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A, B, C 

NONMEMCLATURE 

Effective sublayer thickness, Equation (43) 

General correlation coefficients, Equation (23) 

Correlation coefficients for flight data, 

Equation (25a) 

A2, 82, D2 Correlation coefficients for wind tunnel data, 

Equation (25b) 
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Skin friction coefficient, tw!C.}Peue2> 
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CHAPTER I 

DEFINITION OF THE PROBLEM 

Since the transonic wind tunnel became operational at NASA Langley 

Research Center in the late 1940's, there has been a need for a 

procedure to calibrate the effects of wall-generated noise on the tunnel 

flow quality. As noted by Dougherty and Steinle (32), the primary 

indicators of flow quality in a wind tunnel are variations of: (1) Mach 

number, (2) flow angularity within the empty test section, and (3) the 

Reynolds number at which transition from laminar to turbulent flow 

occurs on models. Variations in Mach number and flow angularity can be 

calibrated with conventional Pitot-static probes and yaw meters, e.g. 

see Reed et al., (85). And in the case of low-speed wind tunnels, the 

Reynolds number at which the drag coefficient of a sphere equals 0.30 

can be used to define a turbulence factor (TF), as described by Pope and 

Harper (76)~ An "effective" unit Reynolds number for a given low-speed 

tunnel can then be defined by 

Reft,eff = (TF) Reft 

However, when Mach number exceeds about 0.35, compressibility 

effects cause the classical turbulence factor to become increasingly 

erroneous and therefore not useful. Recently, Miller and Bailey (64) 

have reviewed the status of knowledge concerning the drag of a sphere at 

transonic speeds. Even today, the precise variation of sphere drag with 

Mach number and Reynolds number is not well defined. Thus, the 



classical turbulence-sphere method is not applicable to the calibration 

of transonic wind tunnels. 

In recognition of the non-applicability of a sphere for defining a 

turbulence factor for tests in transonic wind tunnels, NASA, as part of 

the C-5A wind tunnel correlation program (Treon et al., (94)) employed 

what is now known as the AEDC 10° Transition Cone as a means of defining 

an adjustment to Reynolds numbers on a tunnel-to-tunnel basis. The 

cone was initially developed in the mid-sixties by engineers at Arnold 

Engineering Development Center (AEDC). It had a traversing Pitot probe 

resting on its surface to directly detect boundary-layer transition. 1 

The cone geometry has the advantage that no shock is generated along the 

surface at transonic speeds, and thereby avoids shock/boundary-layer 

interactions such as occur on airfoils, wings and blunt-nose bodies. A 

schematic of this cone and some of the associated instrumentation are 

shown in Figure 1. Since the cone was designed to calibrate the effects 

of tunnel noise on boundary-layer transition, it also has two miniature 

microphones imbedded in the surface at 18 and 26 inches aft of the nose 

for noise measurements. Additional description of this cone can be 

found in the papers by Dougherty and Steinle (32) and Dougherty and 

Fisher (30). 

The need for such a calibration device was emphasized when 

discrepancies between numerous transonic wind-tunnel tests of models at 

ostensibly identical flow conditions were observed. A particularly 

well-documented study of differences in static aerodynamic data has been 

1This, of course, is not a new measurement technique. In fact, the 
first Wright brothers' lecture by Jones (49) in 1937 describes the 
utility of this technique for flight tests. 

2 



NOTE: CS= Cone Station= Distance in inches aft of the nose 

Shaft and Rack Assembly 

Free-S !ream Impact Prooe 

Transducer Probe Assembly 

CSO P- ---n ~"' ~ I ,c:= -· ---------- _,..._ ---i-- ~ 
- . I . FT?*=!l =~~:~: ::.~" "'" 

cs r.c: ..... 
10° Cone Assembly 36.00 

F=--<I::J5 \._Cone Extension 
I 

cs 
35. 24 

Combination Hemispherical-Head Pitch and 
Yawmeter and Pitot-Static Probe 

Figure 1. AEDC Boundary Layer Transition Cone 
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obtained with the same model of a Lockheed C-5A transport aircraft in 

the three major transonic wind tunnels. The results have been reported 

by Treon et al. (94). The differences between the three different sets 

of wind-tunnel data were reduced by accounting for "relative" Reynolds 

number effects between facilities. The AEDC Transition Cone was used to 

define the differences in "rel~tive" Reynolds number. 

As observed by Dougherty and Steinle (32), these results 

substantiated the need for developing a method for predicting these 

corrections to Reynolds number to improve extrapolation of wind-tunnel 

test results to full-scale conditions, i.e., a "turbulence factor for 

transonic tunnels." 

Subsequent to the C-5A correlation program, the cone was tested in 

transonic wind tunnels both in the U.S. and in Europe. At the 

completion of the wind tunnel tour, the cone was tested in flight, 

Dougherty and Fisher (31). Parallel with the planning of the flight 

program, NASA focused on using the data from the cone in flight, in 

conjunction with the wind tunnel data, to develop a means for defining 

an adjustment (transonic turbulence fator) to Reynolds number on a 

tunnel-to-flight basis. 

Such a Reynolds number will calibrate noise effects on the onset of 

transition, so that by increasing the flight Reynolds number to that 

value, transition will occur at the same location as in the tunnel. 

However, matching of transition onset is of little practical use since 

other useful parameters like Preston-tube pressure and skin friction 

measurements are not necessarily matched by that procedure. 

The objective of this work, on the other hand, is to infer skin 

friction along the AEDC cone using the Preston-tube impact pressure 

4 



measurements in both wind-tunnel and flight tests and, in analogy with 

the turbulence sphere method, define a procedure whereby an "effective" 

freestr~am unit Reynolds number can be calculated for a given tunnel 

setting, but this number now represents the freestream unit Reynolds 

number at which the model tested in the tunnel will experience the same 

average, theoretical skin friction as in flight, or, equivalently, will 

give the same measured average values of Preston-tube pressure. 

The importance of this work lies not only in the calibration of 

wind tunnel flow quality, but also in the general and systematic way of 

relating wind-tunnel flow conditions to actual flight. Thus, the 

prediction of flight level drag will be improved and the results 

obtained from wind tunnel tests can be directly applied towards the 

design and development of prototypes. 

The basic approach used in this study to achieve the above­

mentioned objective is as follows: 

1. Preston-tube measurements are correlated with theoretical skin 

friction along the surface of the AEDC Cone in laminar, transitional and 

turbulent portions of the boundary-layer flow. This is done for the 

wind tunnel tests as well as the flight tests. 

2. With the two sets of correlations (one set of three correlations for 

the wind tunnel tests, and a second set for the flight tests), the skin 

friction coefficient is equated as well as all other variables and 

parameters~- except the freest ream unit Reynolds number, Rert. The two 

sets of correlations are expected to have different empirical 

coefficients since noise and freestream turbulence effects, which are 

not modeled in the theoretical computations, are different. This means 

that substituting wind tunnel data, which includes Cr but excludes Rert• 

5 



into the flight correlation results in a freestream unit Reynolds number 

that is different from the measured one in the tunnel. This derived 

Reynolds number is therefore the noise-free "effective" Reynolds number 

the tunnel should operate at to get the same average Pp measurements as 

in flight. 

3. Since correlations for the laminar portion of the boundary layer are 

expected to be different from those in the transitional and turbulent 

portions, the resulting Reft,eff's may be different in general for each 

portion. Analysis of these results should reveal the best measure of 

tunnel flow quality. 

6 



CHAPTER II 

SURVEY OF RELATED LITERATURE 

Since Preston-tube pressures are by definition total pressures near 

the wall, the classical law-of-the-wall can be used to relate these 

pressures to wall shear stress. The law-of-the-wall can be expressed in 

the following general form: 

( 1) 

Using the definitions of u+ and y+, Equation (1) can be written as 

(2) 

where U is the velocity parallel to the wall at the normal distance Y. 

Associated with the Preston-tube measurement of total pressure, Pp, is a 

velocity, Up, at a height Yeff• In other words, there exists a 

streamline entering the probe face, Yeff units above the wall, at which 

the theoretical total pressure in the undisturbed boundary layer flow 

equals the total pressure measured by the probe, Pp, Figure 2. This 

"effective" probe center or height concept was introduced by Preston 

(78) in 1953. The corresponding theoretical velocity at this height is 

denoted by Up. 

Thus, at the effective height, Equation (2) is written as follows 

(3) 

Multiplying both sides by U,Yefflvw gives 

7 



8 

Ue Po,e 

U(Y) Po(Y) 
y y 

Ketf 

""---_....,.___ J_ 
1--up----' 

Figure 2. Definition of the Effective Probe Center 
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Up Ye ff = UT Yeff F (UT Yeff) = F2 (Ur Yeff), 
VW v 1 vw VW w 

or alternatively, 

u'[" Yeff = F 3 (UpYeff) • (4) 
vw vw 

Equation (4) is the general form of the correlation between Preston-tube 

measurements and skin friction. 

2.1 Incompressible-Flow Correlations 

According to Preston (78), the British engineers Stephens and 

Haslam (92) suggested in 1938 that it should be possible to use the data 

from a Pitot tube traversed along a surface to infer skin friction. 

