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Abstract 

  Reservoir permeability heterogeneity with high permeability zones can create 

many problems in petroleum reservoirs such as lost circulation of drilling fluids and 

high water production in hydrocarbon producing wells. These problems cause high cost 

to the oil and gas industry. Thus, the conditions leading to plugging of the high 

permeability zones during the treatment and conditioning of high permeability porous 

formations by suspended gel particles and silica flour particle-gel systems were studied 

and useful empirical correlations, dimensionless correlations, and charts were 

developed which can be used for effective and successful design of formation-plugging 

treatment. 

              First, conditioning and plugging of high permeability formations and the 

resulting permeability impairment occurring during injection of suspensions of 

deformable gel particles are investigated experimentally to treat reservoir permeability 

heterogeneity which can  prevent lost circulation of drilling fluids. Appropriate 

dimensionless groups are used to develop several empirical correlations of the 

experimental data, which can assist in choosing suitable gel-particle suspensions and 

proper conditions required for effective near-wellbore-formation treatment.  

               Second, the plugging and permeability impairment processes involved in the 

treatment and conditioning of high permeability porous formations is investigated at 

various temperatures by flowing a suspension of gel particles through unconsolidated 

proppant packs. The effective mechanisms of the consecutive plugging and unplugging 

processes occurring during the flow of gel particles suspension through the proppant 

pack are identified and the best-estimate values of their rate coefficients are determined. 
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Various empirical correlations of practical importance developed in this work can be 

used for effective design of the suspended gel particles treatment in highly permeable 

near-wellbore formations. These correlations can predict the effect of temperature on 

conditioning of the high permeability formations by injection of suspensions of gel 

particles. 

               Third, analysis and interpretation of experimental data of laboratory tests of 

porous formation treatment by gel particles conducted at different gel particles 

suspension and application conditions are presented based on the dimensional analysis 

method. The measured permeability reduction caused by gel particles suspension 

injection into sand packs is correlated successfully by using the dimensionless groups 

developed from the relevant variables of sand packs, gel particles suspensions, and 

application operation conditions. Dimensionless correlations are developed from the 

dimensionless groups which can assist in evaluating the treatment of highly permeable  

near-wellbore formations by suspension of gel particles under varying application 

conditions. 

               Fourth, the performance of several particle-gel systems is investigated for 

near-wellbore formation treatment to prevent or control water production in 

waterflooded mature oil fields. Effects of particulate concentration, leak-off, and 

threshold-pressure are investigated by the laboratory fluid loss tests conducted at 

constant pressure. Useful empirical correlations and charts for the fluid loss, pressure 

initiation for flow, and critical silica flour concentration are developed for practical 

applications which can assist in choosing suitable particle-gel systems for effective 

near-wellbore-formation treatment. A methodology using these correlations and charts 
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is presented for design of optimal conformance control treatments for effective 

mitigation of water production in waterflooded mature oil fields. 

                   Fifth, analysis and interpretation of experimental data of laboratory tests of 

several particle- gel systems and different application conditions are presented based on 

empirical correlations. The rate constant of filtrate and spurt loss volume are determined 

and correlated at different silica flour concentrations, sand sizes, and pore diameters of 

filter discs. Exponential relationship is used to correlate the experimental filtrate volume 

during  the leak off tests at different sand sizes, pore diameters of filter discs, and silica 

flour concentrations. The present empirical correlations can predict the evolving filtrate 

volume of particle-gel system under  varying conditions. The proposed empirical 

correlations can assist in effective design of particle-gel systems used for treatment of 

high-permeability near-wellbore formations for avoiding and mitigation of water 

production in waterflooded mature oil fields.  

                   Sixth, treatment design for near-wellbore field application is demonstrated 

using the empirical correlations that developed by this study. Two synthetic field cases, 

involving the drilling of an oil well and producing from an oil well, are studied for 

treatment design. The treatment fluid properties and the conditioning and treatment of 

high permeability near-wellbore formation are determined.  
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Chapter 1: Introduction 

 

         The high permeability zones of the  heterogeneous   petroleum reservoirs can 

cause many problems to the oil and gas industry such as lost circulation of drilling 

fluids and high water production in hydrocarbon producing wells. Injection of 

suspension of deformable gel particles and silica flour particle-gel systems as methods 

of near-wellbore formation treatment is considered in the present study. The goal of the 

present study is to determine the effects of various factors that participate in plugging of 

high permeability zones during the treatment and conditioning of high permeability 

porous formations by suspended gel particles and silica flour particle-gel systems and to 

develop empirical correlations, dimensionless correlations, and charts which can assist 

in choosing suitable conditions for effective near-wellbore formation treatment.      

 

1.1  Near-Wellbore Formation Treatment  

              The lost circulation of drilling fluids during drilling operations and excessive 

water production in oil producing fields are undesirable problems because of high cost 

to the oil industry. These problems are caused by reservoir heterogeneity in high 

permeability zones with large and highly connective pores, open fractures, and worm 

holes. Therefore,  near-wellbore formation treatment by injection of suspensions of 

deformable gel particles and silica flour particle-gel system is explored as a method of 

preferentially plugging  the large  pores, thus  reducing  the  undesirable  high formation 

permeability and handling of reservoir permeability heterogeneity to prevent lost 

circulation of drilling fluids and control  water production in  mature waterflooded oil 
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fields containing highly permeable zones. The gel particles suspension and silica flour 

particle-gel system are insensitive to lithology. Thus, these can be applied in sandstone, 

carbonate, and shale formations needing a near well-bore treatment.  

                 Fig. 1.1 shows a schematic of the various zones and the gel particles 

suspension and silica flour particle-gel system applications in the near- wellbore 

formation. Study of the performance of gel particles during the injection into the porous 

media and the factors affecting the gel particles plugging mechanisms are important 

issues to consider for successful applications for this technology. 

 

 

 

Fig. 1.1: Schematic of various zones and the gel particles suspension and silica    

               flour particle-gel system applications in the near- wellbore formation 

                                

 

Gel Particles Suspension or 

Particle-Gel System  

High Permeability Zone High Permeability Zone 
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1.2  Objectives of the Study 

The primary objectives of this study are several fold described as follows. 

1.2.1 Experimental approaches 

- Investigate the conditions leading to plugging of highly permeable formations 

by studying the permeability impairment of porous media during flow of a 

suspension of deformable gel particles and by studying the pressure required 

to initiate flow after the silica flour particle-gel process. 

- Describe the relevant processes and mechanisms of pore plugging by gel 

particle suspensions and silica flour particle-gel system at different operation 

conditions. 

- Describe the effect of the variation in gel particle and silica flour 

concentrations, flow rates, gel particle diameter, ratio of gel particle sizes-to-

pore-throat diameter, pore space of the permeable filter disc, and sand sizes 

on the plugging conditions of the high-permeability formations. 

- Determine the thermal effect on treatment of high permeability formations 

and the relevant processes and mechanisms of pore plugging by a suspension 

of deformable gel particles and silica flour particle-gel system. 

- Evaluate the near well-bore treatment of high permeability formations by gel 

particles suspension using dimensional analysis. 

1.2.2 Data analysis approaches 

- Determine and describe the relevant dimensionless groups of gel particles 

application processes at different operation conditions and develop 

dimensionless    correlations    from    these   dimensionless   groups   for   the  
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- permeability reduction by gel particles injection and investigate the functional 

trends of these correlations to assist in scaling from laboratory to field 

conditions.  

- Develop empirical correlations and charts from the experimental data of the 

gel particles process and silica flour particle-gel system for the suspended gel 

particle size distributions before and after flow, differential pressure build-up 

across porous media, permeability reduction of porous media, resistance 

factor against suspended flow, fluid loss, pressure required to initiate flow, 

and critical silica flour concentration. 

- Investigate the permeability-impairment trapping mechanisms of gel particles 

by means of the diagnostic equations of Wojtanowicz et al. (1987).  

- Apply a Vogel-Tammann-Fulcher (VTF) - type equation to develop empirical 

correlations for the viscosity, differential pressure build-up across porous 

media, permeability reduction of porous media, resistance factor against the 

suspended gel particles flow, fluid loss and pressure required to initiate flow 

of the silica flour particle-gel system from the experimental data involving the 

temperature effects. 

- Correlate the thermal effects on the sequential plugging and unplugging 

events during the injection of gel particles suspension into porous media.  

 

1.3  Description of Various Chapters 
 

              Chapter  2  presents  a  literature  review  of   the  experimental  studies  of   the  
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operation conditions involving the  particulate processes which lead to plugging in the 

pores of porous media. A literature review of the mathematical and numerical models of 

the particulate processes of porous formations is also presented. 

Chapter 3 describes the factors affecting the near-wellbore formation treatment 

by gel particles such as  gel particle deformation and break-up, gel particle coagulation 

and detachment, carrier fluid properties, suspension viscosity, gel particle diameter, 

suspension concentration, porous media, and operation conditions which can  affect  the  

plugging of  pores and  thus the conditioning of the high permeability formations. 

              Chapter 4 presents the experimental studies undertaken to investigate the 

conditions favorable for plugging in highly permeable formations by gel particle 

suspensions and silica flour particle-gel systems. The experimental flow apparatus used 

at isothermal and thermal conditions, the experimental testing procedures, gel particle 

suspension preparation, silica flour particle-gel system preparation, and the 

measurements of viscosity, pore throat size, and particle gel size are described in this 

chapter. 

              Chapter 5 presents the conditioning and plugging of high permeability 

formations by suspension of deformable gel particles. The Effect of concentration, flow 

rate, gel-particle sizes of suspensions, and particle diameter to pore-throat size on the 

prevailing pore- plugging processes is inferred by flow tests conducted with 3800-md 

16- to 20-mesh sandpacks. Prevailing particle-entrapment and –permeability 

impairment  mechanisms are identified under various conditions by means of specially 

formulated diagnostic equations and the results of data analysis for pore plugging are 

described. This reveals valuable insights and information about the functional trends of  
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sandpack plugging by gel-particle suspensions, which can help in successful design and 

mitigation of formation-plugging treatment in the field. Empirical correlations of the 

experimental data are developed which can assist in choosing suitable operation 

conditions for successful near-wellbore formation treatment.  

             Chapter 6 studied the thermal effects on near-wellbore formation treatment by 

suspension of gel particles. Gel particles treatment applications in reservoirs are subject 

to high temperature conditions significantly different than the above-mentioned 

laboratory test conditions and hence the characteristics of the in situ gel particles 

plugging mechanisms are affected by the prevailing temperature conditions, as 

demonstrated in the present studies. Consequently, an experimental study was 

undertaken to gain an understanding of the effect of temperature on the transient 

behavior of gel particles plugging in high permeability porous media for purposes of 

treating the reservoir heterogeneity to prevent the loss circulation and control  water 

production.  

               The permeability reduction and resistance factor are inferred by measurements 

of the pressure differentials with time across the proppant pack. Temperature effect is 

observed to be an important factor in suspended gel treatment of high permeability 

near-wellbore zones because temperature affects the gel properties and placement rate 

processes significantly. The effect of temperature on viscosity, differential pressure,  

permeability reduction, and resistance factor are investigated and useful correlations are 

developed from the experimental data by using the Vogel-Tammann-Fulcher (VTF)-

type equations. Mechanisms of plugging and unplugging phenomena are investigated 

during the near-wellbore formation treatment by gel particles. The rate constants of 
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plugging and unplugging processes are determined at various temperatures and 

correlated by using the Vogel-Tammann-Fulcher (VTF)-type equations. 

              Chapter 7 presents the dimensionless analysis for interpretation of near-

wellbore formation treatment by gel particles at different application conditions. Several 

dimensionless groups are developed from the relevant variables of sand packs, gel 

particles suspensions, and operation conditions. The dimensionless correlations are 

shown to assist in quantifying the effect of the particle-diameter to pore-throat size ratio 

on permeability reduction, evaluating the treatment of highly permeable and weak near 

well-bore formations by gel particles, and extrapolating from laboratory to field 

conditions. The present dimensionless correlations can predict the evolving 

permeability reduction under the varying conditions of gel particles suspension injection 

processes. The proposed dimensionless correlations can assist in effective design and 

mitigation of treatment of high-permeability near-wellbore formations by gel particles 

for avoiding drilling-fluids lost circulation. 

              Chapter 8 studied  the performance of silica flour particle-gel system for near-

wellbore formation treatment. Effects of particle concentration,  leak off, and threshold 

pressure gradient on controlling water production in waterflooded mature oil fields are 

investigated. The filtrate volume is measured to determine the leak off under different 

treatment and formation conditions. Effects of particle concentration, pore space of the 

permeable filter disk, sand sizes and temperature on the leak off and the pressure 

required to initiate flow are measured by adding different amounts of silica flour to the 

gel systems and using permeable filter disks with different size pore spaces and sand of 

different sizes at different temperatures. The sand represents a gravel pack and the filter 
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disc represents the formation. The threshold pressure gradients which must be overcome  

to initiate water flow after the fluid loss tests were determined in each case. The 

experimental results show that the filtrate loss decreases with increasing silica flour 

concentration and increases with increases in the pore size of the permeable filter disk, 

the sand mesh size, and temperature. The threshold pressure gradient increases with 

increase in the silica flour concentration and decreases with increase in the sand mesh 

size, with increase in the pore size of the permeable filter disk, and with increase in 

temperature. Correlations and charts for the fluid loss, the pressure required to initiate 

flow, and the critical silica flour concentration are developed for practical applications. 

              Chapter 9 presents filtration analysis of the leak off tests of the silica flour 

particle-gel system. Exponential relationship is used to correlate the filtrate time with 

the filtrate volume of the silica flour particle-gel system. Empirical correlations of the 

filtrate volume were developed at different sand sizes, pore diameters of filter discs, and 

silica flour concentrations. The empirical correlations can assist in successful design of 

silica flour particle-gel system used for near-wellbore formation treatment for 

mitigation of water production in waterflooded muture oil fields. 

            The filtrate volumes of the silica flour particle-gel system during the fluid loss 

tests are modeled and represented as straight line plots at different silica flour 

concentrations, pore diameters filter discs, and sand sizes. The rate constants of filtrate 

and the spurt loss volumes are determined from the straight line plots of relevant 

equations and correlated by using the exponential relationship at different sand sizes 

and pore diameters filter discs. The empirical correlations of the rate constant of filtrate 

and spurt loss volume can be used to predict the filtrate volume at any conditions.  
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           Chapter 10 demonstrated the importance of the empirical correlations, which 

developed in this study, in the treatment design of the near-wellbore formation. 

Synthetic oil well under drilling operations, which have fluid loss problem, is studied. 

Gel-particles suspension is used to treat the near-wellbore formation and the developed 

empirical correlations are used to determine the gel-particle properties and the 

modification of the near-wellbore formation. Synthetic oil producing well is studied for 

high water cut problem. Silica flour particle-gel system is used to plug the perforation 

zone that produce high water. The components of the silica flour particle-gel system and 

the treatment design for the near-wellbore formation are presented using the developed 

empirical correlations. 

           Chapter 11 summarizes the accomplishments and conclusions of the present 

study. 
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Chapter 2: Literature Review 

 

                This chapter is a review of the relevant literature on the experimental and 

theoretical studies which may be applicable for the present gel-particles treatment. 

 

2.1   Review of Experimental Studies 

            Lost circulation of drilling fluids is an undesirable problem because it can 

increase the wellbore non-productive time (NPT) in drilling operations, especially in  

highly permeable formations. The flow paths causing a fluid leak-off may be of the 

natural and induced types (Wang et al. 2008). Natural lost circulation occurs when 

drilling operations penetrate formations of large and highly connective pores, classified 

as highly permeable and high-coordination-number (high degree of pore connectivity) 

porous formations. Taking proper measures for drilling of wells of various types in such 

formations without losing a substantial amount of drilling fluid is of great concern. 

Injection of gel- particle suspensions into these formations can help avoid the lost 

circulation during a drilling operation by plugging large pores,  thus  reducing the 

undesirable high formation permeability.  

                  Gruesbeck  and Collins (1982), Civan  and  Nguyen  (2005), and  Civan  and  

 

Rasmussen (2005) have shown  that the pathways in porous media can be classified into  

 

two  groups as  being the  plugging and  nonplugging  pathways, relative to  the  particle 

 

 size. Hence,  particle  retention  in plugging  pathways  can  occur  by  bridging  across 

   

porethroats,   and    particle    retention   in    nonplugging    pathways    can   occur   by   

 

deposition  over the  pore surface. The first  mechanism  leads to a severe  permeability  
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reduction, and the  latter  usually causes a negligible permeability reduction. Therefore,  

 

particles   with   sizes   comparable  to   pore-throat   sizes   can  accomplish   effective  

 

permeability impairment in  high-permeability  formations, as demonstrated  by Civan  

 

(2000, 2007, 2010), Iscan and Civan (2006), and Iscan et al. (2009). 

 

                     In many cases, lost circulation problems can be circumvented conveniently 

by using suitable lost circulation materials (LCM) as additives in drilling fluids, 

including certain types of granular and fibrous materials, calcined petroleum coke, 

calcium carbonate, and gelling polymers (Messenger 1981). Several researchers (Bai et 

al. 2007; Chaveteau et al. 2000, 2001, 2003; Coste et al. 2000; Feng et al. 2003) 

investigated the use of gel particles for plugging of pores for circumventing the 

problems associated with the high permeability of “thief zones” by conditioning and 

preparing such unfavorable formations for drilling operations.     

                Polymer-crosslinker mixtures, frequently referred to as gelants, are commonly 

applied in high-permeability reservoirs for controlling of the fluid-loss during drilling 

operations, improving the conformance, and reducing the water or gas channeling. 

Injection of gels into formations containing fractures or channels (high permeability) 

has been studied extensively (Fielding et al. 1994; Lane and Seright 2000; Sydansk and 

Southwell 2000; Wang et al. 2001). Mostly the preformed gels instead of in-situ formed 

gels are preferred to avoid the difficulties associated with controlling of the gelation 

time and gel compositions during gel placement in porous media. Seright (1997, 2000) 

studied the performance of gel behavior and placement in fractured formations and 

determined that preformed gel can penetrate deeper into a fracture than in-situ formed 

gel and  causes  much less gel damage in oil-bearing formations or matrix. Chaveteau et 
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al. (2000, 2001, and 2003) investigated the performance of preformed soft and size-

controlled microgel particles which can crosslink by the shear effect which are 

insensitive to the physico-chemical conditions of reservoir formations. Preformed 

microgels were found to achieve an in-depth permeability treatment by adsorbing over 

the pore surface.         

               Coste et al. (2000) examined the effectiveness of the preformed gel particles 

(PPG) prepared by using 15wt% acrylamide monomer in a 400 mg/L crosslinker. They 

crushed and then sieved dry gels to obtain powdered gel particles which can swell 

several folds to their original size in water to form a suspension. Preformed gel particles 

effectively resist the high salinity and high temperature reservoir conditions. They 

conducted glass micro-models and core experiments using the PPG suspensions and 

observed the three distinct processes, namely deformation, shrinking, and breaking, 

which occur during a big PG particle passing through a pore throat. They demonstrated 

that weaker-strength gels penetrate deeper into porous media.                                                                                                  

               Bai et al. (2007) investigated the movement of the preformed particle gel 

(PPG) through porous media by visual micro-model experiments. They observed that 

the transport of PPG through porous media can occur in six different ways: direct pass 

and adsorption (for particle sizes smaller than the pore-throat size), deform and pass, 

snap-off and pass, shrink and pass, and entrap (for particle sizes greater than the pore-

throat size). Three ways of the PPG motion through porous media were determined 

from the macroscopic scale (coreflooding) experiments: pass, break-into-pieces and 

pass, and plugging or jamming. The occurrence of these gel transport patterns depends 

on  the  pressure  change  over  time, injected  to produced suspension particle size ratio, 
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and residual resistance factor of porous formation. PG particle can move through porous 

media only when the driving pressure gradient exceeds the threshold pressure gradient 

(Prada et al. 2000) which in turn depends on the particle-to-pore throat size ratio (Civan 

2000, Iscan and Civan 2006) and the particle strength.  

            Zhang and Bai (2010) studied the factors  affecting PPG injectivity and plugging  

 

efficiency during  transport of PPG through  open fractures. They observed that the PPG  

 

injection  pressure  increases with  injection  flow rates  and  decreases with  the fracture  

 

width   and   the   resistance   factor   decreases   when   the   flow  rate   increases. They 

 

correlated  the  injection   pressure   and   resistance   factor   vs.   flow   rate   by  use of 

 

empirical power-law equations.        

 

                   Zheng et al. (2012) developed a fuzzy ball working fluid with pocket air 

inside for plugging of fluid-losing channels in depleted reservoirs. The fuzzy ball 

working fluids of density 0.80, 0.85, 0.90, and 0.95 g/cm³  were prepared by mixing 100 

mL of water with a predetermined weight of sodium carbonates, caustic soda, 

nucleating agent, film-forming agent, layering agent, and spotting agent. The 

rheological properties of the fuzzy ball working fluid at the room temperature and at 

HPHT were measured by using an adequate rheometer. The observed relationship 

between the shear-rate and shear-stress indicate a Bingham fluid. It is a plastic fluid 

having high yield points and plastic viscosity ratios. They determined that the fuzzy ball 

working fluid can be used for cuttings removal in the oil and gas wells as normal 

working fluid. They studied the microstructure of the fuzzy ball working fluid by using 

a microscope by enlarging 1000-2000 times which show a size of 15-150 µm and 

thickness  of  3-10  µm. The   density  of  the  fuzzy  ball   working   fluid  decreases  by 
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temperature and increases by pressure at constant  temperature  because  the  fuzzy  ball  

contains  air. Their  plugging tests using static sand filling, static core, and dynamic core 

proved that the fuzzy ball working fluid can plug effectively the losing channels in the 

lost circulation formations. 

             Wang et al. (2012) examined pre-gelled particle (PPG) flow through single and 

double sand packs to determine the flow behavior in porous media, analyze the 

mechanism of profile control, and investigate the effect of the surface and plugging 

depositions on permeability reduction. Sand pack of 30 cm long and 2.5 cm diameter 

was filled with 20-mesh unconsolidated sand and the porosity and permeability were 

estimated at 0.32 and 6.53 µm², respectively. During the injection process, the pressure 

of the sand pack is recorded by a data acquisition system at four pressure taps located at 

the inlet,  the outlet, and the two locations in between them. The effluent sample is 

collected at a cylinder and tested by Malvern Mastersize 2000 to obtain the particle size 

distribution. The particle shape is approximately sphere and the particle expanded in 

volume because of the water swelling. PPG suspension of 20,000 parts per million 

(ppm) concentration is injected at 5 mL/min flow rate into the sand pack and the 

pressure at the four equally-spaced different points is recorded. They proved that there 

is a critical pressure below which the particles will deposit at the pore-throat and above 

which the particles can pass through the pore-throat without plugging. Double parallel 

sand packs with a permeability ratio 4:1 were used to study the fractional flow. They 

show that for the low permeability sand pack, the particles will accumulate at the inlet 

side of the pore throats and form new pores causing a small decrease in the 

permeability. For  the  high  permeability  sand pack, the PPG suspension initially flows 
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into the high permeability sand pack leading to a pressure increase because the 

occurring deposition causes deformation and pushing of the particle to move ahead and 

decreases the permeability and therefore the fractional flow. For the surface deposition 

experiments, they used particles of diameters smaller than the pore-throat size and show 

that for low injection concentration, the bridging pore-blocking did not occur and only 

the pore surface deposition happened. For the higher injection velocity, the amount of 

particle deposition at the surface decreased and particles concentration at the outlet 

increased, because the drag force causes mobilization of particles at the high injection 

velocity (Pu 2008; Zamani and Maini 2009). For the plugging deposition experiments, 

they used particles of diameter greater than the pore-throat size to cause particle 

deposition or plugging at the throat. They showed that the permeability variation 

happened by retention of the PPG because the deposition of particles on the surface 

causes a porosity decrease and hence permeability decrease, and the plugging 

deposition causes a decrease in the quantity of filtering channels which lead to 

permeability reduction. 

           Tran et al. (2010a) studied the formation damage caused by the suspended 

particles of the drilling fluid by using the Nuclear Magnetic Resonance (NMR) and X- 

ray (CT) methods. Water-based drilling fluid of suspended barite particles with different 

diameters and concentrations injected into Berea core samples saturated with 3% KCl 

brine and the permeability reduction was measured. The pore size distribution and the 

porosity of the core samples were measured before and after porous media damage by 

using the NMR technique and showed that the porosity reduced due to particle 

capturing  and  blocking  in  the  pores. By  the  injection  process, the  small pores were 
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blocked and the large interconnected pores provided the flowing path. Thus, when the 

capture probability decreased, then the porosity reduction decreased. The particle size 

distribution of the original and effluent fluids was measured by using the laser 

diffraction particle size distribution analysis (LDPSDA) technique and showed that the 

large particles were captured inside the pores while the small particles were remained in 

the flowing fluid. The X- ray computed tomography (CT) method was used to estimate 

the porosity of the core samples. Tran et al. proved that the particle capture probability 

and permeability reduction increase by increase in the particle size and concentration. 

They developed a model of fines migration and deposition in porous media from the 

empirical parameters determined from the injection processes.             

            Tran et al. (2010b) studied the conditions leading to plugging of natural 

fractures and slotted liners by suspended particles of different diameters and 

concentrations. The carrier fluid consisted from water and Diutan with concentration of 

1.86% and viscosity of 65 cp to avoid particle settling. The suspended particles in the 

carrier fluid are the glass beads of 2.54 g/cm³ density and the ceramic proppant of 2.72 

g/cm³ density. To study the plugging conditions, the Diutan particles suspension was 

injected into different slot geometries and the weight of the effluent during the injection 

process was measured. The experimental data were correlated by using the slot width-

to-particle size ratio and the particle volume fraction Reynold number dimensionless 

groups. They developed exponential curve from the empirical dimensionless groups and 

the region below the curve is shown to represent the plugging conditions. They showed 

that the plugging conditions were affected essentially by the width and length of the 

fracture  opening, and  the  particle  size  and  concentration. They  studied also the time 
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required for plugging of fractures and slots at different particle concentrations and 

different shape factors, and developed empirical correlations of dimensionless plugging 

time versus particle volume fraction. 

              Feng et al.  (2013)  studied   experimentally   the   gel  particles  migration  and 

deposition in porous media after polymer flooding. The shear breaking, synergy with 

remaining polymer, deformation migration, and swelling of gel particles were examined 

after polymer flooding. For swelling process of gel particles in water, the particle 

diameter was measured at different times by laser particle size analyzers which 

indicated that the aging time of gel particle swelling is very short. For synergy with 

remaining polymer, they demonstrated that the gel particle diameter increases by the 

polymer concentration because the gel particles adsorbed the remaining polymer in 

porous media. They proved that because of the shearing breaking of the gel particles 

when migration through porous media, the diameters of gel particles decrease quickly to 

ultimate value. To demonstrate the deformation and migration of gel particles in porous 

media, they studied the injection pressure during the gel particles injection process in 

cores. They  showed  that oscillation phenomenon happened because of the deformation  

during the migration of the gel particles.  

                Muhammed et al. (2014) evaluated experimentally the strength of gel 

particles by using a simple apparatus which consists of a hand pump and a specially 

designed piston accumulator with screen plate having multiple holes. The threshold 

pressure gradient was determined during the experiments as the minimum pressure 

gradient required for the gel particles to pass through the screen holes. The same 

apparatus  was  also  used to measure the apparent viscosity. They showed that there is a 
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significant effect of the hole size and hole density per screen on the threshold pressure 

gradient but they do not effect the apparent viscosity. They observed that the threshold 

pressure  gradient increased when the brine salinity increased. The gel particles elastic 

modulus was measured using a rheometer and correlated with the threshold pressure 

gradient. Two models were developed based on the experimental data. First model 

represents the correlation of the threshold pressure gradient with the gel strength and the 

other represents the correlation of the apparent viscosity with the shear rate. 

             Almohsin et al. (2014) studied the effects of the nanogel particle concentration, 

flow rate, particle deformability, and rock permeability on the resistance factor and the 

particle propagation. Sandstone cores of permeabilities 42 to 1038 mD were used in the 

core flooding tests  of deformable nanoparticles of diameters 100 to 285 nm. The 

experimental results show that the resistance factor increased when the nanogel 

particles concentration increased and the resistance factor decreased when the rock 

permeability and flow velocity increased. For the same dry nanoparticles size, the 

resistance factor decreased when the swollen particles size increased because the larger 

particle is weaker than the smaller particle. They showed that the nanogel adsorption 

layer thickness increased when the nanoparticle concentration and decreased with the 

shear rate.  

             A summary of the findings by the above review and evaluation of the previous 

experimental studies is presented in Table 2-1. 
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TABLE 2-1: SUMMARY OF THE EXPERIMENTAL STUDIES 

    Investigators                  Operation Conditions         Porous Media         Results and Analysis                    Comments 

  Zhang and Bai  

  (2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                 

 

 

 

 

 

 

                                   - PPG concentration:        - Fracture length:        - The Injection pressure         - The resistance factor 

                                   0.903, 1.597, 2.731, and    55 cm.                         increased by the flow             is the ratio of the gel  

                                    2.961 %.                             - Fracture height:       rate and the brine conce-       particle injection  

                                   -Flow rates: 5,10, 15, 25   10 cm.                          ntration and decreased         pressure drop to the  

                                    , and 30 mL/min.               – Fracture width:        by the fracture width.          particle-free water   

                                   -Brine concentration:        0.55, 1.0, and 1.5        - The resistance factor             injection pressure  

                                    0.05, 0.25, 1, and 10%.    cm.                               increased by the fracture       drop. 

                                                                                                                  width and the brine con-      - The PPG injectivity 

                                                                                                                  centration and decreased      is the ratio of the flow  

                                                                                                                  by the flow rate.                     rate to the pressure 

                                                                                                                  -The PPG injectivity              difference. 

                                                                                                                  increased by the flow rate 

                                                                                                                  and the fracture width 

                                                                                                                  and decreased by the 

                                                                                                                  brine concentration. 

Zheng et al. (2012)  - Density of the fuzzy         - Permeability of the   - The fuzzy ball working      -The fuzzy ball working 

                                    ball working fluid: 0.80,   sand packs are 15-       fluid can be used for           fluid composite from  

                                    0.85, 0.90, and 0.95          20, 40-60, and 140-     cuttings removal in the         water, sodium carbo- 

                                    g/cm³.                                300 µm² for 80-100,   oil and gas wells and can     nates, caustic soda, 

                                   - Size of the fuzzy ball is  40-60, and 20-40         plug effectively the losing   nucleating agent, film- 

                                  15-150 µm and thickness  mesh, respectively.       channels in the lost              forming agent, layering 

                                   is 3-10 µm.                        - Range of permea-     circulation formations.         agent, and spotting 

                                 - PH of the fuzzy ball          belities of the cores                                                   agent and the fuzzy ball 

                                 working fluid is 9.               are 2.36-244.2*10¯³                                                  contains air. 

