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We study the transport and quantum walk of nonclassical light in an array of coupled waveguides which
have properties like very low decoherence and thus making them ideal for storage of quantum information. We
show how squeezing gets turned over from one waveguide to another. We further show how input nonclassical
light can generate entanglement among different waveguides. Our results, which are valid for an arbitrary
number of waveguides, involve both first quantization due to array structure and second quantization due to the
quantum nature of fields and can also be used to discuss the Talbot effect in the quantum regime.
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Optical elements like beam splitters are known to behave
quite differently when it comes to single photons. A single
photon according to Dirac can either be transmitted or re-
flected �1�. It cannot be found simultaneously in both trans-
mission or reflection. The behavior of a photon pair on a
beam splitter is even more remarkable as shown by Hong,
Ou, and Mandel �2�. For a 50-50 beam splitter both photons
are found either in transmission or in reflection. This leads to
entanglement of photons at the two output ports. The ques-
tion of entanglement at the output of a beam splitter was
investigated in very general terms �3,4�. Even more remark-
able behavior has been shown experimentally �5–7� and
theoretically �8�. For other optical elements like phase
shifters a quantum field with a precise number of photons n
undergoes a phase shift which is n� whereas a classical
beam undergoes a phase shift �. It is thus important to un-
derstand the behavior of single photons and more generally
nonclassical light at other optical elements. Very recently
coupled waveguide systems, which are relatively easy to fab-
ricate �9� and which are also relatively decoherence free,
have been shown to be good candidates for continuous time
random walks �10�. The paper by Perets et al. �10� deals with
classical beams of light. In the light of what we have learned
with beam splitters and phase shifters and the fact that Feyn-
man �11� used the term quantum walk to describe the behav-
ior of quantum particles, it is worth examining how single
photons and more generally nonclassical light would behave
in coupled waveguide systems. This way we would be able
to understand quantum walk by single photons in coupled
waveguides �12–16�.

In this paper we consider the system of coupled
waveguides and report the propagation of single photons and
nonclassical light. We discuss how nonclassical light from
one waveguide gets transported to other waveguides. This is
especially important in applications to quantum-information
science where one is very often interested in the storage and
retrieval of a quantum state �17,18�. We further report how
nonclassical light at one input port can entangle different
waveguides. We present analytical results for Heisenberg op-
erators and wave functions for fields in different waveguides.
For coupled waveguides, we show an analog of the well-
known Hong-Ou-Mandel two-photon interference. We also
report the amount of squeezing that can be produced in dif-
ferent waveguides.

We consider an array of N single-mode waveguides,
coupled through nearest-neighbor interaction as in Refs.
�9,10� �see Fig. 1�. We will number the waveguides from 1 to
N. The mode for the field in the jth waveguide is described
by the annihilation �creation� operator aj�aj

†�. The operators
aj and aj

† for the coupled waveguide system obey the boson
commutation relation �aj ,aj

†�=1. The field at the input could
be either in a separable state or in an entangled state. How-
ever, the explicit numerical results would be given for a
separable though nonclassical input state. The output, gener-
ally, would exhibit entanglement.

The Hamiltonian for the system can be written as

H = �g�
j=1

N

aj
†aj + �J�

j=1

N−1

�aj
†aj+1 + aj+1

† aj� . �1�

In the above equation, N is the number of waveguides and
the coupling parameter J represents the rate at which the
photons are transferred to the neighboring waveguides. The
Hamiltonian �1� can be diagonalized by using the normal
coordinates given by

aj�t� = �
p=1

N

bpS�j,p� , �2�

bp�t� = �
j=1

N

ajS�j,p� , �3�

where the function S�j , p� is defined as

S�j,p� �� 2

N + 1
sin� jp�

N + 1
	 . �4�

This function satisfies the orthonormality relations

FIG. 1. �Color online� Coupled waveguide array.
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�
p=1

N

S�n,p�S�m,p� = �nm,

�
p=1

N−1

�S�n,p�S�m,p + 1� + S�n,p + 1�S�m,p��

= 2�nm cos� n�

N + 1
	 . �5�

These two relations lead to the diagonalization of Eq. �1�:

H = ��
p=1

N

�g + �p�bp
†bp,

�p � 2J cos� p�

N + 1
	 . �6�

Using Eqs. �2�–�6� we obtain the Heisenberg operators for
the field in each waveguide �19�

aj�t� = �
l=1

N

al�0�Aj,l,

Aj,l � �
p=1

N

exp�− i�g + �p�t�S�l,p�S�j,p� . �7�

The coefficients Aj,l determine all the quantum properties of
light in the coupled waveguide system. For example, if we
start with light in the lth waveguide then 
Aj,l
2 gives the
propagation of light from the lth to the jth waveguide. The
mean number of photons in the jth waveguide would be

