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CHAPTER I 

INTRODUCTION 

Information exchange by speech plays a crucial role in our lives. Speech 

conveys several kinds of acoustic information such as meaning, information as to 

whom is speaking, emotion of the speaker, etc.. The first item, meaning, is the most 

important one. It is known that acoustic transmission and reception of speech is 

limited for a short distance. This is because the radiated acoustic energy dies out 

rapidly as the distance increases. In addition, the transmission medium allows only 

limited variations in pressure without distorting the signal [Fla72]. Thus, the acoustic 

wave is not a good means for long distance speech communication. 

Long distance speech communication has become a major factor in our lives 

since the invention of the telephone. Many researchers have tried to devise speech 

signal processing techniques that can yield high perceptual quality speech at the 

receiving end of a communication system. In the past five years, with the evolution of 

powerful microprocessors, the trend of using digital signal processing (DSP) 

techniques has become very attractive. Nowadays, a complicated on-line DSP 

algorithm can be computed within a few seconds or less by a high speed 

microprocessor. 

A general digital speech communication system is depicted in Figure 1.1. A 
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speech signal is first sampled and quantized to obtain a digital representation of the 

speech sound. The quantized signal is fed into a DSP algorithm in order to either 

enhance the speech perceptual quality as in high quality speech signal processing, or 

remove the redundancy in the speech signal for compression purposes. The output of 

the DSP algorithm is transmitted through a communication channel by a transmitter. 

At the receiving end, the received signal distorted by existing noise is processed by 

another DSP algorithm to extract the important features of the speech signal. The 

output of the DSP algorithm is fed into a synthesizer to reproduce the speech sound. 

input speech I sampler H quantizer H DSP H transmitter f-- channel 

transmitting end 

channel~ receiver synthesizer processed speech 

noise receiving end 
Figure 1.1. Digital Speech Communication System. 



In order to be able to properly design a digital speech signal processing 

algorithm, it is useful to have basic understanding of both the speech production 

mechanism and the human auditory system which we will discuss in the following 

section. In section 1.2, we will see that analyzing the speech signal in the frequency 

domain gives us more insight as to how a human produces and perceives a speech 

sound. In section 1.3, we present a overview of this research. Finally, the conclusion 

of this Chapter is given in section 1.4 

1.1 Speech Production Mechanism and Human 

Auditory System 

3 

Sound is a pressure wave which consists of the vibration of molecules of an 

elastic medium. Sound can be considered as a physical disturbance of air particles 

caused by vibrating objects, e.g., vocal cords, bells, etc.. The motion of an air 

molecule is transmitted to adjacent air molecules where the vibration is repeated 

causing the sound wave to propagate. Sound waves have some properties which make 

them different from vibrations of other kinds as follows [Ger74]. 

1. Sound waves in free air propagate in three dimensions. 

2. A sound wave in free air is a longitudinal wave, i.e., the motion of the air 

molecules is in the direction of propagation. 

Human speech, which is a special kind of sound wave, can be classified into 

three different groups; voiced sound, fricative or unvoiced sound, and plosive sound. 

Each group is different in terms of which human organs are used to produce a speech 
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sound. The major organs involved in producing speech are illustrated in Figure 1.2. 

A voiced sound is produced by forcing quasi-periodic pulses of air from the lungs 

through the glottis, causing the vocal cords to vibrate. Unvoiced sound is generated 

by forming a constriction at some point in the vocal tract and forcing air through the 

constriction at a sufficiently high enough velocity to produce turbulence. Plosive 

sound results from building up pressure behind a closure and abruptly releasing it 

[Fla72, Rab78]. As a result, it is possible to model a speech sound by a time varying 

model depicted in Figure 1.3. The model consists of a sound source and time varying 

vocal tract filter. The output of the sound source can be considered as a fast varying 

portion of the speech sound, while the time varying vocal tract filter can be considered 

as a slow varying portion of the speech signal. Even though the speech signal is time 

varying, i.e., nonstationary, for a short frame of speeches, we can assume that the 

speech signal is stationary [Rab78]. 

The speech wave produced by the vocal organs propagates through the air to 

the ears of the listeners. At the ear, the speech wave activates the hearing organs to 

produce nerve impulses which are transmitted to the listeners' brain through the 

auditory nerve system. The human hearing organ is depicted in Figure 1.4. A sound 

wave causes vibration of the eardrum. This vibration is· picked up by the ossicular 

bone of the middle ear and retransmitted to the cochlea causing motion of the basilar 

membrane (the cochlea is a slender, fluid filled tube divided into two chambers by the 

basilar membrane). This motion is sensed by the auditory nerve to recognize which 

sound is heard. Different speech sounds will create different patterns of the basilar 



/ 

MOUTH 

Figure 1.2. Sagittal Plane X-Ray of the Human Vocal Apparatus [Fla70]. 

sound 
source h(t) 1---- speech sound 

vocal tract filter 
transfer function 

Figure 1.3. Speech Model. 
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Outer Ear 

Ossicular Bones 

Basilar Membrane 

Cochlea 

t 
J 

Ear Drum 

Auditory Nerve 

Figure 1.4. Schematic Drawing of the Peripheral Auditory System [Cal72]. 
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membrane's motion. Bekesy [Bek60] showed that displacement of the basilar 

membrane is greatest at the point of resonance which corresponds to the component of 

the speech signal containing the highest energy level. As a result, the human auditory 

system is more sensitive to high energy components of speech than the lower energy 

ones. However, to accomplish the hearing process, both the frequencies and amplitude 

(or intensity) of the components of the speech must be within the limits of the 

response of the ear called "the hearing range". We note that limiting the range of 

speech frequency is equivalent to performing band-pass filtering on the received 

speech sound. 

1.2 Frequency Domain Analysis of the Speech Signal 

The behavior of speech signals can be easier to explain in frequency domain 

than in time domain. We saw in the previous section that the displacement of the 

basilar membrane is sensitive to the resonance frequency of the speech signal. Two 

distinct speech sounds have distinct resonance frequencies creating two distinct 

motions of the basilar membrane; allowing us to recognize the difference. 

Most languages, including English, can be described in terms of set of 

distinctive sounds, or phonemes. In American English, there are 42 phonemes 

including vowels, diphthongs, semivowels, and consonants which depend on how the 

sound is generated. For example, vowels are produced by exciting the vocal tract with 

quasi-periodic pulses of air created by vibration of the vocal cords. Unfortunately, 

even the same phoneme pronounced by different speakers can yield different 
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sequences of what are called formant frequencies. Formant frequencies are the 

dominant frequencies corresponding to the resonant frequencies of the vocal tract 

components which characterize the phonemes. However, if the variation of the 

formant frequencies is not too significant, the human auditory system still can 

recognize which phoneme is heard. Experimental results show that only the first two 

or three formants are important in terms of recognizing what sound is heard while the 

higher formants correspond to high quality speech sound [Fla72]. Thus, two different 

speech sounds with close formants will sound alike. 

In Figure 1.5, we show the plot of second formant frequency versus first 

formant frequency for vowels by a wide range of speakers. In Figure 1.6, we show 

the plot of the time variations of the first two formants for diphthongs. As we can 

see, each phoneme is categorized into different groups. The phonemes within the 

same group will sound alike and be recognized as the same sound. In a speech 

communication system, as long as the processed speech belongs to the same phoneme 

group as the original speech, the listener should be able to recognize which sound is 

transmitted. Thus, a good receiver for speech communication system should have 

ability to assign the received distorted speech signal to its associated phoneme group. 

This technique is called the nearest neighborhood system. The nearest neighborhood 

system is quite closely related to the maximum likelihood detection in a Gaussian 

process [Joh92]. The received speech signal will be assigned to the phoneme group 

that yields the minimum distortion measure between the original speech and the 

processed speech. This technique is also known as discriminant analysis [Gol78]. In 
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Figure 1.5. Plot of Second Formant Frequency Versus First Formant Frequency for 
Vowels [Pet52]. 
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Figure 1.6. Plot of Second Formant Frequency Versus the First Formant 
Frequency for Diphthongs [Hol62]. 
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discriminant analysis, several speech distortion measures can be used, for example, the 

mean square error (MSE), signal-to-noise ratio (SNR), the Itakura-Saito (IS) distortion 

measure, etc.. The most commonly used is probably the MSE due to its simplicity to 

implement. However, in speech recognition, the MSE does not serve well as a 

judgement of speech quality, since a large value of MSE does not always imply poor 

speech quality. In this research, we will concentrate on one special type of the speech 

distortion measure called the IS distortion measure. This IS distortion measure will be 

used as a performance index for designing an optimal finite impulse response (FIR) 

filter called an optimal IS filter. The IS distortion measure is closely related to the 

information discrimination function of two Gaussian random processes (the minimum 

discrimination function is a tool to measure similarity between two Gaussian random 

processes). By viewing the speech signal as a stationary random process (this is valid 

for only a short frame of speech data), we will see later that minimizing the IS 

distortion measure between the original speech and the processed speech is equivalent 

to finding the nearest neighborhood stationary random process (the processed speech) 

to the original speech. As a result, compared to the MSE, one would expect the IS 

distortion measure to perform better. 

1.3 Overview 

The introduction of speech distortion measure is given in Chapter 2. Several 

types of speech distortion measure are discussed. Later, we concentrate on the IS 

distortion 'measure. The IS distortion measure was first introduced as an error 
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matching function between the autoregressive (AR) spectral model and·the short time 

spectrum of speech [Ita68, Ita70]. In addition, Itakura also showed that the maximum 

likelihood estimator of the AR spectral model parameters could be found by the 

famous linear prediction coder (LPC) analysis. We then discuss the relationship of the 

IS distortion measure and the information discrimination function. Pinsker [Pin64] 

showed that the information discrimination function is asymptotically equal to half of 

the IS distortion measure. Literature reviews on applications of the IS distortion 

measure will also be given. We then fmally propose a strategy for designing a speech 

signal processing algorithm for perceptual purposes as follows. 

For a good perceptual speech signal processing algorithm, the processed speech 

should satisfy the following properties. 

1. The mean of the processed speech signal must be equal to the mean of the 

original speech signal. 

2. The autocorrelation function of both signals must be equal for as many lags 

as possible. 

The property (1) and (2) are referred as the mean and autocorrelation matching 

property, respectively. Preserving the autocorrelation function is equivalent to 

preserving the power spectrum; thus, preserving the formant frequencies. 

In Chapter 3, we start with the Wiener filter and show that it does not satisfy 

the autocorrelation property-which is not perceptually desirable. We then derive a new 

optimal FIR filter obtained by minimizing the IS distortion measure between the 

processed speech signal and the original speech signal. It will be shown that this IS 



optimal filter does satisfy the autocorrelation matching property which makes it 

perform perceptually better. Computer simulations are also performed to show the 

superiority of the optimal IS filter over the Wiener filter in terms of power spectrum 

matching and output SNR. 
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In Chapter 4, we improve the performance of the optimal IS filter by 

introducing another optimal FIR filter at the transmitting end. Using a pre-filter will 

transform the transmitting signal to be more robust to the corrupting noise existing in 

the communication channel. Both jointly optimal pre- and post-filters are derived. It 

is also shown that this jointly optimal system still satisfies the autocorrelation function 

matching property. 

In Chapter 5, we perform real speech simulations on the optimal IS filter. 

Simulation results reveal that the optimal IS filter outperforms the Wiener filter not 

only in terms of minimizing the IS distortion measure but also autocorrelation function 

matching. Listening tests also show the loudness level of the optimal IS filter output 

is higher than that of the Wiener filter output which makes it easier to be recognized. 

Furthermore, we also discuss the warbling effect caused by phase distortion in the 

optimal IS filter. 

In Chapter 6, we show the application of the optimal IS filter in the Discrete 

Cosine Transform (DCT) domain. It will be shown that under the DCT environment, 

the optimal IS filter still outperforms the Wiener filter in terms of both minimizing the 

IS distortion measure and autocorrelation matching. Furthermore, the optimal IS filter 

performs better in the DCT domain than in the time domain in terms of minimizing 



the IS distortion measure. Listening tests also reveal that the warbling effect in the 

inverse DCT (IDCT) of the optimal IS filter output operating in DCT environment is 

much less than that of the optimal IS filter operating in time domain. 

Finally, in Chapter 7, the results of this research to date are briefly 

summarized. In addition, we also discuss the future research consideration. 

1.4 Summary 

13 

In this Chapter, we have discussed basic principles of the human speech 

production mechanism and the human auditory system. We noted that speech analysis 

can be more easily described in the frequency domain than time domain. In speech 

recognition, the first two or three formant frequencies play a dominant role in 

distinguishing one speech sound from another. We also discussed how speech signals 

can be grouped based on their corresponding sound. We noted that speech signals 

which belong to the same phoneme group will sound alike. We then proposed a 

strategy for speech signal processing in speech recognition purpose. The processed 

speech should satisfy the mean and autocorrelation function matching property, which 

is equivalent to preserving the portions of the signal· which contain high energy level. 



CHAPTER IT 

SPEECH DISTORTION MEASURES 

2.1 Introduction 

Consider a general communication process depicted in Figure 2.1. The 

unprocessed input signal, x(n), is transmitted through a communication system yielding 

the output signal, y(n). The output signal, y(n), is different from the input signal, x(n), 

due to the distortion caused by coding or the transmission process. One common 

question is how different the output signal is, compared to the input signal. In other 

words, we want to know how much the communication system distorts the input 

signal. The distortion measure is an objective quantity to measure the similarity 

between the input and output of the communication system. By objective quantity, we 

mean that this quantity is computed based only on the distortion caused by the coding 

and transmission process. However, in speech communication, the speech quality 

assessment involves subjective and psychological attributes of human perception, an 

area which mathematics cannot clearly explain. As a result, several attempts had been 

made to create an objective distortion measure which has an ability to predict the 

subjective quality as effectively as possible. Nonetheless, we should note that none of 

the objective distortion measures found to date can be justified as the global speech 

14 
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Figure 2.1. Distortion Measuring System. 

quality measure [Jua84]. 

The purpose of this Chapter is to serve as a survey of the objective speech 

distortion measures. In the following section, we will review several types of 

distortion measures and briefly compare their advantages and disadvantages. In 

section 2.3, we will concentrate on one special type of spectral distortion measure 

called the ltakura-Saito (IS) distortion measure. This distortion measure was first 

introduced by Itakura [Ita68] as an "error matching function" between the speech 

signal and an autoregressive (AR) spectral model (also known as a discrete all-pole 

model). ltakura showed that if the aliasing effect is negligible the maximum 

likelihood estimation of the coefficients of an AR spectral model to represent the 

speech signal can be obtained by using the famous linear prediction coder (LPC) 

analysis. In other words, LPC analysis is equivalent to minimizing the IS distortion 

measure between the speech signal and the AR spectral model. In section 2.4, we will 
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discuss the relationship between the speech signal and the normalized information 

discrimination function. The normalized information discrimination function is a tool 

that measures the similarity between two Gaussian random processes. Exploring this 

relationship explains how the IS distortion measure relates to the nearest neighborhood 

system design used often in discriminant analysis. In section 2.5, we provide a 

literature review of how the IS distortion measure is being used. In addition, we also 

discuss limitations of the IS distortion measure. In section 2.6, we state the 

contribution of this research. Based on the knowledge gathered from the previous 

sections, we propose a new strategy to design a new optimal finite impulse response 

(FIR) filter called the optimal IS filter. This optimal filter is obtained by minimizing 

the IS distortion measure between the speech signal, x(n), and the filter output signal, 

y(n). Finally, the conclusion and summary is presented in section 2.7. 

2.2 Speech Distortion Measures 

For speech processing, the distortion measure between two frames of speech 

data x(n) and y(n), d(x,y) should possess at least the following properties [Gra76] 

1. d(x,y) must be nonnegative, and if x(n)=y(n), then d(x,y)=O. 