                                 - Maximum injection           µm². 

                                pressure of the sand 

                                packs and the cores are 

                               6 and 20 µPa, respecti- 

                        vely. 

 

 

 

Wang et al. (2012)    - PPG concentration is    -The sand pack          -Below the 

critical pressu-  - At high injection                                                                                                  

                                       20,000 ppm.                   length and diameter re particles 
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Tran et al. (2010a)    - The core samples are   -Berea core samples   – The porosities of the       - External filter cake  

                                     saturated with 3% KCl.   of 6 in long and 1 in  core samples reduced fr-   observed because of 

                                     - Barite particles of          diameter are used.   om 0.209 to 0.176 and fr-  the pore-throat brid- 

                                     diameter range 0.5-15   - The permeabilities  om 0.175 to 0.169 after 5  ging mechanism. 

                                     µm are added to water- of the core samples  hrs flooding.                         - The pore deposition 

                                     based drilling muds.         are 1240 and 265    - For 5.4 µm mean diame-  and pore filling are  

                                     - The flow rate for per-   mD, the porosities    ter of particles injected,     the dominant mecha- 

                                      meability impairment    are 0.206 and 0.175 the large particles are         nisms. 

                                     experiments is 90 cm³/  , and the mean pore captured inside the pores 

                                      hr and for porosity va-   diameters are 26.1   while the smaller are flu-  

                                     riation experiments is     and 15.7 µm.             shed out. 

                                     36 cm³/hr. 

Tran et al. (2010b)   - Geovis XT fluid of 1.86  - Transparent-plastic – No plug is observed for  - β΄ is a modified slot 

                                     % Diutan concentration  testing cell of 2 ft     β΄˃2 and the plug happe-    size-to-particle size 

                                     and 65 cp apparent vis-  long and 1.5 in ID.     ned for 0.795˂β΄˂2.           ratio. 

                                     cosity at ambient tem-   - For glass beads su- - No plug is observed up 

                                     perature 75 °F is used.    spended, slots of      to concentration of 0.25  

                                    - The suspended particl-  0.32 cm width and   by volume fraction and  

                                     es are glass beads of       different lengths of   the plug happened at  

                                     2.54 g/cm³ density and  0.64, 1.28, and 2.56   0.30 concentration. 

                                     0.10, 0.12, 0.15, 0.20,     are used. 

                                     and 0.25 cm diameters  - For ceramic propp- 

                                     and ceramic proppants  ant suspended, slots 

                                     of 2.72 g/cm³ density     of 0.16 cm width an- 

                                     and 20/40, 30/50, and   d different lengths  

                                     30/70 mesh.                     of 0.64, 1.28, and 

                                                                                 2.58 cm are used. 

 

 

 

  Investigators          Operation Conditions         Porous Media           Results and Analysis                Comments 
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Feng et al. (2013)     - Bicarbonate-sodium      - Artificial quartz        - The agin time of gel pa-  - The oscillation phe- 

                                     type water of salinity      sandstone cores of     rticle swelling is about      nomenon of the pre- 

                                    2841.2 mg/L is used.         porosities 0.20, 0.21  4 hr.                                      ssure is happened  

                                    - Polymer of  16-19 mil-   , and 0.24, and per-   - The gel particle diame-    because of the defo- 

                                    lion molecular weight,     meabilities 1.037,       ter increases by the pol-   rmation migration of 

                                    20% hydrolyzing degree,  3.674, and 4.409        ymer concentration.         the gel particles. 

                                    and 1000 mg/L concen-    µm² are used.            - Because of the shearing 

                                    tration is used.                                                         braking, the gel particle 

                                    - Cationic gel particles                                            diameter decreases by 

                                     with 2000 mg/L conce-                                         about 27.3%. 

                                 nitration are used.              –The threshold pressure 

                                - The median gel partic-     gradient is 16.7 µPa/m. 

                                 le diameter is 160 µm. 

                                 - The temperature is 

                                   45 °C. 

                                 - The injection pressure 

                                 is 2-10 µM. 

Muhammed et al.     – Medium size of the dry  - Screen plates were     - The threshold pressure   - Threshold pressure 

(2014)                        PPGs is 0.92 mm.            used as porous media    were 84.1 Kpa of 122       is the minimum  

                                  - Brine (NaCl) concentra- of  40 holes/plate and  holes/plate and 372.3 kPa  pressure required of 

                                  tion are (0.05, 0.1, 0.25,    and 122 holes/plate.     of 40 holes/plate for         the gel particle to  

                                  0.5, 1.0, and 5.0 wt%)       – The screen plates      PPGs swollen in water.     pass through hole. 

                                  - Flow rates are 0.1,0.2,    have hole sizes (0.5, 1 – The stabilized pressure   

                                  0.5, 0.75, 1.0, 1.5, 2.5, 3,  , 1.5, and 5.0 mm).       was 300 kPa for 0.5 mm    

                                  5.0, 7.5, and 10 ml/min.                                         hole and PPGs swollen in  

                                                                                                                 5 wt% and decreased for 

                                                                                                                  1.5 mm hole size. 

                                                                                                                 - Threshold pressure  

                                                                                                                  increased by salinity. 

 

Investigators           Operation Conditions         Porous Media              Results and Analysis        Comments 
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Investigators           Operation Conditions         Porous Media              Results and Analysis        Comments 

 Coste et al.         – PPG consists from 15%   - Glass plates with pore – Three mechanisms of   - The PPG particles 

 (2000)                acrylamide monomer and    network saturated with particles passing were      can be used for 

                            400 mg/L crosslinker.           water were used.         investigated: deformation water control 

      - Concentration of the sus-  - Sand-packed columns , shrinking, and breaking. applications. 

       Pension was 1000 mg/L.    at residual oil saturation – Weaker-strength gels 

      - Flow rate was 2 ml/min.    with 30 cm long and     penetrate deeper into  

                                                   2.2 cm diameter filled   porous media. 

                                                   with sand of 40 to 120  

                                                    mesh were used. 

 Bai et al. (2007) - PPG is a kind of xerogel   - Two etached glass      - PPG transport ways       – PPG particle moves  

                            that can swell by water.      micromodels were used through micromodels are when the driving  

      - For sand-packed experim- : irregular and regular   : direct pass, adsorption,  pressure gradient is  

      ents, 1000 mg/L particle su- pore models.                 deform and pass, snap-    greater than the thre- 

       spension was injected at 1   - sand- packed core      off and pass, shrink and   shold pressure 

       cm³/hr flow rate and 3 MPa model of 30 cm long    pass, and entrap.              gradient. 

       pressure.                              and 2.2 diameter was    - PPG motion through  

      - 5 cm³ of PPG suspension   used.                             sand packed are: pass, 

       with a concentration of      - The sandpacked filled break and pass, and   

       0.1% was injected into the  with quartz sands of      plugging. 

       micromodels.                        20 to 100 meshes 

       - Average particle diameter size. 

        is 150 µm. 

       - Pore-throat diameters 

       varies from 90 µm to 250 

        µm. 
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 Investigators           Operation Conditions         Porous Media              Results and Analysis        Comments 

 Wang et al.         – Concentration of PPG     - Sand pack of 30 cm    – There is a critical pres- - For high velocity, 

 (2012)                 suspension is 20,000 ppm.   long and 2.5 cm diam-   sure below which the     the drag force causes 

                           - Injection flow rate is 5 ml eter filled with 20 mesh particles deposit at the     mobilization of the 

                            /min.                                     sand was used with       pore-throat and above     deposited particles. 

      - Stable injection pressure    0.32 porosity and 6.53  which the particles pass   

      is 0.24 MPa.                          µm² permeability.        through the pore-through. 

                                                   - Double parallel sand   - At high injection velo- 

                                                   packs with permeability city, the particle depos- 

                                                   ratio 4:1 were used to    ition decreases. 

                                                   study the fractional flow 

 Almohsin et al.  – The nanogel was an acryl- Berea sandstone cores – The resistance factor     - The nanoparticles  

 (2014)                amide-based crosslinked      of 41.2 to 555.4 mD     increased by the particles adsorption layer thick- 

                            polymer.                              permeability and Miss- concentration.                  ness decreased by the 

      - 1 wt% of potassium chlor- ouri sandstone cores     - The resistance factor     shear rate. 

       ide (KCl) was used to prep- of 1038 mD were used decreased by the rock     

       are the nanoparticle solut-   - The cores of 6.95 to  permeability and the flow  

       ions.                                     7.1 cm length and 2.5   velocity. 

       - Average particle diameter to 2.53 diameter.          – The resistance factor 

       was 158 µm.                                                             decreased with the swo- 

       - Injection flow rate is 0.25                                       llen particle size increas- 

        to 5 ml/min.                                                                ed. 

       - The injection pressure is 

       2379.21 psi at 1.75 ml/min 

       flow rate. 
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2.2  Review of Theoretical Studies 

             Zeinijahromi et al. (2012) derived the basic equations required for detachment 

and mobilization of fine particles by the drag and lifting forces applied on the particles 

during flow through porous media, and the size exclusion of the pores which causes 

formation permeability decrease and hence the well productivity decrease. They 

developed analytical models for steady-state well production, velocity, and particles 

suspension concentration near the wellbore. The reservoir fine particles production and 

accumulation cause a skin factor growth by time. The productivity index and the skin 

factor versus time are studied by the analytical model showing that the skin factor 

growth coefficient increases by the filtration coefficient. The analytical model assumes 

small retention concentration. Therefore, the model can be applied to predict the well 

behavior only at the early stage of the well clogging process and cannot be applied at 

the late stages of well clogging. The analytical modeling results show good agreement 

of matching with the field producing data. 

            Goldszten (2005) developed a mathematical model to predict the volume of 

suspension flowing through a small orifice until clogging occurs. The mathematical 

model describes the clogging and choking of a single pore throat present in a container 

as a circular hole on its wall and filled with a suspension of incompressible liquid and 

spherical particles. The mathematical model assumed that the liquid is incompressible, 

the particle velocity is same as the liquid velocity, uniform flow, and the particle is 

randomly placed in the container before opening the hole to allow flow. The 

mathematical model provides an understanding of pore throat clogging in porous media 

and efficient numerical algorithm for upper and lower bounds of the effluent volume. 
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            Civan (2010) developed a practical phenomenological mathematical model 

which considered temperature variation and particle transport by dispersion and 

advection. The particle deposition and migration and the permeability impairment 

resulting from particle deposition and migration are investigated by this model. Effects 

of temperature and particle deposition on the permeability impairment of porous media 

are described by dimensionless numbers and special correlations of the relevant 

variables. The permeability impairment is affected strongly by temperature variation 

because the filter coefficient, pore-throat constriction, and porous matrix thermal 

deformation depends on temperature. The numerical simulation results obtained with 

and without considering the dispersion and temperature effects are compared to show 

the effect of temperature and dispersion on the fines deposition and migration, and the 

resulting permeability impairment. This improved model can assist in scientifically 

guided experimentation, analysis, and design of fines particles transport process through 

porous media. 

           Sato et al. (2013) numerically studied the effect of the trapping fines particles on 

formation permeability by using a three-dimensional (3D) Lattice Boltzmann method 

(LBM). They showed that the absolute permeability of porous media is reduced by 60-

90% due to fine particles trapping for the volume fraction of the fine particles to the 

pore volume of 0.15-0.29. However, the permeability reduction is not only due to fine 

particle saturation but also the fine particle size distribution. The geometrical properties 

of sand grains are digitally described by series expansion of spherical harmonics using 

computed tomography (CT) scans of real sand grains. The migrating fine particles are 

assumed spherical and the volume distributions are log-normal. The permeability 
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alteration is modeled theoretically using volume saturations and specific surface areas 

of the fine particles and the frame sands. 

           Tran et al. (2009) analyzed their experimental data and developed empirical 

correlations for perforation and pore plugging conditions and plugging time by 

suspended particles which can be help in avoiding the perforation/pore plugging in the 

field by migrating particles. The pore throat-to-particle size ratio was correlated 

satisfactorily against the particle volume fraction Reynolds number depending on the 

experimental data and using an exponential-law model. They showed that the 

exponential-law model worked well for the suspension of nylon particles of diameters 

range of 0.16-0.48 cm and of different particles size distributions and for the Carbo 

proppant suspension particles in Geovis XT fluid. They developed exponential curves, 

below which indicates the conditions leading to plugging and above which shows the 

conditions leading to non-plugging. Therefore, to avoid the plugging of the pores or the 

perforations, the value of perforation diameter to particle diameter ratio versus particle 

volume fraction Reynolds number should be located above the correlated curves. They 

correlated also the time for perforation and pore throat plugging by using exponential 

model of the particle volume fraction and demonstrated that higher the volume fraction 

of particles in the suspension, shorter the plugging time. They studied the effect of the 

particle size distribution on the plugging time and showed that the fines particles did not 

affect the plugging time but after plugging the fine particles deposited at the pore 

throats to form a bridge and worked as a membrane. 

           Feng et al. (2013) developed a numerical model to interpret their experimental 

data  which  demonstrates  the gel particles transportation after polymer flooding causes 
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permeability reduction in thief zones by retention of particles and pore volume 

reduction. The flow equations are solved implicitly to obtain the pressure and the 

saturation profiles and solved explicitly to obtain the concentration of the polymer by 

using the IMPSAT finite-difference numerical method because of its high accuracy. To 

weaken numerical dispersion, the convection-diffusion differential equation of polymer 

transport is solved by using the fourth-order Runge-Kutta method. The operator-

splitting method is used to solve the continuity equation of gel particles. The new 

numerical method is validated by the experimental and field data and show satisfactory 

results.  

           The findings of the above review and evaluation of the theoretical studies are 

summarized in Tabe 2-2. 

 

TABLE 2-2: SUMMARY OF THE THEORETICAL STUDIES 

      Investigators                                             Equations                                                                    Comments                                                                    
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- Assume small retention concentration. 

- Can be applied at the early stages of  

  well clogging. 

- Can not be applied at the late stages of 

  well clogging. 

- Results show good matching with the  

  field production data. 

- Assume incompressible liquid, particle 

  velocity equal to liquid velocity, and  

   uniform flow. 

- Clogging occurs when k(v)˃kmax. 

 

 

- k(v) is the number of particles arriving 

  almost simultaneously at the opening. 
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     Investigators                                             Equations                                                                    Comments    
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- The model considers temperature variation 

  and particle transport by dispersion and 

  advection. 

- The model shows that the permeability  

  is affected strongly by the temperature 

  variation because the porous matrix 

  thermal deformation, the filter coefficient, 

  and the pore-throat construction depend  

  on temperature. 

- The effect of the trapping fines particles  

 on the formation damage is numerically  

 studied by using a 3D LBM simulation. 

- The domain edges are approximately  

 300 µm length, each edge discretises into 

 60 lattice nodes. 

- To avoid plugging, the value of perforat- 

  ion diameter (β) versus Rep should be  

  above the correlated curve. 

- Showed that the fines particles did not 

affect the plugging time but after plugging 

deposited and worked as a membrance. 

- The IMPES method is used to solve the  

  flow equations. 

- The convection diffusion differential equ- 

 ation of polymer is descreted by using  

 fourth rank Ruge-Kutta method. 
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where U is the flow velocity, m/s; k is the absolute permeability, md; Krowi  is the oil 

relative permeability at initial water saturation, md; P is the differential pressure, kPa; q 

is the injection flow rate, cm
3
/h; µ is the viscosity, Pa.s; βa is the formation damage 

coefficient  for  attachment, dimensionless;   a  is the volumetric concentration of 

attached fines, %;  βs is the formation  damage coefficient  for  straining, dimensionless;                    

   s  is the volumetric concentration of strained fines, %;  r is the radius, µm; t is the 

time, min; λs is the filtration coefficient for size exclusion fines capture, m
-1

; cw is 

produced fines concentration, %; rw is the well radius, m; pi is the productivity index, 

dimensionless; j is the impedance, dimensionless; re is the drainage radius, m; rw is well 

radius, m; M = skin growth coefficient, dimensionless; Ct  = total amount of produced 

fines per unit well length, m
2
; λ is the ratio of volume of dashed cylinder and volume of 

a particle, dimensionless; A is the cross sectional  area of the sand pack, cm
2
;  kmax  is 

threshold number of particles for the first time, dimensionless; γ is the empirical 

material parameter, dimensionless; Ko is initial permeability, md; T is the temperature, 

°
C; Tik is the reference absolute temperature, K; Ak is the fitting constant (E/Rg), K; Tck 

is the characteristic-limit absolute temperature, K; K is the permeability, md,  Ø  is the 

porosity, dimensionless; β is the empirical parameter, dimensionless; Pq is the position 

vector for a fine particle, µm; Pf  is the position vector for a frame sand grain, µm; df  is 

the diameter of a frame sand grain, µm; dq is the diameter of a fine particle, µm; x is the 

ratio of the distance, dimensionless; uq  is the particle velocity before the collision, m/s; 

β is the pore throat to- particle diameter ratio, dimensionless; A is the empirical 

parameter, dimensionless; B is the empirical parameter, dimensionless; Rep is the 

particle  Reynolds  number, dimensionless; C is the empirical parameter, dimensionless;  




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td is the dimensionless plugging time, dimensionless; a is the empirical parameter, 

dimensionless; b is the empirical parameter, dimensionless;    p is the fraction of 

particle, %; ν  is the velocity , cm/s; DT is the pore throat diameter, µm; DP is the 

particle diameter, µm; νw  is the water flow velocity, m/s; cgp is the gel particles mass 

concentration, mg/L; qw is the water flow rate, cm
3
/h;         is the retention coefficient of 

gel particles, dimensionless; Øo  is the initial porosity, dimensionless; Sw is the water 

saturation, %; SHRgp is the gel particle shear breaking ratio, dimensionless; SWRgp is 

the gel particle swelling ratio in polymer solution, dimensionless. 
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Chapter 3: Factors Affecting the Near-Wellbore Formation Treatment 

by Gel Particles 

         Part of  this  chapter  has  been   previously  published   as  ‘‘Experimental  Study of Gel  

         Particles    Transport    Through   Porous   Media’’ in   the   SPE   Latin  American    and     

         Caribbean   Petroleum   Engineering    Conference,  Mexico  City, Mexico, 16-18  April, 

         2012 and is used here by permission. 

         

         Part  of  this  chapter   has   been  previously  published as ‘‘Experimental   Investigation   

         and   Correlation   of   Treatment  in   Weak   and   High- Permeability   Formations   by   

         Gel   Particles’’ in Production    and    Operations    Journal, Vol. 28, No. 4, pp. 387-401,  

         2013 and is used here by permission. 

 

 

3.1   Introduction 

                Understanding the plugging mechanisms and the transport behavior of the gel 

particles through the porous media during the gel particles suspension injection is very 

important for successful near-wellbore formation treatment by the gel particle 

suspension. Two plugging mechanisms were investigated and illustrated in details in 

this study. These two mechanisms are the deposition of the gel particles on the pore-

surface and the capture of the particles at the pore-throat.  

               There are many factors that affect the plugging mechanisms and the transport 

behavior of the gel particles including gel particle properties, carrier fluid properties, gel 

particle suspension properties, porous media, and operation conditions. These factors 

are described and investigated in details in this chapter and this study. 

 

3.2  Gel Particle Properties 

                There  are only a  limited amount of  studies about the gel particles properties, 
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 as discussed  in the following. 

3.2.1 Gel particle deformation and break-up 

                 Because of its deformable nature, the gel particle can deform  and pass 

through the pore-throat to deposit on the pore-surface, break-into pieces and pass 

through the pore-throat  to deposit on the pore-surface, or be captured at the pore-throat 

during injection into porous media (Bai et al. 2007). Fig. 3.1 illustrates the difference 

between the rigid and deformable particles passing through a pore throat. The rigid 

particles cannot pass through the pore throat if their size is greater than the pore- throat 

size, but the deformable particles can deform and pass through at sizes greater than the 

pore-throat size.   

 

 

 

Fig. 3.1: Difference between rigid and deformable particles passing through pore  

                 throat: 

 

 

                  Bonet and Wood (2008) describe the motion and the deformation of a 

particle, as shown in Fig. 3.2. The general measure of deformation is the measure of the 

strain and the strain is the change in the initial elemental vectors dX1 and dX2 after they 

 

  (a) rigid particles (b) deformable particles 

 

 

 

(a) (b) 
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deform to dx1 and dx2.  Then, the deformation gradient tensor is given by: 

 

 or                                                                      (3.1) 

            

 

                 Gao et al. 2011 describe the deformation of an ellipsoidal elastic particle in a 

Newtonian viscous fluid in quantitative terms as follows: 

   (3.2) 

 

where a and b refer to the semi-axes of the ellipsoidal particle, w= b/a and G is the ratio 

of the viscous forces in the fluid to the elastic forces in the elastic solid particle. 

   (3.3) 

 

Fig. 3.2: General motion and deformation of a particle (modified after Bonet and  

               Wood 2008) 
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where  µf  is the fluid viscosity, ηs  is the shear modulus of the elastic solid particle. 

   (3.4) 

where   τs is the extra stress tensor,                       is the Finger or left Cauchy-Green 

tensor,     is the shear rate or the velocity gradient. 

                                                                                                                       (3.5) 

 

v is the fluid velocity and d is the distance to the reference surface. As G increases, the 

D increases, therefore larger elastic deformation of the particle happens at the larger 

number of G and the elliptical particle become thread-like. Taylor (1932, 1934) studied 

the break-up of droplets and showed  that a droplet can be break-up when the D value is 

larger than 0.5. 

 

3.2.2   Gel particle coagulation and detachment  

 

      The gel particles can stick together to coagulate and form larger aggregates without 

involving chemical reaction between the particles. The gel particles stickiness 

(coagulation) was not investigated sufficiently before, but Burya et al. (2001) studied 

the asphaltene particles stickiness and aggregation in crude oil.  The asphaltene particles 

can stick together with a chemical reaction between them. Burya et al. (2001) showed 

that the aggregation kinetics of asphaltene particles consist from the diffusion-limited 

aggregation (DLA) and reaction-limited aggregation (RLA) mechanisms with a 

crossover behavior between them given by: 

 

                                                                          (3.6) 
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where N is the average number of particles forming fractal aggregation, dimensionless, 

given by: 

 

                                                                        (3.7) 

Ro and R are initial particle radius and the instantaneous mean aggregate radius, 

respectively, µm; df  is the fractal dimension, dimensionless, γ is a constant, 

dimensionless, given by: 

 

                                                                 (3.8) 

τD  and τR represent the characteristics times τchar for the DLA and RLA mechanisms, 

respectively, dimensionless. Burya et al. (2001) used the analytical solution of Eq. 3.6 

to correlate the experimental data of the mean number of asphaltene particle in an 

aggregate and mean radius of the asphaltene aggregates with the scaled time and 

obtained a satisfactory matching. 

              Engel (2000) defined the efficiency of stickiness (coagulation) (α) between two 

particles as the probability that two particles which collide can stick together with a 

value ranging from 0 to 1. Thus, the stickiness(α) is defined as the ration of the 

adhesion rate/collision rate. Kiorboe et al.  (1990)   determined   the  stickiness and 

aggregates of  diatom blooms experimentally  by  use  of   Couette Chamber system and 

the following empirical correlation: 

           Ct = C0 exp
–(7.82 α Φ Gm/π)t     

                                                  (3.9) 
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where Ct and C0 are the particle concentration at times t and 0, respectively, (no. dm
-3

), 

Φ is the volume concentration of particles (ppm), and Gm is the mean shear rate of the 

Coutte Chamber system (s
-1

) which can be calculated by using the following equation 

(van Duuren 1968): 

           Gm = 4 πω r2 r1 (r2
2
 – r1

2
)

–1
                                               (3.10) 

where ω is the angular velocity (s
-1

), and r2 and r1 are the radii of the outer and the inner 

cylinders of this system, respectively (cm). Engel (2000) used the Coutte Chamber to 

determine the variation in the particle stickiness according to the decline of a diatom 

bloom at low shear rate (G = 0.86 s
-1

). Engel investigated that the apparent particle 

stickiness (α) increases with the transparent exopolymer particles (TEP) and can exceed 

a value of 1, which means the collision rate is underestimated because the stickiness 

parameter (α) is calculated based on the conventional particle counting only. 

               The critical shear stress is the minimum shear stress required to detach and 

lift-off the deposited particles at the pore surface. Civan (1990, 1996) proposed an  

empirical equation of the critical shear stress (τcr) as a power-law function of the 

particle stickiness to the surface according to the particle concentration at pore surface 

by: 

            τcr = krCp
α
                                                                                       (3.11) 

where α is an empirical constant, kr is a constant and Cp is the particle mass 

concentration. Potanin and Uriev (1991) developed theoretical equation to calculate the 

critical shear stress required for detachment of particles. 

            τcr = H/24Dpl
2
                                                                                   (3.12) 
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where H is the Hamaker coefficient of particle and surface interacting through the pore 

fluid present in between them, J; Dp is the average particle diameter, cm; and l is the 

separation distance between the particle surfaces in filter cake. 

              The  plugging  probability of  the pores  increases by the gel particles stickiness 

(coagulation) on the pore-surface and pore-throat. Thus, the efficiency of the near-

wellbore formation treatments by the gel particles increases by the gel particles 

stickiness (coagulation) and decreases by the detachment of the deposited particles at 

the pore-surface.  

 

3.3 Carrier Fluid Properties 

                  The main functions of the carrier fluid are to suspend and carry the gel 

particles and prevent the particles from settling. The carrier fluid consists from water 

and Xanthan and the important properties of the carrier fluid are the viscosity and the 

density. In the present study, for example, 0.25 gm of Xanthan powder was mixed with 

500 ml of water to get the proper viscosity and density that prevent the settling of gel 

particles. 

 

3.4 Gel Particle Suspension Properties 

                    The gel particle suspension is used for the near-wellbore formation 

treatment. In the present study, the gel particle suspension was prepared by mixing a 

predetermined weight of polyacralamide gel, consisting of acrylamide (< 0.2%), sodium 

azide (0.02%) and water (balance), with carrier fluid using a commercial blender to 

obtain the desired concentration of the suspension and the desired gel-particles size. The 
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gel-particle suspension was colored with red by using a liquid color for clear visual 

observation of the progress of the suspension through the proppant pack. The properties 

of importance for using the suspension for treatment are the following. 

 

3.4.1 Viscosity 

                   There is a direct relationship between the suspension viscosity and the gel 

particle deformation. The ratio of the viscous forces in the fluid to the elastic forces in 

the elastic solid particle increases by the suspension viscosity, as shown in eq. 3.3, and 

thus the deformation of the gel particle increases, as shown in eq. 3.2. The gel particle 

suspension viscosities were measured at ambient temperature 23.5°C with a Chann 35 

viscometer at shear rate of 511 s 
-
¹. The suspension rheology was studied by using six 

speeds of viscometer to obtain the shear-rate/shear-stress graphs. These graphs 

demonstrate  the  pseudoplastic  characteristics of the  gel-particle  suspensions. Fig. 3.3  

shows the shear-rate/shear-stress graph of a 3-vol% suspension. 
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Fig. 3.3: Pseudoplastic behavior of 3 vol% suspension at T= 23.5 
°
C (exponent n =  

              0.38) 

 

 

3.4.2 Gel particle diameter 

                     There is a direct relationship between the plugging of pore throats or 

capture of gel particles in porous media and the ratio of particle/pore-throat size because 

plugging occurs when gel particles block the pore throats (Civan 2000, 2007a, and 

2010; Iscan and Civan, 2006). Measurement and understanding of the gel-particle size 

distribution are important in investigation of the mechanism of plugging of porous 

media by gel particles. The gel particles are irregular shaped and deformable. Thus, the 

equivalent diameter of a gel particle was calculated by considering the projected area of 

an irregular particle in two dimensions. This is equal to the projected area of the circular 

particle with an equivalent diameter (Bai et al. 2007). An optical procedure was used to 

measure the gel particle size because of the unavailability of an instrument that can be 
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used to measure the gel particle size distribution like Mastersizer instrument and Elzone 

analyzer. However, there is no accurate method available for measurement of the actual 

particle size distribution in a suspension. The optical procedure was applied using a 

suspension placed under a microscope and digitally photographed by a camera. The 

dimensions of the irregular gel particles in the photomicrographs were measured in 

pixels and then converted from pixels to micrometers using a calibration scale. Then, 

the projected area of a plane of the irregular particle was calculated and converted to the 

equivalent diameter of a circular particle, and then the following equation was applied 

(Bai et al. 2007).        

                                                
4

P

S
D


                                                         (3.13) 

                                                                                          

Dp indicates the equivalent diameter of a circular particle, S is the projected area of a 

plane of the irregular particle. The gel particles were grouped into chosen ranges 

according to their diameter values. A particle-size frequency distribution was obtained 

similar to a normal-size distribution, which represents approximately the gel particle 

size distribution in the suspension. 

 

3.4.3 Suspension concentration 

                   The concentration of the gel particle in the carrier fluid effects the near-

wellbore formation treatment significantly. The permeability reduction increases when 

the suspension concentration increases because the tendency of plugging increases with 

the particle concentration and the suspension viscosity increases when the gel particle 

concentration increases. Properties of the suspensions used in this study are presented in 

Table 3-1. 
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    TABLE 3-1: COMPONENTS AND PROPERTIES OF THE GEL-PARTICLE  

     SUSPENSIONS 

   Constituent and                 Suspension      Suspension        Suspension        Suspension  

       Properties                            1                        2                        3                         4 

   Polymer (vol%, g)              0.5%, 2.63          1%, 5.25           2%, 10.50       3%, 15.75                                                                       

   Water (cm³)                             500                    500                    500                   500                                        

   Xanthan powder (g)                0.25                   0.25                   0.25                  0.25                                                      

   Particles size range (µm)      14- 350              14- 350              14- 350            14- 350 

   Viscosity at 511 s ̄
¹
 (Pa.s)      0.0035               0.0040               0.0045              0.0055    

 

3.5 Porous Media 

                 The pore-throat size is an important parameter of porous media that effect the 

near-wellbore formation treatment by gel particles. The permeability reduction 

increases when the pore-throat size decreases. For the same gel particle diameter, the 

particle diameter to pore-throat size ratio increases when the pore-throat size decreases 

and thus the tendency of the pore-throat plugging increases.  

