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Abstract: Triglycerides (TG) stored in lipid droplets (LDs) are the main energy reserve in 
all animals. The mechanism by which animals mobilize TG is complex and not fully 
understood. Several proteins surrounding the LDs have been implicated in TG 
homeostasis such as mammalian Perilipin A and insect lipid storage proteins (Lsd). Lipid 
storage protein 1 (Lsd1) is a conserved insect protein and plays significant roles in the 
regulation of TG metabolism. Most of the knowledge on LD-associated proteins comes 
from studies using cells or LDs leaving biochemical properties of these proteins 
uncharacterized. Here we describe the purification of recombinant MsLsd1, its 
reconstitution in lipoprotein particles and the mutagenesis studies in putative 
phosphoryation sites and conserved region of Lsd1. Moreover, mobilization of TG 
depends on the action of lipases. The fat body triglyceride lipase from Manduca sexta, 
MsTGL, is the only insect lipase that has been purified and characterized, so far. This 
study also describes another enzyme, adipose triglyceride lipase (ATGL), and 
investigates a possible link between ATGL expression and nutrition levels in M.sexta. 
The ATGL cDNAs from M. sexta fat body encoding a 64KDa protein were cloned.  
Northern blot analysis detected two bands corresponding to the 3.9 and 2.4 kb transcripts, 
respectively. The protein sequence has the consensus lipase catalytic motif (GxSxG) and 
conserved “patatin-like”domain which is a key signature of ATGL enzymes isolated from 
other organisms. ATGL is mostly associated to the lipid droplet. Sf9 cells over-
expressing the MsATGL showed lower content of cellular TG and a higher TG hydrolase 
activity of purified protein indicating that it is a lipase. MsATGL is up-regulated during 
the physiological non-feeding periods but lower than TGL with the exception of 3rd-day 
pre-pupal. Both levels of transcripts and expression of ATGL were dramatically up-
regulated by starvation in a time-dependent manner indicating that ATGL is highly 
sensitive to the nutritional status of animals and may play a key role under starvation 
conditions. Thus, ATGL and TGL coordinately catabolize stored TGs in M.sexta. These 
studies provide the starting point for future studies on the mechanism and function of 
MsLsd1 and ATGL. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Energy metabolism is a fundamental property of animal life. Neutral lipids in the form of 

triglycerides (TG) are the predominant form of storage of fatty acids and comprise the main 

energy reserve in all known organism (Wolins, Brasaemle et al. 2006). The storage and release of 

this energy involves a carefully regulated balance between TG synthesis and hydrolysis. Insects 

accumulate TG as lipid droplets (LDs) within the cytoplasm of fat body cells during feeding 

periods, and rely on these reserves to support the energy requirements associated with 

physiological non-feeding periods, sustained flight and embryo development (Beenakkers, Van 

der Horst et al. 1985, Ziegler and Van Antwerpen 2006). The insect fat body, which combines 

many of the properties and functions of vertebrate liver and adipose tissue, is the principal organ 

for the storage of lipids. LDs are considered as organelles. They are macromolecular assemblies 

of lipids surrounded by phospholipids and proteins. 

The tobacco hornworm, Manduca sexta, is widely used as a model insect to study insect 

physiology and biochemistry. Fig 1 illustrates the life cycle of M. sexta.  It has three different 

stages: larvae, pupa and adult. During larval stage (~20 days) insects feed constantly and the 

amount of TG in the fat body increases from a few micrograms to ~80 mg at the end of larval 

development (Fernando-Warnakulasuriya et al., 1988). During subsequent development, the lipid
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reserves are mobilized to sustain the life of the adult insects (moth), which feed occasionaly 

(Ziegler 1991, Arrese, Canavoso et al. 2001, Canavoso, Jouni et al. 2001, Arrese and Soulages 

2010). Due to these metabolic features, M. sexta represents an excellent model for studying the 

basic mechanisms involved in either the synthesis/deposition of TG in larvae or the mobilization 

of TG in adult insects (moth). 

 

Figure 1. Life Cycle of Manduca sexta.  The three different life stages in M. sexta are larva, 
pupa, and adult. On average, the complete metamorphosis from an egg to an adult takes about 1.5 
month. Each instar is marked by a headcap, representing the developmental stages. The stadium 
is the period of time between larval molts (Source: 
http://insected.arizona.edu/manduca/Mand_cycle.html). 

 

The mobilization of TG stored from LDs requires “lipolysis”, which is the process that breaks 

ester bonds between long chain fatty acids and the glycerol backbone in TG. This process is 

catalyzed by lipases (Holm, Osterlund et al. 2000, Lass, Zimmermann et al. 2006). 

In vertebrates, lipolysis involves at least three lipases: adipose triglyceride lipase (ATGL), 

hormone sensitive lipase (HSL) and monoglyceride lipase (MGL). ATGL is the rate-limiting 

enzyme for the initiation of TG catabolism, generating DG and FA. HSL efficiently hydrolyzes 



 

DG to generate MG and FA

by MGL to result glycerol and FA

Figure 2. Lipolysis of Triacylglycerols.
respective lipases to generate DG, MG and finally Glycerol with released free 
oxidation. 

 

Unlike vertebrates, where stored fatty acids are mobilized as free fatty acids, in insects, most fatty 

acids are released from the fat body to hemolymph as 

Van der Horst et al. 1985, Arrese, Rojas

circulation DG is carried by lipophorin, the insect lipoprotein, for delivery to tissues, 

flight muscle, and ovaries, where it is hydrolyzed to free fatty acids 

Two fat body lipases have been identified so far: 

major lipase in Manduca sexta

been purified and characterized

3 

DG to generate MG and FA (Haemmerle, Zimmermann et al. 2002). The final step is performed 

by MGL to result glycerol and FA (Fig 2). 

Lipolysis of Triacylglycerols.  The three ester bonds of TG are hydrolyzed by their 
respective lipases to generate DG, MG and finally Glycerol with released free fatty acids for 

Unlike vertebrates, where stored fatty acids are mobilized as free fatty acids, in insects, most fatty 

acids are released from the fat body to hemolymph as sn-1,2-diacylglycerol (DG) 

Arrese, Rojas-Rivas et al. 1996, Gade, Hoffmann et al. 1997

circulation DG is carried by lipophorin, the insect lipoprotein, for delivery to tissues, 

flight muscle, and ovaries, where it is hydrolyzed to free fatty acids (Arrese and Wells 1997

Two fat body lipases have been identified so far: ATGL, and triglyceride lipase (TGL)

Manduca sexta (Arrese, Howard et al. 2010) and is the only insect lipase that

been purified and characterized in vitro (Arrese and Wells 1994). TGL is a polypeptide with a 

. The final step is performed 

 

ester bonds of TG are hydrolyzed by their 
fatty acids for 

Unlike vertebrates, where stored fatty acids are mobilized as free fatty acids, in insects, most fatty 

diacylglycerol (DG) (Beenakkers, 

Gade, Hoffmann et al. 1997). In 

circulation DG is carried by lipophorin, the insect lipoprotein, for delivery to tissues, e.g. the 

Arrese and Wells 1997). 

triglyceride lipase (TGL). TGL is a 

and is the only insect lipase that has 

a polypeptide with a 
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relative mass of 74-76 KD that has been identified as the homolog of Drosophila melanogaster 

CG8552, whose function was studied by expression of the Drosophila protein in insect cell lines 

(Arrese, Patel et al. 2006). TGL shares significant sequence similarity with vertebrate 

phospholipases from the phosphatidic acid phospholipase A1 (PAPLA1) family (Arrese, Patel et 

al. 2006), but it shows no homology to the main triglyceride hydrolases of vertebrate adipocytes, 

HSL and ATGL. TGL is well conserved among insects (Arrese, Patel et al. 2006). The enzyme 

can catalyze the hydrolysis of tri-, di-, and mono-oleoylglycerols, but shows highest affinity for 

tri- or di- oleoylglycerol. The fat body lipase exhibits a preference  for  hydrolyzing the  primary  

ester  bonds  of  acylglycerols, and does not show stereoselectivity toward  either the sn-1  or sn-3 

position of trioleoylglycerol. Its activity  has an optimum pH (7.9) and  can be  inhibited  by  

diisopropylfluorophosphate, ATP,  ADP, Mg2+, and NaF (Arrese and Wells 1994). In addition to 

its main triglyceride and diglyceride hydrolase activities, TGL has a significant phospholipase A1 

activity (Arrese, Patel et al. 2006) with the ability to hydrolyze the phospholipids of the outer 

layer of the LDs. This activity is expected to facilitate the access of TGL to the core of the LDs 

where TG molecules localize. TG hydrolysis necessarily involves the interaction of the lipase 

with the lipid droplet. However, TGL does not achieve a tight association with the LDs and 

experimentally is only found in the cytosol regardless of the lipolytic conditions (Patel, Soulages 

et al. 2005). TGL is constitutively phosphorylated in vivo, and its phosphorylation level is 

unchanged by AKH, the main lipolytic hormone of insects (Patel, Soulages et al. 2006). But TGL 

activity was 2.4-fold higher when assayed against lipid droplets isolated from AKH-stimulated fat 

bodies, suggesting an effect of AKH on the lipid droplets (Patel, Soulages et al. 2005). 

Subsequent studies to investigate the AKH-induced changes in the phosphorylation level of lipid 

droplet proteins identified Lsd1 as the major LD associated phosphoprotein (Arrese, Rivera et al. 

2008). More importantly in vitro studies showed that the phosphorylation level of Lsd1 correlated 

with TGL activity (Patel, Soulages et al. 2005). The activity of TGL can be directly modulated by 
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PKA-mediated phosphorylation of Lsd1 (Patel, Soulages et al. 2004). However, the mechanism 

by which Lsd1 phosphorylaiton activates TGL is unknown. 

As mentioned above, LDs play an active role in the release of stored fatty acids. The lipid droplet 

surface, composed by phospholipids and proteins, represents a barrier for the hydrolysis of TG, 

which resides in the core of the particle ((Patel, Soulages et al. 2005). However, in the presence 

of the proper stimuli changes on the surface of the lipid droplet ensure a rapid hydrolysis of TG.  

Only few proteins have shown a strong preference to associate with LDs in animal cells. This 

small set of proteins were grouped under the PAT family (Pfam 03036) (Lu, Gruia-Gray et al. 

2001, Miura, Gan et al. 2002) and comprises proteins such as Perilipin, TIP47 and ADRP, in 

vertebrates, and lipid storage droplet protein-1 and -2, Lsd1 and Lsd2, in insects. These proteins 

share sequence similarity in the N-terminal region, a region called the PAT domain. These 

proteins do not have a known enzymatic activity, but as suggested by studies in vertebrates 

(Brasaemle 2007, Ducharme and Bickel 2008) and in insects ((Patel, Soulages et al. 2005, Bickel, 

Tansey et al. 2009, Beller, Thomas et al. 2010), they play a major role in the degradation of TG 

and its regulation. Since the PAT domain is not required for targeting Perilipin and ADRP to the 

LDs its role remains uncertain (Garcia, Sekowski et al. 2003, Nakamura and Fujimoto 2003). 

Perilipin is the best characterized lipid droplet protein so far and is a critical regulator of lipolysis 

in vertebrate adipocytes. Depending on its phosphorylation level, Perilipin can prevent or 

stimulate triglyceride hydrolysis (Brasaemle 2007). The insect genomes encode two proteins of 

the PAT family (Bickel, Tansey et al. 2009), Lsd1 and Lsd2. Insect PAT proteins also localize in 

LDs (Miura, Gan et al. 2002, Teixeira, Rabouille et al. 2003), but the overall sequence similarity 

with the vertebrate family members is very low. 

In Manduca Lsd proteins are particularly abundant in LDs from the fat body of adult insects. 

Although both proteins are found in LDs from adult fat body, Lsd1 is the predominant Lsd 
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protein (Arrese, Mirza et al. 2008). Previous studies have linked the expression levels (Arrese, 

Mirza et al. 2008) and the phosphorylation (Patel, Soulages et al. 2005, Arrese, Rivera et al. 2008) 

of Lsd1 with the ability of M.sexta fat body to hydrolyze TG and mobilize FA. The relative 

abundance of Lsd1 in LDs from adult insects, as compared to LDs of larval fat body and ovaries, 

is consistent with the physiological state of adult insects, which are mobilizing fatty acids from 

the fat body to the ovaries. Moreover, adult insects are also mobilizing and oxidizing FA to 

support basal metabolism since these insects are kept without food. Similarly, the low levels of 

Lsd1 in LDs from larval fat body or from ovaries are also consistent with the notion that these 

tissues are accumulating rather than mobilizing fatty acids. 