2. d(x,y) must be subjectively meaningful so that small and large distortion 

measurements correspond to good and bad subjective speech quality. 

3. d(x,y) must be mathematically tractable and easy to compute. 

The first property assures that the valid distortion measure is positively definite. 

The second property links the objective measurement with human perception process. 
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The third property is required for practical implementation. 

Note that there are some other properties that the distortion measure could 

satisfy, e.g., the symmetric property, the triangular inequality, etc. [Gra76]. The 

symmetric property is attractive since it implies that d(x,y) = d(y,x). Thus, there are 

no restriction on either x(n) or y(n) to be the reference signal. Not all the distortion 

measures discussed in this chapter satisfy these additional properties. However, all the 

distortion measures satisfy the first three properties mentioned. 

The objective distortion measures can be categorized into five different groups 

as follows. 

2.2.1 Time Domain Distortion Measure 

This type of distortion measure is directly evaluated from the time domain 

signal on a sample to sample basis. The main advantage of this type of distortion 

measure is tractability and ease of computation. Subjectively, the time domain 

distortion measure works well for the high quality (toll or near toll) speech signal. 

Two of the most widely used time domain distortion measures follow. 

2.2.1.1 Signal-to-Noise Ratio. One of the most popular time domain distortion 

measures is the signal-to-noise ratio (SNR) which can be expressed as 



18 

N-1 

:E x 2(n) 
SNR = --n-91~---

N-1 
(2.1) 

:E [x(n)-y(n)]2 

nzO 

where N is the number of speech samples in a frame. 

SNR does not fit well in terms of measuring speech subjective quality since the 

speech sound contains a number of pauses (silence) which degrades the SNR ability to 

evaluate speech quality even when the corrupting noise is small [Dim89]. In addition, 

since the SNR is computed on a sample by sample basis, the input signal, x(n),and the 

output signal, y(n), need to be temporally aligned or synchronized. However, some 

modifications can be made to increase the subjective measuring ability of the distortion 

measure, for instance, the segmental SNR and the frequency-weighted SNR [Jay84]. 

Both techniques employ the idea of introducing a weighting function on the speech 

samples. The erroneous portion, e.g., silence, can be suppressed by multiplication of a 

large quantity number. Nevertheless, these techniques are not as popular as the other 

objective distortion measures introduced later. 

2.2.1.2 Mean Square Error. Another commonly used time domain distortion 

measure is the traditional mean square error (MSE) (error power or error energy). The 

MSE between x(n) and y(n) is defmed as 

MSE = E {[x(n)-y(n)]2} • (2.2) 

where E{.} denotes the expected value. 

The MSE has been successfully used in many areas of digital signal processing 
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including filtering, estimation, modeling, etc.. However, for a low bit rate speech 

system, the MSE does not appear to be subjectively meaningful [Gra80]. In 

particularly, large distortion in the MSE does not imply poor perceptual speech quality. 

For example, a "shh" sound can be considered as a white process. Two completely 

different white processes will sound the same but may yield significantly different 

MSE. This effect actually stems from the property of the MSE itself. From Chapter 

1, we know that human perceptual response is more sensitive to the portion of the 

speech which contains high energy level (this is equivalent to the formant in the 

frequency domain) than the portion of speech which contains lower energy level (this 

corresponds to the spectral valley in the frequency domain). Thus, intuitively, from 

the perceptual point of view, a good objective speech distortion measure would weight 

the high energy level portion of speech signal more than the lower energy level 

portion of speech signal. However, from equation (2.2), the MSE weights every 

speech sample equally, which is not perceptually desirable. In fact, in Chapter 3, we 

will show that the Wiener filter, obtained by minimizing the MSE between x(n) and 

y(n), does not preserve the second order statistical property, which makes it less 

subjectively meaningful. 

2.2.2 Spectral Distortion Measure 

Recall again from Chapter 1 that the relationship between speech signal 

characteristics and the human perceptual process can be more easily described in 

frequency domain than in the time domain. It is known that the human auditory 
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system is more sensitive to the spectral peaks (formants) than the spectral valleys 

[Fla72]. It is also useful that the first three formants are important in determining 

what sound is heard whereas the higher formants are necessary to produce higher 

quality sounds. Thus, a good spectral distortion measure should have the characteristic 

that spectral peaks are weighted more than spectral valleys. 

We first define Px(co) and Py(co) as power spectrums ofx(n) and y(n), 

respectively. Several types of the spectral distortion measures will be discussed as 

follow. 

2.2.2.1 LP Norm of the Difference of the Log Spectra. This is the oldest 

spectral distortion measure. The LP norm of the difference of the log spectra, ~. can 

be defined as [Gra76] 

(2.3) 

where I •I P denotes the LP norm. 

The typical choices of p are 1, 2, and oo corresponding to mean absolute, root 

mean square, and maximum deviation, respectively [Gra76]. We shall note that these 

distortion measures satisfy the symmetric and triangular property, i.e., 

d(x,y) = d(y,x) (2.4a) 

and 

d(x,y) ~ d(x,z) +d(y ,z) • J2.4b) 

From equation (2.3), we can see that the LP norm spectral distortion measure 
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allows equal contributions from every frequency. Thus, for perceptual purposes, this 

distortion measure is not a very good choice. However, some improvement can be 

made by allowing the frequency loudness weighting function based on the transmission 

medium characteristic [Noc85]. However, this technique is rather complex and 

difficult to construct. 

2.2.2.2 The Itakura-Saito Distortion Measure. The Itakura-Saito (IS) distortion 

measure was originally introduced as an error-matching function in the maximum 

likelihood estimation of an AR spectral model to represent a speech signal [Jua84, 

Gra80]. The forward Itakura-Saito distortion measure is defmed as [Ita68, Ita70] 

(2.5) 

At the present time, the IS distortion measure is the main tool to measure the 

similarity between two AR spectral models. As we will see in the following section, 

the IS distortion measure is twice the limit of the normalized discrimination function. 

Thus, minimizing the IS distortion measure between x(n) and y(n) is equivalent to 

finding the nearest neighborhood y(n) to x(n). In addition, the IS distortion measure is 

subjectively meaningful since it weights the spectral peaks heavier than the spectral 

valleys [Ita68]. For these reasons, this research is devoted to the application of the IS 

distortion measure in designing an optimal FIR filter. The details of the derivation 

and properties of the IS distortion measure will be explored extensively in the 

following sections. 
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2.2.2.3 The Ita.kura Distortion Measure. The Ita.kura distortion measure is 

defined as [Ita75] 

(2.6) 

where cr/ and cr/ are average power of x(n) and y(n), respectively. If both x(n) and 

y(n) can modeled by two AR spectral models, i.e., 

2 
Px(c..>) 

ax (2.7) = 
lA( c..>) 12 

and 

2 

Py(c..>) = 
Oy (2.8) 

IA'(c..>)l2 

where 

p 

A( c..>) = L aie-J6>i (2.9) 
i=O 

and 

p' 
(2.10) A'(c..>) = .E a[ e -J6)i 

i=O 

and I• ~ denotes magnitude square. Then, it can be shown that the Itakura distortion 

measure is the gain-optimized version of the IS distortion measure. Furthermore, if 

a}= cr/, equation (2.6) becomes 
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(2.11) 

Equation (2.11) is also known as the log likelihood ratio distortion measure 

since for a Gaussian process and large sample size it does approximate a likelihood 

ratio of two AR spectral models [Ita75]. The Itakura distortion measure has been used 

successfully in speech recognition problems, especially to generate a codebook for 

vector quantization design since in vector quantization, the speech signal is modeled as 

an AR spectral model [Noc85]. However, for general cases, where x(n) and y(n) 

cannot be represented by AR spectral models, the IS distortion measure is preferable 

since as we will see later that the IS distortion measure closely relates to the 

information discrimination function used in the nearest neighborhood system while the 

Itakura distortion measure does not. 

2.2.3 Cepstral Distortion Measure. The cepstrum, {~},of a sequence x(n) is 

the inverse Fourier transform of the logarithm power spectrum of x(n) [Rab78], 

(2.12) 

The cepstral distortion measure is defined as [Gra76] 

L 

deep = L (ct - c{)2 • 
lz-L 

(2.13) 

where L is any large integer number that assures deep to be positively definite. 

This distortion measure was originally introduced as an estimate of ~ distortion 



measure without a DFT operation [Gra76]. Thus, the property of the cepstral 

distortion measure is very similar to those of d2• 
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2.2.4 Mean Opinion Score (MOS). The mean opinion score is a quantifier of 

subjectively rated speech quality computed by averaging the individual opinion scores 

from a sample of listeners. The five point opinion score, 1, 2, 3, 4, and 5, represents 

the quality scale, excellent, good, fair, poor, and unsatisfactory, of the speech signal. 

The major difficulty of this scoring system is due to the fact that listeners may 

occasionally rank a very slightly impaired stimulus higher than the original. In 

addition, the same experiment tested at different time always yields different MOS 

values [Jay84]. However, one may alleviate the problem by creating a distribution 

function of the MOS values and making use of the mean or median of such 

distribution function. 

2.2.5 Other Distortion Measure 

There are several other distortion measure introduced in the past few years. In 

speech recognition systems, some of them have even been reported to be more 

subjectively meaningful than the distortion measures discussed previously. Some of 

these distortion measures are weighted likelihood ratio, weight slope metric distortion 

measure, etc. [Noc85]. We know from Chapter 1 that the human auditory system is 

sensitive to the resonance frequencies (formants) in terms of recognizing what sound is 

heard. These distortion measures involve using a weighting function to weight the 

high energy level portion of a speech signal heavier than others. We also know that 
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two different speech sounds will have distinct set of the formants, as a result, requires 

two distinct weighting functions. To implement these types of distortion measure 

requires knowledge of what speech sound has been received in advance. However, in 

general cases, e.g., designing a speech optimal filter, such knowledge cannot be 

acquirable, i.e., we do not know which sound has been received. For these reasons, 

these distortion measures do not receive as much practical used as the IS distortion 

measure. 

2.3 Derivation of the IS Distortion Measure 

It is well known that an AR spectral model can be effectively used to represent 

a speech signal. The main problem is how to determine the best suited AR spectral 

model from all possible AR spectral models. The motivation of this section is to find 

the best AR spectral model in the maximum likelihood sense to represent the speech 

signal. Note that the following work has been mainly done by Itakura [Ita68, Ita70]. 

We start by assuming that the power spectrum of a speech signal, P x( ro ), can be 

modeled by a product of two components, a slowly varying (or periodicity in the case 

of voiced speech) positive spectrum envelope, P1(ro ), and a rapidly varying spectrum, 

P2(ro), i.e., 

(2.14) 

P 1 ( ro) can be considered as the spectrum of the human vocal tract response and 

P2(ro) corresponds to the spectrum of the source of excitation [Rab75]. The source of 

excitation for the voice sound is at the glottis and consists of broad-band quasi-
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periodic puffs of air produced by the vibrating vocal cords. For unvoiced sound, the 

source of excitation can be either a turbulent quasi-random blow at the point of closure 

for the sound like "s" or a rapid release of the air pressure built up behind the total 

constriction for the sound like "p". 

Itakura [Ita68, Ita70] assumes that P2(co) is uniform or flat spectrum. Note that 

this argument is true only for unvoiced speech since for voiced speech the source of 

excitation is periodic in nature [Rab78]. However, Itakura [Ita70] claims that a voiced 

sound can be expressed by a function of a periodic pulse train but with various kinds 

of variations such as variation of the pulse interval, the change of the pulse shape, etc .. 

Thus, the following analysis still can be applicable to the voiced speech. 

We define a short segment of length N of a speech signal as 

X == [x(O), x(l), ••• , x(N -1)] . (2.15) 

Viewing X as a random Gaussian process (note that the speech distribution 

function is found to be close to a Gamma or Laplacian distribution [Rab78), the goal 

is to model P x( co) by an AR spectral model of order p whose power spectrum is P y( co) 

expressed as 

(2.16) 

== ___ a--=.2/_211: __ _ 
p 

do +2 :E ~cos(k<.>) 
(2.17) 

k=l 



where ao=1, 

and 

p 

d• = E a~At+i , 1 ~ i ~ P . 
k-o 

27 

(2.18a) 

(2.18b) 

Equation (2.16) is equivalent to modeling a speech frame by an AR spectral 

model of order p (AR(p)) driven by an white noise of variance cr2/21C. Without losing 

any generality, we assume that x(n) has zero mean. We then introduce a set of 

parameters 

(2.19) 

Thus, the goal is to find the maximum likelihood estimator of 0 that represents 

a speech segment X. Under the Gaussian assumption, we can write the probability 

density function of X as 

(2.20) 

where ~ is the covariance matrix of X. When the probability density of X is given 

by equation (2.20), the conditional probability density function of X given 0, p(X/0) 

can be written as [Ita70] 

p(Xfe) = (21t~2f/'~ ~ l ' (2.21) 
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where 

(2.22) 

and 

N-1 p N-k-1 

Q(X) = doL x2(i)+2E ~ L x(i)x(i +k) . (2.23) 
i...O k .. 1 i=O 

We then introduce a short time autocorrelation function defined as 

N-j-1 

tx(j) = _!_ L x(i)x(i +j) . 
Ni-o 

(2.24) 

Thus, Q(X) can be written as 

p 

Q(X) = NdJx(0)+2NL dJx(k) • (2.25) 
k-o 

From equation (2.21), we can find the log likelihood function of p(X/0) as 

N ~ 1 L(X/6) = lnC--ln(2rca J--Q(X) . 
2 2a2 

(2.26) 

Itakura [Ita68, Ita70] showed that if N >> p, the term InC in the right-handed 

side of equation (2.26) is negligible. Thus, equation (2.26) can be approximated as 

From equation (2.1 7), it can be shown that 

2 n: 

d _ a J cos(<..>i)d 
i--- <..>. 

(2rcf -n: Py(<..>) 
(2.28) 
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Taking the natural logarithm of both sides of equation (2.16), we get 

(2.29) 

Assuming that the AR spectral model has all its roots inside the unit circle, it 

was shown that [Mar76] 

(2.30) 

Using equation (2.30), integrating both sides of equation (2.29) yields 

(2.31) 

Using equation (2.28) and (2.31) in equation (2.27), it is shown in [Ita70] that 

where Px(co) is the short-time power spectrum of the speech signal, x(n), which can be 

defined as 

N-1 

= _1_1 L x(m)ejCa>m 12 . 
2n;N m=O 

(2.33) 

(2.34) 

To· obtain the maximum likelihood estimator of 0, one needs to find the 0 
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which maximizes equation (2.32) for a given X. This is equivalent to minimizing the 

function [Ita70] 

where 

" 
F = _!_Jv(w)-lnV(w)-ldw , 

21C 
-n: 

Thus, maximizing the log likelihood function (equation (2.32)) is in fact 

(2.35) 

(2.36) 

equivalent to minimizing the IS distortion measure between a AR spectral model 

spectrum, P y( m ), and the short time spectrum of the speech signal, P x( m ). In fact, it is 

also shown in [Ita70] and [Mar76] that, for a band limited speech spectrum where 

aliasing effect is negligible, the LPC which minimizes the residue energy is equivalent 

to minimizing the IS distortion measure between the AR spectral model spectrum and 

the speech spectrum. 

In LPC analysis, we want to model a speech sequence, x(n) of length N by 

another sequence y(n) in which y(n) can be expressed as [Kay88] 

p 

y(n) ;::: -L a1x(n -i) (2.37) 
i=l 

where pis the LPC order. 

Such y(n) can be obtained by minimizing the MSE between x(n) and y(n) 

[Mar76]. In other words, we want to minimize the residual energy, En, which can be 

defined as 
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.. 
(2.38) 

n•-• 

where 

e(n) = x(n) - y(n) (2.39) 

p 

= E~~tx(n-i) (2.40) 
i-o 

and 3o = 1. 