                 The pore-throat size distribution in a core sample is measured typically using 

the mercury injection capillary pressure method. In this method, the dry core sample is 

subjected to vacuum and then helium gas is injected at high pressure to indicate even 

the smaller pore throats that open up at high pressures to obtain the distribution of pore-

throat sizes of the core. The core sample used is an unconsolidated proppant pack and 

the core holder is a cylindrical plastic holder. Therefore, the mercury injection capillary 

pressure method could not be applied. Instead, the pore throat size had to be estimated 
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by considering a circular pore throat model of porous media according to Peifeng et al. 

(2010). Db indicates the cell body diameter, expressed by: 

                                                                                                                                                                                                            

                                                                                                     (3.14) 

 

DT  indicates the pore-throat diameter, given by:   

 

                                                                                                                       (3.15) 

  

 

where     is the porosity and Dg is the mean grain diameter of the sieved sample pack. 

 

 

3.6  Operation Conditions 

                     The important parameters of the operation conditions that effect the near-

wellbore treatment by gel particles are described in the following. 

 

3.6.l  Flow rate 

                     According to the definition of the particle deformation, the shear rate is an 

important parameter that can affect the gel particle deformation. The ratio of the viscous 

forces in the fluid to the elastic forces in the elastic solid particle increases by the shear 

rate, as shown in eq. 3.3. Thus the deformation of the gel particle increases, as shown in 

eq. 3.2. The shear rate increases by the flow rate, as shown in eq. 3.5 and thus the 

deformation and break-up increases by the flow rate. When the gel particles 

deformation  and  break-up  increase, the  transport of the gel particles through the pore- 
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throat increases and they are not captured at the pore-throat. Thus, the permeability 

reduction of the high permeability formation decreases at the high  deformation and 

break-up of the gel particles. Baghdikian et al. (1989) determined  that the particles 

deposition  over the pore   surface  decreases  when  the  flow  rate  increases and the    

hydrodynamic   lift   force increases by the flow rate and thus the plugging decreases. 

 

 

3.6.2  Temperature 

 

                    There  are  two  effects  of   temperature  on  the   near-wellbore   formation  

treatment  by gel  particle suspension. First, the viscosity of the suspension decreases 

when the temperature  increases. The viscosity of the 3 vol% gel particle suspension 

decreases  from  0.0055 Pa.s to 0.0035 Pa.s by  increasing the  temperature from 23.5 °C  

to 75 °C, as shown  in  Fig. 3.4. Second, the  gel   particles  are   soft  and  more 

deformable  particles  and increased  temperature  makes  them softer and  deformable. 

These two effects make the gel  particles  less effective because they can  pass easily  

through porous media without causing pore-throat  plugging and pore-surface 

deposition. Therefore, plugging of pores by gel  particles  becomes  less  pronounced at 

high temperatures, as shown in Fig. 3.5. 
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            Fig. 3.4: Viscosity of the 3 vol% gel particle suspension with temperature 
 

 

                  Fig. 3.5: Effect of temperature on gel particles passing through pore  

                                  (a) at low temperature         (b) at high temperature 
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Chapter 4: Experimental Studies of Near-Wellbore Formation 

Treatment 

         part  of  this  chapter  has  been  previously  published  as  ‘‘Experimental  Study  of Gel   

         Particles   Transport   Through   Porous   Media’’ in   the   SPE    Latin   American   and    

         Caribbean   Petroleum   Engineering    Conference,  Mexico  City, Mexico, 16-18  April,  

         2012 and is used here by permission. 

 

         part of  this  chapter  has been previously published as ‘‘Experimental  Investigation and   

         Correlation  of   Treatment   in   Weak   and  High- Permeability   Formations    by   Gel    

         Particles’’ in Production    and    Operations    Journal, Vol. 28, No. 4, pp. 387-401, 2013  

         and is used here by permission. 

 

 

4.1   Introduction 

            The following experimental studies were undertaken to investigate the transient 

behavior of gel particles and silica flour particles during plugging of porous media and 

the effect of the variation in gel particle and silica flour concentrations, flow rates, ratio 

of gel particle sizes-to-pore-throat diameter, pore space of the permeable filter disc, 

sand sizes, and temperatures on the plugging conditions of the high-permeability 

formations. This is inferred by monitoring the variation of the differential pressure 

across the proppant pack, the effluent particle size distributions during experiments by 

flowing deformable gel particles, the filtrate loss and the pressure gradient required to 

initiate flow across the fluid loss cell. Thus, the conditions for inducing pore plugging 

by injecting gel particle suspensions and silica flour particle-gel systems into porous 

media were investigated. 

 

4.2  Experimental Systems and Procedure 

4.2.1 Experimental flow apparatus 
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               The experimental studies utilized two separate experimental apparatus as 

described in the following. 

 

4.2.1.1  Apparatus for gel particle suspensions processes 

 

              The schematic experimental flow apparatus (Fig. 4.1); the experimental testing 

procedure; suspension preparation; and the measurements of viscosity, pore throat size, 

and gel particle size are described in the following.  

A- Tests under isothermal conditions           

               A Ruska pump was used to flow the gel particle suspension from the 

accumulator into the proppant pack at a constant rate by the mineral oil. The pump flow 

rate varies from 5 to 1120 cm³/hr and the pressure ranges from 0 to 10000 psig. A 500 

cm³ stainless steel accumulator was filled with the particles suspension and contains a 

steel piston disk to separate the suspension from the mineral oil. An 18.4 cm long and 

2.5 cm diameter plastic cylindrical column was used to simulate a core sample . For our 

study, the sandpack should have sufficiently  large and highly connective pores so that 

we can investigate the conditions for plugging of these pores and reduce the high 

permeability. Therefore, the ceramic proppant is more suitable than natural sand to 

create sufficiently large pores and high permeability required in this work. Thus, the 

plastic column was filled with 16-20 mesh proppant sands.  A 30 mesh sieve was used 

at the inlet and outlet ends of the sand pack to contain the proppant inside the plastic 

column. Absolute permeability and porosity were measured as 3800 md and 38%, 

respectively. The properties of the proppant pack are given in Table 4-1. Smart 

Differential   Pressure  Transmitter  ST3000  Series was used to measure the differential 
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pressure across the sandpack during the tests. A NI SC 2345 Data Acquisition System 

was used to record the differential pressure during the tests by the Labview software 

version 7. 

               The gel-particle suspension was injected at a constant rate at the bottom of the 

proppant pack at the ambient laboratory temperature of 23.5 
°
C using the Ruska pump 

as a piston-like front from the accumulator and the differential pressure across the 

sandpack was measured during the experiments by the pressure transducer and recorded 

by a computer- assisted data-acquisition system. The flow was continued until attaining 

a constant differential pressure across the proppant pack. The effluent gel particle 

suspension was collected in a beaker at various times to determine the gel-particles size 

distribution. The proppant was removed from the plastic cylindrical holder after each 

run and then washed and dried for reuse again in the next test. 

  

 

 

Fig. 4.1: Schematic diagram of the experimental  apparatus  
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  TABLE 4-1: PROPERTIES OF THE PROPPANT PACK 

   Properties                                                                    Data 

   Porosity (%)                                                                  38 

   Absolute permeability (md)                                         3800 

   Grain density (g/cm³)                                                    3.3 

   Average pore throat diameter (µm)                              127 

   Mesh size                                                                   16 – 20          

 

B- Tests under thermal conditions 

                A glass-made water bath is added to the experimental apparatus as shown in 

Fig. 4.2 for purposes of studying the temperature effect on gel particles placement in 

porous media as described briefly in the following.  

   The experimental flow apparatus consists of the following major parts: (1) A 

Ruska pump used to inject the gel particles suspension into the proppant pack at a 

constant rate using a mineral oil, (2) A 500 cm³ stainless steel accumulator filled with 

the gel particles suspension, (3) Plastic cylindrical column of 18.4 cm long and 2.5 cm 

internal diameter filled with 16-20 mesh proppant sands to represent a core sample, the 

absolute permeability and the porosity of which are 3800 md and 38%, respectively, (4) 

Smart Differential Pressure Transmitter of ST3000 Series used to measure the 

differential pressure during the tests, (5) A NI SC 2345 Data Acquisition System 

equipped with Labview software version 7 used to record the differential pressure 

during the tests, and (6) Immersion Coiled Heater with Thermostatic Temperature 

Controller  having  a  sensitivity of ±2°F (±1°C) placed at  the bottom of the glass water 
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vessel used to maintain the proppant pack at the required experiment temperatures, and 

Pocket-Size K Thermometer of temperature operating range -50 to 750 ˚C using to 

register the water bath temperature, as shown in Fig. 4.3. 

     A 3 vol% concentration gel particle suspension at different temperatures of 

23.5 
°
C, 40 ˚C, 60 ˚C, and 75 ˚C was injected into the proppant pack at a 100 cm³/hr 

flow rate from an accumulator by using the Ruska pump. The pressure transducer was 

used to measure the differential pressure across the proppant pack during the 

experiments  by using a computer- assisted  data acquisition  system and the experiment  

continued until attaining a final constant differential pressure. Suspension viscosities 

were measured at different temperatures of 23.5 °C, 40 ˚C, 60 ˚C and 75 ˚C by using a 

Chann 35 viscometer at shear rate of 511 s
-1

. 

       
Fig. 4.2: Schematic diagram of the experimental apparatus with heating system 
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                   Fig. 4.3: Heating system of the experimental apparatus 

 

4.2.1.2  Apparatus for silica flour particle-gel processes  

             The following describes the filtrate test apparatus (Fig. 4.4), the experimental 

procedure, and the particle-gel system preparation. 

A- Tests under isothermal conditions 

              A nitrogen tank was used to apply pressure to the particle-gel system in the 

fluid loss cell at a 3447 kPa pressure. A fluid loss cell with a filter disc at the bottom of 

the cell and 1-in. column of sand on the filter disc was filled with the particle-gel 

system. The average pore diameter of the filter discs were 5, 10, and 35 micron, and the 

sand sizes were 12/20, 20/40, and 40/70 mesh. A graduated glass cylinder was used to 

measure the filtrate volume during the test. 

       The particle-gel system was filtered from the fluid loss cell at 3447 kPa pressure 

using a  nitrogen  tank  and gas pressure  regulator at an ambient temperature of 23.5°C, 
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and the filtrate volume was measured during the test using a graduated glass cylinder. 

The filtrate test was continued until no gel was filtered or after a 30-minute period of 

time had elapsed. The remaining particle-gel system was removed from the fluid loss 

cell and replaced with water to measure the pressure to initiate flow. To measure the 

value of the pressure to initiate water flow, pressure was applied on the fluid loss cell 

using the nitrogen tank and the pressure was increased gradually using a gas pressure 

regulator until the first drop was filtered from the fluid loss cell. The pressure that 

caused the first filtrate drop was the value of the pressure to initiate water flow. 

       The particle-gel system was prepared mixing potassium chloride (KCl) with 

water using a commercial blender and Polymer 1 was added slowly to the water; mixing 

continued until the polymer was completely hydrated and no lumps or ҅ fish eyes ҆ were 

present (a minimum of 30-minute mixing time). Polymer 2 was added to the solution 

and mixed using the blender until homogeneous, and crosslinker was then added to the 

solution and mixed until homogeneous. Silica flour was added slowly to the solution at 

the desired concentration and mixed until homogeneous. Components of the particle-gel 

system are presented in Table 4-2. 
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    TABLE 4-2:COMPONENTS  OF THE PARTICLE-GEL SYSTEMS 

         Constituent                     System 1      System 2       System 3      System 4                           

   Water (gm)                               78.7             78.7               78.7             78.7   

   KCl (gm)                                    9.3               9.3                 9.3               9.3 

   Polymer1 (gm)                            0.4               0.4                0.4               0.4 

   Polymer2 (gm)                          46.7             46.7              46.7             46.7 

   Crosslinker (gm)                         8                  8                   8                  8 

   Silica flour (wt%)                     0.56             1.40               2.80             4.20 

 

B- Tests under thermal conditions  

 

                  Temperature affects the fluid loss of the silica flour particle-gel system and 

the  pressure  initiate  and  thus  the  thermal  effects  is  an  important factor in the near- 

  

Fig. 4.4- Schematic of the filtrate test apparatus. 
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wellbore formation treatment by particle-gel system. To study the temperature effect, a 

heating system was added to the experimental system. The heating system consists from 

heating tape, temperature controller and thermometer, as shown in Fig. 4.5.  

 

 

Fig. 4.5: Heating system of the filtrate test apparatus       
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Chapter 5: Investigation of Treatment in High-Permeability       

Formations by Gel Particles Suspension  

         This  chapter  have  been  previously  published as ‘‘Experimental Study of Gel Particles   

         Transport  Through   Porous    Media’’ in   the   SPE   Latin   American   and   Caribbean 

Petroleum Engineering  Conference,  Mexico  City, Mexico, 16-18 April, 2012 and is 

used here by permission. 

  

         This  chapter  has   been   previously   published  as  ‘‘Experimental   Investigation   and   

         Correlation  of   Treatment   in   Weak   and   High- Permeability   Formations   by   Gel    

         Particles’’ in Production    and    Operations    Journal, Vol. 28, No. 4, pp. 387-401, 2013  

         and is used here by permission. 

 

 

5.1   Introduction 

                This study investigates the behavior and transport of particle gels through 

porous media and the conditions favorable for plugging of highly permeable formations 

and develops useful empirical correlations from the experimental data to assist in 

controlling of such conditions. These correlations can be used to determine the 

conditions which induce pore plugging by injecting gel particle suspensions into porous 

formations.  

                The diagnostic equations of Wojtanowicz et al. (1987) are applied to 

investigate the prevailing plugging mechanisms causing permeability reduction under 

various conditions. The gel particle size distributions are an important part in 

understanding the mechanism of plugging of porous media, following Civan (2000, 

2007a, and 2010), Iscan and Civan (2006), and Iscan et al. (2009). The capture of gel 

particles in porous media was directly correlated to the ratio of the particle size to the 

pore throat diameter. The measurements of gel particle sizes of injected and effluent 

samples were made optically under a microscope equipped with a camera connected to 
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a computer which can store the photomicrographs. The particle size distribution was 

studied  and useful correlations were developed for the cumulative particle distribution 

as a function of particle diameter. The experimental study provides an understanding of 

the transient flow behavior of gel particles through porous media and can assist in 

choosing suitable parameters for controlling the plugging of the pores and reducing the 

high permeability of formations to avoid the loss circulation during a drilling operation 

and control water production in waterflooded mature oil fields. The correlations of 

experimental data obtained here can be used for determination of the optimal conditions 

for mitigation and treatment of high permeability formations. 

 

5.2  Experimental Results and Discussion 

                Because of the deformable nature of the gel particles, the experimental 

investigation and phenomenological description of the movement and retention of gel 

particles in porous media is a complicated task. Several transport mechanisms can occur 

simultaneously during particles transfer through pores and pore throats depending on 

the local pore and suspension conditions. It is difficult to determine the relative 

importance of the various particulate mechanisms during the transport process.  Hence, 

an evaluation index was used to determine the dominant mechanism based on the gel 

particle size distribution of the initial (original) and effluent suspension samples. 

 

5.2.1  Particle size distribution 

            The  total  concentration  of  all  particles  ranging  in  the 14- to  350-µm  

diameter   sizes   present  in  the  original  3-vol%   suspension  used  in  our   tests   was 
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determined approximately  as 1.7*10
4
  particles/mL of suspension. Particles with  

diameter sizes smaller than 14 µm cannot be counted  with the present  equipment. 

However, such extremely small particles (significantly  smaller than pore throats in 

high-permeability zones) can be ignored because they cannot really contribute to the 

plugging process unless without having a sufficient time to coagulate. The particle size 

distribution of the original sample indicates that 30% of these gel particles are larger 

than the average pore-throat size of 127 µm. 

               Figs. 5.1 to 5.5 show comparison of the particle size distributions of the 

collected effluent samples and the 3-vol% original injected sample for the gel-particle 

suspension at different flow rates after 1 and 5 pore volumes injected (PVI), 

respectively. The particle size distribution of the original sample shows that 30 % of the 

gel particles are larger than the average pore throat size. At 1 PVI most of the larger 

particles are trapped at the pore throat or are first deformed and then captured at the 

pore surface. There is also a possibility that some smaller particles are captured at the 

pore surface or some larger particles are broken into pieces and then pass through the 

pore throats. For 50 cm³/hr all particles greater than 150 µm, for 100 cm³/hr the 

particles greater than 110 µm, for 200 cm³/hr the particles greater than 130 µm, for 280 

cm³/hr the particles greater than 150 µm, and for 400 cm³/hr the particles greater than 

210 µm are trapped in porous media. These results indicate that at low flow rates the 

percentage of larger particles trapped at the pore throat or deformed and then captured 

at the pore surface increases by the flow rate but at high flow rates the percentage of 

larger particles trapped at the pore throat or deformed and then captured at the pore 

surface  decreases  by  the  flow  rate. At  5 PVI, the effluent particle size distribution is 
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approximately the same as the original. This indicates that all the particles pass through 

the pore throats of the non- plugging pores without entrapment or deposition. Fig. 5.6 

shows samples of photomicrographs indicating the difference in size and concentration 

of the particles at 1 PVI and 5 PVI, respectively.  

 

    Fig. 5.1: Particles distribution of 3 vol% original & effluent sample at 50cm³/hr   

                   after 1 and 5 PVI 
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Fig. 5.2: Particles distribution of 3-vol% original & effluent sample at 100cm³/hr  

               after 1 and 5 PVI 
 

 

Fig. 5.3: Particles distribution of 3-vol% original & effluent sample at 200 cm³/hr  

               after 1 and 5 PVI   
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Fig. 5.4: Particles distribution of 3-vol% original & effluent sample at 280 cm³/hr   

             after 1 and 5 PVI   

 

 Fig. 5.5: Particles distribution of 3-vol% original & effluent sample at 400cm³/hr  

 after 1 and 5 PVI   
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Fig. 5.6: Photomicrographs of effluent samples at 100 cm³/hr: (a) after 1 pore  

               volume injection (PVI)          (b) after 5 pore volume injection (PVI) 

 

 

 

5.2.2   Effect of suspension concentration   

   

               The effect of the concentration of gel particle in the carrier fluid on the 

differential pressure and permeability reduction during proppant pack flow tests was 

investigated by conducting several tests in which the flow rate of the injected 

suspension was kept constant but the concentration of gel particles in the injected 

suspension was varied. In these tests, a constant flow rate of 100cm³/hr was used to 

inject suspension with particle concentrations of 0.5, 1, 2, and 3 vol% into the sandpack.   

              As   previously  demonstrated  by  Gruesbeck  and  Collins (1982), plugging  of  

 

pathways   in   porous    media    occurs   mainly  when   large   particles   form   bridges   

 

across    pore   throats   and   cause  a   significant    permeability    reduction.  However,  

 

particles   smaller  than   pore   throats    can    pass   through,  which,  under    favorable   

 

conditions   only,  can   deposit   over   the    pore    surface,  and   cause    a    negligible  

 

(a) (b)   
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permeability-reduction   effect.  Fig. 5.7   shows   the    variation  of   the   permeability- 

 

reduction ratio across the  sandpack  with PVI for different suspension concentrations at  

 

a constant 100-cm3/h  flow  rate. By injecting   the  gel   particles, differential   pressure  

 

is  built  up   by  particles   trapped  at  the  entrance of   the   pore  throats,  causing   the  

 

suspension particles to  deform  and  pass   through the  pore   throats  or to be  captured  

 

at  the  pore  surface. However, a  constant steady pressure is established as the injection  

 

continues. 

            

            The results of the particle size distribution of the effluent samples at 1 PVI show  

 

that  the   particles with  different  diameters were retained  inside  the  sandpacks, with  

 

consequences  of the  plugging caused essentially by gel particles with sizes comparable  

 

to  or larger  than  the  pore-throat  sizes, while  the larger  pores serving as nonplugging  

 

flow  paths  were only  slightly  impaired by surface  deposition. Fig. 5.7 shows  that the  

 

permeability-reduction ratio  changes from 0.81 to 0.36 by increasing  the concentration  

 

of  the  gel  particles  from  0.5 to 3 vol%. This  happened because the plugging of pores  

 

occurs  more  rapidly  as the  amount of particles trapped at the pore throats or deformed  

 

and  then  captured  at the  pore  surface  increases  by  concentration   increase. Also, as  

 

shown  in Fig. 5.8, for a  constant  flow  rate, the   suspension  viscosity   increases from  

 

0.0035 to 0.0055 Pa.s when the gel-particle concentration increases from 0.5 to 3 vol%.  

 

This causes an increase in the differential pressure and permeability reduction.   
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Fig. 5.7: Permeability reduction at 100 cm³/hr for different volume suspension  

               concentrations  at T = 23.5 
°
C 

 

 

 

Fig. 5.8: Suspension viscosity at 100 cm³/hr for different particle volume  

      concentrations at T= 23.5 
°
C  
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5.2.3   Effect of flow rate  

              The effect of the suspension injection flow rate on the pressure drop and 

permeability reduction in the sand pack was investigated by several experiments at a 

constant 3 vol% concentration for the flow rates of 50 cm³/hr, 100 cm³/hr, 200 cm³/hr, 

280 cm³/hr, and 400 cm³/hr. Fig. 5.9 shows the permeability-reduction with pore 

volumes injected at different flow rates and constant concentration. The permeability 

reduction increased from 0.46 to 0.36 when the flow rate increased from 50 cm³/hr to 

100 cm³/hr but the permeability reduction decreased from 0.36 to 0.60 when the flow 

rate increased from 100 cm³/hr to 400 cm³/hr. This is because at the low flow rate the 

differential pressure increased as much as the injection flow rate (the differential 

pressure increased from 16.13 kPa to 41.15 kPa when the flow rate increased from 50 

cm³/hr to 100 cm³/hr), but at the high flow rate, the differential pressure did not increase 

as much as the injection flow rate (the differential pressure only increased from 41.15 

kPa to 98.19 kPa when the flow rate was increased four times from 100cm³/hr to 400 

cm³/hr). This indicates that the gel particles were able to pass through the pore throats 

easily at the high flow rate, as we shown from the previous results of the particle size 

distribution of the effluent sample at 1 PVI for different flow rates. Thus, plugging of 

pores becomes less pronounced by increasing flow rates.     

      Baghdikian et al. (1989) investigated the hydrodynamic lift force acting on the 

rate of particle deposition over and mobilization of particles from pore surfaces. They 

showed that an increase in the hydrodynamic force with flow rate decreased the 

particles deposition and increased the particles mobilization, and thus decreased the 

plugging effect and therefore permeability reduction in porous media. Consequently, 
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increase of differential pressure and reduction of permeability with increase of flow rate 

become less pronounced.  

 

Fig. 5.9: Permeability reduction at 3-vol% concentration for different flow rates  

 at T= 23.5 
°
C 

 

5.2.4   Effect of particle size 

              The effect of gel- particle size on the differential pressure and permeability 

reduction was investigated a number of experiments at a constant 3-vol% suspension 

concentration and 100-cm³/hr constant flow rate using average particle diameters of 50 

µm, 75 µm, 100 µm, 125 µm, and 140 µm, respectively. Fig. 5.10 shows the 

permeability reduction with pore volumes injected at different particle sizes, and 

constant flow rate and concentration. The permeability reduction changes from 0.54 to 

0.30 with the average particle size increasing from 50 µm to 140 µm. This indicates that 

the amount of  pores  being plugging by the gel particles can be increases by increasing 

particle size. 
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       It is difficult to determine exactly the prevailing particular processes of gel- 

particle transport through porous media during the tests because the gel particles are 

deformable and not rigid. We can consider that the particle will pass through the pore 

throat if the particle diameter is less than pore-throat size, and the particle will deform 

and pass through the pore throat to deposit on the pore surface if the particle diameter is 

larger than the pore-throat size. The rigid particles in diameters larger than the pore- 

throat size cannot pass through the pore throat. The analysis of the effluent samples at 1 

PVI for 100 cm³/hr showed that the effluent samples contain only small particles 

because almost all the particles larger than pore throat size are captured in porous 

media. In this case, the pore surface deposition is the relevant process of the gel- 

particles transport through porous media.  

 

 

Fig. 5.10: Permeability reduction at 100 cm³/hr for different particle sizes at T=  

         23.5 
°
C 
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5.3  Development of Empirical Correlations 

             Empirical correlations were developed from the experimental data by using the 

relevant parameters of flow rate, concentration, and particle diameter leading to 

plugging of pores by suspended particles. Instead of resorting to ordinary polynomial 

regressions which are prone to various limitations (Civan, 2011), special correlation 

equations were developed and implemented, as described in the Appendix B. It is 

demonstrated by the correlations presented in this section that these equations can 

represent the experimental data satisfactorily over the full range of the experimental 

conditions. The advantage of the particular equations of correlations described in  

Appendix B that are used here is the elimination of any problems inherent to 

polynomial regression, such as polynomial oscillations causing inaccurate interpolation 

values for conditions between measured data. 

 

5.3.1  Suspended particle size distribution before and after flow 

              The normal size distribution of the suspended particles of the original 

suspension with minimum particle diameter of 14 micrometer and maximum particle 

diameter of 350 micrometer and the effluent suspensions at different flow rates were 

showed in Fig. 5.11. Approximately 30 % of the particles have size greater than the 

pore-throat size (127 micrometer). For the effluent suspensions, Fig. 5.11 shows that at 

50 cm³/hr 18 % of the particles are about 30 micrometer in diameter , while the largest 

particles (at 150 micrometer) are 5 %; at 100 cm³/hr, 22 % of the particles are 

approximately 30 micrometer in diameter, while the largest particles (at 110 

micrometer)   are   12 %; at  200  cm³/hr, 20 %  of  the  particles   are   approximately 30 
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micrometer in diameter, while the largest particles (at 130 micrometer) are 10 %; at 280 

cm³/hr, 19 % of the particles are approximately 30 micrometer in diameter, while the 

largest particles (at 150 micrometer) are 4 %; and at 400 cm³/hr, 17 % of the particles 

are approximately 30 micrometer in diameter, while the largest particles (at 210 

micrometer) are 2 %. These results indicate that at the high flow rate, the percentage of 

the largest particles that are trapped at the pore throat or deposited at the pore surfaces 

decreases by the flow rate, and thus, the permeability reduction is less.        

 

          

              

               Empirical correlations were developed from the histogram of the particle size 

distribution for the original suspension and the effluent samples at different flow rates, 

as shown in Fig. 5.12. These correlations show an exponential relationship between the 
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 cumulative particle distribution and the particle diameter with high regression 

coefficient (R²) so that we can use it to predict the cumulative particle distribution at 

any diameter of the suspended particles for these flow rates, and, from the cumulative 

particle distribution we can know the percentage of the particles that are trapped and 

deposited in the porous media, which can demonstrate the permeability reduction. Note 

F(x) represents the cumulative particle distribution, %; and the normalized particle 

diameter is given by X = (Dp - Dpmin)/(Dpmax - Dpmin). 

 

Fig. 5.12: Calculated particle size distribution for the original and effluent  

                 suspensions at 1 PVI  for different flow rates  
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41.15 kPa when increasing  the gel- particle- suspension  concentration   from  0.5  to  3  

 

vol%   because  the  amount  of  particles  that  deform  and  deposit at the  pore surface   

 

increases  when   the   concentration   increases. Also,  the  viscosity  of  the  suspension   

 

increases from  0.0035  to 0.0055  kPa.s when increasing  the concentration  from 0.5 to  

 

3 vol%,  which   leads to an  increase in  the  differential   pressure. Fig. 5.13  shows  an  

 

exponential relationship between the gel-particle concentration and differential pressure    

 

across  the proppant  pack. The following   relationship correlates the  experimental data  

 

satisfactorily:       

                          

                  28.07exp 0.55 , 0.99PP C R 
                                                  

(5.1) 

where P indicates differential pressure across proppant pack, kPa; and CP is gel- 

particle concentration, vol%.  

Fig. 5.13: Exponential relationship between gel particle concentration and  

      differential pressure at 100 cm³/hr and 23.5
 °
C  
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               For  low  flow  rate, the differential  pressure  increases from 0 to 16.13 kPa by  

 

increasing the  flow  rate from 0 to 50 cm3/h and from 16.13 to 41.15 kPa by increasing  

 

the   flow  rate   from 50 to 100 cm3/h. For   high   flow  rate, the   differential   pressure  

 

increases   from  41.15  to 75.10 kPa,  75.10  to  92.10 kPa,  and  92.10  to 98.19  kPa by  

 

increasing  the  flow  rate from 100 to 200 cm3/h, 200 to 280 cm3/h, 280  to 400 cm3/h,  

 

respectively. These  results  show  that  for  the  high  flow rate, the differential pressure  

 

does  not  increase  as  much as the injection  flow rate. Increasing  the flow rate leads to 

 

an  increase in the  hydrodynamic  lift  force, which  causes  a decrease  in  the  particles  

 

deposition over the pore surface and an enhancement in the release of particles from the  

 

pore   surface; consequently,  plugging   decreases  and  the  increase  in the  differential 

 

pressure  decreases (Baghdikian et al., 1989). For the  high flow rate, the  percentage  of    

 

larger  particles that  are trapped at the pore throat or deformed and then captured  at the   

 

pore   surface  decreases  as  the  flow  rate  increases. Fig. 5.14  shows  the  relationship    

 

between   injection  flow  rate  and  differential  pressure  across the  proppant pack. The  

 

following relationship correlates the experimental data satisfactorily: 

 

                                  

                                                                                                                                (5.2)             

                                                                                                                                                                                                     

where P indicates differential pressure across proppant pack, in kPa, and q is injection 

flow rate, in cm³/hr. The empirical parameters -6.65 and 0.0001 were determined first 

by applying Eq. B-1, given in Appendix B, and then the empirical parameters 1.80, 115, 

and 7136 were determined by applying  Eq. B-2 given in Appendix B, as shown in Figs. 

C.1 and C.2 in Appendix C.
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 Fig. 5.14: The relationship between injection flow rate and differential pressure at  

                3 vol% and 23.5 
°
C

   

 

            
 

              The differential pressure increases from 27.40 kPa to 50.01 kPa by increasing 

the average particle size from 50 µm to 140 µm because the amount of the pores that are 

plugging by the gel particles increases with increase in particle size. Fig. 5.15 shows the 

relationship between the gel-particle diameter and differential pressure across the 

proppant pack. The following relationship correlates the experimental data satisfactory.  

                                                                                                                           (5.3) 
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applying Eq. B-3, given in Appendix B, as shown in Fig. C.3 in Appendix C. 

              These simple empirical correlations can be used to predict the differential 

pressure across the proppant pack for a similar material and operation conditions at any 

gel particle concentration, flow rate, or gel-particle diameter because the regression 

coefficients (R²) of these relationships are high (0.99- 1).     