Apparently, this idea was not pursued until Preston's work during the 

early 1950 1s. He developed a correlation between turbulent skin 

friction and the total pressure as measured with circular Pitot tubes 

resting on the inside wall of a pipe. In order to develop his 

correlation, Preston used a simplified version of Equation (4) by making 

two assumptions: 

1. The flow is incompressible and Bernoulli's equation is valid, 

thus Up can be easily related to Pp as follows: 

Pp = PW + 1 p wup2. 

2. The effective center of the circular tube is fixed and 

coincides with its geometric center, i.e. Yeff = d/2. 

These two assumptions lead to the following relation. 

(5) 

Using Equation (5) as a guide, Preston obtained measurements inside a 
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pipe flow with circular Pitot tubes having four different external 

diameters but a nearly constant ratio of internal to external diameter 

of 0.6. Pipe Reynolds number was varied over the range 104 <Ren< 105. 

Skin friction was determined via measurements of pressure drop over a 

known length of constant diameter pipe, viz., Tw = (P1 - P2 )D/4L. An 

empirical fit of the data led to the following correlation. 

Y~ = -1.396 + o.875 x~ 

Where the variables are defined as 

2 
Y~ = log10 [Twd ]. 

4pv2 

In 1964, Patel (73) published the results of an extensive set of 

tests with fourteen circular Pitot probes and three different pipe 

diameters. He obtained a more accurate calibration for Preston tubes 

(6) 

(6a) 

(6b) 

and established limits on the pressure gradient conditions within which 

his calibration can be used with prescribed accuracy. Patel obtained 

empirical equations for Y~ = f(X~) over three regions of Y~. These 

regions correspond to the fully-turbulent, the buffer or transition 

zone, and the viscous-sublayer regions of the classical law-of-the-wall. 

The normal Reynolds number range of Preston-tube measurements in 

incompressible flow correspond to the buffer zone, and for this region 

Patel obtained 

Y~ = o.8287 - o.1381x~ + o.1437CX~>2 - o.oo6ocx~)3, 

where 1.5 < Y~ < 3.5 or 5.6 < UTd/\lw < 55. Patel reported this 

correlates his data to within.:!:. 1.51 of Tw• 

(7) 
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In the viscous sublayer region, Patel found his data were 

correlated by 

* * Y1 = 0.5 X1 + 0.031, ( 8) . 

* when Y1 < 1.5 or U~ d/vw < 5.6. In this near-wall region, the 

classical law-of-the-wall exhibits the linear relation 

u+ = y+. (9) 

In order to relate (8) and (9), Patel introduced Keff as the normalized 

effective center of a round Pitot tube defined by 

(10) 

Substituting into (9) and using the definitions of X~ and Y~ result in 

the following equation. 

* * 2 Y1 = o.5x1 - o.5 log 10 (0.5 Kerr) ( 11 ) 

When this equation is equated with Equation (8) and solved for Keff• 

the result is Keff = 1.3. 

The traversing Pitot probes, used during wind-tunnel tests with the 

AEDC transition Cone, are of the flattened or oval-shaped type. Since 

Patel's correlations are for circular Preston tubes, they cannot be 

applied directly to the AEDC Cone tests. In addition, these tests were 

conducted at transonic speeds, and compressibility effects are expected. 

With regard to the flattened Preston tubes, Quarmby and Das (80) 

conducted an experimental study and calibration of six oval-shaped 

Preston tubes. * When x1 > 4.6, they found these probes gave exactly the 

same calibration relation between Y~ and X~ as was obtained by Patel 

(Equation 7) if the external height of the probe face is used in place 

of d. * At Lower values of x1 , the negative displacement of effective 

center caused by wall promimity was larger (~5%) for the flattened 
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probes with aspect ratios between 1.5 and 1.91. The following 

calibration equation correlated the measurements of Quarmby and Das 

within 1.5% of 'w· 

* - * * Y1 = 0.5152 + 0.1693X1 + 0.0651(X1) 2 , 

* 3.38 < x, < 6. ( 12) 

The two correlations, Equations (11) and (12) make the assumption 

that the effective center of the probe is fixed. Preston showed that it 

is a function of UTdlvw but did not attempt to define this function. 

McMillan (62) pursued this point and found for circular tubes that 

the displacement of the effective center is 0.15d (Keff = 1.3) when the 

probe is more than two diameters away from the wall, and is affected by 

shear flow alone. As the probe gets closer to the wall, Keff decreases. 

McMillan confirmed, therefore, that Keff is a function of U,hlvw· One 

can understand this wall proximity effect by considering that a greater 

portion of the flow, blocked by the probe, will have to lift upward and 

move over and around the probe face as less passes underneath between 

the probe and the wall. McMillan proposed a single curve, independent 

of Reynolds number, to correct for wall proximity effects on the 

measured velocity. 

The work done by Patel (73), McMillan (62) and Quarmby and Das (80) 

leads to the conclusion that, in general, Kerr is a function of U,hlvw, 

Yg/h and w/h (aspect ratio). Since the Pitot tube used in the tests for 

this study was resting on the wall, Yg/h = 0.5, and for a given probe 

1This is consistent with the idea that flow about the face becomes 
more two-dimensional as aspect ratio increases and more of the flow 
passes up and over the face rather than around the sides. 
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w/h is constant. Therefore, the relation 

u h 
= Fn. (_T_) ( 13) 

VW 

seems to describe the actual variation in Keff for incompressible-flow 

conditions. If this relation is incorporated in Equation (4), it can be 

shown that Keff can be eliminated while Equation (4) remains in the same 

form. This explains why the assumption of fixed effective probe height 

has worked well for incompressible-flow correlations. 

For compressible-flow correlations, however, Equation (13) is 

expected to be different. It will perhaps have the form 

(14) 

In this case, any attempt to neglect the variation of Keff must show up 

in a greater scatter of data about the developed correlation. 

2.2 Compressible-Flow Correlations 

Allen (4,5) has performed a comprehensive analysis of Preston tubes 

in supersonic boundary layers. He developed a correlation using three 

independent sets of simultaneous measurements of Preston-tube pressures 

and skin friction via floating-element force balance. These data were 

obtained within flat-plate, turbulent boundary layers and with 

freestream Mach numbers in the range: 1.6 < M00 < 4.6. Allen selected 

the same basic parameters as Patel; except, he chose to evaluate the 

fluid properties at a reference temperature developed by Sommer and 



Short (89), and the velocity Up was calculated from Pp and the wall 

pressure Pw (=Pe) using standard compressible flow relations2• 

14 

( 15a) 

The primes denote properties evaluated at the Sommer and Short reference 

temperature, viz., 

T' T 
M 2 + 4 w ~ = 0.55 + 0.035 e O. 5 ~· 

e Te 
( 16) 

The correlation derived by Allen is 

* * * 2 Y2 = -0.4723 + 0.74814 X2 + 0.01239 (X2) • ( 17) 

Allen found that the majority of the skin-friction-coefficient data were 

within +15% to -12% of Equation (17). This rather large scatter, 

compared to the incompressible pipe-flow calibrations of Patel and 

Quarmby and Das, is at least partly associated with the much greater 

sensitivity and vulnerability of floating-element balances to extraneous 

errors.3 

Obviously, the parameters used by Allen are logical candidates in 

any attempt to correlate the transonic cone data. However, the basic 

purpose of a reference te111Perature is to permit use of skin-friction 

formulas for incompressible flow to estimate compressible skin friction 

by evaluating fluid properties at the reference temperature. Thus, the 

2The details can be found in a report by Allen (8). 

3Allen (7) discussed the various error sources in floating-element 
balances. He has recently suggested an improved design for this type of 
instrumentation, Allen (9). 
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resulting reference properties represent "average" values across a 

boundary layer. Whereas, small Preston tubes encounter only the flow 

near the wall. Therefore, the author decided that properties based 

simply on the wall temperature were more appropriate. 

2.3 Laminar Preston-Tube Correlations 

A survey of the literature uncovered only one paper, published by 

Prozorov (79) which addresses the problem of using Preston-tube 

measurements to deduce skin friction in a laminar boundary layer. He 

obtained surface Pitot-probe measurements within low-speed, flat-plate, 

laminar boundary layers. He used several circular and rectangular 

probes with different aspect ratios. Though his data exhibited 

considerable scatter, he concluded that Keff is a function of Updlvw for 

both laminar and turbulent portions of the boundary layer irrespective 

of the aspect ratio, which is inconsistent with the results of McMillan 

( 62) and Quarmby and Das ( 80) • He also found • wd2 /p wv w 2 ( the square of 

U.d/vw) to be a different function of Upd/vw compared to what Preston 

(78) found. 

His deduction of the laminar correlation is based on a McLaurin 

series expansion of Up near the wall (since the probe height was small 

relative to the boundary layer thickness) and the conservation equations 

of mass and momentum for steady, two-dimensional, incompressible flow. 

The result is the following equation. 

_ \1 wUP _ 1 dP e y 
• w - v-- - -- eff i.eff 2 dX 

Prozorov's correlation takes into account the pressure gradient. 

(18) 

The 

theoretical calculations of inviscid static-pressure distribution by Wu 
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and Lock (104) for the wind tunnel cases, and the measurements of 

surface pressures in the flight tests show that the pressure gradient in 

this study is negligible. Prozorov claims that his correlation is valid 

in laminar, transitional and turbulent flows provided that the probe is 

always within the viscous sublayer; a condition which was found to be 

invalid in this study. 

It can be shown that Prozorov's correlation is equivalent to the 

calibration model used in this study when dPe/dX = O and Kerr is small. 

