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Fast light solitons in resonant media
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Using the structure of the Maxwell-Schrodinger equations in two-level systems in the transient domain, we
derive both single-soliton and multisoliton (2n7 pulse) solutions associated with fast light in resonant media.
The analytical solutions enable us to understand the nature of fast light, and should open up new investigations
of fast light in the form of localized solutions in a variety of media. We also derive the fast-soliton pair in

three-level systems with gain.

DOI: 10.1103/PhysRevA.75.043806

Since the classic work of Hau et al. on ultraslow light [1],
there have been a large number of papers demonstrating the
ultraslow propagation of light in gaseous media [2-5], solid-
state media [6,7], and two-level saturable absorbers [8,9].
Work on gain media [10] and media with reverse saturation
[11,12] has led to fast light. However, much of the work has
been done for media with relaxation fast compared to the
pulse widths. An important question arises—is the existence
of slow and fast light characteristic of a medium with strong
relaxation, or can one obtain such light under transient con-
ditions, i.e., when the pulse widths are much smaller than the
relaxation times? A recent paper [13] has demonstrated fast
light in an inverted two-level medium and has given an ex-
plicit soliton solution for such light. Remarkably, a sech so-
lution was obtained for pulse propagation in gain media.

Clader et al. [13] obtained a significant pulse advance-
ment of more than many pulse widths, which is quite re-
markable compared to the previous steady-state results [10].
The analytical solutions are especially useful for understand-
ing fast light, which is rather counterintuitive. Clearly, it is
important to understand if there is any relation between soli-
tons [14,15] in an absorbing medium and those in a gain
medium. Such a relation would enable us to understand not
only single solitons, but also multisolitons, associated with
slow and fast light. In this paper, we derive results for fast-
light soliton solutions in both two- and three-level systems
that can be studied experimentally in a variety of media.
These solutions enable one to study fast soliton-soliton col-
lisions as well as 2n pulses in two-level media. We mention
further that all the analytical solutions have been checked
against results obtained from direct numerical integration of
the Maxwell-Schrodinger equations. Our results also show
explicitly the backward propagation of fast light, which has
attracted considerable attention recently [16].

We consider the propagation of an optical pulse in the
direction z in a medium of two-level atoms. The electric field
of the incident pulse can be written as

. -
E(z,1) = 5[5(z,t)e’(kz“"’) +c.c.], (1)

where ck=w, and g(z,t) is the slowly varying envelope of
the pulse. We also note that, earlier, several authors [17]
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obtained sech solutions outside the slowly-varying-envelope
approximation in media with either gain or absorption. These
are solutions without a carrier wave and are expected to oc-
cur at very large power levels of the order of 10" W/cm.
Kaplan and Shkolnikov also noticed that such solutions
(called electromagnetic bubbles) for inverted media would
have velocity greater than c¢. However, most experiments
deal with fields with a well-defined carrier wave, and there-
fore we concentrate on solutions in the slowly-varying-
envelope approximation. In the rotating-wave approxima-
tion, the equations for the probability amplitudes C;(i=1,2)
of the atomic levels are

d Q
_Cl == ZACI + i_Cz,
ot 2

aC 'Q*C (2)
ZC,=i—C,,

ar 2!

where we denote the excited-state amplitude by C;. In Eq.
(2), A is the detuning w;,—w and ) is the Rabi frequency
defined by Q=d,,-&(z,1)/h, where d}, is the dipole matrix
element. In the slowly-varying-envelope approximation, we
obtain the evolution of the equation for the Rabi frequency
of the incident field:

d 19 .
—+——|Q=iuCC, 3
( 9 e (91‘) Mol (3)
where the coupling constant u is given by pu

=4nmo|d,|*/ch with n as the density of atoms in the me-
dium. As usual, we work in the traveling frame of reference:
7=t-z/c, {=z. The set of coupled Maxwell-Schrodinger
equations (2) and (3) has been extensively studied [14,15].
Much of the existing literature is for the case of absorbers.
For a gain medium, we have obtained a general result by
using the formal structure of the Maxwell-Schrodinger equa-
tions and proved the following result: The solution () for a
gain medium can be obtained from the solution (), for the
absorber by using the transformation

Q(7.8:,8) = Oy (1.8 .- A). (4)

We base our argument on the fact that, under conditions of
negligible relaxation, there is essentially no difference in
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FIG. 1. (Color online) Multisoliton amplitude in the medium
plotted against the spatial length of the medium at different propa-
gation times. The medium occupies the region z/c7 =0 to z/cm
=30. The propagation of a 4 pulse in a gain (absorbing) medium is
given by (a) [(b)]. (b) A two-soliton propagates in a two-level ab-
sorbing medium. The parameters used in the above graphs are
7/ 7=(3-15)/2 and pc7=0.5.

what we label as |1) or |[2). In order to see (4), we consider
transformation of (2) and (3) via

fzzcleiAt, ]:1 :CZQiA[, ﬁ:Q*, (5)
then the equations for F and () are the same as Egs. (2) and
(3) provided we use u——u and A——A. Using (4) we ob-
tain fast-soliton as well as fast-multisoliton solutions in gain
media. Let us first consider the well-known single-soliton
solution in an absorber:
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FIG. 2. (Color online) Amplitude of 47 pulse at the exit of the
medium plotted against the normalized time for /.LCT% =0.5 and the
ratio of pulse widths 7/ 72=(3—V’§)/ 2. The output pulses for gain
and absorbing media are double peaked.