 

Fig. 5.15: The relationship between gel-particle diameter and differential pressure  

               at 100 cm³/hr and 23.5 °C 

     
             

    

              It is very important to know the change in the differential pressure during the 

gel-particle-suspension injection because the differential pressure was built up by the 

plugging of the pores, thus reducing the high permeability of porous media. Therefore, 

the parameters that give higher differential pressure should be used to achieve a 

successful field applications of gel-particle-suspension injection for treating the 
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reservoir permeability heterogeneity to avoid the loss of circulation during a drilling 

operation and control water production in mature waterflooded oil fields. 

5.3.3  Permeability impairment (reduction) 

             The permeability reduction increased from 0.81 at 0.5-vol% suspension 

concentration to 0.36 at 3-vol% suspension concentration because the tendency of 

plugging increased with particle concentration. Fig. 5.16 shows the relationship 

between gel-particle concentration and permeability reduction at 100-cm³/hr flow rate 

and ambient temperature of 23.5 
°
C. The following relationship correlates the 

experimental data satisfactorily: 

                                                                                                    (5.4) 

 

where (K/Ko)  indicates the permeability reduction (dimensionless) and Cp is gel- 

particle  concentration, vol%. The empirical parameters 0.64, 5.55 and -19.42 were 

determined by applying Eq. B-4 given in Appendix B, as shown in Fig. C.4 in 

Appendix C. 

             Fig. 5.17 shows the exponential relationship between the injection flow rate of 

3-vol% suspension and the permeability reduction at ambient temperature of 23.4 
°
C. 

The permeability reduction increases for the low flow rate and decreases for the high 

flow because of the hydrodynamic force and the viscosity. The following exponential 

relationship correlates the experimental data satisfactorily.   
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where (K/Ko)  indicates permeability reduction (dimensionless) and q is injection flow 

rate, in cm³/hr.  

 

  
 

Fig. 5.16: The relationship between gel particle concentration and permeability  

                  reduction at 100 cm³/hr and 23.5 ˚C        
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Fig. 5.17: Exponential relationship between injection flow rate of 3 vol%  

      suspension and permeability  reduction at T= 23.5 
°
C 

 

            The permeability reduction increases from 0.54 to 0.30 with increasing average 

particle size from 50 µm to 140 µm because the amount of  pores that are plugging by 

the gel particles increases with increase in  particle sizes. Fig. 5.18 shows the 

relationship between the gel particle diameter and the permeability reduction at 100 

cm³/hr flow rate and ambient temperature  of 23.5 
°
C. The following relationship 

correlates the experimental data satisfactory. 

 

                                                                                                                 (5.6) 

where K/Ko indicates permeability reduction (dimensionless) and Dp is gel-particle 

diameter, in µm. The values of the empirical parameters were determined by applying 

Eq. B-4 given in Appendix A, as shown in Fig. C.5 in Appendix C. 
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Fig. 5.:18 The relationship between gel particle diameter and permeability  

                 reduction at 100 cm³/hr and 23.5 
°
C 

 

               Another  proppant  pack with 3600-md permeability, 34% porosity, and 59 µm  

pore- throat size was used to study the variation of permeability reduction with particle 

diameter/pore-throat size for different suspensions. Fig. 5.19 shows the relationship 

between particle diameter /pore-throat size and the permeability reduction at 100 cm³/hr 

flow rate and ambient temperature 23.5 
°
C. The following relationship correlates the 

experimental data satisfactory: 

 

                                                                                                          (5.7)  

                                                                                                                                                                                               

where (K/Ko)  indicates permeability reduction (dimensionless) and Dp/DT particle 
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determined by applying Eq. B-4 given in Appendix B, as shown in Fig. C.6 in 

Appendix C. 

 

  Fig. 5.19: Variation of permeability reduction with particle diameter to pore-  

                  throat size for different suspensions at 100 cm³/hr 
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size because the regression coefficients (R²) of these correlations are high (0.98- 1).               
             

   

The permeability  reduction of the porous media was caused  from the plugging of the 
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mature waterflooded oil fields having highly permeable zones. 

 

5.3.4  Resistance factor 

              Fig. 5.20 shows the relationship between the gel-particle concentration and 

resistance factor. The resistance factor is the ratio of the water mobility (Kw/µw) before 

suspension injection to the suspension mobility (K/µ) during suspension injection at the 

same flow rate (Littmann 1988): 

                                                                                                                                              (5.8) 

 

   

Where Fr indicates the resistance factor (dimensionless); Kw is the effective water 

permeability, in md; µw is the water viscosity, in Pa.s; K is the suspension permeability, 

in md; and µ is the suspension viscosity, in Pa.s. The resistance factor increased from 

4.3 at suspension concentration of 0.5 vol% to 15.3 at suspension concentration of 3 

vol%. This means that an increase in plugging of the pores occurs when the suspension 

concentration increases. The following relationship correlates the experimental data 

satisfactory. 

                                                                                                                  (5.9) 

                                                                                                   

 

where Fr  indicates resistance factor (dimensionless) and Cp is gel-particle 

concentration, vol%. This correlation was obtained by regression of a weighted-sum 

combination of Eqs. B-5 and B-6, both given in Appendix B, as shown in Figs. C.7 and 

C.8 in Appendix C. 
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Fig. 5.20: Polynomial relationship between gel-particle concentration and  

 resistance factor at 100 cm³/hr and 23.5 
°
C 

               
 

                Fig. 5.21 shows the relationship between injection flow rate and resistance 

factor. The resistance factor increases for the low flow rate and decreases for the high 

flow rate because of the hydrodynamic force and the viscosity, the resistance factor 

increased from 12.01 to 15.29 when the flow rate increased from 50 cm³/hr to 100 

cm³/hr and the resistance factor decreased from 15.3 to 9.1 when the flow rate increased 

from 100cm³/hr to 400cm³/hr. The following relationship correlates the experimental 

data satisfactorily.                                                 

                                                                                                (5.10) 
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cm³/hr. This correlation was obtained by regression of a weighted-sum combination of  

Eqs. B-6 and B-7, both given in Appendix B, as shown in Figs. C.9 and C.10 in 

Appendix C. 
    

 

 

Fig. 5.21: The relationship between injection flow rate and resistance factor at 3  

        vol% and 23.5 
°
C

    

 

 

       Fig. 5.22 shows the relationship between gel-particle diameter and resistance 

factor. The resistance factor increases from 15.3 to 17.7 by increasing the gel particle 

diameter from 100 µm to 125 µm because the plugging of the pores increases as the gel- 

particle diameter increases. The following relationship correlates the experimental data 

satisfactory. 
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where Fr  indicates resistance factor (dimensionless) and Dp is gel-particle diameter, in 

µm. The empirical parameters of this correlation were determined by applying Eq. B-5 

given in Appendix B, as shown in Fig. C.11 in Appendix C. 

 

Fig. 5.22: The relationship between gel particle diameter and resistance factor at  

 100 cm³/hr and 23.5 
°
C 
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for field applications to avoid the loss of circulation during a drilling operation and 

control water production in mature waterflooded oil fields having highly permeable 

zones. 

 

5.4  Plugging Criteria Correlated by Use of Dimensionless Groups  

              The experimental data generated in this study illustrate the effect of particle 

concentration, flow rate, and pore-throat/particle size ratio on the plugging mechanisms. 

To determine the conditions that lead to pore plugging (i.e., the plugging criteria), two 

dimensionless variables and the power- law and exponential-law equations presented by 

Civan (2000, 2007a) were applied to correlate the measured data: 

                                                                                                                                             

                                          /T PD D                                                           (5.12)             

                             

                                          /ep P PR C D                                                     (5.13)   

                                                                                   

                                          1

1 1ep
BA R C                                                         (5.14) 

                                                                                                                             

                                                                                                                         (5.15) 

  

Eq. 5.15 is a modified form of the exponential- law equation presented by Civan (2000, 

2007a). Here, β indicates the pore-throat/particle-diameter ratio, which is the first 

dimensionless variable; Rep is the particle Reynolds number which is the second 

dimensionless group of variables; Cp is the particle concentration in the suspension; μ is 

the viscosity of the suspension; ѵ is the velocity of the particles (assuming the particle 

velocity is equal to the suspension velocity);   is an empirical exponent; A
1
, A

2
, B

1
, 

   222 exp1 CRBA ep  
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B
2
, C

1
, and C

2 are the empirical fitting parameters; DT is the average pore-throat 

diameter; and Dp is the average particle diameter calculated as:    

                                          
 
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                                             (5.16) 

where σi is the volume fraction of particle i; and (Dp)i is the diameter of particle i. 

       Eqs. 5.14 and 5.15 describe the occurrence of pore plugging with certain fluid/ 

particle conditions such as the particle concentration, fluid viscosity, pore-throat/ 

particle diameter ratio, and fluid velocity. Applying the power- law and exponential- 

law correlations of the two dimensionless groups, a correlation curve can be developed 

with two regions. The region above the curve represents the non-plugging conditions, 

and region below the curve represents the plugging conditions. The physical meaning of 

the coefficient C is that the plugging always occurs when 0<DT/Dp<1 (the particle size 

equal to or greater than pore-throat size), so C in Eqs. 5.14 and 5.15 assumes a value of 

unity. However, this physical interpretation is not always valid because the deformable 

gel particles with diameter greater than pore-throat size may be able to squeeze and 

move through a pore throat. The empirical parameters A
1
, B

1
, C

1
, A

2
, B

2
 and C

2
 and the 

empirical exponent λ were determined by using the linearized forms of Eqs. B-8 and B-

9 given in Appendix B. The best straight- line that matches the experimental data was 

obtained by the method of least squares, and the values of the fitting parameters were 

determined as the highest  coefficient of regression of this straight line, as shown in 

Table 5-1 and Figs. D.1 and D.2 in Appendix D. Figs. 5.23 and 5.24 present the 

successful power- law and exponential correlations, respectively, of the experimental 

data by use of the gel suspensions of different particle concentrations and different 
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average particles diameter. The regression coefficients of the experimental data are 0.97 

for the power- law and 0.96 for the exponential- law. The power- law and exponential 

correlations curves, given in Figs. 5.23 and 5.24, respectively, indicate that no plugging 

occurs if β > 1.35 at any value of Rep because all the points are above the curve. Pore 

plugging occurs at low particle concentration when β is close to 1.0. Thus, the condition 

can change from non-plugging to plugging position by a small increase in particle 

concentration in the range of 1<β<1.35. According to the correlations of the 

dimensionless groups, the plugging occurs under certain conditions of particles 

concentration, flow rate, and pore-throat/ particle diameter ratio. Pore plugging induces 

permeability reduction, thus the dimensional analysis can assist in determining the 

functional trends of the correlations of the present experimental data, such as the 

differential pressure, the permeability reduction, and the resistance factor.  

 

                     TABLE 5-1: BEST- ESTIMATE FITTING PARAMETERS 

    Model                                                                  Parameters 

                                                                             (dimensionless) 

                                                                                    

 Power- Law                  A
1 

= 54         B
1
 = 0.511       C

1 = 1.00                         R² = 0.97                                                   

 Exponential- Law       A
2
 = 690       B

2
 = -0.07        C

2
 = 1.00        λ= 0.50      R² = 0.96   
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Fig. 5.23: Experimental and correlation results from power- law model as a  

                function of particle Reynolds number 

 

 

 

Fig. 5.24: Experimental and correlation results from exponential- law model as a  

 function of particle Reynolds number    
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5.5  Identification of  Particle Retention Mechanisms 

                Wojtanowicz et al. (1987) proposed a quantitative approach for analyzing the 

single-fluid phase formation-permeability-reduction trends because of fine-particles 

invasion and deposition. Three different mechanisms of particulate injection processes 

were recognized, and the corresponding diagnostic equations were derived for these 

mechanisms by assuming that one mechanism dominates at a time of suspension 

injection, as summarized in Table 5-2. These three mechanisms are (a) pore-surface 

deposition in which gradual pore reduction occurs when particle size smaller than pore- 

throat size; (b) pore-throat plugging in which single pore blocking occurs when the 

particle size is comparable or larger than the average size of the pore throat; and (c) 

pore filling, which occurs as a result of internal filter cake (neglecting the external cake) 

(Civan 2007a). The fundamental assumptions of the method of Wojtanowicz et al. 

(1987) are homogeneous formation and constant flow rate, low solid concentration, and  

pore-volume reduction caused by particle capture, but neglecting the gravity effect.         

        TABLE 5-2: WOJTANOWICZ ET AL. (1987) DIAGNOSTIC EQUATIONS  

 

   Permeability Reduction                 Diagnostic Equations                 Straight Line                                                                            

           Mechanisms                                                                           Plotting Scheme                                                                                     

   Pore surface deposition                     (K/Ko)
½ 

= 1- C
3
t                    (K/Ko)

½
 vs. t          

   Pore throat plugging                             K/Ko = 1- C
4
t                        K/Ko vs. t             

   Pore filling                                             Ko/K = 1+ C
5
t                      Ko/K vs. t              

   

              Figs. 5.25 and 5.26 present the permeability-change tendency during the 

injection of gel particles into the proppant pack. These figures show a wavy-shape trend 
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for alteration of permeability observed during the experiments, indicating the 

occurrence of consecutive plugging and unplugging phenomena. Thus, the gel particles 

in the suspension tend to be captured at the small pore throats initially, then the gel 

particles with diameter larger than the pore-throat sizes are diverted to the larger 

unplugged  pore throats and accumulate behind them, leading to generation and 

building up of high differential pressure. This differential pressure causes deformation 

of the gel particles captured at some pore throats and induces them to pass through these 

pores. After the deformation and passing of these gel particles, the process of pressure 

build up by particle accumulation begins again until the gel particles deform and pass 

through the pore throat once more. The frequent plugging and unplugging processes 

continue until a steady flow at a constant differential-pressure and permeability 

reduction level is attained, at which the gel-particle-suspension injection process should  

be terminated.      

 

Fig. 5.25: Pore-throat-plugging mechanism for different particle concentrations  

                 at 100 cm³/hr and 23.5 
°
C 
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Fig. 5.26: Pore-surface-deposition mechanism for different particle concentrations 

                 at 100 cm³/hr  and 23.5 
°
C    
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the pore surface increases when the concentration increases. The pore filling dose not 

occur because an internal filter cake cannot be formed in the proppant pack.   

 

 TABLE 5-3: RATE CONSTANTS  OF PLUGGING REGIONS FOR PORE-     

THROAT- PLUGGING MECHANISM AT DIFFERENT PARTICLE  

CONCENTRATIONS 

 

   Particle                                      Regions                  Rate Constants                  R²                                                    

   Concentrations (vol%)                                                     (min  ̄¹)                                                                                      

                0.5                                       1                               0.0070                      0.98 

                0.5                                       2                               0.0050                             0.99 

                1.0                                       1                               0.0140                      0.96 

                1.0                                       2                               0.0052                      1.00 

                2.0                                       1                               0.0310                      0.97 

                2.0                                       2                               0.0250                      0.99 

                3.0                                       1                               0.0400                      0.96 

                3.0                                       2                               0.0248                      0.99   

 

 TABLE 5-4: RATE CONSTANTS  OF PLUGGING REGIONS FOR PORE- 

SURFACE -DEPOSITION MECHANISM AT DIFFERENT PARTICLE 

CONCENTRATIONS 

 

   Particle                                      Regions                   Rate Constants                   R²                                                    

   Concentrations (vol%)                                                 (min  ̄¹)                                                                                       

                0.5                                      1                            0.0035                         0.98 

                0.5                                      2                            0.0025                                 0.99 

                1.0                                      1                            0.0070                         0.96 

                1.0                                      2                            0.0026                         1.00 

                2.0                                      1                            0.0160                         0.97 

                2.0                                      2                            0.0138                         0.99 

                3.0                                      1                            0.0210                         0.96 

                3.0                                      2                            0.0145                         0.99 
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5.6  Conclusions 

           The main findings of the present  flow tests conducted using 3800- md, 16-  to 

20-mesh sand packs can be summarized as the following: 

 This is a relatively  new  technology, and,  therefore, quantitative  evaluation the  

 

effect  of  various  factors  on  the  performance of gel-particle  applications presented in  

 

this study  is significant  for  practical  applications of gel-particle-suspension  injection.  

 

Therefore,  important correlations were developed that can assist in controlling plugging  

 

in  highly  permeable  formations and  treating  these  formations  by reducing  the  high 

   

permeability to avoid loss of circulation during drilling operations  and to control  water 

 

production  in mature waterflooded oil fields containing highly permeable zones. 

 

 Consecutive  plugging  and  unplugging   phenomena  occur  during  gel-particle 

 

injection  into  proppant packs. Accumulation of  the  particles  behind the pore  throats   

 

leads to a differential  pressure buildup, and  the  particles can pass  through other pores  

 

because of the ability of the gel particles to deform or break, which causes a subsequent  

 

reduction in the differential pressure. 

 

 The  plugging and unplugging processes continue until a steady flow is attained 

 

in  which the  differential-pressure level  and permeability reduction  approach constant  

 

limit   values, at  which  time  the  gel-particle-suspension-injection  process  should  be  

 

stopped. The values of the rate constants of  the plugging regions  increase with particle  

 

volume  concentration   because the   amount  of  particles  that are  trapped  at the pore  

 

throats or deformed and then captured at the pore surface increases with the gel-particle 

 

concentration. 
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 The  gel-particle distribution  of the  suspensions  before and after  injection was 

 

studied to determine which particles can be trapped and deposited inside the sandpacks,  

 

to  determine  the   percentage of  these  particles, and  to demonstrate  the  permeability  

 

reduction    effect.  Empirical    correlations   were   developed   from   the   gel-particle  

 

distribution  to  predict   the  cumulative  particle  distribution  at  any  diameter  of  the  

 

suspended particles for certain conditions. 

 

 Conditions  leading   to pore  plugging  in highly  permeable  formations  can  be 

 

quantified in terms of  the  relevant  dimensionless groups, such as the particle Reynolds  

 

number (Rep) and pore-throat/particle size ratio (β). Plugging occurs if the Rep vs. β is in  

 

the region  indicated  below the  curve  obtained by plotting  of the developed  empirical  

 

correlations. 

 

 The   diagnostic   equations   of   Wojtanowicz   et al.  (1987)   can  be   used  for 

 

identification  of the  relevant  governing  mechanisms of  impairment of  porous  media  

 

during   the   injection   of   gel-particle  suspensions   into  the  sandpacks   at   different  

 

conditions. 
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Chapter 6: Thermal Effects on Near-Wellbore Formation Treatment 

by Gel Particles Suspension 

         This   Chapter   has   been   previously   published  as ‘‘Experimental   Investigation  and    

         Correlation  of   Thermal   Effects  on   Near-Wellbore   Formation   Treatment  by   Gel  

         Particles’’ in the  SPE   International Symposium on Oilfield Chemistry, Woodland, TX,  

         8-10 April, 2013 and is used here by permission. 

 

 

6.1   Introduction 

Temperature plays an important factor in suspended gel particles treatment of 

high permeability near-wellbore zones because temperature affects the gel particles 

properties. Thus, temperature is affect the transient behavior of gel particles through 

porous media by influencing the plugging mechanisms and their rates. Practically, there 

are no correlations reported that can be used for designing of suspended gel particles 

placement for near-well bore formation treatment by considering the effect of near-

wellbore zone temperatures. For this purpose, an experimental study of thermal effects 

on conditioning and reducing the high permeability of formations is undertaken to 

investigate the relevant processes and correlate the experimental results for successful 

gel particles applications in oil fields.  

The effect of temperature on plugging of highly permeable near-wellbore 

formations is investigated by injection of suspension of gel particles into proppant packs 

at different temperatures and useful correlations are developed for field applications. 

The effect of temperature on permeability impairment at various temperatures (23.5 ˚C, 

40 ˚C, 60 ˚C, and 75 ˚C) is investigated at a constant 100 cm³/hr flow rate and a 3 vol% 

gel   particles  concentration. Experiments  are  conducted  using  unconsolidated plastic 
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glass proppant packs. The resulting pressure differentials across the proppant pack are 

measured during the experiments and the permeability reductions and resistance factors 

are inferred by the variation of differential pressures with time. Further, we investigate 

the mechanisms of plugging and unplugging phenomena during the injection of gel 

particles into the proppant pack at various temperatures. The permeability reduction 

increases during plugging and decreases during unplugging. The plugging and 

unplugging processes occur repetitively over consecutive periods of times. The 

frequency of the plugging and unplugging regions decreases by increase in temperature. 

The rate constants of plugging and unplugging processes are determined at various 

temperatures. The experimental data of the differential pressure, permeability reduction, 

and resistance factor, and the rate constants determined at various temperatures are 

correlated by using Vogel-Tammann- Fulcher (VTF) - type equations similar to Civan 

(2008, 2011a). Excellent agreement is observed between the experimental data and the 

correlations. Hence, these correlations can be used to predict the effect of temperature 

on conditioning of the high permeability formations by means of injection of suspension 

of gel particles. 

    

6.2  Experimental Results, Data Analyses, and Discussion 

           Differential pressure build up is a key issue during the gel particle suspension 

injection by plugging of the pores and thus reducing the high permeability and 

increasing the resistance factor of porous media. Therefore, it is very important to study 

the effect of temperature on the differential pressure during the gel particle suspension 

injection because higher differential pressure should be attained to achieve a successful 
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field applications of the gel particle suspension injection to treat the reservoir 

permeability heterogeneity and thus prevent the loss circulation during a drilling 

operation  and  control  the  water  production  in  waterflooded  mature  oil  fields.  The  

empirical correlations for the viscosity, differential pressure, and permeability reduction 

and resistance factor across proppant pack are developed from the experimentally 

measured data at different temperatures. It is demonstrated that these equations can 

represent the measured and experimental data satisfactorily over the range of the 

experimental conditions. 

Several tests were carried out in which the flow rate of the injected suspension 

and the concentration of gel particles in the injected suspension were kept constant at 

100 cm³/hr and 3 vol%, respectively, but the temperature of the proppant pack was 

varied at 23.5 ˚C, 40 ˚C, 60 ˚C, and 75 ˚C in each experiment in order to investigate the 

effect of temperature on the differential pressure and permeability reduction of the 

proppant pack. Fig. 6.1 shows the variation permeability reduction across the proppant 

pack with pore volumes injected for different temperatures of 23.5 ˚C, 40 ˚C, 60 ˚C, and 

75 ˚C at a constant 100 cm³/hr flow rate and a constant 3 vol% gel concentration. 

Differential pressure is build up during the injection of the gel particles suspension 

when particles are trapped at the pore throats causing the gel particles to deform and 

pass through the pore throats or to be captured across the pores and the injection 

continues until a constant steady pressure is attained. Fig. 6.1 shows that the 

permeability reduction decreased from 0.36  to 0.42 by increasing the temperature of 

the sand pack from 23.5 ˚C to 75 ˚C. This happened because the gel particles became 

softer and  deformable by  temperature and the degree of pore-throat plugging and pore- 
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surface deposition decreased. Consequently, the gel particles were able to pass through 

the pore easily at high temperature and plugging of pores becomes less pronounced at 

increasing  temperatures. Thus, the  differential  pressure  decreased  from  41.15 kPa to 

22.68 kPa when the temperature increased from 23.5 ˚C to 75 ˚C.  Also, for a constant 

flow rate and concentration, the suspension viscosity decreases from 0.0055 Pa.s to 

0.0035 Pa.s when the temperature increased from 23.5 ˚C to 75 ˚C. This causes a 

decrease in the differential pressure and permeability reduction. 

 

 

  

Fig. 6.1: Permeability reduction at 3 vol% concentration for different    

              temperatures at 100 cm³/hr 

 

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5

P
e
rm

e
a
b

il
it

y
 R

e
d

u
c
ti

o
n

 (
K

/K
o
) 

Pore Volumes Injected, PVI 

23.5 C

40 C

60 C

75 C



96 

6.3  Correlation of Measurements 

              Several empirical correlations of practical importance are developed from the 

experimental data at different temperatures for effective design of the suspended gel 

particles treatment in weak and highly permeable near- wellbore formations. The 

empirical correlations will be developed by using a VTF- type equation. The results are 

compared to measured and experimental data to determine the reliably for design of 

treatment of  highly permeable formations by gel particles under different temperature

 The Vogel- Tammann- Fulcher-type equations (VTF) are widely used to 

correlate the experimental data for the temperature dependent parameters (Vogel 1921; 

Tammann and Hesse 1926; Fulcher 1925). Civan (2004, 2005, 2006a and b, 2007b and 

c, and 2008, 2010) described the VTF equation as an asymptotic exponential function in 

the following general form: 

                                                                                                                 (6.1) 

                                                                                                                                               

where f is a temperature dependent parameter (unit determined by the type of property); 

fc is a pre- exponential coefficient (unit determined by the type of property); T is the 

actual temperature, K;  Tc is the critical temperature, K; and C is defined as E/Rg, where 

E is the activation energy (J/kmol), and Rg is the universal gas constant (J/kmol- K). fc, 

Tc, and C are the fitting constants and are determined by using the special least- squares 

method developed by Monkos (2003) and then trial and error method of Tc is used in 

the straight- line VTF plot of the experimental data until get the best regression 

coefficient (R²) value. The  applications of  this equation are illustrated in the following. 

The  viscosity of  the 3  vol % gel  particles  suspension  decreases  from  0.0055 Pa.s to 

c

c
TT

C
ff


 lnln
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0.0035  Pa.s by increasing the temperature from 23.5 ˚C  to 75 ˚C. The measured data of 

a 3 vol% concentration gel suspension viscosity is correlated by using the VTF 

equation, given by: 

                                                                                                                  (6.2) 

                                                                                                                                                

where  µ is the  suspension  viscosity, Pa.s; and µc is the pre- exponential  coefficient of  

viscosity is 0.03484  Pa.s. The fitting constants Tc and C are  550 K and -465 K, 

respectively. Fig. 6.2 shows the straight- line VTF plot of the measured data for the 3 

vol% suspension viscosity. Fig. 6.3 shows comparison between the suspension viscosity 

values obtained from VTF equation and the measured data.    

                 The differential pressure across the proppant pack decreases from 41.15 kPa 

to  22.68 kPa by increasing the temperature of the sand pack from 23.5 ˚C to 75 ˚C  

because the gel particles were able to deform and then pass through the pore throats 

easily at high temperatures and hence, the amount of particles that deformed and 

deposited at the pore surface decreases when the temperature  increases. Also, the 

viscosity of the suspension decreases from 0.0055 Pa.s to 0.0035 Pa.s by increasing the 

temperature from 23.5 ˚C to 75 ˚C which leads to a decrease in the differential pressure. 

The experimental data of the differential pressure across the proppant pack is correlated 

by using the VTF  equation, given by:  

                                                                                                                                             

                                                                                                                (6.3)                     

           

where ∆P  is  the  differential  pressure  across  proppant  pack, kPa; and  ∆Pc  is the pre-  

c

c
TT

C


  lnln

c

c
TT

C
PP


 lnln
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exponential coefficient of differential pressure is 2703 kPa. The fitting constants Tc and 

C are 700 K and -1685 K, respectively. Fig. 6.4 shows the straight- line VTF plot of the 

experimental data for the differential pressure across proppant pack. Fig. 6.6 shows 

comparison between the differential pressure  values obtained from VTF equation and 

the experimental data. 

 

 

                     Fig. 6.2: Straight- line VTF plot for the 3 vol% suspension viscosity  
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Fig. 6.3: Comparison between suspension viscosity obtained from the VTF   

                equation and the measured data 

 

                               Fig. 6.4: Straight- line VTF plot for the differential pressure 
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Fig. 6.5: Comparison between differential pressure obtained from the VTF  

                equation  and the experimental data 

 

 

                 The permeability reduction decreased from 0.36 at 23.5 ˚C temperature to 

0.42 at 75 ˚C temperature because the tendency of plugging decreased with increasing 

temperature. The experimental data of the permeability impairment (reduction)  is 

correlated by using the VTF equation, given by: 

 

                                                                                                                 (6.4) 

 

where (K/Ko) is the permeability impairment (reduction), dimensionless; and (K/Ko)c is 

the pre- exponential coefficient of  permeability impairment (reduction) is 0.711. The 

fitting constants Tc and C are 100 K and 134 K, respectively. Fig. 6.6 shows the 

straight- line  VTF  plot  of  the  experimental   data  for  the   permeability   impairment 
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(reduction). Fig. 6.7 shows comparison between the permeability impairment 

(reduction)  values obtained from VTF equation and the experimental data.         

Fig. 6.6: Straight- line VTF plot for the permeability reduction 

 

   Fig. 6.7: Comparison between permeability reduction obtained from the VTF  

                  equation and the experimental data 
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The resistance factor is defined as the ratio of the water mobility before 

suspension injection to the suspension mobility during suspension injection at the same 

flow rate (Littmann 1988): 

                                                                                                    (6.5) 

 

Fr indicates the resistance factor, dimensionless; Kw is the effective water permeability, 

md; µw is the water viscosity, Pa.s; K is the suspension permeability, md, and µ is the 

suspension viscosity, Pa.s. The resistance factor decreased from 15.3 at temperature of 

23.5 ˚C to 8.43  at temperature of 75 ˚C. This indicates a decreasing in plugging of the 

pores occurs when increasing the temperature. The experimental data of the 

permeability impairment (reduction)  is correlated by using the VTF equation, given by: 

                                                                                                           (6.6)                                                                                                                                          

where Fr is the resistance factor, dimensionless; (Fr)c is the pre- exponential coefficient 

of  resistance factor = 0.000223. The fitting constants Tc and C are -600 K and -

10000 K, respectively. Fig. 6.8 shows the straight- line VTF plot of the experimental 

data for the resistance factor. Fig. 6.9 shows comparison between the resistance factor  

values obtained from VTF equation and the experimental data. As can be seen, the VTF 

correlation values of viscosity, differential pressure, and permeability reduction and 

resistance factor are close to the experimental data because of the high regression 

coefficients (R²) of these relationships, around the unity. Thus, we can use the VTF 

equation to predict the viscosity, differential pressure across the proppant pack, 

permeability impairment (reduction) and resistance factor for a similar material and 

operation conditions at any temperature.    
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Fig. 6.8: Straight- line VTF plot for the resistance factors 

Fig. 6.9: Comparison between resistance factor obtained from the VTF  

              equation and the experimental data 
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6.4  Correlation of Thermal Effect on Plugging/Unplugging Processes 

               A consecutive  plugging  and  unplugging  phenomena is observed  during  the 

 

 injection of gel  particles  into the proppant pack at various temperatures as seen in Fig. 