2.4 Boundary-Layer Transition Computation 

Dhawan and Narasimha (29) developed a method of calculating the 

properties of a boundary layer undergoing transition by preserving the 

essential intermittency of the flow. Narasimha (68) modified Emmons's 

(33) original function to obtain an intermittency function described by 

Y(X) = 1 - e-A, 2(X), A= 0.41, (19) 

,ex> X - XB = . (20) 
A 

Here XB is the transition point defined as the location where the Pitot-

tube measurements depart from the laminar ones and is defined by 

A= Xy = .75 - Xy = .25 (21) 

By comparison with numerous other data, including supersonic data, 

Equation (19) was ·shown to be a good approximation to a universal 

intermittency function for boundary layer transition, and its use is as 

will be described in detail in Chapter IV. Figure 3 illustrates a 

typical distribution and how it changes with A. 
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2.5 Calibration of Wind-Tunnel Flow Quality 

With the establishment of the fact that freestream disturbances can 

significantly affect transonic wind-tunnel data, an extensive test 

program was begun at the NASA Ames research center in 1971. The AEDC 

Cone was tested in twenty-three tunnels between 1971 and 1977. Finally 

in 1978, it was flight-tested on the nose of a McDonnel-Douglas F-15 

aircraft. A summary of the resulting noise and transition data has been 

reported by Dougherty and Fisher (31). In this concluding report, 

Dougherty and Fisher found, for the range of CP,rms observed, that the 

data for transition Reynolds number, based on the product of local unit 

transition Reynolds number, and distance from the nose to end of 

transition, XT, 4 appear to correlate with CP,rms by the following 

equation. 

ReT - (Cp )-· 25 ,rms 

This relation, with the value of the proportionality constant 

(22) 

suggested by Whitfield and Dougherty (100), is compared in Figure 4 with 

some transition data obtained with the AEDC Cone in seven different 

tunnels (Dougherty and Steinle (32) and Mabey (57)) and a flight test at 

Mo, = 0.80. 

The Dougherty-Fisher correlation indicates that the end-of-

transition location, XT, is decreased by either increasing the tunnel 

noise or increasing the freestream unit Reynold number. In other words, 

the effects of noise and Rert on XT are equivalent. However, their 

effects on measurements of Cf or Pp are not equivalent. Becker and 

4As will be shown in this study, the end-of-transition location is 
actually different from XT, the location of maximum Pp in transition. 



c:o 
. I 

0 

x 
I­

Q) 

CI: 

8 

7 

6 

5 

4 

3 

2 

1 

Moo =0.80 

Re = 3.7 x 106 (C ,-· 25 
T p nns 

I 00 
\Jhitfield & Dougherty 

~ ~ 
O flight 

· 0 AEOC 4T 

O AEDC 16T 
,6. ARC l lTl.'T 

O ARC 1411/T 

LRC STPT 

LRC l6TI 

Source 

Dougherty & Fishe,31 

Dougherty & Stein!} 2 

a 
\l 
~ RAE SS\.'T Ma bey S 7 

• • 
Slots Covered 
Holes Covered 

_ 6 Edgetones & 
Kl - l. lS x lO Broad Band Noise 

Ki = 0.84 x 106 Organ Pipe & 
Broad Band Noise 

Q..__,_~...,_~.,__--'-~...L~..L-_..1~-1.~...L~..L----1~-L..~..L---''L-_L~J 
0 0.4 1.2 1.6 

CCp>rms 

2.0 2.4 2.8 3.2 

Figure 4. Effect of Noise on Boundary Layer Transition 

19 



20 

Brown (12) have discussed the effects of turbulence on time averaged 

pressures measured with Pitot probes. Since turbulence causes fluctua-

tions in the direction of the flow with respect to the probe's axis, the 

time-averaged pressure is reduced below the true total pressure.5 

Similarly, the author has found that tunnel noise, in the case of 

laminar boundary layers, also causes Pp fluctuations and reduces Pp 

measurements. This is equivalent to decreasing Rert· It is important 

to distinguish between the effects of noise on XT (which is the purpose 

of Dougherty, Steinle and Fisher's work) and noise effects on 

theoretical Cr, or measured Pp (which is the purpose of this work.) The 

two effects are actually opposite, Figure 5. 

5This effect decreases as a wall is approached, since turbulence is 
damped at an impermeable wall. 
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CHAPTER III 

ANALYSIS PROCEDURE 

3.1 Experimental Data 

Although the AEDC Cone was tested in Twenty-three different 

tunnels, only the data from the NASA Ames 11-Ft Transonic Wind Tunnel 

(67), 11-TWT for brevity, was considered for analysis in this study. 

Table I lists nineteen subsonic wind-tunnel tests, and Table II lists 

nine subsonic flight tests which were selected for analysis in this 

study. The criteria for choosing a case for analysis are: 

1. The Preston-tube survey covers all three portions of the 

boundary layer. 

2. The flow angles a, Bare very small. 1 

3. The freestream Mach number is less than unity. 

The distribution of static pressure along the surface of the sharp 

cone was measured only in flight. For wind-tunnel analysis, this 

pressure distribution is assumed to be defined by the inviscid-flow 

theory of Wu and Lock (104). Wu and Lock's predictions for the pressure 

coefficient along the surface of a 10-degree cone are shown in Figure 6 

as a function of freestream Mach number. Measurements of pressure 

1This criterion is necessary since the boundary-layer code used in 
this study, STAN-5 (25), was found to be insensitive to changes in a, B. 
Also, values of a > 0.5° and/or B > 0.25° have been shown to affect the 
beginning of transition, x8 . Notice that the values tabulated in Table 
II for a and 8 have an experimental uncertainty of - + 0.25°. 
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TABLE I 

WIND TUNNEL TEST CASES 

Run Number M 
00 

<1oo ( psf) 

15.231 0.95 4.0 693 

19.289 o.a 4.0 617 

21.318 0.7 4.0 548 

23.346 0.6 4.0 477 

29.440 0.3 4.0 230 

40.547 0.6 5.0 586 

41.548 0.7 5.0 680 

42.549 0.8 5.0 761 

43.550 0.9 5.0 842 

44.551 0.95 5.0 873 

56.631 0.9 3.0 492 

57.632 0.8 3.0 453 

58.633 0.7 3.0 408 

59.634 0.6 3.0 357 

60.635 0.5 3.0 302 

61. 636 0.4 3.0 246 

70.726 0.7 4.0 538 

72.748 0.8 4.0 605 

0 
(l 

-0.05 

-0.00 

-0.01 

-0.00 

-0.01 

0.02 

0.02 

0.01 

0.01 

0.01 

0.06 

0.07 

0.07 

0.08 

0.07 

0.07 

0.04 

0.03 
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0.02 

-0.02 

-0.03 

-0.03 

-0.03 

0.02 

0.02 

0.02 

0.02 

0.02 

0.01 

0.01 

0.02 

0.01 

0.01 

0.01 

0.02 

0.02 



coefficients together with linear curve fits from two typical flights 

are shown in Figures 7 and 8. With this information and the known 

freestream conditions, the flow conditions at the outer edge of the 

boundary layer can be calculated. (For details see Reference 1). 

Flight 
'Number 

327.0907 

327.0918 

329.1028 

329. 1036 

329.1042 

332.1020 

333.1020 

333.1351 

349.1400 

0.86 

0.66 

0.85 

0.74 

o.67 

0.93 

0.94 

0.88 

0.75 

TABLE II 

FLIGHT TEST CASES 

q (psf) 
00 

2.2 304 

2.4 299 

2.1 289 

2.2 277 

2.5 306 

2.8 451 

2.8 457 

2.8 438 

2.3 284 

Note: a and 8 are time-averaged during a traverse. 

0 
a 

-0.03 

0.04 

-0. 16 

0.19 

-0.05 

-0.44 

-0.50 

-0.04 

0.17 

0.30 

0.48 

0.30 

0.25 

0.47 

-0.20 

-0. 16 

0.30 

0.21 
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3.2 Correlation of the Data 

The fully-laminar and fully-turbulent boundary layer computations 

are done using a computer program developed by Crawford and Kays (25) 

which they labeled STAN-5. The resulting distribution of skin friction 

and boundary layer properties are then correlated with the Preston-tube 

pressures. 

The form of the correlation equation is derived from Equation (4) 

using the parameters of Patel (73) and Quarmby and Das (80) but allowing 

the effective center of the probe to vary, i.e., 

y* = ACX*>2 +ax*+ c (23) 

where 

(24a) 

and 

(24b) 

In order to account for small variations of properties at Yeff from 

those at the wall, a third dimensionless parameter, T*, is introduced. 

It is defined as follows. 

T* (T') (24 ) = log 10 ~ c 

It was observed that T1 : Tat Yeff for all the cases. It was also 

noticed that the term containing T* in the correlation equation was so 

much smaller than the other terms, the author decided to drop it. A 

T*-term is necessary in the analysis of supersonic flow or flows with 

significant heat transfer. Up and Yeff are defined as the longitudinal 

velocity and the height at which the theoretical total pressure 

(calculated by STAN-5) is equal to the measured Preston-tube pressure at 

a given location on the cone surface. The coefficients A, B, and Care 
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determined by a least-squares curve fit of the data. The results are 

presented and discussed in the next chapter. Figure 9 outlines the 

steps followed in the data analysis to obtain Preston-tube correlations. 