For an alternative approach to obtain the maximum likelihood estimator of E>, 

Itakura and Saito (1970) start with an assumption that for N >> p, the joint density 

function of the x(n), n = 0, ... , N-1, in a speech segment X can be approximated by 

p(x(O),x(l), ••• ,x(N -1)) = (2-n a2)Nflcxt{ -P/2a2] (2.41) 

where 

p = i: [t ~~tx<n -i>f . 
n•-ao i-Q 

(2.42) 

We note that from equation (2.38) and (2.40), J3 in equation (2.42) is in fact the 

residue energy. Furthermore, to find a set of a;_, i = 1, ... , p which maximizes equation 

(2.41) is equivalent to fmding the maximum likelihood estimate of a;_. Thus, the 

maximum likelihood estimator of 9 can be found by minimizing the residue energy in 

equation (2.42). We conclude that LPC analysis is equivalent to fmding the spectral 

AR model that minimizes the IS distortion measure between x(n) and y(n). 

So far, we have shown that the IS distortion measure is closely related to the 
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likelihood function of ® given X. The maximum likelihood estimator of ® can be 

obtain by minimizing the IS distortion between the speech spectrum and the AR 

spectral model spectrum. Furthermore, such ® can alternatively be found by using the 

famous LPC analysis. However, nothing in the world is perfect. One should 

remember that the above analysis is based on the following assumptions. 

1. The speech signal is Gaussian distributed. However, the distribution 

function of the human speech has been experimentally found to be closer to Gamma or 

Laplacian distribution function [Rab78]. 

2. The speech signal can be modeled by an AR spectral model driven by a 

white noise sequence. It is known that this model is valid for only unvoiced sound. 

For voiced sound, the driving sequence should be a periodic impulse train with the 

period corresponding to the human pitch period. 

3. We assume that aliasing effects and quantization noise are negligible. 

In the following section, we will look at the IS distortion measure from the 

information theory point of view. It will be shown that the IS distortion measure is 

asymptotically equal to twice the information discrimination function which is used to 

measure the similarity between two Gaussian random processes. 

2.4 Relationship between the IS Distortion Measure 

and the Information Discrimination Function 

Discriminant analysis and classification are multivariate techniques concerned 

with separating distinct sets of objects (or observations) and with allocating new 
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objects (or observations) to previously defined groups [Joh92]. To separate such 

distinct sets of objects, one tries to find a "discriminant" or information discrimination 

function whose numerical values are such that the collections are separated as much as 

possible. Given previously defined groups, a new object (or observation) will be 

assigned the group that yields the minimum information discrimination function. Such 

a technique is also known as the nearest neighborhood system. In this section, we will 

show that the IS distortion measure is closely related to the information discrimination 

function. In fact, for large samples of observation, the information discrimination 

function is asymptotically equal to half of the IS distortion measure. Recall from 

Chapter 1, the speech sounds contained in the same neighborhood will sound alike. 

Thus, the IS distortion measure is a very good choice to measure the quality of speech 

sound perceptually. As a result, this will lead us to a strategy to design a new optimal 

FIR filter for perceptual speech processing. 

Without losing any generality. consider two zero-mean Gaussian, x(n) and y(n), 

processes with power spectrum, Px(ro) and Py(ro), respectively. We again consider a 

segment of length N of x(n) and y(n). Thus, we define vectors 

X = [x(O),x(1), ••• ,x(N -1)] (2.43a) 

and 

Y = [y(O),y(1), ... ,y(N -1)] • (2.43b) 

Assume x(n) and y(n) are real. Thus, their probability density functions (PDF) 

of the segments X andY are denoted by Px(X) and Py(Y), respectively. Since x(n) and 
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y(n) are zero-mean Gaussian processes, they can be completely described by their 

covariance matrices, Rx and Ry, respectively. We shall put a constraint on Y such 

that Ry is positive definite and satisfies the following property. 

(2.45) 

where r(ij) is an element at row i and column j of the covariance matrix R and p is an 

integer less than N. We also note that r(ij) is in fact the autocorrelation function. 

Thus, we can rewrite equation (2.45) as 

~(i) = ~(i) ' 0 s: i s: p ' {2.46) 

where ~(i) and Ry(i) is the autocorrelation function of x(n) and y(n), respectively. 

We note that if any positively definite Ry satisfies equation (2.45) or {2.46), then Ry 

is said to be an extension of Rx [Gra76]. 

The information discrimination function, IN(X,Y), of two Gaussian processes 

can be written as [Kul59] 

(2.47) 

where det { •} denotes the determinant of the matrix and tr { •} denotes the trace of the 

matrix. It is shown in Pinsker [Pin64] that this information discrimination function 

has a limit 

I(X,Y) = limiN(X,Y) 
N ..... 

(2.48) 
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1 
= 2 <frs(X,Y) • (2.49) 

Thus, the IS distortion measure is exactly twice the asymptotically information 

discrimination function under a Gaussian assumption. From the knowledge of the 

cluster analysis [Joh92], we are seeking a segment Y that is closest to segment X in 

the nearest neighborhood sense. Thus, minimizing the IS distortion measure between 

speech segment X and Y is equivalent to finding the nearest neighborhood AR spectral 

model of all possible AR spectral models. 

In LPC analysis, given a speech segment X of length N, we wish to represent a 

speech segment X by an AR spectral model of order p which produces an estimated 

segment Y. It is shown in [Mar76] that the LPC satisfies the autocorrelation function 

matching property (equation (2.46)). 

Note that equation (2.46) is equivalent to equation (2.45). We also showed 

previously that the LPC analysis which minimizes the MSE between x(n) and y(n) is 

equivalent to finding the maximum likelihood estimator of AR spectral model 

parameters to represent a speech segment X. In other words, we are seeking an 

optimal segment Y to represent a segment X in the sense of minimizing the MSE 

between x(n) and y(n) under constraint of equation (2.45). As a result, the LPC 

analysis is equivalent to minimizing the IS distortion measure between x(n) and y(n), 

or finding the nearest neighborhood segment Y to represent speech segment X. Thus, 

if aliasing is negligible, the LPC analysis is a good choice to model the speech 

segment. 
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The use of the information discrimination function can be extended to 

non-Gaussian data. Consider equation (2.46), it is obvious that IN(X,Y) is minimized 

if Rx = Ry . Thus, for the non-Gaussian data, to represent a speech segment X, we 

are seeking a segment Y which satisfies the following conditions. 

1. E{y(i)} = E{x(i)} , i = O,l, ••• ,N -1 • 

2. ~(i) = ~(i) ' 0 :;; i :;; p ' 

where p is an integer greater than or equal to zero but less than or equal to N. 

(2.50) 

(2.51) 

Equation (2.50) and (2.51) imply that to obtain the optimal segment Y one 

should maintain the first order random variable characteristic and preserve the second 

order characteristic as much as possible (up top lags). We shall keep in mind these 

two equations as our strategy for designing an optimal FIR filter that has a better 

perceptual quality than the optimal FIR filter obtained by minimizing the MSE 

between x(n) and y(n) (called the Wiener filter). In other words, a good perceptual 

FIR filter should satisfy equation (2.50) and (2.51). It will be shown in the following 

Chapter that even though the LPC is equivalent to minimizing the IS distortion 

measure if the aliasing effect is negligible, this will not be the case for the Wiener 

filter. In other words, the Wiener filter does not satisfy the autocorrelation function 

matching property. Hence, filtering a speech signal by the Wiener filter is not 

equivalent to finding the nearest neighborhood segment Y to represent the segment X. 

In the next Chapter, we propose a new optimal FIR filter obtained by minimizing the 

IS distortion measure between x(n) and y(n) called an optimal IS filter. It will be 
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shown that this new IS filter satisfies the autocorrelation function matching property. 

As discussed in Chapter 1, the human auditory system is sensitive to the format 

frequency. Thus, the new optimal FIR filter is expected to perform perceptually better. 

2.5 Literature Review 

Optimal digital signal processing system has received great attention in the past 

twenty years. A process is optimal in the sense that the output is obtained by 

minimizing an objective function. The objective function may be a distortion measure 

described in the previous section. In speech processing, one of the most common 

areas happens to be the modeling of a speech signal by a linear model such as AR , or 

autoregressive moving average (ARMA) spectral model. In this case, the main 

application of the spectral distortion measure is probably in vector quantization design. 

In the vector quantization design, instead of transmitting the speech signal through a 

communication system in a sample by sample basis, we instead transmit only the AR 

spectral parameters® as discussed in the previous section [Gra84]. It is known that 

the typical order of the AR spectral model to represent the speech signal is about 10 to 

12 [Rab75, Rab78]. Thus, a significant amount of data rate reduction can be 

accomplished. At the receiving end, the speech signal can be synthesized by driving 

the received AR spectral parameters by either a white noise sequence for the unvoiced 

sound or a periodic impulse for the voiced sound. However, the corrupting noise in 

the communication channel causes the received AR spectral parameters to deviate; 

thus, the synthesized sound is distorted. To alleviate this problem, research has 
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showed that a sufficient English sound can be reproduced within a finite number of the 

AR spectral parameters called a codebook. There are several methods used to 

generate a codebook, for example, k-mean algorithm [Lin80], split-mean algorithm 

[Gra80], etc .. The training speech signal is processed on a frame by frame basis. The 

commonly used frame size is 128 or 256 samples/frame. The AR spectral parameters 

for each frame are computed via LPC analysis. Once the new AR parameters are 

computed, the codebook is generated by grouping all the AR spectral parameters from 

the training speech based on how similar they are. The most commonly used 

similarity measures are the IS distortion measure and the Itakura distortion measure. 

The basic function of a vector quantizer is depicted on Figure 2.2. A speech 

frame is fed into the LPC to compute the AR spectral parameters. The computed AR 

spectral parameters are compared with those contained inside the codebook. The AR 

spectral parameters which yield the nearest neighborhood distance to the computed 

parameters will be selected and transmitted through the communication channel. 

Again, the most widely used nearest neighborhood distance is the IS distortion 

measure. At the receiving end, the received parameters are distorted due to corrupting 

noise. The received parameters are then compared with all possible parameters inside 

the codebook. As in the transmitting end, the parameters that yield the smallest 

distortion measure (IS distortion measure for most case) to the received parameters 

will be used to resynthesize the speech sound. For further details of vector 

quantization design, the reader may refer to [Buz80] and [Gra84]. 

Note that the main purpose of the vector quantization design is to compress the 
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Figure 2.2. Vector Quantization System. 

data rate, not to maintain high quality speech sound. The first efficient vector 

quantization design was introduced by [Lin80]. The design was based on the Lloyd's 

optimal quantizer design algorithm [Llo57]. The distortion measure used in this 

design is the square-error distortion measure. Compared to a simple pulse code 

modulation (PCM) system, the vector quantization design yields significant reductions 

to the data rate and fairly acceptable speech quality. Buzo [Buz80] designed a vector 

quantizer using the IS distortion measure as a similarity measure. For a very low data 

rates and a certain level of average distortion, the vector quantizer yields 

· approximately 15 to 20 fewer bit errors per frame than the optimized scalar quantizer. 
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At that time, the main difficulty of the vector quantization design was the hardware 

implementation. Thus, the majority of the research was devoted to designing more 

compact codebook and more efficient search algorithms to improve the hardware 

speed. In terms of improving the speech quality, Chu [Chu82] proposed a technique 

called weighted Itakura-Saito distortion measure. This technique employed the idea 

that the human auditory system is more sensitive to the lower frequency band than the 

higher frequency band [Mak75]. The speech signal is first split into two frequency 

bands, 0-5 kHz and 5-l 0 kHz. Then, each frequency band will be modeled by the 

LPC where more poles will be used to represent the signal in the lower band than in 

the higher band. The IS distortion measure used in each band is weighted in way that 

it is more sensitive to the frequency band where it is used. This technique was also 

extended to other distortion measures, e.g., the Itakura distortion measure [Soo88, 

Li89]. For the moderate SNR condition, the perceptual quality (in terms of 

recognizing a specific word) of the Itakura distortion measure is very similar to the 

result obtained by the IS distortion measure. We note that all of these techniques 

employ very similar ideas to the technique in [Mak75]. Another approach to improve 

the speech quality in vector quantization design is a Fourier transform vector 

quantization [Cha87]. In this technique, the input speech signal is first transformed 

into the frequency domain via the use of discrete fourier transform (DFT). Following 

that, a regular vector quantizer can be employed with the addition of an inverse DFT 

(IDFT) at the receiving end. The distortion measure used here is simply the weighted 

MSE between the frequency domain of the speech signal and the frequency domain of 
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the estimate. The weighting value varies from frequency to frequency depending on 

how much the human ear corresponds perceptually. As a result, this design provides 

better subjective quality than ordinary vector quantization. However, the system is 

much more complex, as it requires two separate quantizers to take care of both real 

and imaginary parts of the DFT speech signal. 

Recently, El-Jaroudi [Elj87, Elj88, Elj89, Elj91] proposed a new modeling 

technique called discrete all-pole (DAP) modeling. In DAP modeling, a speech signal 

is modeled by an AR spectral model which minimizes the discrete version of the IS 

distortion measure between the speech spectrum and the spectrum of the AR spectral 

model. This technique yields better spectrum fitting than the LPC technique, 

providing better subjective quality speech sound. Recall from the previous sections 

that the LPC was derived under the assumption that the sampling rate is high enough 

that the aliasing effect is negligible. However, for a high quality speech sound, such 

aliasing sometimes cannot be neglected. El-Jourdi showed that minimizing this IS 

distortion measure is equivalent to matching the aliased autocorrelation function of the 

original speech signal with the autocorrelation function of the AR spectral model 

aliased in the same manner up top (order of the AR spectral model) lags. In addition, 

DAP modeling does have a strong relationship with the continuous spectrum linear 

prediction (LP) modeling [Mak75]. In fact, the DAP reduces to the LP for the 

continuous spectrum case but LP does not reduce to DAP for the discrete spectrum 

case. Thus, the LP is in fact the special case of DAP as the number of spectral points 

goes to infinity. We note that DAP modeling is simply an autocorrelation function 
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matching algorithm which is equivalent to equation (2.51 ). Thus, the DAP does agree 

with our previous conclusion that, for speech signal processing, a good perceptual DSP 

technique should satisfy equation (2.50) and (2.51). 

2.6 Contribution of This Research 

Another big area of digital signal processing is optimal digital filter design. 

The general digital filtering system is depicted in Figure 2.3. A receiving signal, r(n), 

consists of a message signal, x(n), corrupted by an additive white Gaussian noise, u(n). 

The idea is to design an optimal filter which yields the output signal, y(n), closest to 

the message signal, x(n), in some sense. In other words, we are required to fmd an 

optimal filter which minimizes the distortion measure between x(n) and y(n), d(x,y). 

The most commonly used distortion measure is the MSE. The optimal filter which 

minimizes the MSE between x(n) and y(n) is called the Wiener filter [Orf90]. In the 

past twenty years, researchers have devoted themselves to implementing the casual 

part of the Wiener filter. One of these techniques is the famous least mean square 

(LMS) algorithm [Wid84]. The LMS algorithm is successfully used to implement the 

echo canceler and many control algorithms. Another widely used technique is to solve 

the Wiener-Hopf system of equations [Orf90]. This technique has been successfully 

used in many areas, e.g., in digital communication system etc.. The main attraction of 

this technique is its ease of implementation. The autocorrelation function used in the 

Wiener-Hopf equation can be accurately estimated from the real time signal via many 

available autocorrelation function estimator [K.ay88]. 
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Figure 2.3. Filtering Scheme. 

However, as mentioned in the previous section, the MSE is designed for 
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general purposes not for the speech perception purpose. One distinct aspect is that the 

LPC does possess the matching autocorrelation function between the original speech 

signal and the estimate signal property, while the solution of the Wiener-Hopf system 

of equations does not as we will see in the following Chapter. Thus, one should 

expect that this technique is not optimal in the perceptual sense. 