 

 6.10. The   permeability   reduction   increases  during  plugging  and  decreases  during 

 

 unplugging.  The  plugging  event  occurs  when  the  gel  is  captured and accumulated 

 

 behind  the  pore  throats, causing  a buildup  of  differential  pressure. The  unplugging 

 

 event occurs  when the  differential  pressure  leads to a deformation of the gel particles 

 

 captured  and  accumulated  at some  pore  throats  and  then  pass  through these pores, 

 

 decreasing  the  differential pressure (Al- Ibadi and Civan 2012 and 2013a). A series of 

 

 plugging  and  unplugging  processes  occurs  repetitively  over  consecutive periods of 

 

 times and  continues until attaining a steady flow at a constant differential pressure and 

 

 permeability reduction level.            

Fig. 6.10: Permeability reduction at 3 vol% concentration for different  

                 temperatures at 100 cm³/hr 
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               Figs. 6.11 to 6.18 show the plugging and unplugging events occurring during 

the injection of gel particles into the proppant pack at various temperatures. The number 

of plugging and unplugging regions decreases by increase in temperature. The plugging 

and unplugging events can be modeled and represented as straight line plots shown in 

Figs. 6.11 to 6.18. The straight lines are not parallel because they have different slopes 

and not horizontal because the slopes are not equal zero. The slopes of the straight lines 

represent the rate constant values for the plugging and unplugging processes. Tables 6-

1 to 6-8 show the rate and intercept constants values for plugging and unplugging 

processes at various temperatures. The values of the rate constants decrease by the pore 

volume injected, indicating that first the gel particles are captured at the small pore 

throat and then the gel particles of diameter larger than the pore throat size are diverted 

toward the larger unplugging pore throats and accumulate behind them, as described by 

Civan and Nguyen (2005). Thus, the rate constants of plugging and unplugging regions 

are determined and correlated for the rate of plugging and unplugging at various 

temperatures. Figs. E.1 and E.2 show the relationship between the rate constants of 

plugging and unplugging regions and the pore volumes injected for 3 vol% particles 

suspension at various temperatures. The rate constant of plugging and unplugging 

regions are correlated by using  Eq. B-6 given in appendix B, as shown in Figs. E.3 and 

E.4 in Appendix E. Further, the intercept of the plugging and unplugging regions are 

determined and correlated with the pore volumes injected at various temperatures as 

shown in Figs. E.5 and E.6. The intercept of the plugging regions are correlated by 

using equation B-4 given in Appendix B and the intercept of the unplugging regions are 

correlated by applying equation B-2 given in appendix B, as shown in Figs. E.7 and E.8 

in appendix E. 
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                The values of the rate constants and the intercepts of the plugging and 

unplugging regions were correlated by used of Eqs. 6.7 and 6.8, respectively, as shown 

in Figs. E.1, E.2, E.5, and E.6: 

                                                                                                (6.7) 

 

 

                                                                                                                  (6.8) 

where y represent the rate constants of the plugging and unplugging regions, 

dimensionless or the intercept of the plugging and unplugging regions, dimensionless; x 

represents the pore volume injected, dimensionless; A, B, and β are empirical 

parameters, dimensionless. 

 

 

        

                                   Fig. 6.11: Plugging events trends at T= 23.5 ˚C 
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                                Fig. 6.12: Unplugging events trends at T= 23.5 ˚C 

 

   

                                Fig. 6.13: Plugging events trends at T= 40 ˚C 
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                              Fig. 6.14: Unplugging events trends at T= 40 ˚C 

    

                                 Fig. 6.15: Plugging events trends at T= 60 ˚C 
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                                 Fig. 6.16: Unplugging events trends at T= 60 ˚C 

                 

 

                                      Fig. 6.17: Plugging events trends at T= 75 ˚ 
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                                  Fig. 6.18: Unplugging events trends at T= 75 ˚C 

   TABLE 6-1: RATE AND INTERCEPT CONSTANTS  OF PLUGGING    

   REGIONS AT T=23.5 ˚C 

 

      Regions                   Rate Constants                    Intercept Constants                R²                                                    

                                      (dimensionless)                      (dimensionless)      

            1                                 0.78                                         1                               0.98 

            2                                 0.68                                       0.62                              1 

            3                                 0.54                                       0.59                              1 

            4                                 0.50                                       0.53                              1 

            5                                 0.23                                       0.48                            0.98 

            6                                 0.19                                       0.45                            0.89 

            7                                 0.17                                       0.44                            0.97 

            8                                 0.15                                       0.43                            0.99 

            9                                 0.10                                       0.42                              1 
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  TABLE 6-2: RATE AND INTERCEPT CONSTANTS  OF UNPLUGGING  

  REGIONS AT T=23.5 ˚C 

 

      Regions                    Rate Constants                 Intercept Constants                  R²                                                    

                                       (dimensionless)                    (dimensionless)      

            1                                0.45                                      0.61                                 1 

            2                                0.50                                      0.56                                 1 

            3                                0.38                                      0.51                                 1 

            4                                0.24                                      0.46                               0.97 

            5                                0.14                                      0.44                                 1 

            6                                0.09                                      0.43                                 1 

            7                                0.07                                      0.42                               0.99 

            8                                0.06                                      0.41                               0.98 

            9                                0.07                                      0.40                                 1      

   TABLE 6-3: RATE AND INTERCEPT CONSTANTS  OF PLUGGING  

   REGIONS AT T=40 ˚C 

 

     Regions                  Rate Constants                    Intercept Constants                 R²                                                    

                                    (dimensionless)                      (dimensionless)      

           1                               0.83                                         1                                  0.98 

           2                               0.66                                       0.66                               0.99 

           3                               0.58                                       0.59                                 1 

           4                               0.37                                       0.54                               0.95 

           5                               0.18                                       0.50                               0.97 

           6                               0.25                                       0.48                               0.99 

           7                               0.18                                       0.46                                 1 

           8                               0.13                                       0.45                                 1 
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  TABLE 6-4: RATE AND INTERCEPT CONSTANTS  OF UNPLUGGING    

  REGIONS AT T=40 ˚C 

     Regions                  Rate Constants                   Intercept Constants                 R²                                                    

                                    (dimensionless)                     (dimensionless)      

           1                                0.35                                       0.64                               1 

           2                                0.55                                       0.56                               1 

           3                                0.25                                       0.53                               1 

           4                                0.09                                       0.49                             0.96 

           5                                0.26                                       0.47                               1 

           6                                0.10                                       0.45                               1 

           7                                0.09                                       0.44                               1 

           8                                0.05                                       0.43                               1 

 

 

  TABLE 6-5: RATE AND INTERCEPT CONSTANTS  OF PLUGGING  

  REGIONS AT T=60 ˚C 

 

     Regions                  Rate Constants                    Intercept Constants                   R²                                                    

                                    (dimensionless)                      (dimensionless)      

           1                               0.85                                          1                                  0.97 

           2                               0.62                                        0.62                                 1 

           3                               0.41                                        0.58                               0.97 

           4                               0.19                                        0.55                                 1 

           5                               0.14                                        0.50                               0.99 

           6                               0.11                                        0.48                                 1 
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  TABLE 6-6: RATE AND INTERCEPT CONSTANTS  OF UNPLUGGING   

  REGIONS AT T=60 ˚C 

      Regions                  Rate Constants                   Intercept Constants                   R²                                                    

                                     (dimensionless)                     (dimensionless)      

            1                               0.30                                       0.62                                  1 

            2                               0.20                                       0.57                                  1 

            3                               0.19                                       0.54                                  1 

            4                               0.05                                       0.49                                0.89 

            5                               0.07                                      0.47                                  1 

            6                               0.05                                       0.45                                  1 

           

 

  TABLE 6-7: RATE AND INTERCEPT CONSTANTS  OF PLUGGING 

  REGIONS AT T=75 ˚C 

     Regions                  Rate Constants                    Intercept Constants                   R²                                                    

                                    (dimensionless)                      (dimensionless)      

           1                               0.86                                          1                                  0.95 

           2                               0.73                                        0.69                                 1 

           3                               0.44                                        0.63                               0.99 

           4                               0.22                                        0.57                               0.94 

           5                               0.22                                        0.55                               0.98 
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  TABLE 6-8: RATE AND INTERCEPT CONSTANTS  OF UNPLUGGING  

  REGIONS AT T=75 ˚C 

     Regions                  Rate Constants                   Intercept Constants                   R²                                                    

                                    (dimensionless)                     (dimensionless)      

           1                               0.28                                       0.68                                  1 

           2                               0.23                                       0.62                                  1 

           3                               0.19                                       0.56                                  1 

           4                               0.09                                       0.54                                0.95 

           5                               0.01                                       0.51                                  1 

 

 

 

              The effect of temperature on the plugging mechanism is observed from the 

number of the plugging regions and the permeability reduction at various temperatures. 

The number of the plugging regions decreases by the temperature increases, the number 

of the plugging regions decreases from 9 to 5 when the temperature increases from 23.5 

˚C to 75 ˚C. Hence, the permeability reduction decreases from 0.36 to 0.42 when the 

temperature increases from 23.5 ˚C to 75 ˚C. This occurs because the gel particles 

become more deforming and pass easily through the pore throats at the high 

temperature. Therefore, plugging of pores by gel particles is less pronounced by 

increasing temperature and hence, permeability reduction decreases, as shown in Fig. 

6.1. 

 

6.4.1  Simultaneous fitting of correlation 

                Simultaneous  fitting  of  correlations  is developed by collecting the values of  
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A, B, and β from the exponential correlations of the thermal effects and plotted against 

temperatures, as shown in Figs. E.9 to E.19 given in Appendix E. The plotted A, B, and 

β were correlated as linear functions (y = ai + bix) where y represents A, B, and β; x 

represents temperatures; ai and bi represents initial guesses of parameters (See figures 

E.9 to E.19). By substituting the linear functions of A, B, and β in the relationships of 

the rate constants of plugging and unplugging and intercepts of plugging and 

unplugging regions, as shown in Eqs. 6.9 and 6.10, empirical correlations of the thermal 

effect on the rate and intercept constants of plugging and unplugging were developed 

which can be used for practical applications, as shown in Figs. 6.19 to 6.22. The rate 

constants of plugging and unplugging regions represent the slopes of the straight lines 

and not represent the permeability impairment (reduction), therefore the initial values of 

the curves are not 1, as shown in Figs. 6.19 and 6.20. The first region of the plugging 

starts from value 1 of the permeability impairment (reduction), therefore the curves of 

the intercept of plugging regions start from 1, as shown in Fig. 6.21.     

                                                                                                               

                                                                                                                      (6.9) 

 

                                                                                                                      (6.10) 

 

where y represent the rate constants of the plugging and unplugging regions, 

dimensionless or the intercept of the plugging and unplugging regions, dimensionless; x 

represents the pore volume injected, dimensionless; T represents the temperature, °C; 

and a1, b1, a2, b2, a3, and b3 represent initial guesses, dimensionless. 
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Fig. 6.19: Rate constant of plugging at different pore volumes injected and   

                different temperatures 

 

Fig. 6.20: Rate constant of unplugging at different pore volumes injected and   

                different temperatures 
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 Fig. 6.21: Intercept of plugging regions at different pore volumes injected and    

               different temperatures 

 Fig. 6.22: Intercept of unplugging regions at different pore volumes injected and    

               different temperatures 
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6.5  Conclusions 

            The main findings of this experimental study can be summarized as the 

following: 

 Quantitative evaluation of the thermal effect on the performance of gel particles 

applications was study for successful field applications of gel particle suspension 

injection. Thus, important empirical correlations for thermal effect were developed 

which can be used for controlling plugging in highly  permeable formations and 

conditioning of these formations by reducing the high permeability. Hence, we can  

prevent loss circulation during drilling operations in formations having high 

permeability zones and control water production in waterflooded mature oil fields.  

 The Vogel-Tammann- Fulcher (VTF) - type equation is used to correlate the 

experimentally measured data of the viscosity, differential pressure, permeability 

reduction, and resistance factor at various temperatures and an excellent agreement is 

observed between the experimental data and the correlations. Hence,  these correlations 

can be used to predict the effect of temperature on conditioning and reducing the high 

permeability of the formations by injection of a suspension of gel particles. 

 The effect of temperature on plugging and unplugging phenomena which 

occurred during the injection of gel particles into the proppant pack was investigated 

and a decrease in  the number of plugging and unplugging regions  by increasing in 

temperature was observed. This occurs because the gel particles become more 

deforming and pass easily through the pore throats at high temperatures. Therefore, 

plugging of pores by gel particles becomes less pronounced by increasing temperature 

and   permeability   reduction   decreases. The   rate   constants   of   the   plugging   and 
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unplugging regions were determined and correlated successfully with temperature. 
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Chapter 7:  Dimensional Analysis of Near-Wellbore Formation 

Treatment by Gel Particles Suspension 

         This  Chapter    has   been    previously    published   as ‘‘Evaluation  of   Near- Wellbore    

         Formation  Treatment   by   Gel   Particles   Using   Dimensional   Analysis’’ in  the SPE 

         Production  and  Operations Symposium, Oklahoma City, Ok, 23-26 March, 2013 and is  

         used here by permission.  

 

 

7.1   Introduction               

              Several important factors affect the gel particles transport through porous 

media and hence the near-wellbore formation treatment by gel particles, including flow 

rate, gel particles concentration, gel particle diameter, pore-throat size, and temperature. 

However, concerning the transport of soft-gel particles through narrow pore throats in 

porous media, the deformation property is a particularly important factor that causes the 

oscillation phenomenon observed of the measured pressure differential and hence in the 

resulting permeability reduction trends. In fact, the dimensional analysis of the gel 

particles injection data presented in the following proves the importance of the 

deformation property of the gel particles. Because the overall phenomena of gel 

particles transport and entrapment in porous media involve many complicated 

processes, the difficulty of analyzing the experimental data is alleviated by developing 

dimensionless correlations which can assist in evaluating the near-wellbore formation 

treatment by gel particles.   

                The relevant dimensionless correlations of experimental data of gel particles 

plugging of porous media are developed based on the dimensional analysis method 

which can be used for effective design and monitoring of treatment of high-permeability  
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near-wellbore formation by gel particles suspension. The dimensionless groups are 

developed from the primary variables of the sand packs, gel particles suspension, and 

operation conditions. Step-by-step procedure of elimination of the basic dimensions was 

used for combination of variables into relevant dimensionless groups. The normalized 

dimensionless groups were used to correlate the measured permeability reduction by gel 

particles at different temperatures, concentrations, flow rates, and gel particles 

diameters. Comparison between correlated and measured permeability reduction 

indicates satisfactory results, especially for the limit value of the final permeability 

reduction. Hence, the effect of the ratio of the particle-diameter to pore-throat size on 

permeability reduction under various conditions is correlated successfully. 

 

7.2  Relevant Dimensionless Groups 

                 The permeability reduction data obtained from the tests of Al-Ibadi and 

Civan (2012, 2013a and 2013b) by gel particles suspension injection into sand packs at 

different temperatures, flow rates, gel particles diameters, and gel particles 

concentrations are now correlated by dimensional analysis. The dimensionless 

correlations of the experimental data are developed from dimensionless groups in 

normalized forms to accommodate for differences in the final limit values of 

permeability reduction attained under different conditions.  

The actual variables used in this study are summarized in Table 7-1 and all the 

variables and their units are summarized in Table 7-2. The basic dimensions involved 

in this study are mass M, length L, time T, and temperature θ. Step-by-step procedure 

applied  for  derivation  of  the  relevant  dimensionless  groups involves the first step to 
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eliminate M, the second step to eliminate L, the third step to eliminate T, and the fourth 

step to eliminate K,  as illustrated in Table 7-2. The variables are grouped into several 

groups according to the initial system such as the porous media group, the gel particle 

suspension group, and the operation conditions group.  

               The dimensionless groups are obtained from the variables by means of the 

combination of variables method (Churchill 1997) and the number of dimensionless 

groups is equal to the number of the variables minus the number of the basic 

dimensions (Van Driest 1946). We have 14 variables and 4 basic dimensions as shown 

in Table 7-2. Therefore, the number of the dimensionless groups obtained from these 

variables is 10 as follows:  

 ,                   ,                  ,                   ,                    ,                        

        

                  ,                      ,                        ,                                               (7.1)         

The dimensionless groups are manipulated to obtain conventional dimensionless group 

as the following, for example: 

                                                                                                         (7.2) 

                            Table 7-1: Summary of Primary Variables                                                                                          

 Variable Group       Variable     Unit                                 Values                                                                                                             

   Sand Pack                 Dg            µm          1015       650 

          Gel                     Dp                 µm           50          75         100        125          140 

                                     Cp            vol%        0.5%      1%         2%        3% 

 Test Conditions           v             cm/s        0.0072    0.0144    0.0288   0.0403    0.0576 

                                     θ                K           296.5      313        333       348 
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        Table 7-2: Step-by-Step Elimination of the Fundamental Dimensions 

 Initial  Dimensions Step1 Eliminate Step 2 Eliminate Step 3 Eliminate Step 4 Eliminate                    
 System                                     M                        L                         T                         K 

 Variables                  Vari.    Dimen.  Vari.    Dimen.    Vari.     Dimen.              Dimen.                          

 Porous Media 

      K          L²            K           L²       K/z²:dim.    1 

                                                                group 

      DT             L             DT         L        Dp/DT: dim. 1 

                                                                   group 

      A          L²            A           L²       A/z²: dim.   1 

                                                                   group  

      z           L              z           L         z: scaling    L 

                                                             variable 

                L³/L³                     L³/L³                       L³/L³ 

 Gel Particle Suspension 

     µ       M/LT         µ/ρ       L²/T          µ/ρ/z²     1/T    tµ/ρ/z²: dim.  1 

                                                                                                group 

                                                             µ/ρ/Dp²   1/T   tµ/ρ /Dp²: dim. 1 

                                                                                                    group                                                       

     ρ       M/L³    ρ:scaling    M/L³ 

                           variable 

    Dp           L             Dp                L        Dp: scaling    L 

                                                             variable 

    Cp     L³/L³          Cp         L³/L³              Cp         L³/L³ 

 Operation Conditions 

     v      L/T             v         L/T     v/z     1/T    tv/z: dim.     1 

                                                                                           group 

                                                                v/Dp     1/T     tv/Dp: dim.  1 

                                                                                             group 

 

 

  
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    t         T                t           T       t        T      t: scaling      T           

                                                                                          variable 

  ∆p    M/LT²       ∆p/ρ     L²/T²          ∆p/ρ/z²  1/T²  t²∆p/ρ/z²: dim. 1 

                                                                                               group 

   θ        K               θ          K                     θ       K                 θ         K    θ: scaling    K 

                                                                                                                    variable 

  c      L²/T²K          c     L
2
/T²K    c/z

2     
1/T²K       t²c/z

2 
    1/K      θt²c/z²        1                      

                                                               c/Dp²   1/T²K     t²c/Dp²   1/K     θt²c/Dp
2

       1 

 

7.3.  Data Analysis and Correlation 

                The correlations of dimensionless groups, plots of data and correlations after 

normalization, and permeability obtained from dimensionless correlations are presented 

in the following. 

 

7.3.1  Dimensionless groups selected for correlations 

               Although we determined 10 dimensionless groups, we only used 7 

dimensionless groups to correlate the measure data obtained from the gel particle 

suspension injection into the sand pack at different concentrations, flow rates, gel 

particle diameter, and temperatures (Al-Ibadi and Civan 2012, 2013a, and 2013b). 

Dimensionless group Π2 combining Dp with DT show the effect of the ratio of the 

particle diameter (Dp) to the pore throat size (DT) (produced from the grain diameter 

(Dg) of the sand pack) on the permeability reduction (K/Ko). Dimensionless group Π4 

combining µ, t, ρ and z variables show the effect of the suspension viscosity µ change 

with  the  gel  particle concentration (Cp) on the permeability reduction.   Dimensionless 
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 group Π5 combining µ, t, ρ and Dp variables show the effect of the particle diameter 

(Dp) on the permeability reduction. Dimensionless group Π6 combining v, t, and z 

variables show the effect of the suspension velocity (v) on the permeability reduction.  

Dimensionless group Π7 combining v, t, and Dp variables show the effect of the particle 

diameter (Dp) on the permeability reduction. Dimensionless group Π9 combining t, c, θ 

and z variables show the effect of the temperature (θ) on the permeability reduction. 

Dimensionless group Π10 combining t, c, θ and Dp variables show the effect of the 

particle diameter (Dp) on the permeability reduction. The following combined 

dimensionless group was also used to represent the permeability reduction (K/Ko): 

 

                                                                                                                 (7.3) 

                                                                                                                                                               

           To develop dimensionless correlations of the thermal effect on near well- bore 

formation treatment by gel particles, we used Π4 dimensionless group because it 

contains suspension viscosity (µ) affected by temperature and used Π9 dimensionless 

group because it contains the temperature (θ). The dimensionless correlation of the 

effect of the gel particle concentration on near well-bore formation treatment by gel 

particles is developed using Π4 dimensionless group because it contains suspension 

viscosity (µ) that increases by the gel concentration. To develop dimensionless 

correlation of the effect of the flow rate on near well-bore formation treatment by gel 

particles, we used Π6 dimensionless group because it contains suspension velocity (v). 

The dimensionless correlation of the effect of the gel particle diameter on near well- 

bore   formation   treatment   by   gel   particles  is  developed    using  Π5,  Π7,  and  Π10  
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dimensionless groups because they contain the particle diameter (Dp).  

 

7.3.2  Dimensionless plots of experimental data 

                 Figs. 7.1 and 7.2 show the Π4 and Π9 dimensionless groups for the 

permeability reduction at 3 vol% concentration for different temperatures at 100 cm³/h. 

These figures show that the maximum values of the dimensionless groups at 5 PVI 

different by the temperature. The values of  the Π4 dimensionless group are 1.04 at 23.5 

˚C, 0.95 at 40 ˚C, 0.76 at 60 ˚C, and 0.66 at 75 ˚C and for the Π9  dimensionless group 

are 1.50E+15 at 23.5 ˚C, 1.59E+15 at 40 ˚C, 1.69E+15 at 60 ˚C, and 1.77E+15 at 75 ˚C. 

Fig. 7.3 shows the Π4 dimensionless group for the permeability reduction at 100 cm³/hr 

for different concentrations at T= 23.5 ˚C. Fig. 7.3 shows that the maximum values of 

the Π4 dimensionless group at 5 PVI different by the gel particles concentration, 0.66 at 

0.5% concentration, 0.76 at 1.0% concentration,  0.85 at 2.0% concentration, and 1.04 

at 3.0% concentration. Fig. 7.4 shows the Π6 dimensionless group for the permeability 

reduction at 3 vol% concentration and 23.5 ˚C for different flow rates. The figure shows 

that the maximum values of the dimensionless group at 5 PVI different by the flow rate, 

2.5 at 50 cm³/hr, 5 at 100 cm³/hr, 10 at 200 cm³/hr, 14 at 280 cm³/hr, and 20 at 400 

cm³/hr. Figs. 7.5 to 7.7 show the Π5, Π7, and Π10 dimensionless groups for the 

permeability reduction at 100 cm³/hr  and 23.5 ˚C for different particle sizes for the sand 

pack of 1015 µm grain diameter.  The maximum values of the Π5, Π7, and Π10 

dimensionless groups at 5 PVI different by the particle diameters are shown in Figs. 7.5 

to 6.7. Figs. 7.8 to 7.10 show the Π5, Π7, and Π10 dimensionless groups for the 

permeability reduction at 100 cm³/hr  and 23.5 ˚C for different particle sizes for the sand 



127 

pack of 650 µm grain diameter and  the maximum values of the dimensionless groups at 

5 PVI different by the particle diameter. 

 

Fig. 7.1: The dimensionless groups for permeability reduction at 3 vol%  

               concentration for different temperatures at 100 cm³/h 

Fig. 7.2: The dimensionless groups for permeability reduction at 3 vol%  
               concentration for different temperatures at 100 cm³/h 
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Fig. 7.3: The dimensionless groups for permeability reduction at 100 cm³/h for  

               different concentrations at T= 23.5 ˚C 

 

 

Fig. 7.4: The dimensionless groups for permeability reduction at 3 vol%  

               concentration for different flow rates at T= 23.5 ˚C 
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Fig. 7.5: The dimensionless groups for permeability reduction at 100 cm³/hr for  

               diameter different gel particle sizes at T= 23.5 ˚C for the sand pack of  

               1015 µm grain 

 

 

Fig. 7.6: The dimensionless groups for permeability reduction at 100 cm³/hr for  

               different gel particle sizes at T= 23.5 ˚C for the sand pack of 1015 µm  

               grain diameter 
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Fig. 7.7: The dimensionless groups for permeability reduction at 100 cm³/h for  

               different gel particle sizes at T= 23.5 ˚C for the sand pack of 1015 µm  

               grain diameter 

 

Fig. 7.8: The dimensionless groups for permeability reduction at 100 cm³/h for  

               different gel particle sizes at T= 23.5 ˚C for the sand pack of 650 µm grain  

               diameter 
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Fig. 7.9: The dimensionless groups for permeability reduction at 100 cm³/h for  

               different gel particle sizes at T= 23.5 ˚C for the sand pack of 650 µm grain  

               diameter 

 

Fig. 7.10: The dimensionless groups for permeability reduction at 100 cm³/h for  

                 different gel particle sizes at T= 23.5 ˚C for the sand pack of 650 µm  

 grain diameter 
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7.3.3  Normalized experimental data 

                The above direct plotting of the dimensionless groups revealed that the 

maximum limit values of the various dimensionless groups are different by their final 

limit values. Thus, it is inconvenient to correlate with the dimensionless groups directly. 

We resort to the following normalized values method in order to avoid this problem 

according to Civan (2011b). 

 

                                                                                                                   (7.4)                                                              

where x is the value of the actual dimensionless group; x* is the normalized value of the 

dimensionless group; xmin is the minimum value of the dimensionless group; and xmax is 

the maximum value of the dimensionless group.  

Figs. 7.11 and 7.12 show the normalized Π4 and Π9 dimensionless groups for the 

permeability reduction at 3 vol% concentration for different temperatures at 100 cm³/h 

and the correlation curves obtained by applying equation  B-2 given in Appendix B on 

the normalized dimensionless groups data, as shown in Figs. F.1 and  F.2 in Appendix 

F. Fig. 7.13 shows the normalized Π4 dimensionless group for the permeability 

reduction at 100 cm³/h for different concentrations at T= 23.5 ˚C and the correlation 

curve obtained by applying equation B-7 given in Appendix B on the normalized 

dimensionless group data, as shown in Fig. F.3 in Appendix F. Fig. 7.14 shows the 

normalized Π6 dimensionless group for the permeability reduction at 3 vol% 

concentration and 23.5 ˚C for different flow rates and the correlation curve obtained by 

applying equation  B-7 given in Appendix B on the normalized dimensionless group 

data, as  shown in Fig. F.4 in Appendix F. For  the permeability  reduction at 100 cm³/h   
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and 23.5 ˚C for different particle sizes for the sand pack of 1015 µm grain diameter, we 

obtained same values of the normalized dimensionless groups of Π5 , Π7 , and Π10 and 

same correlation curves by applying equation  B-2 on the normalized dimensionless 

group data. Therefore, we used only Π5 dimensionless group to correlate the data as 

shown in Fig. 7.15 for the sand pack of 1015 µm grain diameter and in Fig. 7.16 for the 

sand pack of 650 µm grain diameter, as shown in Figs. F.5 and  F.6 in Appendix F.  

 

 

 

 

Fig. 7.11: Correlation of the normalized dimensionless groups for permeability  

                 reduction at 3 vol% concentration for different temperatures at 100  

                 cm³/h 
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Fig. 7.12: Correlation of the normalized dimensionless groups for permeability  

                 reduction at 3 vol% concentration for different temperatures at 100  

                 cm³/h 

 

Fig. 7.13: Correlation of the normalized dimensionless groups for permeability  

                 reduction at 100 cm³/h for different concentrations at T= 23.5 ˚C 
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Fig. 7.14: Correlation of the normalized dimensionless groups for permeability  

                 reduction at 3 vol% concentration for different flow rates at T= 23.5 ˚C 

               diameter at different gel particles sizes 

 

Fig. 7.15: Correlation of the normalized dimensionless groups for permeability  

                 reduction at 100 cm³/hr for different gel particle sizes at T= 23.5 ˚C for  

                 the sand pack of 1015 µm grain diameter 
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Fig. 7.16: Correlation of the normalized dimensionless groups for permeability  

                 reduction at 100 cm³/hr for different gel particle sizes at T= 23.5 ˚C for  

 the sand pack of 650 µm grain diameter 
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permeability reduction from 0.358 to 0.417 by increasing the temperature from 23.5 ˚C 

to 75 ˚C.  

              Fig. 7.19 shows the measured permeability reduction and the correlated 

permeability reduction obtained from the dimensionless correlations of the normalized 

Π4 dimensionless group for permeability reduction at 100 cm³/h for different 

concentrations at T = 23.5 ˚C. The measured data show permeability reduction from 

0.81 to 0.36 by increasing the gel particles concentration from 0.5% to 3.0% because 

the amount of particles plugging the pores increases by concentration. The correlated 

data of the normalized Π4 dimensionless group show permeability reduction from 0.80 

to 0.354 by increasing the gel particles concentration from 0.5% to 3.0%.               

              Fig. 7.20 shows the measured permeability reduction and the correlated 

permeability reduction obtained from the dimensionless correlations of the normalized 

Π6 dimensionless group for permeability reduction at 3 vol% concentration and 23.5 ˚C 

for different flow rates. The measured data show permeability reduction increasing from 

0.0.46 to 0.36 by increasing the flow rate from 50 cc/h to 100 cc/h and decreasing from 

0.36 to 0.60 by increasing the flow rate from 100 cc/h to 400 cc/h because at the high 

flow rate the particles can pass easily through the pore throats and the plugging of pores 

decreases. The correlated data of the normalized Π6 dimensionless group show the same 

values of the measured permeability reduction when the flow rate increases from 50 

cc/h to 100 cc/h and from 100cc/h to 400 cc/h.  

                Fig. 7.21 shows the measured permeability reduction and the correlated 

permeability reduction obtained from the dimensionless correlations of the normalized 

Π5  dimensionless  group   for   permeability  reduction   at 100 cm³/h   and  23.5  ˚C  for  



138 

different particle sizes for the sand pack of 1015 µm grain diameter. The measured data 

show permeability reduction from 0.54 to 0.30 by increasing the particle diameter from 

50 µm to 400 µm because the plugging of pores increases by gel particle size. The 

correlated data of the normalized Π5 dimensionless group show permeability reduction 

from 0.544 to 0.30 by increasing the particle size from 50 µm to 140 µm.  

                Fig. 7.22 shows the measured permeability reduction and the correlated 

permeability reduction obtained from the dimensionless correlations of the normalized 

Π5 dimensionless group for permeability reduction at 100 cm³/hr  and 23.5 ˚C for 

different particle sizes for the sand pack of 650 µm grain diameter. The measured data 

show permeability reduction  from 0.34 to 0.27 by increasing the particle diameter from 

50 µm to 100 µm and the  correlated data of the normalized Π5 dimensionless group 

show permeability reduction from 0.346 to 0.273 by increasing the particle size from 50 

µm to 75 µm.   