3.3 Effective Reynolds Number Derivation 

Given the flight correlation in the form 

y* = A1(X*)2 + B1 x* + c1, (25a) 

and the wind-tunnel correlation in the form 

(25b) 

it is desired to derive an expression for the freestream unit Reynolds 

number in the wind tunnel when all other properties and parameters are 

equated between the two Equations (25a) and (25b) and the skin-friction 

coefficient predicted by the flight correlation is used. In other 

words, substitute the wind tunnel data into the flight correlation, 

solve for Cr in flight, then use this value of Cr together with the same 

wind tunnel data, except Rert to solve for Rert which is therefore the 

effective wind-tunnel unit Reynolds number, Reft,eff• required to match 

the flight values of Preston-tube pressures. 

The following identity relates the freestream conditions and can be 

derived using simple algebra, Abu-Mostafa (1). 

0.5564 x 10-6 M00 Reft T2 _ T 
00 00 

- 198.6 = 0 (26) 
q~ 

Thus, if only M00 and q00 are to be equated between wind-tunnel and flight 

correlations, then Too must be allowed to change. This means that T0 

also will change. Since it is desired to equate the values of the local 

Mach number, Me, between the two correlations so that the static 

pressure may also be equated, Te must therefore be allowed to change, 
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and hence, Ue, Pe, T' and Up· It can be shown that all variables other 

than T00 , T0 , Te, Pe, T', Up and Ue can be kept unchanged without fixing 

Rert· Notice that T0 is assumed constant, T0 ,2, along the cone for a 

given wind-tunnel case, but equals a different constant, T0 , 1, for the 

flight case. 

Now, by substituting the definition of x* and y* into Equations 

(25a,b) and subtracting one from the other to eliminate Cr, the 

following equation is obtained. 

A2 log,02 T'2 + (4 A2 + B2) log,o T'2 - [4 F2 (A1 - A2 + 

2F (B1 - B2) + (D1 - D2 + A1 log102 T'1 + (4 FA1 + B1)log10T'1] = 0, 

where F = log,o(Mp(ri" Yeff!Vw). (27) 

This is a quadratic equation that can be solved for log 10 CT' 2), hence 

31 

T' 2 , the effective local reference temperature in the wind tunnel. Te, 2 

follows from the definition of reference temperature by Sommer and Short 

(89): 

T'2 2 T 
T"--:::- = 0.55 + 0.035Me + 0.45 ~w_. 
e,2 Te,2 

Then T 2 can be evaluated using the isentropic relation 
00' 

2 
+ 0.2 Me 

2 . 
+ 0.2M00 

(28) 

And finally Rert, 2 (=Rert,eff) can be calculated using Equation (26). 

This procedure is graphically outlined in Figure 10, and the 

results of its application are shown in the next chapter. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Laminar Wind-Tunnel Correlation 

In the process of developing the Preston-tube correlation, values 

of Keff are needed. These values are obtained, as explained earlier, by 

linear interpolation of measured Preston-tube pressures in the 

theoretical total pressure profiles. It would be very useful if an 

empirical equation is developed in the form of Equation (14). In an 

earlier work by the author (82), the variation in Keff was ignored, 

which led to a correlation that suffered a relatively large scatter of 

the data CCr,rms = 4.931). 

For this purpose, the Keff values for the laminar wind tunnel data 

were plotted versus Re, (=UThlvw) with M.» a parameter. The plot is shown 

in Figure 11. All attempts to curve-fit these data were unsuccessful. 

Since it is expected that the Keff - RT curves be continuous, Figure 11 

is an indication that probably the Rert = 3 x 106 group of data is in 

error. Re-examination of the data sheets (67) revealed that, for runs 

#56 through 72, the scaling factor of the plotter (Gain factor) which 

recorded the Preston-tube pressure signals was in error. Corrections 

were made upon NASA's directions (91) using run #21.318 (M00 = 0.70, Rert 

= 4 x 106) as a reference. The new Keff - RT plot is shown in Figure 

12. The correction procedure is outlined in section 4.1.1. 
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It is worth mentioning that this kind of plot CKeff versus R,) 

proved to be a powerful way of detecting possible errors in the data 

which could otherwise go unnoticed. 

The data in Figure 12 could only be curve-fitted when the low-Mach-

number data (Moo= 0.30 - 0.50) were deleted. The fitted equation 

follows. 

-0.273 R, 2 0.173 
Keff = 2.865 e + 0.655 (1 - M00 ) (29) 

This equation applies to laminar-boundary-layer flows in the 11-TWT for 

Mach numbers in the range 0.60 < M00 < 0.95. The associated r.m.s. 

scatter in the predicted values of Keff is 1.96%. Equation (29) will be 

called "the wind-tunnel asymptotic equation" for reasons that will 

become clear later. 

In the development of the laminar wind-tunnel correlation, the 

author used the actual Keff values rather than those predicted by 

Equation (29) for two reasons: 

a. Equation (29) does not apply to the data for Moo< 0.60 which 

should be included in the analysis. It is always better to 

collect more data for curve fitting. 

b. The r.m.s. error in Kerr is considered to be high. 

Even though Equation (29) was not used in the development of the laminar 

wind-tunnel correlation, it proved to be very useful in the flight 

analysis as will be shown later. 

Using the interpolated values of Keff (and Up), defining the 

dimensionless parameters x*, y* and T* as in Equations (24a,b,c) and 

doing a least-squares curve fit on the data results in the following 

correlation. 
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y* = -0.0136 cx*)2 + o.6977 x* + 0.1051 T* + o.6669, 

cf,rms = 0.97%, 

* * 5.7 < X < 6.3, -0.01 < T < - 0.10, (30a) 

And, after dropping T~ 

y* = -0.0103 cx*) 2 + o.6653 x* + o.5946, 

5.7 < x* < 6.3, 

3 x 106 i Rert < 5 x 106• C30b) 

The associated r.m.s. scatter of Cr is only 0.98%. This very low 

scatter is comparable to the scatter obtained with pipe-flow correla-

tions. It demonstrates how important it is to include the variation of 

Keff in the analysis. Equation (30b) will be called "the wind-tunnel 

shifted correlation" due to the fact that a subset of the data was 

shifted as decribed above. A graph of Equation (30a) and the 

corresponding data scatter are shown in Figures 13 and 14. 

It is here emphasized that the coefficients in Equation (30b) are 

valid only for the NASA Ames 11-TWT and the particular probe used during 

the tests. The coefficients are expected to be different for different 

wind-tunnel environments and for probes with significantly different 

aspect ratios and/or face geometries. This is because the coefficients 

in Equation (30b) contain information about the freestream disturbance 

levels and noise which are peculiar to the 11-TWT. 

Thus; Equation (30b) is not presented as a universal correlation 

applicable to all wind tunnels, Preston tubes and models with arbitrary 

pressure gradients. Rather the described procedure for developing a 

correlation is applicable to the data obtained with the AEDC Cone in 

other wind tunnels (see Dougherty and Fisher (30)). In fact, no 
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Preston-tube correlation is universal unless it properly models the 

wind-tunnel environmental effects. 

4.1.1 Procedure for Correcting Laminar 

Wind-Tunnel Data 

The first objective is to align case 58.633 (M00 = 0.7, Reft = 3 x 

106) with case 21.318 (~ = 0.7, Reft = 4 x 106, ~ = 548 psf) which is 

considered the reference. Then shift all the cases whose Reft = 3 x 106 

accordingly. Refer to Figure 11. 

The second objective is to coincide case 70.726 (M00 = 0.7, Reft = 4 

x 106, q00 = 538 psf) with case 21.318, then shift case 72.748 (M = 0.7, 
00 

Reft = 4 x 106, q00 = 605 psf) accordingly. 

a. Evaluate R, of case 58.633 as the average of all R, values in this 

case. Denote it by ltr,58• 

b. Extrapolate the data in case 21.318 up to R,, 58. Use a French 

curve or do a least-squares curve fit of the data in case 21.318. 

c. Evaluate Keff at R,,58 given by the extrapolated curve; denote it 

by Keff,21• Also read Keff at R,,58 given by case 58.633 (the 

original value).· Call this value Keff, 58 • 

d. Compute ~Keff,58 = Keff,21 - Keff,58• This is the incremental 

adjustment 6f Keff for the Reft = 3 x 106 cases. 

e. Find ~P0158 = corresponding total pressure adjustment (from 

theoretical STAN-5 profiles). Add this increment, algebraically, to 

all Pp measured values in case 58.633. 

f. Find ~P0 's for other cases in the Reft = 3 x 106 group which 

correspond to the~ value of ~Keff, 58 above and shift these cases 

by the proper increment of total pressure. 



g. The procedure for shifting cases 70.726 and 72.748 is similar to 

steps a-f above. 

