trees sometimes are used 

as indexes to some other file. Such an arrangement permits a record 

in the tree to consist of only keys, pointers to other records in the 

tree, and addresses in the file. This approach is particularly useful 

if the records in the file are variable in length. If the file con-

sists of short, fixed-length records, then the entire record can be 

placed within the tree structure. 

Knuth (4) states that: 

1 

A tree is a finite set of one or more nodes such that, 

(1) There is one designated node called the 
root of the tree; 

(2) A set of directed arcs leading from the root 
node to m other nodes; 

(3) The remaining nodes are partitioned into m~ 
disjoint sets T1, ••• , Tm corresponding to 

Lefkovitz (13) gives a detailed comparison of multilinked list 
and inverted list characteristics. 



22 

each of the nodes specified in (2), and 
each in turn is a tree. The trees T1 , ••. , T 
are termed subtrees of the root (p. 305). m 

From the definition it is evident that every node of a tree is the 

root node of some subtree contained in the entire tree. The number of 

subtrees of a node is called the degree of the node. A node of zero 

degree is called a terminal or leaf node. The level of a node is 

defined by saying that the root has level O, and other nodes have a 

level that is one higher than they have with respect to the subtree TJ' 

of the root, which contains them. The maximum number of levels in a 

tree is defined as the height of the tree. 2 

The above ideas are illustrated in Figure 6 which depicts a tree 

with ten nodes. The root is A, and it has four subtrees {BF}, {CGH}, 

{DI}, and {E}. Node C is on level 1 with respect to the root A and 

has two subtrees G and H ; thus C has degree 2. The terminal nodes 

of the tree are F, J, H, I, and E; all of which have degree O. The 

height of the tree with root A is 4. 

2The terminology established here is in accordance with 
Knuth (11). 



23 

LE.'VEL 0 

LEVEL 1 

LE.'VEL 2 

LEVEL 3 

Figure 6. A Tree 

Binary Trees 

A binary search may be used for a sequentially allocated random­

access file that is stored in order of the collating sequence of its 

keys. This arrangement reduces search time at the expense of update 

time. For a file that is updated more often than it is searched, 

linked allocation can be used to minimize update time at the expense of 

search time. For a file that is updated and searched with similar 

frequency, however, neither of these approaches is very practical, 

and some compromise may be desirable. A binary tree structure is such 

a compromise; it combines the speed of a binary search, an average of 

e-og2Nj + 1 (where N is defined as the number of items in the structure 

and the symbol LXJ indicates the largest integer that does not 



24 

exceed X), with the updating ease of linked allocation (11, 25). 

Knuth (1.J) defines a binary tree "as a finite set of nodes which 

is either empty or consists of a root and two disjoint binary trees 

called left and right subtrees 11 (p. 315). Since a binary tree is 

either empty or contains a root node with two binary subtrees, each 

node within the tree will contain a key value and at least two pointers, 

referred to as a left link and a right link. With some binary trees 

there exist a predefined relationship in terms of collating sequence 

among the keys in the nodes.3 In such a binary tree the left link 

points to a subtree which contains key values that are less than the 

key value in the root node and the right link points to a subtree 

which contains key values that are greater than the key value in the 

root node. If such a subtree does not exist, the corresponding link 

field will contain the designated null symbol. 4 Figure 7 demonstrates 

such a relationship among the keys in a node. 

If a tree is allowed to change without restriction it may degen-

erate into a singly linked list. When this occurs the average search 

time for retrieval can increase from the desirable order of log2N 

3Knuth (11) refers to this type of tree as a binary search 
tree. 

4Knuth (12) describes cases where the null symbol is replaced 
by a pointer to some other part of the tree. This is known as a 
threaded tree. The present discussion does not include such trees. 



5 

2 

1 

Figure 7. A Binary Tree 

to the undesirable average of N/2. The term used to describe such a 

fluctuating binary tree is "unconstrained" or "unbalanced." Figure 

7 shows an example. 

In order to effect a compromise between unconstrained trees and 

optimum binary trees--trees which contain all leaf nodes on at most 

two adjacent levels--it may be stipulated that the left subtree of a 

node may not differ in height by more than some number, called the 

balance factor, from the height of the right subtree. With this 

restriction the minimun average search time is retained and a 

"constrained" binary tree results. G. M. Ade1 1son-Vel 1skit and 

25 



26 

E. M. Landis proposed that the balance factor be held at one. From 

this proposal they developed a constrained binary 'search tree known as 

the AVL tree.5 

AVL Trees 

AVL trees may be defined formally as a balanced binary tree in 

which the length of the left subtree differs by at most one from the 

length of the right subtree (12, 22). The price• paid for a guaranteed 

upper bound on searches provided by AVL trees is the extra storage 

needed for a balance tag in each node (See Figure 8) and programming 

complexity for restructuring the tree after insertions and deletions.6 

This guaranteed upper bound of the maximum number of probes, when 

searching for a particular key, can be established to be about 

1.5 log2N (12, 22). Although empirical evidence shows that the 

expected average for a search is around (log2N) - 0.75 and for inser­

tion the average is one greater than retrieval or (log2N) + 0.25 (22), 

J. R. VanDoren and J. L. Gray (22) have shown empirically that AVL 

trees have desirable updating features. In fact, the average number of 

transformations required to maintain the AVL balance after insertion 

is approximately 0.5 and an average of 0.23 for deletion (22). This 

seems to indicate that the maintenance of an AVL tree which is subject 

to frequent modifications by virtue of insertions and deletions is 

5A description of other types of constrained binary search trees 
can be obtained by consulting Knuth (12). 

6 A balance tag is an indicator used in maintaining the AVL balance 
conditions. 



27 

within an acceptable range of minimizing the updating versus searching 

conflict. This establishes the AVL tree as a good choice for indices 

to data recorded on direct access devices. Although AVL trees may be 

kept on external storage, they are primarily designed to be maintained 

in internal memory. 

LL INK RLINK BALANCE 
TAG INFORMATION 

Figure 8. Typical Node for an AVL Tree 

If the restriction that trees allow at most two branches from the 

root node is abandoned, allowing the root node to have any number of 

branches extending from it, a multiway tree is developed. The effect 

of such a change results in a decrease in the nUttJ.ber of levels in the 

tree (and consequently, the number of probes) at the expense of 

increasing the number of branches from each node. A multiway tree that 

exhibits these features is the B-tree (4, 6). 

B-Trees 

A B-tree is an alternate way of organizing information on an ex-

ternal device which facilitates rapid access and maintenance. Each 

particular B-tree has a predetermined maximum number of branches from 



each node. This number in turn determines the order of the tree. 

Other unique qualities for B-trees of order m are: 

1) Every node has at most m sons. 

2) Every node, except the root and the leaves has at least 

fm/2l sons (the symbol rx1 indicates the smallest integer that 

is greater than or equal to X). 

28 

3) The root node has at least two son~ unless it is a leaf, 

in which case it is the only node in the tree. 

4) All leaves will have null pointers and will be on the 

same level, which in fact will be the bottom level of the tree. 

5) A non-leaf node with K sons has K - 1 keys. This property 

along with the first two implies that every node, except the root, 

will contain between pn/21 - 1 and m - 1 keys. (6) 

Figure 9 shows a B-tree of order 4. Each node has more than m/2 

sons, and the root node which may contain from 1 to 2 keys, has 2 keys. 

Also, all leaves are on the same level (2) and contain the null 

pointers. 

7 13 

Figure 9. Order 4 B-Tree 



As with AVL trees a guaranteed efficiency for updating and 

searching large files exists. With a tree of N keys the upper 

bound (U) on the levels of the tree may be evaluated by using the 

following formula (4,6). 

U ~ 1 + log rm/21 (N~1 ); where, 

U - upper bound on levels of the tree; 

m - order of the tree; 

N - number of keys in the tree. 

29 

The maximum number of probes (also defined by U) depends on the number 

of keys and the order of the B-tree. Therefore, there is a trade-off 

between the number of levels in the tree and the size of the nodes. 

Results of this trade-off must be weighed very heavily for each appli­

cation because they affect: (1) the node occupancy ratio of the 

number of keys in a node to the maximum number of keys possible per 

node; (2) the reorganization required within a node; and (3) the organ­

ization required among nodes (6). A choice of the order of a B-tree 

and construction of nodes must be investigated thoroughly for a 

particular application. 

Summary 

Data structures may be considered to be the users concept of the 

data in a data base. They allow the user of a data base system to 

interact with the data in a manner that is independent of the physical 

storage of the data. Frequently data structures use pointers, which 

are merely addresses to retain the logical relationship between items. 

Logical structures of this nature are called linked structures. The 



30 

more common linked structures are singly linked list, doubly linked 

list, circular list, multilinked list, inverted list, and tree .struc~ 

tures. Since each of these structures possesses advantages and 

disadvantages for searching, updating, and storage of information, 

it is necessary when designing a data base system to investigate each 

structure (or combination of structures) to determine the optimum solu­

tion for a particular application. 



CHAPTER IV 

DATA BASE FEATURES II 

The data base features that may be less apparent to the user are: 

1) a description of the data, 2) the physical representation of the 

data on a storage medium and means of accessing it, and 3) the assigned 

responsibility of data base management. In keeping with the termino­

logy provided by the Codasyl Systems Committee these features are 

referred to as data definition, storage structures, and data administra­

tor, respectively (4, 5). 

Data Definition 

The data definition process for many self-contained systems is 

restricted to nothing more than the actual description of the items 

in a record for a particular application. Figure 10 will serve 

as a representation of such a strict definition. In this illustration 

"record" is being defined as containing a "name" field that is fifty 

characters long, and a five digit number field called "zip-code." 

To obtain a more complete overview of data definition within 

host language systems it will be described as a process consisting of 

a tightly knit relationship between a data description language (DDL), 

a data manipulation language (DML), and the data base management system 

(DBMS) (4, 5). 

31 



32 

01 Record 

02 Name Character (20) 

02 Address Character (50) 

02 Zip Code Picture 99999 

Figure 10. Data Definition 

The DDL is the language used to declare the schema. A schema, 

in simple terms, may be considered to be a master catalog which indi­

cates the type of organization in each file, the information contained 

with each file, and the inter-record and inter-file :relationships in 

the data base. A subset of a schema, which names only the information 

for one or more application programs, is known as a subschema. Schemas 

and subschemas once written in a DDL have the capability of being 

compiled separately from any user program and stored in a library. 

Therefore, DDL provides for data independence between the application 

program and the data description. 

The DML is the language which the programmer uses to cause data 

to be transferred between his program and the data base. Although DML's 

initiate data transfers, all interfaces of the DML with data in the 

data base are at the symbolic or logical level. These languages are 

nothing more than extensions of a host language and not complete 

languages in themselves. DML's rely on a host language to provide the 

framework for them and to provide the procedural capabilities required 



33 

to manipulate data in primary storage. 

Data base management systems consist of interface programs which 

provide for the access of the data base. It is here that the schema 

and subschema are analyzed and combined to form the required data 

transfers. Thus, all physical transfers of data in the data base are 

handled by the DBMS while the DML operates on the logical level with 

the data base. 

The relationship between the DDL, DML, and DBMS may be best 

explained by tracing the call for data by a user program. All calls 

to the DBMS originating from the user programs are made in the DML. 

It is then the function of the interface programs to analyze the call 

on the basis of the schema and subschema, and request physical I/O 

operations from the operating system. The data is obtained by the 

operating system and placed into ~he system's buffers. DBMS inter­

face programs then perform the final transfer (and possibly data con­

versions) of data between the system buffers and the user program 

(4, 5, 20). It should be understood that these functions described are 

those of host language systems and not of most self-contained systems. 

Briefly summarized, these functions consist of: a DDL which describes 

the data referenced by a program, a DML which is the program's inter­

face with the data base, and the DBMS interface programs which collect 

the activities of the DDL, DML, operating system, and the data base 

to provide the desired information. 



34 

Data Administrator 

The group or individual who is assigned responsibility of the data 

base is lmown as the data administrator or data manager. In many cases, 

it is his duty to specify the schema of the whole data base and possibly 

subschemas for particular application programs. Other equally impor­

tant functions are: 1) the preservation of the system integrity and 

security; 2) restructuring the data base to accommodate new record 

types; 3) monitoring system operations; and 4) defining procedures for 

restoring the data base in case of difficulties. Data administrators 

must rely on superior knowledge of the system, general knowledge of 

the data required by individual programs, statistics on usage of the 

data, and the required response time, to accomplish his ascribed func­

tions and establish standards and procedures. 

Storage Structures and Methods of Access 

Storage structure and file structure are terms used to refer to 

the organization of individual files within the data base and relation­

ships among them (3, 5, 7, 20, 25). Frequently the choice of file 

organization is dependent upon record structure, physical distribution 

of the records in the storage device, the indexing method employed for 

~ing an initial reference, and the manufacturer supplied file access 

methods. When selecting storage structures, the data base designer 

should build on the access packages available to him, if possible; 

thereby, avoiding duplication of the manufacturers work. Combining 

the above criteria the critical issue for file design becomes the 

efficiency of its performance. This must be established in terms 



of record storage, record retrieval, and management of the available 

1 storage space. 

35 

Three common storage structures are sequential, indexed sequential, 

and direct structures. Accompanying the investigation of each of these 

structures is the means employed to access their data content. These 

methods are not necessarily the manufacturer-supplied access methods 

but they take advantage of the available access packages. 

Sequential Structure 

The best known and simplest of all storage structures is that 

which uses sequential organization. Records within this type of 

structure are stored in positions relative to other records according 

to a specified sequence. The ordered sequence is based on a common 

attribute of the records. If the attribute selected to order the 

records in the file is a data item within the record then the attri-

bute is referred to as a key. The sequence of the records in a file 

may change by selecting a different key for a file and sorting on the 

basis of that key. Records within a sequential file are not required 

to have a key. When this occurs, records are storsd as they enter 

the system so that the (N + 1)st entry follows the Nth entry. In the 

keyed and non-keyed cases the logical and physical order of records 

on the recording medium are identical. 