Fig. 7.17: Measured permeability reduction and correlated permeability reduction  
                 ( from  K∆pµovozo/Ko∆poµvz  and  (µt/ρz²)*  correlation) at  3 vol% 

                 concentration for different temperatures at 100 cm³/h 

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5

P
e
rm

e
a
b

il
it

y
 R

e
d

u
c
ti

o
n

 (
K

/K
o
) 

Pore Volumes Injected, PVI 

23.5 C

40 C

60 C

75 C

23.5 C

40 C

60 C

75 C



139 

 

Fig. 7.18: Measured permeability reduction and correlated permeability reduction  

                 ( from  K∆pµovozo/Ko∆poµvz  and  (t²cθ/z²)*  correlation) at  3 vol%  

      concentration for different temperatures at 100 cm³/h 

 

Figure 7.19: Measured permeability reduction and correlated permeability  

                     reduction ( from K∆pµovozo/Ko∆poµvz and (µt/ρz²)* correlation) at  

          100 cm³/h for different concentrations at T=23.5˚C 
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Figure 7.20: Measured permeability reduction and correlated permeability 
                     reduction ( from K∆pµovozo/Ko∆poµvz and (vt/z)* correlation) at  

                     3 vol% concentration for different flow rates at T= 23.5 ˚C 

Figure 7.21: Measured permeability reduction and correlated permeability  
          reduction ( from K∆pµovozo/Ko∆poµvz and (µt/ρDp²)* correlation)  

                     at 100 cm³/h for different gel particle sizes at T= 23.5 ˚C for the sand  

                     pack of 1015 µm grain diameter 
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Figure 7.22: Measured permeability reduction and correlated permeability  
                     reduction ( from K∆pµovozo/Ko∆poµvz and (µt/ρDp²)* correlation)  

                     at 100 cm³/h for different gel particle sizes at T= 23.5 ˚C for the sand  

                     pack of 650 µm grain diameter 
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temperatures, particle concentrations, flow rates, and particle diameters. The plot of the 

correlated versus measured permeability reduction clusters close the diagonal-line 

indicating that the dimensional correlations represent the data satisfactory. Also, the 

accuracy is lower during the early injection period but improves rapidly as more pore 

volumes of suspension injected, as shown in the Figs. 7.29 to 7.34 of the steady limit 

value of correlated versus measured permeability reduction at 5 pore volumes injected 

(PVI). The reason of the scatter of the points and the lower accuracy during the early 

injection period is the consecutively occurring plugging and unplugging phenomena 

that were demonstrated in our previous studies (Al-Ibadi and Civan 2012, 2013a and 

2013b). At the beginning of the gel particles injection, the particles are trapped at the 

entrance of the pore-throats causing a buildup in the differential pressure which 

subsequently leads to deformation and passing of the trapped particles through the pore-

throats decreases the differential pressure. The plugging and unplugging processes 

induced by suspension injection repeat continuously until attaining a constant steady 

differential pressure and the permeability reduction reaches approximately a constant 

limit value. 
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Fig. 7.23: Comparison between measured permeability reduction and correlated  

      permeability reduction at 3 vol% concentration for different  

                 temperatures at 100 cm³/h 

 

 

Fig. 7.24: Comparison between measured permeability reduction and correlated  

      permeability reduction at 3 vol% concentration for different  

      temperatures at 100 cm³/h 
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Fig. 7.25: Comparison between measured permeability reduction and correlated  

      permeability reduction at 100 cm³/h for different concentrations at T=  

      23.5 ˚C 

 

 

 

Fig. 7.26: Comparison between measured permeability reduction and correlated  

      permeability reduction at 3 vol% concentration for different flow rates  

      at T= 23.5 ˚C 
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Fig. 7.27: Comparison between measured permeability reduction and correlated  

  permeability reduction at 100 cc/h for different gel particle sizes at T=  

  23.5 ˚C for the sand pack of 1015 µm grain diameter 

 

 

Fig. 7.28: Comparison between measured permeability reduction and correlated  

                 permeability reduction at 100 cc/h for different gel particle sizes at T=  

                 23.5 ˚C for the sand pack of 650 µm grain diameter 
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Fig. 7.29: Comparison between constant limit value of steady measured  

 permeability reduction and correlated permeability reduction at 5 PVI  

               for different temperatures 

 

Fig. 7.30: Comparison between constant limit value of steady measured  

 permeability reduction and correlated permeability reduction at 5 PVI  

 for different temperatures 
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Fig. 7.31: Comparison between constant limit value of steady measured  

                 permeability reduction and correlated permeability reduction at 5 PVI  

                 for different concentrations 

 

 

Fig. 7.32: Comparison between constant limit value of steady measured  

 permeability reduction and correlated permeability reduction at 5 PVI  

 for different flow rates 
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Fig. 7.33: Comparison between constant limit value of steady measured  

                 permeability reduction and correlated permeability reduction at 5 PVI  

                 for different gel particle sizes for the sand pack of 1015 µm grain  

                 diameter 

 

 

Fig. 7.34: Comparison between constant limit value of steady measured  

  permeability reduction and correlated permeability reduction at 5 PVI  

  for different gel particle sizes for the sand pack of 650 µm grain  

  diameter 
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7.5 Effect of Particle-Diameter to Pore-Throat Size Ratio on 

Permeability Reduction 

 
                  The limit value of the steady measured permeability reduction at 100 cm³/h 

for 3 vol% concentration at T = 23.5 ˚C for different particle-diameter to pore-throat 

size ratios was correlated satisfactory in our previous studies (Al-Ibadi and Civan 2012 

and 2013a) as shown in Fig. 7.35. The experimental data show a permeability reduction 

from 0.54 to 0.27 by increasing the ratio of particle-diameter to pore-throat size from 

0.40 to 1.7 because pore plugging is enhanced by increase in the particle-diameter to 

pore-throat size ratio.  

              To correlate the effect of the ratio of the gel particle-diameter to the pore- 

throat size on the permeability reduction by gel particles, we used the Π2 dimensionless 

group that represents (Dp/DT). Figs. 7.36 and 7.37 show the limit value of steady 

measured and correlated dimensionless group and permeability reduction, respectively, 

at 100 cm³/h for 3 vol% concentration at T = 23.5 ˚C for different particle-diameter to 

pore-throat size ratios. The correlated data of the dimensionless group show satisfactory 

results compared with the measured data. Fig. 7.38 shows a comparison and satisfactory 

correlation between the constant limit values of the measured and correlated 

permeability reductions at 100 cc/h for 3 vol% concentration at T = 23.5 ˚C for different 

particle-diameter to pore-throat size ratios. 
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Fig. 7.35: Limit value of steady measured permeability reduction and correlated  

      permeability reduction at 100 cm³/h for 3 vol% concentration at T= 23.5  

      ˚C for different particle diameter to pore-throat size ratios (Al-Ibadi and  

 Civan 2012 and 2013a) 

 

Fig. 7.36: Limit value of steady measured and correlated π10 
″
and  π2   

      dimensionless groups for permeability reduction at 100 cm³/h for 3 vol%   

      concentration at T= 23.5 ˚C for different  particle diameter to pore- 

                 throat size ratios 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.3 0.6 0.9 1.2 1.5 1.8

y
 =

 P
e
rm

e
a
b

il
it

y
 R

e
d

u
c
ti

o
n

, 
K

/K
o

 

x = Particle Diameter to Pore Throat Diameter, Dp/DT 

Experimental

Correlation

y=1- 0.77(x)1.80/((x)1.80+ 0.126) 
                   R² = 1 

0.0

0.1

0.2

0.3

0.4

0.0 0.5 1.0 1.5 2.0

π
1
0
″
 =

 K
∆

p
µ

o
v

o
z

o
/K

o
∆

p
o
µ

v
z
 

π2 = Dp/DT 

Measured

Correlated

y = 0.333 
   R² = 1 



151 

 
Figure 7.37: Measured permeability reduction and correlated permeability  
                     reduction ( from K∆pµovozo/Ko∆poµvz and Dp/DT dimensionless  

                     groups) at 100 cm³/h for 3 vol% at T= 23.5 ˚C for different particle  

                     diameter to pore-throat size ratios 
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7.6  Discussion and Conclusions 

              The dimensional analysis of the gel particles injection into the sand packs 

provided the following results and conclusions of practical importance: 

 

 The evaluation of the near well-bore formation treatment by gel particles using 

dimensionless correlations was presented and various important dimensionless 

correlations were developed which can assist in designing for conditioning of the high 

permeability formations with gel particles. 

 The original 14 variables of the sand packs, gel particles suspensions, and the 

operation conditions, were reduced to 10 dimensionless groups by means of the method 

of dimensional analysis. However, only 7 out of these 10 dimensionless groups were 

sufficient to obtain meaningful correlations of our experimental data. 

 The maximum limit values of the dimensionless groups were observed to be 

different for different experimental conditions. This problem was alleviated 

conveniently by using the normalized dimensionless groups to obtain an effective 

correlation of the permeability reduction of the sand packs at different temperatures, 

concentrations, flow rates, and gel particles diameters. 

 Comparison between the measured and correlated permeability reduction 

obtained from the normalized dimensionless groups was shown to yield a satisfactory 

match, especially at the steady limit values of permeability reduction. 

 The effect of the ratio of the gel-particle to pore-throat size ratio on the 

permeability reduction by gel particles was correlated successfully using the 

dimensionless group involving the ratio of the gel-particle to pore-throat size.  
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 The outstanding advantage of using the normalized dimensionless groups rather 

than the actual variables is to be able to develop empirical correlations which are 

applicable also at field conditions which are different than the laboratory test 

conditions. 

 The present dimensionless correlations can predict the evolving permeability 

reduction under the varying conditions of gel particles suspension injection processes. 

In contrast, the previous empirical correlations of gel particles injection can only 

provide an estimate of the final permeability reduction attained at the end of treatment. 

 The particles trapped across the pore throats initially cause a pressure build-up 

(and permeability decrease) which eventually leads to deformation and passing of the 

particles through pore-throats resulting in a subsequent reduction of the differential 

pressure (and permeability increase). Thus, the measured and correlated permeability 

reduction show consecutively decreasing and increasing permeability trends (oscillation 

phenomenon) caused by the plugging and unplugging phenomena.  
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Chapter 8: Experimental Investigation and Correlation of Particle-Gel 

Systems for Near-Wellbore Water Shutoff  Treatments 

 

8.1  Introduction                 

        The particle- gel system was used as a method of near-wellbore formation 

treatment to prevent or control water production in waterfloooded mature oil fields. 

This system consists from a polymer/crosslinker as the gel and a silica flour as the 

particles to provide leak off control and act as a diverting filter cake ( Dalrymple et al. 

2008; Ali et al. 2008; van Eijden et al. 2005). The gel squeezes into the matrix, 

developing a shallow matrix seal. One application of this system has been in wells 

where the water producing zones were identified and separated from the oil producing 

zones, wherein zonal isolation was not an option. The entire interval was treated and, 

following a shut-in period to allow the system to crosslink, the wellbore was cleaned 

with coiled tubing (CT) and the hydrocarbon zone could then be re-perforated. 

Dalrymple et al. (2008) applied 50 wt% silica flour concentration to achieve sufficient 

fluid loss control of the gel but it is desirable to lower this concentration.  

            Optimization particulate concentration, leak off, and threshold pressure are 

studied qualitatively and quantitatively by laboratory testing. To study the leak off, fluid 

loss tests are performed at constant pressure and the volume of the filtrate water is 

measured during the test. Effects of silica flour concentration, pore space of the 

permeable filter disk, sand size and temperature on the leak off and the pressure initiate 

flow  are  studied  by  adding different amount of silica flour to special gel system using 
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permeable filter disks of different pore spaces and sand of varying sizes and 

temperatures. The sand represents a gravel pack and the filter disc represents the 

formation. To study the threshold pressures, the pressures that initiate water flow  are 

measured after the fluid loss tests.  

             In the present study Empirical correlations and charts are developed from the 

experimental data which can be used to predict the fluid loss, the pressure necessary to 

initiate flow, and the filtrate volume at any silica flour concentration, pore diameter of 

formation, sand size, and temperature. Additionally, correlations for the critical silica 

flour concentration are developed which can be used to predict the critical silica flour 

concentration at any pore diameter of filter disc and sand size. The critical silica flour 

concentration is the concentration below which there is no effect on the filtrate volume 

and the pressure to initiate flow and above which the filtrate volume can decreases and 

the pressure initiate flow can increase. This study can aid the successful design to 

achieve optimal conformance control for reducing high permeability and controlling 

water production in waterflooded mature oil fields. Rather than correlating the 

individual data set, correlating the data in groups for similar tests to develop general 

correlations is preferred. This can help ensure the similar trends in correlations of all the 

data points of the measurement in a consistent manner so that the trends of correlations 

will be similar. Therefore, correlating data in groups is advantageous to obtain the best 

meaningful generalized correlations, which can aid the design of field scale applications 

at any conditions which could differ from conditions of the experimental study or 

measurements. 
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8.2  Analysis and Investigation of Experimental Results 

                 Described next are the experimental investigation and phenomenological 

description of the filtrate loss and the pressure to initiate flow. The silica flour-gel 

system during fluid loss testing was passed through sand (gravel pack) similarly to 

filtration through a disc (formation), as shown in Fig. 8.1. Silica flour concentration in 

the system that reached the filtration disc was an important factor affecting filtrate loss 

and pressure to initiate flow because the silica flour became trapped in the pores of the 

filtrate disc, forming a filter cake. 

          

            For the same filter disc and silica flour concentration, the fluid loss of the silica 

flour-gel system were increased and the pressure to initiate flow was decreased by 

increasing the sand mesh because the sand and pore sizes were decreased. This leads to 

silica flour entrapment in the pores of the sand, causing the filter disc to have low 

Fig. 8.1- Convert the filtrate test from laboratory scale to field scale 
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concentration of silica flour, which caused low silica flour to be trapped in the pores of 

the filter disc and low filter cake formation on the filter disc, as shown in Fig. 8.2.  

 

   

 

Fig. 8.2: The filtrate cake for same filter disc and same silica flour  concentration  

               and different sand sizes (a) 12/20  mesh (b) 20/40 sand   (c) 40/70 mesh        

 

   

8.3   Development of Empirical Correlations 

8.3.1  Fluid Loss  

             Empirical correlations from the experimental data were developed by 

considering several relevant parameters, such as silica flour concentration, sand size, 

and pore size of filter disc that effect fluid loss. Charts for practical applications of fluid 

loss were constructed by performing the following steps: 

1- Develop a relationship which correlates the experimental data of fluid loss 

percent with silica flour concentration. 

2- Determine the critical silica flour concentration for all experimental conditions. 

3- Correlate the experimental data at various conditions with the critical silica flour 

concentration. 

(a) (b

) 

(c) 



158 

4- Apply the correlations of the experimental data developed above to construct 

charts of fluid loss  that can be used for practical applications at other 

conditions.  

    1-   Correlation of the Experimental Data of Fluid Loss 

               Experimental data were correlated by the following exponential relationship. 

                                                                                                             (8.1)                                              

where y represents the fluid loss of the particle-gel system (%); x is the silica flour 

concentration (wt%); A, B, and α are empirical parameters (dimensionless), determined 

by applying Eq. B-6, given in Appendix B. For the same filter disc and different sand 

sizes, Figs. G.1 to G.3 show an exponential relationship between the fluid loss and 

silica flour concentration for 35, 10, and 5 micron average pore diameter of filter disc at 

different sand sizes. Figs. G.4 to G.6 show straight line plot of Eq. B-6 for 35, 10, and 5 

micron pore diameter of filter disc at different sand sizes, given in Appendix G.  

 

2-     Determination of the Critical Silica Flour Concentrations 

             The critical silica flour concentration is the concentration below which there is 

no effect on the fluid loss% and the pressure initiate flow and above which the fluid loss 

will decreases and the pressure initiate flow increases. The critical silica flour 

concentration represents the minimum value at which the fluid loss equal 100%. The 

critical silica flour concentrations were determined from the correlations developed in 

the following section at 100% fluid loss for all the experimental conditions, as shown in 

Table 8-1. 

 

 

 BxAy  exp
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  Table 8-1: CRITICAL SILICA FLOUR CONCENTRATIONS 

      Pore diameter of         Sand size               Critical silica 

            filter disc                                             flour concentration 

             (micron)                 (mesh)                          wt% 

                 35                        12/20                           0.60 

                 35                        20/40                           0.70 

                 35                        40/70                           0.84 

                 10                        12/20                           0.28 

                 10                        20/40                           0.32 

                 10                        40/70                           0.38 

                  5                         12/20                           0. 08 

                  5                         20/40                           0.15 

                  5                         40/70                           0.20 

 

3-     Correlation of the experimental data with the critical silica flour concentration 

             The experimental data were correlated with the critical silica flour 

concentration as a minimum value by used of the following exponential relationship. 

 

                                                                                                                    (8.2)  

                                                                                                          

where y represents the fluid loss of the particle-gel system (%); x is the silica flour 

concentration (wt%); xcr is the critical silica flour concentration (wt%); B, and α are 

empirical   parameters,  dimensionless,   determined  by  applying    Eq. B-10,  given  in  

  

crxxBy  exp100
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Appendix B. For the same filter disc and different sand sizes, Figs. G.7 to G.9 show an 

exponential relationship between the fluid loss and silica flour concentration for 35, 10, 

and 5 micron average pore diameter of filter disc at different sand sizes. Figs. G.10 to 

G.12 show straight line plot of Eq. B-10 for 35, 10, and 5 micron pore diameter of filter 

disc at different sand sizes, given in Appendix G.  

 

4-      Development of charts for fluid loss 

             Charts of fluid loss were developed based on the exponential relationships of 

the experimental data with the critical silica flour concentrations which can be used to 

estimate the fluid loss of the particle-gel system at any silica flour concentration, pore 

diameter of filter disc, and sand size. The values of B, α, and xcr  were collected from 

the exponential relationships of same pore diameter of filter disc and different sand 

sizes and plotted against sand sizes, as shown in Fig. G.13 to G.21.  The plotted B, α, 

and xcr were correlated as linear functions (y = aix + bi) where y represents B, α, or xcr; 

x represents sand size; and ai and bi represent initial guesses of parameters (Figs. G.13 

to G.21). By substituting the linear functions of B, α, and xcr in the exponential 

relationship, as shown in Eq. 8.3, empirical correlations were developed and used to 

construct charts of fluid loss at 35, 10, and 5 micron pore diameter of filter disc and 

different sand mesh, and different silica flour concentrations, as shown in Figs. 8.3 to 

8.5. 

 

            
                                                                                                               (8.3) 

 

      33

2211exp100..
bDa

sss
sbDaCbDaLF



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where F.L. represents the fluid loss (vol%); Ds represents the sand diameter (micron); 

Cs represents the silica flour concentration (wt%); and a1, b1, a2, b2, a3, and b3 represent 

initial guesses (dimensionless). The values of the initial guesses of a1, b1, a2, b2, a3, and 

b3 in Eq. 8.3 were collected from the linear functions of 35, 10, and 5 micron pore 

diameter of filter disc and plotted against pore diameter of filter disc, as shown in Figs. 

G.22 to G.27 given in Appendix G. The parameters of a1, b1, a2, b2, a3, and b3 were 

correlated as linear functions (y = aix + bi) where y represents a1, b1, a2, b2, a3, or b3; x 

represents pore diameter of filter disc; and ai and bi represent initial guesses of 

parameters (Figs. G.22 to G.27). The linear functions of a1, b1, a2, b2, a3, and b3 were 

substituted in Eq. 8.3 and general empirical correlation of the fluid loss was developed 

which can be used at any pore diameter of filter disc, sand mesh, and silica flour 

concentration. 

 

 

                                                                                                                                     (8.4)  

where DF represents pore diameter of filter disc, micron.  Fig. 8.6 shows the chart of 

fluid loss at 12/20 sand mesh and different pore diameters of filter disc and different 

silica flour concentrations which was developed by the general empirical correlation 

(Eq.8.4). Fig. 8.6 shows that for the same sand mesh and same silica flour 

concentration, the filtration volume of the silica flour-gel system increased by 

increasing the pore diameter of the filter disc because the silica flour was passed 

through the large pores of the filter disc and low silica flour was trapped in the pores 

and low filtrate cake was formed on the filtrate disc, as shown in Fig. 8.7.   

       sFsF CDDEDELF 06.204.005330766exp100..

        474.0012.0052066
16.002.0056065


 FsF DDEDE

FsF DDEDE
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Fig. 8.3: Experimental and correlated fluid loss at different silica flour   

               concentrations and different sand sizes for 35 micron pore diameter of   

               filter disc (Plot of Eq. 8.3) 

 
Fig. 8.4: Experimental and correlated fluid loss at different silica flour  

               concentrations and different sand sizes for 10 micron pore diameter of   

               filter disc (Plot of Eq. 8.3)    
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Fig. 8.5: Experimental and correlated fluid loss at different silica flour  

               concentrations and different sand sizes for 5 micron pore diameter of  

               filter disc (Plot of Eq. 8.3)                   

 
Fig. 8.6: Experimental and correlated fluid loss at different silica flour  

               concentration and different pore diameters of filter discs for 12/20 sand  

               mesh (Plot of Eq. 8.4) 
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Fig. 8.7: The filtrate cake for same sand mesh and same silica flour  concentration   

                and different pore diameters of filter discs (a) 5 micron  (b) 10 micron  (c)    

                 35 micron 

 

8.3.2   Critical Silica Flour Concentration 

              The critical silica flour concentration represents the value of concentration at 

which the fluid loss and the pressure initiate flow change. The determination of the 

critical silica flour concentration is very important because it represents the initial 

condition of the empirical correlation for practical application. Charts of critical silica 

flour concentration were developed from the experimental data which can be used to 

estimate the critical silica flour concentration at any pore diameter of filter disc and 

sand size. The values of xcr of same pore diameter of filter disc and different sand sizes 

were calculated from the linear functions of figures G. 15, G.18, and G. 21 and plotted 

against sand sizes, as shown in Fig. H.1. The plotted xcr in Fig. H.1were correlated as 

linear functions and the values of A, and B were collected from the linear functions and 

plotted against sand size, as shown in Figs. H.2 and H.3. The plotted As and Bs were 

correlated again as linear functions (y = aix + bi) where y represents A, or B; x 

represents sand size, and ai and bi represent initial guesses of parameters (Figs. H.2 and 

H.3). The empirical correlation was developed by substituting the linear functions of A, 

and  B  in  the  critical  silica flour concentration  relationship, as shown in Eq. 8.5. This  

 

(a) (c) (b) 
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empirical correlation was used to construct chart of critical silica flour concentration 

which can be used for practical applications, as shown in Fig. 8.8. 

 

                                                                                                                           (8.5) 

where xcr represents critical silica flour concentration (wt%); Ds represents sand 

diameter (micron); and DF represents pore diameter of filter disc (micron).     

   

    

    

Fig. 8.8: Experimental and correlated critical silica flour concentration at   

        different sand sizes and different  pore diameter of filter discs (Plot of Eq. 8.5) 

 

 

               Fig. 8.8 shows that the critical silica flour concentration increased by 
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large pores of the filter disc and low silica flour trapped in the pores of the filter disc. 

The maximum value of the critical silica flour concentration is determine at the sand 

size equal zero. The maximum value of the critical silica flour concentration for 5, 10, 

15, 25, 35, and 45 micron pore diameter of filter disc are 0.25, 0.36, 0.47, 0.68, 0.89, 

and 1.10 wt%, respectively. Fig. 8.8 shows that the critical silica flour concentration 

was decreased by increasing the sand size because the silica flour passed through the 

pores of the sand and the gel-particle system reached the filter disc at a high 

concentration of the silica flour. The minimum value of the critical silica flour 

concentration is zero and for 5, 10, 15, 25, 35, and 45 micron pore diameter of filter disc 

the minimum value of the critical silica flour concentration is determined at the sand 

size 2400, 3200, 3500, 3900, 4200, and 4400 micron, respectively. 

 

8.3.3  Pressure Initiate Flow  

              Charts and empirical correlations were developed from the experimental data 

of several relevant parameters, such as pore size of filter disc, silica flour concentration, 

and sand size that effect pressure initiate flow. The experimental data of the pressure 

initiate flow were correlated with the critical silica flour concentration as an initial 

condition by the following relationship. 

                                                                        (8.6)                                     

     

where y represents  the  pressure  initiate  flow (kPa); x is the  silica flour  concentration  

(wt%); xcr is the critical silica flour concentration (wt%), were determined by applying 

Eq. 8.5; A, B, and α  are  empirical  parameters  (dimensionless),  were  determined   by 

 
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applying Eq. B-11, given in Appendix B. For the same filter disc and different sand 

sizes, Figs. I.1 to I.3 show the relationship between the pressure initiate flow and silica 

flour concentration for 35, 10, and 5 micron average pore diameter of filter disc at 

different sand sizes. Figs. I.4 to I.6 show straight line plot of Eq. B-11 at different sand 

sizes for 35, 10, and 5 micron pore diameters of filter disc.  

              To develop charts of pressure to initiate flow of same pore diameter of filter 

disc and different silica flour concentration and sand sizes, the values of A, B, and α  of 

the correlations were  plotted against sand sizes, as shown in Figs. I.7 to I.15, and 

correlated as linear functions (y = aix + bi) where y represents A, B, and α; x represents 

sand size, ai and bi represent initial guesses of parameters. These linear functions were 

substituted in Eq. 8.6 to get new empirical correlations used to construct charts of 

pressure initiate flow at 35, 10, and 5 micron pore diameter of filter disc and different 

sand sizes and silica flour concentrations, as shown in Figs. 8.9 to 8.11. 

 

                                   (8.7) 

where P represents the pressure initiate flow (kPa); Ds represents the sand diameter, 

micron; Cs represents the silica flour concentration (wt%); xcr represents critical silica 

flour concentration (wt%); and a1, b1, a2, b2, a3, and b3 represent initial guesses 

(dimensionless). The  values  of   a1, b1, a2, b2, a3, and  b3  in  Eq. 8.7   were  plotted   

against   pore diameter of filter disc and correlated as linear functions, as shown in Figs. 

I.16 to I.21 and substituted in Eq. 8.7 to develop a general empirical correlation of the 

pressure initiate flow which can be used at any pore diameter of filter disc, silica flour 

concentration, and sand size.  
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                                                                                                                              (8.8)     

                                                                                                                                                                                                                                                                                        

           Fig. 8.12 shows application of Eq. 8.8 to calculate the pressure initiate flow at 

12/20 sand mesh and different pore diameters of filter disc and different silica flour 

concentrations. Fig. 8.12 demonstrated that the pressure initiate flow for the same sand 

mesh and same silica flour concentration decreased by increasing the pore diameter of 

the filter disc because low silica flour was trapped in the large pores and low filtrate 

cake was formed, as shown in Fig. 8.7.    

 

Fig. 8.9: Experimental and correlated pressure initiate flow at different silica flour  

               concentrations and different sand sizes for 35 micron pore diameter of  

               filter disc (Plot of Eq. 8.7) 
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Fig. 8.10: Experimental and correlated pressure initiate flow at different silica  

               flour concentrations and  different sand sizes for 10 micron pore diameter  

               of filter disc (Plot of Eq. 8.7) 

 
Fig. 8.11: Experimental and correlated pressure initiate flow at different silica  

                 flour concentrations and different sand sizes for 5 micron pore diameter  

                 of filter disc (Plot of Eq. 8.7) 
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Fig. 8.12: Experimental and correlated pressure initiate flow at different silica  

                 flour concentrations and different pore diameters of filter discs for 12/20  

                 sand mesh (Plot of Eq. 8.8) 

 

 

8.4  Thermal Effects 

                 The fluid loss of the 2.8 wt% silica flour particle-gel system is studied at 35 

micron pore diameter filter disc, 12/20 sand mesh and different temperatures of 23.5, 

51, 68, and 83 °C. The filtrate tests results show an increase in the fluid loss of the silica 

flour particle-gel system by increasing the temperature. The fluid loss was increased 

from 11 to 12.5% by increasing the temperature from 23.5 to 83 °C. This happened 

because the viscosity of the silica flour particle-gel system decreases by temperature 

which lead to the particle-gel system pass through the pores easily. The viscosity 

decreases  from  0.059 to 0.027 Pa.s when the temperature increases from 23.5 to 83 °C. 
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The pressure initiate flow after the filtrate tests of the silica flour particle-gel system is 

studied at different temperatures of 23.5, 51, 68, and 83 °C. The experimental results 

show decreases in the pressure initiate flow by increasing the temperature. The pressure 

initiate flow  was decreased from 3100 to 2070 kPa by increasing the temperature from 

23.5 to 83 °C. This happened because the degree of pore plugging by the silica flour 

particle-gel decreased by temperature. 

 

8.4.1  Correlation of Thermal Effects 

                 Empirical correlations of practical importance are developed from the 

experimental data at different temperatures for effective design of the silica flour 

particle-gel system application of near-wellbore formation treatment. The Vogel-

Tammann- Fulcher (VTF)-type equations (Eq. 6.1) was used to correlate the 

experimental data for viscosity, the fluid loss, and the pressure initiate flow of the silica 

flour particle-gel system, as follows: 

 

                                 (8.9) 

where µ is the viscosity (Pa.s), T is the actual temperature (K), µc is the pre-exponential 

coefficient of the viscosity = 0.0027 Pa.s, and Tc and C are 120 and -545 K, 

respectively. 

                                   (8.10) 

where F.L. is the fluid loss (vol%), T is the actual temperature (K), (F.L.)c is the pre-

exponential coefficient of fluid loss = 8.60 vol%, and Tc and C are 470 and 42.80 K, 

respectively. Further, 
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                                                                                                                     (8.11) 

                                                                                                                          

where P is the pressure to initiate flow (kPa), T is the actual temperature (K), Pc is the 

pre-exponential coefficient of pressure to initiate flow = 4824 kPa, and Tc and C are 

420 and -54.18 K, respectively. 

                       Figs. 8.13 to 8.15   show the straight- line VTF plots of the experimental 

data of the 2.8 wt% silica flour particle-gel viscosity, fluid loss, and pressure initiate 

flow . Figs. 8.16 to 8.18 show comparisons between the viscosity, fluid loss, and 

pressure to initiate flow values obtained from VTF equation and the experimental data. 