4.2 Laminar Flight Correlation 

Since a plot of Keff versus R, is important to pinpoint possible 

errors in the data, it was logical to start the flight analysis with 

such a plot. The theoretical boundary layer computations were done by 

the STAN-5 program and Keff values were interpolated just like in the 

wind tunnel analysis. The Keff - R, plot appears in Figure 15. From 

Figure 12 for the wind tunnel data, at least three things are expected 

in this kind of plot: 

1. The curve for a given M00 should be continuous. 

2. Keff should decrease with increasing M00 at a given R,. 

3. The curves should be orderly spaced with M00 • 

As can be seen from Figure 15, none of these conditions is 

satisfied. Besides, some of the Keff values are actually larger than 

2.0. All this clearly indicates that the flight data are erroneous. 
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The source of these errors is unknown. One explanation is the possible 

twisting of the probe in all three directions. Twisting in the a-plane 

will force the probe face to see a higher pressure region of the 

boundar~ layer, and therefore measure a higher-than-desired total 

pressure. Also, Yg/h becomes a variable and is no longer equal to 0.5 

and ~hat affects Kerr· Still, the pitch angle becomes largely different 

from zero which is a requirement in this study. Twisting in the ~-plane 

is equivalent to a non-negligible yaw angle and that makes the 

theoretical computations inaccurate. Finally, twisting in the 8-plane 
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is equivalent to different inviscid flow conditions which in turn, 

affect the viscous calculations. 
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As a check, the flight data as they are were correlated and the 

effective Reynolds numbers were evaluated as described before. It was 

found that 6Reff (:Rert,eff!Rert - 1) was nearly constant, viz., 6.67%, 

regardless of Moo. This is inconsistent with the pattern of noise in the 

11-TWT, Figure 16, which shows a peak in CP,rms at M00 = 0.70 - 0.80. As 

explained earlier, Reff is expected to have a pattern similar to the 

noise pattern, Figure 16, since the noise effects, being unmodeled in 

the correlation, are suspected to be the major cause for the flight 

correlation being different from the wind tunnel correlation and hence 

allowing 6Reff to be defined. This means that a correction is needed 

for the flight data in order to derive meaningful effective Reynolds 

numbers. The author attempted to correct the flight data in two 

different ways: 

I. If the probe is drawn out of the boundary layer and into the 

freestream, the value of Keff' for a given M00 , is asusmed to be the same 

for both wind-tunnel and flight tests. According to Becker and Brown 

(12), this assumption is not very accurate since freestream turbulence 

is found to affect the Preston-tube measurements. The assumption is 

equivalent to saying that as RT+ 00 , Keff for a given M goes to a value 

K0 (Moo)• This value will be called "the asymptotic value of Kerr"· From 

the asymptotic wind tunnel equation (29), this value of Keff is given by 

K0 (M00 ) = 0.655 (1 - M00
2 )0.173 (31) 

The correction procedure based on this asymptotic approach goes as 

follows: 
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* 
* 

Calculate K0 from Equation (31) for all flight Mach numbers. 

Curve-fit the Keff values for each flight in the form 

-b1RT 
Keff = a,e + c1 

The resulting equations are tabulated in Table III. 
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* As RT+ 00 , the asymptotic values of Keff for unmodified flight cases 

are given by the free constant c1. The difference K0 -c 1 thus defines 

"shift errors" in the Keff values in flight cases (a different 

increment for each flight case). This difference is therefore added 

or subtracted from the original Kerr's of that flight case to obtain 

"correct" Kerr's which will in the limit reach the same asymptotic 

values as the wind tunnel's for the given M00 • 

The result of this correction technique is much reduced Kerr's, but the 

Keff - RT curves do not exhibit the trend of Keff decreasing with 

increasing M00 except for very large values of RT, see Figure 17. 

Besides, the theoretical total pressures corresponding to these new 

values of Keff are nearly constant along the cone. The derived Reff 

from a correlation based on this correction approach is plotted in 

Figure 18. Since, again, the distribution of ~Reff does not resemble 

the n6ise pattern, Figure 16~ it was decided that this correction 

procedure was not helpful. 

II. The second attempt to correct the flight data is based on the 

assumption that the measurements in Flight 349.1400 are correct. The 

grounds for this assumption are: 

* 

* 

The Keff values of this case are realistic, 1.6 < Keff < 1.7. 

According to the NASA/Dryden flight report (35), several corrections 

were made to the measurements starting from flight #345 and on. This 
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TABLE III 

CURVE-FITS OF EFFECTIVE PROBE HEIGHTS FOR LAMINAR FLIGHT DATA 

Flight II M 
00 

Equation for Keff 

329.0918 0.66 0.0510 EXP [-0.4452 (RT - 38.0321)] + 1. 8133 

329.1042 0.67 0.2287 EXP [-0. 1293 (RT - 39-9423)] + 1. 7539 

329.1035 0.74 0.5689 EXP [-0.1154 (RT - 33.8301) J + 1.8118 

349.1400 0.75 O. 0387 EXP [-0.8187 (RT - 34.6364)] + 1.6866 

349.1027 0.85 0.4787 EXP [-0.1809 (RT - 31. 4714)] + 2.0779 

327.0907 0.86 0.0887 EXP [-0.8263 (RT - 32.3159)] + 2.3808 

333.1353 0.88 0.0437 EXP [-0.2315 (RT - 40.0836)] + 1. 8146 

332.1020 0.93 0.0194 EXP [-1.0018 (RT - 38.6302)] + 1.8922 

33.1350 0.94 0.1090 EXP [-0.1914 (RT - 39.1318)] + 1. 7825 
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Figure 17. Distribution of Effective Probe Height of Laminar 
Flight Data After Asymptotic Correction 
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means that Flight 349.1400 is at least less erroneous than the rest 

of the flights analyzed in this study. 

Correction based on this assumption is done by rearranging the 

flight data, Figure 15, with Flight 349.1400 as the reference. 

Rearrangement is done with the aid of the wind-tunnel asymptotic 

equation as follows: 

* Determine the spacing, Figure 15, between each flight curve and the 

curve for Flight 349 (the bottom curve). This spacing is defined as 

the difference in Keff between the case to be corrected and the 

reference case at the point of average RT in the region were values 

of RT overlap. Call this spacing the "old" spacing. 

* Calculate the "new" spacing between pairs of flight cases by 

substituting in Equation (29) the average value of RT used to 

calculate the old spacing, and the two Mach numbers of the two 

flights. 
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* The difference between the old and new spacings for a pair of flight 

cases determines the increment in Keff to be added or subtracted from 

original Kerr's in order to shift a flight case to its proper place 

with respect to the reference flight case. This procedure is 

outlined in Section 4.2.1. 

It is important here to note that a simple shift in Keff may preserve 

the Keff ~ RT distributions, but is likely to destroy the Pp - RT 

distributions, since the theoretical total pressure used to calculate 

Keff is generally a function of both X and Y, therefore oP0 /oX is a 

function of Y and therefore changes as the probe moves across the 

boundary layer. Figure 19 clearly illustrates this effect. Therefore, 

it is important to decide whether the longitudinal difference in 
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measured Pp for a given traverse is valid. A zero-drift in the 

transducer read-out equipment is unlikely for a traverse that lasts less 

than a minute. The only way that such a difference may be inval~d is if 

the probe was twisting. This may have been one of the causes of error 

in the measurements. But since it is impossible to trace back the 

pattern of twisting, there is no way to account for it. It seems 

logical, therefore, to preserve the longitudinal differences in measured 

Pp. Thus, shifting of the flight data is done on basis of theoretical 

total pressures that correspond to the new values of Keff at the 

location where spacing was determined. The difference between the 

original Pp and the total pressure at the new Keff defines the shifting 

increment. The rearranged flight data based on this correction 

procedure are shown in Figure 20. 

The laminar Preston-tube correlation using the corrected flight 

data is given by the following equation. 

y* = 0.05981(X*)2 - 0.1777 x* + 1.928, 

* 5.6 < X < 6.7, 0.66 ~ M00 ~ 0.94, 

2.1 x 106 ~ Reft < 2.8 x 106• C32) 

The r.m.s. error in Cf associated with the above curve fit is only 

0.37%. Figure 21 shows the correlation and the corrected data and 

Figure 22 shows the Cf scatter about Equation (32). 

It is worth mentioning at this point that Equation (32) is, to the 

best of the author's knowledge, the first free-flight Preston-tube 

correlation in the literature. 

4.2.1 Procedure for Correcting the Flight Data 

a. Let Keff,FD (R~,M 1) = the value of Keff at Rr for the flight case 



1.8 
SYMBOL Moo R2ftX 1 o-6 q~(psf) 

~A AA . 

A 0.66 7.9 14.3 
<> 0.67 8.2 14.7 
A 0.74 7.2 13.3 

+4f. ~ • 0.75 7.5 13.6 
1.71- C .... . ' A 0 0.85 6.9 13.8 

~a o~0 a 0.86 7.2 14.6 

• 0.88 9.2 21.0 
Keff r v 0.93 9.2 21.6 

• 0.94 9.2 21.9 
••••• 

1.6t-
,II 

vV 
'!lV 

VV ..... •• • • 
1.J I I 

30 35 40 45 50 
U,hlvw 

Figure 20. Distribution of Effective Probe Height as Determined from the 
Corrected Laminar Flight Data 

Ul 
I\.) 



53 

3.00 

y* 

2.90 
Y*• 0.05981 (X*)2-0.1777 X* +1.928 

2.80~~--L~~~,,.......~--'-~--::-'::=-~ ........ ~-::--=::::---~.._~-:::-~~--------~-;:;-: 
5.60 5.70 5.80 5.90 6.00 6.10 

x* 

Figure 21. Laminar Correlation for Corrected Flight Data 



0.0075 a I -- -- --r--- -~ .--.,, 

Ct,rma = 0.37% a a 

aaa 
0.00501- a 

ca O acaa 
a a a 

a 
ca a Ca 

0.00251- a 
a a a a 

a c a a 
aa Ca a a a a a 

Ct o.ooool ,a a a a a a 
I I I I I I I I 

aa0 'b aaaO 

aa O CD 

-0.00251" · a 

ca a 
Ca 

a a a 
-0.0050~ i;:i a a a 

a a a Ca 
a a a a a a -0.0075 

5.60 5.70 5.80 x* 5.90 6.00 6.10 

Figure 22. Scatter of Laminar Skin Friction Coefficient About Corre­
lation for Corrected Flight Data 

IJl 
~ 



with M~ = M1• Similarly define Kerf,WT (RT, M1). 

