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ABSTRACT 

Mixtures of fumed metal oxide nanoparticles (np’s) dispersed in water, at a 

solution pH where one species is positively charged and the other is negatively charged, 

form pseudo-solid gels at volume fractions as low as 1.5 vol %. The nanoparticles consist 

of spherical primary particles that have been sintered into rigid, fractal aggregates. When 

the two particle species are mixed at a range of volume fractions, they heteroaggregate 

to form a percolated, fluid-spanning structure due to electrostatic interactions. These 

gels exhibit a measurable yield stress and an apparent viscosity that follows a power law 

relationship with shear rate. This work characterizes the rheological properties, physical 

structure, and phase behavior for binary mixtures of fumed silica, fumed alumina, and 

fumed titania in aqueous dispersions. Gels were characterized at various particle 

concentrations, solution pHs, and mixture ratios. The strength of the gel network, as 

evaluated by the storage modulus and yield stress, appears to be maximized when the 

total negative surface charge on one type of particle is closely matched to the total 

positive surface charge on the opposite particle type.    

Secondly, recent interest in the use of nanoparticles in emulsion stabilization has 

driven increased efforts to understand how the characteristics of the particles influence 

emulsion properties. While it is clear that contact angle and wettability must play 

significant roles in determining the type of emulsion formed, it is not straightforward to 

measure the contact angle of a nanoparticle. In this paper we compare multiple 

techniques for characterizing the water-air contact angle of silica nanoparticles while 

systematically varying the hydrophobicity of the nanoparticles using silanization. We 

then compare the performance of the particles in decane/water emulsions. While the 

heat of immersion measured by microcalorimetry is found to provide the best method 

for discriminating between the wettability of the particles, the fraction of surface covered 

by the silane groups was observed to affect the structure of the emulsion more profoundly 
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than the differences in the contact angles of the particles. Furthermore, we find that the 

phase of initial dispersion is extremely influential in determining the resulting emultion 

type and droplet size. 

Keywords – nanoparticles, wettability, silica, silanization, heat of immersion, contact 

angle, Pickering emulsions, heteroaggregation, fumed nanoparticles, yield stress, power 

law fluid, gel rheology, hydrogel, small angle scattering, fractal network 
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CHAPTER 1: INTRODUCTION 

 The following work was completed within the Center for Interfacial Reaction 

Engineering (CIRE), a collaborative research center at the University of Oklahoma, 

Oklahoma State University and the University of Tulsa. CIRE has four central research 

thrusts: 1) Synthesizing and characterizing nanoparticles that optimize the reactivity, 

emulsion stability, mass transfer, and interfacial area of phase-transfer catalysis 

processes; 2) Understanding how catalytic reaction mechanisms and kinetics change 

when the reactions take place at a liquid-liquid interface; 3) Using spectroscopy and 

molecular modeling to understand the reaction pathways, competitive adsorption, and 

thermodynamics of model reactions on interfacial catalysts; 4) Combining 

experimentation, theory, and modeling to understand the kinetics of mass transfer and 

phase equilibrium in dynamic, phase-transfer environments and how altering particle 

properties can be used to optimize phase transfer. Metal oxide nanoparticles are widely 

used in a variety of commercial industries, are relatively cheap, stable up to high 

temperatures, and their size/shape can be precisely controlled using a variety of 

synthesis techniques. All of these characteristics make them ideal to act as interfacially-

active catalyst supports in the phase-selective reactions that are at the heart of CIRE’s 

research mission. The results that follow fall under the first of CIRE’s research thrusts 

and investigate two primary phenomena: 1) how altering metal oxide nanoparticles with 

hydrophobic and hydrophilic surface modifiers affects their ability to stabilize Pickering 

emulsions in order to understand how the type surface modifier used affects the 

characteristics of the emulsion formed, and 2) how oppositely charged metal oxide 

nanoparticles self-assemble in aqueous dispersions in order to gain insights into how 

charged nanoparticles may interact when adsorbed at liquid-liquid interfaces and to 
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explore the interesting rheological properties of the colloidal gels formed via electrostatic 

heteroaggregation of the different nanoparticle species. 

 The following four chapters have either been published in or will be submitted 

for publication in peer-reviewed journals, and are presented here as verbatim 

replications of their published forms. 
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CHAPTER 2: SILICA NANOPARTICLE WETTABILITY: 
CHARACTERIZATION AND EFFECTS ON EMULSION 
PROPERTIES 

INTRODUCTION 

Silanization has been extensively used to modify the wettability of metal oxide 

nanoparticles, soil sediments, clays, and zeolites.1-6 The process uses chloro- or methoxy-

silanes to attack the surface hydroxyls of the metal oxides, creating a M-O-Si-R bond that 

covalently attaches the silane to the metal oxide surface. Using alkyl silanes as the surface 

modifier can drastically alter the wettability of the metal oxide surface by replacing 

hydrophilic hydroxyl groups with hydrophobic hydrocarbon chains. At low surface 

coverages, these alkyl silanes have been shown to cluster together into patches rather 

than distribute homogenously across the surface, while it is still possible to form a 

complete, continuous monolayer at higher surface coverages.7 Silicate nanoparticles with 

hydrophobic surface modifications have been shown to work very effectively as emulsion 

stabilizers,8 absorbents for cleaning up hydrocarbon contaminants in surface/ground 

water,9 and catalysts/catalyst supports with improved stability in the presence of hot 

water10 and increased reaction rates due to decreased water adsorption capacity.11  

Others have used silanization to attach hydrophilic surface moieties onto the metal oxide 

surface, such as carboxylic acids,12 aminos,13 phosphates,14 and sulfonates/sulfonic 

acids.15 Hydrophilically modified nanoparticles have been used to create pH-responsive, 

particle-stabilized foams,16 create pH-sensitive gates for controlling drug delivery,17 and 

improve low-temperature CO2-capture sorbents.18 Silanes that have been covalently 

attached to the metal oxide surface can also provide excellent anchor points for block co-

polymers and other molecules, which can be used to increase particle dispersion in 

dispersions and coatings,19,20 create nanoparticle chelating agents for extraction of metal 

ions from ground water,21 produce pH-responsive Pickering emulsions using different 
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hydrophilic polymers,22 and generate nanoparticles that can exhibit both hydrophobic 

and hydrophilic surface properties, depending on the polarity of the surrounding fluid.23  

The numerous applications for surface-modified metal oxide nanoparticles and the 

importance of wettability to most of these applications makes the accurate 

characterization of the nanoparticle’s wettability particularly important. Grigoriev,24 

Nowak,25 and others have compared various methods of measuring nanoparticle and 

powder wettability and contact angle, and enumerated the pros and cons of each method. 

One common method involves measuring the amount of time for a known volume of 

particles to sink into a fluid after being placed at the air/fluid interface, taking advantage 

of how particle contact angle strongly affects the floatation characteristics of powders. 

However, when using this method it is difficult to compare particles that have different 

densities, surface areas, particle sizes, shapes, or any other difference that could also 

affect the floatation time of the powder. Numerous techniques for characterizing the 

particle contact angle by direct observation of the trapped particle at the fluid-fluid 

interface have been developed,26-28 but these methods all suffer from problems relating 

to either the magnification limits of optical microscopy or the addition of gelation agents 

to one or both fluids that could potentially affect the location of the particles at the 

interface, especially in the case of nanoparticles where very small particle displacements 

would result in large changes in the observed contact angle. Ellipsometry is another 

technique that is very useful for determining particle contact angle in a large variety of 

situations, but, as pointed out by Binks,29 the technique suffers from poor sensitivity 

when the interfacial coverage deviates very far above or below that of a close-packed 

monolayer. 

One of the most popular methods involves analysis of static and dynamic sessile liquid 

drops in contact with either a thin film of particles on a substrate30 or a compressed pellet 

of particles.31 This method assumes that the particles form a smooth, flat, non-porous 
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surface as required by the Young-Laplace equation, an assumption that is inherently 

false with a deposited layer or compressed pellet of particles. The sessile drop method 

also ignores that mechanical compression can significantly alter particle surface 

chemistry, with previous studies showing that the observed contact angle decreases as 

compaction pressure increases.32,33  

The capillary rise or Washburn method measures the rate of penetration of a liquid into 

a packed bed of particles and relates the rate to the particle/liquid contact angle. This 

method either requires that the particle bed be well characterized in terms of effective 

capillary diameter, average pore size/shape, pore tortuosity, etc. or that the particle 

packing be estimated by using a reference liquid that ‘perfectly’ wets the particles 

(usually a hydrocarbon with a low surface tension and minimal viscosity). Determining 

the former parameters is very difficult for nanoparticle systems and using a reference 

liquid does not work well when the contact angle of the test liquid(s) are close to zero 

degrees. The porosimetry-style method of measuring contact angle developed by Forny34 

addresses most of the issues related to the capillary rise method, but requires the use of 

a high-pressure pump and a high-pressure microcalorimeter. The thin-layer wicking and 

particle-coated Wilhelmy plate methods suffer from both the non-uniformity of 

coating/packing and smooth surface assumption problems related to the static and 

dynamic sessile drop methods.  

Modern microcalorimetry instruments allow for the accurate measurement of the heat 

of immersion for small particles, which can be thermodynamically related to the particle 

contact angle.35 However, the heat of immersion method also has flaws, namely, that 

converting enthalpy of immersion to contact angle requires a series of assumptions and 

that incomplete wetting of highly hydrophobic particles by water and vice versa requires 

the use of an extrapolation method. In summary, all of the methods of measuring particle 

contact angle currently in common use have a series of drawbacks and complications.  
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This study uses a combination of three different methods to determine the wettability of 

silica nanoparticles that have been treated with a variety of surface-modifiers in order to 

compare the advantages and disadvantages of each of the different wettability 

characterization techniques. These three particular techniques were chosen for five 

reasons: their general popularity in the literature, their ability to characterize a wide 

range of contact angles, the ease of measurement, the availability of equipment to 

complete the measurements, and the familiarity of the authors with the individual 

techniques. It also examines how different types of surface modifiers affect particle 

wettability at differing surface coverages, including the effect on droplet sizes and 

distributions in decane/water Pickering emulsions. 

EXPERIMENTAL 

MATERIALS 

Ludox TM-50 colloidal silica was purchased from Sigma-Aldrich; it is a 50.0±1.0 wt% 

aqueous dispersion of spherical colloidal silica nanoparticles with an average diameter 

of 32 nm, a specific surface area of 110-150 m2/g, and a solution pH of 8.5-9.5. 

Mercaptopropyl trimethoxysilane (MPTMS), trimethyl chlorosilane (TMCS), phenyl 

trichlorosilane (PhTCS), and octadecyl trichlorosilane (OTCS) were all purchased from 

Sigma Aldrich. Hydrogen peroxide was purchased as a 30 wt% aqueous solution from 

Fisher Scientific. Sodium hydroxide was purchased as solid pellets from Fisher Scientific. 

Hexane was obtained from Acros Organics at 99%, reagent-grade purity. Isopropyl 

alcohol was obtained from VWR International. Deionized water with a conductivity of < 

2 µS/cm was obtained using a polymer ion-exchange filtration system.  

METHODS 

The silica nanoparticles must be removed from aqueous solution prior to silanization 

because chlorosilanes will react violently with water, preventing effective surface 

treatment. Therefore, the Ludox TM-50 colloidal silica nanoparticles were removed from 
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aqueous dispersion via evaporation of the liquid water in a fume hood, and washed to 

remove excess sodium hydroxide: the dry nanoparticles were repeatedly dispersed in 

deionized water via vortex mixing, centrifuged out of the dispersion at 7000 rpm, and 

the clear supernatant solution was removed. These steps were repeated until the 

supernatant solution had a conductivity of ≤75 µS/cm. Then the nanoparticles were 

washed an additional two times with a 70/30 (v/v) mixture of isopropyl alcohol and 

deionized water and dried at 120°C in a vacuum oven for 24hrs. 

 Silanization of the nanoparticles was carried out by first dispersing 10g of 

dried/washed Ludox in 100mL of toluene by sonication with a horn sonicator with a 1” 

stainless steel probe at 70% amplitude for 12 minutes. A known amount of silane agent 

was then added to the particle dispersion and allowed to react with the silica surface for 

12 hours while being stirred with a magnetic stir bar at 35°C. After reaction with the 

silane, the particles were removed from solution via centrifugation, and washed five 

times with isopropyl alcohol to remove excess silane/toluene and twice with a 70/30 

(v/v) mixture of isopropyl alcohol and deionized water, with a 

centrifugation/supernatant removal step between each wash. The nanoparticles were 

then dried for 24 hours in a vacuum oven at 120°C. The extent of surface modification 

was controlled by changing the amount of silane added during the reaction step, under 

the assumption that almost all of the silanes reacted with the silica surface as long as the 

number of silane molecules being grafted onto the surface was significantly less than the 

total number of surface hydroxyls, a reasonable assumption based on literature 

sources.36,37,38 However, the degree of surface coverage was also determined 

independently after modification using temperature-programmed oxidation (TPO). The 

nanoparticles were modified with two different concentrations of silane, in the desire to 

obtain two different surface coverages, 1 µmol/m2 and 2 µmol/m2, based on BET-style 

surface area measurements showing that the dried and washed Ludox TM-50 
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nanoparticles had a specific surface area of 115 m2/g. Silica nanoparticles generally have 

2-3 surface hydroxyls per square nanometer;39,40 implying that these surface coverages 

correlate to reacting 20-30% and 40-50% of the silica’s surface hydroxyls, respectively. 

The nanoparticles silanized with MPTMS were then further modified into 

superhydrophilic silica nanoparticles using the technique described by Oh et al,15 which 

oxidizes the thiol group of the MPTMS by dispersing the particles in a solution of 30 wt% 

H2O2 and stirring the solution at 24 hours at room temperature, resulting in sulfonic acid 

groups on the silica surface. The particles were then washed several times with water and 

dried. The sulfonic acid groups were then converted into sodium sulfonate by dispering 

the particles in a 0.1M solution of NaOH under continuous stirring for 24 hours. The 

particles were then washed and dried in a vacuum oven for 24 hours at 120°C. These 

particles are hereafter referred to as sulfonic acid/sulfonate propyl trimethoxysilane 

(SAPTMS) modified particles. After silanization and vacuum drying, the particles are a 

freely flowing powder and do not need to be further processed (grinding, ball-milling, 

etc.) prior to characterization or emulsification. 

 The level of surface coverage was determined using a TPO method where a known 

quantity of the sample is added to a quartz capillary tube and placed in a high 

temperature oven. Then, a mixture of O2 and He is made to flow through the capillary 

tube and the oven heats the sample to 800°C at a rate of 10°C/min, oxidizing any carbon 

on the sample into CO and CO2. The gases then flow into a reactor where they diffuse 

through a Ni catalyst bed with H2, causing the CO/CO2 to undergo a methanation 

reaction. The methanated gases are then fed into a flame ionization detector (FID) which 
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measures the concentration of methane in the stream. The FID signal is then integrated 

and the peak area is used to determine the amount of carbon on the nanoparticle surface 

through comparison to the peak area generated by injecting a known quantity of CO2 into 

the methanator. Once the total amount of carbon on the surface is known, the molar 

surface coverage can be determined by dividing the number of moles of carbon measured 

by the number of carbon molecules in each of the silane modifiers (6 moles of carbon per 

molecule for PhTCS, 18 moles for OTCS, etc.). Table 1 contains the desired and actual 

levels of surface coverage observed for the PhTCS-, TMCS-, and OTCS-modified 

nanoparticles used in this work (the MPTMS/SAPTMS-modified nanoparticles were not 

characterized due to the potential damage to the methanation catalyst by sulfur 

poisoning). It can be seen that while the actual amount of surface coverage measured 

deviates from the desired level of surface coverage the ratio of surface coverages are quite 

close to the desired 2:1. Overall, the TMCS and OTCS modifiers appeared to provide 

surface coverages relatively close to the estimated/desired surface coverage, while the 

PhTCS only provided ~50% of the desired coverage. For the remainder of the text, 

samples created with a desired coverage of roughly 1 µmol/m2 will be referred to as ‘low’ 

surface coverage particles, while samples created with a desired coverage of roughly 2 

µmol/m2 will be referred to as ‘high’ surface coverage particles. 

Table 1. Desired and actual silane surface coverages for 

the particles used in this study. 

Phenyl 1.00 0.56

Phenyl 2.00 1.00

Trimethyl 1.00 0.89

Trimethyl 2.00 1.83

Octadecyl 1.00 0.72

Octadecyl 2.00 1.46

Functional 

Group

Desired Surface 

Coverage, µmol/m2

Actual Surface 

Coverage, µmol/m2
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The capillary rise or Washburn method of determining particle wettability and 

contact angle relates the rate of a liquid’s rise into a packed bed of powder particles. This 

method uses an equation based on Poiseuille’s law for liquid flow through a capillary. 

The Washburn method assumes that the porous bed of particles behaves like a bundle of 

cylindrical capillaries with a constant diameter. The resulting equation relating capillary 

rise to particle contact angle is: 

𝑚2

𝑡
= 𝑐

𝜌2𝛾𝑙𝑐𝑜𝑠𝜃

2𝜇
            (Eqn. 1) 

Where m2/t is the uptake rate of mass2 as the liquid rises into the particle bed, c is an 

experimentally-determined geometric packing factor, ρ is the liquid density, γl is the 

surface tension of the liquid, θ is the particle-liquid contact angle, and µ is the liquid 

viscosity.41 The geometric packing factor is usually determined for each type of 

particle/packing by using a liquid that completely wets the sample; usually pentane, 

hexane, octane, etc. due to their low viscosity and low surface tension.5 This reference 

liquid is assumed to have a contact angle of 0°, which allows one to determine the 

packing constant, if the other liquid properties are known; the reference liquid used here 

was hexane, due to its low viscosity and minimal surface tension at room temperature. 

It should be noted that better wetting (lower contact angle) may not produce a greater 

mass uptake rate when the liquids have large differences in viscosity, surface tension, 

and/or density, as is the case between hexane and water. Fig. 1 contains an illustration 

of the experimental set up used to measure particle contact angle in this study, consisting 

of a 1 cm diameter glass cylinder that has been sealed on one end by a glass frit to provide 

a consistent base to begin packing the powder and keep the powder from falling out of 

the cell. The cell is packed with the sample using a device which applies a consistent 

packing pressure to ensure that the mass and height of the packed sample is similar from 

experiment to experiment. After packing, the cell is suspended from a cantilever arm that 
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is attached to a ring stand and 

positioned above a beaker of the test 

liquid that rests on an analytical 

balance that is connected to a 

computer with data acquisition 

software. The mass of the beaker of 

liquid is measured for 200 s in order 

to calculate an accurate measurement 

of the liquid evaporation rate, which is later used to normalize the measured mass uptake 

to correct for liquid evaporation. After 200 s, the sample cell is lowered into the liquid to 

a known depth using the cantilever arm. The mass of liquid remaining in the beaker is 

then measured for an additional 600 s or until the sample cell has been saturated with 

liquid, whichever occurs first. The data is corrected for evaporative losses and plotted as 

m2 (mass uptake of liquid into powder)2 vs time, the slope of the linear portion of this 

plot then provides the m2/t term used in Eqn. 1, and can be used to calculate the solid 

material constant, c, for the reference liquid or the contact angle for other liquids. At 

least two experiments were completed for each set of solid-liquid pairings to ensure that 

consistent results were obtained.  