 

 

 

Fig. 8.13: Straight- line VTF plot for the 2.8 wt% particle-gel system viscosity  
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           Fig. 8.14: Straight- line VTF plot for the fluid loss  

 
                Fig. 8.15: Straight- line VTF plot for the pressure initiate flow  
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Fig. 8.16: Comparison between silica flour particle-gel system viscosity obtained 

               from the VTF equation and the measured data 

 

Fig. 8.17: Comparison between fluid loss obtained from the VTF equation  and the   

                 experimental data 
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Fig. 8.18: Comparison between pressure initiate flow obtained from the VTF  

                 equation  and the experimental data 

 

                    The experimental results show that when the temperature increased from 

23.5 to 83°C, the viscosity of the 2.8 wt% silica flour particle-gel system deceased from 

0.059 to 0.027 Pa.s, the fluid loss increased from 12.5 to 11%, and the pressure to 

initiate flow decreased from 3100 to 2070 kPa. The VTF correlations of viscosity, fluid 

loss, and pressure to initiate flow are close to the experimental data. Thus, the VTF 

equation can be used to predict viscosity, fluid loss, and pressure to initiate flow for a 

similar material and operational conditions at any temperature. 

 

 

8.5   Conclusions  

 
             The primary findings of this experimental study can be summarized as follows: 
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 Quantitative  evaluation of various factors affecting the performance of silica  

 

flour particle-gel applications was studied for successful field applications of 

particle-gel system injection. Thus, important empirical correlations were 

developed which can assist in conditioning of highly permeable formations by 

reducing the high permeability and increasing the pressure to initiate flow. 

Hence, operators can treat near-wellbore formations having high permeability 

zones and prevent or control water production in waterflooded mature oil fields. 

 Instead of correlating individual data set, the data was correlated as groups and 

best meaningful generalized correlations and charts were developed which can 

help design silica flour particle-gel field trip applications at any operation 

conditions for near-wellbore formation treatment. 

 The effects of temperature on the fluid loss and the pressure to initiate flow of 

the silica flour particle-gel process were investigated and an increase to fluid 

loss and a decrease to pressure initiate flow were observed. This occured 

because the silica flour particle-gel viscosity decreased by temperature which 

leads to the particle-gel system transport easily through the pores. 

 Important empirical correlations for thermal effect with high agreement between 

the experimental data and correlations were developed using (VTF)- type 

equations, which can be used for successful design of the silica flour particle-gel 

system application of near-wellbore formation treatment. 
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Chapter 9: Filtration Analysis of Particle-Gel Systems for Near-

Wellbore Water Shutoff  Treatments    

 

9.1   Introduction 

                The high permeability formations are prone to high water production 

occurrence in oil or gas producing wells which causes several undesirable problems to 

the oil industry. Using silica flour particle- gel system is a method to reduce or 

condition the high permeability of reservoir formation and thus avoid the water 

production problem. The leak off of the silica flour particle-gel system is studied by 

fluid loss tests at different silica flour concentrations, pore space of the permeable filter 

disc, and sand sizes. The rate constant of filtrate and spurt loss volume are determined 

and correlated with the silica flour concentration at different sand sizes and pore 

diameters filter discs. Exponential relationship is used to correlate the experimental data 

of the leak off tests of the silica flour particle-gel system and empirical correlations are 

developed of the filtrate volume of the silica flour particle-gel system at different sand 

sizes, pore diameters of the filter disc, and silica flour concentrations. The developed  

empirical correlations can be used to predict the evolving filtrate volume and thus can 

assist in effective and successful design of silica flour particle-gel system used for near-

wellbore formation treatment under varying conditions. 

 

9.2   Development of Empirical Correlations of Filtrate Volume 

              The experimental data obtained from the tests of Al-Ibadi et al. (2015) by silica 
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flour particle- gel system are correlated by exponential relationship. Empirical 

correlations of filtrate volume of the silica flour particle-gel system were developed 

from the experimental data of the leak off tests at different silica flour concentrations, 

pore diameters of filter discs, and sand sizes. The experimental data were correlated by 

the following exponential relationship. 

                                                                                                               (9.1)     

                                         

where y represents the filtrate volume of the particle-gel system, cm
3
; x is the filtrate 

time, min; A, B, and α are empirical parameters, dimensionless, were determined by 

applying Eq. B-6, given in Appendix B. Figs. 9.1 to 9.3 show the experimental filtrate 

volume (Vf) and the correlated filtrate volume obtained from the exponential 

relationship at 35 micron pore diameter of filter disc  for different sand sizes at 12/20, 

20/40, and 40/70 sand mesh and different silica flour concentrations at 0.21, 0.53, 1.06, 

and 1.60 vol%. Figs. J.1 to J.3 show straight line plot of Eq. B-6 for 35 micron pore 

diameter of filter disc at different sand sizes and different silica flour concentrations. 

For same filter disc and same sand mesh, the experimental data show filtrate volume 

reduction  by increasing the silica flour concentration, for 35 micron pore diameter of 

filter disc and 12/20 sand mesh, the filtrate volume deceases from 76 cm
3
 to 5.5 cm

3
 by 

increases the silica flour concentration from 0.21 vol% to 1.60 vol%, as shown in Fig. 

9.1. This happened because the amount of the silica flour trapped in the pores of the 

filter disc increased by silica flour concentration and high filtrate cake was formed on 

the filtrate disc, as shown in Fig. 9.4. For same filter disc and same silica flour 

concentration, the  experimental  data  show  filtrate volume increases  as the sand mesh 

 

 BxAy exp



179 

increases. For  35  micron   pore  diameter  of  filter  disc  and  1.06  vol%   silica   flour 

concentration, the filtrate volume increases from 11 cm
3
 to 25 cm

3
 by increase of the 

sand mesh from 12/20 to 20/40, as shown in Figs. 9.1 and 9.2. This happened because 

the sand size was decreased and the pores size was decreased which lead to the silica 

flour entrapment in the pores of the sandpack and the silica flour particle-gel system 

that reached to the filter disc have low concentration of the silica flour. This causes low 

silica flour entrapment in the pores of the filter disc and low filtrate cake formation on 

the filter disc, as shown in Fig. 9.5. 

 

   

 

Fig. 9.1: Exponential relationship between filtrate time and filtrate volume at 35  

               micron pore diameter of filter disc and 12/20 sand mesh for different  

               silica flour concentrations 
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Fig. 9.2: Exponential relationship between filtrate time and filtrate volume at 35  

               micron pore diameter of filter disc and 20/40 sand mesh for different  

               silica flour concentrations

 
Fig. 9.3: Exponential relationship between filtrate time and filtrate volume at 35  

               micron pore diameter of filter disc and 40/70 sand mesh for different  

               silica flour concentrations 
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Fig. 9.4: The filtrate cake for same sand mesh and same filter disc and different   

                 silica flour concentrations   (a) 0.21 vol%   (b) 0.53 vol%   (c) 1.06 vol%   

                 (d) 1.60 vol% 

 

   

 

 

 

 

 

Fig. 9.5: The filtrate cake for same filter disc and same silica flour  concentration  

                 and different sand sizes (a) 12/20  mesh (b) 20/40 sand   (c) 40/70 mesh 

 

                 Figs. 9.6 to 9.11 show the experimental filtrate volume (Vf) and the correlated 

filtrate volume obtained from the exponential relationship at 10 and 5 micron pore 

diameters filter discs for different sand sizes at12/20, 20/40, and 40/70  sand  mesh  and 

 different  silica  flour  concentrations at 0.21, 0.53, 1.06, and 1.60 vol%. Figs. J.4 to 

J.9 
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show straight line plot of Eq. B-6 for 10 and 5 micron pore diameters filter disc at 

different sand sizes and different silica flour concentrations. For the same sand mesh 

and same silica flour concentration, the experimental data show filtrate volume 

increases  as the pore diameter of the filter disc increases. For 12/20 sand mesh and 1.06 

vol% silica flour concentration, the filtrate volume increases from 1 cm
3
 to 7 cm

3
 by 

increase of the pore diameter of the filter disc  from 5 micron to 10 micron, as shown in 

Figs. 9.6 and 9.9. This happened because the silica flour passed into the large pores of 

the filter disc and low silica flour was trapped in the pores and low filtrate cake was 

formed on the filtrate disc, as shown in Fig. 9.12. 

 

 
Fig. 9.6: Exponential relationship between filtrate time and filtrate volume at 10  

               micron pore diameter of filter disc and 12/20 sand mesh for different  

               silica flour concentrations 

0

20

40

60

80

100

0 5 10 15 20 25 30

F
il
tr

a
te

 V
o

lu
m

e
, 

c
m

³ 

Filtrate Time, min 

0.21%

0.53%

1.06%

1.60%

Correlated

y(1.60%) = 0.0001exp(8.673x0.05) 
                  R² = 1 

y(1.06%) = 1exp(1.271x0.13) 
                  R² = 1 

y(0.53%) = 5exp(1.124x0.05) 
                  R² = 1 

y(0.21%) = 7.3exp(2.011x0.02) 
                  R² = 0.99 



183 

 

Fig. 9.7: Exponential relationship between filtrate time and filtrate volume at 10  

               micron pore diameter of filter disc and 20/40 sand mesh for different  

               silica flour concentrations 

 

Fig. 9.8: Exponential relationship between filtrate time and filtrate volume at 10  

               micron pore diameter of filter disc and 40/70 sand mesh for different  

               silica flour concentrations 
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Fig. 9.9: Exponential relationship between filtrate time and filtrate volume at 5  

               micron pore diameter of filter disc and 12/20 sand mesh for different  

               silica flour concentrations 

 

Fig. 9.10: Exponential relationship between filtrate time and filtrate volume at 5  

               micron pore diameter of filter disc and 20/40 sand mesh for different  

               silica flour concentrations 
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Fig. 9.11: Exponential relationship between filtrate time and filtrate volume at 5 

               micron pore diameter of filter disc and 40/70 sand mesh for different  

               silica flour concentrations 

 

 

                  

 

Fig. 9.12: The filtrate cake for same sand mesh and same silica flour concentration  

                 and different pore diameter of filter discs (a) 5 micron  (b) 10 micron   
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9.3   Correlations of Rate Constant of Filtrate and Spurt Loss Volume 

               The experimental results of the fluid loss tests showed a reasonable 

relationship between the filtrate volume and the silica flour concentration, sand size, 

and pore diameter of filter disc. The filtrate volume decreased by silica flour 

concentration and sand size increased and the filtrate volume increased as the pore 

diameter of the filter disc increased. For the fluid loss test, the rate constant of filtrate 

and the spurt loss volume are important variables because they give a good idea about 

the expected filtrate volume during the fluid loss test. Figs. 9.13 to 9.15 show the 

filtrate volume of the silica flour particle-gel system during the fluid loss test for 

different silica flour concentrations, pore diameters filter discs, and sand sizes. The 

filtrate volume is modeled and represented as straight line plots shown in Figs. 9.19 to 

9.21. The slops of the straight lines represent the rate constants of filtrate and the 

intercepts represent the spurt loss volumes. Table 9-1  shows the rate constants of 

filtrate and the spurts loss volumes of the silica flour particle-gel system at different 

sand sizes, pore diameters of the filter discs, and silica flour concentrations. The rate 

constants of the filtrate and spurt loss volumes decreased by silica flour concentrations 

and sand sizes because the pores plugging increased and increased by pore diameters of 

the filter discs because the pores plugging decreased. Figs. K.1 and K.2 in Appendix K 

show the relationship between the rate constants of filtrate and spurt loss volumes and 

the silica flour concentrations of the particle-gel system at different sand sizes and pore 

diameters of the filter discs. The rate constant of the filtrate and the spurt loss volumes 

are correlated by using Eq. B-6 given in Appendix B, as shown in Figs. K.3 to K.8. The 

rate  constants  of  the  filtrate  and  the  spurt  loss  volumes  were  correlated  using  the 
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exponential relationship shown in Eq. 6.7. The correlations showed intersection 

between them because of the individual data correlation, as shown in Figs. K.1 and K.2. 

The correlations are simultaneously fitted by collecting the empirical parameters values 

from the correlations and plotted against the sand sizes and pore diameters of the filter 

discs  correlated as linear functions, as shown in Figs. K.9 to K.14. The linear functions 

of A, B, and β are substituted in the exponential relationships of the rate constants of the 

filtrate and spurt loss volumes and the empirical correlations are developed which can 

be used to predict the filtrate volume of the silica flour particle-gel system at any 

conditions, as shown in Figs. 9.16 and 9.17. 

        

 

Fig. 9.13: Experimental and correlated filtrate volume of 35 micron pore diameter 

                 filter disc and 12/20 sand mesh for different silica flour concentrations 
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Fig. 9.14: Experimental and correlated filtrate volume of 35 micron pore diameter 

                 filter disc and 20/40 sand mesh for different silica flour concentrations 

 

 

Fig. 9.15: Experimental and correlated filtrate volume of 35 micron pore diameter 

                 filter disc and 40/70 sand mesh for different silica flour concentrations 
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TABLE 9-1:  RATE   CONSTANTS    OF    FILTRATE   AND   SPURT   LOSS 

VOLUME OF 35 MICRON PORE DIAMETER FILTER DISC AT DIFFERENT 

SAND SIZES AND DIFFERENT SILICA FLOUR CONCENTRATIONS 

 

   Sand size            Silica Flour                 Rate Constant          Spurt Loss              R² 

    (mesh)         Concentration (vol%)        (cm³/min
1/2

)          Volume (cm³)      

     12/20                      0.21                                 3.64                    67.80                0.99 

                                    0.53                                 1.23                    29.64                0.67 

                                    1.06                                 0.74                      7.10                0.94 

                                    1.60                                 0.67                      2.08                0.97 

     20/40                      0.21                                 6.17                    67.10                0.81 

                                    0.53                                 1.20                    44.20                0.60 

                                    1.06                                 0.61                    21.70                0.98 

                                    1.60                                 0.39                      8.00                0.90 

     40/70                      0.21                                 3.42                    73.00                 1 

                                    0.53                                 1.64                    56.00                0.60 

                                    1.06                                 0.99                    21.95                0.95 

                                    1.60                                 0.64                       9.51               0.99          
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Fig. 9.16: Rate constant of filtrate of 35 micron pore diameter filter disc at  

                 different silica flour concentrations and  different sand sizes 

 

Fig. 9.17: Spurt loss volume of 35 micron pore diameter filter disc at  

                 different silica flour concentrations and  different sand sizes 
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9.4 Conclusions 

             The main findings of the filtrate analysis of performance of the silica flour 

particle-gel system are the following:  

 Filtrate analysis was used to evaluate the performance of the silica flour particle-

gel applications in near-wellbore formation treatment and various important 

empirical correlations were developed which can assist in effective and 

successful designing for near-wellbore formation treatment with silica flour 

particle-gel system. 

 The correlated filtrate volume obtained from the exponential relationship 

showed satisfactory match with the experimental filtrate volume.  

 The effect of the silica flour concentration, sand size, and pore diameter of filter 

disc on the filtrate volume of the silica flour particle-gel system was investigated 

and a decrease in the filtrate volume by increasing the silica flour concentration 

and sand size and an increase in the filtrate volume by increasing the pore 

diameter of the filter disc were observed.  

 The rate constants of filtrate and spurt loss volumes were determined and 

correlated successfully with the silica flour concentration, sand size, and pore 

diameter filter disc. 
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Chapter 10: Near-Wellbore Formation Treatment Design 

 
10.1  Introduction 

 

                    The objective of this chapter is to demonstrate the importance of the 

empirical correlations developed in this study for choosing suitable treatment fluids and 

evaluating the near-wellbore formation treatment under optimum application 

conditions. The developed empirical correlations are used to determine the treatment 

fluid properties and the modification of the near-wellbore formation after the treatment 

process. Two cases of treatment design are presented involving synthetic examples of 

gel-particle suspension and silica flour particle-gel systems. 

 

10.2  Synthetic Field Application of Gel-Particle Suspension 

                   The synthetic field application represents a well under drilling operations 

(Fig. 10.1) and the parameters of the synthetic well and fiels reservor shown in Table 

10-1. Drilling fluid loss occurred through the sandstone bed because of the high 

permeability of the sandstone bed. Gel-particle suspension is used to treat and modify 

the sandstone bed permeability to prevent the drilling fluid loss. Table 10-2 shows the 

properties of the gel-particle suspension and the modification of the sandstone bed after 

treatment that should be determined to design the treatment process. For the near-

wellbore formation treatment by the gel-particle suspension, empirical correlations were 

used for the treatment design. Table 10-3 shows a summary of the empirical 

correlations developed in this study.  
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       TABLE 10-1: PARAMETERS OF SYNTHETIC WELL AND FIELD     

       RESERVOIR 

        Hole size, casing ID = 8 in 

       Thickness of the sandstone bed = 200 ft 

      Penetrate of the invaded zone = 3ft 

      Porosity = 0.38 

      Permeability = 3800 md 

      BHT = 125 °F 

  

Fig. 10.1: Schematic of synthetic well under drilling process 

 

operations 
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   TABLE 10-2: PARAMETERS OF THE GEL-PARTICLE SUSPENSION AND    

   THE NEAR-WELLBORE FORMATION MODIFICATION 

        Suspension volume required (bbl) 

       Carrier fluid volume required (bbl) 

       Xanthan powder weight required (lb) 

       Polymer (gel particles) weight required (lb) 

       Injection flow rate of the suspension (bbl/day) 

       Time required to inject the suspension (hr) 

       Suspension viscosity (Pa.s) 

       Permeability reduction (dimensionless) 

       Resistance factor (dimensionless) 

 

  TABLE 10-3: SUMMARY OF THE EMPIRICAL CORRELATIONS OF THE GEL-PARTICLE   

  SUSPENSION DEVELOPED IN THIS STUDY 

  Correlation Name                        Empirical Correlation                                      Symbols                          

 Viscosity correlation                                                                  µ: suspension viscosity, Pa.s 

                                                                                                                            Cp: suspension concentration, vol% 

 Differential pressure          ΔP: differential pressure, kPa 

       correlations                                                                         q: injection flow rate, cm
3
/hr 

                                                  

                                     

                                                                                                                             Dp: gel-particle diameter, µm 

 

 Permeability reduction                                                                                      : permeability reduction, 

       correlations                                                                                                   dimensionless 
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  Correlation Name                      Empirical Correlation                                             Symbols      

                     

 

 

 

 

                                

 

  Resistance factor                                                                                       Fr: resistance factor,  

      correlations                                                                                                  dimensionless 

 

 

 

 

 

 

                       

  Power-law equation                                                                                 β: pore-throat/particle-diameter 

                                                                                                                        ratio, dimensionless 

  Exponential-law                                                                                       Rep: particle Reynold number,  

     equation                                                                                                        dimensionless 

  Thermal effect                                                                                             T: temperature, k 

    correlations  
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The steps of the treatment design calculations are as follows. 

 The wellbore volume = 3.141 × 0.333
²
 × 200 = 69.80 ft³. Wellbore + 3 ft penetration 

volume = 3.141 × 3.333
²
 × 200 = 6980 ft³. Volume for 3 ft matrix penetration = (6980- 

69.80) × 0.38 = 2626 ft³. Volume for casing fill + 20% = 69.80 + (0.2 × 69.80) = 83.76 

ft³. Volume of suspension required = 83.76 + 2626 = 2709.76 ft³ (643.46 bbl). For 3 

vol% gel particle suspension. Volume of gel particles required = 0.03 × 643.46 = 19.30 

bbl. Volume of carrier fluid required = 643.46- 19.30 = 624.16 bbl. 0.25 gm of Xanthan 

powder was added to 500 cm³ (0.004193 bbl ) water to prepare the carrier fluid. Weight 

of  the  Xanthan  powder  required =                                         gm = 37.214 kg (16.88lb). 

For the suspension experiments, 100 cm³/hr injection flow rate was used for sandpack 

of 1 in diameter. The  suspension velocity (v) =         . where A is the cross sectional 

area of the sandpack.                                       cm/hr. For same suspension velocity in the 

formation, the injection flow rate of the suspension in the Field (q): q = v × A × Φ. 

where A is the cross sectional treatment area of the sandstone bed. A = π × d × h. where 

d is the diameter of the well and h is the thickness of the sandstone bed. A = 3.141 × 

0.667 × 200 = 419 ft². v = 51.94 cm/hr = 1.704 ft/hr. q = 1.704 × 419 × 0.38 = 271.32 

ft³/hr = 64.43 bbl/hr = 1546 bbl/day. Time required to inject the suspension to the 

wellbore and the formation (t): t = Total volume of the suspension/ Injection flow rate 

of the suspension. t = 643.46/64.43 = 10 hrs. Viscosity of 3 vol% gel particle 

suspension at 125 °F (324.82 K) temperature: By using the correlation given in Table 

10-1, suspension viscosity = 0.00442 Pa.s. Permeability reduction of 3800 md 

permeability of the sandstone at 125 °F temperature: By using the correlation given in 

Table 10-1, permeability  reduction  (K/Ko) = 0.39. Permeability  decreased  from  3800 

3721425.0
004193.0
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A

q

94.51
38.0066.5

100
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 md to 1482 md by the suspension treatment. Resistance factor (Fr) at 125 °F = 11.1 by 

using the correlation given in Table 10-1. Table 10-4 shows the results of the design of 

the near-wellbore formation treatment by the gel-particle suspension to prevent the 

drilling fluid loss during the drilling operations. Fig. 10.2 shows flow chart of the 

process of the near-wellbore formation treatment by gel-particle suspension. 

 

 

      TABLE 10-4: RESULTES OF THE NEAR-WELLBORE FORMATION    

      TREATMENT DESIGNE BY THE GEL-PARTICLE SUSPENSION 

        Suspension volume required = 643.46 bbl 

       Carrier fluid volume required = 624.16 bbl 

       Xanthan powder weight required = 16.88 lb 

       Polymer (gel particles) volume required = 19.30 bbl 

       Injection flow rate of the suspension = 1546 bbl/day 

       Time required to inject the suspension = 10 hr 

       Suspension viscosity = 0.00442 Pa.s 

       Permeability reduction (K/Ko) = 0.39 

       Permeability after treatment = 1482 md 

       Resistance factor = 11.1 
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Fig. 10.2: Process of the near-wellbore formation treatment by gel-particle  

                suspension 
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10.3  Synthetic Field Application of Silica Flour Particle-Gel System 

                    The synthetic field application represents oil producing well (Fig. 10.3) of 

parameters show in Table 10-5 and with three perforated zones (Table 10-6) (van 

Eijden et al. 2004). The middle sands were flushed and producing predominantly water. 

The well was producing 3000 bbl/day with a water cut of 63 %. Gel-cement system 

treatment was applied of the perforated zones at maximum pressure of 1500 psi for 30 

minutes, thus the water shutoff was achieved by the cement plugged in the perforations 

and the gel penetrated three inch through the matrix (formation). The wellbore was 

washed to remove excess gel-cement and the well was shut in for 48 hrs. The upper and 

lower zones were re-perforated and the initial production was 4500 bbl/day at 40% 

water cut. The production logging tool (PLT) showed no flow coming from the middle 

zone. It was found that the main problem for the gel-cement system is the interaction 

between the cement retarders and the gel. The cement worked as a fluid loss agent in 

the gel-cement system. van Eijden 2005 replaced the cement by a silica flour which is 

an inert material, and developed particle-gel system. 50 wt% of silica flour was used in 

the particle-gel system which causes logistics problem and  results in wellsite handling 

issues (Dalrymple et al. 2008). Fluid loss experiments were conducted on different 

silica flour particle-gel systems to minimize and optimize the silica flour concentration, 

as shown in chapter 8. Silica flour particle-gel system of 4.20 wt%  (1.60 vol%) silica 

flour concentration was developed from the fluid loss experiments, which can be used 

for the near-wellbore formation treatment. Table 10-7 shows the components of the 

silica flour-particle gel system developed from the fluid loss experiments. 
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        TABLE 10-5: PARAMETERS OF SYNTHETIC OIL PRODUCING  

        WELL 

             Hole size, casing ID = 7.0 in 

             Tubing ID = 3.5 in 

           Oil production rate = 3000 bbl/day 

           Water cut = 63 % 

           Porosity = 0.22 

           BHP = 1500 psi 

           BHT = 90 °C 

 

Fig. 10.3: Schematic of synthetic oil producing well  
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       TABLE 10-6: PERFORATION ZONES OF SYNTHETIC PRODUCING  

       OIL WELL  

                  Zone                       Perforation Interval, m    Net Thickness, m                        

              Upper zone                      2864.0- 2867.0                           3.0 

                                                       2872.0- 2873.0                           1.0 

                                                       2873.5- 2878.0                           4.5 

                                                       2883.0- 2892.0                           9.0 

              Middle zone                    2892.5- 2896.0                            3.5 

                                                       2901.0- 2904.0                           3.0 

                                                       2905.0- 2914.0                           9.0 

                                                       2917.0- 2925.0                           8.0 

              Lower zone                      2933.0- 2944.0                         11.0 

                                                       2943.0- 2948.0                           5.0 

 

The steps of the treatment design calculations as follows. The wellbore volume = 3.141 

× 0.292
²
 × 275.52 = 73.79 ft³. Wellbore + 3 in penetration   volume = 3.141 ×0.542

²
 × 

275.52 = 254.23 ft³.  Volume  for  3  in  formation  penetration  = (254.23- 73.79) × 

0.20 = 36.09 ft³. Volume  for casing fill + 20% = 73.79 + (0.20 × 73.79) = 88.55 ft³. 

Volume of gel-particle system required = 36.09 + 88.55 = 124.64 ft³ = 932.29 gal = 

29.60 bbl. Empirical correlations of the silica flour particle-gel system were developed 

from the experimental data, as shown in Table 10-8.  

               The  developed  empirical  correlations  were  used  for   treatment   design  as  
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follows. For pore diameter of filter disc (Ds) = 35 micron and sand diameter (Ds) = 1260 

micron (12/20 sand mesh). The critical silica flour concentration = 0.62 wt% by using 

the correlation given in Table 10-8. By using the correlation given in Table 10-8, the 

fluid loss for 4.20 wt% silica flour particle-gel system = 6 vol% and for 50 wt% silica 

flour particle-gel system = 0 vol%. This fluid loss for 100 cm
3 

silica flour particle-gel 

system and the fluid loss for 29.60 bbl silica flour particle-gel system = 1.77 bbl. By 

using the correlation given in Table 10-8, the pressure initiate flow = 3478 kPa and for 

50 wt% silica flour particle-gel system = 4510 kPa. By using the correlation given in 

Table 10-9, the filtrate rate constant for 4.20 wt% silica flour particle-gel system = 0.49 

cm
3
/ min

1/2
 and for 50 wt% silica flour particle-gel system = 0 cm

3
/ min

1/2
. For 30 

minute treatment time and 29.60 bbl particle-gel system, the filtrate volume = 0.49 × 

(30)
1/2

 = 2.68 cm
3
 for 100 cm

3 
= 0.79 bbl for 29.60 bbl. By using the correlation given 

in Table 10-8, the spurt loss volume for 4.20 wt% silica flour particle-gel system = 1.80 

cm
3
 and for 50 wt% silica flour particle-gel system = 0 cm

3
. This spurt loss volume for 

100 cm
3
  particle-gel system and for 29.60 bbl = 0.53bbl. Total filtrate volume = filtrate 

volume at 30 minutes + spurt loss volume = 0.79 + 0.53 = 1.32 bbl. 

              A comparison was conducted between the particle-gel system that was used for 

the field application and the particle-gel system that was developed from the 

experiments, as shown in Table 10-9. Table 10-9 shows that the difference between the 

results of the treatment design of both particle-gel systems is low, thus the 50 wt% silica 

flour concentration is very high and should be minimized. Fig. 10.4 shows flow chart of 

the process of the near-wellbore water shutoff treatment by silica flour particle-gel 

system. 
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        TABLE 10-7: COMPONENTS OF THE SILICA FLOUR PARTICLE-GEL  

        SYSTEM DEVELOPED FROM FLUID LOSS EXPERIMENTS   

              Water = 16.02 bbl 

            Silica flour =  0.47 bbl 

            KCl = 1.89 bbl 

            Polymer 1 = 0.08 bbl 

            Polymer 2 =  9.51 bbl 

            Crosslinker =  1.63 bbl 

            Particle-gel system volume = 29.06 bbl 

 

 TABLE 10-8: SUMMARY OF THE EMPERICAL CORRELATIONS OF THE SILICA FLOUR   

 PARTICLE-GEL SYSTEM 

 Correlation Name                        Empirical Correlation                                                                  Symbols                          

 Critical silica flour                                                                                                 xcr: critical silica    

                                                                                                                                                  flour conce- 

 concentration                                                                                                                            ntration, wt% 

 

 correlation                                                                                                                         DF: pore diameter  

                                                                                                                                            filter disc, micron                                                                                                                                                    

 Fluid loss 

                                                                                                                                           Ds: sand diameter, 

 correlation                                                                                                                                  micron 

                                                                                                                                           F.L.: fluid loss, % 

                                                                                                                                                                                                                                                                                                      

 Pressure initiate                                                                                                                   Cs: silica flour       

                                                                                                                                                concentration, 

 flow correlation                                                                                                                        wt%                                                                                                                            

                                                                                                                                           P: pressure initiate      

                                                                                                                                                flow, kPa 

 

 

 Thermal effect                                                                                                                    µ: silica flour  

                                      particle-gel                 

 correlations                                                                                                                            viscosity, Pa.s 

                                                                                                                                            T: temperature, k 

 

 

 

 

   1415.00214.0057064  FFcr DDsEDEx

    sF DEDELF 05330766exp100..

      sFsF DEDECD 05606506.2045.0

      474.00124.0052066
157.0021.0


 FsF DDEDE

FD

    
    686.0013.00430615

8070161278.3043.0







FsF DDEDE

crs

FsF

xC

DDD
P

    

 494.0021.000016.0

686013.00430615






Fs

DDEDE

crs

DD

xC FsF













420

18.54
48.8ln

T
P













470

80.42
15.2..ln

T
LF













120

545
914.5ln

T




204 

  Correlation Name                       Empirical Correlation                                          Symbols                          

 

 Filtrate volume                                                                                    y: filtrate volume, cm
3
 

                                                                                                                            
 correlations for 35                                                                                                x: filtrate time, min 

                                                                                                                                              

 micron disc and     

                                                                                                                     

 12/20 mesh sand                                                                                               

 Filtrate rate constant                                                                             y: filtrate rate constant,     

                                                                                                                                  cm
3
/min

1/2
 

 correlations for 35                                                                                                

                                                                                                                                 x: silica flour  

 micron disc                                                                                                                 concentration, vol%
 

           

                                                                     

 Spurt loss volume                                                                                y: spurt loss volume, cm
3 

 correlations for 35                                                                                                x: silica flour  

                                                                                                                                concentration, vol% 

 micron disc                                                                                                       

 

 

  TABLE 10-9: COMPARISON BETWEEN FIELD PARTICLE-GEL SYSTEM  

  AND EXPERIMENT PARTICLE-GEL SYSTEM 

 

                   Properties                         Field Gel-Particle           Experiment Gel-Particle 

                                                                    System           System 

                                                               
 Silica flour concentration (wt%)                     50                                         4.20 

 Fluid loss (vol%)                                               0                                            6 

 Pressure initiate flow (kPa)                           4510                                        3478 

 Filtrate rate constant (cm
3
/min

1/2
)                     0                                           0.49 

 Filtrate volume at 30 minutes (bbl)                   0                                           0.79                  

 Spurt loss volume (bbl)                                     0                                           0.53 

Total filtrate volume (bbl)                                 0                                           1.32                  

     

 

y(0.21%) = 8.3exp(2.063x
0.02

) 
                 

y(0.53%) = 6exp(1.623x
0.03

) 
                  
y(1.06%) = 4exp(0.670x

0.12

) 
                  
y(1.60%) = 1exp(0.927x

0.02

) 
                  

 

y(20/40) = 40exp(-3.80x
0.31

) 
                  

y(40/70) = 54exp(-4x
0.29

) 
                  

y(12/20) = 16exp(-2.91x
0.38

) 
                 

y(20/40) = 93exp(-1.588x
1.10

) 
                  

y(40/70) = 98exp(-1.304x
1.05

)                                                                                                                  
                  

y(12/20) = 84exp(-2.155x
1.20

) 
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Fig. 10.4: Process of the near-wellbore water shutoff treatment by particle-gel  
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Chapter 11: Summary, Discussion, and Conclusions  

 

         Heterogeneous formations around wellbore are been treated using gel particles 

suspensions and silica flour particle-gel slurry systems without much in depth 

investigations of the relevant and operating principles involved in the treatment of near-

wellbore zones. Therefore, this work has focused on understanding of the operating 

principles and conditions by means of investigations of various issues involved in the 

effective treatment of heterogeneous formations by gel-particles suspensions injection 

and application of silica flour particle-gel systems. The discussion and conclusions of 

the various issues investigated in this dissertation can be summarized in the following 

sections. These will be presented in two groups experimental and theoretical studies. 