Let {M1lFo = set of all R, values in the flight case with Moo= M1• 

Let {M1,M2}Fo = set of all R, values common between the two flight 

cases whose M~'s are M1 and M2, i.e., {M1,M2lFo = {M1}Fo A {M2lFD· 

Let R,CM 1,M2)Fo = the average of all R, values in {M1,M2lFD· 
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Let t.Kerr ,Fo<M1 ,M2> = Kerr ,Fo(R,, M1) - Kerr ,FD CR,, M2) • Similarly 

define t.Kerr, wTCM 1,M2). Refer now to Figure 15. 

b. The reference case for all flight cases is flight #349.1400, i.e. 

M2 = 0.75. To shift a flight case {M1lFD• first determine 

{M1, 0.75lFD· If {M1, 0.75}Fo = $, i.e., no~ values are shared 

by the two cases then you have one of two situations. 

{0.75}FD > {M1}FD• in which case set ~(M1, 0.75)Fo to be 

equal to the largest R, in {M1lFD· 

{M 1}Fo > {0.75}, in which case set ~(M1, 0.75)Fo to be equal 

to the smallest R, in {M1}FD· An example of such a situation is 

{0.66}FD• see Figure 15. 

Then, go to step d below. 

c. This is the case where {M 1, 0.75}Fo is defined (~$) such as {0.74}. 

So, calculate R, (M1, 0.75)Fo· 

d. Find Kerr ,Fo<R, ,M 1) and Kerr ,Fo<R,, o. 75) hence t.Kerr ,Fo<M1, o. 75). 

e. Find Kerr,wT<if ,M1) and Kerr,wT<if, 0.75) hence Kerr,wt<M 1, 0.75) 

from a curve-fit equation of Kerr versus R in the wind tunnel, such 

as Equation (29). Notice that R CM 1, 0.75)wT = R (M1, 0.75)Fo· 
Also, 

Kerr,wT<M1, 0.75) will be negative if M1 > 0.75 • . 
f. Calculate t.Kerf,shift<M1>Fo = incremental adjustment of Kerr values 

in the flight M1 =t.Kerr,Fo<M1, 0.75) -t.Kerr,wTCM1, 0.75). 



g. From the theoretical P0 profiles for the flight case M1, obtain 

~Po,shiftCM1)FD which corresponds to ~Keff,shiftCM1)FD at the 

location where R, = R,. This is the incremental pressure adjust-

ment for flight case M1• 

h. For all points in {M 1}FD• obtain PP,shiftCM1)FD = Pp(M1,FD -

~Po,shiftCM1)FD• Pp(M1)FD being the original, measured value of 

Preston-tube pressure. 

4.3 Laminar Effective Reynolds Number 

Based on Equations (30b) and (32), the effective freestream unit 

Reynolds number was computed and plotted versus M00 • The plot, Figure 

23, resembles the curve for noise data on the AEDC cone in the 11-TWT 1, 

Figure 16, and has a peak at M00 = 0.70 0.80, as does the noise. 

Actually, ~Reff~ (Reft,eff - Reft)/Reft ~orrelated with noise by the 

following equation.2 
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This supports the thesis that environmental effects in a wind tunnel 

can be calibrated by a sin~le n~mber, i.e. Reft,eff• So, in order to 

obtain the same average, theoretical skin friction coefficient, or the 

same average measurement of Pp, in the tunnel as in flight, the tunnel 

value of freestream unit Reynolds number should be increased to 

Reft,eff~ This effective Reynolds number will not necessarily equate 

1These data include installation effects in addition to wall­
generated noise. 

2The accuracy of this correlation is not very good since it does 
not include other environmental effects such as freestream turbulence 
intensity. Reft eff calibrates all these effects and not only noise. 
It should be noted, however, that noise effects are dominant in the 11-
Ft Transonic Wind Tunnel (32). 



7.0 
ReF.t X 10-6 

£::,. 3.0 
0 4.0 
0 5.0 £::,. e 0 0 

A 0 ..,. 
0 0 

0 0 0 
0 6.0 A ... 

0 
x 

0 
0 

a: 

4.Q Q I I 

o~.2-----'------0~.4-----'----o~.-s----"'----~o~.~s----~---:-,.o 
Moo 

Figure 23. Distribution of Laminar Effective Reynolds 
Number Based on Corrected Data 

57 



58 

the measurable value of Cr· Indeed, the effects of noise on directly 

measured skin friction, if any, is unknown. 

4.4 The Transition Region 

Recall Dhawan and Narasimha's (29) intermittency function for 

transitional flow: 

(19) 

In order to be able to use Equation (19), A needs to be known for each 

case. Since measurements of Y(X) are not available for this study, 

Equation (21) cannot be used. Another method was developed to calculate 

A as will be shown now. 

4.4.1 Calculation of A 

This method makes use of the available Preston-tube data. Since it 

is assumed that the distribution of Cr follows Preston-tube measurements 

(see Equation 4), one can assume that the location XT where Pp peaks is 

the same location where Cr peaks. Within the transition zone, the Cr 

distribution is.calculated using the -function in the following manner: 

Cr= (1 - y) cr,2 + Y cf,T' (33) 

where Cr 12 (X) is the local laminar skin friction coefficient if it were 

to occur at the given location X, and Cr T(X) is the local turbulent 
' 

skin friction coefficient if it were to occur at X. The origin of the 

turbulent boundary layer is determined from the fully-developed 

turbulent flow at or downstream from XE, the end-of-transition location, 

as will be explained later. The value of XE corresponds to~ = 4.0 (or 

y = 0.9986) as recommended by Dhawan and Narasimha (29). 
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Differentiating Equation (33) with respect to X and evaluating at XT 

yields the following relation: 

~, = 0 = [(Cr T - Cr 2) dY + (dCr,T - dCf,2) + dCf,&J 
dA x , • dX dX dX Y dX xr 

T 

(34)3 

A following formula for calculating Cf,T is reported by White (99) to be 

reasonably accurate. 

Using Summer and Short's model for S, a compressibility factor (see 

Reference 30), to correct for variable properties and Tetervin's (93) 

correction for axisymmetric flow and making the approximation that 

1 
=~the following equation can be derived. 

\) I 

: p I 0. 455 
Pe Ln2 [ UeXv J 

37 o8V I 

(35) 

Here Xv= distance along cone surface measured from the virtual origin 

of the turbulent boundary layer. It can be written in the form 

Xv = X - 6 X, ( 36 ) 

where 6X is the location of the virtual origin (see Figure 24). It is 

now clear that Equation (34) can be solved for .\ if 6 X is known. The 

following section explains how this is done. 

4.4.2 Calculation of 6X 

Equation (35) can be rewritten in the form 

3Equation (34) is also valid as Xt, location of minimum Pp. Solving 
for Xs which appears in the definition of Y, it was found that Xs ~ Xt. 
Therefore, the value of Xt is used from here on to designate the 
transition onset location. 
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(37} 

So, all that is needed to calculate ~Xis a reference Cr,T in the fully­

developed turbulent flow at a location Xref ~ XE· 

Crawford and Kays (25}, who developed the STAN-5 program, state that 

their program's calculation of turbulent Cr agreed with extensive 

measurements done at Stanford University. They used the following 

equation to effect gradual transition. 

Here A+(X) is an effective sublayer thickness used in the Van Driest 

damping model 

(39} 

Figure 25 shows a plot of Equation (38) for a typical wind tunnel case. 

The damping coefficient is used in the Prandtl mixing length model for 

turbulent boundary layer calculations near the wall as follows. 4 

fl = K Y D, K = 0.41 (40) 

And 

A+ - Pw dPw 
fl - µ w uT3 dX 

(41) 

Now, in Equation (38), it is assumed that 

Ree(XE): 2 Re9(X5). 

This was not found to be true at values of XE= x8 + 4A (recommended by 

Dhawan and Narasimha (29}). In addition, this transition model does not 

4The mixing length model is also the one used in this study to 
calculate the fully-developed turbulent boundary layer. 
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produce a peak in Cr at Xr· Instead, the author used the following 

slightly different equation: 
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(42) 

where ReF is the local length Reynolds number at a location XF which is 

changed so that a peak in Cr occurs at XT· This trial-and-error 

procedure is illustrated in Figure 26. It is important here to mention 

that Equation (42) is not used as a transition model. Its sole role is 

to effect gradual transition so that the turbulent flow downstream is 

accurately computed. Indeed, when either of Equations (38) or (42) was 

used to simulate transition, the computed skin friction was found to be 

greatly underestimated as compared to the Dhawan-Narasimha model. 

To sum up, Equation (42) is used to prepare to compute turbulent 

flow, and hence obtain a good estimate of a reference value for cf,T at 

XE or downstream. The location Xref ~ XE is estimated from the Preston-

tube data traces as the location downstream from XE where the Pp 

measurements exhibit a slope characteristic of fully-developed turbulent 

flow (see Figure 27). However, this estimate of Xref need not be 

precise, as long as it is sufficiently downstream from XE. 