Up to the present, there is no optimal digital filter specifically designed for the 

speech perception purpose. The motivation of this research is to propose a technique 

for designing an optimal finite impulse response (FIR) filter for high quality speech 

sound. This technique is accomplished by minimizing the IS distortion measure 

between the original speech sound and the filter output. It will be shown later that 

this technique is simply equivalent to matching the autocorrelation function of the 

original speech with the autocorrelation function of the estimated speech up to p lags. 



44 

2.7 Summary 

In this Chapter, we have discussed several speech distortion measures. We also 

briefly discussed some of their advantages and disadvantages. Recall in Chapter 1 that 

speech sounds which are in the same neighborhood will perceptually sound alike. 

With this motivation, a good speech distortion measure should possess the 

neighborhood distortion measure minimizing property. An optimal speech processor 

should perform in the manner of finding the estimate which yields the minimum 

neighborhood distortion measure. One special type of distortion measure called the IS 

distortion measure was investigated in depth. We showed that this minimizing the IS 

distortion measure between a speech segment X and an estimate segment Y is 

asymptotically equivalent to finding the nearest neighborhood segment Y to represent a 

speech segment X. In the modeling problem, one can easily accomplish this by using 

the LPC analysis. However, in the filtering problem, this is not the case as we will 

see in the following Chapter. The Wiener filter which is closely related to the LPC 

analysis does not possesses the autocorrelation matching property as the LPC does. 

Thus, the Wiener filter is not optimal in the perceptual sense. In the following 

chapter, we will show this limitation of the Wiener filter in detail. We also propose a 

new optimal FIR filter called an optimal IS filter obtained by minimizing the IS 

distortion measure between the speech signal, x(n), and the estimated signal, y(n). We 

will see the IS filtering technique possesses the autocorrelation function matching 

property while the Wiener filter does not. 



CHAPTER ill 

OPTIMAL POST FILTER DESIGN 

3.1 Introduction 

The classical Wiener filter has been playing a major role in signal processing 

and communications since the 1950's. One of the most widely used methods is to 

realize the causal part of the Wiener filter with a Finite Impulse Response (FIR) filter. 

This method is attractive due to its ease of implementation. The coefficients of the 

FIR filter are obtained by solving the Wiener-Hopf system of equations which can 

easily be done by using Levinson algorithm [Orf90]. 

As discussed in the previous Chapter, the Wiener filter is designed for general, 

not for human perceptual, purposes. We will show in the following section that unlike 

the LPC, the Wiener filter does not possess the autocorrelation function matching 

property. Thus, it is not optimal in the perceptual sense. We will then purpose a new 

optimal FIR filter called the optimal IS filter. This new optimal FIR filter does 

possess the autocorrelation function matching property while the Wiener filter does 

not. The optimal system is depicted in Figure 3 .1. The optimal IS filter can be found 

by minimizing the backward IS distortion measure between the processed signal, y(n), 

and the original signal, x(n). We will show that this technique is equivalent to 
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Figure 3 .1. Optimal Filtering System. 

matching the aliased version of the Wiener filter frequency response with the 

magnitude square of the optimal IS filter frequency response aliased in the same 

manner. 
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In the next section, we note the limitations of the Wiener filter by showing that 

the Wiener filter does not possess the autocorrelation function matching property. In 

section 3.3, we derive a set of normal equations for an optimal IS filter. From the set 

of normal equations, we will show that the optimal IS filter does possess the 

autocorrelation function matching property which makes it perceptually preferable. 

Solution of this set of normal equations can be found iteratively via Newton's method 

with the solution of the Wiener-Hopf system of equations as initial conditions. The 

uniqueness of the solution and the convergence of the algorithm will also be discussed. 

In section 3.4, some computer experiments will be conducted. The computer 

simulation results show that compared to the Wiener filter, the optimal IS filter is 
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superior in terms of spectral matching and output SNR. Finally, the conclusion of this 

Chapter will be presented in section 3. 5. 

3 .2. Limitations of Realizing the Wiener Filter by Solving 

the Wiener-Hopf System of Equations 

Consider the general digital filter design shown in Figure 3 .1. The received 

signal, r(n), consists of a message signal, x(n), corrupted by a noise sequence, u(n). 

Assume that the corrupting noise sequence is additive, white, zero-mean, Gaussian 

distributed with variance d', and uncorrelated to x(n). Thus, we can write the received 

signal, r(n), as 

r(n) =x(n) +u(n) • (3.1) 

Designing a digital FIR filter is equivalent to estimating a random signal, x(n), 

on the basis of available observations of related signal, r(n). The resulting estimate, 

y(n), will be a function of the observation r(n). The goal is to find a set of FIR filter 

coefficients, a;_, which minimize the linear mean square error, i.e., we want to minimize 

[Or£90] 

n=-oo 

~ 

= ___!_ JP ((I) )d(l) 
211: c 

-11: 

where Pe(co) is the power spectrum of e(n) defined as 

(3.2) 

(3.3) 
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e(n) = y(n) - x(n) • (3.4) 

It is well-known from the orthogonality principle that the coefficients of the 

optimal MSE FIR filter can also be found by solving [Kay88] 

(3.5) 

where P.r(co) is the cross spectrum between e(n) and r(n), i.e., 

(3.6) 

where E(co) and R(co) are the Fourier transform of e(n) and r(n) respectively, and * 

denotes the conjugate operation. 

From Figure 3.1 and using equation (3.6), it is easy to show that 

(3.7) 

where P xC co) is power spectrum of x(n) and G( co) is the Fourier transform of the FIR 

filter impulse response. 

Setting equation (3. 7) to zero, we can find Gopt,wicncrC co) as 

(3.8) 

From equation (3 .1 ), we can find 

(3.9) 

where Pr(co) is the power spectrum of r(n). 
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Thus, using equation (3.9) in equation (3.8), we get 

(3.10) 

Equation (3.10) is known as the Wiener filter frequency response [Orf90]. 

There are several ways to realize the causal part of equation (3.10). One of the most 

common ways is to assume that we have a set of N discrete spectrum of both x(n) and 

r(n), i.e., we have 

(3.11) 

where roi=21t/N is the ith discrete frequency spanning from 0 to 21t. We are interested 

in the case where G(ro) is a linear time-invariant finite impulse response (FIR) filter of 

order p, i.e., 

(3.12) 

where ~ is the kth coefficient of the FIR filter, G(ro ). 

Substituting equation (3.12) into equation (3.11) and rearranging the terms, we 

get 

(3.13) 

Multiplying both sides of equation (3.13) by 1/N and taking the inverse discrete 

fourier transform (IDFT), we finally get 



50 

p 

L~(i-k) = ~(i), 0 ~ i ~ N-1. (3.14) 
k=O 

where the autocorrelation function, R(i), can be defined as [K.ay88] 

N-1 

R(i) = _! E P( c.>JeJ(I)t 1 • 

Nk..o 
(3.15) 

Equation (3.14) is the famous Wiener-Hopf system of equations. Note that 

solving equation (3.14) is equivalent to minimizing the discrete version of equation 

(3.3), i.e., we are minimizing 

(3.16) 

Recall that both x(n) and u(n) are discrete signals. As a result, both Px(m) and 

Pu(m), the power spectrum of u(n) which is equal to constant cP, are continuous with 

the same period of 21t [Opp89]. Assume that the continuous time signals, x(t) and/or 

u(t), are not bandlimited. Thus, either Px(m) or Pu(m) or both are aliased, and so is 

Pr(m). However, from equation (3.12), there is no restriction on G(m) to be aliased if 

Pr(m) is. Thus, from equation (3.11), we can see that this process is equivalent to 

matching the aliased version of the Wiener filter frequency response with the 

nonaliased FIR filter frequency response. 

However, the most undesirable characteristic of the Wiener filter in high 

quality speech processing is probably that the Wiener filter does not possess the 

autocorrelation function matching property. To show this, since G(m) is a FIR filter, 

we can write the relationship between processed signal, y(n), and the received signal, 
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r(n), as 

p 

y(n) = L at!(n -k) . (3.17) 
k=O 

Multiplying equation (3.17) by y(n-i) and taking the expected value on both 

sides, we get 

p 

~(i) = L a~{r(n -k)y(n -i)} (3.18) 
k-() 

where the autocorrelation function of y(n), Ryy(i), can also be defined as 

~(i) = E{y(n)y(n -i)} . (3.19) 

Using equation (3.17) in equation (3.18), we can show that 

(3.20) 

Comparing equation (3.20) with equation (3.14), we can conclude that 

~(i) :F ~(i) ' 0 ~ i ~ p . (3.21) 

Thus, the Wiener filter does not possess the autocorrelation function matching 

property. In the following section, we will derive a new optimal filter called an 

optimal IS filter that minimizes the IS distance x(n) and y(n). We will show that this 

is equivalent to matching the aliased version of the Wiener filter frequency response 

with the magnitude square of the FIR filter frequency response aliased in the same 

manner. Furthermore, we also show that this optimal IS filter does satisfy the 

autocorrelation function matching property whereas the Wiener filter does not. 
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3 .3 Derivation of the Optimal IS Filter 

The backward IS distance measure between x(n) and y(n) can be defined as 

(3.22) 

The difference between the forward and backward IS distortion measure is 

switching the role between the reference signal, x(n), and the processed signal, y(n). 

Even though, the IS distortion is not symmetric, for a small value of d18, we can 

assume that the forward IS distortion measure and the backward IS distortion measure 

are approximately equal [Gra76]. 

Before we start deriving the optimal IS filter, we should mention that the 

beginning ofthe derivation shares some similarity with El-Jaroudi's works [Elj87, 

Elj88, Elj89, Elj91]. However, as the derivation goes on, the final results totally 

differ. This is because in El-Jaroudi, a speech signal is modeled by an AR spectral 

model which minimizes the forward IS distortion measure between the speech signal 

and the output of the AR spectral model. In speech modeling, we know that the 

output of the AR spectral model, the processed signal, is a function only of the AR 

spectral parameters. However, in our case, we are interested in optimal FIR filter 

design: From equation (3 .17), we can see that the processed signal, y( n ), is a function 

of both FIR filter parameters and the previously received signal, r(n). 

From equation (3.1), (3.12), and (3.17), it is easy to show that 
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(3.23) 

where 1•1 2 denotes magnitude square operation. Thus, using equation (3.23) in 

equation (3.22), we get 

(3.24) 

We then takes derivative of equation (3.24) respect to ~and get 

From equation (3.23), we can find 

(3.26) 

We also know that 

(3.27) 

Using equation (3.12), equation (3.27) can be simplified to 
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p 

= 2E akcos[c.>(k-i)] • (3.28) 
k=O 

Inserting equation (3.28), and (3.26) in equation (3.25), we get 

x cos( c.>(k-i))dc.> • (3.29) 

Setting equation (3.29) to zero and rearranging the terms, we get 

(3.30) 

From equation (3.10), equation (3.30) implies that minimizing the IS distance 

between x(n) and y(n) is equivalent to matching the aliased version of the Wiener 

filter response with the magnitude square of frequency response of the FIR filter 

aliased in the same manner .. To realize equation (3.30), we again assume that we have 

N discrete samples ofPx(co). Thus, equation (3.30) reduces to 



55 

(3.31) 

Note that solving equation (3 .31) is equivalent to minimizing the discrete 

version of equation (3.22), i.e., we are minimizing 

(3.32) 

We now define 

1 H((a)nJ A , m = 0, 1, 2, ••• , N-1 • 
G((a)m) 

(3.33) 

Thus, we have 

(3.34) 

Multiply both sides of equation (3.34) by H*(ro) and use equation (3.12), we get 

(3.35) 

We now defme h(i), 0 ~ i ~ N-1, as the IDFT of H*(ro), i.e., 

N-1 

h(i) = _!_ :E H*((a)nJej6>xJ , i = 0, ••• , N-1 • 
Nm=O 

(3.36) 

Using equation (3.35) in equation (3.36), we get 
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(3.37) 

smce I G( ro) 1 2 is an even function. 

Using equation (3.37) in equation (3.31), we get 

(3.38) 

Note that equation (3.38) cannot be solved via a method proposed in [Elj87, 

Elj88, Elj91] since the output power spectrum is a function of both the input power 

spectrum and the FIR filter coefficients whereas in El-Jaroudi, the output signal is a 

function of only the AR parameters. In addition, El-Jaroudi's method requires 

knowledge of both Pr(rom) and Px(rom) in advance, which is not practical in many 

situations. Thus, we propose an alternative technique to approximate the solutions of 

equation (3.38) from the time domain signal. 

We first consider the special case where the FIR filter order, p, is equal to the 

number of samples in a signal frame, i.e., p = N-1. Then, we introduce the 

intermediate variable, ~(i), as 

(3.39) 

Note that ~(i) is in fact the autocorrelation function of the term Pr(rom)/Px(rom). 

Letting p = N-1 and using equation (3.39), we can write equation (3.38) as 
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N-1 

:E a~(k-i) = h(i), 0!5:i!5:N-1 • (3.40) 
k=O 

Taking IDFT on both sides of equation (3.40) and rearranging the summation 

term, we get 

N-1 N-1 

:E atE ~(k-i)eJ(J)tJ = H *( oom_l • (3.41) 
ka() i=O 

From equation (3.39), we can rewrite equation (3.41) as 

(3.42) 

Using equation (3.12) in equation (3.42), we get 

(3.43) 

Using equation (3.33), equation (3.43) becomes 

(3.44) 

Equation (3.44) implies that minimizing the IS distortion measure between x(n) 

and y(n) is equivalent to finding the best FIR filter which best matches the power 

spectrum of y(n) to the power spectrum of x(n). In other words, G(rom) is a linear 

time-invariant FIR filter that best represents the inverse of adding operation of Px(rom) 

and rr. However, we note that we will never fully recover x(n) back since the adding 

operation is not linear time invariant. For a practical implementation, we want to 

convert equation (3.44) into the time domain. Hence, using equation (3.12), we can 



write equation (3.44) as 

We now take IDFT of both side of equation (3.45). Thus, we get 

N-1 N-1 

E E a~1~(i+l~k) = ~(i) , 0 ~ i ~ N-1 . 
k=O 1-o 
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(3.45) 

(3.46) 

We now make an assumption that 3j = 0, i > p'. Thus, equation (3.46) reduces 

to 

P1 P1 

E E a~1~(i+l-k) = ~(i) , O~i~p'. (3.47) 
k-o 1=0 

Equation (3.47) is our new normal equations. Solving equation (3.47) is much 

easier than solving equation (3.38) since the autocorrelation functions can be 

efficiently estimated by the time domain signals. 

To solve equation (3.47), we now define 

p' P' 

fi = L L a~1~(i +1-k) - ~(i) ' o~i~p I • 

k=O 1..0 

Taking partial derivative of f; with respect to 8:i• we get 

Of P1 P1 

- 1 = 2aPtt(i) + L a1~(i -j +1) + L a~(i +j -k) 
aaj 1-o t-o 

1+j bj 

(3.48) 
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P1 P1 

= :E a~(i -j +1) + :E a~(i +j -k) • (3.49) 
1=0 k=O 

We then define a vector Ai, Jacobian matrix, Ji, and function Fi as 

(3.50) 

afo afo afo 

aao aal ~I 

afl afl afl 
-

Ji = aao ~ ~I ' 
(3.51) 

~I ~I arpl 

aao ~ ~I 

(3.52) 

where the subscript i denotes all values are computed at the ith iteration. 

Equation (3.47) can be iteratively solved by Newton's method. Newton's 

algorithm can be written as [Mat87] 

(3.53) 

We note that Newton's algorithm is very sensitive to the starting vector, A0• If 

the minimized function is not convex, different starting vectors may lead to different 

solutions [Rek83]. In addition, even if the minimized function itself is convex, poor 

selection of the starting vector results in a slow convergence rate. In this problem, we 

propose that the solution of the Wiener-Hopf system of equations be used as a starting 
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vector. We will see in the following section that simulation results show that with this 

choice, Newton's algorithm converges in a very few steps. 