Qi pmA)=A sech(Kg_ i)eiﬁi’

T

M2 2
K=—"7"", =KA1,, A=-——. (6)
1+ (TzA)z B 2 \/7'27'1

Therefore, according to (4) the solution for the gain medium
would be

O;=A sech(—K{—l)e_iB‘v, (7

7

where K and B remain defined by (6). It should be borne in
mind that (6) and (7) are valid inside the medium. The solu-
tions outside the medium would have the form A sech(7/7,
+6)e™#, where 6 is a phase shift to be determined by match-
ing it with (7) at the boundaries: Q;({<0)=A sech(7/7));
QO(Z>L)=A sech(7/1,+KL)e L. These solutions were ob-
tained in Ref. [13] by using Bicklund transformations [15].

The general result (6) also enables us to investigate a
whole class of other solitons in gain media. It also enables us
to investigate soliton-soliton interactions in gain media. For
the two-soliton (44 pulse) in gain media, we have found the
result, using the formulation of Lamb [15] and Eq. (4) for the
envelope,

2 t Z 2 t z
—sech| ———— )+ — sech ———V
T T T T ™ T
QG=A X 1 1 ; 1 2 t2 2V2 t , (8)
1-B tanh(—— < )tanh(——i)—sech<—— < )sech(——i)
7 7V T 1Y, T TV T TV,
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FIG. 3. (Color online) (a) and (b) show the spatial evolution of
the O7r-soliton amplitude at different propagation times for a gain
and an absorptive medium, respectively. The parameters are chosen
as 7/ m=(3-5)/2 and peri=0.5.

where we have chosen zero detuning and where

4o (B=)
(B+7)

These solutions have to be connected to the outside solitons
in the same manner as single solitons. For z> L, the solution
is given by (8) with (¢/7,—z/7;V;) replaced by (¢/7,—z/cT;
+Lut;). We show in Fig. 1 the nature of the 47 solution in a
gain medium, and for comparison we also show the 4 so-
lution in an absorbing medium. In the case of the gain me-
dium, we see the appearance of a small peak at the other
boundary, much before the pulse has a chance to enter the
medium. This peak then moves toward the left, and at the
same time a peak starts exiting the medium. This continues
until the peak moving leftward catches up with the one en-
tering the medium. This behavior in the gain medium is quite
distinct from the behavior in a noninverted medium. We note
that the backward propagation in a gain medium in an optical
fiber has been recently reported under steady-state conditions
[16]. The pulse advancement (delay) due to the gain (absorp-
tive) medium is clearly seen in Fig. 2, although it is not easy
to quantify the advancement or delay due to the doubled-
peak nature of the output [18].

We can similarly study other types of fast-soliton solu-
tions. For example, the result for a O7 pulse in a gain me-
dium can be obtained from Eq. (8) by changing the + sign to
— in the numerator and the — sign to + between the two

_@nm) 1 _(-per)

“Fen v e Y
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FIG. 4. (Color online) (a) Schematic diagram of a A-type
atomic medium. The sech pulses ), and (), are in two-photon
resonance with overall detuning A in the A-type atomic medium.(b)
Spatiotemporal evolution of single soliton as given in Eq. (11) in a
A-type atomic medium for ,uc'r% =20 and A=2/7.

terms in square brackets of the denominator. Figure 3 shows
the spatiotemporal evolution of a 07 pulse in media with
gain and absorption, respectively.

We can also obtain soliton solutions for fast light in mul-
tilevel systems. Consider, for example, a A system with two
fields that satisfy the two-photon resonance condition, as
shown in Fig. 4(a). The basic equations are given by

d . .Qa .Qh
_Cl =—- IACI + I_CZ + l_C3,
aT 2 2

R P

gr 2T 3T

d . d .
ﬁ—gﬂa=l,u,C1C2, &—§Qb=l,u,C1C3. (10)

Initially, the atomic population is in the state |1). We can
prove a relation between the solutions of a A system with
gain and the solutions for a V system with population in the
ground state. The solutions for the latter case are available
from the work of Rahman and Eberly [19]. We find the fol-
lowing result for the solitons in a A system with population
in the excited state:

. A
O,=4, sech(— K¢- l)e"'gg, Q= A_b -

7 a
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wri/2 , o, 4
K=—"""7, =K1A, A +A =—. 11
1+(TlA)2 ﬁ 7 a b 7_;12 ( )

The nature of the solution is similar to that in a two-level
medium. This is because of the symmetries inherent in Eq.
(10) and the initial condition. Figure 4(b) shows the very
prominent generation of a background soliton, which then
merges with the input soliton. The parameters used are for
room-temperature Doppler-broadened %Rb vapor with
excited-state lifetime T,=28 ns, density n= 10" atom/cm?,
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A=794 nm, and pulse duration 7;=0.1 ns. The range is also
consistent with results for other atomic vapors provided the
pulse width is many picoseconds [20].

In conclusion, we have discussed the existence of fast
solitons, both single and multiple solitons, in a two-level
gain medium. The analytical solutions clearly show how a
backward wave can be generated. We also presented result
for fast solitons in A systems with gain. The results can be
generalized to include inhomogeneous broadening, although
we have not included it for simplicity [21], as well as to deal
with other classes of systems such as N systems [22].
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