Lsd1 is the main target of the phosphorylation cascade triggered by AKH in the Manduca sexta 

fat body of adult insects. AKH is produced by the corpora cardiac (Gade, Hoffmann et al. 1997, 

Gade and Auerswald 2003). During energy demanding processes like flight and reproduction, 

AKH is secreted into hemolymph, which elicits a glucagon-like action mediated by a G-protein-

coupled receptor that activates both inositol phosphate and cAMP signaling responses (Gade, 

Hoffmann et al. 1997, Van der Horst, Van Marrewijk et al. 2001, Staubli, Jorgensen et al. 2002). 

Studies in the locust fat body showed that cAMP and/or Ca2+ are involved in mediating the action 

of AKH mobilizing lipids (Lum and Chino 1990). In adult M. Sexta the lipolytic response 

induced by AKH is associated with a rapid activation of cAMP-dependent protein kinase A 

(PKA) and sustained increase in calcium influx (Arrese, Flowers et al. 1999). The lipolytic 

response in insects seems to be mainly controlled through reversible phosphorylation 

/dephosphorylation reactions. The brief signal transduction of AKH on lipid mobilization is 

illustrated in Fig 3. AKH binding triggers activation of the adenylate cyclase (AC) and 

concomitant increase in the cAMP concentration followed by PKA activation. PKA 

phosphorylates Lsdp-1 (Step 1). Phosphorylation of Lsd1 enhances binding of the lipase to the 

surface of the lipid droplet and/or its catalytic activity (Step 2). Lipid droplet bound lipase 
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catalyzes the hydrolysis of phospholipid (Step 3) allowing the access of TG to the lipid surface 

(Step 4) and its subsequent hydrolysis also catalyzed by the lipase. The lipolytic process ends by 

release of the lipase from the lipid surface. TGL does not bind tightly to the lipid droplets, even 

under conditions of high lipolysis. Additional binding of the lipase to the lipid droplet would be 

prevented by dephosphorylation of Lsd1 mediated by a protein phosphatase (PP) (Step 5). Thus, 

PKA phosphorylaiton of Lsd1, activates the lipase and lipids are mobilized from the fat body as 

sn-1,2-diacylglyceride (DG) (Beenakkers, Van der Horst et al. 1985, Arrese, Rojas-Rivas et al. 

1996, Gade, Hoffmann et al. 1997). In circulation, DG is carried by lipophorin, the insect 

lipoprotein, for delivery to tissues (e.g., the flight muscle) and ovaries, where it is hydrolyzed to 

fatty acids by a membrane-bound lipophorin-lipase (Law and Wells 1989, Van Heusden and Law 

1989). 

 

Fig. 3. Current model for the mechanism of AKH induced lipolysis.  AKH binding triggers 
activation of the adenylate cyclase (AC) and concomitant increase in the cAMP concentration 
followed by PKA activation. PKA phosphorylates Lsdp-1 (Step 1). Phosphorylation of Lsdp-1 
enhances binding of the lipase to the surface of the lipid droplet and/or its catalytic activity (Step 
2). Lipid droplet bound lipase catalyzes the hydrolysis of phospholipid (Step 3) allowing the 
access of TG to the lipid surface (step 4) and its subsequent hydrolysis also catalyzed by the 
lipase. The lipolytic process ends by release of the lipase form the lipid surface. The insect TG-
lipase does not bind tightly to the lipid droplets, even under conditions of high lipolysis. 
Additional binding of the lipase to the lipid droplet would be prevented by dephosphorylation of 
Lsdp-1 mediated by a protein phosphatase (PP) (step 5). PC: Phosphatidylcholine; LPC: 
lysophosphatidylcholine. Source: (Arrese, Patel et al. 2006). 
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However, the complete sequence of reactions underlying the AKH signaling mechanism has not 

been elucidated in any insect system yet. The mechanism by which Lsd1 phosphorylation, alone 

or in conjunction with other lipid droplet proteins, activates lipolysis in insects is unknown. The 

study of the function of the lipid droplet proteins will provide new insights into the mechanisms 

of lipid deposition and mobilization. In this project, we show the purification of recombinant 

Lsd1 and its assembly in lipoproteins complexes, as well as investigation the effect of MsLsd1 on 

the TGL activity by mutagenesis studies. 

As mentioned above, the AKH-induced activation of lipolysis is a complex process that involves 

not only the activation of the substrate-Lsd1 phosphorylation-but also changes in the cytosol. 

Most of the AKH lipolytic (~70%) response can be accounted for by changes induced in the lipid 

droplets whereas changes in the cytosol are responsible for 30% of the lipolytic response (Patel, 

Soulages et al. 2006). The nature of changes in the cytosol that includes the activation of TGL 

remains to be elucidated. Studies on the lipolytic activity of cytosolic fractions of fat bodies have 

shown an AKH-dependent activation of TG hydrolase activity in moth (Arrese and Wells 1997), 

beetle (Auerswald, Siegert et al. 2005) and locust (Auerswald and Gade 2006). However, the 

lipolytic activation was modest and the mechanism of such activation that seems to be 

independent of TGL phosphorylation is unknown (Patel, Soulages et al. 2004). 

A single AKH peptide is responsible for the mobilization of glycogen and lipids in M. sexta 

(Ziegler, Eckart et al. 1990). However, the effect of AKH on the mobilization of energy reserves 

is dependent on the developmental stages. In larval stage, AKH activates glycogenolysis whereas 

stimulates lipolysis in adult insects (Ziegler 1991). Therefore differences in TGL expression 

could also be part of the regulation of lipolysis, especially during developmental stages in M. 

sexta. Both the fat body TG hydrolase activity and expression of TGL during M. sexta 

development have been studied recently (Arrese, Howard et al. 2010). Lipase activity increases as 

larva grow to the last instar and, then, decreases to minimal levels during pupa stage. Lipase 
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activity is progressively restored in adult insects reaching maximum values at this stage as 

showed in Fig 4 (Arrese, Howard et al. 2010). TGL expression amount detected by Western Blot 

showed a good correlation with the lipase activity measured in the same samples (r2=0.95) which 

reaffirmed that M. sexta TGL is the main fat body lipase.  

 

Fig 4. Fat body lipase activity during development Abbreviations: HC, head capsules; W, 
wanderer; P, pupa; and A, adult (males). Source: (Arrese, Howard et al. 2010) 

 

However, it is known that during physiological non-feeding periods, such as HC (the molt from 

4th to 5th instar) and wander stage, the insects mobilize the TG reserves to support the energy 

requirements as judged by the moderate increase of lipid concentration in the hemolymph 

(Ziegler, Willingham et al. 1995). During the feeding phase of the 4th and 5th instar larvae 

the lipid level remained largely unchanged (<2 mg/ml), whereas it was nearly doubled in the molt 

from 4th to 5th. And there was a pronounced increase (from about 2 to nearly 10 mg/ml) in 

wandering larvae (Fig 5) (Ziegler, Willingham et al. 1995). Interestingly, the non-feeding larval 

periods, i.e., head capsule slippage of the last larval molt (4th to 5th), late fifth, and wanderers, 

were not accompanied by an increase in fat body lipase activity. This observation is not consistent 

with the increase of the lipid level in the hemolymph suggesting that an additional lipase could be 

present in the fat body of M.sexta.   

 



 

 

Fig 5. TG-lipase activity and h
Manduca sexta. Source: (Ziegler, Willingham et al. 1995

 

Additional enzymes may act as TG hydrolase when TGL activity is low during 

periods. In 2006, Brummer lipase, a homolog of hum

Brummer over-expression renders lean flies whereas its deletion caused accumulation of 

triglyceride and therefore obesity flies

functions of ATGL in M. Sexta

This project has two parts. Part one is 

lipolysis. For this purpose we proposed two specific aims

recombinant MsLsd1; 2) To make Lsd1 mutants targeting conserved phosphorylation sites for 

vitro studies to investigate the role of each phosphorylation site on the activity of TGL.

The second part of this project was designed to investigate 

lipolysis. The specific aims were: 1) 

M. sexta; 2) Characterize Ms

mRNA and protein levels.
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and hemolymph lipid concentration during development
Ziegler, Willingham et al. 1995, Arrese, Howard et al. 2010

act as TG hydrolase when TGL activity is low during 

. In 2006, Brummer lipase, a homolog of human ATGL was identified in Drosophila. 

expression renders lean flies whereas its deletion caused accumulation of 

triglyceride and therefore obesity flies (Gronke, Mildner et al. 2005). We are interested in the 

M. Sexta which is little known compared to TGL. 

This project has two parts. Part one is to further investigate the role of Lsd1 in the activation of 

lipolysis. For this purpose we proposed two specific aims: 1) To express, purify and characterize 

To make Lsd1 mutants targeting conserved phosphorylation sites for 

studies to investigate the role of each phosphorylation site on the activity of TGL.

his project was designed to investigate the role of ATGL in 

The specific aims were: 1) Clone the full length of ATGL cDNA from the 

MsATGL including the study of the developmental expression at 

 

development of 
Arrese, Howard et al. 2010) 

act as TG hydrolase when TGL activity is low during non-feeding 

an ATGL was identified in Drosophila. 

expression renders lean flies whereas its deletion caused accumulation of 

We are interested in the 

to further investigate the role of Lsd1 in the activation of 

) To express, purify and characterize 

To make Lsd1 mutants targeting conserved phosphorylation sites for in 

studies to investigate the role of each phosphorylation site on the activity of TGL.  

the role of ATGL in Manduca sexta 

Clone the full length of ATGL cDNA from the fat body of 

ATGL including the study of the developmental expression at 
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CHAPTER II 
 

 

EXPERIMENTAL PROCEDURE 

 

Experimental Insects 

Manduca sexta eggs were purchased from Carolina Biological supplies (NC) and larvae were 

reared at 25°C on artificial diet (Bell and Joachim 1976). At the end of the fourth larval instar the 

first sign of the molt was identified by the appearance of head capsule slippage. Typically slipped 

head capsule (HC) lasts about 29h and insects in the middle of this period were used as HC stage. 

The initiation of wandering behavior was detected by the exposure of the dorsal aorta (Arrese, 

Howard et al. 2010). For the experiments using starved larvae, 5th instar day 1 larvae (weight 

~2.0g) were subjected to starvation for different periods of time (6h, 12h, 24h, and 30h). For re-

feeding experiments, after 18h or 24h starvation, the insects were re-fed for 3h and 6h, 

respectively. Adult insects were maintained at room temperature without food. In some cases 

adult insects were injected with 13mg of trehalose 2h before experiments (Arrese, Rojas-Rivas et 

al. 1996). For each time point, 3-5 fat bodies were pooled to prepare total RNA and lipid droplet 

fractions. 

Materials 

pIEx-1 Ek/LIC vector, pET-32 Ek/LIC vector, pET-30 Ek/LIC vector, JM-109 competent cells, 

NovaBlue GigaSingles competent cells and E. coli Rosetta 2 cells were purchased from Novagen.
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pGEM T- Easy cloning system was from Promega. Insect Gene Juice and anti S-tag monoclonal 

antibodies were purchased from Novagen. Miniprep kit was from Qiagen (Qiagen Inc., Valencia, 

CA). Triton X-100 was from Aldrich. Sf9 cells, Sf-900 II SFM medium, gel electrophoresis 

molecular weight markers and electrophoresis items were from Invitrogen (Carlsbad, CA). 

InfinityTM Triglycerides Reagent was from Thermo. [Tri-9,10-3H(N)]oleoylglycerol was 

purchased from Perkin Elmer Life Sciences (Boston, MA). Fatty acid free bovine serum albumin 

(BSA), Kanamycin, and Penicillin were purchased from Sigma Chemicals Co. (St. Louis, MO). 

Thin Layer Chromatography (TLC) plates were from Whatman. DMPC (1,2-dimyristoyl-sn-

glycero-3-phosphocholine) and DMPG [1,2-Dimyristoyl-sn-glycero-3-phosphorylglycerol (Na+ 

salt)] were purchased from Sigma. All other chemicals were of analytical grade. DNA sequencing 

was performed by the Core Facility of our department using an ABI Model 3700 DNA Analyzer. 