The advantage of sequential organization is fast access per 

relationship during retrieval. Once a specific record has been 

1 Pan (20) offers an evaluation of several storage structures in 
"The Characterization of Data Management Systems.tr 



retrieved, the next record in the data structure according to the 

relationship which was established by the key when the file was 

created is accessed rapidly. Other advantages of sequential structures 

are the ease of programming and the ability to store a large amount of 

data on a relatively inexpensive storage device, such as a tape volume. 

Disadvantages appear while searching for a particular record in 

a large file and updating the sequential structure. Access of a speci­

fic key value would entail a complete scan of all records prior to the 

desired value, producing an undesirably slow retrieval time. Difficul­

ties encountered in updating are revealed when inserting or deleting 

records in the storage structure. The former process requires that 

records in stor~ge be split apart to make room for a new record. This 

process is reversed when deleting as existing records are compressed 

to fill the vacancy. Obviously, either process requires the moving or 

recopying of a large part of the file. As a result, sequential struc­

tures are more suitable for a tape-oriented data base with low volume. 

Direct (Random) 

To avoid the process of accessing every prior record when searching 

for a particular key value, the direct storage structure, storage 

device, and access methods were developed. These storage media are 

usually referred to as direct access devices and consist mainly of 

disk and drum units. In random storage structures records are stored 

and retrieved on the basis of a predictable relationship between the 

key of the record and the address of the location where the record is 

stored (3, 7, 9, 20). Having acquired the ability to access any 

record without regard to the previous access leads to the examination 



37 

of three methods of accessing direct access devic~s. These are direct 

access, table look-up, and hashing. 

!>irect Access 

Direct access methods require the programmer to know and supply 

the physical address of the record at storage and retrieval time. 

Such stringent requirements usually force a direct access device file 

to become device-dependent and location-dependent on that device. 

These features result in direct access methods being the least commonly 

used for direct storage structures. 

Table Look-Up 

In table look-up methods there exist an ordered pair-identifier/ 

value--such that identifier is the record's key and value is the unique 

record address. 'When a record is stored or retrieved, the record key 

is matched with an identifier and the corresponding record address is 

used to access the record. By combining table look-up methods with 

data structures like inverted list and tree structures, an efficient 

access tool is established. For example, the indexed sequential 

structure (discussed. later) employs a tree structured table to locate 

a record within the structure. 

In addition to the desirable feature of rapid access to individual 

records, the table look-up method ensures that each record has a unique 

address. A third advantage of a key range scanning property is 

achieved if the identifier is maintained in some ordered sequence. 

This property is necessary for implementing the relational operators 

"greater than," "less than," etc. For example, assume there are 20 



38 

numeric identifiers in ascending order which are numbered 1 to 20. A 

request for all identifiers less than 10 is made. The first identifier 

is selected and determined to be less than 10, then all other identi-

fiers are selected until the identifier is equal to 10. The results 

for this case would be identifiers one through nine. 

Among the undesirable attributes of table look-up methods are: 

1) an increase in the storage required, and 2) an increase in program-

ming complexity in manipulating the table or directory. Suppression of 

these disadvantages is accomplished by accessing the directory with 

a binary search which is easy to implement and requires no additional 

link fields for the table. Another technique is to construct the 

directory using some type of tree organization with good search charac­

teristics. 2 

Hashing 

The last method of accessing a direct file is hashing or 

randomizing as it is sometimes called. Hashing decodes from natural 

language or coded input keywords to addresses by means of a mapping 

procedure (3, 7, 9, 12, 20). The coded representation of the term is 

a fixed length key falling within a specified range. This representa-

tion may represent an address of the record on a direct address 

storage device or it may represent the address of a location in a key 

2 The particular tree structure chosen for a directory would depend 
on the application. For example, if the application called for a rapid 
response with a small directory, an AVL tree may be appropriate. For 
the same requirements involving a large file a B-tree may be in order. 



39 

directory. If the key yields the address of a record on a DASD the 

record can be retrieved immediately. Otherwise additional processing 

similar to the table look-up procedure must be performed. 

It is possible for the randomizing function to generate the same 

address from more than one record key. These occurrences are known as 

"collisions," or "synonyms." 'When collisions are encountered, 

algorithms must be devised to handle them. The chaining method is 

such a process. This method involves placing an additional link or 

pointer with each key. The link of the first record may now contain 

the address of the storage location housing the over-slow record. 

Another technique in manipulating collisions is to place the colliding 

entry into the next available empty location. A third procedure 

. requires the hashing function to be repeated until an empty space is 

located. These are only a few of the techniques used to handle colli­

sions. Various other methods are described in the open literature 

(9, 12). 

The advantage of hashing functions is rapid retrieval of any 

record with a single access to the storage medium provided the randomi­

zation function chosen produces no collisions. Once synonyms begin to 

appear, the necessity of handling these records inhibits the system 

by causing an increased retrieval time and possibly causing an 

increase in required storage space. 

Regional (PL/l Direct Structures) 

Programming language one (PL/l) allows the organization of direct 

storage structures in three ways: regional (1), regional (2), and 

regional (3) (27, 28). A major advantage of regional data sets over 



40 

sequential and indexed sequential structures is that regional structures 

talce full advantage of the characteristic of the direct access device. 

This permits the programmer to control the physical placement of 

records in the file and enables him to optimize the access time for 

a particular application. Each regional structure is divided into 

regions. Regions within a structure are numbered consecutively from 

zero and each may contain one or more than one record depending on the 

type of regional structure used.3 Entries in the file are then ac-

cessed by a region number and possibly a key for a specific record. 

It is also permissible to access regional structures sequentially. 

Selection of a regional structure is determined by the require-

ments of the particular application. Regional (1) structures are most 

suited to applications where there will be no duplicate region numbers, 

and where most of the regions will be filled (obviating wasted space 

in the data set). Regional (2) and regional (3) are more appropriate 

where records are identified by numbers that are thinly distributed 

over a wide range. 

Indexed Sequential 

An indexed sequential (IS) file is an ordered sequential file 

with indexes of record keys that permit rapid access to individual 

records as well as rapid sequential processing (7, 9, 12). The latter 

method is accomplished by arranging the logical records in the file in 

ascending key sequence. A specific record is obtained by searching 

3The placement of records in a regional structure according to its 
relative position from the beginning of the file may be considered to 
be a particular type of mapping as discussed previously. 



41 

the index for the relative position of the record in the file and then 

a sequential search is employed until the desired record is located. 

The obvious advantages of an indexed sequential organization to 

a data base system is that the file lends itself to being processed 

both sequentially and randomly. Since indexed sequential files are 

supported by most computer manufacturers, a second advantage of data 

independence is obtained for the data base system using this technique. 

IS files may be used as key directories for multilist files or 

possibly for inverted list files. An example of IS files being used 

as directories is the Shell Oil Company's technique. In this system 

there exist an owner-owned and owned-owner relationship among records. 

With Shell's technique the IS record contains two pointers--one 

pointing forwards to owned segments and the other pointing backwards 

to owner segments (24, 25). 

With the many benefits of the indexed sequential organization it 

seems to be the ideal technique, except it exhibits several weaknesses. 

First, IS files use more space than random or ordinary sequential 

methods since the indexes must also be stored. Second, if the indexed 

sequential file is subject to frequent updates--insertions and 

deletions--significant increases in the time to retrieve a record may 

result. This time penalty leads to the major problem of reorganizing 

the IS file a time-consuming and costly process. Therefore, this 

technique is best associated with relatively static files. 

Summary 

The additional data base features are categorized into three 

groups: 1) data definitions, 2) storage structures, and 3) data 



42 

administrators. Description of data in a data base is performed by 

the data definition process. Storage structures include the physical 

representation of data on a storage medium and means of accessing 

that data. Even though storage structures and data structures are 

considered as a separate data base feature, there exists a close rela­

tionship between them. In fact, this relationship must be taken into 

account for each particular application when designing a data base 

system. The final feature, yet the most important, is maintaining the 

data base. The person assigned this responsibility is known as the 

data administrator and his duties range from creation of the data 

base to ensuring its integrity. 



CHAPTER V 

DATA BASE FUNCTIONS 

A generalized data base management system is potentially capable 

of providing generalized processing functions for either the programming 

user or for the non-programming user. The latter term indicates that 

the user is not required to write a program in a conventional sense. 

Therefore, users are being described according to what they have to do 

as opposed to what they have to be. The functions provided by a system 

for both users are called data manipulation facilities. These facili·­

ties vary from those supported by host language systems which provide 

explicit manipulation of a data base by a programmer to those supplied 

by the self-contained systems that provide implicit manipulation of a 

data base by the non-programmer. Subsequently the facilities contained 

in a system normally depend on the requirements of a particular appli­

cation, it is not uncommon to find facilities for both categories of 

users. Presently there is no agreement on all of the generalized func­

tions provided by the host language and self-contained systems. 

Although the most common functions deemed part of a generalized data 

base management system are file creation, file updating, file inter­

rogation, and programming facilities (3, 4, 7, 16). Almost all systems 

possessing self-contained capabilities provide the functions of updating 

and interrogation. While all host language systems by definition 

provide a programming facility, they do not usually provide the self-



contained functions of update and interrogation. There is no clear 

division with respect to creation between self-contained systems and 

host language systems. 

Creation 

Creation is defined as the process of making known to the data 

base management system a set of files on which the system can later 

perform other functions. This may be as simple as reserving space 

44 

for the data set and adjusting or defining the data definition (schema) 

for the entire data base. On the other hand, it could imply the com­

plete conversion of an existing file to an acceptable form for the 

purpose of creation or it may need to be programmed through the facili­

ties provided by the data manipulation lanaguage. 

Regardless of the method of creation the allocation of space and 

selection of device must be considered for each file. The space 

requirements can be estimated by either the data administrator from the 

existing entires (if applicable) and the expected rate of increase, or 

by the system. Likewise, the means required to access the data for 

updating and interrogation and response constraints of the data deter-· 

mine the choice of media type. 

Monitoring of the creation cycle assures the integrity of the data 

base system. Reports generated through the various steps of the crea­

tion cycle should reflect any errors encountered in the process and 

statistics indicating the size of and resources .used by files. If 

the creation function involves the transformation of an existing file 

to a workable form for the data base, then additional reports of 

validation errors and conversion statistics should be produced. 



Updating 

The update function is identified as the process of changing 

the value content of a data file. This includes modifying or 

deleting existing records, and inserting new records. Modifying an 

existing record is sometimes a process of deleting it and replacing 

45 

it with its new form. Since updating may be done on all or part of the 

data file, executing any of the update functions requires that the 

descriptions both for the file to be changed and for the transaction 

(the update data) with which it is to be changed must exist. 

Updating may be performed through an on-line. or batch processing 

mode. In on-line maintenance the command and transaction are entered 

together and results in an immediate action by the updating facilities 

to carry out the designated function. The transactions in batch proces­

sing are queued with other update data and processed as one unit at 

some later time. The processing mode chosen for a particular system 

many times determines the user's control of the update procedure. For 

example, assume both the on-line and batch mode are supported. A user 

may only be allowed to modify selected items of an existing record in 

on-line mode, while the batch processing mode is reserved for the 

addition and deletion of an entire entry within the data base. The 

variations of user control in file updating and processing modes 

supplies an endless list. They are mentioned only for completeness. 

'Whenever information is to be written onto an existing data base 

file, there exists a possibility that the information does not conform 

to the definition established for that file. If this invalid data is 

allowed to enter the data base, then the integrity of the data base 



46 

system is destroyed (as incorrect data could be retrieved). To avoid 

such accidental mishaps, at least, the following should be enacted: 

1) The file being updated should be accessed onl.Y by the update routine 

during the update process; 2) The operating system or data base system 

should enforce the storage limits for the file; 3) All update functions 

should be preceded by some sort of validation facility (5, 13). 

These validation facilities should provide for extensive editing and 

possibly transformation of transactions before they are applied to the 

file; thus reducing the possibility of updating the data base with 

erroneous data. The validation process may be as simple as truncating 

zeroes or blanks and checking for character and numeric fields, or as 

complicated as satisfying several editing algorithms. Some systems 

even allow for logical relationships that must hold between trans­

action data and file data before a transaction can be processed. 

Two facts should be mentioned about updating. First, the cost of 

updating the data base, if not monitored, may exceed its worth to the 

user. This is a prime reasori for limiting when and how to update the 

files. Also a continuous increase in cost of updating may signify the 

need to reorganize the data base. The second fact is that updating is 

intrinsically a self-contained capability. This is because updating 

in self-contained systems implies a built-in processing algorithm in 

contrast to host language systems where the user programs his own 

updating. 



47 

Interrogation 

The term interrogation is used to denote the process of extracting 

a specified subset of a data base and formating it for human uses or 

for later use by the system. The interrogation process consists of 

two parts: 1) the premise, and 2) the action. 1 The former defines 

how the part of the data base is to be selected (selection criterion). 

'While the action defines how the operations of computation and format-

ting may be performed on the selected subset. 

A premise consists of a logically connected set of conditions on 

one or more data items. A simple condition (also referred to as rela-

tional condition) is the smallest indivisible condition which may talce 

various forms depending on the system. Simple conditions are construe-

ted of three parts: subject, relational operator, and reference quan-

tity (13, 16, 23). The latter two are often referred to as the predi-

cate. The subject of a relational condition usually identifies a data 

item in the data base, while the basic relational operators are equals, 

not equals, greater than, less than, greater than or equal to, and less 

than or equal to. In some instances only a subset of these operators 

is permitted with a subject and in other cases they are expanded to 

encompass, and, or, not, nand (and-not), and nor (or-not). The third 

part, the reference quantity, may consist of a literal agreeing in 

type with the subject, another item identifier, or an arithmetic 

expression. Execution of the relational condition merely involves 

1tefkovitz ~~ refers to these parts as data conditions and 
processing. 



comparing the subject according to the relational operator with the 

reference quantity. 