To show the existence and uniqueness of the solution, we go back to the 

relationship between the IS distortion measure and the information discrimination 

function, IN(X,Y). We recall from Chapter 2 that the information discrimination 

function is asymptotically equivalent to the IS distortion measure. Thus, the analysis 

of the existence and uniqueness of the solution can be approached from the 

information discrimination function point of view. We start by quoting a theorem 

from [Gra80], i.e., 

Theorem 3.1: Given two Gaussian distributed random process, x(n) and z(n). 

Both x(n) and z(n) can be completely characterized by their mean and covariance 

matrix, J..lx, J.l.z, Rx. and ~. respectively. 

We will put constraint on Ry as follow. 

a) If there does not exist any positive definite Ry which is an extension of ~. 

the IN(X,Y)=oo. And, hence 

(3.54) 

b) If there exists any positive definite matrix R which is an extension of ~. 

then there exists a unique positive definite extension Ry * called the minimum 

information discrimination extension of ~ with respect to Rx such that 
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(3.55) 

where !l(RJ is the collection of all covariance matrices which are extension of ~. It 

is also shown in [Gra80] that !l(RJ is a convex set of k by k matrices. 

To connect the above discussion with our problem, we may view the optimal 

filtering problem as finding a minimum discrimination function random process, y(n), 

to represent the random process, x(n). Thus, equation (3.54) and (3.55) imply that 

for the existence of a solution, it is required that Ry is positively definite. It is also 

important to note that even though Ry • is unique, the set of the FIR filter coefficients 

is not. We know from digital signal processing theory that for a FIR filter of order p', 

there are 2P' sets of the FIR filter coefficients whose roots are complex conjugated to 

each others, which yield the same power spectrum. Thus, since !l(RJ is convex, if the 

solution exists, Newton's method will converge to one of the solutions of equation 

(3.47). However, the recommended set of the FIR filter is the minimum phase one, 

i.e., all the roots of the FIR coefficients are inside the unit circle since to the minimum 

phase FIR filter possess several important properties, e.g., minimum phase-lag 

property, minimum-group delay property, etc. [Opp89]. We should note that once 

Newton's algorithm converges, the resulting set of the FIR filter coefficients may yield 

its roots outside the unit circle. In such case, the minimum phase solution can be 
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found by simply reflecting all the roots which are outside the unit circle back into the 

unit circle. 

In the following section, we will do some computer simulations and 

discussions. The simulation results show that, compared with the optimal filter 

obtained from the Wiener-Hopf equations, this new optimal filter not only improves 

the spectral matching of the estimated power spectrum (smaller IS distortion measure) 

but also improves the output signal-to-noise (SNR) ratio. 

3.4 Computer Simulation Results and Discussions 

In this section, we will perform some computer simulations to exhibit the 

superiority of the new optimal filter over the optimal filter obtained by solving the 

Wiener-Hopf system of equations. We remind the reader that the goal is to estimate 

the message signal, x(n), via a filtering technique which minimizes the IS distortion 

measure between x(n) and y(n). As discussed in the previous section, the optimal IS 

filter can be obtained by solving equation (3.48) via the Newton's method, equation 

(3.54) with the solution of the Wiener-Hopf system of equations as the initial 

condition. 

For this example, we define x(n) to be a sequence of the output of an 

autoregresssive process of order 4, AR( 4), i.e., 

x(n)-1.352x(n -1)+ 1.338x(n -2)-0.662x(n -3)+0.24x(n -4) = e(n) • (3.56) 

where e(n) is a zero-mean white Gaussian noise sequence with variance one. 

The message signal, x(n), is corrupted by another zero-mean white Gaussian 
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noise sequence with variance a 2 yielding the received signal r(n) as shown in Figure 

3.1. For simulation purposes, we will assume that a 2 is known in advance. The 

autocorrelation functions of r(n) can be efficiently estimated by [Kay88] 

N-1 

~(i) = ~ :E r(n)r(n + 1) . 
N-tk-o 

(3.57) 

We note that for a large value of N, equation (3.57) yields a very good 

estimate of the autocorrelation function of r(n) [Kay88]. For this example, we will use 

N=512. 

The simulation starts by solving the Wiener-Hopf system of equations with a 

given value of filter order, p', to obtain the initial condition. The optimal IS filter is 

then found by using Newton's method. The first experiment evaluates the performance 

of the optimal IS filter with different FIR filter orders. Three different values of p' are 

selected: 2, 5, and 10. Table 3.1 compares the coefficients of the optimal IS filter 

with the solutions of the Wiener-Hopf system of equations of the same order in the 

case where the noise variance is equal to one. The forward and backward IS distortion 

measures of the optimal IS filter are plotted versus number of iterations with three 

different values of p' in Figure 3.2 and 3.3. We note that the IS distortion measures of 

the solution of Wiener-Hopf system of equations is in fact the initial value of the IS 

distortion measure curves at iteration #0. It is obvious from Figure 3.2 and 3.3 that 

the optimal IS filter is superior to the solution of the Wiener-Hopf system of 

equations as we can see sharp drops in all three curves as the iteration starts. 

Furthermore, as the p' value increases, the IS distortion measure decreases as expected. 
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TABLE 3.1 

COMPARISON OF THE WIENER FILTER COEFFICIENTS 
AND THE OPTIMAL IS FILTER COEFFICIENTS 
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Order= 5 Order= 8 Order= 10 

Wiener IS Wiener IS Wiener IS 

.6773 .5612 .6765 .5681 .6765 .5687 

.1949 .4321 .1950 .4266 .1950 .4260 
-.0982 -.0003 -.0974 -.0137 -.0973 -.0137 
-.0547 -.1317 -.0574 -.0111 -.0573 -.1113 
.0171 .0210 .0124 -.0081 .0124 -.0082 

-.0077 .0012 .0023 .0206 .0023 .0224 
-.0131 -.0019 -.0129 -.0065 
-.0039 -.0187 -.0033 -.0115 
.00581 .0092 .0047 .0023 

.0018 .0043 
-.0015 -.0007 



This is because the assumption Rj = 0, i > p', becomes more and more accurate asp' 

mcreases. 

In Figure 3.4, we plot output SNR versus number of iteration with three 

different values of p'. Again, the output SNR of the solution of the Wiener-Hopf 

system of equations corresponds to the initial value of the SNR curves. From the 

results, the optimal IS filter is seen to outperform the solution of the Wiener-Hopf 

system of equations in terms of improving the output SNR. We note that once the 

iterations converge, there is no significant difference in terms of output SNR for 

allthree curves. However, the difference in the minimum IS distortion measures 

shown in Figure 3.2 and 3.3 for three different values of p' is quite apparent. 

67 

The purpose of the second experiment is to evaluate the performance of the 

new optimal filter by varying cr'-. Three different values of a'- are also selected: 1, 3, 

and 5. As in the first experiment, the performance of the optimal filter is evaluated in 

terms of both forward and backward IS distance measure and output SNR. The results 

are summarized in Figure 3.5, 3.6, and 3.7. From those Figures, there is no doubt that 

the optimal IS filter is better than the Wiener filter in terms of both IS distortion 

measure and output SNR. However, the results show that as a'- increase, equivalent to 

a decrease of the input SNR, the performance of the optimal IS filter slightly degrades 

in terms of both IS distortion measure and output SNR. 

Comparing the forward and backward IS distortion measure results for both 

experiments, we should note that for small values of distortion measure, both the 

forward and backward IS distortion measures are approximately equal as expected. 
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To illustrate the autocorrealtion matching property of the optimal IS filter, we 

plot the power spectrum of y(n) in the case of p'=5 and two choices of cr; 1 and 5, 

shown in Figure 3.8 and 3.9. For comparison, the power spectrum of y(n) for the case 

of the solution of the Wiener-Hopf system of equations with same filter order and the 

same corrupting noise variance are also attached in Figure 3.8 and 3.9. From the 

results, we can see that the output power spectrum of the optimal IS filter tends to be 

more robust to increases of the corrupting noise variance than the solution of the 

Wiener-Hopf system of equations. Thus, we conclude that the optimal IS filter 

preserves the output spectrum; hence, it preserves the autocorrelation function 

matching property. 

As shown ·in the previous section, the main reason that the optimal IS filter is 

superior to the solution of the Wiener-Hopf system of equations is that the optimal IS 

optimal filter possesses the autocorrelation function matching property. However, 

another possible reason is because of the property of the IS distortion measure itself. 

Recall from Chapter 2 that the IS distortion measure is more sensitive to spectral 

peaks and less to the dips. However, the MSE, which is equivalent to the solution of 

the Wiener-Hopf equations, weights the contribution of all samples equally. We also 

learned that the FIR filter tends to have the smoothing property as possessed in the 

moving average (MA) process. Thus, by minimizing the IS distortion measure, the 

smoothing effect created by the FIR filter is compensated by the peak sensitivity of the 

IS distortion measure resulting in better spectral matching. 

Another possible advantage that the optimal IS filter may give us is a reduction 
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of the required amount of transmitting power at the transmitting end. We know that 

for a given SNR, the optimal IS filter outperforms the Wiener filter in terms of 

minimizing the IS distortion measure between the received signal and the unknown 

transmitted signal (assuming that the noise variance is known in advance). As a result, 

for a equivalent levels of speech recognition ability, the optimal IS filter 

communication system should require less transmitting power than a communication 

system which uses Wiener filters. 

3.5. Summary 

In this Chapter, we have derived a new optimal FIR filter called the optimal IS 

filter. This optim-al IS filter is obtained by minimizing the IS distortion measure 

between x(n) and y(n). We also showed that this technique is equivalent to matching 

the aliased version of the Wiener filter frequency response with the magnitude square 

of FIR filter frequency response aliased in the same manner. Most importantly, this 

optimal IS filter possesses the autocorrelation function matching property while the 

Wiener filter does not. As discussed in Chapter 2, this property results in the optimal 

IS filter becoming more perceptually desirable. We also performed some computer 

simulations to illustrate the performance of the optimal IS filter. The simulation 

results show that the optimal IS filter is superior to the Wiener filter in terms of both 

spectral matching and the output SNR. 



CHAPTER IV 

OPTIMAL PRE- AND POST- FILTER DESIGN 

4.1 Introduction 

In the last Chapter, we proposed a new optimal FIR post-filter called the 

optimal IS filter. In this Chapter, we propose a method to further improve the 

performance of the communication system by introducing another FIR filter at the 

transmitting end of the communication system. It is known that jointly-optimal pre­

and post-filter design will enhance the performance of a communication system 

[Smi65]. This is because the pre-filter transforms the transmitted signal into a form 

which becomes more robust to the noise in the communication system in some sense. 

The configuration of pre- and post-filter communication system design is depicted in 

Figure 4.1. The message signal, x(n), is first corrupted by input noise, v(n). The 

corrupted signal is then prefiltered by an FIR filter before being transmitted through 

the communication channel. At the receiver, the received signal, r(n), consists of the 

transmitted signal corrupted by another noise sequence, called channel noise, u(n). 

The received signal is then post-filtered again to obtain the estimated signal, y(n). 

The design of jointly optimal linear pre- and post-filtering was first pioneered 

by Costa (without considering the input noise) by minimizing the MSE [Cos52]. The 
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Figure 4.1. Jointly Optimal Pre- and Post-Filter Communication System. 
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results had been reported to have a moderate or low improvement due to poor choice 

of parameters. Costa unfortunately elected to express his results in term of (SNR). 

Twelve years later, Cramer [Cra66] pointed out that the benefit of this technique was 

in terms of the reduction in the mean square error (MSE), not in terms of improving 

the SNR [Cra66]. He rederived Costa's work, especially concentrating on the case of 

the reciprocal filter, where the transfer function of the post-filter is equal to inverse of 

the transfer function of the pre-filter. In Cramer [Cra66], a significant reduction of the 

MSE had been reported. Meanwhile, Goodman [Goo66] also applied Costa's results to 

reduce the quantization noise effect, especially with the application of data storage. 

With the assumption of using a fine grain quantizer, he showed that the De-emphasis 

network, i.e., the post-filter, can be asymptotically approximated by the inverse of the 



pre-emphasis network, i.e., the pre-filter. Furthermore, the pre-emphasis network 

behaved like a "half whitening effect" on the input signal. 
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Brown [Bro61] also considered the joint optimization of pre- and post-filter 

design for systems that can be modeled by a cascade of pre-filter, sampler, and 

post-filter when the input consists of signal plus white noise and the absence of 

channel noise. Chan and Donaldson [Cha71] considered a similar system but with the 

absence of the input noise and the presence of channel noise. They applied this 

technique to both pulse code modulation (PCM) and differential pulse code modulation 

(DPCM) cases for data compression purposes. A considerable amount of bandwidth 

compression in both cases had been reported in both PCM and DPCM systems. 

We note that all of the above literatures deal with a completely analog system 

(with or without a sampler) under the criteria of minimizing the MSE. Malvar 

[Mal86, Mal89] was the first person who reconsidered this problem in a completely 

discrete environment with the presence of both input and channel noises under an 

input power constraint. The problem is formulated by assuming the sequence x(n), 

r(n), and e(n) (defined as a difference between the input signal x(n) and the output 

signal y(n)) are cyclostationary [Pap84]. As a result, the MSE can be expressed by the 

integral of the power spectrum of e(n), obtained by taking the Fourier transform of the 

autocorrelation function of e(n) averaged over exactly one period. Malvar [Mal86] 

also showed that the input power constraint is required since the MSE is minimized as 

F(ro)=oo, Vro, which is a trivial solution. However, due to the complexity of the 

problem, Malvar could not come up with closed form solutions for both pre-and 



post-filter transfer functions. As a result, the suboptimal pre- and post-filter can be 

found via the use of a coordinate descent algorithm [Aba82]. Nonetheless, a 

significant reduction of MSE had been reported. 
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We note that all of above works are basically done under the criteria of 

minimizing the MSE. In this Chapter, we will reformulate the problem by designing 

the joint optimal pre- and post- fmite impulse response (FIR) filters that minimize the 

IS distance measure between x(n) and y(n). In the following section, the new normal 

equations for optimal pre- and post-filter which minimize the IS distortion measure 

between x(n) and y(n) will be derived. However, due to the complexity of the 

problem, as in [Mal86, Mal89], instead of finding the global optimal pre- and 

post-filter coefficients, we will seek a suboptimal pre- and post-filter solution via the 

use of Newton's algorithm with the solutions of the Wiener-Hopf equations as the 

initial condition as in the previous chapter. In section 4.3, some computer simulations 

are presented and the results are discussed. The simulation results show that these 

suboptimal filters yield a large improvement in terms of IS distortion measure and 

output SNR, compared to either the standard Wiener filters or the single optimal 

post-filter derived in the previous chapter. We also discuss the tradeoff between the 

joint suboptimal pre- and post filter case, and the single optimal post-filter case. 

Finally, some conclusions and remarks will be given in section 4.4. 
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4.2 Derivation of Jointly Optimal Pre- and 

Post- IS Filters 

We now again consider 

(4.1) 

where Px(rom) and Py(rom) are power spectrums of x(n) and y(n), respectively. We note 

that Py(rom) here is function of both pre- and post-FIR filter coefficients. We assume 

that u(n) and v(n) are uncorrelated white Gaussian noise with variance, cru2, cr/, 

respectively. Thus, from Figure 4.1, we can show that 

(4.2) 

where F(rom) and G(rom) are the frequency responses of the FIR pre- and post-filters of 

order q and p, respectively, which can be defined as 

and 

p 

G( (A)m> = L ake -J6>u)t. • 
k..O 

We note that 1•1 2 denotes the magnitude square operation. 