Cloning the full length cDNA of MsATGL  

Total RNA was isolated from the fat bodies of 5th day 1 of M. sexta using Trizol reagent 

(Invitrogen). From total RNA, mRNA was subsequently isolated using a NucleoTrap® mRNA 

Kit (BD Biosciences). mRNA was reversed transcribed using the SMARTerTM RACE cDNA 

Amplification Kit (BD Biosciences) according to the manufacturer's instructions. The resulting 

RACE-Ready cDNA was used as PCR template. 3'-RACE was performed using forward specific 

primer 1139F, 5'-CGACTCCGCCAACAGTGGAATAGTCAACTG-3' with reverse primer 

provided within the kit. The PCR run began with an initial denaturation step at 94°C for 2 

minutes; 30 cycles at 94°C for 30 seconds, 68°C for 3minutes, and a final extension at 68°C for 4 

minutes. Two major bands (2800bp and 1300bp) were obtained. After gel-purification from each 

band, these products were used as templates respectively for second PCR by 1212F, 5'- 

CTGCCCTACCGAGTGCCCATCGAC -3' with reverse primer provided within the kit using the 

same PCR program. Each reaction yielded one product (1300bp) that was subsequently cloned 

and sequenced. For 5'-RACE the reverse specific primer 1352, 5'-
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CTGGCGGCCACCTCGGACCTGTCG-3' and nested primer 609R, 5'-

CTGCAACAAATCTTCCCTGGT-3' were used with the forward primers supplied within the kit. 

A 700bp product was cloned and sequenced.  The full length cDNA of M. sexta ATGL was 

amplified from cDNA by PCR using the forward and reverse primers ATGL-1F, 5'-

AAGCAGTGGTATCAACGCAGAGTACGCGGGGGCA-3 and ATGL-2274R, 5'-

CAAATATTCAGTAAGACACAGGTACTCAGTCAGTGGTGTAGCCA-3', respectively. The 

2400bp PCR product was cloned into the pGEM-T Easy Vector and sequenced in both directions 

using our departmental Core Facility ABI Model 3730 DNA Analyzer. The cDNA sequence of 

M. sexta ATGL has been deposited into GenBank (Accession number AEJ33048.1). 

Using sequence information from the Manduca genome a new primer was designed to verify the 

existence of a larger transcript. To further investigate this, we did 3’-RACE PCR using 2266F, 5'- 

CGATAGTTTGGCTACACCACTGACTGAG -3' with reverse primer provided within the kit 

followed by a nested PCR using 2266F and nested reverse primer 3830R, 5'- 

CTTTCACAACATAAGCCTGTCATAACAATTTAACATCG -3'. A 1600bp product was 

obtained and sequenced. The full length sequence of M. sexta ATGL was amplified from cDNA 

by PCR using ATGL1’, 5'- GGGGCAGTTTCTTCGGTTTCTCTGTTGTGGA -3 with 

ATGL3779R, 5'- CCAAACTTCAACAGAGACAGACTCATTGCTG -3', respectively and we 

isolated a 3900bp product, which was cloned into the pGEM-T Easy Vector and the sequence was 

confirmed in both directions.  

Northern blot analysis 

Plasmid with 2.4kb full length MsATGL insert cloned into pGEM vector was used as template to 

amplify a 700 bp region by PCR using forward primer 5'-

GTTGGTGTCGCTGTGTGCTTCAAGAAATACGCGCCA-3 and reverse primer ATGL-716R-

T7, 5'-TAATACGACTCACTATAGGGAGGAACCGCAGCGCGT-3'. The resulting T7 
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promoter sequence (underlined) contained product was used to produce digoxigenin (DIG) 

labeled antisense RNA probe by in vitro transcription using the DIG RNA labeling kit (SP6/T7) 

(Roche). The kit was used according to manufacturer's instructions. One or two micrograms of 

total RNA was loaded in a 1 % agarose / 1.2% formaldehyde gel, and transferred to a nylon 

membrane by capillary blotting. The membrane was baked at 65°C for 20 min, and then pre-

hybridized in church buffer (0.5M Na2HPO4, 7% SDS, 1mM EDTA, PH 7.0) with 0.5% (w/v) 

blocking reagent (Roche) at 68°C for 1h followed by hybridization with a final concentration of 

100ng/ml ATGL probe in DIG Easy Hyb solution (Roche) at 68°C overnight. After washing with 

2× SSC (0.3M NaCl, 30mM Sodium citrate), 0.1% SDS (w/v) at RT for 10 min twice followed 

by 0.1× SSC, 0.1% SDS at 68°C for 15 min twice, the membrane was blocked at RT in blocking 

solution [1% blocking reagent in Maleic acid buffer (0.1M Maleic acid, 0.15M NaCl, PH 7.5)] 

and then incubated in anti-DIG-AP 1:10000 solution. The membrane was continuously washed 

by Maleic acid buffer containing 0.3% Tween-20 before equilibration in detection buffer (0.1M 

Tris, 0.1M NaCl, PH 9.5). Alkaline phosphatase activity was detected using CDP-Star 

chemiluminescent reagent (Roche) and exposed to X-ray films. The films were scanned using a 

ScanMaker i900 (Microtek). 

Expression and purification of MsATGL 

 Plasmid with 2.4kb a full length MsATGL insert cloned into pGEM vector was used to amplify 

the coding region of ATGL from the position corresponding to the first methionine to the stop 

codon by PCR. The left and right primers were ATGL lic-F 5′- 

GACGACGACAAGATGAACTTGTCGTTCGCCGGTTG-3’ and ATGL lic-R 5’-

GAGGAGAAGCCCGGTTATTCGGCGTAAGTGACGTAGCTAG-3’. The product was ligated 

into the vector pIEx-1 Ek/LIC that contains an N-terminal His-Tag and S-Tag coding sequences 

and is designed for transient transfection and protein expression in Sf9 cells. Sf9 insect cell line is 

a clonal isolate derived from the parental Spodoptera frugiperda cell line. E. coli strain NovaBlue 
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GigaSingles cells were transformed with the generated plasmid for amplification. Plasmid DNA 

was extracted from isolated colonies using the Qiagen Miniprep kit and sequenced. Sf9 cells were 

transfected with the plasmid for MsATGL protein expression. Positive transfected cells were 

confirmed by western bloting.  

Sf9 cells (50 ml of culture volume in flask with a density of 1-1.3× 106 cells/ml) were transfected 

with the pIEx1-ATGL plasmid (2.4µg plasmid/ml culture) dissolved in Insect Gene Juice 

according to the manufacturer’s instructions. Suspension cultures were grown at 28°C with 

shaking at 150rpm. Cells contained in 50ml culture were harvested 24h after transfection and 

sedimented by centrifugation. Cells were washed once in cold PBS and re-suspended in 3ml of 

lysis buffer (25 mM sodium phosphate, pH 7.8, containing 20% glycerol and 1mM EDTA, 1mM 

DTT) followed by sonication (30 times with 1-s bursts at 40% power) (Jenkins, Mancuso et al. 

2004). After centrifugation at 16,000g for 30min at 4°C the procedure was repeated with the 

pellet. Both supernatants were combined and used for protein purification. 50ml without 

transfected Sf9 cells with the same process were used for control. Both experimental and control 

supernatants were adjusted to 20mM imidazole and 500mM NaCl, and combined with 1ml of Ni+ 

resin pre-equilibrated with the buffer (25mM sodium phosphate, 0.5M NaCl, pH 7.8, containing 

20% glycerol). The slurry was incubated for 1h at 4°C and centrifuged at 300g for 5min. The 

resin was washed with ten bed volumes of same buffer containing 20mM imidazole, 40mM 

imidazole, 60mM imidazole, respectively. The fusion protein was eluted with 500µl buffer 

(200mM imidazole in buffer-25mM sodium phosphate, 0.5M NaCl, pH 7.8, containing 20% 

glycerol). Fractions were kept on ice in refrigerator and assayed for lipase activity. 

Triglyceride (TG) content in Sf9 cells  

Sf9 cells were grown in suspension in serum-free Sf-900 II SFM at 28 °C ± 0.5 °C in non-

humidified, ambient-air incubator with shaking at 150 rpm. The cells with a density of 6-8× 
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105 cells/ml were seeded into 12-well plates (Corning® Costar®) for 2ml/well. When the 

confluency was >95%, the cell medium was supplemented with oleic acid (0.86 mM) for 24h 

followed by transfection (4µg plasmid/well) using Insect GeneJuice™ (Novagen/EMD 

Biosciences). After 24h cells were collected, rinsed with 500µl cold PBS and lysed with 75µl 

buffer (20mM Tris, 50mM NaCl, PH 7.4). Cellular TG content was determined in the lysates by a 

colorimetric assay using the Infinity triglyceride reagent kit (ThermoTrace Ltd, Mlebourne, 

Australia) according to the manufacturer’s protocol. Triolein was used as standard. Protein 

concentration was determined by absorbance spectroscopy. TG content was expressed as nmol 

TG / mg protein. Data were statistically analyzed using one-way ANOVA. 

Assay for Lipase Activity of purified ATGL 

The final assay volume of 0.1 ml contained 85 mM K3PO4, pH 7.0, 2 mM EDTA, 7.5 mM DTT, 

0.22mM [9,10-3H] Triolein (4mCi/mmol), 2 mM Triton X-100, and ~30 µg of purified MsATGL 

protein. The mixture was incubated at 37°C in a water bath with 200rpm shaking. After 30 min, 

the reaction was terminated by the addition of 500 µl of a mixture of chloroform-methanol-

benzene (2:2.4:1, v/v/v) and 40 µl of 1 M HCl. Blank reactions did not contain enzyme. 

Radiolabeled lipids from the organic phase were separated by TLC using hexanes:ethyl 

ether:formic acid (70:30:3, v/v/v) as developing solvent. Regions of the plate corresponding to 

TG, DG, monoacylglycerol (MG), and FFA were scraped and quantified by liquid scintillation 

counting. Enzyme activity was expressed as as nmol TG hydrolyzed/min-mg protein or nmol DG 

produced/min-mg protein (Arrese, Gazard et al. 2001). 

MsATGL antibody 

A partial clone coding from the first methionine to the amino acid 449 was used to generate 

recombinant protein using the ligation-independent cloning (LIC) system. The amplified product 

was ligated into the vector pET-32 Ek/LIC after being treated with LIC-qualified T4 DNA 
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polymerase. The plasmid (pET-32-ATGL) was then transformed into E. coli 

strain NovaBlue GigaSingles. The positive clones were confirmed by DNA sequencing. 

Recombinant plasmid was used to transform E. coli Rosetta 2 (DE3). Fusion recombinant protein 

was purified by Ni affinity chromatography. Tag sequences were removed by thrombin and the 

resulting protein in conjunction with the peptide TSHHDALLAYYYLDGENKV conjugated with 

Keyhole limpet hemocyanin (KLH) was used to raise antibodies in rabbit at Cocalico Biologicals 

(Reamstown, PA).  

Subcellular fractionation  

Fat body tissue was collected after washing away the hemolymph using insect saline containing 

sodium bicarbonate 10 mM, HEPES 10 mM, sucrose 100 mM, potassium chloride 40 mM, 

sodium chloride 10 mM, calcium chloride 8 mM and magnesium chloride 30 mM at pH 6.5. Fat 

bodies from 3-4 insects were pooled and homogenized with a Potter-Elvehjem glass homogenizer 

fitted with Teflon pestle, using 3ml of homogenization buffer (HB) consisting of 50 mM Tris, pH 

7.4, 0.25 M sucrose, 2 mM EDTA, 0.2 mM benzamidine, 10 mg/l leupeptin, 1 mg/l aprotinin, 

2 mM dithiothreitol) (Arrese, Howard et al. 2010). All steps were carried out on ice. The 

homogenate was overlaid with 2ml of HB buffer without sucrose, and subjected to 

ultracentrifugation at 100,000 x g for 1 hr in a Beckman Ti 18 rotor. Three fractions were 

collected: fat cake, cytosol and pellet. For lipid droplets purification, the fat cake was re-

suspended in HB and sucrose concentration was adjusted to 15% (w/v). A layer of 2 ml buffer 

without sucrose was laid on top and samples were centrifuged in SW40 rotor at 100,000 x g for 

1hr. Purified lipid droplets were collected from the top and re-suspended in HB. Typically lipid 

droplets of two insect fat bodies were re-suspended in 0.5 ml of HB buffer. To isolate the 

membrane from the pellet, the pellet sample obtained from the first ultracentrifugation was re-

suspended in 15 ml of HB and re-centrifuged at 100,000 x g for 1hr. The resulting pellet was 
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dissolved in 1ml of HB and centrifuged at 500 x g for 15min in order to remove the cell debris 

and nuclei. The resulting supernatant was used as the membrane fraction.  