 Sessile drops of water were analyzed with an Attension Theta optical tensiometer 

manufactured by Biolin Scientific. For the solid surface, glass slides were coated with a 

layer of nanoparticles using the procedure described by Dove42 and Shang,43 where 2-3 

mL of a 1.0 wt% dispersion of nanoparticles in isopropyl alcohol are placed on a 76 x 26 

x 1.2 mm glass slide and allowed to dry in a vacuum oven at 120°C for 12 hours to remove 

the alcohol and adsorbed water; each slide was kept in the vacuum oven until 

immediately prior to the experiments. The static contact angle was measured by placing 

an 8 µL droplet of water on the surface of the nanoparticle-coated slide. A droplet volume 

Figure 1. Illustration of apparatus used to measure 
powder wettability via the capillary rise method. 
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of 8 µL was chosen because, at that volume, the capillary length of the droplet is larger 

than the droplet diameter, making the effect of gravity on the drop shape negligible. Each 

measurement was repeated at least three times and the average calculated. 

 A Setaram C80 microcalorimeter with a specially designed pair of powder cells 

was used to measure the heat of immersion for all of the modified nanoparticles. The 

heat of immersion is related to the particle contact angle using the theoretical approach 

described by Yan.29 The method uses the enthalpy of immersion, a result of the change 

in Gibbs free energy that results from replacing a solid-gas interface with a solid-liquid 

interface, and relates it to the solid-liquid contact angle using the Young-Laplace 

equation. The resulting contact angle equation yields:  

𝑐𝑜𝑠𝜃 =
−𝐾𝑇−ℎ𝑖−𝜋𝑒

𝛾𝑙𝑣
            (Eqn. 2) 

Where θ is the solid-liquid contact angle, K is the difference between the temperature 

dependence of solid-liquid interfacial tension and solid surface tension, T is the absolute 

temperature, hi is the enthalpy of immersion, γlv is the liquid-vapor surface tension, and 

πe is the difference between the solid surface tension and the solid-vapor surface tension 

(γs – γsv), which is assumed to be negligible for systems with reasonably large contact 

angles. In this case, K is assumed to be 7.0 · 10-5 J/m2·K, corresponding to a low-energy 

surface and a γsl that is temperature independent, following the assumptions made by 

Yan. The powder cells consist of a stainless steel cylinder and a pair of brass sealing rings 

that hold a membrane in place and seal each end of the cell; one cell is used as the sample 

cell, while the other is used as a reference cell. The calorimeter cells are designed by 

Setaram with a breaking rod that has been modified in-house with a sharp, pointed tip 

which is used to puncture the powder cell’s membrane. Prior to each experiment the 

modified nanoparticles are dried in a vacuum oven at 1200C for at least 12 hours. Then, 

a known quantity of sample is placed into each powder cell, and the cell is sealed with a 
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nitrile rubber membrane. Both powder cells are then placed in the larger stainless steel, 

calorimetry cells (manufactured by Setaram) with approximately 8 mL of the wetting 

liquid. Both calorimeter cells are then installed into the microcalorimeter and allowed to 

equilibrate at 40°C. After the heat signal and cell temperatures stabilize, both 

membranes of the sample cell are punctured with the breaking rod, allowing the liquid 

to enter the cell and immerse the nanoparticles. The thermal energy released or absorbed 

by the sample immersion is then measured and recorded by the microcalorimeter. A 

series of eight blank punctures of sealed, empty powder cells were used to estimate the 

heat released by only puncturing the nitrile rubber membranes and subtracted from the 

measured immersion enthalpy as a constant background. The heat of immersion is 

measured at least four times for each sample and the average was used to calculate the 

particle contact angle.  

 Emulsions were made in two different ways to study how the phase of initial 

particle dispersion affected droplet size and emulsion type. Emulsions were made by 

dispersing 200 mg of nanoparticles in 10 mL of water/decane by horn sonicating the 

samples using a 1/8” probe at 25% amplitude for 7 minutes. Then, 10 mL of decane/water 

was added to the sample vial and the mixture was sonicated using the same settings for 

20 minutes with the probe’s tip approx. 2 mm below the oil/water interface. The 

resulting emulsions were allowed to separate and equilibrate for 24 hours and the phase 

ratios were determined by visually measuring the height of each phase using a 

micrometer. Emulsion type (oil-in-water or water-in-oil) was determined by placing a 

droplet of the emulsion phase into a beaker of deionized water; if the emulsion phase 

dispersed in the water it was assumed to be oil-in-water, and vice versa. The droplet size 

was determined using light microscopy and Image J image processing software. Droplet 

size distributions were created by measuring the droplet size of a minimum of 250 

individual droplets from a total of 5 separate microscopy images.  
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RESULTS AND DISCUSSION 

CAPILLARY RISE METHOD 

Figure 2 shows a representative example of an evaporation-corrected particle 

wetting curve used to estimate particle contact angle via the capillary rise method. The 

curve is a plot of the evaporation-corrected squared mass uptake rate vs. time, and the 

m2/t term in Eqn. 1 is found by calculating the slope of the curve in the linear region of 

the curve, indicated by the gray line. The disturbance at ~ 60s is due to the introduction 

of the capillary cell, which must break the surface tension and displace some of the liquid. 

Table 2 contains the results of capillary rise measurements for all of the modified 

nanoparticles. These measurements indicate that the unmodified Ludox particles have 

the lowest calculated contact angle with water while the nanoparticles modified with 

OTCS at the higher level of surface coverage have the highest calculated contact angle. 

The contact angles of the remaining nanoparticles vary largely as expected if one assumes 

that the water solubility of the surface modifier should be an accurate predictor of the 

‘wettability’ of a surface coated with that modifier, with the exception of the SAPTMS-

modified nanoparticles. The PhTCS-coated particles are least hydrophobic, followed by 

the TMCS-coated particles, with the OTCS-coated particles being the most hydrophobic. 

Figure 2. Example of typical particle wetting curve for capillary rise 
in a bed of modified silica nanoparticles 
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The uptake rate (mass2/time) of the unmodified (bare) Ludox particles was measured six 

times with a standard deviation of 16%, and a similar degree of uncertainty is assumed 

to be present for the other nanoparticle samples, but due to the difficulty of synthesizing 

the particles in large batches and concerns about batch-to-batch reproducibility, each 

batch of nanoparticles was measured using the capillary rise method only twice with 

hexane and twice with deionized water to ensure consistency, but the sample population 

of two is too small to justify calculating a standard deviation.  

Table 2 illustrates many of the problems related to measuring wettability of 

nanoparticles with the capillary rise method. The first problem involves determining the 

material packing factor using a reference liquid with a contact angle of zero degrees. All 

of the particles shown in Table 2 were created using the same silica nanoparticles and 

therefore should pack in an approximately similar manner, and subsequently be wet at 

the same rate by a reference liquid that ‘perfectly’ wets the particle surfaces. Nonetheless, 

a more than two order of magnitude variation in the hexane uptake rate was found, 

indicating that the particle contact angle with hexane varies to a similar degree and 

implying that hexane does not ‘perfectly’ wet all of the nanoparticles. In particular, we 

can observe that uptake rates of both hexane and deionized water are much larger for the 

Table 2. Capillary rise or Washburn method results for all tested nanoparticles containing 

calculated water contact angles and liquid uptake rates of both hexane and water. 

Sample
Contact Angle, 

Washburn

Hexane Uptake 

Rate, g
2
/s

H2O Uptake 

Rate, g
2
/s

H2O/Hex Uptake 

Rate Ratio

Bare Ludox 66 2.3E-03 2.5E-03 1.11

Low Coverage
 
SAPTMS 73 1.0E-01 7.9E-02 0.78

High Coverage SAPTMS 73 1.2E-01 9.6E-02 0.78

Low Coverage
 
PhTCS 69 5.0E-02 4.9E-02 0.99

High Coverage
 
PhTCS 79 4.0E-02 2.1E-02 0.52

Low Coverage TMCS 85 6.0E-03 1.3E-03 0.22

High Coverage
 
TMCS 87 5.9E-03 8.2E-04 0.14

Low Coverage
 
OTCS 85 2.0E-03 4.8E-04 0.24

High Coverage
 
OTCS 90 8.7E-04 5.4E-06 0.01
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SAPTMS-modified nanoparticles than for any of the other types of particles, implying 

very strong surface-liquid interactions for these particles. Additionally, the capillary rise 

method cannot result in a contact angle > 90° because all of the parameters in Eqn. 1 are 

positive except for cosθ. Furthermore, in order to measure a contact angle of 90° the 

mass uptake rate must be equal to 0 g2/s. Hence, as the measured contact angle 

approaches 90°, the capillary rise method will begin to significantly underestimate the 

particle contact angle, which is likely the case with all of the contact angle measurements 

for the TMCS- and OTCS-modified nanoparticles. 

SESSILE DROP ANALYSIS 

 Results for the modified nanoparticles are summarized in Table 3, which shows 

the static contact angle for water calculated using the Attension Theta software and 

fitting the drop shape with a Young-Laplace contact angle model. Contact angles were 

only able to be determined for the high surface coverage PhTCS-modified particles, both 

batches of TMCS-modified particles, and both batches of OTCS-modified particles, 

because the water droplet completely wet and soaked-into the nanoparticle layer on the 

glass slides for the other nanoparticle batches. Fig. 3a.-b. contains images illustrating 

complete wetting of a nanoparticle-coated slide with a water droplet as observed with the 

glass slides coated with unmodified Ludox, both batches of SAPTMS-modified Ludox, 

and the low surface coverage PhTCS-modified Ludox; the two images are taken one 

Figure 3. Two images illustrating the complete wetting observed with some nanoparticle-coated 
glass slides taken (a.) immediately prior to droplet deposition and (b.) immediately after droplet 

deposition, and an electron micrograph (c.) showing a portion of the surface of a nanoparticle-

coated glass slide. 
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second apart from each other, where a. is immediately prior to the droplet being 

deposited on the surface and b. is immediately after the droplet has been deposited on 

the surface. Fig. 3c contains a scanning electron micrograph of the surface of a 

nanoparticle-coated glass slide, showing that the nanoparticles fully cover the surface of 

the glass slide in a continuous layer. The nanoparticle layer is relatively smooth, but it 

still has noticeable roughness and porosity that could alter the observed contact angle 

even if the nanoparticles are hydrophobic enough to prevent the droplet from soaking 

into the particle layer. These results illustrate a major problem with the sessile drop 

method of measuring wettability; it is very difficult to get accurate contact angle 

measurements for particles with a low contact angle because of the inherent porosity of 

a compressed pellet or deposited layer of particles.  The nanoparticle contact angles 

shown in Table 3 largely follow the same trends observed in the capillary rise tests, with 

the PhTCS-modified nanoparticles being more hydrophilic than the TMCS-modified 

nanoparticles which are, in turn, more hydrophilic than the OTCS-modified 

nanoparticles and the particles with higher surface coverage of the alkyl chlorosilanes 

are more hydrophobic than those with the lower degree of surface coverage.   

HEAT OF IMMERSION 

 Table 4 contains the heats of immersion and calculated water contact angles29 for 

all of the modified nanoparticles tested. Similar to the sessile drop results, we do 

calculate contact angles of less than zero degrees when using the heat of immersion 

method, but unlike the sessile drop results, we are still able to quantify the differences in 

wettability between the nanoparticles by comparing immersion enthalpies. Namely, the 

SAPTMS-modified particles have a noticeable more exothermic heat of immersion when 

compared to the unmodified silica nanoparticles, indicating that the low surface 

coverage SAPTMS-modified particles are more hydrophilic than the unmodified Ludox 

and the high surface coverage SAPTMS-modified particles are even more hydrophilic, 
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with an enthalpy of 

immersion of -170.1 mJ/m2. 

The enthalpy of immersion 

data also reinforces the 

order of hydrophobicity 

found with the previous 

methods, with the type of 

alkyl group appearing to be 

more dominant in 

determining particle 

wettability than the amount of surface coverage. The two different values of enthalpy of 

immersion for unmodified Ludox illustrate the importance of completely drying the 

nanoparticles prior to placing them in the sealed powder cell, with the enthalpy of 

immersion of air dried Ludox being less than 1/3 of the enthalpy of immersion measured 

for Ludox dried at 120°C in a vacuum oven. Finally, Table 4 also confirms the 

hydrophilizing effect of oxidizing and ionizing the MPTMS-modified nanoparticles, as 

the enthalpies of immersion became 75.3 and 104.4 mJ/m2 more exothermic for the low 

and high surface coverage samples, respectively.  

COMPARING WETTING METHODS AND RESULTS 

 Overall, the heat of immersion method of quantifying contact angle provided the 

largest range of quantifiable contact angles, the most reliable measurements of surface 

interactions between the silica nanoparticles and water, and the greatest ability to 

distinguish the differences between highly hydrophilic nanoparticles. Heat of immersion 

measurements also require only a small amount of sample for each measurement (~500 

mg or ~50 m2 of total particle surface area are required to achieve a high degree of 

precision), which provides a significant advantage in comparison to the capillary rise 

Sample
Heat of Immersion, 

mJ/m
2 Contact Angle

Bare Ludox -110.2 ± 6.7 <0

Low Coverage
 
SAPTMS -135.5 ± 28.8 <0

High Coverage SAPTMS -170.1 ± 23.9 <0

Low Coverage MPTMS -60.2 ± 2.6 58

High Coverage MPTMS -65.8 ± 16.4 53

Low Coverage
 
PhTCS -65.8 ± 5.1 52

High Coverage
 
PhTCS -47.5 ± 3.3 69

Low Coverage
 
TMCS -5.1 ± 7.3 104

High Coverage
 
TMCS 1.9 ± 3.9 109

Low Coverage
 
OTCS -0.4 ± 7.9 107

High Coverage OTCS 13.0 ± 2.1 120

Table 3. Heats of immersion and calculated water contact 

angles of surface-modified silica nanoparticles measured using 
microcalorimetry 
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cells used here. Theoretically, smaller capillary rise cells could be manufactured that 

required smaller amounts of sample, but these possibilities are limited because of 

increasing liquid-cell interactions as the capillary cell’s diameter decreases; in the limit, 

wall effects would come to dominate the capillary rise of the fluid.  

While the capillary rise method does have issues regarding picking the best reference 

liquid, it is a very simple and useful technique for particles that are easily wet by the test 

liquid, because the liquid droplet is likely to penetrate into a porous pellet or particle 

layer during the sessile drop method.  

The heat of immersion method of measuring contact angle does encounter 

problems when trying to characterize very hydrophobic particles, which do not easily 

immerse in water and therefore may not be completely wetted in the test cell; this 

observation may be represented in our results in underestimation of the true contact 

angle of the very hydrophobic OTCS-modified particles. In these cases, it may be better 

to use the sessile drop method with static or dynamic drops, which is much better at 

quantifying contact angles for very hydrophobic particles, but fails once the contact angle 

becomes small enough for the droplet to penetrate into the porous pellet or layer of 

nanoparticles.  

 Comparing the results for the three different characterization methods contained 

in Tables 2-4, it can be seen that, while the calculated contact angles measured for each 

type of nanoparticle change drastically from one characterization method to another, all 

measurement methods show a relatively consistent trend in the hierarchy of particle 

hydrophobicity with the type of surface group being a much more dominant indicator of 

particle wettability than the degree of surface coverages, at least for the surface coverages 

measured.   
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EMULSIFICATION AND DROPLET SIZE 

 Silane-modified silica nanoparticles were used to stabilize decane and water 

emulsions; all of the nanoparticles were able to stabilize significant emulsion fractions 

except for the bare Ludox and SAPTMS-modified Ludox, which could only form small 

volumes of unstable emulsion droplets, with these particles largely remaining dispersed 

in the aqueous phase. Binks and Lumsdon44 have shown that the initial location of 

nanoparticles has a strong influence on the type of Pickering emulsion formed. 

Therefore, two sets of emulsions were characterized, one with the particles initially 

dispersed in the aqueous phase and another with the particles initially dispersed in the 

oil phase. Binks and Lumsdon found that dispersing the particles in one phase resulted 

in a bias to form emulsions with that phase as the continuous phase. It was theorized 

that the relatively large size and mass of the nanoparticles limits their ability to quickly 

Figure 4. Droplet size distributions for emulsions stabilized with Ludox colloidal silica 
nanoparticles initially dispersed in the water phase that have been surface-modified with a.) 

phenyl trichlorosilane, b.) trimethyl chlorosilane, and c.) octadecyl trichlorosilane at two different 
surface coverages. The mean droplet size is larger for all emulsions stabilized by the low surface 

coverage particles when compared to the emulsions stabilized by the low surface coverage 
particles. Also note that all emulsions stabilized by low surface coverage nanoparticles are 

decane-in-water, while all emulsions stabilized by high surface coverage nanoparticles are water-

in-decane. 
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diffuse into their preferred phase and rearrange at the interface; two things that 

molecular surfactants can do quite readily. 

Table 4 contains all of the measured properties for emulsions created after 

initially dispersing the nanoparticles in deionized water (emulsion type, phase volumes, 

and mean droplet diameter). The emulsion type observed was entirely dependent on the 

amount of surface coverage rather than a function of the previously measured particle 

contact angles. This implies that the number of unreacted surface hydroxyls on the silica 

surface may play a relatively large role in determining the emulsion type in comparison 

to the type of alkyl group or even observed particle contact angle, at least for particles 

that have not had their regions of hydrophobicity/hydrophilicity controlled, as in Janus-

style particles. The apparent importance of surface coverage relative to the type of 

functional group could be explained by strong adsorption of water on the remaining 

hydroxyl groups on the particle surface. The adsorbed water could potentially alter the 

overall particle wetting behavior or the surface heterogeneities could result in pinned 

contact lines that alter how the particles adsorb at the interface.45  There does not appear 

to be any discernible trend in emulsion fraction as a function of surface coverage, alkyl 

group, or emulsion type, though there is a notable decrease in the excess water phase 

and corresponding increase in excess decane phase for both emulsions stabilized with 

OTCS-modified silica. Figure 4 contains three histograms showing the droplet size 

Table 4. Emulsion properties and droplet sizes for 50-50 decane-water emulsions stabilized by 
a variety of surface-modified silica nanoparticles initially dispersed in the aqueous phase.  

 

O/W 0.13 0.62 0.25 223±42

W/O 0.15 0.50 0.35 251±116

O/W 0.15 0.45 0.40 203±52

W/O 0.12 0.55 0.38 179±86

O/W 0.45 0.55 0.00 204±185

W/O 0.40 0.60 0.00 109±110High Coverage
 
OTCS

Low Coverage PhTCS

High Coverage PhTCS

Low Coverage TMCS

High Coverage TMCS

Low Coverage OTCS

Initially Dispersed in Aqueous Solution

Droplet Diameter, 

µm

Emulsion 

Type

Excess Decane 

Fraction

Emulsion 

Fraction

Excess Water 

Fraction
Particle Type
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distribution for all of the characterized Pickering emulsions. These histograms show that 

the mean droplet size is larger for all emulsions stabilized by the high surface coverage 

particles in comparison to emulsions stabilized by the low surface coverage particles. 