48 

If the system has been expanded to include the logical connectives 

then very complex conditional expressions can be formed. The combina­

tion of simple conditions with logical connectives is known as compound 

conditions. These conditions are evaluated similarly to the relational 

condition with the exception of precedence rules for the logical 

connectives. Three frequently encountered precedence rules are: 

1) left to right precedence; 2) "and" takes precedence; and 3) "or" 

takes precedence. Compound conditions also allow the establishment of 

a set of conditions on the same subject in the same expression. 

With such an occurrence the degree of repetition of the subject and 

relational operator differs among systems. 

In addition to the compound expressions, a wide variety of 

special function conditions exist. Existence conditions are such a 

function. The existence condition checks the presence or absence of 

a value of an item (i.e., itemname blank, the condition is true if the 

item is blank otherwise the condition is false). Another common special 

function condition which allows relational conditions with respect to 

alphanumeric or string data is the scan condition. This function scans 

the subject to verify that it contains the literal string expressed in 

the condition. An added attraction of some scan functions is to allow 

one or more characters in the desired literal to be "don't care'~ 

characters which is interpreted as that position in the subject being 

any character. 

Once the selection criterion has been established to be true, it 

is the responsibility of the action process to extract and format the 



49 

data into reports or possibly into output files. If the system pro­

vides facilities for the user to design his own reports or files, then 

the user controls the action process. Otherwise, the system has 

control and reports (these may be selected by the user from a group of 

standard forms) or files are produced for the interrogation process. 

Usually there exist a distinct difference between host language 

systems and self-contained systems in the handling of interrogation 

procedures. Self-contained systems require user specifications 

specifying what information he requires. Then a system process obtains 

that information, in host language systemlil. The interrogation of the 

data base must be programmed in the conventional sense by the requestor. 

It is because of this difference in the handling of the premise action 

groups that interrogation is essentially a function of self-contained 

systems. 

Programming Facilities 

Programming facilities are considered features of host language 

systems. Therefore, access to any particular facility must be accom­

plished through a conventional programming language, which is termed 

the host language. The statement used to reference a programming 

facility must appear in one of three forms: 1) an explicit call with 

associated parameters, 2) a macro, or 3) some reseryed word (verb) 

of the host language. The set of statements that form the programming 

facilities is named the Data Manipulation Language (DML). A DML is 

not a complete language and it must be embedded in some host language. 

DML statements are extensions to the host language which interface 

with the data base. This results in a mixture of host language 



50 

statements and DML statements when writing application programs that 

access the data base. All calls to and from the data base to retrieve 

data, to add new data, to modify existing data or data relationships, 

and to delete existing data or data relationships are written with 

the DML statements. After this information has been extracted from the 

data base and placed in primary storage, it can be referenced and mani­

pulated using the host language statements. Since programming facili­

ties through the aid of a DML permit a more detailed and precise 

control over the information in the data base, an increased probability 

of destroying the integrity of the data base is evident. This means 

that a data base system which provides programming facilities, as 

described above, must be manipulated by a responsible programming user. 

Summary 

The functions provided by a system are called Data Manipulation 

Facilities. These facilities vary from those supported by host language 

systems which provide explicit manipulation of a data base by a program­

mer to those supplied by the self-contained systems that provide impli­

cit manipulation of a data base by the non-programmer. The more 

common function of a generalized data base management system are file 

creation, file updating, file interrogation, and programming facili-· 

ties. Systems possessing self-contained capabilities usually provide 

the functions of updating and interrogation. While all host language 

systems provide a programming facility, they do not usually provide the 

self-contained functions of update and interrogation. For the creation 

function there exist no clear division between self-contained systems 

and host language systems. The distinction above, between data base 



51. 

systems and the functions they provide, are often encountered when 

investigating data base systems, although it is not uncommon for these 

functions to overlap within a particular system. 



CHAPTER VI 

SUBJECT ANALYSIS 

Although subject analysis is not necessarily a feature of GDMS, 

in many bibliographic data base systems subject analysis provides the 

initial contact between the user and information in the bibliographic 

data base. The subject description of a document starts by assigning 

to it a number of words that are to act as retrieval keys. These are 

called the keywords and they represent a condensation of the original 

text of the document, rather than its whole information content. 

They do not necessarily represent exactly the major topic of the text; 

they are a partial, approximate, imperfect guide to its information 

content. 

Scanning a document to determine its subject content is the key 

operation in subject analysis. Logically two phases can be distin­

guished within the process: 1) scanning to select a set of words, 

phrases, or sentences that collectively represent the information 

content, and 2) deciding which of these are worth recording as being 

relevant to the interest of those who are expected to use the infor­

mation system. If the analysis results in a short statement (or 

statements) concerning the content of the document then the result 

is known as an abstract of the document (13, 14, 23, 25). The process 

of forming an abstract is normally called abstracting. A second 

method of analysis is referred to as indexing. The result of this 

52 



53 

process is a set of descriptive terms for the document (13, 23, 25). 

Abstracting and indexing serve two major functions for the user. 

First, they provide for current awareness which is a me~ns whereby 

the user is kept in touch with the new work being published in his own 

and related subjects. Second, they are the major source for retrospec­

tive searching, both to locate individual articles and to compile 

bibliographies of a subject. The following discussion, labeled Index­

ing and Abstracting, will demonstrate how their makeup fits them for 

these tasks. 

Abstracting 

The abstract is a very brief statement in natural language of the 

essential content of the document. There are two types in general 

use today: informative abstract and indicative abstract (13, 23, 24). 

The former provides information and data that may be extracted directly 

from the document. In most cases, they contain particular values or 

results that are developed by the document and act in some degree as 

a substitute for the document. Rather than the explicit citation of 

facts, results, and conclusions of the document, the indicative abstract 

indicates what the document is about and what kind of information is 

contained in the document. Whichever method is chosen for abstracting 

it is generally agreed that an abstract should include: 1) the 

purpose of the item abstracted, together, perhaps, with its scope or 

magnitude; 2) the methods used, including equipment, materials, tests; 

3) the results obtained, sometimes numerical data; and 4) the con­

clusion drawn (23). 

The benefit of abstracting over indexing is that abstracts allow 



54 

the user to obtain a better idea of the content of the document than 

does a list of descriptive words. But machine forming and searching 

of abstracts can be costly because of the more difficult programming 

and operating time involved. 

Indexing 

Indexing documents can be a purely mechanical operation of a 

highly intelligent one. It can be nothing more than a matter of 

listing words in the title of a document, or it can be a detailed 

intellectual analysis of its content. No matter how the work is done, 

the documents get labeled with a set of descriptive words (13, 23, 24). 

There are two frequently used methods for forming indexes or 

document descriptors. They are 1) the assignation of certain keys, 

and 2) selective extraction. The latter is most often applied to 

subject words or phrases in the title, captions, headings, or the 

main text. Only a selection of these terms is extracted to form 

document descriptors. Establishing a selection criterion is usually 

related to word frequency and/or predicted user needs. The assignation 

of pre-existing keys involves the selective extraction of terms as 

before, but this must be followed by the transformation of terms into 

descriptors. In many retrieval systems this transformation process 

is left to the prerogative of the indexer, who must match his selected 

terms against a list of allowed descriptors. 1 

1A decision must be made when selecting descriptors in regard to 
word forms. That is, words such as differ, differs, and different may 
be treated as separate descriptors or a single term, called a stem, may 
be selected as the descriptor for these words. Stems usually are formed 
by designating several characters of a word to represent the word forms 
for that word--for the above words diffe may be selected as the stem. 



55 

The process of constructing indexes by machine is called automatic 

indexing. One method of automatic indexing is to have a human analyst 

compile a list of keywords of potential interest to future users of the 

index. This list is compared by the computer with each word in the 

text of a document; if a key word appears, the fact is recorded and 

these selected words make up the index entry for the document. 

Another type of machine indexing works on an opposite principle: 

a human analyst compiles a list of words (referred to as a trivial 

word list) that are not to be selected for indexing. These include all 

the common "noi~e" words such as articles, pronouns, prepositions,. 

and so on. Also included are general words that have little specific 

meaning (i.e., in scientific texts the words repost, theory, conclusion, 

etc., are too common to be useful as index entries). Each word of the 

text is then compared by the computer against the trivial word list and 

each word not appearing on the list is placed in the index. The con­

struction of entries by the use of trivial words is much more common 

than by tagging significant words, since less intellectual effort is 

required at input. 

KWIC (Keyword in Context) and KWOC (Keyword Out of Content) 

are two examples of automatic indexing employing either of the above 

methods for selecting keywords from the title entry of a document. 

The KWIC form selects the keyword and permutes the title so that the 

rest of the title wraps around on itself (refer to Figure 11). The 

KWOC form as the name implies actually (or logically) removes the 

selected keyword from the title (refer to Figure 11). 



-- --------

List of Possible Keywords: 

Cyrstals, Ferroelectric, Thermodynamics 

Title of Document: 

"Thermodynamic Theory of Crystals with 
Ferroelectric Properties." 

Crystals with ferroelectric properties. Thermodynamic 

theory of 

ferroelectric properties. Thermodynamics theory of 

crystals with 

thermodynamics theory of crystals with fer­

roelectric properties. 

(A) KWIC Indexing 

Crystals 

Ferroelectric 

Thermodynamic 

(B) KWOC Indexing 

Figure 11. Automatic Indexing 



57 

Indexing and abstracting seem to be quite pdpular throughout 

the information retrieval world (8, 10, 14); yet there seems to be 

few answers to such questions as: the best way to select keywords, 

how many words should be a.elected from a document, and how to handle 

synonyms. Since the answers to these and many more questions are not 

available, the choice of how to achieve optimum performance is left 

to the designer, who must base his decision on the purpose of the 

system and on the amount of indexing labor that is available. 

H. P. Luhn (14), who is considered to be the father of information 

retrieval, proposed an answer to the problem by performing both auto­

matic indexing and automatic abstracting on the full text of the doc­

ument by eliminating noise words and counting the non-noise words. 

The most frequently used words can act as descriptors or they can be 

compared with a list of approved descriptors, so that only approved 

words would be used. Automatic abstracting may also be performed by 

allowing the computer to print out four or five sentences from the 

text that have the greatest number of frequently used non-noise words 

(14, 24). 

Summary 

Subject analysis consists of scanning a document to determine 

its subject content. This process involves two phases~ 1) selecting 

terms that represent the subject content, and 2) deciding which of 

these terms are relevant to the user. If the results of this analysis 

is a set of descriptive words (or keywords) assigned to the document 

then indexing has been performed. Although the way keywords are chosen 

differs, the main objective is to provide the user with the most 



descriptive terms and with the widest selection of terms pertaining 

to his interest. The two forms of automatic indexing are KWIC (Key­

word in Content) and KWOC (Keyword Out of Content). Instead of index­

ing, the process of forming abstracts can be used for analyzing the 

subject content. This results in a short statement concerning the 

essential content of the document. If the abstract is a citation of 

facts, results and conclusions of the document then it is referred to 

as an informative abstract. On the other hand, if only an indication 

of what the document is about and what kind of information is contained 

in the document then an indicative atstract is formed. Often subject 

·analysis provides -the initial contact between the user and the 

document; therefore, when choosing a particular subject analysis 

scheme, the users needs must be considered for each application. 



CH.APTER VII 

A BIBLIOGRAPHIC DATA BASE SYSTEM 

When a researcher retrieves information from the available liter­

ature, he generally goes through three steps. First, he finds refer­

ences to potentially appropriate documents; next, he obtains the 

documents; and finally, he searches them to locate the desired infor­

mation. These three steps usually are called, respectively, reference 

retrieval, document retrieval, and information retrieval. This bib­

liographic data base is designed to be used mainly with the reference 

retrieval process. 

The facilities provided f'or reference retrieval may be inconveni-

. ently located or available only during restricted periods and may be 

out-of-date or incomplete. They require time consuming manual search. 

The user may have to scan numerous nonrelevant references to locate 

relevant ones. In particular, satisfying several search criteria 

simultaneously frequently entails much unproductive work. 

By developing an automated system that incorporates all the 

available literature into one centralized location, the unproductive 

work and time spent by the user may be substantially rai uced. This 

computerized system is known as a bibliographic data base if' it 

contains the following basic information: 1) author/title, which is 

concerned with topics relating to the origin of' the document and linked 

with items serving to uniquely identify it, and 2) subject analysis, 

59 



60 

which is concerned with the information content of the doc'llment. The 

main purpose of a bibliographic data base system is to rapidly present 

the requester with only the relevant information pertaining to his 

topic of interest. Such systems normally provided a control language 

that interacts with the data base and the non-programming user. 

This paper discribes a self-contained bibliographic data base 

system which is designed for the non-programmer who desires rapid 

retrieval of reference material. This data base system possesses 

self-contained capabilities as maintenance and interrogation .of the 

data base is handled by pre-programmed processing algorithms which are 

invoked through a set of parameters available to the user. Presently 

the primary data contained for each document consist of three items: 

1) the author, 2) the title, and 3) the location. To provide rapid 

access to documents and multiple entry points to the data base, this 

primary data is decomposed into five physically separate files (see 

Figure 12). These are the author file, location file, keyword file, 

inverted file, and the document file. 

Also shown in Figure 12 (broken lines) are two "logical" files 

which exist within the ke}1Word file. They (the thesis file and journal 

file) are maintained "separately" for special interest groups. Figure 

13 illustrates the addition of an author resum~ file and a document 

abstract file. Once this information becomes available and has been 

implemented, the user would be provided a more informative bibliogra­

phic data base system. 