Western blotting 

For western blotting, 30-40µg proteins were separated by SDS-PAGE (4-15%) and transferred to 

nitrocellulose membranes. Immuno-detection was performed using anti-ATGL antibody 

(1:20,000 in 7% milk). After incubation of membrane with horseradish peroxidase-conjugated 

goat anti-rabbit secondary antibody (1:10,000 in 7% milk), peroxidase activity was detected using 

ECL chemi-luminescence reagents (Amersham Biosciences, Piscataway, NJ) and exposed to X-

ray films. The films were scanned using ScanMaker i900 (Microtek). 

Real-time quantitative PCR expression analysis 

For expression analysis of ATGL transcripts during development, total RNA was extracted from 

a pool of dissected fat bodies (n = 3) from various stages using the Trizol reagent (Invitrogen). 

1µg total RNA was reverse transcribed at 25°C for 5min, 42°C for 30min, followed by 85°C for 

5min in a 20µl final volume containing 4µl of qScript cDNA supermix (Quanta). Real-time 

quantitative PCR (qPCR) analysis was performed in triplicate using the 7500 Real-Time PCR 

System from Applied Biosystems. Each reaction mixture contained 0.01µg cDNA template and 

0.3 µM primers with a 20µl final volume using PerfeCTa SYBR Green FastMix, low ROX (2×) 

(Quanta) according to manufacturer's instructions. ATGL specific primers (forward, 5′-

GGTCCCTCGGCCCGTTCA-3′ and reverse, 5′-TCTTCCCACCATACACCCTCGTGA-3′), and 

TGL specific primers (forward, 5′-ATGAACGATAGTACGGAAAGGAAAAGAGATAGCGA-

3′ and reverse, 5′-CCCGCCATATTGATTTATCTTCGACATCCA-3′) were used in 

corresponding reactions. The simultaneous detection of the transcript of ribosomal protein S3 

(MsrpS3) was performed using primers (forward, 5′-TACAAACTCATTGGAGGTCTGGCCGT-

3′, and reverse 5′-ACGAACTTCATGGACTTGGCTCTC-3′). The primer concentrations and 
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cycling conditions were optimized in preliminary experiments to avoid saturation. Samples were 

incubated in the light-cycler apparatus for an initial denaturation at 95°C for 1 min, followed by 

40-45 cycles alternating 95 °C for 2s and 60°C for 45s. Quantification of relative gene expression 

was performed using the 2-∆∆Ct method (Livak and Schmittgen 2001). Expression of each 

transcript was normalized with the transcript of MsrpS3. At least two independent sets of total 

RNA were independently analyzed in triplicate.  

Expression and purification of recombinant MsLsd1 

Total mRNA was reverse transcribed using oligo-d(T)18-primer and the cDNA was used to 

amplify the coding region of Lsd1 (ACF24761.1) by PCR. The left and right primers were NLIC-

msLSD1, 5′-GACGACGACAAGGTGACTCGAAGCCAAAAACCGAACATG-3' and Clsd1-lic, 

5′-GAGGAGAAGCCCGGTCTAGTTCAGCCCGTTGATAGCCGCTA-3'. The product was 

ligated into the vector pET-32 Ek/LIC that contains an N-terminal coding sequence for 

thioredoxin followed by His-Tag and S-Tag coding sequences. E. coli strain NovaBlue 

GigaSingles cells were transformed with the recombinant plasmid. Positive clones were 

confirmed by DNA sequencing. E. coli Rosetta 2 cells were transformed for protein expression. 

Expression of the recombinant protein was induced with 1mM IPTG in 1 liter of suspension 

culture. After 4 h, bacteria were collected and rinsed in 20ml equilibration buffer (50mM 

Na2HPO4, 150mM NaCl, pH 7.6). The pellet was resuspended in 20ml Lysis Buffer (50mM 

Tris, pH 8.0, 100mM NaCl, 1mM EDTA, 1mM PMSF) containing 0.125mg/ml lysozyme 

and incubated at 4°C for 20min followed by sonication (3 times with 30-s bursts at 20% 

power). The incubation was repeated after the preparation was adjusted to 0.1% (v/v) Triton 

X-100.  After adding 180ml Lysis Buffer, the preparation was centrifuged at 10,000g for 

20min. The fusion protein was found in the pellet, which was resuspended in 50mM Na2HPO4, 

150mM NaCl, 10mM MgCl2, pH 7.4 and incubated with DNAse I at 28 °C for 2h. Sample 
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was centrifuged (10,000g, 20min) and the pellet was resuspended in equilibration buffer 

containing 10mM DTT. After centrifugation (10,000g, 15 min) the procedure was repeated 

for four times. Then the pellet was resuspended in 20mM Tris, pH 7.6,150 mM NaCl, 2 M 

Urea and 10mM DTT. After centrifugation (5000g, 25 min) the procedure was repeated for 

four times. The final pellet was resuspended in 20mM Tris, pH 7.6, 150mM NaCl, 3 M Urea 

and 10mM DTT. The preparation was centrifuged (5000g, 25 min) and the supernatant was 

collected. The stock solution was kept in the freezer. 

Reconstitution of Trx–Lsd1 in lipoprotein particles and thrombin cleavage 

DMPC/DMPG liposomes were prepared by adding 146ul of 10% (m/v) octylglucoside into a 

glass vial containing a thin film of DMPC/DMPG (0.84mg). The vial was vortexed 

vigorously for 30s at RT. Then DMPC/DMPG liposomes were mixed with 0.75 mg of fusion 

protein (Lsd1) or mutant proteins in 20mM Tris, pH 7.6, 150mM NaCl, 3 M Urea and 10mM 

DTT containing 10mM β-mercaptoethanol followed by exhaustive dialysis for 12 h against 

phosphate buffer (50mM Na2HPO4 pH7.4, 150 mM NaCl, 0.01% β-mercaptoethanol), and 

another 24 h against phosphate buffer (5mM Na2HPO4 pH7.4, 15 mM NaCl) at 4°C. Cleavage 

of Trx–Lsd1 was carried out by incubating the entire preparation with 1.3 U of thrombin for 3.5 h 

at RT followed by dialysis against the second phosphate buffer using dialysis membrane with 12–

14 kDa cutoff.  

Circular dichroism (CD) 

CD spectroscopy was performed with a Jasco-715 (Jasco Corporation, Tokyo, Japan) 

spectropolarimeter using a 0.1 cm path length cell over the 195–260 nm range. The spectra were 

acquired every 1 nm with a 2 s averaging time per point and a 1 nm bandpass. Quadruplicates of 

the spectra were averaged, corrected for background, and smoothed. Protein concentrations were 
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determined by UV at 280 nm using extinction coefficients of 52,955 M-1cm-1 and 37,360 M-1cm-1 

for Trx–Lsd1 and Lsd1, respectively. The mean residue ellipticity (deg cm2 dmol-1) was 

calculated from the corresponding number of residues of Trx–Lsd1 and S-tagged-Lsd1. The 

secondary structure of Lsd1 was estimated with the program Selcon3 using a 29-protein dataset of 

basic spectra (Sreerama, Venyaminov et al. 2000). 

Mutagenesis of MsLsd1 

The wild type MsLsd1-42 coding sequence in the pET30 plasmid cloned before was used as 

template to do the mutagenesis reactions (~30ng plasmid was used for each reaction). pET30 

Ek/LIC vector contains N-terminal cleavable His-Tag and S-Tag coding sequences for detection 

and purification. All the mutants were prepared using the Quickchange (Stratagene) kit for site-

directed mutagenesis according to manufacturer's instructions.  Mutagenesis primers were used to 

introduce the desired replacements. Successful mutations were confirmed by sequencing of 

mutated plasmids in both directions using our departmental Core Facility ABI Model 3730 DNA 

Analyzer.  

Statistics 

Statistical comparisons were made by the student’s t test. p < 0.05 was considered to be 

significant. 

Other methods 

Protein concentrations were determined by the Bradford dye-binding assay using bovine serum 

albumin as standard (Bradford 1976). SDS-PAGE was performed according to Laemmli 

(Laemmli 1970) and the proteins were visualized by Coomassie Brilliant Blue R staining. The 

deduced amino acid sequence was obtained using the translate tool at ExPASy 

(http://ca.expasy.org/tools/dna.html) (Arrese, Howard et al. 2010) and the multiple amino acid 
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sequence alignment was done at ExPASy (http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

Phosphorylation site prediction was done at ExPASy (http://www.cbs.dtu.dk/cgi-bin/nph 

webface?jobid=netphos,5057910902D06974&opt=none ).
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CHAPTER III 
 

 

RESULTS AND DISCUSSION 

 

Expression and purification of recombinant MsLsd1 in E.coli   

In M. sexta, the mobilization of energy reserves is regulated by AKH. The activity of the main 

lipase TGL correlates with the phosphorylation level of the lipid droplet-associated protein, Lsd1. 

AKH-induced lipolysis provokes a rapid phosphorylation of Lsd1, and this event accounts for the 

majority of the lipolytic response induced by AKH. 

Lsd1 is tightly bound to the lipid droplets. It can be only partially dissociated with urea and 

detergents. Expression of recombinant Lsd1 (rLsd1) in E. coli was attempted as a mean to 

generate sufficient protein for functional studies. Manduca sexta Lsd1 was expressed as a fusion 

protein with thioredoxin (Trx–Lsd1) using the pET-32 Ek/LIC vector that also inserts a His-tag 

and an S-tag coding sequence between Trx and Lsd1(Fig.6). A thrombin cleavage site separates 

the Trx/His tag from S-tag/Lsd1. 

 

Fig. 6.  Scheme of Trx-lsd1 protein construct including the protease cleavage sites for 
thrombin and enterokinase. 

Expression of Trx–Lsd1 was attained in E. coli strain Rosetta 2. Maximal expression of rTrx–

Lsd1 (60kDa) occurred 4 h after IPTG induction when Trx–Lsd1 was the major protein of the



 

lysate. Trx–Lsd1 was found in the insoluble fraction of the bacteria lysate. Solubilization was 

achieved by sonication in the presence of 

Exploiting the insolubility of Trx

several times with PBS buffer 

solubilized in PBS buffer containing

preparation of Trx–Lsd1 (Fig.7A,

product of 45 kDa and the 14

the purified MsLsd1.  

Fig. 7. Expression and purification of recombinant 
before and after thrombin cleavage (Lane 1A and 2A) and purified 

 

MsLsd1 reconstituted with phospholipids is stable in aqueous solution

In order to be able to characterize Lsd1

aqueous medium in the absence of denaturant or detergent. The protein was stabilized in aqueous 

buffer by binding to lipids. We prepared lipoprotein particles of Trx

octylglucoside dialysis method, which is amply used to prepare discoidal lipoproteins with 

apolipoproteins (Jonas, Kezdy et al. 1989

containing urea and octylglucoside
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Lsd1 was found in the insoluble fraction of the bacteria lysate. Solubilization was 

achieved by sonication in the presence of lysozyme and detergent as described in methods. 

y of Trx–Lsd1 we removed contaminant proteins by washing the pellet 

several times with PBS buffer containing 2 M urea and 10mM DTT. Then Trx–

containing 3 M urea and 10mM DTT. This procedure yielded a pure 

Fig.7A, lane 1). Thrombin cleavage of Trx–Lsd1 yielded a single 

kDa and the 14 kDa N-terminal domain (Trx–His) (Fig.7A, lane 2

 

purification of recombinant MsLsd1.  SDS-PAGE of Trx
before and after thrombin cleavage (Lane 1A and 2A) and purified MsLsd1 (Lane 1B

Lsd1 reconstituted with phospholipids is stable in aqueous solution 

In order to be able to characterize Lsd1, first of all it is needed to have the protein soluble in an 

aqueous medium in the absence of denaturant or detergent. The protein was stabilized in aqueous 

buffer by binding to lipids. We prepared lipoprotein particles of Trx–Lsd1 by using the 

dialysis method, which is amply used to prepare discoidal lipoproteins with 

Jonas, Kezdy et al. 1989, Chetty, Arrese et al. 2003). Trx–Lsd1 in buffer 

octylglucoside was incubated with two types of lipids DMPG and DMPC, 

Lsd1 was found in the insoluble fraction of the bacteria lysate. Solubilization was 

and detergent as described in methods. 