Nj�t� � Nl�0�
Aj,l�t�
2. �8�

This result is similar to the result for classical propagation.
Clearly Eq. �8� is independent of g. In Fig. 2 we show the
normalized intensity when the input is a single photon state.
Using the analytical solution �7� we can also build up the
wave function of the field at time t. The form of the wave
function is rather involved. For input Fock states the state at
time t can be obtained in terms of the Aj,l’s given by Eq. �7�:


n1,n2, . . . ,nN� → �
j

��A
j,l
* �− t�al

†�nj

��nj�!

0,0, . . . ,0� . �9�

For input single photons in say waveguides i and j the prob-
ability of finding one photon in the waveguide k and one in
the lth waveguide is 
Ai,kAj,l+Ai,lAj,k
2. The two quantum am-
plitudes can obviously interfere. In particular let us consider
if the coupled waveguides can exhibit an analog of Hong-
Ou-Mandel interference. Consider two waveguides with one
photon put in each, with a delay of T seconds. The wave
function at time t can be related to the initial wave function
using the evolution operator U�t�:


��t�� =
U�t − T�a2

†U�T�a1
†
0,0�

�1,0
U†�T�a2a2
†U�T�
1,0��1/2 . �10�

In Eq. �10� a2
† corresponds to the addition of a photon in the

second waveguide at time T. Further the denominator in Eq.
�10� arises as we have to insure the normalization of the
wave function a2

†U�T�a1
†
0,0� at time T. Using U�t−T�

=U�t�U†�T� and the definition of the Heisenberg operators
a�t�=U†�t�aU�t�, the numerator in Eq. �10� simplifies to

U�t�a2
†�T�a1

†
0,0� = a2
†�T − t�a1

†�− t�U�t�
0,0�

= a2
†�T − t�a1

†�− t�
0,0� .

Using the solution of Heisenberg equations in this nu-
merator and using Eq. �10� we find that the probability of
finding simultaneously one photon at each output at time t is
��=Jt, �o=JT�

p�t,T� = 
1,1
��
2

=cos2�2� − �0�/�1 + sin2��0�� , �11�

which shows the two photon interference dip at 2t−T
=� /2J depending on the length �proportional to t� of the
waveguides and the delay time. For a given structure such a
dip can be scanned by varying the delay time.

For initial excitation in a single waveguide the number of
photons in each waveguide does not depend on the quantum
characteristics of the input field. We therefore examine next
the squeezing and entanglement aspects of the radiation in
different waveguides. We investigate the propagation of non-
classical light across the coupled waveguides. We assume
that squeezed light is coupled into the first waveguide. The
input at the first waveguide is


�� � exp�−
r

2
�ei��a1

†�2 + e−i��a1�2�	
0�

�
1

�cosh r
�
n=0

	 ��2n�!
2nn!

�− exp�i��tanh�r��n
2n� , �12�

where r is the magnitude of squeezing and � is related to the
orientation of the squeezing ellipse. In what follows we set
g=0. Its effect can always be incorporated by carrying out a
simple rotation.

In order to study the transport of inter-waveguide squeez-
ing, we introduce the quadrature operators for the jth wave-
guide given by qj ��aj +aj

†� /�2 and pj ��aj −aj
†� /�2i. We

FIG. 2. �Color online� Behavior of the normalized intensity as a
function of 
 �
�Jt /��. The input is injected into the first wave-
guide and the number of waveguides in the system is N=6.

RAI, AGARWAL, AND PERK PHYSICAL REVIEW A 78, 042304 �2008�

042304-2



also define the squeezing factors sj�q����qj�2−1 /2 and
sj�p����pj�2−1 /2. Thus squeezing occurs when one of
these expressions becomes less than zero. Using Eq. �7� we
get

sj = 
Aj,l
2 sinh2 r �
1

4
sinh 2r�Aj,l

2 exp�i�� + c.c.� , �13�

where the −�+� sign is to be used for the quadrature q�p�.
In particular for a system of two waveguides, we have

s1�q� = cos2�Jt�sinh�r��sinh�r� − cos���cosh�r��

=s2�p�cot2�Jt� . �14�

Clearly q-quadrature is initially squeezed if tanh�r�
cos���. Note that for two coupled waveguides we obtain
complete transfer of squeezing albeit from q-quadrature to
p-quadrature for Jt=� /2 �20�.