In Chapters II and III a full explanation of the features and 

functions of a data base system were stated. This outline will be 

employed in the following description of the implemented bibliographic 



l(E!VlOR'D 

Jrll;B 

61 

/ /"" 
/ 

/ rr~s1s 111.E ------JOURNAL 11tB 



I 
I 
I 
\ 

LOCATION 

FILE 

DOCUMENT 

ABSTRACT FILE 

DOCUMENT 

FILE 

AUTHOR 
FILE 

" " AUTHOR 

RESUME FILE 

INVERTED 

FILE 

KEYWORD 
FILE 

Figure 13. Possible Future Data Base 

62 

\ 
\ 



data base system. This entails a complete but general overview of 

the entire hierarchy of elements, information files, and processing 

algorithms that result in efficient management of information. 

Appendix D should be consulted for a more detailed study of the facili­

ties, such as the algorithmic procedures, input and output formats, 

parameter formats, etc. 

Data Administrator 

There is one person assigned the responsibility of maintaining the 

data base. His duties consist of security and preservation of the 

system's integrity. The former is of minimum condern for this system 

because the entire data base is open to the users. The only security 

provided for the data base is password clearance for access to the 

system functions. 

The system's integrity is the most important function of the data 

administrator. This involves the periodic updating of the data base. 

During the updating process, he will be responsible for visually 

checking all reports produced by the system and for recycling of all 

rejected entries. If any incorrect data has entered the system, such 

as misspelled names, incorrect locations, or nonrelevant keywords, 

the administrator may use the special purpose utility program 

(described later) to correct the mistakes. 

Because the data administrator has superiority of the data base, 

it is his responsibility to provide optional features which are not 

available but would improve the user/data base interaction. This 

requires a moderate amount of programming on his part. The installa­

tion of the additional files, an author's resume file and a document 



abstract file, would be performed by the administrator. This is the 

only situation in which a user, including the administrator, is not 

treated as a non-programmer who supplies parameters for the pre­

programmed functions. 

Data Structures 

The statement that most data bases incorporate linked structures 

is supported completely by this data base implementation. In fact, 

every linked structure mentioned, except the B-tree, is used directly 

or indirectly within this system. By combining these structures, an 

interrelation between the files and their data is created. Due to 

these relationships, the user is able to access the data base through 

multiple entry points and still achieve a fast response for his re­

quest. Another feature of data bases that linked structures provide 

is the reduction of redundant data resulting in conservation of space. 

The data base requirements for this bibliographic system include: 

an efficient means of maintaining a constantly changing bibliographic 

data base which may be accessed by author, location, and keywords; 

and although the system's input is processed in the batch mode, a 

relatively rapid retrieval time is required. 

A survey of the advantages and disadvantages of the linked struc­

tures described in Chapter III.indicate that the type structure sup­

porting rapid retrieval of data and reasonable updating characteristics 

is the AVL tree. AVL trees also provide an ascending sequence of keys 

when retrieved by a postorder traversal. LSee Knuth (11) p. 31.Q/ 

Because the estimated size of the data base is from 1,000 to 3,000 

documents, the entire AVL tree may be held in internal storage where 



the tree possesses good processing characteristics. By maintaining 

such structures for the author file, location file, and keyword file, 

the major requirement of multiple entry points for the data base is 

satisfied. Construction of a tree node is similar to the node depicted 

in Figure 8 (Chapter III) with the information field consisting of 

a key and a pointer to the record with that key. The selection of 

AVL trees and node construction combine to provide a self-organizing 

structure with rapid retrieval of data. 1 The inverted file which may 

only be referenced by the keyword file obviously consists of an 

inverted list structure. Each record of the inverted file contains 

four fields. The first three fields are pointers to records in the 

data base which correspond to the referenced keyword. While the 

fourth field is null or it points to the next inverted file record 

that is associated with the specified keyword; thereby, simulating 

variable length records. If an inverted list is maintained in sequence, 

the logical relations of union and intersection can be performed 

between keywords very easily. This property of ordering is inherent 

in the system, but is not required because only simple queries are 

allowed. 

The last file, the document file, is by far the most important 

and elaborate in terms of the linked structures involved. Document 

records consist of the actual title of the document, an inverted list 

a doubly linked list, a linear linked list, and multilinked list. The 

1Tomson (21) also employs AVL trees for directories in her 
description of an interrogation process. 



primary reason for such a construction is to provide multiple entry 

points to the data base and to reduce the amount of redundant data. 

This file may be accessed only indirectly through the location file 

or through keyword file, but in return the document file may be used 

66 

to access the author and location files. Access of these files through 

the document file is accomplished through the above-mentioned data 

structures. The inverted list consists of five links (this is a re­

striction of the system) with each link being null or pointing to one 

of five possible authors of the document. Since the links are always 

placed consecutively in the inverted list with any remaining links 

having the null value, the corresponding five links which make up part 

of the multilinked structure may contain the null symbol if it is the 

only document produced by that author or the link points to the next 

record in the multilinked list for the corresponding author (see 

Figure 14). If the title for a document is extremely long and requires 

an overflow area then a linear linked list is employed to associate 

the extra title record with the original document entry. The last data 

structure contained in the title records may be considered a doubly 

linked list which always points back to the location record for that 

document. 



Author Records 

I DUCK 

#10 #20 #25 

D. E. I FISH o. c. I BYRD F. Y. 

Document 
Record # 

30 WILD ANIMALS ] 10 20 25 0 o(4o4o4o 0 ol ~ 
40 I ANIMAL B~VIOR I 10 20 25 0 o I 50 0 75 0 ol ) 
50 I WILD BIRDS I 10 0 0 0 ol 0 0 0 0 0 I S 

TITLE I AUTHOR LINKS(5) I MULTILINKS (5) I s 
Figure 14. Inverted and Multilinked Structures in the 

Document File 

Data Definitions 

Data definition in Chapter II is defined in a strict sense for 

most self-contained systems and in a broad sense for host language 

67 

systems. This strict definition of data applies to this bibliographic 

data base. Figure 15 (A), (B), and (C) describe the data definitions 

employed by the author file, the keyword file, and the keyword record 

respectively. Although the information contained in a field and the 

size of several fields differ the basic record configuration of each 

is identical. The fields comprising a record are: 1) a key ~ield 



68 

consisting of either an authors name, a document location, or a keyword; 

2) a link to the information related to that key field; 3) a left link 

for the AVL tree; 4) a right link for the AVL tree, and 5) the balance 

tag for the AVL tree. The length of a field is measured in units of 

storage called bytes. Key fields for author records are 25 bytes 

long while the same fields for location and keyword records are 20 

bytes in length. All link fields for these records comprise two bytes 

of storage and one byte is used to store the balance tag. 

Figure 15 (D) depicts an inverted file record. These records 

consist of four fields. The first three fields are two ·bytes long 

and link the appropriate document file record with the keyword record. 

Field four is also two bytes long but links other inverted file records 

associated with the particular keyword. 

The last definition is a document file record (Figure 15 (E)). It 

includes: 1) the documents title which is 140 bytes long, 2) a one 

byte link field for extra title records, 3) ten fields of two bytes 

used to link authors with the documents, and 4) a location link field 

two bytes long. 

Storage Structures 

The choice of storage structures which provide efficient perfor­

mance for the data base system was based on the record structure, the 

physical distribution of the records in the storage device, the 

indexing method employed for making the initial reference, and the 

manufacturer-supplied access method. 



_ Field (Bytes) 

1 - 25 
26 - 27 
28 - 29 
30 - 31 
32 

Field (Bytes) 

1 - 20 
21 - 22 
23 - 24 
25 - 26 
27 

Field (Bytes) 

1 - 20 
21 - 22 
23 - 24 
25 - 26 
27 

Field (Bytes) 

1 - 2 
3 - 4 
5 - 6 
7 - 8 

(A) 

: 

Description 

Authors name 
Link to location file 
Left link for AVL tree 
Right link for AVL tree 
Balance tag for AVL tree 

Definition of Author Record 

Description 

Location of document 
Link to document file 
Left link for AVL tree 
Right link for AVL tree 
Balance tag for AVL tree 

(B) Location Record 

Descripition 

Keyword for document 
Link to document file 
Left link for the AVL tree 
Right link for the AVL tree 
Balance tag for the AVL tree 

(C) Keyword Record 

Description 

Link to document file 
Link to document file 
Link to document file 
Link to next inverted record 

(D) Inverted Record 

Figure 15. Data Definitions 



Field {Bytes) 

1 - 140 
141 - 142 
143 - 152 
153 - 162 

Description 

Title of document 
Link to extra title records 
Five 2-byte links to author file 
Five 2-byte links to document 

70 

163 - 164 
records with corresponding author 

Link to location file 

Figure 15. (Continued) 

Since the author file, location file, and keyword file are usually 

held in main memory to achieve good processing characteristics, their 

file structure consists of a sequential organization. This makes 

updating simply an addition to the end of the file while the AVL tree 

manages the logical structures. However, if internal storage needs 

to be conserved only the file corresponding to the desired entry point 

needs to be in primary storage. The other two files will be processed 

as direct files on secondary storage devices with PL/l regional (1) 

organization. This procedure will decrease retrieval time slightly 

but usually performance will not be degraded considerably. 

To permit rapid direct access to the inverted file and document 

file a direct storage structure with regional (1) organization is 

constructed. The direct access is provided by a combination of the 

table look-up method and the BDAM (Basic Direct Access Method) package 

provided by the manufacturer. AVL trees act as directories which 

supply a relative record address and the ED.AM package transforms it 

into the physical address of the record. These files may also be 



71 

processed as sequential files. One such application is the scan 

function (discussed later) which processes the document file sequenti-

ally. When processing the files on secondary storage sequentially 

either the QSAM (Queued Sequential Access Method) package or a com­

bination of the QSAM and BSAM (Basic Sequential Access Method) 

package is invoked. 

Creation 

Creation of the bibliographic data base is performed by a pre-

programmed function. For this data base system the creation process 

is executed only once and this is at the initial construction of the 

2 data base. The procedure progresses from a simple reservation of 

space and establishment of the file existence to the creation of each 

record in the file being built. Creation of the document file exhibits 

this less complex process. Its estimated space ~equirements are 

reserved on a direct access device and references to the file are 

created. Such a file which contains no data is normally called a null 

file. Presentation of the initial entries for a null file is by the 

first updating function which processes that file. 

The remaining four files represent the more difficult process of 

the creation function. As stated earlier data structures usually 

provide an improved utilization of available storage space by main-

taining an availability list. The author file, location file, and 

2This excludes the process of re-creation or recopying of a file. 
For example, if the file (or files) needed to be restored from a back­
up copy due to some malfunction within the system, the creation 
function would not be summoned. Instead it would require manufactured 
supplied utility programs. 



72 

keyword file use the right link of each tree node (see Figure 8) to 

construct a linear linked list. The inverted file supports the same 

linked structure but makes use of the last link of each entry. For 

this reason each entry of these four files must be composed and placed 

in its reserved storage location during the creation process. 

The next function performed by the process is the creation of two 

logical files. They are made known to the system by the placement of 

the keywords "journal" and "thesis" in predetermined locations. These 

are the first and second records,.respectively, of the keyword file. 

At this stage the logical files are known to the data base system and 

contain no data; therefore, they may be considered null files or 

more precisely as "logical" null files. 

To ensure the performance of the creation process reports are 

produced indicating any errors encountered and statistics on the 

created files. It is the data administra.tor 1 s function to verify 

this material to preserve the system's integrity. 

Updating 

Updating is defined as the process of changing the value content 

of a data file by modifying or deleting existing records or by insert­

ing new records. To prevent destroying the systems integrity (1) only 

the updating programs may access the file during the update process; 

(2) the storage limits defined for each file are enforced by the 

· operating system for the inverted and document file and by the data 

base system for the remaining files; (3) a validation facility is used 

to initiate the update process. With this self-contained system it is 

the function of the data administrator to perform the updating procedure 



73 

periodically and correct any errors that may occur during the process. 

There are four built-in processing algorithms which allow the 

administrator to accomplish this task. Two of these are the edit and 

update functions. They perform the actual insertion of records and 

must be executed in sequence. The third algorithm is the print func­

tion which provides the administrator the ability to examine a subset 

of the data base or the entire data base. Utility functions are the 

last and most powerful functions. With these procedures the administra­

tor is supplied the power of executing major modification to the data 

base. 

The edit function is the first procedure to be executed when 

updating the data base. Input to the edit program consists of author 

cards (A), call numbers (N), or location cards, and title cards (T). 

Each item is punched one per card with the corresponding code letter 

appearing in column 72 (see Figure 16); the maximum number of cards 

for each type is 5, 1, and 6, respectively. Assuming that each entry 

passes the extensive validation process, one complete record is written 

on the journal file, if it is a journal, or the main output file. 

These two edited output files are sequential files and not considered 

part of the data base because they are merely temporary files. Verifi­

cation of the edit function by the data administrator is accomplished 

by standardized reports produced during the process. These reports 

concern totals, valid entries, and invalid entries with their error 

messages. By passing parameters through the JCL (Job Control Language) 

the administrator is given a choice of what information he desires 

and how it is presented. 



74 

Column 1 72 

( KEYS WILLIAM 

( CASHMAN THOMAS I A I 

( 001.64 K44B IN I 

( BASIC PRINCIPLES OF I T I 

( DATA PROCESSING I T I 
Figure 16. Typical Input Document 

Immediately after executing the editing procedure, the update 

function is invoked. Input for this function consists of the two files 

produced by the validation process. At the start of the update program 

an entry is read from the main file. The author is removed from the 

entry and inserted into the author file. If it is a new author, it is 

added to the end of the file and the corresponding data structure is 

updated. An existing author is not added to the file but the linked 

list for that author is updated in the multilinked structure. The 

second item to be removed from the entry is the call number or location. 

If there exist a duplicate item in the location file, the entire entry 



75 

is rejected and a new entry is read. Non-existing numbers are added 

to the end of the location file and the matching data structure is 

updated. By combining the title with the appropriate link fields a 

new entry is provided and the document file is updated sequentially. 