Figure 5 contains two histograms that show how the emulsion droplet size distribution 

changes as a function of the type of alkyl group for both of the tested levels of surface 

coverage. Here, we see a consistent trend for both levels of surface coverage, where the 

mean droplet diameter decreases with increasing particle contact angle, i.e. PhTCS-

modified silica-stabilized emulsion droplets are larger than TMCS-modified silica-

stabilized emulsion droplets which are larger than OTCS-modified silica-stabilized 

emulsion droplets. This agrees with results reported by Binks38 where it was shown that 

droplet diameter is large for emulsions stabilized by very hydrophilic nanoparticles, and 

then decreases with increasing contact angle up to a certain critical particle 

Figure 5. Emulsion droplet size distributions for Pickering emulsions stabilized by nanoparticles 
modified with various alkyl chlorosilanes at two different surface coverages and particles being 
initially dispersed in aqueous solution. 
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hydrophobicity, where the droplet size begins to increase again as the particles become 

extremely hydrophobic.       

 Table 5 contains all of the measured properties for emulsions created after 

initially dispersing the nanoparticles in decane. Similar to the previous results with 

Figure 6. Droplet size distributions for emulsions stabilized with Ludox colloidal silica 
nanoparticles that have been surface-modified with a.) phenyl trichlorosilane, b.) trimethyl 

chlorosilane, and c.) octadecyl trichlorosilane at two different surface coverages. The mean 

droplet size is larger for emulsions stabilized by the high surface coverage particles when 
compared to the emulsions stabilized by the low surface coverage particles for PhTCS- and TMCS-

modified particles, while the opposite is true for the OTCS-modified particles.  
 

O/W 0.34 0.32 0.34 8±5

W/O 0.09 0.46 0.45 34±56

O/W 0.16 0.55 0.29 15±8

W/O 0.09 0.57 0.34 110±56

W/O 0.36 0.23 0.41 65±35

W/O 0.41 0.23 0.36 30±25High Coverage
 
OTCS

Low Coverage PhTCS

High Coverage PhTCS

Low Coverage TMCS

High Coverage TMCS

Low Coverage OTCS

Initially Dispersed in Oil Solution

Average Droplet 

Diameter, µm

Emulsion 

Type

Excess Decane 

Fraction

Emulsion 

Fraction

Excess Water 

Fraction
Particle Type

Table 5. Emulsion properties and droplet sizes for 50-50 decane-water emulsions stabilized by 

a variety of surface-modified silica nanoparticles initially dispersed in the oil phase.  
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water-dispersed particles, the emulsion type observed was largely dependent on the 

amount of surface coverage rather than the measured particle contact angles, except in 

the case of the low surface coverage OTCS particles, which formed an O/W emulsion 

when initially dispersed in water, but a W/O emulsion when initially dispersed in decane. 

This provides further evidence that the number of water-hydroxyl interactions may be 

quite high and a major factor in determining emulsion type. Again, no distinct trends 

appear in the emulsion fraction as a function of any of the tested variables. Average 

droplet sizes for oil-dispersed particles are an order of magnitude smaller than the 

droplets observed for the emulsions made from aqueously-dispersed particles.  

Figure 6 contains three histograms showing the droplet size distribution for all of the 

characterized Pickering emulsions. These histograms show that the mean droplet size is 

larger for emulsions stabilized by the high surface coverage particles in comparison to 

emulsions stabilized by the low surface coverage particles for PhTCS- and TMCS-

modified particles, while the reverse is true for emulsions stabilized with OTCS-modified 

particles. Figure 7 contains two histograms that show how the emulsion droplet size 

distribution changes as a function of the type of alkyl group for both of the tested levels 

of surface coverage. Here, we see almost the complete opposite of the trend observed 

with the water-dispersed emulsions, with the PhTCS-modified (most hydrophilic) 

particles stabilizing the smallest droplets and the more hydrophobic particles stabilizing 

larger emulsion droplets. Two of Binks’ prior findings: 1) particles that are too 

Figure 7. Emulsion droplet size distributions for Pickering emulsions stabilized by nanoparticles 

modified with various alkyl chlorosilanes at two different surface coverages. 
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hydrophobic or too hydrophilic tend to stabilize large emulsion droplets, while particles 

with a more intermediate hydrophobicity produce smaller emulsion droplets; 2) initially 

dispersing particles in water/oil renders them more hydrophilic/hydrophobic, may help 

explain the behavior seen in Figures 5 and 7; initial dispersal in water leaves the more 

hydrophobic particles (OTCS-modified) at the optimum hydrophobicity to stabilize 

small droplets while initial dispersal in the decane leaves the more hydrophilic particles 

(PhTCS-modified) at the optimum hydrophobicity.  

Regardless of the exact mechanism, these results reinforce the hypothesis that 

the phase of initial dispersal is extremely important for determining the resulting 

emulsion type and droplet size. The results also suggest that the ‘effective’ 

hydrophobicity of the particles in situ may be extremely important to emulsion 

stabilization, and the hysteresis observed depending on the phase of initial dispersion 

strongly indicates that the resulting emulsions are not global thermodynamic equilibria, 

but simply local equilibria that are highly path-dependent and likely controlled by 

particle diffusion, fluid viscosity, emulsification method, and numerous other 

parameters.  

CONCLUSIONS 

 Nanoparticle wettability and contact angle, as measured by a variety of methods, 

seems to have a strong dependence on the type of surface group grafted on to the silica’s 

surface hydroxyls and a lesser dependence on the level of surface coverage of the surface 

modifiers. Heat of immersion tests confirmed the results of Oh et al15 in regards to the 

creation of superhydrophilic surface moieties when MPTMS-modified silica is 

successively exposed to hydrogen peroxide and sodium hydroxide solutions. Emulsions 

stabilized by the various hydrophobically modified nanoparticles were shown to follow 

four general trends: 1) low surface coverage nanoparticles stabilized O/W emulsions 

while high surface coverage nanoparticles stabilized W/O emulsions in almost all cases; 
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2) emulsions stabilized by high surface coverage nanoparticles have slightly smaller 

average droplet sizes than emulsions stabilized by low surface coverage nanoparticles in 

every case but the oil-dispersed TMCS particles; 3) when the particles are initially 

dispersed in water, the emulsions stabilized by more hydrophobic nanoparticles had 

smaller average droplet sizes than emulsions stabilized by more hydrophilic 

nanoparticles, regardless of surface coverage; and 4) when the particles are initially 

dispersed in decane, the emulsions stabilized by more hydrophilic nanoparticles had 

smaller average droplet sizes than emulsions stabilized by more hydrophilic 

nanoparticles, in most cases.  

Additionally, the heat of immersion method of determining particle wettability and 

contact angle appears to provide the largest range of measureable contact angles 

(ranging from < 0° to ~120°) when compared to the other methods tested here and also 

allows for quantification of the relative hydrophilicity for nanoparticles that are 

completely wet by the test liquid, a significant advantage when compared to other 

common methods of measuring particle wetting. The method also allows for direct 

measurement of particle-fluid interactions regardless of the type of fluid (water vs. oil vs. 

gas) as long as the particles can be easily wetted by the fluid, without requiring any type 

of reference liquid.    
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CHAPTER 3: PHASE BEHAVIOR AND PSEUDO-SOLID, 
SHEAR-THINNING GEL FORMATION IN BINARY 
DISPERSIONS OF FUMED METAL OXIDE NANOPARTICLES 
AT LOW VOLUME FRACTIONS 

INTRODUCTION 

 Characteristics of metal oxide surfaces are strongly dependent on their chemical 

composition, method of synthesis, crystallinity, and concentration of surface hydroxyl 

groups. Metal oxide-liquid interfaces have been extensively studied46 and metal oxide-

water interfaces are of particular interest as the hydrogen bond network present in water 

(and other polar solvents) can stabilize charged chemical species on the metal oxide 

surface. Charged groups on the surface can result in strong electrostatic attraction or 

repulsion in aqueous suspensions of metal oxide nanoparticles.  

The fumed metal oxide particles studied in this research are manufactured by flame 

pyrolysis/oxidation of metal chloride salts.47,48 This technique has been well-researched 

and methods have been developed to tightly control the primary particle size, purity, and 

surface area. These nanoparticles are already commonly used as pigments and viscosity 

adjusters in consumer goods such as paints, cosmetics, and soaps. Dispersions of these 

nanoparticles have also been proposed for use as contrast agents in geological surveys of 

oil reservoirs.49 

 With widespread industrial applications, dispersions of fumed metal oxide 

nanoparticles have been extensively studied. Their complex geometric shape and the 

presence of surface hydroxyl groups allow fumed metal oxide nanoparticles to be used to 

adjust the viscosity of non-polar solutions. Raghavan et al.50  showed a direct relationship 

between the gelation behavior of hydrophilic fumed silica nanoparticle dispersions and 

the hydrogen-bonding ability of the dispersing liquid. Gelation only occurred when the 

dispersing liquid had limited to no hydrogen-bonding ability. These liquids interact 

weakly with the silica surface, enabling adjacent particles to adhere through H-bonds 
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between the surface silanol groups. However, when these hydrophilic fumed silica 

nanoparticles are dispersed in liquids more capable of hydrogen-bonding, a solvation 

layer forms around the particles and largely eliminates interparticle hydrogen bonding, 

which results in only a minimal increase in solution viscosity.51 Cao et al.52 and Fisher et 

al.53 have shown that spherical metal oxide nanoparticles can be made to form colloidal 

gels in aqueous solutions by adding NaCl to silica dispersions6 or by mixing silica and 

alumina nanoparticles together in solution7.  However, the gels studied by Fisher et al 

form at relatively high volume fractions (10-20 vol%) when compared to the gels 

described in this work (concentrations >1.5 vol%) and those studied by Cao et al. (1.0-

4.7 vol%).  

The rheological behavior and stability of metal oxide nanoparticle dispersions have been 

extensively studied previously in regards to the effect of solids fraction, electrolyte 

concentration, solution pH, particle size, presence of polymers and surfactants, etc. 

Binks et al.54 investigated similar binary mixtures of silica-alumina nanoparticles in 

order to relate a particle mixture’s ability to stabilize emulsions to the particle mixture’s 

behavior in aqueous suspensions. The dynamics of heteroaggregation of oppositely 

charged nanoparticles and the structure of the heteroaggregates have been extensively 

studied by a variety of researchers. Kim et al55 studied the heteroaggregation of 

oppositely charged polystyrene nanoparticles and found that, in the presence of a variety 

of background electrolytes, the oppositely charged nanoparticles will aggregate into 

fractal clusters with a fractal dimension varying from 1.21 to 1.70 depending on the 

concentration of electrolyte. Rasa et al56 studied the heteroaggregation of similarly sized, 

spherical silica (negatively charged) and alumina (positively charged) nanoparticles in 

aqueous solution and found that in mixtures of <50% positively charged particles 

heteroaggregation and sedimentation was observed, while in dispersions containing 

>50% positively charged particles, only small, colloidally stable aggregates were 
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observed. This effect may be due to the higher surface charge density of alumina when 

compared to silica, meaning that it would take an excess of 2-4x the number of silica 

nanoparticles to create a mixture where the net surface charge of all of the nanoparticles 

in solution is approx. neutral. This idea is reinforced by the results shown by Rasa et al, 

who observed the greatest amount of heteroaggregation and sedimentation at silica-

alumina ratios between 2 and 4, similar to the results seen in Binks’ work. Lopez-Lopez 

et al57 completed an extensive study of the heteroaggregation of oppositely charged, 

spherical nanoparticles and came to similar conclusions; when oppositely charged, 

spherical particles are initially introduced to each other in solution they tend to form 

long, diffuse fractal-like heteroaggregates, but that over long time scales these particles 

tend to continue to aggregate and often sediment out of solution or phase separate into 

a clear supernatant with a concentrated suspension of heteroaggregates below. All of 

these authors observed that when the oppositely charged, spherical particles were mixed 

together, they heteroaggregated and settled out of solution for almost all tested positive 

particle-negative particle ratios and pH’s, in stark distinction to the pseudo-solid gels 

here that are highly resistant to sedimentation. Additionally, the pH ranges and particle 

ratios where Binks, Kim, Rasa, and Lopez-Lopez observed flocculation were very similar 

to the ranges and ratios where we observed the gelation phenomenon, implying that both 

phenomena may share a common mechanism: the heteroaggregation of oppositely 

charged particles in aqueous solution. One factor that explains this drastic difference in 

behavior is the structure of the nanoparticles studied. The nanoparticles used by Binks, 

Kim, Rasa, and Lopez-Lopez were synthesized using a precipitation method,58 rather 

than the pyrolytic method used for the fumed metal oxides in this study. Precipitated 

metal oxides tend to form well-dispersed, single, spherical particles rather than the 

sintered nanoparticle aggregates with fractal structures obtained from pyrolytic 

synthesis methods. The multi-dimensional rigidity created by the fractal structures of 
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the fumed nanoparticles creates a barrier to the formation of dense aggregates, as shown 

by Garcia-Perez et al.59 and Tombacz et al.60 The inability to form dense aggregates may 

be one of the primary causes of the gelation phenomenon described here; the oppositely 

charged, fractal nanoparticles studied experience the same interparticle forces that result 

in heteroaggregation in the systems studied by Binks, Kim, Rasa, and Lopez-Lopez. Due 

to their three-dimensional rigidity and fractality the fumed nanoparticles are unable to 

assemble into heteroaggregates with a high enough density to settle out of solution, and 

thus remain suspended forming a space filling fractal network that gels the aqueous 

dispersion. In the study by Binks, the most stable emulsions were formed when the 

amount of sedimentation was maximized, and they hypothesized that when attractive, 

interparticle electrostatic interactions were maximized, emulsion stability was also 

maximized. Several researchers61-63 furthered this hypothesis by showing that the 

differing charges on the nanoparticles help reduce interparticle dipole-dipole repulsion 

at the interface yielding more stable emulsions. 

 In studying these gels we have focused on two primary goals: mapping the 

gelation phase boundary of nanoparticle mixtures and understanding the nanoparticle 

network at the nano-, micro-, and meso-scale. This work provides the first 

comprehensive phase boundary map for these gel systems. Four characterization 

techniques were used: transmission electron microscopy (TEM), light microscopy (LM), 

small-angle x-ray scattering (SAXS), and acoustic spectroscopy (AS). These four 

characterization techniques were consistent with one another, indicating that the 

structures are not simply a result of a given preparation method. This unique compilation 

of analytical tools provides structural information about these materials across a variety 

length scales that are useful for understanding the overall behavior of the nanoparticle 

networks underlying the gelation phenomenon.    
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EXPERIMENTAL 

MATERIALS 

 The nanoparticles used in this study were obtained from Evonik Inc. and include: 

Aerosil 150, Aerosil 200, and Aerosil 300, Aeroxide AluC, Aeroxide Alu130, Aeroxide 

TiO2 P25, and Aeroxide TiO2 P90. Aerosil 150 is a fumed silica nanoparticle with an 

average primary particle size of 14 nm, specific surface area of 150±15 m2/g.3 point of 

zero charge (PZC) of pH=4.0, and an average of 3 surface hydroxyls per nm2.12 Aerosil 

200 is a fumed silica nanoparticle with an average primary particle size of 12 nm,3 specific 

surface area of 200±25 m2/g,2 PZC of pH=4.0, and an average of 3 surface hydroxyls per 

nm2.12  Aerosil 300 is a fumed silica nanoparticle with an average primary particle size 

of 7 nm,3 specific surface area of 300±30 m2/g,2 PZC of pH=4.0, and an average of 3 

surface hydroxyls per nm2.12  Aeroxide Alu C is a fumed alumina nanoparticle with an 

average primary particle size of 13 nm,3 specific surface area of 100±15 m2/g,2 PZC of 

pH=8.0, and an average of 8 surface hydroxyls per nm2.12  Aeroxide Alu 130 is a fumed 

silica nanoparticle with an average primary particle size of 10 nm,3 specific surface area 

of 130±15 m2/g,2 PZC of pH=8.0, and an average of 8 surface hydroxyls per nm2.12  

Aeroxide TiO2 P25 is a fumed titania nanoparticle with an average primary particle size 

of 21 nm,3 specific surface area of 50±15 m2/g,2 PZC of pH=5.9, and an average of 6.8 

surface hydroxyls per nm2.12  Aeroxide TiO2 P90 is a fumed silica nanoparticle with an 

average primary particle size of 14 nm,3 specific surface area of 90±20 m2/g,2 PZC of 

pH=5.9, and an average of 6.8 surface hydroxyls per nm2.12  The sintered fractal 

aggregates for all of the nanoparticles used, which cannot be broken down further, range 

from ~30-200 nm in size, as determined by TEM and Acoustic Spectroscopy. The 

nanoparticles were manufactured by flame pyrolysis of metal chlorides at high 
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temperature (1000°C).3 During the pyrolytic manufacturing process, the molten, spherical 

primary particles collide with one another and sinter together to form the fractal 

aggregates mentioned previously. These fractal-like nanoparticles are imperfect crystals 

and therefore contain surface hydroxyl groups that can be protonated or deprotonated 

depending on the pH of the suspending solution. When calculating nanoparticle volume 

fractions, the density of the nanoparticles was assumed to be that of bulk, amorphous 

silica, alumina, and titania, which is 2.25, 3.85 and 4.23 g/cm3, respectively. These 

densities are comparable to those cited in the literature, as determined by solution 

densitometry.64,65,66 

 A polyhydroxy-aromatic acrylic embedding resin, LR White, was used for the 

TEM/ultramicrotomy studies, and was obtained from Ted Pella, Inc. Solutions of LR 

White with 10 wt% hydrochloric acid and 10 wt% sodium hydroxide, both purchased 

from Fisher Scientific, Inc., were used so the solution pH could be controlled. De-ionized 

water with a conductivity of <2 µS/cm was used for preparing aqueous dispersions and 

obtained using a polymer ion-exchange filtration system. For light microscopy 

experiments, gel samples were stained using Mallory’s Azure II Methylene Blue dye.  

METHODS 

 The gelation phase boundary was investigated by preparing 20 mL aqueous 

dispersions (using deionized water) of binary mixtures of metal oxide nanoparticles at 

varying particle ratios (defined on a volume fraction, vol/vol basis) while maintaining a 

constant volume fraction of solids. Particles were dispersed via vortex mixing at 3200 

rpm for approx. five minutes; additional mixing with a spatula was necessary for gels 

with >2.5 vol% solids due to their very high viscosity/yield stress. The solution pH of 

these dispersions was varied from 2 to 13 in order to map the gelation region as a function 
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of both particle ratio and pH. All pH adjustments were made with highly concentrated 

HCl and NaOH solutions (10 wt%, in both cases) in order to minimize the effect of 

dilution during the pH scan.   