Using Cr,T,ref at Xref and substituting in Equation (37), ~X may be 

calculated. Hence~~ can be calculated from Equation (34). Thus, the 

Y-function is now fully defined, and the Cf distribution can be computed 

using Equation (33). 

In the above argument, it is assumed that White's formula, Equation 

(35), accurately calculates Cr,T and/or Xv· The author has found, by 

trial and error, that it does not, at least for the conditions in this 

study (mostly the relatively high Reynolds numbers). Best results were 
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obtained when the virtual origin coincided with the transition point, 

i.e., Xv(O) = Xt = ~X. This finding was also reported by Dhawan and 

Narasimha (29). Based on this finding an improved procedure to 

calculate A and hence Y is described next. 

The following variation of White's equation is used in place of 

Equation (35). 

(43) 

where C is a constant that has a different value for each case and can 

be directly evaluated from Equation (43) at Xref• 

Equation (43), then, together with its derivative with respect to 

X, the laminar STAN-5 calculations of cf,i and its derivative with 

respect to X are substituted in Equation (34) to solve for A and hence 

y. 

4.4.3 The Transition Correlations 

In order to completely define the correlation parameters x* and Y*, 

theoretical velocity and total pressure profiles in transition need to 

be computed to obtain Up(X) and_Keff(X). These profiles may be 

calculated using the Y-function in a manner similar to skin friction, 

Equation (33). 

U(Y) = ( 1 - y) u2 (Y) + y UT(Y), 

T(Y): (1 -Y) Ti(Y) +YTT(Y). 

From these two profiles, calculate P0 (Y) as follows: 

(44) 

(45) 
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M(Y) = U(Y)/49.02~)) 

P0 (Y) = Pw[1 + 0.2 M2(Y)]3.5 (46) 

Initial profiles for turbulent flow computation can be obtained by 

rescaling available fully-developed turbulent profiles (at Xrer> using 

edge velocity and boundary-layer thickness at the initial location which 

can be estimated using Musker's equation, Musker (66), as follows: 

at Xinitial, (47) 

Where ue+ = (cf2,T Ppe)0.5 at X1.n1"t1·a1· c at X can be f,T initial 
w 

calculated using Equation (35) with Xv= Xinitial - ~X and all 

properties evaluated at Xinitial which is downstream from Xt· 

Values of Up and Keff can then be computed by interpolaton of 

measured Preston-tube pressures in velocity and total pressure profiles 

given by Equations (44 and 46). 

Based on the above analysis the transition correlations for the 

original data are: 

Wind Tunnel: 

y* = 0.06935 cx*)2 + 0.02795 x* + o.9678, 

5.2 < x* < 6.3, 3 X 106.i Rert i 5 X 106, 0.30 iM00 i 0.95, 

cf,rms -- 2 19• and • /0. 

Flight: 

y* = 0.02094(X*)2 + 0.5988X* - 0.7112, 

5.5 < x* < 7.1, 2.1 x 106 i Rert i 2.8 x 10 6, 

0.66 i M00 i 0.94, Cf,rms = 3.64J. 

(48) 

(49) 

A plot of Equation (48) with the superimposed wind-tunnel data appears 

in Figure 28. Figure 29 is a plot of Cr scatter about Equation (48). 

Figures 30 and 31 illustrate the same for the flight data. 
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Not all the available data in trasition are included in the above 

correlations; only the points at which x* and y* are proportional are 

included. (These amount to slightly more than 60% of the total number 

of points in the transition region.) This proportionality requirement 

is suggested by the basic Equation (4). 
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Figures 32 and 33 are plots of transitional values of Keff versus 

RT in the wind tunnel and flight, respectively. Notice that the data, 

again, indicate large errors in the flight tests. Before discussing how 

these errors are corrected, the author first presents the results from 

the analysis of turbulent data. 

The effective Reynolds number distribution based on Equations (48) 

and (49) is shown in Figure 34. It does not correlate with noise. This 

situation may change after correcting the experimental data. 

4.5 The Turbulent Region 

The procedure, which is described in section 4.2, for estimation of 

a reference Cr,T provides an accurate and complete method for 

theoretical computations of Cr, velocity and enthalpy profiles in the 

turbulent flow region. Therefore, all the information needed to define 

x* and y* for this region is available. 

The wind tunnel data are corrected in a manner similar to the 

laminar data, viz., by referencing all cases to case 21.318 (M = 0.7, 

ReFT = 4 x 106 , q = 548 psf). Unlike the laminar data, the Rert = 3 x 

106 cases already form continuous curves of Keff versus R , Figure 35. 

So, the only cases which are shifted are cases 70.726 (M = 0.7, Rert = 
4 x 106, q = 538 psf) and 72.748 (M = 0.8, Rert = 4 x 106, q = 605). 
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Similarly, the flight data are corrected in the same manner as the 

laminar data, see outline at the beginning of this chapter. 

The turbulent correlations without corrections are found to be: 

Wind Tunnel: 

y* = 0.02337 cx*> 2 + o.5715x* - 0.6202, 

5.1 < x* < 6.9. 3 x 106 .s_ Rert .s_ 5 x 106 , 0.30 .s_ M00 .s_ 0.95, 

Cr,rms = 1.20%, and (50) 

Flight: 

y* = o.007512cx*>2 + o.7749x* - 1.272, 

6.0 < x* 7.7, 2.1 x 106 .s_ Rert .s_ 2.8 x 106, 0.66 .s_ M00 .s_ 0.94, 

Cr,rms = 1.10%. (51) 

Equations (50, 51) with the data are plotted in Figures 36 and 37. The 

scatter of Cr is shown in Figures 38 and 39. Figures 35 and 40 show the 

distribution of Kerr versus R,. Notice that the relative positions of 

different flights in Figure 40 is the same as shown in Figure 15. This 

suggests that the same correction procedure can be successfully applied. 

It was indeed as will be shown shortly. 

The effective Reynolds number distribution based on Equations (50) 

and (51) is shown in Figure 41. Again, it does not look like the noise 

curve, Figure 16, which may be caused by the errors in the experimental 

data. The correction procedure used to correct the laminar data should 

result in a 6Reff distribution which is closer to the noise 

distribution, as can be observed in Figure 23. 

4.6 Results After Data Corrections 

4.6.1 The Turbulent Region 

The turbulent wind tunnel data after shifting a subset of it as 
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explained before are shown in Figure 42. The correlation is given by 

y* = o.022a2cx*) + o.57a2x* - o.6409, 

* 5!1 < X < 6.9, 

3 x 106 ~ Rert ~ 5 x 106, 

0.30 ~ M00 ~ 0.95 and 

(52) 

Cr,rms = 1.20%. 

Notice that there is no significant change to the correlation 

coefficients and accuracy since the shifting was minor. Equation (52) 

is shown in Figure 43 with the data and the scatter of these data about 

Equation (52) is shown in Figure 44. 

The corrected flight data appear in Figure 45. Notice, again, that 

the distributions of Keff versus RT for individual cases has been 

altered by the corrected procedure. The flight correlation is given by 

y* = o.005586CX*) 2 + o.7723x* - 1.1867, 

* 5.45 < X < 6.30, 

2.1 x 106 ~ Rert ~ 2.8 x 106 

0.66 ~ M00 ~ 0.94 and 

cf,rms = 0.65%. 

(53) 

This equation and the corrected dat~ are shown in Figure 46 and the data 

scatter is shown in Figure 47. 

Based on Equations (52) and (53), the dReff distribution is shown 

in Figure 48. The distribution does not bear any resemblance to noise 

characteristics, Figure 16. This means that despite the data correc-

tion, the information contained in them and their correlations are not 

sufficient to extract the expected Reft,eff information. The reason for 

this, it is believed, is the added complexity that was not present in 

the laminar analysis, namely the vorticity fluctuations, or turbulence, 
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in the boundary layer. These fluctuations are so large they dominate 

the pressure fluctuations caused by background noise and thus eliminate 

their effect on Preston-tube measurements. Whitfield and Dougherty 

(100) reported the results of testing the effects of background noise on 

transitional and turbulent boundary layers on the AEDC cone in four 

transonic wind tunnels. They noted that each of these tunnels had an 

acoustic resonance near M00 = 0.8, but that the frequency components 

coming into resonance in these slotted-wall tunnels were so low(< 

approximately 200 Hz) that the cone boundary layer was insensitive to 

them and their influence on transition was nil. Weeks and Hodges (98) 

also concluded that even at noise levels up to CP,rms = BS it was not 

possible to identify any effect of the noise itself on the boundary 

layer, and they concluded that the acoustic disturbances generally found 

in the working sections of transonic wind tunnels are unlikely to exert 

measurable influence on the development of turbulent boundary layers on 

wind-tunnel models - at least for mild pressure gradient. Raghunathan 

et al., (81) showed that turbulent skin friction coefficient was hardly 

affected by noise levels up to CP,rms = 2S. Based on these findings, 

the value of ~Reff of turbulent data is expected to be zero for flight 

and wind tunnel cases with identical freestream flow conditions. Wind 

tunnel case #56.631 and flight case #333.1354 have similar flow 

conditions, and ~Reff for these conditions is indeed near zero, see 

Figure 46 at f,,\., = 0.90. As noted before, Becker and Brown (12) showed 

that pressure fluctuations decrease the measured Preston-tube pressure. 