When the title exceeds the length allowed by an entry of the document 

file a new document record is constructed using the remaining portion 

of the title. Before adding this new record to the end of the document 

file, the corresponding linked list structure is updated. This process 

may be repeated only twice for any one document. Therefore, at most, 

three entries may appear in the document file for any particular docu­

ment. 

Subject analysis which is discussed in detail later is the last 

function to be performed on the entry. The analysis involves an 

auxiliary file and the title of the document. This additional file is 

an ordered sequential file consisting of undesirable keywords known 

as trivial words. The selection of keywords is performed as follows: 

A word (all alphabetic characters) is selected from the title; A binary 

search is used to determine if it is a trivial word; If so, then another 

word is selected from the title and the process repeated; Otherwise, 

the word is inserted into the keyword file (if not already there) 

and the process repeated until words in the title are exhausted. If 

an existing word in the document is to be disregarded as a keyword, 

it must match exactly with a word in the trivial word list. While for 

keywords only stems need to be equal for the word to be considered 



a duplicate keyword.3 This allows forms of the same word to be placed 

together. When inserting words into the keyword file, a pointer is 

placed in the proper position in the inverted file and. the word is 

added to the keyword file only if there is not a duplicate word (stem) 

in the keyword file. 

The above process continues until every entry of the main file 

has been updated. At this point the journal file is then read as 

input so that the logical journal file of the data base may be updated. 

This procedure consists of updating the location file (if there exists 

a location), creating a document file entry and updating the document 

file, and placing the appropriate link in the inverted file. Although 

the steps are fewer than those for the main entries, they are completed 

in the same manner. 

There are five reports produced by the update program (see 

Appendix F). Three reports contain a list of the newly added authors, 

locations, and keywords. Next is the report concerning errors during 

the update process and the last report provides statistics on the data 

base. Again it is the duty of the data administrator to check these 

reports and correct any errors. If at any time the administrator would 

care to investigate the data base further for possible discrepancies, 

he may use the print facilities. The print function will produce a 

list of the author file, location file, and keyword file in ascending 

sequence of keys or a report with the entire entry information 

associated with each key in the specified file. Also the complete 

3This stem consists of the first five characters of a word. 



77 

contents of either the journal file or thesis file may be printed. 

By supplying the print program with parameters passed through the JCL, 

the administrator can produce the desired report or combination of 

reports. 

Updating involves only insertions since the information repre­

sented in this data base system is considered to be permanent data. 

Based on this assumption of no deletion of entries within the data 

base, no deletion algorithm is provided. Even though there are no 

deletions, it is unrealistic to assume that no modifications to the 

data base are necessary. For this reason the data manager is provided 

an utility function which makes available certain desired modifications. 

Change and delete are the two modifications permitted by the util­

ity program. The latter may be used only with the keyword file. It is 

invoked when the administrator supplies the utility function with the 

"delete" command and the keyword to be deleted. This gives the data 

base manager the power to remove words from the keyword file that have 

been determined to be trivial words. To correct errors such as mis­

spelled author names and keywords, or an incorrect document location, 

the data base manager may use the "change" command. 

change these additional parameters must be supplied: 

When requesting a 

1) a code of A, 

C, or K for author, call number, and keyword, respectively; 2) the 

"old" word that is the incorrect word; and 3) the 11 nE;)w 11 word which 

consists of the correct word. One of two algorithms is called upon 

when a change modification is summoned. If the new word does not exist 

in the appropriate file then there is a direct replacement of the old 

word with the new word. This one to one correspondence means that no 

additional space is used and none is freed. The second algorithm is 



78 

executed when the new word is a duplicate of a word in the file being 

considered. This operation involves a merge between the list related 

to the old word with the list of the new word. Space containing the 

old word will be freed and it may be reused. Management of this freed 

space by the change (or delete) operation is handled by the data base 

system through the availability lists discussed earlier. 

Interrogation 

The self-contained capability of interrogation is provided by a 

built-in processing algorithm. Only the conditional relation of equal 

to is permitted to be used by the interrogator. 4 Therefore, it is 

impltcity specified for all requested interrogations. A set of user 

commands exist for the interrogation process and the use of a command 

with its required parameters will be called a simple query.5 Allowable 

commands that the user may specify are A, C, K, S, and KS. The first 

three indicate the file which will be used as the entry point into the 

date base. They are the author location, and keyword files, 

respectively. Entering the data base through the author file will 

produce for the user a list of all material contained in the data base 

that was published by the particular author. A similar procedure is 

followed when interrogating through the keyword file except the list 

produced contains all documents in the data base whose title contains 

4see User's Guide (Appendix B) for further information on 
interrogating the bibliographic data base. 

5A thesis by Thomson (21) invest-igates some of the problems 
involved when using more complex queries during the interrogation 
process. A discussion of these problems can also be found in Knuth 
(12). 



79 

the specified keyword. If the command specifies the location file for 

searching the data base then only one iten; specificaily the item with 

that location, is contained in the report. Supplied with the S command, 

which is the mnemonic for the scan function, is a character string 

not exceeding thirty characters. This function will sequentially pro­

cess the entire document file constructing a report of all documents 

whose title contains the desired literal string. The last operation 

available to the user is the keyword/scan (KS) command. When using 

this option the requester enters the data base through the keyword 

file and processing is identical to the K command. But if the desired 

keyword does not exist in the keyword file, the scan function is 

invoked using the particular keyword as the searching literal. An 

appropriate message is produced for any query in which the desired 

information is not contained in the data base. 

Subject Analysis 

The purpose of subject analysis for the implemented data base 

was to allow the individual user fast access to material on computer 

science topics which relate to his interest. It was stated earlier 

that no canonical forms which achieve some optimum performance for 

indexing and abstracting schemes have been established. In fact, the 

only criterion suggested for a specific design was one of economics 

and satisfaction of the system's purpose. It is in accordance with 

these ideas that the particular type of indexing and method of keyword 

selection were chosen for use in this system. 

Due to the volume of information composing the bibliographic data 

base, the cost and time involved in obtaining abstracts or even table 



80 

of contents could not be justified at this time. This provided the 

data base with only the essential information of the existing documents. 

These are the location, author, and title of the document. The com-

bination of the above factors determined an inplicit assumption for 

the analysis. The assumption stated explicitly is that the title of 

the documents represented the true content of the material. Enforce-

ment of the assumption forces the inclusion of an indexing scheme and 

the exclusion of an abstracting scheme. However, if abstracts for the 

documents should become available, they could very easily be incorpor~ 

ated into the d~ta base by the data base administrator (see Chapter VI). 

This addition would provide a more complete and informative system for 

the user. 

The following information was considered when deciding which type 

of indexing to install, KWIC or KWOC. The KWIC index increases both 

processing time and storage space, and it is more difficult to program. 

KWIC indexes are probably more suited for examining the entire data 

base or a large subset of it. The opposite may be stated for 

KWOC index; they are easier to program, and less extravagant with time 

and space (26). The comparison of the methods and the system's pur-

pose indicates the logical choice of KWOC indexing. 

The construction of the index words for the KWOC system is 

accomplished by selective extraction involving a list of trivial words 

matched against words in the title of the document. When a word from 

the title does not match with the trivial word list, the word is used 

6 to update the keyword directory. Because all possible queries 

6For further information on selection of keywords and on the 
updating procedure, see Appendix C. 



against the data base could not be anticipated, this method presents 

the user with the widest selection of indexes and the opportunity to 

locate material on minor, as well as, major topics. 

Summary 

A bibliographic data base contains information concerned with 

topics relating to the origin of a document linked with items serving 

to uniquely identify the document. The implemented bibliographic 

81 

data base system is a self-contained data base system which is designed 

for the non-programmer who desires rapid retrieval of reference mater­

ial. This data base system possesses self-contained capabilities as 

maintenance and interrogation of the data base is handled by pre­

programmed processing algorithms which are invoked through a set of 

parameters available to the user. Presently the primary data contained 

for each document consist of three items: 1) the author, 2) the title, 

and 3) the location. To provide rapid access to documents and multiple 

entry points to the data base, this primary data is decomposed into 

five physically separate files. These are the author file, location 

file, keyword file, inverted file, and the document file. Two addi­

tional files are the journal file and the thesis file. These files 

are logical files which are provided for special interest groups and 

they exist within the keyword file. 

• 



CHAPTER VIII 

SUMMARY AND RECOMMENDATIONS 

This paper has attempted to give a broad description of· gener­

alized data base management systems. Such a description requires 

examination of both the logical and physical representation of infor­

mation in the data base, plus the means of accessing that data. 

Maintenance of the data base and manipulation of data by the user 

are the final topics discussed in this investigation. It is these 

two latter functions that provide the grouping of data base management 

systems into host language systems and self-containea systems. 

No matter which technique or combination of techniques are used 

to represent the information and to define the user's capabilities, 

the ultimate goal of a data base system is to provide an efficient means 

of handling information for various applications. It is this idea that 

leads to the selection of specific data and storage structures and 

determines the user's interface for a bibliographic data base system. 

Since this particular data base system supports many of the known data 

management techniques it may seem too complex for the novice user. To 

avoid such confusion, the information retrieval techniques are trans­

parent to the user. In fact, the user is treated as one who gives a 

command and the data base system executes the orders. Thus, the 

implemented data base system provides the user with a centralized 

location and a current awareness of material available to him on a 

82 



particular subject matter, namely computer science. 

In most practical applications the user's needs can never be 

fully anticipated. Therefore, as time progresses this normally gives 

rise to an increasing ~ount of information needing to be stored 

within the data base and to additional requirements for the system. 

The existing system should be able to handle the growth with few or 

no modifications. Two such expansions, of a document abstract file 

and an author resume' file, were mentioned earlier. All of this infor­

mation could be added to the existing bibliographic data base with 

very little effort. 

For the author resume' file this would involve: 1) creation of a 

PL/l regional (1) file and placing the resume's of the existing authors 

into this file in the same sequential order as its corresponding author 

in the author file, 2) adding a statement to write the resume' onto the 

resume' file each time a new author is added to the author file, and 3) · 

adding a statement to print the· information £or the user. The first 

step is performed only once and it is necessary only because the 

information was not available earlier. Step two implies the important 

fact that no additional space for links is needed. The reason for this 

is that each author's name exists only once in the data base and the 

name is in the author file. An identical procedure would be followed 

for the addition of the document abstracts except the implied position 

of the abstracts in the abstract file would be determined by the 

location file since there exists one location for every document. 

A third recommendation is to expand the facilities of the inter­

rogation process to allow the u.ser to employ Boolean and range queries 

when using keyword referencing. If a stipulation, such as allowing 



84 

only one Boolean relation (and, or, not) per query, is enforced then 

the procedure described in Chapter IV for the inverted file could be 

implemented with a moderate amount of effort. On the other hand, if 

queries are allowed to contain any number of Boolean relations and 

possibly mixed with simple and range queries involving the author file, 

location file, and keyword file, then a substantial amount of effort 

may be involved. A m~jor part of the extra effort would involve: 

1) constructing a routine to decode the Boolean query (possibly 

optimizing the request by constructing an equivalent query that is more 

efficient in processing the request), and 2) designing a method to 

handle intermediate results. 1 

Although the implemented data base system performs all functions 

correctly and fulfills the user's requirements it is possible in the 

distant futtire to exceed the capacity of the system with an enormous 

increase in document information. This is due to a characteristic of 

the system that requires an AVL tree to be maintained in primary 

storage (memory). One approach to solving the difficulty is to install 

a paging scheme in which a single segment of the tree is contained in 

a single page (see Knuth (11)). A procedure of this nature could lead 

to a major problem of constantly bringing pages in and out of memory, 

2 thus degrading the performance of the entire system. A more desirable 

1 
In Tomson's (21) paper AVL trees are used as directories and as 

storage of intermediate results. Also, Knuth (11) gives a discussion 
of processing such queries. Palermo (19) describes several techniques 
for decoding queries to optimize retrieval of information. 

2In paging environments this problem is known as thrashing. 



solution would be to convert the AVL trees to B-trees which are better 

suited to large files maintained in secondary storage. If the basic 

node structure of a key and pointer to the record is kept then the 

conversion should occur with a minimum amount of difficulty. It would 

entail the reorganization of the records in the author file, location 

file, and keyword file, and slight modifications of existing programs. 

The programs would be modified by merely replacing the AVL tree rou­

tines with B-tree routines. Subsequently, the systems algorithms are 

untouched. 

Due to the rapid increase in the volume of data needing to be 

maintained and processed and the versatility offered by the data base 

management systems, it seems likely that the latter. will be useful in 

the field of information storage and retrieval in the foreseeable 

future. 



SELECTED BIBLIOGRAPHY 

(1) Atherton, Pauline. "Bibliographic Data Bases--Their Effect on 
User Interface Design in Interactive Retrieval Systems." 
In Interactive Bibliographic Search: ~ User/Computer 
Interface. New York: AFIPS Press, 1971, 215-23. 

(2) Bachman, C. W. and S. B. Williams. "A General Purpose Programming 
System for Random Access Memories." AFIPS Fall Joint 
Computer Conference, 1964, 411-422. 

(3) Brynes, C. J. and D. B. Steig. "File Management Systems: A 
Current Summary." Datamation, 15, 11 (November, 1969), 
138-142. 

'. 

(4) Codasyl Data Base Task Group. October 2,2 Report. New York: 
Association for Computing Machinery, 1970. 

(5) Codasyl Systems Committee. Features Analysis of Data Base 
Management Systems. New York: Association for Computing 
Machinery, 1971. 

(6) Davis, William S. "Empirical Behavior of B-Trees. 11 (unpub. 
Masters thesis, Oklahoma State University, 1974.) 

(7) Dodd, George G. "Elements of Data Management." Computing Surveys, 
1, 2 (June, 1969), 117-133. 

(8) Fischer, M. "The KWIC Index Concept: A Retrospective View. 11 

American Documentation, 17, 3 (April, 1966), 57-70. 