 Four different techniques (TEM, SAXS, AS, and LM) were used to characterize 

the structure of the nanoparticle network within the gels. A JEOL 2000-FX TEM was 

used to study the in-solution nanoparticle network. Samples were prepared for TEM 

study by dispersing particles in LR White, a hydrophilic resin solution, at a 70:30 

silica:alumina ratio and concentration of 1.75 vol%. This was a ratio and concentration 

that was known to form a gel in an aqueous solution. The resin was then polymerized 

into a solid by placing the sample into a 40 0C oven for 48 hours in a tightly sealed gelatin 

capsule. The solidified polymer-nanoparticle composites were then removed from the 

gelatin capsules and 50-100 nm slices were removed from the sample using a Reichert 

UltraCut E ultramicrotome. The thin sections were then placed on a holey carbon TEM 

grid for imaging.  

 SAXS experiments were performed using a pinhole-collimation SAXS system 

from Rigaku with a copper anode (λ=0.154 nm) and a 2-D wire-style x-ray detector 

capable of measuring scattering vectors (q=4πsinθ/λ) from 0.07 nm-1 to 4 nm-1.  SAXS 

was used to probe the fractal dimension of both the primary nanoparticles and the 

nanoparticle networks present in the gels using methodology used by previous 

authors.67-70 A 1.7 mm capillary was used to measure liquid samples and pure water in 

the same capillary was used as the background.  SAXS was also used to confirm that the 

bulk structure of the nanoparticle network is consistent between the aqueous gels and 

the polymerized LR White block to ensure that the structure observed in the TEM 

micrographs is a realistic representation of the gel network present in the aqueous 

dispersions and has not been distorted by the polymerization reaction.  

http://coecs.ou.edu/Brian.P.Grady/www.rigaku.com
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 Acoustic spectroscopy is a reliable technique for characterizing concentrated 

dispersions in-situ.71 A Dispersion Technology Inc., DT 1201 acoustic spectrometer was 

used for measuring the particle size distributions and zeta potential of the gel network 

samples. During operation, attenuation and frequency changes are measured at 21 

different transmitter-receiver gaps (0.1 – 20 mm) and 18 different signal frequencies. 

The total attenuation is measured as a sum of the attenuation caused by viscous, 

scattering, thermal, structural, and intrinsic losses (Eq. 3). For particle size distribution 

measurements, the experimental attenuation is fit to the theoretical attenuation 

described in Eq. 3. Depending on the particle type, critical frequency and loss mechanism 

dominant for each system, the most appropriate prediction model will be used to 

quantify the particle size distribution.  For this study, the binary mixture of nanoparticles 

were defined as a large particulate system based on the TEM and optical microscopy 

images. For large particulate systems (> 3µm), the scattering loss mechanism 

contributes primarily to the total attenuation. A detailed description of fitting the 

experimental attenuation data to the theoretical model has been published by Dukhin 

and Goetz26. 

∝𝑇𝑜𝑡𝑎𝑙=∝𝑉𝑖𝑠𝑐𝑜𝑢𝑠+∝𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔+∝𝑇ℎ𝑒𝑟𝑚𝑎𝑙+∝𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙+∝𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐               (Eq. 3) 

 Zeta-potential is measured using electroacoustic theory to model the electric field 

produced when acoustic energy is applied to a dispersion of charged particles. The 

induced electric current is referred to as the colloidal vibration current (CVI) and is 

directly related to the zeta potential of the dispersed particles. The CVI signal is 

converted to acoustic signal using Eq. 4 to predict the zeta potential of the dispersion as 

a function of the particle size and standard deviation which are calculated from the 

acoustic theory particle size prediction model.  

CVI =
3𝜀𝑚𝜀𝑜𝜁

𝑎

𝜑

1+0.5φ

1

sinθ

𝜕𝑢𝜃

∂𝑟𝑟=𝑎
                      (Eq. 4) 
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 For the acoustic spectrometer measurements shown here, 300 mL samples were 

prepared with 70:30 ratio of silica (Aerosil 200) to alumina (Aeroxide AluC) and a total 

nanoparticle concentration of 2 vol % with the remaining 98 vol% consisting of deionized 

water. The sample was mixed well by shaking vigorously by hand for five minutes and 

the pH was measured. The pH of the sample was then adjusted using 10% NaOH and 

HCl solutions, accordingly. Independent samples were prepared for each pH value tested 

to avoid dilution in the nanoparticle gel via addition of further NaOH or HCl solution. 

 Light microscopy experiments were performed on the gel samples using a Leica 

TCS SP2 microscope system at various magnifications for comparison with the other 

characterization techniques. The gel samples were stained using one drop (~10 µL) of 

Mallory’s Azure II Methylene Blue dye prior to imaging.  

RESULTS AND DISCUSSION 

GELATION PHASE BEHAVIOR 

 This study focuses on three parameters (particle concentration, solution pH, and 

particle ratio) and how they affect the gelation of binary mixtures of fumed metal oxide 

nanoparticles. Gelation occurs in polar liquids when the solution pH is between the 

isoelectric points (also known as the point of zero charge or PZC) of the two metal oxides, 

i.e. one particle has a net positive charge and the other has a net negative charge. Net 

surface charge is controlled by solution pH because hydroxyl groups located on the 

surface of the metal oxide nanoparticles can be in a protonated or deprotonated state 

depending on solution pH, which changes the surface charge. The sign and magnitude of 

the surface charge also depends on the type of metal oxide, i.e. silica, alumina, and 

titania, because the type of metal atom changes the pKa of the metal oxide’s surface 

hydroxyl groups (altering the isoelectric point) and the number of surface defects 

(altering the number of charged surface sites per unit area). The gel networks studied 

here are formed due to electrostatic interactions between oppositely charged 
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nanoparticles. These networks can be broken when the solution pH crosses one of the 

particles’ isoelectric points (i.e. switching the sign of the particle’s surface charge), or 

when enough stress is added to the system to overcome the particles’ electrostatic 

interactions, physically breaking the nanoparticle network. Figure 8 illustrates how these 

gels resist flow and behave in a pseudo-solid manner under gravitational forces over 

many hours (a and b), but flow and slump quite readily when agitated with a force greater 

than the yield stress (c). The amount of stress required to cause the gels to flow, or yield 

stress, is defined as the stress at which the gel undergoes plastic deformation. The yield 

stresses for the 75-25 Aerosil 200-Aeroxide Alu C gels are 54 Pa, 160 Pa, and 329 Pa for 

the 1.75 vol%, 2.0 vol%, and 2.5 vol% samples, respectively. The gels also exhibit very 

little thixotropy; relaxing back from the liquid state to the gel state immediately after 

being stressed/strained with no observable ‘setting’ time. The quick relaxation/gelation 

phenomenon is based on direct observation and attempts to quantify gel thixotropy 

using a strain-controlled rheometer have not provided any useful insights.   

Figure 9 contains a series of representative images that illustrate the drastic 

viscosity change observed at the gel region’s phase boundary. The gel phase boundaries 

were determined by visually observation of the samples while adjusting the solution pH. 

These images help illustrate how drastic the phase transition if for these gels, with the 

Figure 8. Images illustrating the gels’ pseudo-solid behavior under gravity (a & b) and 
shear-thinning behavior observed when the gel is mildly perturbed by vibrational forces 

exceeding the gel’s yield stress. 
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dispersions transitioning from a yield stress gel to a more water-like particle dispersion 

with relatively low viscosity (<20 cP at shear rates >100 s-1).  

Figure 10 (a-f) contains a collection of phase diagrams for binary mixtures of 

metal oxide nanoparticles as a function of both solution pH and particle ratio. For these 

diagrams the phase of the dispersions was determined visually by observing whether the 

samples exhibit yield stress behavior at the conditions tested. As illustrated in Fig. 9, the 

gel-fluid transition is not subtle, therefore no further characterization technique was 

used to determine the phase boundaries for the diagrams in Fig. 10 beyond visual 

observation of the samples. Samples within the gel region exhibit a high viscosity and 

noticeable yield stress due to electrostatic interactions between the oppositely charged 

nanoparticles. The interactions result in heteroaggregation of the two different 

nanoparticle species throughout the entire dispersion, creating a network of 

heteroaggregates that spans the entire fluid. Some samples near the phase boundary 

exhibited obvious viscosity increases in comparison to samples clearly outside the gel 

region, but did not exhibit a noticeable yield stress. It is believed that this behavior is a 

Figure 9. Representative images showing the significant transition from low-viscosity fluid to 

pseudo-solid gel, and vice versa, observed when crossing the gel region’s pH boundary. Samples 
shown have a total particle concentration of 2.0 vol% and are a 70-30 mixture of Aerosil 200-

Aeroxide Alu C. Pictures were taken after 1 min of inversion; pH adjustments were made using 
10 wt% solutions of HCl and NaOH. 
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result of the samples containing a mixture of large heteroaggregates of the two 

nanoparticles along with a significant fraction of individualized excess particles, 

resulting in a viscosity increase, but lacking enough interparticle and interaggregate 

connections to form the volume-spanning network necessary for the samples to exhibit 

a yield stress; samples of this nature have been designated with a ‘/’ in Fig. 10’s phase 

diagrams. For all of the tested nanoparticle mixtures, the gelation behavior supports the 

hypothesis that gel formation occurs due to electrostatic interactions between oppositely 

charged nanoparticles because the gel region corresponds with the pH range between 

the two particles’ isoelectric points. For example, the gel region for the silica:alumina 

(Figs. 10a and 10b) mixtures corresponds to 3 < pH < 9-10; the isoelectric point of silica 

is 1.7-3.5 and the isoelectric point of alumina is 7-9,72 where the exact value depends on 

Figure 10. Phase behavior diagrams for various binary mixtures of fumed metal oxide 

nanoparticles in deionized water. X’s indicate gel formation, O’s indicate low-viscosity 
suspensions, and /’s indicate mild viscosity increases. Both silica/ alumina mixtures (a&b) 

experience gelation in a pH range between 4 and 10 with the gel region shifting to higher pH 
range as Si/ Al ratio decreases. Silica/ titania mixtures (c&e) show gelation between pH’s 4 and 

7, and alumina/ titania mixtures show gelation between 7 and 9. For different alumina and titania 
particles tested, the particles with smaller primary particle size (Alu130, Ti P90) were more 
effective for gel formation. 
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the crystal phase of the metal oxide. Similarly, when silica or alumina are mixed with 

titania (Figs. 10c-f), the gel region shifts to only cover the pH range between the 

silica/alumina isoelectric point and the titania isoelectric point of pH = ~6. If the regions 

of gelation from the phase behavior diagrams for the Aeroxide Alu 130/Aeroxide TiO2 

P90 (Fig. 10c) and Aeroxide TiO2 P90/Aerosil 200 (Fig. 10d) mixtures are combined 

together, the resulting region of gelation closely matches the phase behavior diagram of 

the Aeroxide Alu 130 mixture/Aerosil 200 (Fig. 10b). This implies that the gelation is 

primarily a result of electrostatic interactions between the nanoparticles and that 

gelation would likely be observed with other types of fumed metal oxides nanoparticles 

beyond silica, alumina, and titania.   

STRUCTURAL STUDIES OF THE GEL NETWORK 

 Prior to polymerization, the LR White/nanoparticle dispersions exhibited the 

same pseudo-solid/shear-thinning behavior as the aqueous gels. Fig. 11 contains a 

selection of TEM micrographs of the nanoparticles dispersed in polymerized LR White 

resin. TEM studies showed that the samples contain two major types of morphologies: 

1.) areas dominated by empty space interspersed with nanoparticle aggregates with 

apparent sizes ranging from approximately 200 nm up to 5 µm, and 2.) areas dominated 

by unbroken networks of nanoparticles that extend for hundreds of micrometers in all 

directions. Micrographs a.-c. show regions of the gel sample with the first type of 

morphology with seemingly independent aggregates. However, it is currently unclear if 

these are truly independent aggregates or merely appear to be independent due to an 

artifact from the thin-sectioning. The thin sections imaged here are merely thin slices of 

a three dimensional gel network, therefore what appear to be independent aggregates at 
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the level of these images may actually be connected to the overall nanoparticle network 

at a different point in the sample above or below the image plane. Micrographs d.-f. 

illustrate examples of the second type of morphology, showing unbroken nanoparticle 

networks at three different levels of magnification, which illustrate the fractal-like nature 

of both the primary particles and the gel network, as they exhibit self-similar features 

over wide ranges of magnification.73   

 Small-angle x-ray scattering (SAXS) experiments were used to compare the 

aqueous gel dispersions with the nanoparticle networks suspended in LR White resin to 

confirm that the structures observed in Fig. 11 were an accurate representation of the 

nanoparticle networks that cause the gelation observed in aqueous dispersions. SAXS 

can be used to characterize the size, shape, characteristic distances, fractal dimension, 

pore sizes, and other information for features with a size range of ~1-100 nm. 

Experiments revealed that the normalized (normalized because of the difference in 

Figure 11. TEM micrographs illustrating areas of low particle density, containing dispersed 

nanoparticle aggregates of a variety of sizes with empty void spaces between them (a-c), and a 
series of micrographs showing a region of unbroken nanoparticle networks that extend for 10’s 

of microns in all directions, at three different levels of magnification. Images are of ~100 nm 
thick sections of a 1.5 vol% 30-70 AluC-Aerosil 200 dispersions in polymerized LR White resin.  

Circles in background are from TEM grid.  
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electron density between water and 

the polymer resin), background-

corrected SAXS spectra, shown in Fig. 

12, are almost identical throughout 

both the Porod region of q (0.3 nm-1 < 

q < 2 nm-1) which has features 

corresponding to characteristics of  

primary particles and the Guinier 

region of q (0.06 nm-1 < q < 0.3 nm-1) 

which has features corresponding to 

characteristics of primary particle 

aggregates and small multi-particle 

networks. Fractal dimensions were calculated by fitting the data in Fig. 12 to Beaucage’s 

Unified Power Law Scattering model.17 The fractal dimension (Df) of the Porod region, 

4.28-4.30 corresponds to power law scattering from a fractally smooth solid object, in 

this case the spherical primary particles. The fractal dimension of the Guinier region 

(2.30/2.31) is very similar for both systems, indicating that the spherical primary 

particles are arranged in similarly branched networks in both samples, this fractal 

dimension also corresponds closely to the fractal dimension of 2.5 calculated by Tolman 

and Meakin74 for diffusion-limited particle-cluster agglomeration (DLA) in three 

dimensions, indicating that the fractal structures are relatively closed, but are consistent 

with DLA. The location of the transition between the Porod and Guinier scattering (~0.3 

nm-1) is also consistent for both samples, as expected. These scattering results indicate 

that the structure observed in the TEM micrographs of the nanoparticle network in resin 

(Fig. 11) are representative of the networks that are observed in the aqueous gels, at least 

over the scattering vectors (q) that can be probed with the SAXS equipment available. 

Figure 12. Small-angle x-ray scattering (SAXS) 
attenuation spectra illustrating the structural 

morphologies of the SiO2 and Al2O3 in DI water and 
LR white. 
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However, since some of the sintered fractal aggregates of the silica and alumina are larger 

(aggregates range from ~30-200 nm in size, as determined by TEM) than the maximum 

feature size that can distinguished with SAXS (~100 nm), we cannot conclusively state 

that the long-range structure of the LR White and aqueous gels are completely similar 

since the scattering results shown in Fig. 12 could simply reflect scattering from a 

weighted average of the individual fractal aggregate particles. Therefore, additional 

ultra-small angle x-ray or neutron scattering experiments, which can probe feature sizes 

up to ~6 µm, will be necessary to determine if the nanoparticle network structures are 

consistent over the larger length scales shown in electron micrographs. SAXS spectra 

shown in Fig. 12 are a combination of the scattering from both the silica and alumina 

particles. Additionally, since the electron density of silica is ~75% of the electron density 

of alumina, the combined scattering spectra in Fig. 12 over-represent the scattering 

profile of the alumina relative to its concentration in solution because x-ray scattering is 

proportional to the electron density of the scatterer, a problem that could be alleviated 

by conduction neutron scattering experiments since the neutron scattering cross sections 

of silica and alumina are quite similar. 

Figure 13. Optical microscope images for samples inside and outside the gel region: (a.)1.5 

vol%, 30-70 AluC-Aerosil 200, pH = 7 and (b.) 1.5 vol%, 30-70 AluC-Aerosil 200, pH = 2. 
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Figure 13 shows optical microscopy images of 1.5 vol%, 30–70 Aeroxide Alu C–

Aerosil 200 nanoparticle dispersions in deionized water after being dyed with one drop 

of Mallory’s trichrome stain. Micrograph a. shows a dispersion at pH = 7, which is within 

the gel region, while micrograph b. shows a dispersion at pH = 2, which is outside the gel 

region. As seen in Fig. 13a., the gel-region sample contains observable, nanoparticle 

networks, while Fig. 13b. does not appear to contain any interconnected nanoparticles 

networks spanning the image, but instead appears to contain particle aggregates 

separated by empty spaces of water. One can also observe the previously discussed self-

Figure 14. Measured attenuation spectra for the non-gel and gel samples (a. and b 
respectively), particle size distributions (c.) and ζ-potential (d.) of 1.5 vol% 30–70 Aerosil 200–

Aeroxide Alu C dispersions at various pH values. The samples at pH 4, 6, 7, and 8 are gels, while 

the pH 2 and 10 samples are outside the gel region. 
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similarity between micrographs in Fig. 11 d.-f. and those in Fig. 13a., where a similar 

fractal pattern of interparticle connections is observed. The round, dark spots in Fig. 

13a.-b. are believed to be concentrated regions/droplets of stain, not nanoparticle 

aggregates. 

  Figure 14 contains all of the experimental results from the acoustic spectroscopy 

measurements on 1.5 vol%, 30–70 Aeroxide Alu C–Aerosil 200 dispersions at pH values 

of 2, 4, 6, 7, 8, and 10. Fig. 14a. and b. show a comparison of the experimental data fit to 

the theoretical model, as described in the methods section, for the non-gel and gel 

samples, respectively. A sharp contrast can be seen in the attenuation spectra for the gel 

region samples (pH = 4, 6, 7, and 8) and the spectra for the two samples outside the gel 

region (pH = 2 and 10), shown in Fig. 14a and b. The high viscosity gel samples exhibit 

more ultrasound attenuation at low frequencies than the non-gel dispersions, which is 

likely due to strong particle-particle interactions when the silica and alumina particles 

have opposing surface charges. Figure 14c. shows the particle size distributions for all of 

the tested samples which is calculated by fitting the experimental attenuation curves to 

a unimodal model based on acoustic theory. The attenuation of the sample at pH equal 

to 8 is higher than the other gel samples because this sample was very close to the 

Sample
Mean Particle 

Size (µm)

Zeta 

Potential 

(mV)

pH= 2 11.2 104.9

pH=4 14.8 84.3

pH=6 14.5 -169.7

pH=7 13.7 -266

pH=8 14.2 -326.2

pH=10 10.4 -461.8

Table 6. Mean particle size and zeta potential 
of 1.5 vol% 70:30 binary mixture of Aerosil 

200:Aeroxide AluC dispersions. 
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isoelectric point of alumina (pH = 8-9). Table 6 contains a summary of the mean particle 

sizes and zeta potential for each pH that was considered. 