(4.3) 

(4.4) 

To fmd the normal equations for optimal pre- and post- FIR filters, we first 

take partial derivatives of d1s with respect to ~ resulting in 



81 

(4.5) 

From equation ( 4.2), we can find partial derivatives of P y( rom) with respect to &.j 

as 

(4.6) 

where Plrom) is the power spectrum of r(n) equal to 

Pr(<alnJ = IF(<alnJI1Px(<alm)+a;]+a; • 

Similar to equation (3.28), we can show that 

ajG(<al )12 p 
__ m_ :::; 2:EaJ80S[<alm(k-i)] • 

aai k=O 

Using equation (4.8) and equation (4.6) in equation (4.5) yields 

p 

x 2:E aJ80S[<alm(k-i)] • 
k=O 

From Figure 4.1, we know that 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

Using equation (4.10) in equation (4.9) and rearranging the terms, we have 
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(4.11) 

Setting equation ( 4.11) equal to zero, we get 

(4.12) 

We note that equation (4.12) is very similar to equation (3.31) in Chapter 3 

except that Pr(mm) in equation (4.12) is a function of the coefficients of the pre-filter. 

To complete the normal equations, we then take the partial derivative of 

equation ( 4.1) with respect to h;. Thus, we get 

(4.13) 

From equation (4.2), we can find the partial derivatives of Py(mm) with respect 

to h; as 

(4.14) 

In a manner similar to equation (3.28), we can show that 
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(4.15) 

Using equation (4.14) and (4.15), equation (4.13) becomes 

(4.16) 

Using equation (4.10), equation (4.16) can be simplified to 

(4.17) 

Setting equation ( 4.17) to zero and rearranging the terms, we get 

(4.18) 

Both equation (4.12) and (4.18) constitute a set of normal equations for optimal 

IS pre- and post- filter design. To solve for the solution of these two normal 

equations, we first define 
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(4.19) 

(4.20) 

(4.21) 

and 

(4.22) 

Thus, we can rewrite equation (4.12) as 

p p 

:E a~1(k-i) == :E a~(k-i) . (4.23) 
ko.() k-() 

Recall that convolution in the time domain is equivalent to multiplication in the 

frequency domain. As in Chapter 3, for a sufficiently large p and q that a;.= 0, i > p, 

and bj = 0, j > q, taking the DFT of both sides of equation (4.23) can be approximated 

by 

or 



or 

Using equation (4.21) and (4.22), we can rewrite equation (4.17) as 

As before, for a sufficiently large p and q, we can show that 

2 
Px(wm)+av 

Pr(wnJ 
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(4.24) 

(4.25) 

Note that the above equation is exactly the same as equation (4.24). The time-

domain representation of equation (4.24) can be written as 

p p 

L L y1~(i -k+l) = Ru(i) . (4.26) 
kzOlz() 

We note the autocorrelation function of r(n), Rn.(i), is a function of the pre-filter 

coefficients. Using equation (3.20) in Chapter 3, we can see that the left-handed side 

of equation (4.26) is in fact equal to the autocorrelation function of y(n). Thus, our 

optimal pre- and post-filters preserve the autocorrelation function matching property. 

As in Chapter 3, the suboptimal solution of equation (4.26) can be solved via 

Newton's method. Thus, we define 
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(4.27) 

Solving equation ( 4.26) is therefore equivalent to solving 

fi = 0, 0 ==: i ==: p+q + 1 . (4.28) 

For Newton's algorithm, we define 

(4.29) 

(4.30) 

and 

c3fo c3fo afo afo 
-

<3ao aap abo abq 

J = j ··. · .. (4.31) 

~+q+l ~+q+l afp+q+l ~+q+l 
<3ao aap abo abq 

where the j subscript denotes that all values are obtained at the jth iteration. 

Newton's algorithm can be expressed as [Mat87] 

(4.32) 

To construct the Jacobian matrix, Jj, we need to find the partial derivative oft: 

with respect to ~ and bj. As shown in equation (3.50) in Chapter 3, we can find 
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(4.33) 

where "R.r(i) can be efficiently estimated by equation (3.57) in Chapter 3. 

Next, we take partial derivative of equation ( 4.27) with respect to bj resulting in 

a£ p p rlV (i -k+l) 
_i = EE¥1 " ... 'tt • 
abj k=O 1=0 abj 

(4.34) 

From Figure 4.1, we can see that 

r(n) = t(n) +u(n) • (4.35) 

Since v(n) and u(n) are uncorrelated to each other and x(n), we know that 

~(i) = Ru(i)+a!~(i) , (4.36) 

where Ru(i) is the autocorrelation function of the transmitting signal t(n), and o(i) is 

dirac function defined as 

•(·) = { 1, i=O 
u 1 0, otherwise • 

(4.37) 

Using equation (4.36), equation (4.34) becomes 

&1 p p ORu<i -k+l) 
~ = EEa~1 at> • 
vuj k=O 1=0 ] 

(4.38) 

From Figure 4.1, as in equation (3.20), we can show that 
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(4.39) 

where Rww(i) is the autocorrelation of w(n), defined as a sum of x(n) and v(n), which 

can be defined as 

~(i) = ~(i)+a!a(i) , (4.40) 

since v(n) is uncorrelated to x(n). 

As in equation (3.49) in Chapter 2, we can show that 

(4.41) 

In addition, we recall that 

aR.tC -i) aR.tCi) 
(4.42) 

Thus, using equation (4.42) and (4.41), we can construct equation (4.38). 

We note again that Newton's algorithm is sensitive to the starting vector. Due 

to the complex nonlinearity of this problem, this algorithm may converge on a 

suboptimal solution. There is no guarantee that the resulting solution will be the 

global optimal solution. Thus, a good (bad) choice of the starting vector will lead to 

good (bad) suboptimal solution. We use the solution of the single optimal IS post-

filter found in Chapter 3 as the starting vector. Even though the resulting solution 

may not be the global one, it should at least guarantee that our jointly optimal design 

will perfoim equally or better than the result found in Chapter 3. In the following 
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section, we will perform some computer simulations to demonstrate the performance of 

the jointly suboptimal pre- and post- filter design. Simulation results show that as 

expected, the jointly optimal pre- and post-filter design provides better matching than 

the single optimal IS post-filter in Chapter 3. In addition, with the solution of the 

single optimal IS post-filter as the starting vector the algorithm converges in a few 

steps. 

4.3 Computer Simulation Results and Discussions 

In this section, we perform some computer simulations to exhibit the 

performance of the jointly-suboptimal pre- and post-filters. Again, for this example, 

we consider the same AR(4) sequence used in Chapter 3 (equation 3.56). The first 

experiment examines the effect of varying both pre- and post-filter orders. We assume 

that both crv 2 and cr} are known in advance or can be accurately estimated somehow, 

e.g., from the link equation. For the first experiment, we let cr/ = cru2 = 1.0. We also 

assume that both pre- and post-filter have the same order, i.e., p = q. The FIR filter 

order varies from 2, 4, and 5. The simulation results are displayed in terms of the IS 

distortion measure and SNR versus the number of iterations as illustrated in Figure 4.2 

and Figure 4.3. From Figure 4.2 and 4.3, we can see that the performance of the 

jointly optimal system improves as the FIR filter order increases as is noted from the 

significant reduction of the IS distortion measure and increase of the output SNR. In 

addition, we note that the algorithm converges within a few iteration steps. This 

implies that suboptimal solutions are within the vicinity of the solution of the single 



0,-----------------------------------------------------------------~ 

-- -5-a:l 
"'d 

i -10-1\_ 
< 
r£1 
:::g 

z 
0 

p=q=2 

~-15 ____ ..1..=..'1..::..! ... ---·----·-···--·-·----·--

rn -20-......,. 

p=q=5 

~5+-----~----~----~----~----~----r-----~--~~--~----~ 
0 1 0 20 30 40 50 60 70 60 90 100 

NUMBER OF ITERATION 

Figure 4.2 Plot of the IS Distortion Measure Versus Number of Iterations (Vary the Filter Orders). 

1.0 
0 



8,-------------------------------------------------------------------~ 

~.7.5 
'-' 

0 7 

~ 
~ 6.5 

p;;::q;;::5 

/---------·--· 
/ 

.. - ... _ .. ________ ,,, .............. _, ___ , __ ,, _____________ ,_______ p ;;:: q ;;:: 4 ·-·-
. I p - q ;;-;--- - ·--

~ 
~ 6 

~ 
I 0 5.5 

E-4 

~ 5 

~ 00 4.5 

~ 4 

s 
0 3.5 

3;------.,-------r-------~------.--------~-------,-.---------.----------~------~------~ 
0 10 20 30 40 50 60 70 80 90 100 

NUMBER OF ITERATION 

Figure 4.3 Plot of the Output SNR Versus Number of Iterations (Vary the Filter Orders). 

\0 .... 



92 

optimal IS post-filter. Thus, selection of the solution of the single optimal IS post-

filter as the initial condition is a good choice. 

The second experiment examines the effect of both input noise variance and 

channel noise variance. Figure 4.4 and 4.5 show the plots of the jointly suboptimal 

pre- and post-filter performance under three different value of cr/ and cru2. From both 

results, as expected, the performance of the jointly suboptimal filters degrades as the 

. . . 
nmse vanances mcreases. 

One may have questions as to how the input noise and the channel noise effect 

the performance of the jointly suboptimal filters. This question is addressed into the 

next experiment. 

In the third experiment we vary cr/ and cru2 in such a way that cr/+cr/=3. 

The performance of the jointly suboptimal filter under three different combination of 

cr/ and cr/ are shown in Figure 4.6 and 4.7 in terms of both IS distortion measure 

and SNR. We can see that the case where crv 2 is greater than cr/ shows the worst 

performance while the case where cr/ is less than cr/ shows the best performance. 

The reason can be explained as follows. The total noise at the input of the suboptimal 

post-filter consists of the channel noise and the pre-filtered input noise. We also know 

that the FIR filter does possess the smoothing property as in the MA process. Thus, 

the spectrum at the input of the post-filter in the case where cr/ > cru2 is smoother 

than the spectrum in the case where cr/ < cr/, as a result, poorer performance is 

exhibited in the computer simulations. 

To compare the jointly suboptimal filter design with the single optimal IS post-
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filter design, we summarize the optimal values of the IS distortion measure and the 

output SNR under different value of noise variance in Table 4.1. From table 4.1, there 

is no doubt that the jointly suboptimal design is superior than the single optimal IS 

post-filter design in terms of IS distortion measure. 

TABLE 4.1 

COMPARISON OF THE IS DISTORTION MEASURE OF THE 
SINGLE OPTIMAL IS FILTER AND JOINTLY 

SUBOPTIMAL SYSTEM 

single optimal IS filter'" 
jointly suboptimal system 

1 

3.19e-02 
3.58e-03 

note: '" a 2v = 0 for single optimal IS filter. 

2 

1.14e-02 
6.63e-03 
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4.4 Summary 

So far, we have shown that an improvement in term of spectral matching can 

be made by using jointly optimal pre- and post-filter design. The use of the pre-filter 

before transmitting a signal through a communication channel will change the 

transmitting signal to a more robust form compared with the existing noise in the 

communication system. In this Chapter, we derived the normal equations of jointly 

optimal pre- and post-filter design. We also showed that even though the system 

complexity increased, the jointly optimal pre- and post-filter design still preserved the 

autocorrelation function matching property, which is perceptually desirable. In 

addition, the suboptimal solution of the pre- and post-filter can be obtained via 

Newton's algorithm. Computer simulation results show that this suboptimal solution 

does exhibit very good results in terms of improving the spectral matching and the 

output SNR. Furthermore, compared with the single optimal IS post-filter design, the 

jointly suboptimal pre- and post-filter is superior as expected. 



CHAPTER V 

REAL SPEECH SIMULATION 

In this Chapter, we provide some experimental results on real speech signals. 

The experiments were conducted to compare the performance between the Wiener 

filter and the proposed optimal IS filter. The real speech data was obtained from the 

class ECEN 5753: Digital Speech Signal Processing, taught by Dr. K. Teague [Tea91]. 

Two English sentences are used: 

1. "Thief who robs friend deserves jail," pronounced by a male speaker. 

2. "Add the sum to the product of these three," pronounced by a female 

speaker. 

All speech signals are sampled at the rate of 8KHz. by a spectral analyzer 

interfaced with the workstation-Hypersignal DSP software. The acquired data is then 

converted into ASCII format to be compatible to the simulation programs written in 

the previous Chapters. Furthermore, for simulation purposes, the power of the speech 

sentence is normalized to be one. 

The simulation is performed on a frame by frame basis. For simulation 

purposes, we restricted the frame size to be 128, which is commonly used in speech 

signal processing. The autocorrelation functions can be estimated from the time 

domain signal by any existing autocorrelation function estimator. We note that large 

99 
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frame size will yield poor estimates of the autocorrelation function since speech is a 

time-varying model. 

5.1 Simulation Results and Discussions 

In this section, we perform computer simulations on both the single post filter 

and jointly optimal filter cases. 

5 .I. I Single post-filter experiment 

Two computer experiments are conducted according to the sentence one and 

two, respectively. The simulation scheme is that shown in Figure 3.1. Each 

experiment is carried out in two phases: 

phase I: vary the corrupting noise variance and fix the filter order. 

phase 2: vary the filter order and fix the corrupting noise variance. 

One different aspect of this simulation compared to the previous Chapters is 

the convergence criteria of the optimal IS filter. In the previous Chapters, we declared 

the optimal IS algorithm converged if 

~n - ~n-1 ~ e ' 

where ~i is the IS distortion measure at the ith iteration and e is a small constant 

number. 

(5.1) 

However, in practice, it is difficult to estimate the IS distortion measure 

accurately from a small portion of speech signal. Furthermore, the discontinuity of the 

speech analysis frame causes the estimated power spectrum to fluctuate, resulting in 
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large number of erroneous IS distortion measurements. As a result, in this simulation, 

we propose a new convergence criteria as 

k 

E 11\xG>-~G> I ~ ~ , (5.2) 
j=O 

where k is an integer number, 8 is a small constant number, and I x I denotes the 

absolute value of x. 

EXPeriment I. In this experiment, sentence one is processed. The speech signal 

is corrupted by additive white Gaussian noise of known variance. With the sampling 

rate of 8KHz., the total number of speech samples is I7920. Thus, there are I40 

speech frames to be processed. 

In the first phase, the filter order is fixed to be 5 and three different values of 

corrupting noise variances, cr2, are selected; I, 2, and 3. These correspond to the input 

SNR of I, 0.5, and 0.3333, respectively. The first 7680 samples of the original 

speech is depicted in Figure 5.1. The first 7680 samples of the output of single 

Wiener filter and the optimal IS filter for the case of cr2 = 2 are shown in Figure 5.2 

and 5.3 , respectively. Comparing Figure 5.2 and 5.3, notice the loss of signal energy 

in the Wiener filter output (for example from the sample 500 to sample 3000), 

compared to the output of the optimal IS filter. The IS filter output is more closely 

matches the original speech. This is because the optimal IS filter has the 

autocorrelation function matching property while the Wiener filter does not. To 

emphasize the improvement of the optimal IS filter over the Wiener filter and for 

comparison purpose, we define the autocorrelation function error of the ith frame, Ei, as 
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10 

Ei = E I~G)-~(j) I (5.3) 
j=O 

Note that equation (5.3) implies k in equation (5.2) is equal to 10. Large value 

of Ei implies large error in autocorrelation function matching in the ith frame, and vice 

versa. In Figure 5.4, 5.5, 5.6, we compare the autocorrelation function error of the 

Wiener filter and that of the optimal IS filter as a function of the frame number for the 

cases where cr2 = 1, 2, and 3, respectively. From these Figures, we can see that the 

autocorrelation function error of the optimal IS filter are always less than the 

autocorrelation function error ofthe Wiener filter for all three values of the corrupting 

noise variances. This implies that the autocorrelation functions of the output of the 

optimal IS filter are closer to the autocorrelation functions of the real speech signal 

than the autocorrelation functions of the Wiener filter output. Figures 5.7, 5.8, and 5.9 

show the comparison in terms of the IS distortion measure versus the frame number 

for all three corrupting noise variance. We can see that the IS distortion measure of 

the optimal IS filter tends to be less than that of the Wiener filter. Thus, the optimal 

IS filter outperforms the Wiener filter in terms of both autocorrelation function error 

and the IS distortion measure. 