For a system of three waveguides, we get the following
results:

s1�q� = f cos4� Jt
�2

	 ,

s3�q� = f sin4� Jt
�2

	 ,

s2�p� =
f

2
sin2��2Jt� ,

f � sinh�r��sinh�r� − cos���cosh�r�� . �15�

FIG. 3. �Color online� Time evolution of the squeezing factor
sj�q� as a function of 
 �
�Jt /��. The input is in the first wave-
guide and the number of waveguides in the system is N=5. The
magnitude and the phase of the squeezing parameter are chosen as
r=0.7 and �=0, respectively.

(a)

(b)

FIG. 4. �Color online� The top �bottom� part shows the variation
of sj�q� �sj�p�� as a function of 
�Jt /� for j=1, . . . ,5, smeared out
in the j direction. The magnitude and the phase of the squeezing
parameter are chosen as r=0.7 and �=0, respectively. The number
of waveguides in the system is N=5.

(a)

(b)

FIG. 5. �Color online� The correlation function M�j ,k� as a
function of 
 �
�Jt /�� for the case of six waveguides. The mag-
nitude and the phase of the squeezing parameter are chosen as �a�
r=0.7 and �=3� /2 and �b� r=0.6 and �=�, respectively.

TRANSPORT AND QUANTUM WALK OF NONCLASSICAL … PHYSICAL REVIEW A 78, 042304 �2008�

042304-3



The inter-waveguide transfer of squeezing is governed by
the factors cos4�Jt /�2�, sin4�Jt /�2�, and 2 sin2�Jt /
�2�cos2�Jt /�2�. Again, the q-quadrature is initially squeezed
if tanh�r�cos���. Also, for the case of three coupled
waveguides we obtain complete transfer of squeezing from
the first waveguide to the third waveguide for Jt=� /�2. In
Fig. 3, we display the time evolution of the quadrature
squeezing for the case of five waveguides. The negative val-
ues of sq�1�, sq�3�, and sq�5� clearly demonstrate the squeez-
ing in the q-quadrature. Figure 4 shows the quadrature
squeezing when the input is given to the middle waveguide.

We next show that input of nonclassical light to one of the
waveguides can produce pairwise entanglement between the
inter-waveguide modes. We use the well-known criterion for
entanglement between two continuous variable systems
�21–23�. As a measure of entanglement we examine the cor-
relation between two waveguide modes.

M�j,k� = aj
†aj� + ak

†ak� + ajak� + aj
†ak

†� . �16�

The negativity of M is a sufficient condition for entangle-
ment. For Gaussian states this is both necessary and suffi-
cient. A calculation shows that the joint state of the coupled
waveguides is Gaussian. We calculate M using the solution
�8� and the state in Eq. �12�. Before we show numerical
results, we discuss analytical results for two and three
waveguides. In particular, for a system of two waveguides,

M�1,2� =
1

2
�sinh�2r��tanh r − sin�2Jt�sin ��� �17�

and thus entanglement occurs for sin�2Jt�sin���� tanh�r�.

For a system of three waveguides, we find the results

M�1,2� =
1

2
cos2� Jt

�2
	��3 − cos��2Jt��sinh2�r�

− �2 sin���sinh�2r�sin��2Jt�� , �18�

M�1,3� =
1

4
�cos���sinh�2r�sin2��2Jt�

+ �3 + cos�2�2Jt��sinh2�r�� . �19�

Clearly for �=�, the first and third could be entangled. In
Fig. 5, we show the time evolution of M�j ,k� for the case of
six waveguides. The negative values of M�1, j� �j=1–6� in
Figs. 5�a� and 5�b� clearly demonstrate the entanglement be-
tween the inter-waveguide modes.

In conclusion, we discussed the continuous time quantum
walk of quantum particles �photons� in a physical system
consisting of N coupled waveguides. We showed that the
quantum walk with a light source having strong quantum
character can produce entanglement between different
waveguides in the array. We also studied the transport of
nonclassical light across the coupled waveguides. We could
investigate several other interesting nonclassical situations,
for example, the effect of launching a distribution of en-
tangled photon pairs into the array �24�. One could also ask:
If the input wave function for photons is periodic, then how
is this periodicity reflected at the output wave function? This
would provide us with an analogy of the Talbot effect in the
second quantized setup.
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