Fig. 14d. shows how the ζ-potential changes as a function of pH in binary dispersions of 

Aeroxide Alu C and Aerosil 200. The mixed particle dispersions go through an isoelectric 

point between pH 4 and 6. Unexpectedly, there do not appear to be large changes of ζ-

potential associated with crossing the gel region boundary, as the ζ-potential of the pH 2 

and pH 4 samples are very similar. The difference between the ζ-potentials of the pH 8 

and pH 10 samples is not greater than the difference between the pH 6 and pH 8 samples. 

For binary mixtures of fumed nanoparticle dispersions, the zeta potential is due to the 

combined effect of electrostatic interaction between the two oppositely charged particles. 

For dispersions in the acidic pH region (pH’s of 2 and 4 sample), the zeta potential is 

primarily attributed to the interaction between the H+ ions and the excess charge due to 

silica particles.   Whereas, for dispersions with low H+ ion concentration, the zeta 

potential is caused due to the excess charge from the alumina particles. This implies that 

if the gelation mechanism involves strong interparticle electrostatic attractions (which 

the phase behavior studies seem to indicate is the case), then the electroacoustic method 

of measuring the surface potential may not be fully capturing the surface charging 

phenomena in these particular dispersions due to the added complications of particle-

particle interactions.  

CONCLUSIONS 

 The gelation mechanism described here appears to be the result of electrostatic 

interactions between oppositely charged nanoparticles dispersed in a polar solvent, but 

these electrostatic interactions can be broken by the addition of a shear force to the 

solution that is strong enough to break the network’s binding forces, overcoming the gel’s 

yield stress,75,76 inducing plastic deformation and flow.77 However, the electrostatic 

attraction that generates the gel network does not seem to lead to particle aggregation 



46 

and the unstable dispersions seen by Binks and others. The gels are likely stabilized by a 

combination of three important phenomena: firstly, repulsive electrostatic interaction 

between like-charged particles preventing aggregation beyond a certain limit where 

attractive silica-alumina interactions are balanced against repulsive silica-silica and 

alumina-alumina interactions; secondly, the fractal structure of the sintered primary 

particle aggregates add three-dimensional rigidity that prevents aggregates from being 

tightly packed together into dense aggregates78 that can no longer be suspended in 

solution by Brownian forces;  and finally, hydration forces related to enthalpically 

adsorbed water molecules at the solid-liquid interface resisting the desorption necessary 

for dispersed particles to come into direct contact with one another.79 

 The microscopic and macroscopic structure of these gels was investigated using 

electron microscopy, optical microscopy, small-angle x-ray scattering, and acoustic 

spectroscopy. All of these techniques indicated that, when dispersed in water at particle 

ratios and pH’s where gel formation occurs, the nanoparticles appear to connect in a 

large-scale fractal network throughout the solution. These fractal networks can be seen 

at a wide variety magnifications and exhibit the self-similarity that are expected of fractal 

networks. 

  



47 

CHAPTER 4: RHEOLOGICAL CHARACTERIZATION OF 
PSEUDO-SOLID, SHEAR-THINNING GELS FROM BINARY 
DISPERSION OF FUMED METAL OXIDE NANOPARTICLES AT 
LOW VOLUME FRACTIONS 

INTRODUCTION 

Yield stress fluids, or Bingham plastics, are widely found both in industry 

(drilling muds, plastic extrusions) and our daily lives (toothpaste or mayonnaise), these 

fluids behave like an elastic solid under small stresses, but flow like viscous liquids when 

exposed to sufficient stress. Many particle suspensions, polymer dispersions, and 

emulsions exhibit yield stress behavior and will only undergo viscous flow after being 

subjected to a stress large enough to degrade the three-dimensional structure of the 

dispersed phase, commonly referred to as the yield stress. Colloidal gels which behave as 

yield stress fluids have a wide range of potential and current applications, such as 

altering flow patterns in porous media,80 vibration dampening in electrorheological 

suspensions,81,82 forming cake filtration beds,83 printing flexible microelectrodes,84 

improving performance of woven body armor85 and fabricating durable biological 

scaffolds.86 A variety of colloids have been found to form yield stress fluids when 

dispersed in a liquid: paper pulp fibers,87 various clay minerals,88 and carbon black.89  

Metal oxide nanoparticles are widely used in a variety of industrial and consumer 

product applications. These nanoparticles are quite complex and their behavior depends 

on factors such as chemical composition, synthesis method, degree of crystallinity, and 

number of surface defects. In particular, fumed metal oxide nanoparticles are 

synthesized through co-injection of hydrogen, oxygen, and metal chlorides into a flame 

at temperatures in excess of 1500°C, where the metal chlorides oxidize to form spherical 

nanoparticles.90,91 After oxidation, the spherical nanoparticles remain suspended in the 

gas stream at high temperatures, where they collide with each other due to turbulence 

and sinter to form ‘hard’ fractal aggregates that cannot be broken apart via 
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homogenization or ultrasonication. The sintered fractal aggregates can agglomerate into 

larger ‘soft’ structures due to van der Waals forces.92  These larger ‘soft’ agglomerate 

structures can be broken apart by homogenization or ultrasonication.93 Fumed metal 

oxide nanoparticles are already commonly used as pigments and viscosity adjusters in 

consumer goods such as paints, cosmetics, and soaps. Dispersions of these nanoparticles 

have also been proposed for use as contrast agents in geological surveys of oil 

reservoirs.94 

  Widespread industrial use of fumed metal oxide nanoparticles has resulted in 

study of their behavior when dispersed in a liquid. Their complex geometric shape and 

ability for particles to hydrogen bond with each other via surface hydroxyls allow fumed 

metal oxide nanoparticles to be used to adjust the viscosity of non-polar solutions. 

Numerous groups have studied the ability of unmodified (hydrophilic) fumed silica to 

form yield stress gels when dispersed in non-polar solvents95,96 and Raghavan97 

demonstrated a direct relationship between the gel strength and the ability of the 

dispersing liquid to hydrogen bond with the metal oxide surface. Gelation only occurred 

when the dispersing liquid had limited to no hydrogen-bonding ability, meaning the 

liquids interact weakly with the silica surface encouraging the particles to form a volume-

spanning fractal network held together by interparticle hydrogen bonds. Alternatively, 

when hydrophilic fumed silica nanoparticles are dispersed in liquids more capable of 

hydrogen-bonding, like water, a solvation layer forms around the particles and largely 

eliminates interparticle hydrogen bonding, resulting in a minimal increase in solution 

viscosity.98 

 The interactions between aqueous solutions and metal oxide surfaces have been 

extensively studied99,100,101 and are of particular interest for this work because the 

hydrogen bond network present in water can stabilize charged chemical species on the 

metal oxide surface resulting in strong electrostatic attractive or repulsive forces between 
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metal oxide nanoparticles. Electrostatic charges on metal oxide surfaces are governed by 

the protonation state of hydroxyl groups scattered across all metal oxide surfaces. If the 

hydroxyl group is doubly protonated, which occurs at low pH, the surface takes on a net 

positive charge. As the solution pH increases the number of doubly protonated hydroxyl 

groups decreases while the number of deprotonated, i.e. negatively charged, hydroxyl 

groups increases. The surface charge thus goes through a transition between a net 

positive charge at low pH and a net negative charge at high pH with the pH where a zero 

net surface charge (an equal number of positively charged and negatively charged surface 

sites) occurs being known as the isoelectric point (IEP) or point of zero charge (PZC). 

The pH where the isoelectric point occurs differs depending on the type of metal oxide 

being studied.  More complex aluminosilicates have surface regions with different IEPs; 

i.e. for some pH ranges a fraction of surface regions will be positively charged while 

others are negatively charged.   

Dispersing oppositely charged nanoparticles in the same liquid can lead to colloidal gels 

under certain conditions. Fisher102 has shown that spherical metal oxide nanoparticles 

can be made to form colloidal gels in aqueous solutions by adding small amounts (< 1 

vol%) of spherical silica nanoparticles to 10 vol% alumina slurries at a pH between the 

two IEPs. Gelation occurs due to electrostatic interactions between smaller (5-25 nm) 

silica nanoparticles and larger (250 nm) alumina particles, resulting in a volume-

spanning network of heteroaggregates. Kim103 studied the heteroaggregation of 

oppositely charged polystyrene nanoparticles and found that, in the presence of a variety 

of background electrolytes, the oppositely charged nanoparticles will aggregate into 

clusters with fractal dimensions varying from 1.21 to 1.70 when the liquid phase is density 

matched with the polystyrene particles to prevent sedimentation. They also found that 

the fractal dimension of the aggregates was slightly affected by particle concentration, 

but strongly affected by the addition of salts, which increase electrostatic screening 
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between particles. Zong104 characterized the rheological behavior of similar mixtures of 

oppositely charged polystyrene particles over a range of volume fractions (0.18-0.53) in 

order to quantify the particle bonding and caging present in the dispersions. Rasa105 

studied the heteroaggregation of similarly sized, spherical silica (negatively charged) and 

alumina (positively charged) nanoparticles in aqueous solution and found that in 

mixtures of <50 vol% positively charged particles, heteroaggregation and sedimentation 

occurred, while in dispersions containing >50 vol% positively charged particles, the 

liquid contained small colloidally stable aggregates but did not form a colloidal gel. Binks 

et al.106 investigated similar binary mixtures of silica and alumina nanoparticles in order 

to relate a particle mixture’s ability to stabilize Pickering emulsions with the particles’ 

behavior in aqueous suspensions. They observed that particle mixtures with the greatest 

tendency to heteroaggregate and sediment out of solution (i.e. had the most interparticle 

attraction) were most able to stabilize oil and water emulsions. Lopez-Lopez107 

completed a study of the heteroaggregation of oppositely charged, spherical 

nanoparticles and came to similar conclusions; when oppositely charged, spherical 

particles are initially introduced to each other in solution they tend to form long, diffuse 

fractal-like heteroaggregates, but that over long time scales these particles tend to 

continue to aggregate and often sediment out of solution or phase separate into a clear 

supernatant with a concentrated suspension of heteroaggregates below. All of these 

authors observed that when oppositely charged, spherical particles were mixed together, 

they heteroaggregated and settled out of solution, unless either the liquid was density 

matched to that of the particles or the particles made up a large volume fraction (> 10 

vol%) of the suspension.  

 The gels studied here are generated by dispersing mixtures of two different fumed 

metal oxide nanoparticles in deionized water at a pH where one nanoparticle specie is 

positively charged while the other is negatively charged. The key reason why these 
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particles did not sediment is that the individual species are themselves fractal in nature, 

preventing dense particle packing. Previous work has mapped the gelation phase 

boundaries for mixtures of silica/titania, silica/alumina, and titania/alumina and shown 

that the gels can be reversibly broken and reconstructed by varying pH.108 Here, we focus 

on quantifying the rheological characteristics of the gels, e.g. the yield stress, apparent 

viscosity, and shear moduli, and how these properties change as a function of particle 

concentration, solution pH, and the ratio of positively charged particles to negatively 

charged particles.   

EXPERIMENTAL 

MATERIALS 

The nanoparticles used in this study were obtained from Evonik Inc. and include: 

Aerosil 200, Aeroxide Alu C, and Aeroxide TiO2 P90. Aerosil 200 is a fumed silica 

nanoparticle with an average primary particle size of 12 nm, specific surface area of 

200±25 m2/g, IEP of pH=4.0, an average of 3 surface hydroxyls per nm2,109 and an 

average fractal dimension of 2.22. Aeroxide Alu C is a fumed alumina nanoparticle with 

an average primary particle size of 13 nm, specific surface area of 100±15 m2/g, IEP of 

pH=8.5, an average of 8 surface hydroxyls per nm2,109 and an average fractal dimension 

of 2.06. Aeroxide TiO2 P90 is a fumed titania nanoparticle with an average primary 

particle size of 14 nm, specific surface area of 90±20 m2/g, IEP of pH=5.9, an average of 

6.8 surface hydroxyls per nm2,109 and an average fractal dimension of 2.02. All fractal 

dimensions are based on SAXS and SANS data described in detail in Part III of this 

series. The sintered fractal aggregates for all of the nanoparticles used, which cannot be 

broken down further, range from ~30-200 nm in size, as determined by TEM and 

acoustic spectroscopy. The nanoparticles were manufactured by flame pyrolysis of metal 

chlorides at high temperature (1000°C). When calculating nanoparticle volume 

fractions, the density of the nanoparticles was assumed to be that of bulk, amorphous 
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silica (2.25 g/cm3), alumina (3.85 g/cm3), and titania (4.23 g/cm3), which are 

comparable to those determined by solution densitometry.110,111 
 

De-ionized water with a conductivity of <2 µS/cm was used for preparing aqueous 

dispersions and obtained using a polymer ion-exchange filtration system. All pH 

adjustments were made with 10 wt% NaOH and HCl in order to prevent excessive 

dilution of the nanoparticles. Sodium hydroxide and hydrochloric acid were both 

purchased from Fischer Scientific.  

 Gels were prepared by weighing out the desired amount of each particle into a 

container along with the necessary amount of deionized water. Then, the particles were 

initially dispersed in the aqueous phase using a vortex mixer followed by an initial pH 

adjustment to the desired pH. Three pHs were used for each nanoparticle pairing: a pH 

below the isoelectric points of both particles, a pH in the center of the gel region between 

the two particles’ isoelectric point, and a final pH above the isoelectric point of both 

particles. Next, the particle dispersions are sonicated using a Fisher Scientific FB505 

horn sonicator with a 1/8 inch stainless steel tip for 9 minutes at 40% amplitude in order 

to break up particle agglomerates. Following sonication, the solution pH is checked a 

second time and, if it has changed by protonation/deprotonation of the surface 

hydroxyls, adjusted to the desired pH using NaOH and HCl.  

METHODS 

 A variety of techniques have been developed to measure both shear and 

compressive yield stress.112,113,114 These studies illustrate the difficulty of measuring the 

yield stress and other rheological properties of yield stress fluids. The ability to make 

accurate measurements strongly depends on the chosen geometry and precision with 

which the instrument can control stress and strain/strain rate, in order to prevent wall-

slip, fracture, and shear banding.115,116 Yield stress measurements here were made using 

a Rheometrics Scientific SR-5000 stress-controlled rheometer using a cone and plate 
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geometry. The cone/plate size was varied between 25 mm and 40 mm to ensure that the 

measured yield stress did not require torques outside of the apparatus’ specified range. 

The 25 mm cone had a cone angle of 0.0996 radians and was operated at a gap of 0.0533 

mm. The 40 mm cone had a cone angle of 0.0393 radians and was operated at a gap of 

0.0787 mm. No major problems with wall slip or shear banding were observed during 

experimentation, so additional measures to control for these factors were not employed. 

Yield stress was measured by exposing a sample to a steady stress ramp until the sample 

began to undergo plastic deformation, the stress at which plastic deformation begins was 

taken to be the yield stress. A series of five stress ramp experiments were completed for 

each sample, with the average yield stress of all five runs being stated as the samples’ 

yield stress. 

   Apparent viscosity was measured using two different methods. For low shear 

rates (<0.1 s-1) a Rheometrics Scientific SR-5000 rheometer was used with the same cone 

and plate geometry described previously. The rheometer was made to exert a constant 

stress on the sample until the shear rate and apparent viscosity stabilized; the shear rate 

and viscosity were then measured for five minutes and the average value over that time 

was used as the stated shear rate and viscosity for each sample. Then, the stress would 

be changed and the system allowed to stabilize again at a different shear rate. All sample 

measurements were taken using data that exhibited a steady build-up of stress as the 

sample approached its steady state viscosity to avoid collecting data from samples that 

have undergone significant network rearrangement prior to reaching steady state. 

Viscosity measurements were made in order of ascending stress/shear rate to avoid 

measurement errors related to wall slip. Viscosities at higher shear rates were measured 

using a Rheosys Merlin II rheometer using a 25 mm concentric cylinder (bob and cup) 

geometry, where the diameter of the cup is in proportion to the bob size as defined by 

the DIN Standard 53019. This rheometer can directly control shear rate, and shear rate 
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was increased from 0.1 s-1 – 2000 s-1 while measuring stress to obtain viscosity vs. shear 

rate data. At every measured shear rate, the sample was sheared for 30 s prior to data 

collection followed by a 45 s data integration time to determine sample viscosity.    By 

using both of these instruments, a shear rate regime of seven orders of magnitude was 

collected.   Further, no shifting of the data was necessary; the two instruments agreed 

when there was overlap between the shear rates.  

 Complex shear moduli were measured using a Rheometrics Scientific SR-5000 

rheometer with the same cone and plate geometry described previously. The 

experiments were carried out at various frequencies and a constant strain of 1.0%, which 

was determined to be within the linear viscoelastic region for all of the gels tested. Again, 

25 mm and 40 mm plates were used to ensure that the required torques were within the 

operating range of the rheometer. We were sure to choose conditions so that instrument 

inertia did not affect the results.  

RESULTS AND DISCUSSION 

 Figure 15 contains a series of representative plots that illustrate the general 

rheological behavior of the studied gels in terms of viscosity vs. shear rate, viscosity vs. 

shear stress, and shear moduli vs strain. The plots illustrate extremely similar trends to 

the data presented by Aerschot and Uriev for 2.5 vol% hydrophilic fumed silica dispersed 

in methyl laurate, a non-polar liquid. As previously discussed, hydrophilic fumed silica 

will form a yield stress gel when dispersed in a non-polar solvent by forming a fractal 

network held together by interparticle hydrogen bonding. In the hydrogels studied here, 

an extremely similar fractal network is formed throughout the aqueous phase, but the 

network is held together by electrostatic interactions rather than hydrogen bonds. The 

electrostatically stabilized network studied here is significantly stronger than the 

hydrogen bond network studied by Uriev.  In fact, the differences in viscosity, moduli, 
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and yield stress roughly correspond to the difference in force between electrostatic 

interactions and hydrogen bonding, approximately 1-1.5 orders of magnitude. 

 A more detailed analysis of these graphs shows that in Figure 15a, the apparent 

viscosity follows a power law relationship with shear rate, a fairly common rheological 

phenomenon that has been used to describe the flow of a  variety of different fluids and 

suspensions, e.g. drilling muds,117 fresh concrete,118 mud slides,119 ideal hard sphere 

colloids,120 and gluten gels.121 The area of the plot between shear rates of 10-3 s-1 and 10-1 

s-1 is largely bereft of data points because those shear rates correspond to stresses that 

Figure 15. Representative plots of viscosity vs. shear-rate (a), viscosity vs. shear stress (b), and 

shear modulus vs. strain (c) for gels made of oppositely charged, fumed metal oxide 
nanoparticles dispersed in deionized water. Results shown here are for a gel with a 75-25 mixture 

of Aerosil 200 (silica)-Aeroxide Alu C (alumina), a total particle concentration of 2.0 vol%, and a 
solution pH of 7. The gel behaves as a power-law fluid over the tested shear rate range, has a 

yield stress of ≈150 Pa, and behaves as a linear viscoelastic solid for strains < 2-3%. Open 
symbols in (a) were measured using the SR-5000, closed symbols were measured using the 

Merlin II. Closed symbols in (c.) represent the storage modulus (G’) and open symbols represent 

the loss modulus (G”). 
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are near the yield stress of the gel where it transitions from elastic to viscous behavior, 

making it impossible to measure reproducible stress-strain data in this region on our 

equipment. Figure 15b. contains a plot of viscosity vs. shear stress which illustrates the 

obvious transition from solid-like to fluid-like behavior above and below the gel’s yield 

stress of approximately 150 Pa. Figure 15c. displays how the storage and loss moduli 

change for these gels as the strain is increased. G’ and G” largely do not change as a 

function of strain for strains below 2-3% and drop precipitously at strains above that 

level, indicating a transition from the linear to nonlinear viscoelastic region.  As stated 

previously, G’ and G” values as a function of frequency reported were measured at 1% 

strain, which is in the linear viscoelastic region.  