In Figure 5.10, we compare the autocorrelation error of the optimal IS filter 

under three different values of corrupting noise variances. We can see from Figure 

5.10 that, for any specific speech frame, the autocorrelation function error increases as 

the noise variance increases. This is expected since as discussed in the previous 

Chapters, the ability to match the autocorrelation function of the optimal IS filter 
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decreases as the noise variance increases. Furthermore, note that the output of the 

optimal IS filter is more peaky than the output of the Wiener filter. This implies the 

optimal IS filter has higher output power than the Wiener filter which coincides with 

the discussion in the previous Chapters. 

In the second phase, the corrupting noise variance is fixed to be one and the 

FIR filter order is varied between 2, 5, and 10. To the extreme case, we plot the first 

7680 samples of the output of the optimal IS filter for the cases of filter orders are 

equal to 2 and 10 in Figure 5.11 and 5.12, respectively. From Figure 5.11 and 5.12, 

there is no significant different in terms of signal resemblance to the original speech 

(Figure 5.2). However, Figure 5.13 compares the autocorrelation function error as a 

function of the frame number of all three FIR filter orders. From Figure 5.13, we can 

see that, for any specific frame, the autocorrelation function error tends to decrease as 

the filter order increases, which implies improvement in autocorrelation function 

matching. This result is simply because as the filter order increases, more 

autocorrelation function lags can be matched to the autocorrelation function of the 

original speech. 

Experiment #2. In this experiment, sentence two is also corrupted by additive 

white Gaussian noise of known variance. The total number of samples is 21888, 

resulting in 171 analysis frames to be processed. Note that a female speaker tends to 

have a higher pitched speech signal and narrower bandwidth. As in the previous 

experiment, in phase one the filter order is fixed to be 5 and the corrupting noise 

variance is varied between 1, 2, and 3, respectively. The first 7680 samples of 
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the original speech is shown in Figure 5.14. The first 7680 samples of the output of 

the Wiener filter and the optimal IS filter in the case where a 2 = 2 are depicted in 

Figure 5.15 and 5.16, respectively. Comparing Figure 5.15 with 5.16, again notice the 

larger loss of signal energy in the Wiener filter output compared to the optimal IS 

filter output. In Figure 5.17, 5 .18, and 5.19, we compare the autocorrelation function 

error of the optimal IS filter and that of the Wiener filter as a function of the frame 

number for all three values of the corrupting noise variances, respectively. The 

autocorrelation function error of the optimal IS filter is always less than the 

autocorrelation function error of the Wiener filter for all three variances. Figure 5.20, 

5.21, and 5.22 compare the IS distortion measure of the Wiener filter with that of the 

optimal IS filter for all three noise variance cases. We can see that the IS distortion 

measure of the optimal IS filter tends to be less than that of the Wiener filter. Thus, 

the optimal IS filter outperforms the Wiener filter in terms of the autocorrelation 

function matching and minimizing the IS distortion measure. 

In Figure 5.23, we compare the autocorrelation function error of the optimal IS 

filter as a function of the frame number for all three values of the corrupting noise 

variances. From Figure 5.23, we can see that, for any specific frame, the 

autocorrelation function error increases as the corrupting noise variance increases. 

This implies that as the noise variance increases, the autocorrelation function of the 

optimal IS filter output tends to less resemble the autocorrelation function of the 

original speech. 

In the second phase, the corrupting noise variance is fixed to be one and the 
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filter order is varied between 2, 5, and 10. As in previous experiment, the first 7680 

samples of the outputs of the optimal IS filter of order 2 and 1 0 are depicted in Figure 

5.24 and 5.25, respectively. Compare Figure 5.24 and 5.25 with the original speech 

(Figure 5.14). There is no significant visual difference between the three. As a result, 

in Figure 5.26, we compare the autocorrelation function error as a function of frame 

number for all three FIR filter orders. We can see that, for any specific frame, as the 

filter order increases, the autocorrelation function error tends to decrease. This is 

because as the filter order increases, more autocorrelation function lags can be 

matched to the autocorrelation function of the original speech resulting in improvement 

of signal reconstruction. 

Note that the performance of the optimal IS filter in experiment 2 is not as 

good as in experiment 1. The result is not surprising since the bandwidth of the 

speech signal used in experiment 2 is smaller (we remind that sentence 2 is 

pronounced by a female speaker). It is known that a signal whose bandwidth is 

smaller also has slower decaying rate of the autocorrelation function, i.e., the 

autocorrelation function dies out to zero at longer lags. Note that the optimal IS filter 

matches the autocorrelation function up to the filter order lags. Thus, for the same 

amount of autocorrelation function error, a narrowband signal requires larger filter 

order to match to autocorrelation function than the wideband signal. In other words, 

for the same filter order, operating the optimal IS filter in the narrowband signal tends 

to yield larger autocorrelation function error than in the wideband signal. However, 

based on these two experiment results, the optimal IS filter still outperforms the 
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Wiener filter, in terms of matching the autocorrelation function, no matter whether the 

voice signal is narrowband or wideband. 

Listening tests of both experiments were also performed. We have observed 

the following results: 

1. The speech sound produced by the output of the optimal IS filter is louder 

than the speech sound produced by the output of the Wiener filter. This implies that 

the output of the optimal IS filter has higher output signal power than the output of the 

Wiener filter. 

2. As the noise variance increases, the speech sound produced by the output 

of the Wiener filter tends to fade out. This is because as the noise variance increases, 

more signal energy is lost by the Wiener filter. For the optimal IS filter, the loudness 

level of speech output remains practically the same which makes it more perceptually 

understandable. However, as the noise variance increases, we have experienced more 

warbling sound in the output speech. This may be explained as follows. We have 

learned that the optimal IS filter preserves the signal energy by matching the 

autocorrelation function. Recall that the corrupting noise is assumed to be additive 

white Gaussian in nature. Theoretically, as the noise variance increases, only the 

autocorrelation function at the zeroth lag, Ryy(O), of the received signal is bigger while 

the rest of the autocorrelation function remains the same. Thus, as the noise variance 

increases, the optimal IS filter has to put more effort to match the autocorrelation 

function at the zeroth lag with the expense of reduction in autocorrelation function 

matching in the other autocorrelation function lags. Note that the autocorrelation 
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function can also be defined as 

~{'t) = Efx(n)x(n+-c)} • (5.4) 

Thus, Rxx('t) tells us the correlation between x(n) and x(n+t). In other words, for 't =t= 

0, Rxx('t) contains the time localization information of the signal. Thus, the increasing 

of the noise variance causes more loss in signal time localization information, resulting 

in the warbling sound in the reproduced speech. 

3. The warbling effect is more noticeable in experiment 2 than in experiment 1. 

This is reasonable since sentence two used in experiment 2 has narrower bandwidth 

which implies slower decaying rate in autocorrelation function. Thus, for the same 

performance, the experiment two requires larger filter order or larger input SNR than 

the experiment one. 

4. Both Wiener filter and the optimal IS filter show perceptual improvement as 

the filter order increases. This is expected since larger order implies more 

autocorrelation function lags can be matched. 

5 .1.2 Jointly optimal pre- and post filter experiment 

In this section, we also perform real speech simulation of jointly optimal pre­

and post filter design case. The simulation will the same as in Chapter 4, Figure 4.1. 

For simulation purposes, we restrict the FIR filter order of both pre- and post-optimal 

filter to be 5. Two experiments were performed. In the first experiment, sentence one 

is corrupted by the input noise and the channel noise as described in Chapter 4. Both 

corrupting noise sequences are assume to be additive white Guassian, with known 
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equal variances, 1. The first 7680 samples of the output speech of the jointly optimal 

system is depicted in Figure 5.27. Since the sum of the variance of the input noise 

and variance of channel noise is equal to 2, this simulation result can be compared to 

the single optimal IS filter case where the corrupting noise variance is equal to 2 

whose output speech is depicted in Figure 5.3. Comparing Figure 5.27 and 5.3, there 

is no significant visual difference in terms of signal resemblance to the original 

speech. As a result, in Figure 5.28, we compare the autocorrelation function error of 

the jointly optimal system and that of the single optimal IS post-filter as a function of 

frame number. We can see that, for any specific frame, the autocorrelation function 

error of the jointly optimal system is always less than the autocorrelation function 

error of the single optimal IS post-filter. This implies that by using the jointly optimal 

system, the autocorrelation function matching is improved; thus, the output speech 

should more closely resemble the original speech. 

In the second experiment, sentence two is also corrupted by both input and 

channel noise sequences which are assumed to be additive white Guassian distributed 

of equal variances, 1. The simulation result is then compared with the single optimal 

IS filter case where the corrupting noise variance is equal to 2 (Note that, in the case, 

the output speech is depicted in Figure 5.16). The first 7680 samples of the output 

speech of the jointly optimal system is shown in Figure 5.29. Compare Figure 5.29 

with 5 .16, again there is no significant visual difference in terms of signal resemblance 

to the original speech. Thus, in Figure 5.30, we plot the autocorrelation function error 

versus the frame number for both jointly optimal case and single optimal IS post-filter 
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case. Again, for a specific frame, the autocorrelation function error of the jointly 

optimal case is usually less than the single optimal IS filter case which implies 

improvement in terms of autocorrelation function matching. 

5.2 Summary 

139 

In this Chapter, we discussed simulation results that compared the performance 

of the Wiener filter and the optimal IS filter for real speech signals. The simulation 

results reveal that if the speech signal is corrupted by white Gaussian noise, the 

optimal IS filter outperforms the Wiener filter in terms of both minimizing IS 

distortion measure and the autocorrelation function matching, which agrees with the 

assumptions made in the previous Chapters. 



CHAPTER VI 

APPLICATION OF THE OPTIMAL IS FILTER IN 

DISCRETE COSINE TRANSFORM CODING 

6.1 Introduction 

All of the work presented to this point is based on the idea of trying to 

preserve signal portions which contain high energy levels. This is equivalent to 

preserving the mean and autocorrelation function matching property of the processed 

signal. However, the autocorrelation function does not convey the phase information. 

In other words, it does not provide the time localization contained in the phase 

information of the spectral components [IDa92]. As discussed in Chapter 3, even 

though the optimal covariance matrix is unique, the solution of the normal equations is 

not, which is due to the lack of phase information in the autocorrelation function. 

Note that for the high SNR environment (toll quality), the human auditory system is 

fairly insensitive to phase distortion. However, as the corrupting noise variance 

increases, more phase information is destroyed, causing this impairment to be more 

perceptually noticeable. As a result, the designing of a speech communication system 

under low SNR must take into account phase distortion. For instance, in the optimal 

IS filter case discussed in the Chapter 5, as the noise variance increases (the input 

140 



141 

SNR goes down), the optimal IS filter tends to overfit the autocorrelation function at 

lower lags at the expense of underfitting the autocorrelation function at higher lags. 

Note that this impairment makes the processed sample more uncorrelated, causing a 

warbling effect noted in the listening tests. 

One possible way to alleviate these problems is to code the signal into another 

orthogonal transform domain. Many orthogonal transforms have been successful used 

in data compression applications. One of the most widely used orthogonal transforms 

is the discrete cosine transform (DCT) due to its near optimum performance with 

respect to variance distribution and its property of reducing block edge effects in 

image compression [Cla81]. In other words, the DCT has excellent energy compaction 

compared to the Fourier transform [Jai89]. As a result, within an allowable tolerance, 

a time domain sequence of length N can be represented by a DCT sequence of length 

much smaller than N, greatly reducing the data rate. Furthermore, the trend of using 

signal processing in the DCT domain is very promising due to the development of 

DCT integrated circuits (IC) by companies such as LSI Logic Corp. With this IC and 

additional coding algorithms, video data at a 100: 1 compression ratio with close to 

analog videotape quality has been reported [Ang91]. 

The simplest schematic of DCT coding system is depicted in Figure 6.1. A 

frame of input signal, x(n), of length N is first transformed into the DCT domain to 

obtain a sequence v(n). Then, the last K samples of the sequence v(n) are discarded. 

The transmitter transmits the rest of N-K samples of v(n) through the communication 

channel. At the receiver, the received sequence, r(n), is the sum of the transmitted 
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x(n) =====f1 OCT I v(n)' i =I~= =t(=n==-) channel 

transmitting end 

t(n) 

I 
u(n) 

receiving end 

Figure 6.1 DCT Communication System. 

sequence, v(n), and the corrupting noise sequence, u(n). The received signal, r(n), is 

then filtered, padded with K samples of zeros, and transformed back to time domain to 

obtain the estimated signal, y(n). 

The communication system depicted in Figure 6.1 is also known as a DCT 

coder. Currently, all of transform coders are designed under an assumption of lossless 

criteria (noise free environment). The goal is to find a way to perfectly reconstruct the 

signal after the transform coefficients are critically decimated, i.e., the decimation rate 

is equal to the inverse of the number of FIR filter in a filter bank [Vai87, Vai89, 

Vai90]. Unfortunately, this noise free environment does not exist in practice. 

One may argue that we may use any existing filter such as the Wiener filter to 

reduce the corrupting noise in the communication system. The first purpose of this 
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Chapter is to show that under the DCT domain, the optimal IS filter outperforms the 

Wiener filter in terms of preserving signal energy and minimizing IS distortion 

measure, making it more recognizable. The second purpose of this Chapter is to 

compare the performance of the optimal IS filter operating in the DCT domain with 

the performance of the optimal IS filter operating in time domain. We will show that 

the optimal IS filter performs better in the DCT domain than in the time domain in 

terms of minimizing the IS distortion measure. Furthermore, by operating in the DCT 

environment, the warbling effect caused by phase distortion can be reduced, which 

makes the processed signal more perceptually attractive. 

6.2 Optimal IS filter in the DCT Domain 

The DCT of a time domain sequence x(n) of length N, v(k), can be expressed 

as [Ahm74] 

N-1 a1 (2n 2)kl vx(k) = a(k)_E x(n) 1t + , O!i:k!i:N-1 
n=O 2N 

(6.1) 

where 

u(O) = JA (6.2) 

and 
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IX(k) = ~, l~k<N-1 . (6.3) 

The inverse discrete cosine transform (IDCT) is defined as 

N-1 (2n l)k 
u(n) = .E «(k)v(k)cos[ 1t + ], Osn!i:N -1 . 

k~ 2N 
(6.4) 

We note that equation ( 6.1) can also be written in matrix form as 

V =AX, (6.5) 

where 

V = [v(O) v(l) v(N-l)]T, (6.6) 

X = [x(O) x(l) .•• x(N -l)]T , (6.7) 

and 

«(0) «(N-1) 

A= 
«(O)cos[ 2~ l a(N-l)cos[ 1t(~~-l)] 

(6.8) 
· .. 

Note that the DCT is real which makes it more attractive in terms of 

computation load. Furthermore, the DCT is orthogonal and unitary. Thus, there is no 

phase information loss during the transformation process. 

We now define J..Lx and Rx as the mean vector and the covariance matrix of the 
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x(i)s. Let J.l.v and Rv be the mean vector and covariance matrix of the v(i)s. Since the 

DCT is unitary, we can write [Jai89] 

~x = A~v' (6.9) 

and 

(6.10) 

It is well known that the DCT has the property of packing a large fraction of 

the average energy of the input signal, x(n), into a relatively few components of the 

transform coefficients, v(n). This means that compared with Rx, the off-diagonal 

terms of Rv tend to become small compared to the diagonal elements, resulting in 

improvement of energy compaction. 