Pressure fluctuations may be caused by background noise and/or by 

internal boundary layer turbulence. Since vorticity fluctuations in a 

laminar boundary layer are negligible, background noise and turbulence 
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are dominant in this region and the data analysis described in this 

thesis permits the calibration of these environmental effects. In 

transitional and turbulent boundary layers, on the other hand, internal 

fluctuations are dominant and background noise has no effect on the 

measurement of Pp and, therefore, cannot be calibrated. The Rert = 3 x 

106 data show the greatest deviation of 6Reff from zero, Figure 48. The 

reason is this group of data is the one suffering the greatest experi-

mental uncertainty in the Pp measurement while it is the reference 

for correcting the flight data (RT values at which correction is made 

correspond to wind tunnel Reft = 3 x 106). 

4.6.2 The Transitional Region 

In order to insure the"continuity of the Kerr distribution during 

transition, the 6Po,shift incirements used in the correction of flight 

data must vary gradually from the_6Po,shift values used in the laminar 

correction and those used in the turbulent correction. The author used 

a linear variation in the following form: 

x - xt 
l!. Po shift = 6 Po shift t + x (6Po ,shift ,T - 6 Po, shift ,t). 

' ' ' E - Xt 

Figure 49 shows the continuous Kerr - RT distribution for case 19.289 in 

the three regions of the boundary layer. The results after shifting the 

wind tunnel data and correcting the flight data are as follows. 

Wind Tunnel: 

y* = o.1a14cx*)2 - o.07967x• - 1.2936, 

* 5.25 < X < 6.30, 

3 x 106 s_ Reft ~ 5 x 106, 0.30 s_ M00 s_ 0.95, 

cf,rms = 2.49% and 

(54) 



2.0.---..--~-~---,----.-~,---....---,---,----, 
M00 = O. 0 6 

1.5 

Kett 1.0 

0.5 

Reft = 4 x 10 
q = 617 psf 

00 ' 

+ Downstream 
- - Points deleted from analysis 

-------' ----..... ........ --...... 

LAMINAR 

'""-.. 

~ 
' 

TURBULENT 

----TRANSITION-------

0 ·0 ....... ---=s~o--'--~a~o~-'--1~0~0,---'-~1~2~0,--......... _1~4~0,--~ 

RT 

Figure 49. Distribution of Effective Probe 
Height for a Typical Case in 
the Three Boundary Layer 
Regions 

94 



95 

Flight: 

y* = 0.09131(X*)2 + 0.2596X* - 1.9066, 

* 5.4 < X < 6.4, 

2.1 x 106 ~ Reft < 2.8 x 106, o.66 ~Mo,~ 0.94 and 

cf,rms = 0.65%. 

(55) 

Equation (54) with the wind tunnel data and their scatter are shown in 

Figures 50, 51. Figure 52 shows the Keff - R, distribution. Figures 53 

through 55 show the same for the flight data. 

Based on Equation (54) and (55), the ~Reff distribution is shown in 

Figure 56. As expected the distribution cannot be correlated with noise 

effects for the same reason discussed in the turbulent analysis last 

section. Furthermore, Reed and Abu-Mostafa (82) have shown that the 

extent of transition, XE - Xt, is larger in flight than in wind tunnel 

tests with the same flow conditions. This means that the transition 

process requires a larger distance in flight than in a wind tunnel and 

therms values of Pp indicate the laminar break-down in flight is more 

violent and, hence, creates larger vorticity. This is the reason that 

~Reff's in Figure 56 are all negative. Indeed Cp' in flight 
P,rms 

#333.1354 is nearly twice that in wind tunnel case #56.631. (These are 

the two cases with similar freestream conditions). 

The final conclusion, therefore, is that the calibration of wind 

tunnel environmental effects on Preston-tube measurements or theoretical 

skin friction by an effective freestream unit Reynolds number can only 

be achieved by analyzing the laminar data as described in this thesis. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

A new procedure has been developed which uses Preston-tube data 

from wind tunnel and flight tests of the AEDC Transition Cone to compute 

an effective unit Reynolds number for transonic wind tunnels. The 

resulting effective Reynolds numbers are based on the requirement that 

the average Preston-tube pressure for a given type of boundary layer be 

equal in the wind tunnel and flight for a given M~ and q~ but differing 

Hert· The procedure has been applied to laminar, transitional, and 

fully-developed turbulent boundary layers by using wind tunnel data 

obtained in the 11-TWT. The results for laminar boundary layers 

indicate that noise in the 11-TWT causes Preston-tube pressures to be 

low compared to the values that exist in flight for the same M..., Hert, 

and~· This results in the effective unit Reynolds number being higher 

than the reference or operating value by approximately 6.5%. Thus, in 

order to increase the laminar Preston-tube pressures, obtained in the 

11-TWT, to match the corresponding flight data, it is necessary to 

increase the tunnel unit Reynolds number by 6.5%. 

This unit Reynolds number trend is opposite to what is found in the 

technical literature on the effects of noise on boundary layer 

transition. In that context, transonic wind tunnel noise is known to 

promote early transition and is frequently viewed as being analogous to 

an increase in unit Reynolds number. With this perspective of matching 
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the location of transition, transonic tunnels are thought to have 

"effective" Reynolds numbers that are somewhat higher than the operating 

value selected by the tunnel operators. However, if for example a 

transonic tunnel is operated at a lower unit Reynolds to achieve 

matching of flight values of transition location on the AEDC cone, one 

would not expect a match in drag values. In fact, the lower tunnel 

Reynolds number would result in lower skin friction within both the 

laminar1 and turbulent portions of the boundary layer. 

Unfortunately, actual measurements of skin friction were not 

performed in either the wind tunnel or flight tests. Thus, the author 

was unable to reach any definitive conclusions as to the effects of 

noise on skin friction measurement per se. 

The basic achievements of this study are summarized below. 

1. The law-of-the-wall is a valid way to correlate Preston-tube data 

in the form of Equation (4) or Equation (23). 

2. The effective height of a Preston tube is not fixed. It varies 

with Ur h/V w' Mx,, aspect ratio and the position of the probe with 

respect to the wall, Section 2.1. 

3, Including a variable Keff in the correlation substantially improves 

its accuracy, Section 4.1. 

4. Plotting Keff versus R. permits the detection of errors in 

experimental data, Section 4.1. 

5. Wind-tunnel data can be used to correct errors in Pp measurements 

in the flight tests. A systematic correction procedure was 

1This assumes that noise does not change the steady-state laminar 
skin friction in any significant amount. 
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developed and successfully applied to the flight data, Section 4.2. 

6. Preston-tube correlations for laminar, transitional and turbulent 

data were obtained both for the wind-tunnel and free-flight tests. 

The flight correlations, Equations (32), (53), and (55) are the 

first of their kind in the literature. 

7. A semi-empirical method has been developed to define and calculate 

an effective Reynolds number which calibrates environmental effects 

on Preston-tube measurements in wind tunnels, Section 3.3 and 

Figure 23. 

a. A computational model for the transition zone can be devised using 

fully-developed turbulent calculations (or measurements) of Cr and 

transitional Preston-tube pressure measurements without the need 

for hot-wire measurements of the intermittency factor, Y, Section 

4.4.1. 

· 9. The virtual origin of the turbulent boundary layer on the AEDC cone 

coincides with the onset of transition which is found to occur at 

the location of minimum Pp, viz., Xt, Section 4.4. 

10. Experimental Preston-tube pressure measurements appear to have 

smaller errors in the turbulent portion of the boundary layer than 

in the other two portions, compare Figures 11, 33 and 35. 

11. The effective freestream unit Reynolds number distribution obtained 

from the analysis of laminar data is easily correlated with noise 

data on the AEDC cone, Section 4.3. Therefore, calibration of 

enviornmental effects in a wind tunnel can be done by calculating 

~Reff using laminar measurements of Preston-tube pressure. Best 

results are obtained when the freestream flow parameters, M00 , Reft• 

and q00 , are the same in the tunnel and in flight. 
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12. The analysis of transitional and turbulent Preston-tube data cannot 

be used to calculate ~Reff since vorticity fluctuations in the 

boundary layer make it insensitive to background noise. The 

derived Reft,eff's from these data do not calibrate the tunnel's 

flow quality, but rather reflect the effect of internal vorticity 

fluctuations on Pp measurements, Section 4.6.1. 

13. Vorticity and pressure fluctuations in transitional boundary layer 

flow are larger in flight than in the 11-TWT for similar freestream 

conditions, Section 4.6.2. 

14. A traversing Preston-tube is insufficient, by itself, to calibrate 

the effects of transonic wind-tunnel noise on skin friction 

measurements of wind-tunnel models. The Preston-tube data must be 

supplemented with direct measurements of skin friction if this 

objective is to be achieved. 



CHAPTER VI 

RECOMMENDATIONS 

The calibrating procedure described in this thesis may be used to 

calibrate environments in other transonic wind tunnels, especially those 

tunnels where the AEDC cone was tested. 

The author recommends that skin friction be measured directly and 

used in conjunction with Preston-tubes in future wind tunnel and flight 

tests. This will permit the described calibration procedure to reveal 

the effects of noise, if any, on skin friction drag. 

Care should be taken in measuring Preston-tube pressure in future 

experiments. Every effort to prevent probe twisting and lifting will 

reduce experimental errors especially in the flight tests. The gain 

factor and the reference pressure for the transducer should be 

accurately recorded. 
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