YIELD STRESS 

 Yield stresses were measured for gels at particle concentrations varying from 1.0 

vol% -2.5 vol%, at three different particle ratios, and at pHs below, within, and above the 

gelation region for three different binary mixtures of fumed metal oxide nanoparticles: 

silica-alumina, silica-titania, and titania-alumina. Figure 16 shows examples of the 

stress-strain data gathered during a typical yield stress test for 75-25 Silica-Alumina 

dispersions at three different particle  concentrations. The stress where the gels begin 

Figure 16. Typical stress-strain data from a yield stress test 
for silica-alumina gels at various particle volume fractions.  
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undergoing plastic deformation is 

quite obvious and can be seen to 

strongly correlate with particle 

concentration. The arrows indicate 

the approximate point where the 

stress value is sampled during the 

determination of the yield stress, the 

maximum stress before an extremely 

large jump in strain/shear rate.  

Table 7 contains the average yield 

stress and standard deviations for all 

of the tested gels (entries marked N/A 

indicate that the sample had either a 

yield stress below the minimum stress 

measurable by the instrument (0.06 

Pa) or no yield stress at all). 

Unsurprisingly, the yield stress is 

strongly affected by the particle volume fraction for all of the different nanoparticle 

mixtures. None of the 1.0 vol% dispersions have a measurable yield stress. This could be 

a result of the gels’ having a yield stress below the stress minimum of the rheometer (0.06 

Pa), but could also be the result of these dispersions being below a ‘percolation’ threshold 

or minimum particle concentration required for the heteroaggregated nanoparticles to 

form a volume-spanning network throughout the fluid. The latter is the case based on 

observations that the 1.0 vol% dispersions have a tendency to settle into an opaque 

dispersion phase and a clear supernatant phase without any centrifugation. All of the 

nanoparticle mixtures at concentrations, pHs, and particle ratios that result in yield 

Table 7. Yield stress values for gels made with 

various particle mixtures, ratios, and concentrations. 
Values were determined by taking the average yield 

stress of a series of five stress ramp experiments. 
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stress gels do not sediment in this way under standard gravitational forces for periods as 

long as at least one year. The effect of particle ratio on yield stress differs depending on 

the type of nanoparticles used. For all of the tested nanoparticles, 2.0 vol% dispersions 

of a single type of nanoparticle (100-0 particle ratio) do not exhibit any measurable yield 

stress. Therefore, all of the metal oxide pairings tested here show a non-linear 

relationship between particle ratio and yield stress, with some ratio of particles having a 

‘maximum’ yield stress. For gels made with silica and alumina, the highest yield stress 

was observed at a 75-25 silica-alumina ratio with the observed yield stress dropping 

significantly as the silica-alumina ratio decreased. The silica-titania and titania-alumina 

gels, however, present more complicated trends. For the silica-titania gels, the largest 

yield stress was observed at a 75-25 silica-titania ratio while the 50-50 ratio sample had 

the lowest yield stress and the 25-75 sample had a yield stress between the two other 

samples. This unusual behavior may be due to the especially narrow gelation region for 

silica-titania mixtures, meaning that any minor deviation from the optimum pH could 

result in a large shift in the amount of surface charge on the particle surface, weakening 

the interparticle bonds. Meanwhile, the titania-alumina gels’ yield stress changes very 

little as the particle ratio is varied implying that the interparticle bonds differ very little 

in number or strength over the particle ratios tested. The importance of particle ratio for 

silica-alumina and silica-titania gels relative to titania-alumina gels could be related to 

the specific surface charge (charged groups per unit area) of the three different types of 

particles. Silica has approximately 3 hydroxyl groups/nm2 while titania and alumina 

have 6.8 and 8 hydroxyls/nm2, respectively. Hence, in order to maximize the number of 

positive-negative pairings it would be necessary to have a silica-titania or silica-alumina 

ratio of between 2.3:1 and 2.7:1, which are close to the 75-25 silica-titania or silica-

alumina ratios where the largest yield stresses are observed. Meanwhile, the specific 

surface charges of the titania and alumina are much closer to each other, implying that 
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the ‘optimum’ particle ratio should be closer to 1:1 and gel strength should not be as 

strongly affected by shifts away from this optimum; a hypothesis that is in agreement 

with the yield stress results for the titania-alumina gels shown in Table 7. Overall, these 

hydrogels exhibit higher yield stresses than fumed metal oxide lyogels because the 

electrostatic interactions used to stabilize the particle networks are stronger than the 

hydrogen bonds and van der Waals interactions present in lyogels. Specifically, the 2.5 

vol% silica dispersions in methyl laurate had a yield stress of 10 Pa compared to the 

maximum yield stresses of 358, 289, and 306 Pa measured here for the 2.5 vol% 

dispersions of silica-alumina, silica-titania, and titania-alumina, respectively. 

SHEAR MODULI 

 Storage and loss moduli (G’ and G”) were collected at frequencies ranging from 

0.006 s-1 to 16 s-1 for all samples listed in Table 7 and modulus vs. frequency plots are 

shown in Figure 17. Most of the gels have storage moduli (G’) that are larger than their 

corresponding loss moduli (G”), and a G’ that evolves largely independent of frequency. 

This behavior is consistent with a soft, elastic solid and is comparable to the behavior 

observed in clay mineral dispersions,122 nanoparticle/clay mixtures,123 and other 

Figure 17. Shear modulus vs frequency plots for silica-alumina (a-b), silica-titania (c-d), and 

titania-alumina (e-f) gels at various particle concentrations and ratios. Closed symbols represent 
the storage modulus (G’) and open symbols represent the loss modulus (G”). 
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attractive colloidal gels.124 The elastic moduli for the silica-alumina gel mixtures are 

roughly an order of magnitude larger than the corresponding silica-titania and titania-

alumina gels. This difference is likely explained by the optimum gelation pH for the 

silica-alumina gels being much farther away from the IEPs of both particles (approx. 2 

pH units) than for either of the other nanoparticle mixtures. Since the magnitude of 

surface charge changes rapidly within two pH units on either side of a particle’s IEP, 

small changes in pH result in a large change of the total surface charge on the 

nanoparticles, thereby strongly affecting the number of interparticle, electrostatic 

interactions and overall gel strength. The specific surface charge is strongly affected by 

the solution pH and when the solution pH is within one pH unit of the IEP, the surface 

is populated with a mixture of protonated and deprotonated hydroxyls, reducing the total 

surface charge and limiting the number of electrostatic interactions between oppositely 

charged particles, likely weakening the gel. This trend in shear modulus of different 

particle mixtures is in contrast to the yield stress measurements discussed previously, 

where all of the nanoparticle pairings exhibited approximately similar yield stress values 

at the same particle concentrations.    

Several of the gels with relatively low yield stresses present less solid-like behavior. For 

instance, the 2.0 vol% 25-75 silica-alumina gel shown in Figure 17b behaves much more 

viscously than the other silica-alumina gels. G’ and G” are not independent of frequency 

and at high frequencies viscous effects dominate and G’<G” followed by a cross-over 

point at a critical frequency, ωc, leading into a region where elastic effects dominate and 

G’>G”. The G’/G” cross-over implies that the gel has a terminal relaxation time on the 

order of 0.1-0.2 s, where the terminal relaxation time, τr, is physically related to the time 

required for the gel network to rearrange and respond to an applied stress and is defined 

as τr=1/ωc.125 Similar cross-overs are observed for several other gels, in particular, a 

majority of titania-alumina gels exhibit this type of behavior; their moduli are strongly 
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dependent on frequency and the G’ and G” curves appear much closer together than in 

the silica-alumina or silica-titania gels. These facts imply that the titania-alumina gels 

are much more thixotropic than the other gels tested and their viscoelastic behavior will 

be much more strongly dependent on the timescale of the experiment. 

APPARENT VISCOSITY 

 Apparent viscosities were measured at shear rates ranging from 10-6 s-1 to 2500 s-

1, and Figure 18 contains flow curves that show how gel viscosity profiles change with 

particle concentration, particle ratio, and solution pH. Gaps or abbreviations in the flow 

curves are related to one of two experimental limitations; 1) shear rates that require 

stresses near the yield stress of the gel are very difficult to measure with our equipment 

and result in noisy, irreproducible viscosity values, and 2) low viscosity fluids cannot be 

measured at low shear rates because the torque exerted by the fluid is below the 

minimum measureable torque of the rheometer. All of the gels and particle dispersions 

display power-law shear-thinning behavior at shear rates below some critical value and 

therefore lend themselves to analysis using the Ostwald-de Waele126 (OdW) or Herschel-

Bulkley127 (HB) model for relating viscosity and shear rate. The OdW and HB models 

both model viscosity and shear rate using a power-law relationship, but the HB model 

adds an additional term to account for a yield stress, if present. The basic relationship 

used by both models is: 

𝜇𝑎𝑝𝑝 = 𝐾 ∗ (
𝑑𝛾

𝑑𝑡
)

𝑛−1
   Eqn. 5 

Where µapp is the apparent viscosity, K is a pre-exponential factor commonly referred to 

as the consistency, dγ/dt is the shear rate, and n is exponential term commonly referred 

to as the power law index. This equation was used to fit the viscosity vs shear rate curves 

in Figure 18 and the best-fit values for the consistency and power law index parameters 

for each sample are shown in Table 8 along with the shear rate where the sample  
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transitions from power-law to Newtonian behavior.  
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transitions from power-law to 

Newtonian behavior. 

The data in Table 8 lends itself 

to a few generalizations about the gel 

behavior. First, the ‘strength’ of the 

gel can be approximated by the 

consistency value, which agrees with 

previous results in that the silica-

alumina gels have a much higher 

viscosity than the corresponding 

silica-titania and titania-alumina 

gels. Consistency values also reinforce 

the previous trends noticed regarding 

particle ratio, with consistency being 

a strong function of particle ratio for 

silica-containing gels, but less of a 

factor for the titania-alumina gels. A 

similar trend is observed with power-

law index values, where stronger gels 

and increased network strength results in indices close to zero, while samples at low 

concentrations and pH outside of the gelation window display power-law indices in the 

range of 0.2-0.3, which is similar to the indices observed for dispersions of only a single 

species of fumed nanoparticle. Four of the tested gels have power-law indices that are 

<0, a property that is not theoretically possible, but has been observed in a variety of 

biomass dispersions.128,129 Padmanabhan theorized that the negative indices were a result 

of some combination of molecular degradation of the sample, viscous dissipation, and 

Sample
Consistency 

(cP)

Power Law 

Index

Power-Law to 

Newtonian 

Transition (s
-1

)

2.0vol% Aerosil 200 254 0.242 255

2.0vol% TiP90 105 0.356 160

2.0vol% Aeroxide AluC 398 0.202 255

1.0vol% 75-25 pH=7 199 0.2 150

1.5vol% 75-25 pH=7 13660 0.065 >2200

2.0vol% 25-75 pH=7 6164 0.133 1300

2.0vol% 50-50 pH=7 16001 0.154 1300

2.0vol% 75-25 pH=7 49084 0.015 >2000

2.5vol% 75-25 pH=7 125060 0.014 >2000

2.0vol% 75-25 pH=2 613 0.287 460

2.0vol% 75-25 pH=10 248 0.302 275

1.0vol% 75-25 pH=5 293 0.154 160

1.5vol% 75-25 pH=5 4455 0.096 1050

2.0vol% 25-75 pH=5 4376 -0.019 460

2.0vol% 50-50 pH=5 5160 0.117 1200

2.0vol% 75-25 pH=5 13730 0.033 >2000

2.5vol% 75-25 pH=5 25213 -0.021 >2000

2.0vol% 75-25 pH=2 269 0.27 255

2.0vol% 75-25 pH=8 279 0.338 450

1.0vol% 50-50 pH=7 550 0.264 415

1.5vol% 50-50 pH=7 5161 0.051 >2000

2.0vol% 25-75 pH=7 12291 0.057 >2000

2.0vol% 50-50 pH=7 10652 0.049 >2000

2.0vol% 75-25 pH=7 7764 -0.017 >2000

2.5vol% 50-50 pH=7 18851 0.053 >2000

2.0vol% 50-50 pH=4 164 0.316 255

2.0vol% 50-50 pH=10 798 -0.014 255

Power Law Fitting Parameters

Silica-Alumina Gels

Silica-Titania Gels

Titania-Alumina Gels

Nanoparticle Dispersions

Table 8. Ostwald-de Waele and Herschel-Bulkley 

power law fitting parameters for particle dispersions 
and colloidal gels, including pre-exponential 

consistencies, power-law indices, and shear rates 
where shear-thinning behavior transitions to 

Newtonian shear-rate independence.  
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fluid slip. Since molecular degradation of the fumed metal oxide nanoparticles is 

certainly not occurring at these shear rates and stresses, the negative indices observed 

here are therefore likely due to viscous dissipation and wall slip; however, non-linear 

degradation of particle agglomerates could also be a contributing factor.  

The particle mixtures demonstrate a very strong and reversible relationship 

between viscosity and solution pH, as shown in Figure 18c, f, and i. The apparent 

viscosity drops by two orders of magnitude or more when the solution pH is pushed 

below or above the IEPs of both of the metal oxides. Similar behavior has been observed 

in clay dispersions where the various facets of the clay particle have different IEPs130 and 

in alumina dispersions near the IEP, where positively charged and negatively charged 

surface groups coexist and maximize interparticle electrostatic interactions.131 In 

addition to the large drop in viscosity, the low- and high-pH dispersions do not exhibit a 

yield stress, implying that there is no long range structure present.   

 Since all of the tested dispersions at a pH within the gelation window display 

power-law behavior and have similar power law exponents, it was hoped that there 

would be a single descriptive factor that could relate how the viscosity profile changes for 

different particle mixtures, concentrations, and ratios. Figure 19a shows a combined 

viscosity profile for all of the samples that exhibited gel-like behavior after being 

Figure 19. Normalized viscosity vs shear rate plot (a) and consistency vs max. +/- pairings plot 

(b) for all gels that exhibit yield stress behavior. Viscosities were normalized using the fitted 
consistency value found in Table 8.  
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normalized using the consistency values reported in Table 8. The normalized viscosity 

data for all of the samples collapses onto a single power-law profile with a minimal 

amount of scatter, as the slight variations in power law index from sample to sample 

would suggest. If a single variable or set of variables could be found that relate each gel 

sample to its measured consistency, it would allow us to predict viscosity profiles for 

other particle mixtures. One possible parameter would be the maximum number of +/- 

pairings in a given gel mixture, since the number of interparticle bonds should, in theory, 

be strongly correlated to the overall strength of the particle network and its viscoelastic 

behavior. A value for the maximum number of +/- pairings can also be easily calculated 

using the specific surface charges reported in the literature. However, a plot of 

consistency vs max. number of +/- pairings, shown in Figure 19b, shows that there is no 

overall correlation between the two across different nanoparticle pairings, though within 

each pairing there is a decent correlation between the two variables. Hence, additional 

factors must exist that are important to understanding the gel structure and behavior for 

the different nanoparticle pairings beyond a simple charge balance between negatively 

charged surface sites and positively charged surface sites. Other potential factors may be 

sintered aggregate size, aggregate fractal dimension, relative polydispersity of the 

aggregates, etc.  

CONCLUSIONS 

 This work demonstrates that mixing different species of fumed metal oxide 

nanoparticles with some fractal structure at certain particle ratios and pH allows for the 

spontaneous generation of a volume-spanning particle network via electrostatic 

interactions. The gels exhibit solid-like behavior when total particle volume fractions are 

greater than 0.015 and the total number of positively-charged and negatively-charged 

surface sites are approximately equal, but exhibit increasingly viscous behavior upon 

deviation from either of those two requirements. This result is in agreement with the 
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work of both Rasa and Binks who showed that heteroaggregation was maximized when 

the charge ratios were approximately the same for similar particles.  Additionally, the pH 

ranges where the gelation phenomenon is observed closely matches the pH values where 

Binks, Kim, Rasa, and Lopez-Lopez observed flocculation and sedimentation, implying 

that both phenomena may be the result of heteroaggregation of oppositely charged 

particles in aqueous solution. We believe gelation was observed here while 

sedimentation was observed in those other studies because the nanoparticles used by 

Binks, Kim, Rasa, and Lopez-Lopez were synthesized using a precipitation method,132 

rather than the pyrolytic method used to synthesize fumed metal oxide nanoparticles. 

Precipitated metal oxides tend to form well-dispersed, individualized, spherical particles 

rather than fractal, sintered, nanoparticle aggregates as obtained from pyrolytic 

methods. The multi-dimensional rigidity created by the fractal structures of the fumed 

nanoparticles generates an obstacle to the formation of dense aggregates.133  

 Once formed, the nanoparticle networks are responsible for the fluid acquiring a 

yield stress and power-law shear-thinning behavior. This behavior is similar to that of 

other fractal particles dispersed in non-polar solvents, but these hydrogels exhibit higher 

yield stresses, viscosities, and elastic moduli than the lyogels because the electrostatic 

interactions used to stabilize the particle networks are stronger than the hydrogen bonds 

and van der Waals interactions present in other fractal gels.  

The apparent viscosity of the gels can be modeled accurately using the Ostwald-de Waele 

power law relationship between shear rate and viscosity. Gel consistencies are roughly 

correlated to particle concentration and the number of +/- surface charge partners 

within each nanoparticle pairing, but no obvious relationship tying the viscosity profiles 

of all of the different nanoparticle pairings was found. Finally, the viscoelastic behavior 

of these gels can be easily controlled by varying the solution pH above or below the 

isoelectric points of the two particles. 
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CHAPTER 5: SMALL ANGLE NEUTRON SCATTERING OF 
PSEUDO-SOLID, SHEAR-THINNING BINARY MIXTURES OF 
FUMED METAL OXIDE NANOPARTICLES AT LOW VOLUME 
FRACTIONS 

INTRODUCTION 

 Small-angle scattering (SAS) is a powerful technique that can be used to 

characterize the nanoscale structure of a number of materials, including metal alloys,134 

surfactant micelles,135 colloidal dispersions,136,137 proteins,138 and block co-polymers.139 

Small-angle scattering can also be used in conjunction with rheometers to gain 

information regarding how the structure of colloid, polymer, and protein dispersions 

changes when the fluid is undergoing flow at a variety of shear rates.140,141 SAS 

experiments can be carried out using a variety of radiation sources, with the most 

commonly used being light (SALS), x-rays (SAXS), and neutrons (SANS). Each of these 

radiation sources offers different benefits and drawbacks, for example neutrons provide 

excellent penetration of thicker or more concentrated samples and contrast matching 

techniques are possible, but are generally operated at much lower fluxes, meaning each 

experiment takes a longer period of time to complete.  