Lsd1 we removed contaminant proteins by washing the pellet 

–Lsd1 was 

. This procedure yielded a pure 

Lsd1 yielded a single 

2). Fig 7B shows 

PAGE of Trx-MsLsd1 
Lsd1 (Lane 1B). 

first of all it is needed to have the protein soluble in an 

aqueous medium in the absence of denaturant or detergent. The protein was stabilized in aqueous 

Lsd1 by using the 

dialysis method, which is amply used to prepare discoidal lipoproteins with 

Lsd1 in buffer 

DMPG and DMPC, 



 

and subjected to exhaustive dialysis in phosphate buffer. A clear solution of Lsd1 was obtained 

after dialysis. The absence of agg

of this the protein  was stable in so

the fusion protein was obtained by cleavage with thrombin and this step did not affect stability of 

the lipoprotein complexes. The lipoprotein particles of Lsd1 and DMPG/DMPC formed a clear 

and stable solution in aqueous buffer. Analysis of the particle size by nondenaturing gel 

electrophoresis indicated that Lsd1/DMPG particles had an apparent diameter of 7.8

Lsd1/DMPC particles had an apparent diameter of 12

both Lsd1/DMPG and Lsd1/DMPC showed the typical features of the spectra of 

proteins confirming that the protein is folded. Lsd1/DMPC seems to be less structured than 

Lsd1/DMPG (Fig.8B). 

Fig. 8. Reconstitution of Ms
showing the formation of complexes Lsd1
UV CD spectrum of Lsd1 in lipid complex, CD spectrum in phosphate buffer.

 

Alignment of Lsd1 proteins 

MsLSD1 protein is a regulator of lipolysis whose activity is modulated by PKA

phosphorylation as mentioned in 

effect of PKA phosphorylation of Lsd1 on the activity of TGL (Lsd1phosphorylation enhances 

the activity of TGL) (Arrese, Rivera et al. 2008

first step to elucidate the mechanism by which this protein activates TGL we wanted to identify 
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and subjected to exhaustive dialysis in phosphate buffer. A clear solution of Lsd1 was obtained 

after dialysis. The absence of aggregates was an indication that rLsd1bound to lipids and because 

of this the protein  was stable in solution . The removal of the Trx–His N-terminal region from 

the fusion protein was obtained by cleavage with thrombin and this step did not affect stability of 

the lipoprotein complexes. The lipoprotein particles of Lsd1 and DMPG/DMPC formed a clear 

ble solution in aqueous buffer. Analysis of the particle size by nondenaturing gel 

electrophoresis indicated that Lsd1/DMPG particles had an apparent diameter of 7.8

Lsd1/DMPC particles had an apparent diameter of 12 nm (Fig.8A). The far-UV CD 

both Lsd1/DMPG and Lsd1/DMPC showed the typical features of the spectra of 

proteins confirming that the protein is folded. Lsd1/DMPC seems to be less structured than 

MsLsd1 with phospholipids (“artificial LDs”). A) Native gels 
showing the formation of complexes Lsd1-DMPG (Lane 1) and Lsd1-DPMC (Lane 2); 
UV CD spectrum of Lsd1 in lipid complex, CD spectrum in phosphate buffer.  

Alignment of Lsd1 proteins  

a regulator of lipolysis whose activity is modulated by PKA

phosphorylation as mentioned in the introduction. A previous study showed there was a direct 

effect of PKA phosphorylation of Lsd1 on the activity of TGL (Lsd1phosphorylation enhances 

Arrese, Rivera et al. 2008). However, the mechanism is not known. As a 

first step to elucidate the mechanism by which this protein activates TGL we wanted to identify 

and subjected to exhaustive dialysis in phosphate buffer. A clear solution of Lsd1 was obtained 

rLsd1bound to lipids and because 

terminal region from 

the fusion protein was obtained by cleavage with thrombin and this step did not affect stability of 

the lipoprotein complexes. The lipoprotein particles of Lsd1 and DMPG/DMPC formed a clear 

ble solution in aqueous buffer. Analysis of the particle size by nondenaturing gel 

electrophoresis indicated that Lsd1/DMPG particles had an apparent diameter of 7.8 nm and 

UV CD spectrum of 

both Lsd1/DMPG and Lsd1/DMPC showed the typical features of the spectra of α-helical 

proteins confirming that the protein is folded. Lsd1/DMPC seems to be less structured than 

 

) Native gels 
DPMC (Lane 2); B) Far 

 

a regulator of lipolysis whose activity is modulated by PKA-mediated  

introduction. A previous study showed there was a direct 

effect of PKA phosphorylation of Lsd1 on the activity of TGL (Lsd1phosphorylation enhances 

ever, the mechanism is not known. As a 

first step to elucidate the mechanism by which this protein activates TGL we wanted to identify 



 

the conserved elements in Lsd1.  To investigate this issue, both the alignment of the deduced 

Lsd1 protein sequences from

MsLSD1were performed. A

phosphorylation sites, in addition a 100% conserved 

The sketch of MsLsd1structure showing key conserved residues and structure regions are 

illustrated in Fig 10.This analysis provided

mutagenesis study.  

Fig.9. ClustalW Alignment of Lsd1 deduced amino acid sequences
Tribolium c., Tc; Apis mel, Am; Nasonia v., Nv; Aedes aegypti, Ae; Culex pipiens, Cp;Anopheles 
gambiae, Ag; Drosophila mel, Dm.

Fig.10. Sketch of MsLsd1-
regions. The figure shows the locations of conserved phosphorylation sites presented in 
They are within the α-helix. It also shows the key conserved sequence (EPENQARP) located in 
the random coil.  α-helix,
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the conserved elements in Lsd1.  To investigate this issue, both the alignment of the deduced 

s from multiple organisms  and phosphorylation site prediction of 

LSD1were performed. As seen in Fig.9, several conserved Ser and Thr which were predicted 

phosphorylation sites, in addition a 100% conserved “EPENQARP” region was also identified. 

Lsd1structure showing key conserved residues and structure regions are 

.This analysis provided us with the preliminary molecular insight for a 

. ClustalW Alignment of Lsd1 deduced amino acid sequences. M. sexta, Ms
Tc; Apis mel, Am; Nasonia v., Nv; Aedes aegypti, Ae; Culex pipiens, Cp;Anopheles 

gambiae, Ag; Drosophila mel, Dm. The conserved amino acids are colored with green. 

-42 structure showing key conserved residues and structure 
The figure shows the locations of conserved phosphorylation sites presented in 

helix. It also shows the key conserved sequence (EPENQARP) located in 
helix,  β-sheets,  random coil 

the conserved elements in Lsd1.  To investigate this issue, both the alignment of the deduced 

and phosphorylation site prediction of 

, several conserved Ser and Thr which were predicted 

region was also identified. 

Lsd1structure showing key conserved residues and structure regions are 

us with the preliminary molecular insight for a 

 

sexta, Ms; B.mori, Bm; 
Tc; Apis mel, Am; Nasonia v., Nv; Aedes aegypti, Ae; Culex pipiens, Cp;Anopheles 

The conserved amino acids are colored with green.  

 

nserved residues and structure 
The figure shows the locations of conserved phosphorylation sites presented in MsLsd1. 

helix. It also shows the key conserved sequence (EPENQARP) located in 
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The following mutants: triple mutant S116D/S127D/T199E; double mutant S242D/T254E; and 

“EPENQARP” deletion mutant were prepared by site directed mutagenesis as part of this project. 

Site directed mutagenesis was performed as indicated in Materials and Methods. The mutations 

were confirmed by DNA sequencing. Wild-type and mutated Lsd1s were expressed, purified and 

reconstituted in lipoprotein particles using DMPC. The effect of these mutations on the lipase 

activity will be tested in vitro. At this time, some of these experiments are in progress and 

preliminary results obtained by Zengying Wu indicate that the conserved “EPENQARP” region 

may have inhibitory activity to TGL. Moreover, the triple mutant mimicking the phosphorylated 

Lsd1 showed an increase in the lipase activity.  
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The second part of this project is to investigate the role of Adipose triglyceride lipase (ATGL) in 

the hydrolysis of TG stores in M.sexta. ATGL is an evolutionary conserved lipase that governs 

the mobilization of fatty acids in human adipose tissue in conjunction with HSL. The importance 

of ATGL in insects was shown in Drosophila where the loss of Brummer lipase (ATGL 

homolog) causes accumulation of TG, whereas its over-expression renders lean flies. To begin 

the study, we attempted to clone, express and obtain antibodies against MsATGL.  

 

Cloning and analysis of MsATGL cDNA sequence 

A previous study conducted by Jorge Zamora in the lab of Dr. Michael Wells' lab at University of 

Arizona led to the identification of a partial clone of Manduca Sexta ATGL. Our lab had access to 

such material and that clone was used to generate antibodies as explained below. Moreover that 

sequence was also used to design gene specific primers to perform RACE experiments to clone 

the full length of MsATGL cDNA using cDNA synthesized from fat body mRNA. The 3’- RACE 

reactions produced two major products, ~2800 and 1300bp that were purified and used for a 

second round of PCR performed with nested primers as indicated in methods. These PCR 

reactions resulted in same length products ~1300bp that were cloned into the pGEM vector and 

sequenced. On the other hand, 5’- RACE amplified a product of ~700bp, which was sequenced. 

These studies provided an MsATGL cDNA sequence of 2.4 kb which was cloned. The full-length 

coding sequence encodes for a 550-amino acid protein containing a patatin-like domain (Fig. 11) 

which is a key signature of ATGL enzymes isolated from other organisms. The sequence has an 

open reading frame (ORF) of 1646 bp (positions 246-1892) coding a 550 amino acid protein 

(ATGL) with a theoretical molecular weight of 64 kDa (Fig. 11).  The 3’ non-coding region of 

MsATGL consists of ~470 nucleotides including a poly(A) tail of 25 residues. 



 

Fig. 11. M.sexta. cDNA coding region nucleotide
deduced amino acid sequences (1
like phospholipase domain. The consensus lipase catalytic motif is highlighted in gray. 
 

A comparison of the deduced 

insect ATGLs shows significant conservation (~50% amino acid identity) and 95% identity to 

B.mori (Fig. 12).  The conservation is particularly high in N

functional domain is found: the N

domain in which the lipase consensus sequence (GXSXG) containing the active site serine is 

located. We also did the amino acid sequence alignment between 

ATGLs (TTS-2.2, GS2, adiponutrin in human and desnutrin in mice)

showed only ~30% amino acid identity. However, the lipase catalytic motif is still conserved.
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coding region nucleotide (246–1892) is shown above the 
amino acid sequences (1–550). The amino acid sequences underlined represent Patatin

like phospholipase domain. The consensus lipase catalytic motif is highlighted in gray. 

A comparison of the deduced MsATGL protein sequence with the sequences of other putative 

ficant conservation (~50% amino acid identity) and 95% identity to 

).  The conservation is particularly high in N-terminal region where 

functional domain is found: the N-terminal region that contains the Patatin-like phospholipase 

domain in which the lipase consensus sequence (GXSXG) containing the active site serine is 

located. We also did the amino acid sequence alignment between MsATGL and vertebrate 

adiponutrin in human and desnutrin in mice) (data not shown)

showed only ~30% amino acid identity. However, the lipase catalytic motif is still conserved.

is shown above the 
The amino acid sequences underlined represent Patatin-

like phospholipase domain. The consensus lipase catalytic motif is highlighted in gray.  

th the sequences of other putative 

ficant conservation (~50% amino acid identity) and 95% identity to 

terminal region where a potential 

like phospholipase 

domain in which the lipase consensus sequence (GXSXG) containing the active site serine is 

ATGL and vertebrate 

(data not shown). The result 

showed only ~30% amino acid identity. However, the lipase catalytic motif is still conserved. 



 

Fig.12. Multiple alignment of five insect ATGL deduced
AEJ33048.1), Bm (B. mori, NP 001165929.1), Nv (
(Tribolium castaneous, XP 970721.2), Aa (
melanogaster, NP 001163445.1).