(9) Gitomer, J. H. "Data Base Concepts and Considerations." In 
Handbook .Qf ~ Processing Management, Vol. 5. New York: 
Auerbach, 1971, 47-73· 

(10) Jordan, John R. "Let the Computer Select Your Reading List." 
Datamation, 8, 2 (February, 1970), 91-94. 

(11) Knuth, D. E. ~ ~ .Qf Computer Programming, Vol. 1. Reading: 
Addison-Wesley, 1969. 

(12) Knuth, D. E. ~ !!:1 .Qf Computer Programming, Vol 3. Reading: 
Addison-Wesley, 1973. 

(13) Lefkovitz, David. ~ Structures for .Qn-~ Systems. New York: 
Spartan Books, 1969. 

86 



87 

(14) Luhn, H. P. "The Automatic Creation of Literature Abstracts." 
In Key Papers ill Information Science. Washington, D.C.: 
The American Society for Information Science, 1971, 87-94. 

(15) Lyon, J. K. !!! Introduction i2, ~~Design. New York: 
Wiley-Interscience, 1971. 

(16) Minker, John, "Generalized Data Management Systems: Perspectives, 
Dictionary and Tree Sea:rching. 11 1211 International Seminar 
.Qll Information Storage ~ Retrieval, 1971, 1-222. 

(17) Nievergelt, J. "Binary Search Trees and File Organization." 
Computing Surveys, 6, 3 (September, 1974), 195-207. 

(18) Olle, T. W. "A Comparison Between Generalized Data Base Manage­
ment Systems and Interactive Bibliographic Systems." In 
Interactive Bibliographic Search: ~ User/Computer 
Interface. New York: AFIPS Press, 1971, 203-214. 

(19) Palermo, Frank P. "A Data Base Search Problem." In Information 
Syatems .Q.Qll!§ I)!. New York: Plenum Press, 1974, 67-100. 

(20) Pan, George S. "The Characterization of Data Management Systems." 
~Management, 9, 6 (June, 1971), 18-23. 

(21) Tomson, Harriet, "An Information Storage and Retrieval System 
Using AVL Trees." (unpub. Masters thesis, Oklahoma State 
University, 1973.) 

(22) Van Doren, J. R. and J. L. Gray. "An Algorithm for Maintaining 
Dynamic AVL Trees.'' In Information Systems, Vol. 4. 
New York: Plenum Press, 1974, 161-180. 

(23) Vickery, B. C. Techniques ,2! Information Retrieval. Connecticut: 
Archon Books, 1970. 

(24) "Creating the Corporate Data Base. 11 ~Analyzer, 8, 2 
(February, 1970). 

(25) 

(26) 

(27) 

(28) 

"Organizing the Corporate Data Base. 11 ~ Analyzer, 8, 3 
(March, 1970). 

"Processing the Corporate Data Base. 11 ~ Analyzer, 8, 4 
(April, 1970). 

IBM System/360 Operatin~ System, PL/1 (F) Langua~e Reference 
Manual, (GC28=8201 • New York: International Business 
Machines Corporation, 1972, 137-142. 

1.fil:! S stem 60 Operating System, PL/l (F) Programmer's Guide, 
GC2 - 594). New York: International Business Machines 

Corporation, 1972, 144-158. 



APPENDIX A 

GLOSSARY 

88 



Abstracting - A short statement (or statements) concerning the content 

of the document. 
I 

Bibliographic Data Base - A data base that continas information con-

cerned with topics relating to the origin of a document linked 

with items serving to tmiquely identify the document. 

Data Administrator - Person responsible for maintaining the data base. 

Data Base - A set of one or more files containing nonredundant data and 

interrelated data items which are processable by one or more 

applications. 

Data Base System - Is a system composed of a data base and of the 

facilities provided to manipulate the data base. 

Data Definition - A description of the data in a data base. 

Data Structure - Logical structures for representing the data in a 

data base. 

Host Language System - A data base system that provides user capabil-

ities by augmenting a general purpose language. 

Indexing - Process of labeling a document with a set of descriptive 

terms. 

KWIC Keyword in context 

KWOC - Keyword out of context 

Self-Contained Systems - A data base system that provides user 

capabilities by executing pre-programmed algorithms. 

Storage Structure - Physical representation of the data on a storage 

medium and means of accessing the data. 

Subject Analysis - Scanning a document to determine its subject content. 



APPFJIDIX B 

DEFINITION OF THE BIBLIOGRAPHIC 

DATA BASE SYSTEM 

90 



The definition of the bibliographic data base may be stated 

formally as follows: 

91 

Design and implement a bibliographic data base system using 

the PL/l programming language. This system should provide all 

necessary information pertaining to a user-supplied author or 

location (usually a call number). In addition the system should 

provide an interactive search facility of the entire data base 

for user-supplied keywords. 

Presently, the input data for the data base .will consist 

of punched cards containing the author, location, and title of 

each document relevant to the data base. 



APPENDIX C 

USER'S GUIDE 

92 



93 

The implemented bibliographic data base system provides the user 

with a centralized location for obtaining information on computer 

science topics. The data base system will provide all data contained 

in the data base pertaining to the specific item requested. Examina-

tion of the data base is through the use of control information 

obtainable from the data base administrator and of commands specified 

by the user. Any number of commands may be given within one inter-

rogation process but each command must be a single card. Allowable 

commands are A, C, K, S, and KS. All commands start in column one 

and they are followed in column ten by the item to be located. 

Author (A) commands specify that the item being passed is an 

author's name. The command card must appear in the following form: 

1) last name first (not to exceed 25 characters), 2) one blank, and 

3) the author's first initial. If the author exists in the data base, 

all information pertaining to him will be printed.1 

Locate (C) commands initiate a search for the location of a 

document. The item usually takes the form of a call number and may 

not exceed 20 characters. If the item exists, the document and all 

related information with that location is printed. 

Keyword (K) commands indicate that item is a keyword which does 

not exceed 20 characters. The keyword specified should be the singular 

2 form of the keyword. All documents whose title contains this keyword 

1There is one special "author" named "GENERAL A" which contains 
material that has no specific author such as reports on symposiums, 
and conference proceedings, etc. 

2Since stems are used for comparison, there is no need to distin­
guish between similar words, such as computer and computers. 



94 

will be printed for the requestor, if this is a valid keyword.3 

Scan (S) commands provide the user with a means of searching the 

titles of all documents in the data base for a specific item. This 

item may contain any allowable alphanumeric character but may not ex-

ceed 30 characters. Output consists of all documents containing the 

literal in their titles. 

Keyword/scan (KS) commands combine the K command to aid the user 

in his search. A normal K command is executed by the system. If the 

keyword is found, all information is printed and the next command is 

read. When the keyword does not exist, a scan command is issued by 

the data base system using the keyword as the literal to be located. 

Illustrated below (Figure 17) is several commands that would 

invoke the interrogation process. Notice that the order and number of 

commands is irrelevant to the process. Although out from the process 

concerning the success or failure of a command is produced in the same 

sequential order that the commands are read. 

3There exist two special keywords called "journait' and "thesis." 
The former will produce all available journals. The _keyword thesis 
prints all theses contained in the data base. 



95 

Column 10 

AUTHO~N 

(s INFORMATION RETRIEVAL 

COMPUTER 

458.32 LC12 

GRAMMAR 

COBOL 

)S = BLANK 

Figure 17. Sample Input 



APPENDIX D 

DATA ADMINISTRATOR'S GUIDE 

96 



Create 

There exist no external input to the creation procedure. Output 

for the process consist of a list for each file created and of the 

maximum number of possible records. 

Program Create reserves space for all files on a direct access 

device. The document file, which is a PL/l regional (1) data set, is 

opened and closed according to specifications listed in IBM Manuals 

(20, 21). The author file, location file, and keyword file use the 

right link of each tree node (each node is a record) to construct 

97 

a singly linked list. This list provides the next available node when 

necessary. An identical process of linking each node with the next 

node is performed with the last field of each record in the inverted 

file. Two logical files are created within the keyword file. These 

files are established by placing the keywords, journal and thesis, in 

position one and two of the keyword file (the AVL tree for the keyword 

file is also updated). The final step in the process is to initialize 

all counters used to maintain the system. Since record zero of all 

files is not used for file information, it is used for system infor­

mation (mainly counters). The particular file records containing this 

information are chosen to reduce extra read statement. The placement 

of counters is depicted in Figure 18. 



Inverted Node LINK LINK LINK LINK 

Tree Node KEY LINK I Lt I RL I BT 

Record Zero of: 

Author File AV :IRT 

Location File AV I TAV IRT 

Keyword File AV I IAV IRT 

Inverted File ACNT lccNT IKENT 

AV - Next available node for that tree 
!AV - Next available record for inverted file 
RT - Root for that tree 

J 
] 

I 
J 

TAV - Next available record for the document file 
ACNT - Count of author records 
CCNT - Count of location records 
KCNT - Count of keyword records 

Figure 18. System Count Locations 

Edit 

98 

Input for the edit program consist of new documents to be added to 

the data base. The document information is punched in 80-column cards 

(see Figure 16). All cards must contain an A, N, or T punched in 

column 72 for Author, Location, or title respectively. Columns 73-77 

will contain entry numbers while columns 78-80 contain sequence within 



entry. Only one item is placed on a card and it is assumed that 

column 1 is the first position of the item. 

Locations cards may not exceed 25 characters in length and they 

must be the first card of an entry. 

It is recommended that author cards follow the location card for 

the entry but this is not a requirement. There exists one author per 

card with last name first and at least the author's first initial. 

99 

The last name may not exceed 25 positions. Separation of the last 

name and the first name or initial is by one or more blanks or a comma. 

Document titles are placed in column 1 through column 70 of the 

title card. There may be up to six title cards per document with 

column 1 of the successor card following column 70 of the predecessor 

card. 

The remaining input for the edit program is through the rtPARM" 

parameter on the execute card in the JCL. This number specifies what 

information the administrator desires and how it is to be presented. 

Allowable digits are one, two, or three with one being the default. 

If a one is passed to the program, then all good records are written 

first followed by a list of error messages and rejected entries. Two 

specifies that all records are to be printed sequentially with rejected 

entries marked by asterisks. Also a list of rejected entries is pro­

duced. This parameter displays the error entry and the error message, 

thus enabling the administrator to easily pinpoint the mistake. When 

a three is used only the essential information of rejected entries with 

error messages is printed. Totals regarding the number of journals 

and records added and the number of errors encountered are produced 

regardless of print options. 



100 

The edit program is the first procedure to be executed when 

updating the data base. This process begins by reading an entry and 

determining the entries validity. Validation of the entry is performed 

in three parts. First the location is checked for errors. Next, the 

author (or authors) is checked and last, the title is verified. If 

the entry is valid and it is a journal, then it is piaced on the 

journal file or else it is placed on the main output file. An invalid 

entry is marked as such and rejected. This placement or rejection 

of an entry is performed each time a new entry is read. 

If an entry exists with all correct information except an author, 

then an author of GENERAL A is created. This has been implemented 

for items such as conferences, symposiums, etc. 

Illustrated in Figure 19 is the format of the two output files 

created by the edit process. They are only temporary files and they 

are destroyed after execution of the update program. Since only 140 

characters are allowed in one record and the maximum for an entry is 

420 characters, a flag is used to denote the next record as containing 

more title information. 



Field (Bytes) 

1 - 25 
26 - 160 

161 - 300 
301 - 302 
303 - 307 

Description 

Location of document 
5 Fields of 27 characters each 

containing an author 
Title of the document 
Flag for extra titles 
Entry number 

Figure 19. Edit Files 

Update 

101 

Input for the updating algorithm consist solely of the two files 

created by the edit program. The output is a standard report contain~ 

ing a sequential list of all new authors, new locations, and new key-

words added. This is followed by a summary of entries in the data base. 

First, the updating procedure will read the existing files (the 

author file, location file, and keyword file) into memory and store 

all count fields. Then processing of an entry begins by reading 

a record from the main input file (this is the main output file pro-

duced by the edit program). The procedure to update an entry is as 

follows. The author is removed from the entry and inserted into the 

author file. If it is a new author, it is added to the end of the 

file and the corresponding data structure is updated. The link field 

for that author record is set to point to the record in the location 

file where the location of that document will be placed. An existing 

author is not added to the file but the linked list for that author is 



102 

updated in the multilinked structure. The second item to be removed 

from the entry is the call number or location. If there exists a 

duplicate item in the location file, the entire entry is rejected and 

a new entry is read. Non-existing numbers are added to the end of the 

location file and the matching data structure is updated. By com­

bining the title with the appropriate link fields a new entry is 

provided and the document file is updated sequentially. These link 

fields are: 1) a back.ward reference to the location file, 2) a back­

ward reference to each author, 3) the corresponding multilinks for 

each author, and 4) a pointer to extra title records. When: the title 

exceeds the length allowed by an entry of the document file, a new 

document record is constructed using the remaining portion of the 

title. Before adding this new record to the end of the document 

file, the corresponding linked list structure is updated. This 

process may be repeated only twice for any document. Therefore, at 

most three entries may appear in the document file for any particular 

document. 

Subject analysis is performed on the entire title of the document. 

The analysis involves an auxiliary file and the title of the document. 

This additional file is an ordered sequential file consisting of 

undesirable keywords known as trivial words. The selection of keywords 

is performed as follows: a word that must be all alphabetic charac­

ters is selected from the title; a binary search is used to determine 

if it is a trivial word; if so, then another word is selected from 

the title and the process repeated until all words in the title are 

exhausted. If an existing word in the document is to be disregarded 

as a keyword, it must match exactly with a word in the trivial word 



103 

list. While for keywords only stems need to be equal for the word to 

be considered a duplicate keyword. The stem consists of the first 

five characters of a word. This allows forms of the same word to be 

placed together. When inserting words into the keyword file, a pointer 

is placed in the proper position in the inverted file and the word is 

added to the keyword file only if there is not a duplicate word (stem) 

in the keyword file. 

