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Recent theoretical and experimental papers have shown how one can achieve Heisenberg-limited measure-
ments by using entangled photons. Here we show how the photons in a noncollinear down-conversion process
can be used for improving the sensitivity of magneto-optical rotation by a factor of 4 which takes us towards
the Heisenberg limit. Our results apply to sources with arbitrary pumping. We also present several generali-
zations of earlier results for the collinear geometry. The sensitivity depends on whether the two-photon or
four-photon coincidence detection is used.
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I. INTRODUCTION

Parametric down-conversion �PDC� is a process that is
used to produce light possessing strong quantum features.
Photon pairs generated by this process show entanglement
with respect to different physical attributes such as time of
arrival �1� and states of polarization �2�. They are increas-
ingly being utilized for very basic experiments to test the
foundation of quantum mechanics and to do quantum infor-
mation processing �2–4�. It is also recognized that entangled
photon pairs could be useful in many practical applications
in precision metrology involving, e.g., interferometry �5–8�,
imaging �9,10�, lithography �11–14�, and spectroscopy �15�.
There is a proposal �16� to use electromagnetic fields in
NOON states to improve the sensitivity of measurements by
a factor of N. Some implementations of this proposal exist
�17�. In particular, the use of photon pairs in interferometers
allows phases to be measured to the precision in the Heisen-
berg limit where uncertainty scales as 1 /N �18� as compared
to the shot-noise limit where it scales as 1 /�N. This means
that for a large number of particles, a dramatic improvement
in measurement resolution should be possible.

In this paper we present an analysis of how parametric
down-converted photons could be very useful in getting bet-
ter spectroscopic information about the medium. We demon-
strate how the improvement in magneto-optical rotation
�MOR� of light could be realized by employing two different
schemes with collinear and noncollinear down-conversion
geometries compared to the use of coherent light. We calcu-
late the resolution that can be achieved in the MOR’s both by
use of coherent light and down-converted light. We discuss
the possibility that the Heisenberg limit �19� could be
reached in magnetometry by the use down-converted light.

II. MOR USING COHERENT LIGHT SOURCE

Consider a single-mode coherent light traveling in the z
direction and a linear isotropic medium made anisotropic by
application of the magnetic field B in the z direction. The
incident field can be written in the form

E�z,t� = exp�− i�t + ikz��x̂�x + ŷ�y� + c.c. �1�

The medium is described by the frequency- and magnetic-
field-dependent susceptibilities �±���. That means horizon-

tally and vertically polarized components of the incident
light will rotate on traveling the medium of length l and the
field at the exit can be written as

E�l,t� = exp�− i�t + ikl��x̂�xl + ŷ�yl� + c.c. �2�

The rotation of the horizontal and vertical components can
be expressed by the relation

��xl

�yl
� = R��x

�y
� , �3�

where

R = ei�+ei�/2�cos
�

2
− sin

�

2

sin
�

2
cos

�

2
	 , �4�

� = kl��+ − �−� , �5�

�+ = kl�+. �6�

The corresponding quantum-mechanical description can
be obtained by replacing the classical amplitudes �x and �y
by the annihilation operators ax and ay, respectively. For
measurements with coherent sources one can look at the in-
tensities of the x and y components of the output when the
input is x polarized with coherent-state amplitude �x �see
Fig. 1�a��. Then the measured quantities will be

Ixl = 
axl
†axl� = ��x�2 cos2 �

2
, �7�

Iyl = 
ayl
†ayl� = ��x�2 sin2 �

2
. �8�

One can estimate the minimum detectable rotation angle
�m by looking at the fluctuations �Nd in the photon
number difference between horizontal and vertical photons,
where the number difference operator is given as Nd
=ayl

†ayl−axl
†axl. This expression is calculated to be ��Nd�2

= ��x�2 sin2�, and since the fluctuation noise is 1, we obtain
�m
1/�
N� where 
N� is the mean number of input photons
which is equal to ��x�2.
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III. MOR USING COLLINEAR TYPE-II PDC
AND TWO-PHOTON COINCIDENCE

We now discuss how the results �7� and �8� are modified if
we work with down-converted photons. We first consider the
collinear case shown in Fig. 1�b�. The state produced in col-
linear PDC can be written by

��col� =
1

cosh r
�
n=0

�

�− ei	 tanh r�n�n�H�n�V. �9�

The values of the parameter r and the phase 	 are related
to the pump amplitude of the nonlinear crystal that is used in
the down-conversion process and the coupling constant be-
tween the electromagnetic field and the crystal. Note that the
state ��col� is a superposition of n photon pairs of horizon-
tally and vertically polarized modes. Inside the medium,
these modes rotate with the same rotation matrix R given in
Eq. �4�

�aHl

aVl
� = R�aH

aV
� . �10�

One can measure the intensity of each mode:

IH � 
aHl
†aHl� = sinh2 r = 
aVl

†aVl� � IV. �11�

And the two-photon coincidence count is

IHV � 
aHl
†aVl

†aHlaVl� = cos2 � sinh2 r cosh2 r + sinh4 r .