Northern Blot analysis: Ms

Northern blot analysis of Ms

male detected a major band corresponding to a transcript of 4.

corresponding to transcripts of 2.4 kb, respectively (Fig. 

Fig. 13. Northern blot of Manduca sexta
2-day adult male insects; B) Total RNA from the fat body of larva (L), adult male (A
female (A-F) and ovaries (Ov). RNA was probed with a 0.67
probe. 
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. Multiple alignment of five insect ATGL deduced amino acid sequences
, NP 001165929.1), Nv (Nasonia vitripennis , XP 001602845.1), 

XP 970721.2), Aa (Aedes aegypti, ABL75463.1)and Dm (
NP 001163445.1). The lipase catalytic motif is framed. 

 

MsATGL has two transcripts 

MsATGL using poly (A) - RNA extracted from fat body of D

male detected a major band corresponding to a transcript of 4.0 kb and a weak band 

corresponding to transcripts of 2.4 kb, respectively (Fig. 13A). 

 

Manduca sexta RNA. A) PolyA-RNA extracted from the
day adult male insects; B) Total RNA from the fat body of larva (L), adult male (A

F) and ovaries (Ov). RNA was probed with a 0.67 kb DIG labeled anti

sequences. MS (M. sexta, 
XP 001602845.1),  Tc 

, ABL75463.1)and Dm (Drosophila 

RNA extracted from fat body of D2 adult 

weak band 

RNA extracted from the fat body of 
day adult male insects; B) Total RNA from the fat body of larva (L), adult male (A-M), adult 

kb DIG labeled anti-sense RNA 



 

More recently we had information from the 

identify in the lab the gene corresponding to ATGL

After transcription and splicing, the mature mRNAs have two different 

due to the alternative polyadenyla

The average length of intron is 

transcripts: variant A (8 exons) and

The length of first intron is 

(Gene ID: 66853) also has two transcripts: variant 1 (9 exons) and variant 2 (8 exons, exon #6 is 

missing compared to variant 1). The first intron is 

The human ATGL gene (Gene ID:

length of intron is ~500 bp.  

 

Fig.14. Sketch of MsATGL
splicing, the mature mRNAs have two different 
which is later translated into
 
To further investigate this, the terminal regions of 2.4 kb seque

Sexta genome sequence were used to design gene

RACE PCR. The 3’-RACE amplified a single product of ~1600bp, which was sequenced. On the 

other hand, for 5’-end the same sequence as 2.4kb cDNA was obtained. These studi
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More recently we had information from the Manduca genome project and we were able to 

in the lab the gene corresponding to ATGL (Fig.14). This gene has 9 exons and 8 introns. 

fter transcription and splicing, the mature mRNAs have two different lengths 

due to the alternative polyadenylation. Both transcripts are translated into 64KDa

he average length of intron is ~3000 bp. The drosophila ATGL gene (Gene ID: 39611

transcripts: variant A (8 exons) and variant B (7 exons, exon #7 is missing compared to variant A). 

he length of first intron is ~6900 bp while the left introns are ~100 bp. The Mouse ATGL

also has two transcripts: variant 1 (9 exons) and variant 2 (8 exons, exon #6 is 

missing compared to variant 1). The first intron is ~1800 bp while the left introns are 

Gene ID: 57104) has only one transcript (10 exons) and t

500 bp.   

ATGL gene. There are 9 exons and 8 introns. After transcription and 
splicing, the mature mRNAs have two different lengths due to the alternative polyadenyla

into 64KDa ATGL Protein. 

To further investigate this, the terminal regions of 2.4 kb sequence together with the 

genome sequence were used to design gene-specific primers as described in methods for 

RACE amplified a single product of ~1600bp, which was sequenced. On the 

end the same sequence as 2.4kb cDNA was obtained. These studi

genome project and we were able to 

9 exons and 8 introns. 

(2.4 and 3.9 Kb) 

64KDa ATGL Protein. 

Gene ID: 39611) has two 

variant B (7 exons, exon #7 is missing compared to variant A). 

ouse ATGL gene 

also has two transcripts: variant 1 (9 exons) and variant 2 (8 exons, exon #6 is 

1800 bp while the left introns are ~150 bp. 

has only one transcript (10 exons) and the average 

 

fter transcription and 
due to the alternative polyadenylation 

nce together with the Manduca 

specific primers as described in methods for 

RACE amplified a single product of ~1600bp, which was sequenced. On the 

end the same sequence as 2.4kb cDNA was obtained. These studies provided 



 

an MsATGL cDNA sequence of 3.9 kb. 

which is 1620 bp longer in the 

Therefore, they have the same coding region which translate

theoretical molecular weight of 64 kDa

encoding the same protein anticipates complex mechanisms of 

ATGL. We were able to clone and seq

Characterization of MsATGL: ATGL is a lipase 

Recombinat  MsATGL was expressed in Sf9 insect cells that were previously incubated with 

optimal amount of oleic acid to induce an accumulation of cellular tri

cell medium was supplemented oleic acid for 24h prior 

transfection was confirmed by western blot 

significantly lower content of cellular TG 

exhibits lipase activity against triglycerides (Fig. 

Fig.15. Expression and partial Characterization of 
ligated into pIEx-1 Ek/LIC vector that contains N
used to transfect Sf9 cells. A) 
(30µg/lane) were separated by SDS
ATGL antibody. Immuno-reactive bands 
Ig G horseradish peroxidase conjugate followed by reaction with ECL reagents; 
MsATGL expression on the TG content of Sf9 cells. Data are expressed as means
Statistical comparisons were made by 
(n = 4).  
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ATGL cDNA sequence of 3.9 kb. The 2.4 kb cDNA is totally included in the 3.9 kb cDNA, 

the 3’-non coding region including a poly(A) tail of 30 residues. 

Therefore, they have the same coding region which translates to a 550 amino acid protein with 

theoretical molecular weight of 64 kDa (Fig. 11). The presence of two different transcripts 

anticipates complex mechanisms of the functions and 

We were able to clone and sequence cDNA corresponding to these two transcripts.

ATGL: ATGL is a lipase  

ATGL was expressed in Sf9 insect cells that were previously incubated with 

optimal amount of oleic acid to induce an accumulation of cellular triglycerides. For this purpose, 

cell medium was supplemented oleic acid for 24h prior to the transfection. The success of 

transfection was confirmed by western blot (Fig. 15A). The over-expressed Sf9 cells showed 

lower content of cellular TG than in control suggesting that recombinant ATGL 

lipase activity against triglycerides (Fig. 15B).  

 

Expression and partial Characterization of MsATGL in Sf9 cells. Ms
1 Ek/LIC vector that contains N-term His•tag and S•tag coding sequences and 

A) Homogenates of transfected (T) Sf9 cells and control (C) cells 
(30µg/lane) were separated by SDS-PAGE, transferred to nitrocellulose, and probed with anti

reactive bands were visualized by probing the blot with an anti
Ig G horseradish peroxidase conjugate followed by reaction with ECL reagents; 

ATGL expression on the TG content of Sf9 cells. Data are expressed as means
Statistical comparisons were made by t-Student test. Data that are expressed as means

he 2.4 kb cDNA is totally included in the 3.9 kb cDNA, 

non coding region including a poly(A) tail of 30 residues. 

to a 550 amino acid protein with a 

). The presence of two different transcripts 

the functions and regulations of 

uence cDNA corresponding to these two transcripts. 

ATGL was expressed in Sf9 insect cells that were previously incubated with 

glycerides. For this purpose, 

transfection. The success of 

expressed Sf9 cells showed a 

that recombinant ATGL 

MsATGL was 
and S•tag coding sequences and 

Homogenates of transfected (T) Sf9 cells and control (C) cells 
PAGE, transferred to nitrocellulose, and probed with anti-

were visualized by probing the blot with an anti-rabbit 
Ig G horseradish peroxidase conjugate followed by reaction with ECL reagents; B) Effect of 

ATGL expression on the TG content of Sf9 cells. Data are expressed as means ± SE (n = 4–5). 
Student test. Data that are expressed as means ± SEM 



 

Recombinant ATGL expressed in Sf9 cells was purified by Ni

of the lipase activity of the purified protein 

the changes in lipase activity normalized by protein content (

The DG-producing activity was 

ATGL has higher TG- than DG

hydrolysis catalyzed by ATGL is diacylglycerol (DG). 

Fig.16. Expression, Purification and partial Characterization of 
MsATGL was ligated into pIEx
sequences and used to transfect Sf9 cells. 
Ni-affinity chromatography.  The soluble fraction from ATGL over
bound to Ni+ resin. Recombinant ATGL His
in lysis buffer (lane1-20mM imidazole; lane 2
lane 4--200mM imidazole). The fractions (15
anti-ATGL polyclonal antibody; 
hydrolysis to form Diolein (DG). 50ul sample fractions (~30ug protein) were examined for
activity against an emulsion of [
separated by TLC. Data that are expressed as means
 

Subcellular localization of 

A polypeptide from the first

E.coli and used to generate antibodies in rabbits as indicated in materials and Methods. 

panel A shows the SDS-PAGE of the purified fusion ATGL (lane 

partial cleavage of fusion ATGL 

analysis using the anti-ATGL antibody generated in rabbit.  
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Recombinant ATGL expressed in Sf9 cells was purified by Ni-affinity (Fig. 16). In 

of the lipase activity of the purified protein was studied using artificial substrates.

the changes in lipase activity normalized by protein content (nmol product/min-

producing activity was significantly higher (P < 0.05) than MG. This suggests that 

than DG- hydrolase activity. In other words, the main product of TG 

hydrolysis catalyzed by ATGL is diacylglycerol (DG).  

 

Expression, Purification and partial Characterization of MsATGL in Sf9 cells 
ATGL was ligated into pIEx-1 Ek/LIC vector that contains N-term His•tag and S•tag coding 

sequences and used to transfect Sf9 cells. A) Purification of recombinant ATGL in Sf9 cells by 
affinity chromatography.  The soluble fraction from ATGL over-expressed Sf9 cells was 

resin. Recombinant ATGL His-tagged protein was eluted by a gradient of imidazole 
20mM imidazole; lane 2-40mM imidazole; lane 3-60mM imidazole and 

200mM imidazole). The fractions (15µl /lane) were loaded for western blot analysis using 
ATGL polyclonal antibody; B) Affinity- purified recombinant ATGL catalyzes TG 

hydrolysis to form Diolein (DG). 50ul sample fractions (~30ug protein) were examined for
against an emulsion of [3H-triolein] and Triton X-100. Products of TG hydrolysis were 

separated by TLC. Data that are expressed as means ± SEM (n = 4).  

of MsATGL 

from the first methionine to the amino acid 449 of MsATGL was generated in 

used to generate antibodies in rabbits as indicated in materials and Methods. 

PAGE of the purified fusion ATGL (lane 1, 65KD) and the resulting 

of fusion ATGL with thrombin (lane 2, 53KD). Panel B shows the Western Blot 

ATGL antibody generated in rabbit.   

). In vitro analysis 

was studied using artificial substrates. Fig. 16 shows 

-mg of protein). 

higher (P < 0.05) than MG. This suggests that 

hydrolase activity. In other words, the main product of TG 

ATGL in Sf9 cells 
term His•tag and S•tag coding 

Purification of recombinant ATGL in Sf9 cells by 
ed Sf9 cells was 

tagged protein was eluted by a gradient of imidazole 
60mM imidazole and 

loaded for western blot analysis using 
purified recombinant ATGL catalyzes TG 

hydrolysis to form Diolein (DG). 50ul sample fractions (~30ug protein) were examined for lipase 
100. Products of TG hydrolysis were 

GL was generated in 

used to generate antibodies in rabbits as indicated in materials and Methods.  Fig17 

) and the resulting 

anel B shows the Western Blot 



 

Fig.17. Purification of recombinant 
expressed in E.coli as a fusion protein  and purified from the bacteria lysate by standard 
procedures. Fusion ATGL w
with antiserum. Lane 1: Fusion ATGL
B) Western Blot  

 

The subcellular distribution of 

of fat body cells was investigated by 

18 shows ATGL is mostly associated to the lipid droplet fraction of the cells

Fig. 18. Western analysis of the expression and sub
M.sexta fat body. Lipid droplets (LD), cytosol (Cyt) and membrane (Mem) fractions were 
separated by SDS-PAGE, transferred to nitrocellulose membrane and probed with anti
antibody.  A) and B) Samples from larva and adult fat bodies
ovaries from female insects.
 