The above process continues until every entry of the main file 

has been updated. At this point the journal file is then read as 

input so that logical journal file of the data base may be updated. 

This procedure consists of updating the location file (if there 

exists a location), creating a document file entry and updating the 

document file, and placing the appropriate link in the inverted file. 

Although the steps are fewer than those for the main entries, they are 

completed in the same manner. 

Utility 

Input in the form of command cards control the execution of the 

utility process (see Figure 20). The two legal commands are "change" 

and 11 delete'J One command is executed per command card with the 

command word starting in column one. This is followed by one blank 

then the character A, C, or K. These characters indicate the file to 

be corrected. With command change the key expression "OLD=" must 

precede the item in error which is placed in quotes immediately 

following the key expression. The replacement item for change commands 

is also in quotes and it is preceded by the key expression "NEW=." 

Command change is used to correct misspelled keywords and author 



104 

names and to replace old locations with new locations. 

1 80 
(CHANGE A OLD= 11 ERROR11 NEW= 11 CORRECTION11 [ 

1 80 
( DELETE K KEY="TRIVIAL" 

Figure 20. Typical Utility Input 

The character K is the only allowable letter that may follow a 

delete command since deletion is only performed on the keyword file. 

"KEY=" is the key expression which precedes the keyword to be deleted. 

This keyword is also in quotes. 

A command is read by the utility program. If it is a change 

command, the file to be changed is determined by the character follow-

ing the command. If this character is a C, then the location file is 

to be altered. This is performed by deleting the old location 

specified and inserting the new location. This new location cannot 

be a duplicate of an existing location (an error message is produced 

if this occurs and program execution stops). If an author is to be 

changed, then the old name is deleted and the new name is inserted. 

If no duplicate name exists for this new name then this process is 

finished. Otherwise, it is a duplicate name, and the list of documents 

related to the old name must be added to the list of documents for the 



105 

duplicate name. The last possible file to be changed by a change 

command is the keyword file. Again, the old word is deleted and the 

new word is inserted. If a duplicate word exists for the new word, 

then the inverted records for the old word must be added to the in-

verted list of the duplicate word. In either case of a duplicate word 

or a new word, the corresponding word is located in the title and cor-

rected. During this correction process involving the document titles 

it is possible to add a new title record to hold the expanded record. 

Otherwise there is space available in the document record--words in 
I 

the title record are separated by one blank within a document record; 

so each search for exapnsion space is within one document record. If 

expansion space is needed but none is found, the overflow characters 

for that record are stored; then they are concatenated in front of the 

next document record for that document. If no extra document records 

exist, then a new title record is built. 

If the delete command is specified only for the keyword file, 

this is a simple process of deleting the keyword file. All freed spac~ 

such as the keyword record and the inverted file record, is returned to 

the availability list (this also occurs when space is freed by the 

change command}. The above process continues until all commands have 

been processed. 

Print. 

Input to the print program is through the 11PABM11 parameter on the 

execute card in, the JCL. The parameters are A, c, J, K, and T. These 

represent authors, locations, journals, keywords, and thesis, respec-

tively. Each command, except K, will produce a report in ascending 



106 

order of command field of all information in the data base. Command K 

will only produce a listing of all keywords in ascending order. If 

only a listing of authors or locations is desired, then the command 

should be preceded by an L such as LA or LC. Although the commands 

may be in any order, they will only be processed once. Figure 21 

demonstrates the use of the PARM parameter for print. 

( II EXEC ••• , PARM.GO="ACJKT" 

( 11 EXEC ••• , PARM.GO="LCLA" 

Figure 21. Print Input 

Program print decodes the parameters specified and produces the 

requested input. If the reports require the author file, location 

file, or keyword file, then a postorder traversal is used to obtain 

the information (see Reference 4). If the logical files of journal or 

thesis are specified, then the appropriate inverted file records are 

traced producing the desired information. 

Interrogation 

Interrogation input consist of command cards with one command per 

card. The commands are punched starting in column 1 with the search 



107 

item beginning in column 10. Existing commands are A, C, K, S, and 

KS. A, c, and K specify which file is to be searched (i.e, author, 

location, and keyword file, respectively). To scan for a specific 

literal string, which does not exceed 30 characters, contained in a 

document title the S command is provided. Command KS is a combination 

of the K command and S command. The K command is performed first and 

is followed by a S command if the item is not located. Commands using 

the scan function (KS and S) should only be used for special circum­

stances since retrieval time is increased (see User's Guide for 

examples of input commands). 

Interrogation is a simple process of determining the entry point 

into the data base and selecting the information. The entry is 

selected from the command specified and a search through the correspon­

ding entry point AVL tree is performed. If one of the scan functions 

is requested, then a sequential search of the entire document file is 

performed printing the information requested if the stem is found. 



APPENDIX E 

PROGRAM FLOWCHART 

108 



Creation 

START 

OPEN FILES 
AUTHOR (SEQ. ) 
LOCATION (SEQ.) 
KEYWORD (SEQ.) 

OPEN FILES 
INVERTED (REG) 
DOCUMENT (REG) 

LINK RLINKS OF 
AUTHOR, LOCATION 
AND KEYWORD FILE 

LINK FOURTH 
LINK OF 
INVERTED FILE 

PLACE 11JOURNAL 11 

AND "THESIS11 IN 
KEYWORD FILE 

SET VALUES OF 
COUNT FIELDS 
IN RECORD Q OF 
FILES 

109 



WRITE FILES 
AUTHOR, LOC. 
INVERTED, 
KEYWORD 

MESSAGES CON­
FIRMING CREATION 
PROCESS 

STOP 

110 



START 

OBTAIN 
PRINT 
PARAMETERS 

BEJECT ANY 
ENTRY WITH 
ERRORS 

READ INPUT 
RECORDS 

BUILD EXTRA 
TITLE RECORD 

Edit 

PRINT 
REPORTS 

PLACE IN 
RECORD 

111 

STOP 



PLACE ON MAIN 
FILE WITH 
EXTRA TITLE 
RECORDS 

PLACE IN 
OUTPUT 
RECORD 

PLACE ON 
JOURNAL 
FILE 

112 



PLACE AUTHOR 
WITH OUTPUT 
RECORD 

J..13 



Update 

START 

READ FILES 
AND COUNTS 
INTO 
MEMORY 

READ RECO 
FROM ViAIN 
FILE 

REMOVE LOC. 
AND CALL 
INSERT 

SET 
LINKS 

REMOVE AUTHOR 

CALL INSERT 

ERROR 
MESSAGES 

UPDATE 
Yes MULTILINKED 

I.IST 

114 



SET LINKS 

PERFORM 
SUBJECT 
ANALYSIS 

CREATE DOCUMENT 
RECORD WITH 
TITLE AND LINKS 

PERFORM 
SUBJECT 
ANALYSIS 

BUILD NEW DOCU­
MENT RECORD 
AND SET LINKS 

115 



READ 
JOURNAL 
FILE 

CALL 
INSERT 

WRITE 
FILES 

Yes ERROR 

SET LINKS 

CREATE DOCUMENT 
RECORD WITH 
LINKS AND TITLE 

INSERT IN 
INVERTED FILE 
FOR JOURNAL 

MESSAGE 

PRINT 
REPORTS STOP 

116 



START 

READ FILES 
INTO 
MEMORY 

No 

Yes 

Yes 

Yes 

Print 

ERROR 
MESSAGE 

Yes 

LIST OF 
AUTHORS 

LIST OF 
LOCATIONS 

LIST OF ALL 
KEYWORDS 

STOP 

No PRINT ALL 
>----I AUTHORS WITH 

DATA 

PRTNT ALL 
>114J..---I LOCATIONS 

WITH DAT.r;..----' 

117 



Yes 

STOP 

ALL JOURNALS 
WITH DATA 

118 



ST.ART 

READ FILE 
INTO 
MEMORY 

Utility 

WRITE FILE 
~Y=e=s--1 FROM 

CALL 
DELETE 

RETURN FREED 
SPACE OF IN­
VERTED FILE TO 
AVAILABILITY LIS 

MEMORY 

PRINT ERROR 
MESSAGE 

PRINT 
REPORTS 

119 



CALL DELETE 
(OLD WORD) 

CALL INSERT 
(NEW WORD) 

No 

COPY INVERTED 
LINKS OF OLD 
WORD TO INVERTED 
LI:NKS OF NEW WO 

FIX WORD IN 
TITLE RECORD 

RETURN ANY 
POSSIBLY 
FREED SPACE 

FIX WORD IN 
TITLE 
RECORD 

120 



CALL DELETE 

(OLD WORD) 

CALL INSERT 
(NEW WORD) 

Yes 

PRINT ERROR 
MESSAGES 

STOP 

121 



CALL DELETE 

(OLD WORD) 

CALL INSERT 

(NEW WORD) 

Yes 

ADD OLD MULTI 
LIST TO NEW 
MULTILIST 

122 



START 

READ FILE 
INTO 
MEMORY 

BEAD COMMAND 
CARD 

Interrogation 

Yes STOP 

Yes CALL SEARCH 

(AUTHOR) 

MESSAGE 

AUTHOR AND · 
ALL HIS 
DOC 

123 

"'•L 



Yes CALL SEARCH 
(LOCATION) 

No 

MESSAGE 

LOCATION 
WITB: DOCU­

>->--i MEN'r DATA 

124 



No 

No 

COMMAND 
ERROR 

CALL SEARCH 
(KEYWORD) 

SCAN 
DOCUMENT 

FILE 

No MESSAGE 

125 



APPENDIX F 

PROGRAM OUTPUT 

126 



127 

CREATION OF THE BIBLIOGRAPHIC DATA BASE 

THE FOLLOWING FILES HAVE BEEN CREATED: AUTHOR FILE,lOCATION FILE,KEYWORO F!LE,INVERTF.D FILE.AND T!TLt F!Lo, 
*** THE HIJ LOGICAL FILES FOR JOURNALS AND THESIS HAVE BEEN ESTABLISHED*** 

MAX, NO, OF AUTHOPS 

2500 

MAX, NO, OF LOCATIO~S 

2000 

MAX, NO. OF KEYWOPllS 

!ODO 

MAX, NO, OF INVERTED RECORDS MAX, NO. OF Tl TLE P ECOROS 

2000 2000 

NO~MAl ENO DF JUO 



629.8920151 5795AE 
STARKE P 

ABSTRACT AUTOMATA• 

001,642 C7410 

THE FOLLOWING ENTRIES W~RE ADDED 

SAYERS A COMTRE 
OPERATING SYSTEMS SU\VEY, 

511.c C731 !970 
GENERAL A 

PPCCEEDINGS OF THE SECOND CHAPEL HILL CONHRENCE ON COMBINATOR! AL MATH 
EMATICS AND ITS APPLICATIONS. 

658.4002854 H432M 
HAO R 

MANAGER'S GUIDE TC MANAGEMENT INFORMATION SYSTEMS, 

658.403 143 
GRUENBERGER F 

INFORMATION SYSTEMS FER MANAGEMENT. 

029.7 K52E 
KING 0 BRYANT E 

THE EVALUATION OF INFORMATION SERVICES ANO PRODUCTS, 

658.8CC285 Co390 
CLIFTON H 

CATA PROCESSING SYSTEMS DESIGN. 

658.054 S9%1 
SZo,FOA R 

!NFOPMATION PPUCESSING MANAGEMENT. 

OO!.c442 S<;89C 
Gt:NFRAL A 

IEEE CCNFERENCE RECORD OF THE SYMPOSIUM ON FEATURE EXTRACTION AND SELE 
CTJON IN DATTERN RECOGNITION. 

oot.64i4 A3~os 1973 
GENERAL A 

SAN FRANCISCO CONFERENCE ON ALGOL 68 IMPLEMENTATION, 1973 !PROCEEDINGS 

128 

00614 

00615 

00616 

00617 

00618 

oo; 19 

00620 

J062! 

OC&22 

00623 



****THE FOLLOWING ENTRIES WERE NOT AOOEOiDUE TO ERR~S tilSTED **** 

D IAGONSTI CS· 

**** BLANK MISSING IN CALL NUMBER 

**** BLANK H !SS ING IN CALL f>IJMBER 

**** MISSING CALL NUMBER FOR THIS ENTRY 

****TITLE CARO MISSING FOR 

**** 72 DOES NOT CONTAIN NoAoOR T 

**** TITLE EXCEEDEDS 420 CHAR EXCEEDING CARD IS 

**** MISS ING CALL NUMBER FOR THIS ENTRY 

**** TITLE CARD MISSING FOR 

.:·ERROR CAR 0 

·00639010 

"00650010 

00700000 

0().720 

00800000 

,00810000 

-0860000 

00860 

129 

REJECTED ENTRY 

00639 

00650 

Bf 

00720 

00800 

00810 

A I $ 

OOBb:l 



130 

LIST OF Alt JOURNALS 

370 .1805 Al05 
AEDS JCIJRNAL. 

501 C9935 
CYAERNETICS. (JOJRNAL lo 

010 .5 A51Z 
JCUP.NAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE. 

ACT A INFOPMATI CA. ( JDU~NALI • 

CIPS-COHPUTEP MAGAZINE.!JOl.JltNALI. 

COMPUTER DEC IS IONS.( JOURNAL I. 

INTERNATIONAL JOJRNAL OF COMPUTER ANO INFORMATION SCIENCES, 

HONtYWELL COMPUTER JOURNAL. 

TOTAL NUMBER OF JOURNALS 8 



131 

LIST OF NEW AUTHORS ADDED 

STARKE SAYERS A COMTRE GENERAL A 

HEAD R GRUE!>!BERGER KING 0 BRYANT E 

CLIFTON H SZWEDA R PRAGER WINOG~AD 

LONDON K WA !TE W GOLDSTONE H KARB(r,/TAK A 

HUEY R MINKER ROSENFELD PETR !CK S 

FINDLER N PFAL Tl • BERNSTEIN H RUSTIN R. 