�12�

Note the difference between Eqs. �7� and �12� and �13�.
With collinearly down-converted photons we measure a ro-

tation angle that is twice as large compared with the angle
for a coherent input. For r
1 we obtain the same result as
given in �15�. The fringe pattern and the visibility are given
in Figs. 2 and 3. One can calculate the minimum detectable
rotation angle again by looking at the fluctuations in the
photon number difference Nd. This is given by ��Nd�2

=4 sin h2r cos h2 sin2�= �1+ 
N��
N� sin2�

N�2 sin2� for
large 
N� where 
N�=2 sin h2r. Making ��Nd��1 �19� we
get �m
1/ 
N�. Note that the sensitivity of this quantity is
also improved by a factor of 1 /�N.

IV. MOR USING NONCOLLINEAR TYPE-II PDC AND
FOUR-PHOTON COINCIDENCE

Next, we discuss the noncollinear PDC case. We have
found an arrangement shown in Fig. 1�c� which is especially
attractive for improving sensitivity. The entangled photons
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FIG. 1. The setup for the magneto-optical rotation of light by
using �a� coherent source, type-II PDC photons with �b� collinear
and �c� noncollinear geometry.
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FIG. 2. The MOR plot of two-photon coincidence counts de-
fined by the Eq. �12� in collinear type-II PDC. r is the interaction
parameter that defines the pumping strength used in the production
of down-converted photons and �=kl��+−�−�.

FIG. 3. The visibility of two-photon and four-photon counts
defined by Eqs. �12� and �19�, respectively.
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are coming in two different spatial modes a and b. While one
mode �say, a� is going parallel to B inside the medium; the
other is going antiparallel to it. At the exit we separate the H
and V modes by polarizing beam splitters. The state of the
input photons can be written in the form �20�

��non� =
1

cosh2 r
�
n=0

�

�n + 1�tanh r�n��n� , �13�

where

��n� =
1

�n + 1
�
m=0

n

�− 1�m�n − m�aH
�m�aV

�m�bH
�n − m�bV

.

�14�

Here �m�aV
represents m vertically polarized photons in mode

a. Inside the medium, “�” and “�” polarization components
of the modes a and b gain phases kl�+ and kl�−, respectively.
Thus we can write an effective Hamiltonian for the evolution
of the state ��non� inside the medium as follows:

Hmed = �+a+
†a+ + �−a−

†a− − �+b+
†b+ − �−b−

†b−, �15�

where

a± =
1
�2

�aH ± iaV�, b± =
1
�2

�bH ± ibV� . �16�

The minus sign in front of the b± modes comes from the fact
that they are traveling antiparallel to the B field inside the
medium. Then one can calculate the probability of detecting
four photons in each mode as

Pnon = �
1aH
1aV

1bH
1bV

�exp�− itHmed���non��2

=
tanh4 r

cosh4 r
cos2�2�� , �17�

where t is the duration for the state to evolve inside the
medium. Note that this four-photon probability has a rotation
angle that is 4 times as large compared with the angle for a
coherent input. The fringe pattern with respect to � and the
probability distribution with respect to r are shown in Figs.
4�a� and 4�b�.

Next we also examine the four-photon probability in the
collinear case. The probability of finding two H photons and
two V photons at the exit ports of the polarizing beam splitter
is given by

Pcol = �
2aH
2aV

�exp�− itHmed���col��2

=
tanh4 r

cosh2 r

1

16
�1 + 3 cos�2���2, �18�

where we take Hmed=�+a+
†a++�−a−

†a− because of the col-
linear geometry. The normalized plot of this quantity with
respect to the magneto-optical rotation angle � and the enve-
lope of the probability with respect to r are shown in Figs.
5�a� and 5�b�.

On the other hand, one can also calculate the coincidence
counts of four photons two-by-two at each detector as given
by Glauber’s higher-order correlation functions

IHHVV = 
aHl
†2aVl

†2aHl
2aVl

2�

= �3 cos2 � − 1�2 sinh4 r cosh4 r

+ 4�3 cos2 � + 1�sinh6 r cosh2 r + 4 sinh8 r .