Expression of ATGL during development

To gain insights into the role of ATGL on TG mobilization, developmental changes in the levels 

of its transcript to that of rpS3 (control) 

described in methods. rpS3 is a highly conserved protein component

subunit (Jiang, Wang et al. 1996

previously used as control in studies dealing with fat body expression of proteins 
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. Purification of recombinant M. sexta ATGL and antibody production
as a fusion protein  and purified from the bacteria lysate by standard 

was separated by SDS-PAGE, transferred to nitrocellulose, and probed 
: Fusion ATGL; Lane 2: partial cleavage of fusion ATGL

The subcellular distribution of MsATGL among cytosolic, lipid droplet, and membrane

investigated by immunoblotting using an anti-M. sexta ATGL antibody. Fig. 

mostly associated to the lipid droplet fraction of the cells.  

. Western analysis of the expression and sub-cellular distribution of ATGL in 
Lipid droplets (LD), cytosol (Cyt) and membrane (Mem) fractions were 
AGE, transferred to nitrocellulose membrane and probed with anti
Samples from larva and adult fat bodies; C) LD isolated from fat body and 

ovaries from female insects. 

xpression of ATGL during development 

To gain insights into the role of ATGL on TG mobilization, developmental changes in the levels 

to that of rpS3 (control) were quantified by RT-PCR which was carried out as 

rpS3 is a highly conserved protein component of the small ribosomal 

Jiang, Wang et al. 1996, Lyamouri, Enerly et al. 2002). Manduca rpS3 has been 

previously used as control in studies dealing with fat body expression of proteins 

ATGL and antibody production . rATGL was 
as a fusion protein  and purified from the bacteria lysate by standard 

PAGE, transferred to nitrocellulose, and probed 
of fusion ATGL. A) SDS-PAGE; 

cytosolic, lipid droplet, and membrane fractions 

ATGL antibody. Fig. 

 

cellular distribution of ATGL in 
Lipid droplets (LD), cytosol (Cyt) and membrane (Mem) fractions were 
AGE, transferred to nitrocellulose membrane and probed with anti-ATGL 

; C) LD isolated from fat body and 

To gain insights into the role of ATGL on TG mobilization, developmental changes in the levels 

which was carried out as 

of the small ribosomal 

rpS3 has been 

previously used as control in studies dealing with fat body expression of proteins (Jiang, Wang et 



 

al. 1999, Yu and Kanost 1999

development revealed that the transcript is present at all developmental stages, larvae, wander, 

and adults (Fig 19A). MsATGL transcription is up

periods of the larval stages (HC

male and female insects which are also non

significantly in feeding larvae (D1, D2, and D5). 

ovary, where the level is in the same range as wander stages.

The expression of ATGL protein in different developmental stages of 

by immunodetection using anti

directly separated by SDS-PAGE

As seen in Fig. 19B, MsATGL 

M and F) together with female ovary

larvae stages from HC to W1. Interesting, 

appearance of the 64 KDa ATGL 

smaller bands identified by anti ATGL antibody (41 KDa and 30 KDa) 

cleavage of the 64KDa protein. This observation is in agreement with the fact that no transcript 

was detected by Northern blot. Moreover the cleavage of 64 KD ATGL seems to be increased in 

the feeding period of the 5th
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Yu and Kanost 1999, Arrese, Mirza et al. 2008). RT-PCR analysis throughout 

development revealed that the transcript is present at all developmental stages, larvae, wander, 

ATGL transcription is up-regulated during the physiological non

periods of the larval stages (HC and W). High levels of expression are also observed in the adult 

male and female insects which are also non-feeding periods (M and F). The levels decreased 

significantly in feeding larvae (D1, D2, and D5). MsATGL transcript was also detected female 

is in the same range as wander stages.  

The expression of ATGL protein in different developmental stages of M. sexta was investigated 

by immunodetection using anti-ATGL antibody. The lipid droplets isolated from fat body 

PAGE, transferred to the membrane and analyzed by western blotting. 

ATGL (64 KD) is up-regulated during the non-feeding periods (HC

together with female ovary. More bands (such as 41 KD and 30 KD) were detected in 

larvae stages from HC to W1. Interesting, the transcription of ATGL mRNA correlates with the 

appearance of the 64 KDa ATGL protein for the most part (HC, D5, W1, W3, M and F). The 

ed by anti ATGL antibody (41 KDa and 30 KDa) could originate 

64KDa protein. This observation is in agreement with the fact that no transcript 

was detected by Northern blot. Moreover the cleavage of 64 KD ATGL seems to be increased in 

th instar larva. 

 

is throughout 

development revealed that the transcript is present at all developmental stages, larvae, wander, 

regulated during the physiological non-feeding 

els of expression are also observed in the adult 

feeding periods (M and F). The levels decreased 

ATGL transcript was also detected female 

was investigated 

s isolated from fat body were 

analyzed by western blotting. 

feeding periods (HC, W3 

More bands (such as 41 KD and 30 KD) were detected in 

of ATGL mRNA correlates with the 

for the most part (HC, D5, W1, W3, M and F). The 

originate from 

64KDa protein. This observation is in agreement with the fact that no transcript 

was detected by Northern blot. Moreover the cleavage of 64 KD ATGL seems to be increased in 



 

Fig. 19. Changes of MsATGL during development: A) 
extracted from fat bodies and subjected to real
triplicate samples± SD, normalized aga
Blot of lipid droplets and fat bodies and ovary. Abbreviations: HC, head capsules; D1,D2,D5, 
larva day 1, day 2 and day5, respectively; W, wanderer  day 1 and 3: M and F , adult male and 
female day 2-3; O, ovary.  
 

Major behavioral and metabolic differences distinguish the larval and adult stages of 

Among those differences is the fact that larvae eat constantly and accumulate lipid reserves in the 

fat body, whereas adult insects consume the l

by reproduction and flight. Since HC, wander and adult stages need to mobilize TG stored in the 

fat bodies, it makes sense that ATGL transcript and expression are up

larvae stages it is degraded. Because ATGL is the important lipid droplets associated lipase to 

hydrolyze TG for energy supplying. However, the biological significance of

degradation is unknown. Perhaps these products 

stages. In fact, ATGL degradations were also observed during the transfection studies in Sf9 cells 

(Fig. 20: when the Sf9 cells were transfected for 48

compared with the transfection of 24h). More work remains to be done in order to solve the issues. 

 
 

Fig.20. Western blot analysis of expression of 
into pIEx-1 Ek/LIC vector tha
transfect Sf9 cells. Homogenate of transfected Sf9 cells (30µg/lane) was separated by SDS
transferred to nitrocellulose, and probed with anti
Lane 2: transfection for 48h.
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ATGL during development: A) mRNA levels. Total RNA was 
extracted from fat bodies and subjected to real-time PCR. Results show the means of independent 
triplicate samples± SD, normalized against ribosomal protein S3; B) Protein levels by Western 
Blot of lipid droplets and fat bodies and ovary. Abbreviations: HC, head capsules; D1,D2,D5, 
larva day 1, day 2 and day5, respectively; W, wanderer  day 1 and 3: M and F , adult male and 

 

Major behavioral and metabolic differences distinguish the larval and adult stages of 

Among those differences is the fact that larvae eat constantly and accumulate lipid reserves in the 

fat body, whereas adult insects consume the lipid stores to support the energy demand s imposed 

by reproduction and flight. Since HC, wander and adult stages need to mobilize TG stored in the 

it makes sense that ATGL transcript and expression are up-regulated while in feeding

larvae stages it is degraded. Because ATGL is the important lipid droplets associated lipase to 

hydrolyze TG for energy supplying. However, the biological significance of this specific 

degradation is unknown. Perhaps these products could play an important role during larvae 

In fact, ATGL degradations were also observed during the transfection studies in Sf9 cells 

: when the Sf9 cells were transfected for 48h, ATGL was significantly degraded 

compared with the transfection of 24h). More work remains to be done in order to solve the issues. 

 

Western blot analysis of expression of MsATGL in Sf9 cells.  MsATGL was ligated 
1 Ek/LIC vector that contains N-term His•tag and S•tag coding sequences and used to 

transfect Sf9 cells. Homogenate of transfected Sf9 cells (30µg/lane) was separated by SDS
transferred to nitrocellulose, and probed with anti-ATGL antibody. Lane 1: transfection for 24h
Lane 2: transfection for 48h. 

mRNA levels. Total RNA was 
time PCR. Results show the means of independent 

inst ribosomal protein S3; B) Protein levels by Western 
Blot of lipid droplets and fat bodies and ovary. Abbreviations: HC, head capsules; D1,D2,D5, 
larva day 1, day 2 and day5, respectively; W, wanderer  day 1 and 3: M and F , adult male and 

Major behavioral and metabolic differences distinguish the larval and adult stages of M. sexta. 

Among those differences is the fact that larvae eat constantly and accumulate lipid reserves in the 

ipid stores to support the energy demand s imposed 

by reproduction and flight. Since HC, wander and adult stages need to mobilize TG stored in the 

regulated while in feeding-

larvae stages it is degraded. Because ATGL is the important lipid droplets associated lipase to 

this specific 

during larvae 

In fact, ATGL degradations were also observed during the transfection studies in Sf9 cells 

h, ATGL was significantly degraded 

compared with the transfection of 24h). More work remains to be done in order to solve the issues.  

ATGL was ligated 
term His•tag and S•tag coding sequences and used to 

transfect Sf9 cells. Homogenate of transfected Sf9 cells (30µg/lane) was separated by SDS-PAGE, 
ATGL antibody. Lane 1: transfection for 24h; 
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As introduction chapter mentioned, the concentration of lipid in the hemolymph was nearly 

doubled in the molt from 4th to 5th instar and there was a pronounced increase (Fig.5) in 

wandering larvae and prepupae, which were not consistent with the main lipase TGL activity 

pattern (TGL activity is lower during the molt from 4th to 5th instar, wandering larvae and 

prepupae stages).  Here we investigate the transcript level of ATGL during development which 

shows the similar pattern to the hemolymph lipid concentration (Fig.21). This suggests that 

ATGL does play a critical role during the physiological non-feeding periods of the larval stages 

(HC and W). 

 

Fig. 21. Changes of hemolymph lipid concentration with MsATGL and TGL expression 
during development of Manduca sexta. Results for mRNA levels of ATGL and TGL show the 
means of independent triplicate samples, normalized against ribosomal protein S3. Data 
assembled from: (Ziegler, Willingham et al. 1995, Tobler and Nijhout 2010) 
 

To infer the biological function of ATGL from its changes during development, its level of 

mRNA was compared with the expression of TGL. The expression of TGL mRNA was higher 

than that of ATGL at all times during development (Fig.22), but for the wander stages especially 

at W3.  



 

Fig.22. Ratio between mRNA levels of ATGL and TGL 
ratio of average values for the expression of ATGL and TGL in the fat body. 
 

 

Effect of starvation and re

larval stages 

Given the very low abundance of ATGL under feeding conditions and increased levels during the 

physiological non-feeding periods we investigated into more detail the effect of starvation in th

feeding larvae insects. 5th D1 larvae were subjected to starvation for different periods of time (6h, 

12h, 24h, and 30h) and levels of 

determined. Both levels of ATGL 

starvation in a time-dependent manner

compared to D1 and D2 control while it became ~

Quantification analysis of protein lev

to ~8 fold compared to D1 after

ATGL is highly sensitive to

starvation conditions during larval stages. 

experiments. As we can see in Fig. 2

ATGL mRNA dropped significantly after re

observed at 3h re-feeding using 24h starved larvae, and t
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Fig.22. Ratio between mRNA levels of ATGL and TGL during development
ratio of average values for the expression of ATGL and TGL in the fat body.  

and re-feeding on ATGL expression in the fat body of insects at the 

Given the very low abundance of ATGL under feeding conditions and increased levels during the 

feeding periods we investigated into more detail the effect of starvation in th

D1 larvae were subjected to starvation for different periods of time (6h, 

evels of transcripts and proteins associated with the lipid droplets were 

levels of ATGL transcripts and proteins were dramatically up

dependent manner. For 6h starvation the transcripts increased to ~

D1 and D2 control while it became ~30 fold when starved for 30h (Fig.

of protein level in Fig. 23C shows that the amount of large form increased 

after 30h starvation. These observations indicate that the expression of 

ATGL is highly sensitive to the nutritional status of insects and may play a key role under 

starvation conditions during larval stages. This conclusion was confirmed by re-

. As we can see in Fig. 23D, 18h starved larvae were re-fed for 3h and 6h

ATGL mRNA dropped significantly after re-feeding for 3h. The degradation of ATGL was 

feeding using 24h starved larvae, and the levels of ATGL protein 

during development. Values are the 

ATGL expression in the fat body of insects at the 

Given the very low abundance of ATGL under feeding conditions and increased levels during the 

feeding periods we investigated into more detail the effect of starvation in the 

D1 larvae were subjected to starvation for different periods of time (6h, 

associated with the lipid droplets were 

up-regulated by 

increased to ~7 fold 

fold when starved for 30h (Fig.23A). 