PETERS S JOHNSON R KAST F ROSENWEIG 

PR I CE W FREI BERGE~ w GPENADER ~ARGOL IN B 

TSAO R DONALD A COLIN A CHARTRAND 

WELLS M WALKER D PETROCELLI 0 SIMON H 

SIKLOSSY ELLIOT R BRENDER R READ R 

CLARE C GAVRILOV M ZAKREVSKII A MADLER M 

ORGAN I CK MAURER W HAMBLEN LAW E 

u. s PA INTFR MCGOWAN GOOD 0 

WOOLLONS D DONOVAN HELL ERM AN H BRENT Q 

WILKS Y SOUCEK B KORN G FLORES I 

STUUTEMYU' D HEAPS H HETZEL REITMAN 

METZGER D LUCAS H KEYS W CASHMAN T 

HCLT A CHAGNON SHAPIRO R MARSHALL s 

TOTAL ~UMBER OF AUTHORS ADDEO 76 



LIST OF NEW CAL;L l'f..IMBERS ADDED 

629.8920151 5795AE 

658.403 T43 

001.6442 S9B9C 

001.6 LU410 

010. 78 5988 1971 

001.6424 C858F 

001.t4 5797 

oll,6028'.>4 W455E 

001,6423 E46P 

511,5 R284G 

001,64 068M 

001. 6425 Pl4BS 

001.642 C8580 

410 W688G 

001,6424 Pll0158 

001.6425 P964 

00l,t4 "448 

010. 5 A5l2 

001,642 C7"10 

029.7 K52E 

001.6424 A396S 1973 

001.6425 Wl45! 

512. 020285 5989 1971 

410. 6 G573 

658 0675M 

029.7 161 

001. 64404 C 858C l 970 

621.3819582 C591D 

001,642 M453P 1972 

001.6425 "146C 

001.642 D687S 

001. 64044 S719M 

00 l. 6424 H4341 

001.424 R379C 

EOEl6 Alll A06268l9 

TUTAL NUMBE• QF LOCATIONS AUOED 69 

Sllo 6 C731l 1970 

658.80028'5 C6390 

001.6424 All05P8 

621,3819509 G624C 

001. 6424 F744F4 

658.4032 J68T 1973 

001.6425 C696l 

00106408 P497fl 

510. 7805 8105 

001. 6424 Ll ll 

338.47 en Hl99C 

001,642 G46T 

001.640"4 H4770 1973 

001, 640H K84M 

001.6406 A938 l969Vl 

001, 642 M596M 

370,1805 Al05 

1:)2 

658.4002854 H432M 

658,054 5998! 

420.285 W776U 

003 Kl81 

001.6425 C8580 

658.4032 P946G 

30 l. 243 C7385 

001.535 S594P 

574.018 B837P 1973 

001.6406 C7.38 C 

E!ll97 0598 DEC 1972 

621,3819 C73 W9l9! 

515062 B839A 

001.642 F634J 

001,6406 A938 1969 V2 

658.403 L933G 

50 l C9935 



~O, OF AUTl10R 

7b 

NO, DF TITLE RECUPDS 

74 

SUMM4RY OF TOTALS 

NO, OF CALL NUMBERS 

69 

~n. CF KEYWORD PECO•ns 

95 

NO, OF KEYWORDS 

92 

NO. OF UPDATE E~•C"< 

133 



134 

LIST OF NEW KEYNOROS ADDEO 

AUTO~ATA OPERATING SURVEY CHAPEL Hill 

COMBINATOR I AL HANA GER GUIDE EVALUATION SERVICES 

PRODUCTS IEEE REC ORO EX T~ACTION SELECT IO~ 

PATTERN RECOGNITION lllPLEHENTATION UNO ER STANDING NATURAL 

DECISION TABLES SOFTWARE PASCAL NEUMANN 

STORAGE RETRIEVAL SYHBOLIC MANIPULATION HIGH 

EXTENSIONS FORTRAN SLIP AMP Pl TREETRAN 

OPT 1>1 IZAT ION COURANT FORMAL SEMANT !CS GOALS 

LINGJIST IC GRAPHS NETWORKS PEPFORHANCE ELEMENTS 

INTERACTIVE 8 IBLI OGRAPHI C SEARCH PA PEPS REPRESENTATION 

MEANING EXPERIMENTS SOLVING FLOWCHART ING CELLULAR 

SPACES LOGIC USING SOLID STATE 

l YAPAS CODING MULTICS EXAHINAT ION STRUCTURE 

MANPCWB SUPPLY OE HAND DIRECTORY CPIHINAI. 

JUSTICE CORRECTNESS RES UL TS LAMBDA CALCULUS 

PROV ING BASE MI NI HI ZATI ON DER I VAT IVES GPAHMAP. 

MINICOMOUTERS ENGINEERS FILE OEFINITION ADELA! DE 

TE ST DISCRETE SYNTHES IS COM PL EX OPGANIZATIO~S 

TOTAL NUHBEP OF KEYWORDS ADDED • 90 



LIST OF ALL ITEMS Wl'TH CALL NUMBERS 

EDE16 Alli AD626819 • 
HOLT A CHAGNON S SHAPIRO R 

INFORMATION SYSTEM THEORY PROJECT, VOLUME 1: G-THEORY. 

E IU97 [59 8 DEC 1972 
LAW E U. S 

1972 DIRECTORY OF AUTOMATED CRIHl~AL JuST!CE INfORHATION SYSTEMS. 

001.424 R379C 
REITMAN J 

COMPUTER SIMULATION APPLICATIONS: DISCRETE-EVENT SIMULATION FOR SYNTHE 
SIS ANO ANALYSIS OF COMPLEX SYSTEMS. 

00 l .535 S 594F 
SIMON H SIKLOSSY L 

'EPRESENTATIDN ANO MEANING: EXPERIMENTS WITH INFORMATION PROCESSING SY 
STEMS. 

001.6 L84 70 
L ONOON K 

DECISION TABLES. 

001. 64 K44B 
KEYS W CASHMAN T 

eASIC Po INC IPL ES OF DATA PROCESSING. 

001.64 S797 
FPEIBERGfF W · GRENAOER J 

STATISTICAL COMPUTER PERFORMANCE EVALUATION. 

001.64 068M 
ORGANICK E 

~ARGOL!N B 

THE MU\. TICS SYSHM: AN EXAMINATION Of ITS STPUCTURE. 

oot.64C44 H477D 1973 
HELLERMAN H 

DIGITAL COMPUTER SYSTEM PRINCIPLES (2-Ntl ED.I. 

001.64044 K84M 
KCPN G 

MINICOMPUTERS FOR ENGINEfPS .AND SCIENTISTS. 

135 

MARS HALL S 

TSAO R 



!. ;. 
LIST OF ALL AUTroRS WITH THEIR;PUBLICATIDNS 

BDNSTEIN H 
001.6424 F744F4 

FINDLER N 
FOUR HIGH-LEVEL 
MBDLANG. 

EXTENSIONS TOP~~~~~..;! IV: SLIP, A~PPL-11 t TREETRAN, SY 
t 

.;. 

BRENDER R 
574.018 B837P 1973 

A PROGRAMMING SYSTEM FOR THE SIMULATION OF CELLUL~R SPACES ITHESis.1. 

BRENT R 
515 ,62 B839A 

ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES, 

BRUNT E 
029,7 K52E 

KING D 
THE EVALUATION OF INFORMATION SERVICES AND PRODUCTS. 

CAS~MAN T 
001,64 K44B 

KEYS W 
BASIC PRINCIPLES OF DATA PROCESSING. 

CHAGNON S 
EDE16 Alll AD626819 

HOLT A SHAPIRO R 
INFOR"ATION SYSTEM THEORY PROJECT, VOWME 11 G-THEORY, 

CHARTR•ND R 
;01,243 C7385 

COMPUTERS IN THE SERVICE OF SOCIETY, 

CLARE C 
621,3819582 C591D 

DESIGNING LOGIC SYSTEMS USING SOLID STATE' MACHINES. 

MARSHALL S 

136 



****THE FCLLOWING ENTRIES ARE JOURNALS 

370.1805 Al05 

AEDS JOURNAL• 

CYBERNETICS.(JOURNAL). 

010.5 A512 

JGUF~AL CF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE. 

ACTA INFORMATICA.(JOURNALl. 

CIPS-COMPUTER MAGAZINE.(JOURNALJ. 

COMPUTER OEC!SIONS.IJOURNALI. 

!NffPNAT IDNAL JOURNAL OF COM PU TH AND INFOP MATION SC I ENC ES. 

~CNFYWELL COMPUTER JCURNALo 

137 

000651 

000b56 

OOC657 

OOC652 

0006'."l~ 

000655 

0006?8 

000659 



138 

LIST OF Alt KEYWORDS 

ADELA !OE AHPPL AUTOMATA 

BASE BIBLIOGRAPHIC 

CALCULUS CELLULAR CHAPEL COOING 

COMBINATOR !AL COMPLEX CORRECTNESS COURANT 

CR! Ml NAL 

DEC! SION DEF I NI Tl ON OEM AND OERlVAT!VES 

DIRECT ORY DISCRETE 

EL EHENTS ENGINEERS EVALUATION EXAHINAT ION 

EX PER IM ENTS EXTENSIONS EXTRAC T!ON 

FILE FLOWCHARTING FORMAL FOR TRAN 

GOALS GRAMMAR GRAPHS GUIDE 

Hlt.H HILL 

!HE I HPLEHENTAT!ON INTERACTIVE 

JOU RN AL JUSTICE 

LAMBDA L INGUIST!C LO:; IC l YAPAS 

MANAGER MANI PU LAT !ON HA~POW ER MEANING 

MINICOMPUTERS HINIHI ZAT!ON HUL TICS 

NATURAL NETWORKS NEUMANN 

OPERATING OPTJHIZAT!ON DR:i AN! Z AT I DNS 

PAPF.RS PAS CAL PATTERN PERFORMAC<CE 

PRODUCTS PROVING 

~ECOGNlT ION RECORD REPRESENTATION RESULTS 

RFTR IEVAL 

S EAPCH SELECTION SE HANT I CS SERVICES 

SL! p SOFTWARE SOL IO SC1LV!NG 

SPACES STATE STORAGE S TRUCTU~ E 

SUPPLY SURVEY SYMBOL IC SYNTHESIS 

TABLES TEST THESIS TPEETRAN 

UNOERST ANDING USING 



139 

·LIST OF 
I 

Alt AUT·HORS 

BERNSTEIN H BR ENOER R BRENT R BRYANT E 

CASHHAN T CHAGNON CHAR TR ANO R CLARE C 

CLIFTON H COLIN A COMTRE C 

DONALD A DONOVAN J 

ELLIOT 

FINDLER N FLORES I FREI BERGER W 

GAVRILOV H GENERAL A •GOLDSTONE H• GOOD D 

GRENADER u GRUENBERGER F 

~AHBLH J HEAD R HEAPS H HELLERMAN H 

~ETZEL W HOLT A HUEY R 

JCHNSON R 

KARBtlWTAK A KAST F KfYS W KING D 

KORN G 

LAW E LONDON K LUCAS H 

•AD.LER M MARGOLIN B MARSHALL MAURER W 

~CGCWAN C METZGER P MINKER J 

CRGAN!CK E 

PAINTER J PETE q5 PETRICK PETROCELLI 0 

PFAL T Z PRAGER w PRICE W 

~EAO R RE ITHAN J ROSENFELD ROSENWEIG J 

PUST!N 

SAY eqs SHAP !RO R SIKLOSSY L S !MON H 

SOUCEK STARKE P STOUTEMYER D SZWEDA ~ 

TSAO 

L. s 

WA !TE W WALKER D WELLS H WILKS Y 

w!NDGRAD WOOLLONS D 

lAKOFVSKI I A 



i ; 
INTERROGATION OF THI'. BIBLIOGRAPHIC, DATA BASE 

'. ! 

I l 

THE FOLLOWING LOCATION wks REQUESTED: 5~4.018 B837P 1973 

574.018 B837P 1973 
BR ENDER R 

A PROGRAMMING SY.STEM FOR THE SIMULATION Of CELLULllR.SPACES lTHES1s.1. 

THE FOLLOWING AUTHOR WAS REQUESTED: REITMAN J 

REITMAN J 
001.424 R379C 

COMPUTER SI MUL AT!ON APPLICATIONS: DISCRETE-EVENT SI MU LAT I ON FOR SY NT HE 
srs AND ANhLYSIS ff COMPLEX SYSTEMS. 

621.3819582 C591D 
CL ARE C 

THE FOLLOWING KEYWORD WAS REQUESTED: LOGIC 

DESIGNING LOGIC SYSTEMS USING SOLID STATE MACHINES. 

001.6424 L 111 
GAVRILCV M ZAKREVSKll A MADLER M 

LYADAS: A PROGRAMMING LANGUAGE FOR LOGIC A~D CODING ALGORITHMS. 

140 



VITA "{ 

Perry Lee Ball 

Candidate for the Degree of 

Master of Science 

Thesis: THE DESIGN OF A BIBLIOGRAPHIC DATA BASE SYSTEM 

Major Field: Computing and Information Sciences 

Biographical: 

Personal Data: Born in Baton Rouge, Louisiana, May 21, 1951, 
the son of Mr. and Mrs. T. W. Ball. 

Education: Graduated from Redemptorist High School, Baton Rouge, 
Louisiana, in May, 1969; received Bachelor of Science Degree 
from Northwestern State University of Louisiana, Natchitoches, 
Louisiana, in May, 1973, with a major in Mathematics and with 
a minor in Computer Science; completed requirements for the · 
Master of Science degree at Oklahoma State University, 
Stillwater, Oklahoma, in May, 1975· 

Professional Experience: Programmer, Blue Cross of Louisiana, 
Baton Rouge, Louisiana, May, 1973, to December, 1973; 
Graduate Assistant, Oklahoma State University, Computing 
and Information Sciences Department, Stillwater, Oklahoma, 
January, 1974, to May, 1975. 