The first installment of this series mapped the gelation phase boundaries for 

mixtures of silica/titania, silica/alumina, and titania/alumina at various particle species 

ratios and volume fractions, and showed that the gels can be reversibly broken and 

reconstructed by varying pH.Error! Bookmark not defined.   As discussed in both 

apers, in most situations where oppositely charged particles are mixed the dispersion is 

unstable and the particles precipitate or sediment; our belief is that the fractal nature of 

the individual metal oxide particles prevents dense particle packing, which results in 

gelation rather than sedimentation. Some limited structural information from SAXS was 

previously presented in the first paper, however because of the small angular region 

sampled and the fact that the scattering contribution of each particle species was a strong 
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function of the volume fraction, very limited information could be obtained using this 

technique. The second article of this series investigated and quantified the rheological 

properties of the nanoparticle gels including viscosity vs shear rate, shear moduli vs. 

frequency and yield stress results.  For a given particle pairing, a universal scaling law 

based on the total number of +/- surface charge pairings provided a reasonable 

description of viscosity vs shear rate curves.  The maximum yield strength of gel was 

found to occur at the volume fraction ratio of the two particles where the total numbers 

of positive and negative surface charges were roughly balanced.  Further, the measured 

yield strengths, storage moduli, and viscosities of the electrostatic gels were 

approximately a factor of ten higher than the corresponding properties of similar gels 

where the interparticle attraction was driven by hydrogen bonding, roughly matching the 

differences between a hydrogen bonding force and an electrostatic force.   In this work, 

we characterize the nanoscale structure of the silica/alumina gels using small-angle 

neutron scattering and show how the nanoparticle network changes as a function of 

particle concentration, solution pH, and ratio of positively charged particles to negatively 

charged particles. Contrast matching is used to examine each particle species 

individually; to our knowledge this study is the first time where this approach has been 

used for these types of gels.  

EXPERIMENTAL 

MATERIALS 

 The nanoparticles used in this study, Aerosil 200 and Aeroxide Alu C, were 

obtained from Evonik. Aerosil 200 (Si200) is a fumed silica nanoparticle with an average 

primary particle size of 12 nm, specific surface area of 200±25 m2/g, IEP of pH=4.0, an 

average of 3 surface hydroxyls per nm2,142 and an average fractal dimension of 2.22. 

Aeroxide Alu C (AluC) is a fumed alumina nanoparticle with an average primary particle 

size of 13 nm, specific surface area of 100±15 m2/g, IEP of pH=8.5, an average of 8 
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surface hydroxyls per nm2, and an average fractal dimension of 2.06. Fractal dimensions 

were determined using SANS data described in this paper. The sintered fractal 

aggregates for all of the nanoparticles used, which cannot be broken down, range from 

~30-250 nm in size, as determined by TEM and Acoustic Spectroscopy. When 

calculating nanoparticle volume fractions, the density of the nanoparticles was assumed 

to be that of bulk, amorphous silica (2.25 g/cm3) and alumina (3.85 g/cm3), values which 

are comparable to those found in the literature for other fumed metal oxide 

nanoparticles.143,144 
 

De-ionized water with a conductivity of < 2 µS/cm was used for preparing aqueous 

dispersions and obtained using a polymer ion-exchange filtration system. All pH 

adjustments were made with 10 wt% NaOH and HCl in order to prevent excessive 

dilution of the nanoparticles. Sodium hydroxide and hydrochloric acid were both 

purchased from Fischer Scientific. Deuterium oxide, D2O, > 99.0 atom % D was obtained 

from Sigma-Aldrich.  

 Gels were prepared by weighing out the desired amount of each particle, as 

determined by converting wt % into vol % using the previously enumerated nanoparticle 

densities, into a container along with the necessary amount of deionized water. Then, the 

particles were initially dispersed in the aqueous phase using a vortex mixer followed by 

an initial pH adjustment to the desired pH. Three pHs were used for each nanoparticle 

pairing: a pH below the isoelectric points of both particles, a pH in the center of the gel 

region between the two particles’ isoelectric point, and a final pH above the isoelectric 

point of both particles. Next, the particle dispersions were sonicated using a Fisher 

Scientific FB505 horn sonicator with a 1/8 inch stainless steel tip for 9 minutes at 40% 

amplitude in order to break up particle agglomerates. Following sonication, the solution 

pH was checked a second time and, if changed due to protonation/deprotonation of 

surface hydroxyls, adjusted to the desired pH using NaOH and HCl.  For brevity, all 
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subsequent uses of the unit ‘%’ refer to volume percent and any use of mol % or wt % will 

be clearly stated.   

METHODS 

 Small-angle neutron scattering experiments were carried out at two different 

locations. Initial experiments were completed on the NG-7 30 m SANS instrument at the 

NIST Center for Neutron Research (NCNR) located in Gaithersburg, MD.145 Neutron 

wavelengths of 8.0 Å were used along with sample-to-detector distances varying from 

1.0 - 15.0 m to obtain scattering data over the scattering vector range of 0.01298 nm-1 < 

q < 3.8 nm-1, where (q=4sin/) with 2 is the solid angle between the incident 

radiation beam and the detector and  is the wavelength of the incident radiation. 

Further experiments were completed on the BL-6 EQ-SANS instrument at the Spallation 

Neutron Source (SNS) within Oak Ridge National Laboratory.146 Neutron wavelengths of 

3.0 – 15.0 Å were used along with sample-to-detector distances varying from 3.0 - 9.0 m 

to obtain scattering data over the scattering vector range of 0.01857 nm-1 < q < 1.4 nm-

1.147 All experiments at both locations were carried out using sealed quartz window cells 

with a 1 mm sample path length. Raw pinhole-collimated two-dimensional scattering 

data were reduced to q vs I plots using software developed at NCNR and ORNL. Data 

was reduced using standard procedures implemented through Igor macros148 or 

MantidPlot149 to correct for background scattering, neutron time-of-flight, detector dark 

current, detector sensitivity, and a variety of other factors. The reduced scattering 

profiles were then fit using the SasView fitting software150 and all results were fit using 

the Unified Power Law Scattering model developed by Beaucage, as shown in Equation 

6.151,152 The first term describes the exponential decay in scattering at a characteristic 

feature size, Rgi, and the second term describes  
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𝑃𝑖

𝑛
𝑖=1       (Eqn. 6) 

the power-law decay in scattering that follows the exponential region, with Pi indicating 

the fractal dimension for the feature sizes between Rgi and Rg(i+1).   

Electron microscopy images were obtained using a JEOL 2000-FX transmission 

electron microscope and a Zeiss NEON 40 EsB scanning electron microscope. Energy 

dispersive x-ray spectroscopy (EDS) was carried out using a Kevex Quantum 10 mm2 x-

ray detector, which was also used in conjunction with an IXRF x-ray analyzer to complete 

EDS mapping of samples. Samples were prepared for TEM study by dispersing particles 

in LR White, a hydrophilic resin solution, at a 75:25 silica:alumina ratio and total particle 

concentration of 2.0 vol %; a ratio and concentration that was known to form a gel in an 

aqueous solution. The resin was then polymerized into a solid by placing the sample into 

a 40 0C oven for 48 hours in a tightly sealed gelatin capsule. The solidified polymer-

nanoparticle composites were then removed from the gelatin capsules and 50-100 nm 

slices were removed from the sample using a Reichert UltraCut E ultramicrotome. The 

thin sections were then placed on a C-flat holey carbon TEM grid for imaging. These thin 

sections were used for high-resolution imaging, EDS, and elemental mapping of the gel 

network. Previous small-angle x-ray scattering experiments showed that the particle 

networks were consistent in the polymer resin and aqueous solution over the length 

scales that can be probed using SAXS and are assumed to be approximately 

representative of the gel structure present in aqueous dispersions. 

 Gel illustrations were created using a combination of software programs and 

were based on the fractal dimensions and radii of gyration information obtained from 

model fitting of SANS data. The NetLogo software package153 and its three-dimensional 

diffusion limited aggregation model were used to generate xyz coordinates for fractal 
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aggregates with fractal dimensions varying from 1.6-2.3; the fractal dimensions of 

generated aggregates were evaluated using a standard box-counting method.154 The xyz 

coordinates were then exported to the 3-D visualization software package, VESTA,155 

where structural models of the ‘hard’ fractal aggregates present in fumed metal oxides 

were made using simple spheres to represent the primary particles. A series of 5 ‘base’ 

particles were generated in this manner for both Aerosil 200 and Aeroxide AluC. These 

base particles were created in a way so that their structure corresponded to the correct 

primary particle size, fractal dimension, and hydrodynamic diameter for Aerosil 200 and 

Aeroxide AluC as determined by our own SANS experiments and other literature sources 

that have characterized these nanoparticles.156,157,158 These primary particles were then 

arranged into a three-dimensional fractal aggregate with the correct fractal dimension, 

etc. using NetLogo to generate unit cell xyz coordinates for particles within the aggregate, 

VESTA for visualization of the final structure, and Packmol software159 to randomly 

populate the xyz coordinates with the previously generated alumina and silica ‘base’ 

particles. Final structures were then exported as high resolution raster images of the 

aggregate structure using VESTA.   

RESULTS AND DISCUSSION 

 A major advantage of neutron scattering over x-ray scattering in studying these 

gels is the large difference in scattering length density between hydrogen (H) and 

deuterium (D). Hence, the contrast in aqueous dispersions can be varied by changing the 

H2O to D2O ratio so that the scattering length density of the water is matched to the 

scattering length density of one of the dispersed components and hence the scattering 

profile is only that from the other dispersed components, a method called solvent or 

contrast matching. In this case, contrast matching allows separate scattering profiles for 

the silica and the alumina nanoparticles in addition to a scattering profile for the 

combined gel network structure. Preliminary scattering length density calculations 
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indicated that SiO2 should have a contrast match point of ~68 mol % D2O/32 mol % H2O 

and Al2O3 should have a contrast match point of ~90 mol % D2O/10 mol % H2O. More 

precise contrast match points were obtained by running a series of contrast variation 

experiments at NCNR. Aerosil 200 particles and Aeroxide AluC particles were dispersed 

separately in a series of aqueous solutions at five different D2O/H2O ratios focused 

around the theoretical match points. Scattering profiles were obtained for each of these 

dispersions and the ‘contrast’ of each sample was determined by subtracting the 

scattering intensity (I) at a scattering vector (q) value of 1.0 nm-1 from the scattering 

intensity at q = 0.1 nm-1. The measured contrast values were then plotted against the 

D2O/H2O ratio for each sample and fitted to a 2nd degree polynomial. Finally, the fitted 

polynomial was solved for its minimum value and that D2O/H2O ratio was used as the 

contrast match point for each nanoparticle species. These experiments resulted in a 

contrast match point of 62% D2O for Aerosil 200 and 88% D2O for Aeroxide AluC. 

 Previous work has demonstrated that the gelation phenomenon observed in these 

nanoparticle mixtures is caused by electrostatic heteroaggregation of silica and alumina. 

However, at this point it is unclear which of two potential mechanisms is responsible for 

the behavior. Several literature articles have studied the methods required to fully 

Figure 20. Illustration demonstrating the two possible gelation mechanisms in electrostatically-
driven heteroaggregation gels. Fig. 1a. displays a gel network generated via heteroaggregation 

of microagglomerates and Fig. 1b. displays a network generated via heteroaggregation of fully 

dispersed nanoaggregates. In this illustration blue and red are used to indicate aggregates and 
agglomerates of silica and alumina, respectively. 
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disperse fumed metal oxide nanoparticles in polar and non-polar solvents.160,161,162 These 

studies have shown that, when dispersed via shaking and/or vortex mixing, many ‘soft’ 

particle agglomerates cannot be broken up into their constituent ‘hard’ sintered 

aggregates. However, ultrasonication and high-pressure homogenization has been 

shown to impart sufficient energy to fully disperse the particles, breaking up all multi-

aggregate agglomerates. The gels studied here were ultrasonicated prior to 

experimentation under the same conditions where full dispersal of both Aerosil 200 and 

Aeroxide AluC individual particles has been achieved as described later in more detail. 

However, additional viscous forces generated by gelation prior to full dispersal could 

possibly absorb a large enough fraction of the sonic energy to prevent full dispersal of 

the sintered aggregates in the studied gels.  

Figure 1 illustrates the two different gelation mechanisms possible in the gels 

studied here. Fig. 1a. illustrates a ‘microagglomerate’ heteroaggregation mechanism 

where ultrasonication of the nanoparticle dispersions fails to fully break apart the ‘soft’ 

agglomerates into the ‘hard’ nanoaggregates. Despite incomplete dispersion, the silica 

and alumina microagglomerates will still be oppositely charged at neutral pH and 

undergo electrostatic heteroaggregation into a percolated gel network that spans the 

entire continuous phase, resulting in the observed yield stress and viscoelastic 

properties. In theory, the size of the microagglomerates could vary in size from large 

agglomerates several microns in diameter to smaller agglomerates of a just a few 

nanoaggregates and cluster diameters of < 1 µm, depending on the ability of the sonicator 

to impart kinetic energy to the large agglomerates. Figure 1b illustrates the final gel 

network expected if complete dispersion of the nanoaggregates is achieved, with 

electrostatic repulsion largely preventing self-association of the silica and alumina and 

attractive electrostatic forces binding the oppositely charged particles into a fractal 

network. The gels could also exist in a state somewhere between those shown in Fig. 1a. 
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and 1b., with the dispersion consisting of a mixture of microagglomerates and 

nanoaggregates simultaneously interacting to result in the observed rheological 

behavior. 

An initial study of Aerosil 200-only and Aeroxide AluC-only dispersions was 

carried out to confirm that the sonication method used for the binary gel mixtures was 

sufficient to fully disperse the particles in water and to determine the characteristics of 

the pure particles.   The scattering curves for those dispersions are shown in Figure 2. 

Aerosil 200-only scattering was performed at the Aeroxide AluC contrast match point 

and vice versa. In Fig. 2, it can be seen that the scattering curve undergoes a transition 

from power law scattering towards q-independent (q0) scattering. This transition 

indicates that there are no ordered structures with sizes larger than the feature size 

probed by this scattering vector (approx. 200 nm). These results are consistent with 

aggregate sizes observed via electron microscopy and by others156,158,163 using small-

angle scattering and dynamic light scattering. All of these results indicate that the 

Figure 21. Scattering curves for dispersions of Aerosil 200 at 

the alumina contrast match point and Aeroxide AluC at the silica 
contrast match point. Best fit lines for a Unified Power Law 

model are shown for each curve. 
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microagglomerates in the dispersions containing only one particle or the other can be 

fully broken up using the same sonication procedure used to prepare the gels.  

A non-contrast-matched scattering profile of the overall gel structure shown in Figure 3 

was obtained after forming 75:25 Si200:AluC gels in 100 mol % D2O, pH of 6.5 and two 

different total particle concentrations.  The background scattering length density is 

sufficiently far from those of silica and alumina to get scattering from both particle types, 

and incoherent scattering from hydrogen is minimized. A strong gel (yield stress of 156 

Pa) exists for the high concentration sample, while the low concentration sample exhibits 

no yield stress behavior. The scattering profile for both samples contains three different 

power law regimes: 1) at large scattering vectors (q > 0.4 nm-1), scattering intensity 

follows a q-4 relationship, implying scattering from smooth three-dimensional objects; 

2) at intermediate scattering vectors (0.06 nm-1 < q < 0.13 nm-1), scattering intensity 

follows an ~q-2.18 relationship, implying scattering from mass fractal particles with a 

Figure 22. Scattering profiles of the overall gel structure for two 
Aerosil 200:Aeroxide AluC dispersions at the particle ratio and pH 

where gel strength is maximized. One sample is below the critical 
gelation concentration, the other is above the gelation 

concentration and exhibits a yield stress. Fractal dimensions 

obtained through fitting the data to a Unified Power Law model 
are displayed, and the solid lines illustrate the best fit line of the 

model. 
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fractal dimension (Df) ≈2.18; 3) at sufficiently small scattering vectors (0.015 nm-1< q < 

0.05 nm-1), scattering intensity follows an ~q-1.73 relationship, implying scattering from a 

more diffuse mass fractal agglomerate with Df ≈1.73. These three regimes are believed to 

correspond to scattering from the spherical primary particles (1), the sintered, ‘hard’ 

nanoagglomerates (2), and either the microagglomerates or the percolated gel network 

(3); in a structure roughly analogous to that observed by Schaefer in studies of silica-

reinforced elastomers.164 Compared to the scattering from the pure particles, the 

composite scattering pattern has the expected slopes at intermediate and high scattering 

vectors; with the former being intermediate between the two individual particles. The 

scattering profiles of the low and high concentration gels are extremely similar, with the 

only major difference being an upward shift in overall scattering intensity. This shift 

implies an increase in the number concentration of scattering objects in the beam path, 

a logical outcome from increasing the total particle concentration. However, the fractal 

dimensions of the two samples at small q’s remain relatively constant, suggesting that 

the additional nanoparticles present at the high concentration are not being packed into 

the existing structure of the lower concentration sample, but rather being added to 

interstitial spaces beyond the range of feature sizes that can be studied with these SANS 

experiments (in this case, feature sizes < ~500 nm). Since the rheological characteristics 

of the two samples are extremely different while the scattering profiles are quite similar, 

these results seem to indicate that the particle network imparting yield stress behavior 

to the gels consists of subunits that are larger than ~500 nm maximum feature size 

explored by SANS, perhaps in a network similar to that observed in certain clay 

suspensions.165 At this time, it is unclear what produced the small scattering feature at q 

≈0.03 nm-1, but it does not appear on subsequent scattering curves obtained at the silica 

and alumina contrast match points, so it may be an artifact.  
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   Figure 4 contains scattering curves for contrast-matched gels with a variety of 

total particle concentrations and a constant particle ratio (75:25 Si200:AluC) and 

solution pH (6.5). Fig. 4a. contains scattering curves from the alumina contrast match 

point, i.e. sample scattering comes from the dispersed Si200 nanoparticles, while  Fig. 

4b  contains scattering curves obtained at the silica contrast match point, i.e. sample 

scattering comes from dispersed AluC nanoparticles. Again, the shape of the scattering 

curve for both the silica-matched and alumina-matched samples are very consistent 

throughout all of the tested particle concentrations, with only the overall scattering 

intensity being affected by the increase in nanoparticle concentration, as in the 100% 

D2O samples.  