�19�

The plot of this quantity for different values of the interac-
tion parameter r and the visibility are shown in Figs. 6 and 3.
Note the distinction between Eqs. �18� and �19� which is a
reflection of what the detector is set to measure as we explain
now. The former is the probability of the state ��col�t�� to be
projected onto the particular four-photon subspace �22�—i.e.,
Tr��22�
22�
col�t�� where 
col�t�=U��col�
�col�U† and U is the
unitary operator that represents the evolution of the state by
the Hamiltonian Hmed in the collinear geometry. On the other
hand, coincidence counting of four photons at the detectors
DH and DV �see Fig. 1�b�� is represented by the expectation
value 
aH

†2aV
†2aH

2aV
2�=Tr�aH

†2aV
†2aH

2aV
2
col�t��. Note

here that the operator aH
†2aV

†2aH
2aV

2 has the spectral de-
composition �nm

� Cnm�nm�
nm� and obviously it contains the
projectors of all �n+m�-photon subspaces with nonzero co-
efficients Cnm. Therefore the four-photon counting process at
detectors includes not only �22� but all other states �nm� in
��col�t��. Here the state �nm� represents n and m photons in
the aH and aV modes, respectively.
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FIG. 4. �a� The normalized four-photon probability defined in
Eq. �17� and �b� its envelope with respect to the interaction param-
eter r in the noncollinear geometry.
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FIG. 5. �a� The normalized four-photon probability defined in
Eq. �18� and �b� its envelope with respect to the interaction param-
eter r at the exit ports of PBS in the collinear geometry.
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V. CONCLUSION

We showed that the use of noncollinear type-II PDC light
in MOR’s increases the sensitivity by a factor of 4 in com-
parison to coherent light. We note that one can expect to
have further flexibility in sensitivity by using suitably pre-
pared atomic samples �21� as earlier studies �22–24� have
shown how the sensitivity of interferometers can be im-
proved by the use of entangled atoms.

We also give an argument that minimum rotation uncer-
tainty scales to the Heisenberg limit by the use of down-
converted photons. It should be noted that the Heisenberg
limit should be understood as an approximate limit at a large
mean photon number; that is, the rotation uncertainty ap-
proaches the order of 1 / 
N� for large 
N� �8�. The regime
with an interaction parameter value of r=1.3 has already
been reached in the experiment �25� giving entanglement of
12 photons and evidence also was given for entanglement up
to 100 photons.

APPENDIX: FOUR-PHOTON PROBABILITY

In this appendix we show the details of the calculation
leading to the result given in Eq. �17�. One can obtain the

result first by solving the Schrödinger equation for the state
�1aH

1aV
1bH

1bV
� in the four-photon subspace of the electro-

magnetic field and having the inner product with the state
���non. Since the parts of the Hamiltonian having a and b
modes commute, we can solve the Schrödinger equation for
the states �1aH

1aV
� and �1bH

1bV
� separately. Let us start with a

general time-dependent state in the aH and aV modes which
contain two photons totally:

�	�t�� = c�t��20� + d�t��02� + f�t��11� , �A1�

with the initial condition �	�0��= �11�. Solving the
Schrödinger equation by using the effective Hamiltonian H
=�+a+

†a++�−a−
†a− gives us the result

�	�t�� = e−it�� 1
�2

sin��t��20� −
1
�2

sin��t��02�

+ cos��t��11�� , �A2�

where �=�++�− and �=�+−�−. For a medium of length l,
the angle �t corresponds to the MOR angle � which is given
in Eq. �5�. The solution for the state �1bH

1bV
� can be obtained

just by replacing � by −� because the direction of propaga-
tion of the b modes is opposite to that of a modes inside the
medium. This is the reason that the part of the effective
Hamiltonian for the b± modes takes a minus sign in Eq. �15�.
Consequently we can write the solution of the Schrödinger
equation for the state �1aH

1aV
1bH

1bV
� as

exp�− itHmedium��1aH
1aV

1bH
1bV

�

= exp�− it��� 1
�2

sin ��20� −
1
�2

sin ��02� + cos ��11��
� exp�− it���−

1
�2

sin ��20�

+
1
�2

sin ��02� + cos ��11�� . �A3�

Taking the inner product of this with the state ���non and
having the absolute square gives us the result given in Eq.
�17�.

The result given in Eq. �18� can be obtained by following
the same method given above.
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