However, the reduction of the bit rate comes with the price of larger bandwidth 

and loss of signal energy. Note that in the conventional communication system, the 

time domain signal, x(n), is transmitted through the communication channel while in 

the DCT coding system, the DCT coefficients v(n) are transmitted through the 

communication channel instead. Compared with x(n), v(n) is more impulse like 

(whiter). Thus, transmitting v(n) through a communication channel may require larger 

bandwidth than transmitting x(n) through the communication channel. Furthermore, 

note that even though the value of the last K samples in the DCT coefficients is 

relatively small, there is still a small amount of signal energy associated with them. 

By throwing away the last K samples of the transformed coefficients, a fraction of the 

signal energy will be lost. Thus, the larger the number of DCT coefficients discarded, 
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the more robust the communication system is required to be regarding distortion. 

It is known that the Wiener filter will perform well for a narrowband signal 

whereas its efficiency degrades considerably as the signal bandwidth increases. This is 

because the Wiener filter is derived based on minimizing the MSE. As mentioned in 

Chapter 2, computing the MSE is based on summing the square of the difference 

between the original signal and the estimated signal. As a result, every signal sample, 

regardless of how much energy it possesses, has equal contribution to compute the 

MSE. However, in transform coding, the accuracy the first few samples of the 

transform coefficients is more critical since they contain the majority of the signal 

energy. As a result, filters used in a transform coding system should weigh the 

received samples according to their energy levels instead of the MSE. Thus, use of 

the Wiener filter under the DCT domain environment is not a very attractive solution. 

It was shown in the previous Chapters that the optimal IS filter preserves the 

autocorrelation function matching property. This is equivalent to preserving the high 

energy portion of the input signal which is suitable to the DCT domain application. 

Thus, one would expect that compared to the Wiener filter, the optimal IS filter will 

perform better under the DCT environment. 

Note that v(n) has better energy compaction than x(n); as a result, V(t), the 

Fourier transform of v(n), has larger bandwidth than X(t), the Fourier transform of 

x(n). Thus, more signal energy is compacted into fewer autocorrelation functions of 

v(n) than the autocorrelation functions of x(n). Since the optimal IS filter is simply 

matching the autocorrelation function, for the same filter order, operating the optimal 
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IS filter in the DCT domain should perform better than operating the optimal IS filter 

in the time domain in terms of preserving signal energy and minimizing the IS 

distortion measure. 

6.3 Simulation Results and Discussions 

In this section, we perform computer simulations to show how well the optimal 

IS filter operates under the DCT environment. The simulation scheme was the same 

as in Figure 6.1. Sentence one used in Chapter 5 was selected for experiments. The 

speech sentence is corrupted by an additive white Gaussian noise of known variance. 

The computer simulations were performed in two phases. 

In the first phase, we compared the performance of the optimal IS filter with 

the Wiener filter in the DCT domain. Two corrupting noise variances are selected, 1 

and 2. In this experiment, we assume that the time domain speech frame size N is 

equal to the DCT frame size NDCT i.e., no DCT coefficients were discarded, K = 0. 

In addition, the frame size used in this experiment was 128, i.e., N = NDCT = 128, 

and the filter order was restricted to be 5. Figure 6.2 and 6.3 show the first 7680 

samples of the IDCT of the output of the Wiener filter and the optimal IS filter for the 

case of corrupting noise variance equal to 1, respectively. Compare Figure 6.2 and 

6.3, the output of the Wiener filter shows more loss of signal energy especially from 

sample 500 to sample 3000. In Figure 6.4 and 6.5, we compare the IS distortion 

measure as a function of the frame number of both the Wiener filter and the optimal 

IS filter in the case where the corrupting noise variance is varied from 1 and 2, 
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respectively. From Figure 6.4 and 6.5, we can see that the IS distortion measure of 

the optimal IS filter is usually well below the IS distortion measure of the Wiener 

filter. Notice that for some specific frames, e.g., frame 55 to frame 65, the Wiener 

filter yields very large IS distortion measure. Thus, we conclude that under the DCT 

environment, the optimal IS filter outperforms the Wiener filter in terms of minimizing 

the IS distortion measure. 

We then investigate the performance of the optimal IS filter in the DCT coding 

system where the last 32 samples of each frame is discarded, i.e, K = 32. The 

corrupting noise variance is assumed to be 1. Thus, the data rate is reduced by 25%. 

Figure 6.6 shows the first 7680 samples of the output of the optimal IS filter forK= 

32. Note that there is no distinctive different between Figure 6.6 and 6.3 in terms of 

signal resemblance to the original speech. However, in Figure 6.7, we compare the IS 

distortion measure of the optimal IS filter forK= 32 and K = 0 as a function of frame 

number. From Figure 6.7, the IS distortion measure for the case where K = 32 tends 

to be more than the IS distortion measure for the case where K = 0. However, 

compared to the Wiener filter (Figure 6.4 and 6.5), the IS distortion measure of the 

case where K =32 is still smaller despite the fact that the data rate is reduced by 25 %. 

Thus, compared to a conventional speech communication system, where the time 

domain signal is transmitted through the communication system cooperating with the 

Wiener filter, use of the optimal IS filter in the DCT domain yields several 

advantages. 

1. The IDCT of the output of the optimal IS filter in the DCT domain yields 
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lower IS distortion measure which makes it more perceptually desirable. 

2. The autocorrelation function of the IDCT of the output of the optimal IS 

filter in the DCT domain matches better to the autocorrelation function of the original 

speech. Thus, more signal energy is preserved. 

3. Since the DCT has excellent energy compaction, the data rate can be 

reduced with a small amount of signal degradation. 

The second phase of the computer simulation is to compare the performance of 

the optimal IS filter in the DCT domain with that of the optimal IS filter in the time 

domain. Figure 6.8 and 6.9 compare the IS distortion measure of both the optimal IS 

filter in the time domain and the optimal IS filter in time domain for the case where 

the noise variance is 1 and 2, respectively. Note that the filter order is restricted to be 

5. From Figure 6.8 and 6.9, under the DCT domain, the IS distortion measure of the 

optimal IS filter is smoother and well below 16 dB. However, in the time domain, the 

IS distortion measure of the optimal IS filter is very large for some speech frames. 

Note that a speech frame of large IS distortion measure is much more perceptually 

noticeable than a speech frame of small IS distortion measure. Thus, the optimal IS 

filter performs better in the DCT domain than in the time domain in terms of 

minimizing the IS distortion measure. 

Listening tests were also performed. We have observed some results as 

follows; 

1. The reproduced speech of the IDCT of the output of the optimal IS filter is 

louder than the reproduced speech of the IDCT of the output of the Wiener filter. As 
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the noise variance increases, the reproduced speech of the IDCT of the output of the 

Wiener filter tends to fade out. The result is not surprising because as discussed 

before, more signal energy is lost by the Wiener filter as the noise variance increases. 

On the contrary, the loudness level of the IDCT of the output of the optimal IS filter 

still remains acceptable which makes it more easily recognizable. This is because the 

optimal IS filter preserves more signal energy than the Wiener filter. 

2. We also compare the reproduced speech of the IDCT of the optimal IS filter 

in the DCT domain with the reproduced speech of the output of the optimal IS filter in 

the time domain. The warbling effect noted when operating the optimal IS filter in the 

DCT domain is much less than that observed when operating the optimal IS filter in 

the time domain. This is because the DCT coefficients are whiter than the original 

time domain signal, resulting in more compaction in autocorrelation function. Thus, 

perceptually, the optimal IS filter performs better in the DCT domain than in the time 

domain. 

6.3 Summary 

In this Chapter, we have shown that the optimal IS filter can be successfully 

used in an orthogonal transform coding system. The advantage of this type of coding 

system is the reduction of the data rate when the signal is transformed in such a way 

that the majority of the signal is packed in the first few transformed coefficients. The 

major drawback of this type of coding system is the increased bandwidth which makes 

it unsuitable to the Wiener filter application. Furthermore, the MSE depends on the 



value of the difference between the original signal and the reconstructed signal 

regardless of how much energy it possesses. As a result, the more suitable filter in 
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this application is the optimal IS filter which preserves the high energy level portion of 

the signal. Simulation results reveal that the optimal IS filter outperforms the Wiener 

filter in terms of minimizing the IS distortion measure which makes it more 

perceptually desirable. Furthermore, the optimal IS filter performs better in the DCT 

domain than in time domain since warbling sound is far less noticeable. 



CHAPTER Vll 

CONCLUSIONS 

7.1 Summary 

In Chapter 1, we discussed the human speech production mechanism and the 

human auditory system. We noted that speech processing can be more easily 

performed in the frequency domain than in the time domain. We also noted that the 

first two formants played a major role in terms of speech recognition. As a result, we 

can categorize the speech sounds according to their phoneme group. Two speech 

sounds which belong to the same phoneme group will sound alike. Thus, for speech 

recognition purposes, a good receiver must be able to classify the received signal 

corrupted by any existing noise to its associated group. 

The above technique is also known as the nearest neighborhood system in 

discriminant analysis. In discrimination analysis, the received speech signal will be 

assigned to the phoneme group which yields the smallest distortion measure. Several 

distortion measure can be used, for example, MSE, IS distortion measure, etc.. In 

Chapter 2, we discussed several types of distortion measures and briefly compared 

their advantages and disadvantages. We noted that MSE was not a good choice of a 

distortion measure for speech perception since a large MSE did not always imply poor 
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perceptual speech quality. We also concentrated on one special type of distortion 

measure called the IS distortion measure. We observed that the IS distortion measure 

was in fact twice the limit of the information discrimination function which was used 

as a tool to measure similarity between two Gaussian processes. Thus, for the nearest 

neighborhood system in speech perceptual point of view, the processed signal should 

yield the smallest IS distortion measure between the original signal and the processed 

signal. 

As mentioned earlier, the first two formants play a dominant role in terms of 

recognizing which sound is produced. Thus, for perceptual purposes, the received 

signal should be processed in such a way that the first two formants are preserved. As 

a result, we proposed a strategy that a good perceptual speech signal processing 

algorithm should preserve the mean and autocorrelation function matching property, in 

turn, preserving the formant frequencies. 

In optimal filtering, the filtered output is obtained by minimizing the distortion 

measure between the original signal, x(n), and the estimated signal, y(n). As a result, 

the optimal filtered output will yield the smallest distortion measure to the original 

signal from all possible output. Thus, it is possible· to view optimal filtering technique 

as one of the discriminant analysis. Optimal filtering has played a major role in a 

communication systems for the past two decades. One of the most widely used 

distortion measures is the MSE between x(n) and y(n). The optimal filter which 

minimizes the MSE between x(n) and y(n) is called the Wiener filter. In Chapter 3, 

we showed that the Wiener filter did not preserve the autocorrelation function 
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matching property. Thus, from the speech perceptual viewpoint, the Wiener filter did 

not represent the nearest neighborhood system. We then proposed an alternate way to 

design a perceptually optimal FIR filter called the optimal IS filter. This optimal IS 

filter is obtained by minimizing the IS distortion measure between x(n) and y(n). We 

showed that this was equivalent to matching the frequency response of the Wiener 

filter with the magnitude square of the frequency response of the optimal IS filter. We 

then showed that the optimal IS filter did preserve the autocorrelation function 

matching property which made it more perceptually desirable. Some computer 

simulations were also performed to compare the performance of the Wiener filter with 

the optimal IS filter. Simulation results did agree with our theoretical derivation that 

the optimal IS filter outperformed the Wiener filter in terms of both spectral matching 

and the output SNR. 

In Chapter 4, we improved the performance of the optimal IS filter using the 

jointly optimal pre- and post-filter design. With the use of a prefilter, the transmitting 

signal is changed into a form which is more robust to the existing noise in the 

communication system. The normal equations for the jointly optimal pre- and post­

filter were derived. The suboptimal solution can be found via the use of Newton's 

algorithm. Computer simulation results showed that improvement could be made with 

the use of jointly optimal pre- and post-filter design in terms of both IS distortion 

measure and output SNR. 

In Chapter 5, we performed computer simulations of the optimal IS filter on 

real speech signals. Two English sentences are selected for processing. Results 
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revealed that the optimal IS filter outperformed the Wiener filter in terms of 

minimizing the IS distortion measure and autocorrelation function matching. In the 

Wiener filter, as the input SNR decreases, more energy is lost by the Wiener filter 

causing the performance to degrade considerably. On the contrary, in the optimal IS 

filter, the loudness level of the optimal IS filter output remained acceptable which 

made it easier to be recognized. However, we experienced more warbling sound in 

the optimal IS filter output as the noise variance increased. The warbling was caused 

the overfitting the autocorrelation function in the lower lags at the expense of 

underfitting the autocorrelation function in the higher lags, causing more phase 

information to be loss. 

In Chapter 6, we illustrated the application of the optimal IS filter in the DCT 

domain. It is known that the DCT increases the energy compaction of the time 

domain signal. In other words, the majority of the signal energy is packed in the first 

few transformed coefficients. Note that the DCT coefficients are whiter than the time 

domain signal. Thus, transmitting the DCT coefficients through a communication 

channel may require larger bandwidth than transmitting the time domain signal .. In 

addition, it is known that the Wiener filter does not perform quite well in the wide 

band situation. This is because the MSE, which the Wiener filter minimizes, is 

computed based on the difference between the original signal and the estimated signal 

irregardless of how much energy the signal sample possesses. Recall that the basic 

goal of the optimal IS filter is simply matching the autocorrelation function. In 

addition, note that larger bandwidth implies that more energy is also packed in the first 



164 

few lags of the autocorrelation functions. Thus, the optimal IS filter performs much 

better in wideband environment such as the DCT domain. 

Since the autocorrelation function of the DCT coefficients is more compact 

than that of the time domain signal, the optimal IS filter will perform better in the 

DCT domain than in the time domain. Simulation results also showed that the optimal 

IS filter in the DCT domain yields better performance than the optimal IS filter in the 

time domain in terms of minimizing the IS distortion measure. Furthermore, in 

listening tests the warbling sound of the output of the optimal IS filter in the DCT 

domain is far less noticeable than that of in the time domain. 

7.2 Considerations for Future Research 

The is still much research that can be done toward designing an optimal filter 

for speech signal processing. Up to the present, there is no optimal filter specifically 

designed for speech signal processing. This thesis serves as an introduction to the 

exploration of a this new area. However, speech quality involves subjective 

judgement, which no objective measurement can absolutely represent. Thus, the 

absolutely optimal speech signal processor still remains to be found. 

We note that this thesis is limited to the FIR filter design. Further research can 

extend these results for designing an infinite impulse response (IIR) filter. We also 

assume that the signal is simply corrupted by white Gaussian noise of known variance. 

For the case of colored corrupting noise, some modifications will be needed in order 

to accurately estimate the autocorrelation of the speech signal. 
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During the listening test of the real speech, we experienced some warbling 

sound from the IS filter reconstructed speech. This problem arises from the fact that 

our algorithm is simply based on making use of speech redundancy and human hearing 

imperfections. Note that the IS distortion measure is basically computed from the 

power spectrum of the original speech and the processed speech where no phase 

information is taken into account. In other words, we are only matching the 

autocorrelation function and ignoring the phase information. For speech toll quality 

environment (high SNR), the human hearing system is fairly insensitive to phase 

variation. However, as the corrupting noise variance increases, the phase distortion 

becomes more noticeable and unbearable if the input SNR is low enough. Thus, to 

combat this type of distortion, the future speech distortion measure must be modified 

to include the phase information of the signal. 

In Chapter 6, we explored a new area of digital filter design in the orthogonal 

transform domain. Future investigations in this area are worthwhile due to the rapid 

growth of VLSI technology. Work can be done towards applying the optimal IS filter 

on other orthogonal transforms. This area is very promising since many orthogonal 

transforms are being implemented on a single chip, such as the DCT. As a result, 

more optimal filter designs are needed to counter the noise existing in transform 

coding systems. 
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