C shows that the amount of large form increased 

that the expression of 

and may play a key role under 

-feeding 

fed for 3h and 6h the level of 

feeding for 3h. The degradation of ATGL was 

protein dropped 



 

dramatically after re-feeding 

female adult were also invest

because they were maintained at room temperature without food

Fig 23E shows that levels of ATGL were dramatically 

trahelose for 24h regardless of the sex of the insects.

Moreover, the expression of ATGL 

rather than 2.4 kb transcript 

this observation is unknown.

Fig.23. Expression of ATGL during starvation and re
PCR; B) Northern analysis of total RNA; C) and D) Western blot analysis  of LD fractions. 
Larvae from 5th instar day 1 were subjected to starvation for different periods of times. Each 
condition had 3-5 insects pooled together for total RNA extraction and fat body homogenates. 
0.01µg cDNA was used for each RT
blotting.  40µg protein from LD fraction was loaded for western blot. 
 

 Likewise the effect of starvation of 5

(Fig.24). The expression of 

During prolonged starvation (>6h) TGL levels are higher than ATGL. However, during short

term starvation (6h) the transcription of ATGL was dramatic

of TGL was decreased, such that ATGL and TGL mRNA levels become
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feeding for 6h (Fig.23F). The levels of ATGL mRNA from both male and 

female adult were also investigated. We mimicked the adult re-feeding by injecting trehalose, 

were maintained at room temperature without food which was in a starvation status. 

levels of ATGL were dramatically down-regulated (~1 fold) 

h regardless of the sex of the insects. 

, the expression of ATGL protein correlates with the appearance of the 

rather than 2.4 kb transcript by Northern blot analysis (Fig. 23B). The biological significance of 

this observation is unknown. 

. Expression of ATGL during starvation and re-feeding. A) mRNA measured by RT
PCR; B) Northern analysis of total RNA; C) and D) Western blot analysis  of LD fractions. 

tar day 1 were subjected to starvation for different periods of times. Each 
5 insects pooled together for total RNA extraction and fat body homogenates. 

g cDNA was used for each RT-PCR reaction. 2µg total RNA was loaded for northern 
g protein from LD fraction was loaded for western blot.  

Likewise the effect of starvation of 5th-instar larva on the levels of TGL mRNA was investigated

). The expression of TGL was significantly increased after 12, 24 and 30h of star

During prolonged starvation (>6h) TGL levels are higher than ATGL. However, during short

term starvation (6h) the transcription of ATGL was dramatically induced, whereas the expression 

of TGL was decreased, such that ATGL and TGL mRNA levels become equally abundant. The 

. The levels of ATGL mRNA from both male and 

feeding by injecting trehalose, 

which was in a starvation status. 

1 fold) after injection of 

correlates with the appearance of the 4.0 kb transcript 

The biological significance of 

 

feeding. A) mRNA measured by RT-
PCR; B) Northern analysis of total RNA; C) and D) Western blot analysis  of LD fractions. 

tar day 1 were subjected to starvation for different periods of times. Each 
5 insects pooled together for total RNA extraction and fat body homogenates. 

g total RNA was loaded for northern 

on the levels of TGL mRNA was investigated 

significantly increased after 12, 24 and 30h of starvation. 

During prolonged starvation (>6h) TGL levels are higher than ATGL. However, during short-

induced, whereas the expression 

equally abundant. The 



 

differences in ATGL levels observed between feeding and non

were not observed for TGL suggesting a specific role of ATGL in lipid mobilization under 

starvation conditions and the two lipases 

Fig.24. Ratio between mRNA levels of ATGL and TGL 
ratio of average values for the expression of ATGL and TGL in the fat body. 
 

According to Tobler and Nijhout

concentration in hemolymph and the effect also depended on the ti

levels declined precipitously soon after the animal had been deprived of food and glucose 

concentration had become almost undetectable after 24h starvation (Fig.2

hemolymph glucose appeared to trigger the secretion of AKH from the corpora cadiaca which 

activated fat body glycogen phosphorylase. 

phosphorylase, the hemolymph trehalose level stayed high (

But during prolonged starvation (>6h)

dramatically increased which suggestes that the up

hydrolyzing TG in stored to release lipid into

work need to be done to figure out the exact signal pathways.
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differences in ATGL levels observed between feeding and non-feeding periods of larval stage 

were not observed for TGL suggesting a specific role of ATGL in lipid mobilization under 

starvation conditions and the two lipases seem to be controlled by independent mechanisms.

 

. Ratio between mRNA levels of ATGL and TGL during starvation. Values are the 
ratio of average values for the expression of ATGL and TGL in the fat body.  

Tobler and Nijhout (Tobler and Nijhout 2010), nutrient deprivation affected glucose 

concentration in hemolymph and the effect also depended on the timing of the starvation. Glucose 

levels declined precipitously soon after the animal had been deprived of food and glucose 

concentration had become almost undetectable after 24h starvation (Fig.25). This decrease in 

hemolymph glucose appeared to trigger the secretion of AKH from the corpora cadiaca which 

activated fat body glycogen phosphorylase. Probably because of the activited glycogen 

phosphorylase, the hemolymph trehalose level stayed high (A Gies, T Fromm, R Ziegler

prolonged starvation (>6h), both the transcript level of ATGL and TGL 

dramatically increased which suggestes that the up-regulated expression of lipases

TG in stored to release lipid into hemolyph for energy supplying. However, more 

work need to be done to figure out the exact signal pathways. 

feeding periods of larval stage 

were not observed for TGL suggesting a specific role of ATGL in lipid mobilization under 

controlled by independent mechanisms. 

Values are the 

, nutrient deprivation affected glucose 

ming of the starvation. Glucose 

levels declined precipitously soon after the animal had been deprived of food and glucose 

This decrease in 

hemolymph glucose appeared to trigger the secretion of AKH from the corpora cadiaca which 

robably because of the activited glycogen 

R Ziegler 1988). 

and TGL was 

lipases plays roles in 

hemolyph for energy supplying. However, more 
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Fig. 25. Changes in hemolymph sugar levels and the expression of ATGL and TGL in 
starving larvae of the 5th instar. Results for mRNA levels of ATGL and TGL show the means 
of independent triplicate samples, normalized against ribosomal protein S3. Data assembled from: 
(Tobler and Nijhout 2010) (A Gies, T Fromm, R Ziegler 1988) 

 

Effect of ATGL on TGL mediated lipolysis 

In order to assess the contribution of ATGL activity to the overall TG hydrolysis, the endogenous 

lipase activity associated to lipid droplets was measured. Unlike TGL which is a cytosolic lipase, 

ATGL is found associated with LDs. Lipid droplets were isolated from larval fat bodies under fed 

(low ATGL content) and starved conditions (high ATGL content) (Fig. 23) and tested for lipase 

activity using [3H]-triolein that was incorporated into the lipid droplets by vortexing the lipid 

droplet aliquot containing ~650 nmol TG into a thin film of [3H]-triolein (0.1 µCi). Lipid droplets 

showed a very low lipase activity and no significant difference were observed between fed and 

starved conditions (Fig 25). By contrast, when lipid droplets were incubated in the presence of 

cytosol (TGL) a very robust lipase activity was observed (Fig 26). This result points out the 

difficulty of measuring lipase activity of ATGL. This was also the case with recombinant ATGL. 

Different condition (pH, detergents, ion strength) were tested without being able to improve the 

lipase activity of ATGL. More research is needed to solve this issue. 
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Fig. 26. Lipase activity associated to lipid droplets (LD) and lipase activity of lipid droplets 
plus cytosol (LD+cytosol). Larvae from 5th instar day 1 were subjected to starvation for 12h. 
Each condition had 3-5 insects pooled together for LD and cytosol extraction. 25ul sample 
fractions (~650 nmol TG) were examined for lipase activity against an emulsion of [3H-triolein] 
and Triton X-100. 
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Concluding remarks: 

Trigycerides (TG) stored in lipid droplets (LDs) are the main energy reserves in all animals. 

Mobilization of fatty acids from TG depends on the action of lipases, and is stimulated by 

adipokinetic hormones (AKH) in several insects. In Manduca sexta, the effect of AKH on the 

mobilization of energy reserves is dependent on the developmental stages. In larval stage, AKH 

activates glycogenolysis whereas it stimulates lipolysis in adult insects. In adult Manduca sexta 

AKH promotes a rapid phosphorylation of the lipid droplet-associated protein Lsd1, and a 

concomitant activation of the rate of hydrolysis of TG by the main lipase (TGL). Since LDs are 

complex organelles that contain a large number of proteins, the study of the mechanism of 

lipolysis would be facilitated if one would have an in vitro system that uses purified proteins. 

Here we describe the purification of recombinant MsLsd1 and its reconstitution with lipids to 

form lipoprotein complexes suitable for functional and structural studies. We also describe 

mutagenesis studies of MsLsd1 targeting conserved phosphorylation sites and a short region 

localized towards the C-term of the protein that is a feature of all insect Lsd1. These studies 

suggest that the mutated sites are relevant elements of Lsd1 judging by the effect of the mutations 

on TG-lipase activities.  

The expression of the fat body TGL and Lsd1 during M. sexta development have been studied. 

Both TGL and its regulator -Lsd1- are more abundant in adult insects when insects rely solely in 

lipid stores for all the energy demand including flight and reproduction. Interestingly, during 

physiological non-feeding periods of larva M. sexta, TG-lipase activity is lower than in the 

feeding periods. However, the lipid concentrations in hemolymph are somewhat higher than the 

feeding larva. This contradiction suggests that additional enzymes may act upon TG stores 

mobilizing lipids to the hemolymph. A major lipase in Drosophila is the Brummer lipase, a 

homolog of human ATGL. This enzyme which is a highly conserved lipase could be also present 

in Manduca and we wondered if this lipase could be playing a role in the non feeding state. In the 



44 

 

present study we identified Adipose triglyceride lipase (ATGL) in Manduca sexta. Two MsATGL 

cDNAs (2.4kb and 3.9kb) encoding a 550 amino acid protein with a theoretical molecular weight 

of 64KDa were cloned. This enzyme was mostly associated to the lipid droplets and catalyzed the 

hydrolysis of TG to diacylglycerides (DG), while TGL (74-76KDa) was a cytosolic lipase and the 

main product was monoacylglycerides (MG) in vitro. MsATGL is up-regulated during the 

physiological non-feeding periods but lower than TGL with the exception of 3rd-day pre-pupal. 

However, this expression pattern of ATGL coincides well with the hemolymph lipid 

concentrations. Our data demonstrate that ATGL plays a critical role during the physiological 

non-feeding time when TGL activity is low, which allows the insects survive during these periods. 

Unlike TGL whose activation is very rapid -within minutes- and is modulated by the PKA-

dependent phosphorylation of Lsd1triggerd by AKH, the activation of lipolysis by ATGL is a 

slower process. For example, the enzyme was up regulated in 6h after starvation. The decreasing 

of glucose levels in hemolymph during starvation coincides with the onset of ATGL up regulation 

suggesting that the nutritional status of the animal may play a key role for the regulation of 

ATGL expression.   

Clearly, an understanding of these metabolic pathways is of fundamental importance in insect 

biochemistry. This study shows for the first time that ATGL is important besides TGL. The 

differences in ATGL levels observed between feeding and non-feeding periods of larval stage 

were not observed for TGL suggesting a specific role of ATGL in lipid mobilization under 

starvation conditions and the two lipases seem to be controlled by independent mechanisms. 
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