At the alumina contrast match point, the sample scatters in a manner similar to the 100% 

D2O gels shown earlier, and has three relatively distinct power law scattering regions 

corresponding to primary particle, nanoaggregates, and microagglomerate scattering 

with average fractal dimensions of 4.04, 2.23, and 1.73, respectively. The first two fractal 

dimensions correspond very closely to those measured in the Aerosil 200-only 

dispersions.  The slope of these scattering curves at low q appears to indicate that the 

silica nanoaggregates are not fully dispersed because, since the rheological properties of 

Figure 23. Scattering curves for contrast-matched gels at a series of total particle 

concentrations and a constant particle ratio and solution pH of 75:25 Si200:AluC and 6.5, 
respectively. Figs. 3a. and b. contain data taken from gels suspended at the alumina contrast 

match point and silica contrast match point, respectively. Best fit lines for a Unified Power Law 
model are shown for each curve. 
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the gels change significantly over the concentration range shown (gels with 1.0% total 

particle concentration exhibit no yield stress while 2.5% gels have yield strengths of ~360 

Pa), the gel network must be changing. If the network is changing but the low-q fractal 

dimensions does not change, the ‘gel network’ must be constructed of interacting 

constituents larger than the largest feature size probed in these SANS experiments which 

is ~500 nm. In other words, if these samples were constructed of direct 

heteroaggregation of the nanoaggregates and the gel network is self-similar over larger 

length scales, the fractal dimension observed at scattering vectors corresponding to 

feature sizes larger than the nanoaggregates (q < 0.03-0.06) should respond to increases 

in concentration due to tighter packing of the nanoparticle network, which did not occur.  

Therefore, it is probable that the nanoaggregates remain at least semi-agglomerated into 

microagglomerates with Df ≈1.73 and diameters of at least 485 nm (the feature size 

corresponding to the smallest scattering vector where data was collected).  

The Aeroxide AluC scattering data obtained at the silica contrast match point seems to 

contain only two distinct power law regions, though the data was still fit using a three-

level Unified Power Law model for consistency. Similar to the Aerosil 200-only 

scattering, Fig. 4b. suggests that the alumina nanoaggregates have not been fully 

dispersed following the sonication protocol used in this study based on the same 

reasoning of no change in fractal exponent at low q with a significant change in 

rheological response. The Aeroxide AluC appears to consist of microagglomerates with 

Df ≈1.99 and, again, a minimum agglomerate diameter of 485 nm. 

The Unified Power Law fitting results (see Table 1) for the scattering data shown in Fig. 

4 indicate that the Aerosil 200 consists of primary particles with an average radius of 10 

±1 nm and nanoaggregates with an average Df of 2.23 ± 0.03 nm and an average radius 

of gyration of 82±10 nm. Meanwhile, the Aeroxide AluC consists of primary particles 

with an average radius of 13 ± 2 nm and nanoaggregates with an average Df of 2.07 ± 
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0.05 nm and an average radius of gyration of 101 ± 60 nm. All of these fitted values are 

consistent with previously cited characterization studies as well as our SANS 

measurements on the pure particles. Within the fitting results shown in Table 1, one 

would expect that Rg3 (radius of spherical primary particles), P3 (fractal dimension of 

primary particles), Rg2 (radius of gyration of the ‘hard’ nanoaggregates), and P2 (mass 

fractal dimension of the ‘hard’ nanoaggregates) to remain the same for both the Aerosil 

200 and Aeroxide AluC regardless of total particle concentration, pH, particle ratio, etc; 

and the results in Table 1 agree with this expectation. The fitting results shown in Table 

1 also show very little change in the value of P1 (fractal dimension for the gel network) 

for all of the gel samples, in agreement with the idea that the nanoaggregates remain 

partially agglomerated. Table 1 does not show values for Rg1 because the scattering results 

shown here do not go to low enough values of q to definitively provide any information 

on the radius of gyration of the gel network’s subunits.   
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  Table 9. Unified Power Law fitting results for radius of gyration (Rg) and fractal dimension 

parameters for all scattering data presented in this study. P1 is the fractal dimension of the 

‘soft’ microagglomerates, Rg2/P2 are the corresponding parameters for the ‘hard’ 

nanoaggregates, and Rg3/P3 are the corresponding parameters for the spherical primary 

particle scattering, respectively. Note: Rg values are provided in units of nanometers. 

Sample Rg3 Rg2 P3 P2 P1

0.75% Si200 - 0.25% AluC - 88% D2O - pH 6.5 9.8 82.4 4.08 2.22 1.76

1.125% Si200 - 0.375% AluC - 88% D2O - pH 7.0 10.9 83.5 4.01 2.23 1.77

1.5% Si200 - 0.5% AluC - 88% D2O - pH 6.5 10.2 76.9 4.06 2.22 1.70

1.875% Si200 - 0.625% AluC - 88% D2O - pH 7.0 10.7 79.5 4.01 2.23 1.73

2.25% Si200 - 0.75% AluC - 88% D2O - pH 7.0 10.1 75.8 4.06 2.23 1.70

0.75% Si200 - 0.25% AluC - 62% D2O - pH 6.5 14.7 143.3 4.02 2.07 1.92

1.125% Si200 - 0.375% AluC - 62% D2O - pH 7.0 13.7 240.5 4.16 2.07 1.97

1.5% Si200 - 0.5% AluC - 62% D2O - pH 6.5 14.4 112.8 4.03 2.03 2.00

1.875% Si200 - 0.625% AluC - 62% D2O - pH 7.0 13.3 99.9 4.22 2.04 2.06

2.25% Si200 - 0.75% AluC - 62% D2O - pH 7.0 13.9 90.0 4.10 2.06 2.01

0.5% Si200 - 1.5% AluC - 88% D2O - pH 8.5 12.1 110.1 3.95 2.25 1.95

1.0% Si200 - 1.0% AluC - 88% D2O - pH 7.0 9.8 73.1 4.03 2.25 1.82

1.5% Si200 - 0.5% AluC - 88% D2O - pH 6.5 10.2 76.9 4.06 2.22 1.70

0.5% Si200 - 1.5% AluC - 62% D2O - pH 8.5 13.8 29.6 4.03 2.06 2.16

1.0% Si200 - 1.0% AluC - 62% D2O - pH 7.0 13.6 78.0 4.16 2.03 1.97

1.5% Si200 - 0.5% AluC - 62% D2O - pH 6.5 14.4 112.8 4.03 2.03 2.00

Sample Rg3 P3 Rg2 P2 P1

1.5% Si200 - 0.5% AluC - 88% D2O - pH 2.0 11.4 89.2 4.00 2.22 1.98

1.5% Si200 - 0.5% AluC - 88% D2O - pH 6.5 10.2 76.9 4.06 2.22 1.70

1.5% Si200 - 0.5% AluC - 88% D2O - pH 10.0 10.6 86.4 3.99 2.25 1.82

1.5% Si200 - 0.5% AluC - 62% D2O - pH-2.0 13.0 27.2 4.15 2.10 2.01

1.5% Si200 - 0.5% AluC - 62% D2O - pH 6.5 14.4 112.8 4.03 2.03 2.00

1.5% Si200 - 0.5% AluC - 62% D2O - pH 10.0 14.1 28.8 4.00 2.01 2.07

1.5% Si200 - 88% D2O - pH 6.5 12.5 77.4 4.09 2.28 0.07

0.5%  AluC - 62% D2O - pH 6.5 7.2 147.8 3.98 2.11 1.07

0.56% Si200 - 0.19% AluC - 100% D2O - pH 6.5 5.3 54.2 3.90 2.24 1.70

1.5% Si200 - 0.5% AluC - 100% D2O - pH 6.5 10.5 81.9 4.17 2.16 1.77

Unified Power Law Fitting Parameters

Varying Concentration

Varying Particle Ratios

Varying Solution pH

Single Particle Type Dispersions

Pure D2O Gel Mixtures



82 

Similar results to those shown in Fig. 4 for a variety of particle concentrations can be 

seen in Figure 5, where scattering curves are shown as a function of particle ratio (a. & 

b.) and as a function of solution pH (c. & d.). These results again show that there is very 

little change in the scattering profile for the silica or the alumina as one changes the 

particle ratio or pH beyond shifts in scattering intensity related to total particle 

concentration. Additionally, Figs. 5a. & b. illustrate that contrast matching of the silica 

and alumina was successful, since the overall scattering intensity follows the 

concentration of the Aerosil 200 (a.) and Aeroxide AluC (b.) even though the total 

particle concentration remains constant in both cases. The pH variation results (5c. & 

5d.) provide additional strong evidence that the gels are a result of heteroaggregation of 

microagglomerates since there is essentially no change in the scattering profile for either 

Figure 24. Scattering curves as a function of particle ratio (a. & b.) and solution pH (c. & d.) 

with all other parameters held constant. Figs. 4a. & c. contain data taken from gels suspended 
at the alumina contrast match point and Figs. 4b. & d. contain data taken from gels suspended 

at the silica contrast match point. Best fit lines for a Unified Power Law model are shown for 
each curve. 
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silica (c.) or alumina (d.) as the solution pH is changed despite large changes in the 

rheological properties among the three samples.  Specifically, the pH 6.5 sample exhibits 

a yield stress and viscosity 2-3 orders of magnitude larger than either the pH 2.0 or pH 

10.0 samples, where all of the particles have similar surface charge and the gel network 

is expected to be mostly, if not completely, broken down. All SANS results consistently 

indicate that the microagglomerates are not being completely broken up during the 

mixing process, despite the use of ultrasonication. Therefore the studied gelation 

phenomenon appears to be the result of microagglomerate heteroaggregation similar to 

that illustrated in Fig. 1a.  

Scattering curves contain large amounts of information but transferring that 

information into real-space structures can be difficult. So, for illustrative purposes, a 

series of modeling and visualization software suites were used to generate visual 

approximations of the silica and alumina nanoaggregates and percolated gel networks. 

NetLogo software and its 3-D diffusion limited aggregation model was used to generate 

fractal aggregates and agglomerates with the correct fractal dimension and VESTA was 

used to generate illustrations of the particle and gel models. Five model nanoaggregates 

Figure 25. Model nanoaggregates of Aeroxide AluC and Aerosil 200 with the 

correct fractal dimension, primary particle size, and hydrodynamic radius. Alumina 
particles and silica particles are colored red and blue, respectively. (Particles in 

figure were resized to fit illustration and are not displayed at a constant relative 

scale.) 
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were created for both Aerosil 200 and Aeroxide AluC with the correct fractal dimensions, 

primary particle diameters, and average hydrodynamic radii. These nanoaggregates are 

the ‘hard’ nanoaggregates that cannot be broken down by sonication. Figure 6 contains 

illustrations of these ten model nanoaggregates with the alumina particles and silica 

particles colored red and blue, respectively.  

The model nanoaggregates were then used to randomly populate a larger model 

with a fractal dimension corresponding to that of the agglomerates measured in the 

100% D2O gels shown in Fig. 2 and compared to TEM micrographs and EDS maps of 

thin sections of a 1.75% total particle concentration, 75:25 Si200:AluC dispersion of 

particles embedded in a hydrophilic polymer resin. The random population method used 

to generate the illustrations does not take into account electrostatic interactions that 

would favor the aggregation of oppositely charged particles and separation of like-

charged particles, but nevertheless appears to produce a reasonable approximation of 

Figure 26. Illustrations of the gel networks generated using NetLogo, VESTA, and Packmol 

software (a.-c.) along with a high-resolution TEM micrograph (d.) and EDS elemental map (e.). 
Blue and red are used to indicate that the particle is Aerosil 200 and Aeroxide AluC, respectively. 
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the structures observed in the TEM images of the gels embedded in the polymer resin. 

Figure 7 shows three model gel network illustrations (a.-c.) along with a high-resolution 

TEM micrograph (d.) and EDS elemental map (e.). Throughout Fig. 7, blue and red are 

used to indicate that the particle is Aerosil 200 and Aeroxide AluC, respectively. The 

model gels and the EDS elemental map show qualitative similarities and the latter, at 

least, is likely to be reasonably accurate representations of the gel network as present in 

aqueous gels. Gaps between the particles observed in the gel illustrations occur when the 

roughly spherical nanoparticle aggregates are substituted into the cube based coordinate 

system used by the NetLogo 3D DLA model. 

Additional detail could be added by gaining longer-range structural information 

for the gels from ultra-small angle scattering and/or static light scattering experiments, 

which can provide structural information regarding features several microns in size. This 

information would allow one to add an additional layer of coordination to the current 

models, with nanoaggregates assembled into appropriately sized microaggregates, which 

are then assembled into a percolated gel network of the correct fractal dimension, 

whereas the current models are generated under the assumption of near-complete 

dispersion of nanoaggregates, which we believe to not be true based on SANS results. 

CONCLUSIONS 

 Small-angle neutron scattering experiments have been combined with electron 

microscopy and energy dispersive x-ray spectroscopy to quantitatively study the gel 

structure of electrostatically heteroaggregated fumed metal oxide nanoparticle gels 

under a variety of conditions. These results were then used to create qualitatively 

accurate models of the gel structure for illustrative purposes. The gels appear to be the 

result of heteroaggregation of ‘soft’ microagglomerates of silica and alumina 

nanoparticles that form a percolated network throughout the fluid and produce the 

observed yield stress and viscoelastic behavior. In pure particle solutions, these soft 



86 

microagglomerates are fully dispersed with 2-3 minutes of sonication; apparently the 

formation of the gel network in mixtures of the particles dissipates the sonic energy, 

preventing complete dispersion of the microaggregates. Perhaps gels could be generated 

without any microagglomerates by fully dispersing the individual particle species in 

more concentrated stock solutions, which could then be mixed together at the proper 

ratios and quantities to generate fully dispersed gels.  Fully dispersed gels should result 

in a far greater number of interparticle electrostatic interactions, and thus a significantly 

stronger gel network. Since the soft microagglomerates of like-charged particles that 

appear to be present in the heteroaggregate gels are easily dispersed by sonication in the 

absence of the oppositely charged particles, these microaggregates are likely “weak links” 

in the gel network; the concentration of the soft microaggregates may well control the 

yield strength of the gels. 
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APPENDIX I: GEL CENTRIFUGATION STUDIES 

 The stability of colloidal dispersions is an important parameter during industrial 

implementation since it has a strong effect on important parameters like shelf life, 

shipping time, preparation location, etc. The sedimentation behavior of the studied 

nanoparticle gel mixtures were tested using a series of centrifugation experiments at a 

variety of centrifuge speeds. Silica/alumina gel samples were prepared in test tubes at a 

variety of total particle concentrations and particle ratios. The samples were then placed 

into an IEC Clinical Centrifuge and subjected to a particular rotational speed for ten 

minutes. The samples were then removed from the centrifuge and the height of the 

opaque gel phase and clear supernatant phase were recorded, as shown in Figure 27.  

These height values were then used to calculate the total particle concentration 

remaining in the gel phase under the assumption that no particles remained in the clear 

supernatant. The sample was then redispersed using vortex mixing and sonication prior 

to testing at the next centrifuge speed. Figure 28 shows the final particle concentration 

in the gel phase as a function of effective gravitational acceleration for a variety of Aerosil 

Figure 27. Method used to study gel stability against sedimentation 
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200: Aeroxide AluC gel mixtures. The gels exhibited a very strong resistance to 

sedimentation considering the relatively low initial concentrations of the suspended 

nanoparticles and similar behavior to that shown in the yield stress results can be seen 

in terms of particle ratio, with the 70/30 silica/alumina samples having the greatest 

resistance to sedimentation or network collapse when compared to the 50/50 and 30/70 

samples, though this trend is less obvious at low particle concentrations. The combined 

plot of all of the data (d.) appears to show an interesting convergence of the final particle 

concentration in the gel phase at very high effective accelerations. This seems to imply 

that there may be some ‘critical’ concentration where the gel network becomes 

significantly harder to collapse via compressive acceleration forces. This ‘critical’ 

concentration appears to occur somewhere between 3.0% and 4.0% solids, which is still 

a relatively low solids fraction compared to other nanoparticle slurries that can 

experience sedimentation problems, such as inks. Additionally, the gels have 

experienced no noticeable sedimentation issues under standard gravitational 

Figure 28. Centrifuge stability results for Aerosil 200:Aeroxide AluC gels at 1.5 vol% (a.), 2.0 

vol% (b.), and 2.5 vol% (c.) total particle concentrations at three different silica/alumina ratios. 
A combined plot containing all of the data is also shown (d.). All %’s reflect vol%. 
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acceleration over the time span of these investigations (~2 years), though if the 

dispersions are moved outside of the gelation pH region, sedimentation does appear to 

become an issue. Additional centrifuge stability results are shown in Figure 29 for gel 

mixtures consisting of Aerosil 150:Aeroxide AluC (a.) and Aerosil 200:Aeroxide Alu130 

(b.). These gels exhibit similar behavior, alluding the possibility of a ‘critical’ particle 

concentration, effect of particle ratio on initial network collapse, and relative stability 

against catastrophic sedimentation/collapse.   

  

Figure 29. Centrifuge stability results for gels consisting of Aerosil 150:Aeroxide AluC (a.) and 
Aerosil 200:Aeroxide Alu130 (b.) mixtures. 
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APPENDIX II: TOTAL SYSTEM CHARGE AND GELATION 

As alluded to in previous chapters, the strongest gelation phenomenon appears at 

particle ratios where the number of positive surface charges is roughly balanced by the 

number of negative surface charges in the gel mixture. Tombacz measured values of 

specific surface charge (Coulombs/nm2) which were used to calculate the total surface 

charge (TSC) using equation 6. The total surface charge is a measure of how many +/- 

surface charge pairings are present, with a TSC of 0 indicating that there are equal 

numbers of positively and negatively charged surface groups present in the dispersion. 

Figure 30 illustrates how the total surface charge changes as a function of pH for a variety 

of Aerosil 200:Aeroxide AluC ratios. The curves show that the exact pH where the 

mixture contains an eqal number of positive and negative surface charge sites varies 

slightly with solution pH, with increasing silica fractions requiring lower pH values to be 

at a balance. If one zooms in on the region of the graph near to the cross-over point for 

all of the curves and compare it to the Aerosil 200:Aeroxide AluC phase behavior 

diagram from Chapter 2, as shown in Figure 31, it can be seen that the total surface 

charge and the gelation region correspond well to one another. Specifically, the gelation 

TSC = (m
1
*SA

1
*SC

1 
+ m

2
*SA

2
*SC

2
)/NPC      (Eqn. 6) 

TSC – Total Surface Charge   (C/vol% np’s) 

m
i
 – mass of np i   (grams) 

SA
i
 – Surface Area of np i   (m

2
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i
 – Surface Charge of np i at pH  (C/m

2

) 

NPC – nanoparticle concentration   (vol %) 
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window in both the experimental and calculated graphs (assumed to be the region where 

TSC is close to zero in the latter case) shifts to higher pHs as the silica fraction decreases, 

further affirming that this gelation mechanism is affected by the ratio of positive and 

negative surface charges in the mixture.  

 

  

 

Figure 31. Comparison of experimentally determined phase behavior diagram for Aerosil 

200:Aeroxide AluC gel mixtures and a magnified view of the TSC chart shown in Figure 30. 
 

Figure 30. Total surface charge curves for Aerosil 200:Aeroxide AluC mixtures at various 
particle ratios and solution pHs. 