 

11.1 Experimental Investigations 

A- Fluid loss control treatment 

              In this study fluid loss control using gel particles suspension was investigated 

for the effect of gel particles concentration, gel particle diameter, flow rate, temperature, 

and particle diameter to pore-throat size on controlling lost circulation of drilling fluids 

during drilling operations. The experimental work demonstrated that the permeability 

modification of the high permeability formation increases by the gel particles 

concentration, gel particle diameter, and particle diameter to pore- throat size increases 

because the plugging of the pores by the gel particles increases. Also, the permeability 

modification  become  les s pronounced  with  flow  rate  increases because the particles 
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 deposition over the pore surfaces decreases and mobilization of particles from pore 

surfaces increases by flow rate increases. The degree of pore-throat plugging and pore-

surface deposition decreased when temperature increased and thus the permeability 

modification decreased when temperature increased. 

 

B- Water shutoff treatment 

            In this study water shutoff treatment using silica flour particle-gel slurry system 

was investigated for the effect of silica flour concentration, temperature, sand size, pore 

diameter of formation material on controlling water production in hydrocarbon 

producing wells. The experimental work demonstrated that the fluid loss decreases and 

the pressure required to initiate water flow increases by silica flour concentration and 

sand size increase because the silica flour trapped in the pores of formation and forming 

a filter cake. The fluid loss increases and the pressure required to initiate flow decreases 

by pore diameter of formation and temperature increase because the particle-gel slurry 

system pass through the pores of formation easily without forming filter cake. 

 

11.2 Theoretical Studies 

A- Fluid loss treatment 

a- Development of empirical correlations in actual variables of gel particles 

concentration, gel particle diameter, flow rate, temperature, and particle diameter to 

pore-throat size which effect on the permeability modification of the near-wellbore 

formation. Further, the dimensionless forms of these correlations were also developed. 

b- Theoretical  descriptions of  various  plugging and  unplugging  mechanisms  causing  
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permeability modification. Further, the correlations of rate constant of plugging and 

unplugging processes at various temperatures were also developed. 

B- Water shutoff treatment 

a- Development of empirical correlations in actual variables of silica flour 

concentration, temperature, sand size, and pore diameter of formation which effect the 

fluid loss of silica flour particle-gel slurry systems and the pressure required to initiate 

water flow after water shutoff formation treatment. 

b- Theoretical description of filtration analysis of silica flour particle-gel system and 

empirical correlations of the rate constant of filtrate and spurt loss volume were 

developed. 

 

C- Field scale treatment design 

a- Fluid loss treatment design 

              The developed correlations were used in designing of near-wellbore formation 

treatment by the gel particle suspension to control the drilling fluid loss of a well under 

drilling operations and the required volume of the gel particles suspension and the 

components of the suspension were determined. The permeability modification of the 

near-wellbore formation after the treatment was also determined. 

b- Water shutoff treatment design 

              The developed correlations were used in the design of the near-wellbore water 

shutoff treatment by the silica flour particle-gel slurry system to control the water 

production of an oil producing well and the required volume of the silica flour particle-

gel slurry system and the components of the slurry were determined. The fluid loss of 
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the silica flour particle-gel slurry system and the pressure required to initiate water flow 

after the treatment were also determined. 

 

11.3 Overall accomplishment and benefits  

             The correlations developed in this dissertation and the application demonstrated 

examples can be beneficial in scientifically-guided applications and understanding of 

fluid-loss control by gel particles  suspension and water shutoff treatment by silica flour 

particle-gel slurry system for field applications. Specifically, the investigations and 

studies presenting in this work provide: 

a- Dimensionless empirical correlations can help in applications in the field for 

conditions that may be different than conditions of the experimental studies conducted 

in this work because dimensionless numbers are applicable under similar conditions. 

b- The equations describing the various plugging and unplugging mechanisms can help 

in developing calculational  procedures for simulation and theoretical investigation of 

the consequences of field treatment. 

c- The methodology demonstrating the applications of field fluid-loss control and water 

shutoff treatments provide a useful example of how the correlations developed in this 

study can be applied in optimal design of other practical field treatment cases. 
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Appendix A: Nomenclature 

             International system of units (SI units) were used in this dissertation and the 

units inside the parentheses represent the SI derived units that were used also in this 

dissertation. 

             a = empirical parameter, dimensionless 

            ai = initial guesses of parameters  (unit determined by the type of property) 

            a1 = initial guesses (unit determined by the type of property) 

            a2 = initial guesses (unit determined by the type of property) 

            a3 = initial guesses (unit determined by the type of property) 

            A = empirical parameter (unit determined by the type of property) 

            A = cross sectional area of the sand pack, m
2 

(cm
2
) 

           A
1 = empirical parameter, dimensionless 

           A2 = empirical parameter, dimensionless 

Ak and C = fitting constant (E/Rg), K 

            b = empirical parameter, dimensionless 

            bi = initial guesses of parameters  (unit determined by the type of property) 

            b1 = initial guesses (unit determined by the type of property) 

            b2 = initial guesses (unit determined by the type of property) 

            b3 = initial guesses (unit determined by the type of property) 

            b4 = initial guesses (unit determined by the type of property) 

           b5 = initial guesses (unit determined by the type of property) 

           b6 = initial guesses (unit determined by the type of property) 

           b7 = initial guesses (unit determined by the type of property) 
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           b8 = initial guesses (unit determined by the type of property) 

           b9 = initial guesses (unit determined by the type of property) 

           B = empirical parameter (unit determined by the type of property) 

          Bs = left Cauchy-Green or Finger tensor, dimensionless 

          B1 = empirical parameter, dimensionless 

         B2 = empirical parameter, dimensionless 

           c = specific heat capacity, m²/s²K (cm²/s²K) 

         cgp = gel particles mass concentration, kg/m
3 

(mg/L) 

          cw = produced fines concentration, % 

           C = empirical parameter, dimensionless 

          Co = particle concentration at the time o, no.dm
-1 

          Cp =  particle concentration, vol% or wt% 

         Cs = silica flour concentration, wt% or vol% 

         Ct  = total amount of produced fines per unit well length, m
2
 

          C1 = empirical parameter, dimensionless 

         C2 = empirical parameter, dimensionless 

          C3 = empirical parameter, s ̄ ¹ (min  ̄ ¹) 

          C4 = empirical parameter, s ̄ ¹ (min  ̄ ¹) 

          C
5 = empirical parameter, s ̄ ¹ (min  ̄ ¹)       

          df = diameter of a frame sand grain, m (µm) 

         dq = diameter of a fine particle, m (µm) 

         Db = cell body diameter, m (µm) 
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         DF = pore diameter of filter disc, m (µm) 

         Dg = grain diameter, m (µm) 

        DP = gel-particle diameter, m (µm or cm) 

    Dpmax = maximum gel-particle diameter, m (µm) 

    Dpmin = minimum gel-particle diameter, m (µm) 

        Ds = sand diameter, m (µm) 

        DT = pore throat diameter, m (µm) 

         en = restitution coefficient, dimensionless 

         eτ = friction coefficient, dimensionless 

          E = activation energy (J/kmol) 

           f = temperature dependent parameter (unit determined by the type of property) 

         fc = pre- exponential coefficient (unit determined by the type of property) 

         F = deformation gradient tensor, dimensionless 

     F.L. = fluid loss, vol% 

 (F.L.)c = pre-exponential coefficient of fluid loss, vol% 

         Fr = resistance factor, dimensionless 

     (Fr)c = pre- exponential coefficient of  resistance factor, dimensionless 

    F(x) = cumulative particle distribution, % 

        G = viscous forces in the fluid to the elastic forces in the elastic solid particle,   

               dimensionless 

       Gm = mean shear rate of the Coutte Chamber system, s
-1

 

         H = Hamaker coefficient of particle and surface interacting through the pore fluid 

                present in between them, J 
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         j  = impedance, dimensionless 

         k = absolute permeability, 1 D= 9.869233*10
-13 

m²  (md) 

    kmax  = threshold number of particles for the first time, dimensionless 

        kr = constant, dimensionless 

   krowi = oil relative permeability at initial water saturation, 1 D= 9.869233*10
-13 

m²   

               (md) 

    k(V) = number of particles arriving simultaneously at the opening, dimensionless 

        K = suspension permeability, 1 D= 9.869233*10
-13 

m² (md) 

       Ko = initial permeability, 1 D= 9.869233*10
-13 

m² (md) 

      Kw = water permeability, 1 D= 9.869233*10
-13 

m² (md) 

          l = separation distance between the particle surfaces in filter cake, m (cm) 

        M = skin growth coefficient, dimensionless 

       N = average number of particles forming fractal aggregation, dimensionless 

        pi = productivity index, dimensionless 

         P = differential pressure, kPa 

       Pc = pre- exponential coefficient of pressure, kPa  

        Pf = position vector for a frame sand grain, m (µm) 

       Po = initial pressure, kPa 

       Pq = position vector for a fine particle, m (µm) 

        q = injection flow rate, m
3
/s (cm

3
/min) 

      qw = water flow rate, m
3
/s (cm

3
/h) 

         r = radius, m (µm)  

        r1 = radii of the inner cylinder of the system, m (cm) 
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        r2 = radii of the outer cylinder of the system, m (cm) 

        re = drainage radius, m 

        rw = well radius, m 

         R = instantaneous mean aggregate radius, m (µm) 

      Rep = particle Reynolds number, dimensionless 

       Rg =  universal gas constant , J/kmol- K 

       Ro = initial particle radius, m (µm) 

       R
2
 = regression coefficient, dimensionless 

         S = gel particle area, m² (µm
²
)
       

       Sw = water saturation, % 

 SHRgp = gel particle shear breaking ratio, dimensionless 

SWRgp = gel particle swelling ratio in polymer solution, dimensionless 

            
  t = time, s (min) 

         td = dimensionless plugging time, dimensionless 

         T = temperature, K (
°
C) 

        Tc = critical temperature, K 

      Tck = characteristic-limit absolute temperature, K 

      Tik = reference absolute temperature, K 

       uq  = particle velocity before the collision, m/s 

        U = flow velocity, m/s 

        ν  = velocity , m/s (cm/s) 

      νw  = water flow velocity, m/s 

      Vf = volume of fluid loss, m³ (cm
3
) 
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    VGel = volume of gel in 1 ml of suspension, m³ (µm³) 

        x = independent variable, dimensions determined by application 

        x = ratio of distance, dimensionless 

      x* = normalized value of the dimensionless group, dimensionless 

     xcr = critical silica flour concentration, wt% 

   xmin = minimum value of the dimensionless group, dimensionless 

   xmax = maximum value of the dimensionless group, dimensionless 

      X = normalized particle diameter, dimensionless 

        y = dependent variable, dimensions determined by application 

        z = length of the sand pack, m (cm) 

      zo = initial length of the sand pack, m (cm) 

Greek         

             γ = empirical material parameter, dimensionless 

                = shear rate or velocity gradient, s
-1

 

            βa = formation damage coefficient for attachment, dimensionless 

            βs = formation damage coefficient for straining, dimensionless  

           β = pore throat to- particle diameter ratio, dimensionless 

α, β and λ = empirical parameter, dimensionless 

             λs = filtration coefficient for size exclusion fines capture, m
-1  

     

          λ = ratio of volume of dashed cylinder and volume of a particle, dimensionless  

     and   p = fraction of particle, %    

              a = volumetric concentration of attached fines, %    

             s  = volumetric concentration of strained fines, %    









.


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           Ø  = porosity, dimensionless   

         Øo  = initial porosity, dimensionless   

           µc = pre- exponential coefficient of viscosity, Pa.s 

           µf  = fluid viscosity, Pa.s 

         µo  = initial viscosity, Pa.s  

           µ  = suspension viscosity, Pa.s 

          µw  = water viscosity, Pa.s      

             θ = temperature, K (
°
C)         

            ρ = suspension density, kg/m³ (g/cm³) 

           τcr = critical shear stress, Pa 

            τD = characteristics times τchar for the DLA, dimensionless 

            τR = characteristics times τchar for the RLA, dimensionless 

            τs = extra stress tensor, Pa 

            Φ = volume concentration of particle, p.p.m 

            ηs = shear modulus of the elastic solid particle, Pa 

            ω = angular velocity, s
-1 

                = retention coefficient of gel particles, dimensionless 

Abbreviations 

      BHP = bottom-hole pressure 

      BHT = bottom-hole temperature 

         CT = computed tomography 

     DLA = diffusion-limited aggregation 

         3D = three-dimensional 

 

gp
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       F.L. = fluid loss 

    HPHT = high pressure high temperature 

      LBM = Lattice Boltzmann method 

       LCM = lost circulation material 

LDPSDA = laser diffraction particle size distribution analysis 

     NMR = Nuclear Magnetic Resonance 

       NPT = non- productive time 

          PG = preformed gel 

        PLT = production logging tool 

       PPG = preformed particle gel 

        PVI = pore volumes injected 

       RLA = reaction-limited aggregation 

        TEP = transparent exopolymer particle 

       VTF = Vogel- Tammann- Fulcher  
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Appendix B: Special Correlation Equations 

                 The  general  expressions of  the  special equations  used  for  correlations  of 

experimental   data  are   presented   in   the   following, where   x   and  y   denote   the 

independent and dependent variables considered in their applications. All these 

equations were correlated using Microsoft excel 2010. 

Type 1:                

                                                                                                                         (B-1)                                                                                    

where  y  is  the   steady-state  differential   pressure (kPa); x is  the  injection  flow  rate  

 

(≤100) (cm3/h) and a and b are empirical parameters. 

 

Type 2:                

                                                                                                                        (B-2)                                                                                                                                                                 

 

where  y   is   the  steady-state   differential   pressure  (kPa)  or intercept of the 

unplugging region (dimensionless) or  dimensionless  group (KΔPµovoZo/KoΔPoµvZ); x  

is  the  injection  flow  rate (≥100) (cm
3
/h)  or pore volume injected (dimensionless) or  

normalized dimensionless   group   (µt/ρZ²)*   or  normalized   dimensionless   group  

(µt/ρDp²)*  or normalized dimensionless group (t²cθ/Z²)*; and a, b, and α are empirical 

parameters. 

Type 3:                

                                          
1 1 1

o

b

y y a x a

 
  

  
                                            (B-3) 

where  yo  is  the  initial  differential  pressure,  in  kPa;  y  is the steady-state differential  

 

pressure, in  kPa;  x  is  the   gel-particle  diameter, in  µm;  and  a  and  b  are  empirical  

 

parameters. 
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Type 4:        

                                                                                                                   (B-4)                                                           

 

where   y   is   the   permeability    reduction     (dimensionless)   or intercept of the 

plugging region (dimensionless); x is the  gel-particle  volume fraction (%) or gel-

particle diameter (µm) or  particle   diameter/pore-throat  size  (dimensionless) or pore 

volume injected (dimensionless); and  a,  b, and  α  are  empirical parameters. 

 

Type 5:        

                                                                                                                   (B-5)                                                                                                                    

 

where  y  is  the  resistance  factor  (dimensionless); x is the gel-particle volume fraction  

 

(≤1) (%) or gel particle diameter (µm); and a and b are empirical parameters. 

 

Type 6:        

                                                                                                                   (B-6)                                                                                                     

where  y  is  the  resistance  factor (dimensionless) or rate constant of the plugging and 

unplugging region (dimensionless) or fluid loss (%) or filtrate volume (cm
3
) or rate 

constant of filtrate (cm³/min
1/2

) or spurt loss volume (cm³); x is the gel-particle volume  

fraction  (≥1)  (%)  or  injection   flow   rate  (≥100)   (cm3/h) or pore volume injected 

(dimensionless) or   silica   flour concentration (wt% or vol%) or filtrate time (min); and 

a, b, and α are empirical parameters. 
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Type 7:                

                                                                                                                   (B-7)                                                                                  

 

where   y    is    the     resistance    factor    (dimensionless)    or    dimensionless    group  

 

(KΔPµovoZo/KoΔPoµvZ)  or   dimensionless   group   (Vf/DF
3
)   or   dimensionless   group  

 

(Vf/Ds
3
); x is  the  injection flow rate (≤100) (cm3/h) or normalized dimensionless group  

 

(µt/ρZ²)* or normalized  dimensionless  group (vt/Z)* or dimensionless group (vt/DF) or  

 

dimensionless group (vt/Ds); and a and b are empirical parameters. 

 

 

 

Type 8: 

                                                                                                                    (B-8)                                                                                

 

where y is  the pore-throat/particle size  ratio (dimensionless); x is the particle Reynolds  

 

number (dimensionless); and A1, B1, and C1 are empirical parameters (dimensionless). 

 

 

 

Type 9: 

                                                                                                                   (B-9)                                                                     

 

where y is  the pore-throat/particle size  ratio (dimensionless); x is the particle Reynolds  

 

number    (dimensionless); A2,  B2,  and  C2   are  empirical   parameters;  and  λ   is   the  

 

empirical exponent. 
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Type 10:        

                                                                                                                  (B-10)  

                                                                                                    

where y is the  fluid loss (%); x is the  silica flour  concentration (wt%); xcr is the critical  

 

silica flour concentration (wt%); and a, b, and α are empirical parameters. 

 

 

 

Type 11:                

                                                                                                                  (B-11)                                                                                                                                                                 

 

where y is the pressure  initiate  flow (psig); x is the silica flour concentration (wt%); xcr  

 

is the critical silica flour concentration (wt%); and a, b, and α are empirical parameters. 
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Appendix C: Empirical correlations of  the differential pressure, 

permeability reduction, and resistance factor 

 

                  A- The experimental data of the differential pressure across the proppant 

pack during the gel-particle-suspension injection were correlated with the injection flow 

rate and the gel particle diameter and empirical correlations were developed by applying 

Eqs. B-1, B-2, and B-3 given in Appendix B, as shown in Fgs. C.1 to C.3. 

 

 

 

Fig. C.1: Straight line plot of Eq. B-1 at 50 cm³/hr and100 cm³/hr flow rates to   

    develop the empirical correlation of the differential pressure at 3 vol%  

               and 23.5 °C, as shown in Fig. 5.14 
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Fig. C.2: Straight line plot of Eq. B-2 at 100 cm³/hr, 200 cm³/hr, 280 cm³/hr and  

               400 cm³/hr flow rates to develop the empirical correlation of the   

               differential pressure at 3 vol% and 23.5 °C, as shown in Fig. 5.14              

   

Fig. C.3: Straight line plot of Eq. B-3 at different gel- particle diameters to develop  

 the empirical correlation of the  differential pressure at 3 vol% and 23.5  

 °C, as shown in Fig. 5.15             
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                  B- The experimental data of the permeability reduction during the gel-

particle-suspension injection were correlated with the gel-particle concentration, the gel 

particle diameter and the particle diameter to pore throat size ratio and empirical 

correlations were developed by applying Eq. B-4 given in Appendix B, as shown in 

Fgs. C.4 to C.6. 

 

 

 

Fig. C.4: Straight line plot of Eq. B-4 at different gel-particle concentrations to  

               develop the empirical correlation of the  permeability reduction at 100  

               cm
3
/h and 23.5 °C, as shown in Fig. 5.16 
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Fig. C.5: Straight line plot of Eq. B-4 at different gel-particle diameters to  

               develop the empirical correlation of the  permeability reduction at 100  

               cm
3
/h and 23.5 °C, as shown in Fig. 5.18 

 

Fig. C.6: Straight line plot of Eq. B-4 at different particle diameter to pore throat  

    size ratios to develop the empirical correlation of the  permeability  

               reduction at 100 cm
3
/h and 23.5 °C, as shown in Fig. 5.19 
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                  C- The experimental data of the resistance factor during the gel-particle-

suspension injection were correlated with the gel-particle concentration, the gel particle 

diameter and the injection flow rate and empirical correlations were developed by 

applying Eqs. B-5, B-6, and B-7 given in Appendix B, as shown in Fgs. C.7 to C.11. 

 

 

Fig. C.7: Straight line plot of Eq. B-5 at 0.5 vol% and 1 vol% gel-particle  

               concentrations to develop the empirical correlation of the  resistance  

               factor at 100 cm
3
/h and 23.5 °C, as shown in Fig. 5.20 
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Fig. C.8: Straight line plot of Eq. B-6 at 1 vol%, 2 vol% and 3 vol% gel-particle  

                concentrations to develop the empirical correlation of the  resistance  

                factor at 100 cm
3
/h and 23.5 °C, as shown in Fig. 5.20 

Fig. C.9: Straight line plot of Eq. B-7 at 50 cm³/hr and 100 cm³/hr flow rates 

     to develop the empirical correlation of the  resistance factor at 3 vol%  

                and 23.5 °C, as shown in Fig. 5.21 
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Fig. C.10: Straight line plot of Eq. B-6 at 100 cm³/hr, 200 cm³/hr, 280 cm³/hr and  

      400 cm³/hr flow rates to develop the empirical correlation of the   

      resistance factor at 3 vol% and 23.5 °C, as shown in Fig. 5.21                

 
Fig. C. 11: Straight line plot of Eq. B-5 at different gel-particle diameter to develop  

  the empirical correlation of the  resistance factor at 100 cm
3
/h and  

   23.5 °C, as shown in Fig. 5.22 
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Appendix D: The power-law and exponential-law equations 

 

               The experimental data of the pore-throat/particle size ratio were correlated 

with the particle Reynolds number and power-law and exponential-law equations were 

developed by applying Eqs. B-8 and B-9 given in Appendix B. 

 

 

 

Fig. D.1: Straight line plot of Eq. B-8 at different gel particle concentrations and  

     different gel particle diameters to develop the power-law equation, shown  

     in Fig. 5.23. 
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Fig. D.2: Straight line plot of Eq. B-9 at different gel particle concentrations and  

     different gel particle diameters to develop the power-law equation, shown  

     in Fig. 5.23. 

 

 

 

 

 

     

 

 

 

 

-0.0006

-0.0004

-0.0002

0.0000

0.002 0.004 0.006 0.008

L
n

 (
1
- 

(β
- 

C
2
)/

A
2
) 

(Rep)λ 



241 

Appendix E: Correlations of Thermal Effect on plugging/Unplugging 

Processes 

 

                   The correlations of the thermal effect on the rate and intercept constants of 

plugging and unplugging regions were developed by the following steps: 

                  1- The rate constant of the plugging and unplugging regions were correlated 

with the pore volumes injected at various temperatures and empirical correlations were 

developed, as shown in Figs. E.1 and E.2, by applying Eq. B-6 given in Appendix B. 

 

 

Fig. E.1: The relationship between rate constant of plugging and pore volumes  

                 injected at various temperatures   
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 Fig. E.2: The relationship between rate constant of unplugging and pore volumes  

                   injected at various temperatures    

 

Fig. E.3: Straight  line  plot  of  Eq. B-6  at  different  temperatures to  develop the 

empirical correlation of the rate constants of the plugging regions, as shown in Fig. 
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Fig. E.4: Straight line plot of Eq. B-6 at different temperatures to develop the 

empirical correlation of the rate constants of the unplugging regions, as shown in 

Fig. E.2 

   

 

 

 

 

                2- The intercept of the plugging and unplugging regions were correlated with 

the pore volumes injected at various temperatures and empirical correlations were 

developed, as shown in Figs. E.5 and E.6, by applying Eq. B-6 given in Appendix B. 
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 Fig. E.5: The relationship between intercept of plugging regions and pore  

                  volumes injected at various temperatures 

             

Fig. E.6: The relationship between intercept of unplugging regions and pore  

                 volumes injected at various temperatures 
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Fig. E.7: Straight line plot of Eq. B-4 at different temperature to develop the 

empirical correlation of the intercepts of the plugging regions, as shown in Fig. E.5 

 

 
Fig. E.8: Straight line plot of Eq. B-2 at different temperature to develop the 

empirical correlation of the intercepts of the unplugging regions, as shown in Fig. 

E.6 
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                    3- The values of A,B, and β of the correlations in Figs. E.1, E.2, E.5 and 

E.6 were plotted and correlated as linear functions and substituted in Eqs. 6.7 and 6.8 to 

develop correlations of the thermal effect on the rate and intercept constants of plugging 

and unplugging regions, as shown in Figs. 6.20 to 6.23. 

 

 
Fig. E.9: Linear function plot of A values at different  temperatures for 

                rate constants of plugging  
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Fig. E.10: Linear function plot of B values at different  temperatures for  

                rate constants of plugging 
 

 
Fig. E.11: Linear function plot of β values at different  temperatures for  

                rate constants of plugging 
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Fig. E.12: Linear function plot of A values at different  temperatures for 

                rate constants of unplugging  

 
Fig. E.13: Linear function plot of B values at different  temperatures for 

                rate constants of unplugging  
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Fig. E.14: Linear function plot of β values at different  temperatures for 

                rate constants of unplugging  

        

 

       Fig. E.15: Linear function plot of A values at different  temperatures for 

                intercept of plugging regions 
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Fig. E.16: Linear function plot of B values at different  temperatures for 

                intercept of plugging regions 

 

        Fig. E.17: Linear function plot of β values at different  temperatures for 

                intercept of plugging regions 
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Fig. E.18: Linear function plot of A values at different  temperatures for 

                intercept of unplugging regions 

 
Fig. E.19: Linear function plot of B values at different  temperatures for 

                intercept of unplugging region 
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Appendix F: Correlations of the normalized dimensionless groups  

 

 
                     The dimensionless groups values were normalized by used of Eq. 7.4 and 

were   correlated  at   different    concentrations,  flow   rates,  gel   particle   sizes,  and 

temperatures  by  applying  Eqs. B-2  and  B-7  given  in  Appendix B,  as  shown in the 

following figures: 

 

 

 

Fig. F.1: Straight line plot of Eq. B-2 for the normalized dimensionless group π4  

        for the permeability reduction at different temperatures, as shown in Fig. 7.11 
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Fig. F.2: Straight line plot of Eq. B-2 for the normalized dimensionless group π9   

        for the permeability reduction at different temperatures, as shown in Fig. 7.12 

 

Fig. F.3: Straight line plot of Eq. B-7 for the normalized dimensionless group π4 

                    for the permeability reduction at different gel particles concentrations, as  

                 shown in Fig. 7.13 
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Fig. F.4: Straight line plot of Eq. B-7 for the normalized dimensionless group π6   

         for the permeability reduction at different flow rates, as shown in Fig. 7.14 

 

Fig. F.5: Straight line plot of Eq. B-2 for the normalized dimensionless group π5   

               for the permeability reduction of the sand pack of 1061 µm grain  

               diameter at different gel particles sizes, as shown in Fig. 7.15 
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Fig. F.6: Straight line plot of Eq. B-2 for the normalized dimensionless group π5   

               for the permeability reduction of the sand pack of 650 µm grain  

               diameter at different gel particles sizes, as shown in Fig. 7.16 
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Appendix G: Correlation of the fluid loss 

 

 
               General empirical correlation of fluid loss at any pore diameter of filter disc, 

sand size and silica flour concentration was developed as described in the following. 

               1- The experimental data of the fluid loss was correlated with the silica flour 

concentration and exponential relationships were developed for 35, 10, and 5 micron 

pore diameter of filter disc at different sand sizes, as shown in Figs. G.1 to G.3, by 

applying Eq. B-6 given in Appendix B, as shown in Figs. G.4 to G.6. 

 

 

 

Fig. G.1: Correlate the experimental results of fluid loss at different silica flour   

                 concentrations for 35 micron average pore diameter of filter disc and    

                 different sand sizes   
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Fig. G.2: Correlate the experimental results of fluid loss at different silica flour   

                 concentrations for 10 micron average pore diameter of filter disc and    

                 different sand sizes    

 
Fig. G.3: Correlate the experimental results of fluid loss at different silica flour   

                 concentrations for 5 micron average pore diameter of filter disc and   

                 different sand sizes    
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Fig. G.4: Straight line plot of Eq. B-6 to develop the exponential relationship of the   

               fluid loss for 35 micron pore diameter of filter disc at different silica flour  

               concentrations and different sand sizes, as shown in Fig. G.1 

 

 
Fig. G.5: Straight line plot of Eq. B-6 to develop the exponential relationship of the  
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Fig. G.6: Straight line plot of Eq. B-6 to develop the exponential relationship of the  

               fluid loss for 5 micron pore diameter of filter disc at different silica flour  

               concentrations and different sand sizes, as shown in Fig. G.3 
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Fig. G.7: Correlate the  experimental  results of  fluid loss with  the critical silica    

                 flour concentrations for 35 micron average pore diameter of filter disc   

                 and different sand sizes 

 
Fig. G.8: Correlate  the experimental  results of  fluid  loss with  the critical silica   

                 flour concentrations for 10 micron average pore diameter of filter disc   

                 and different sand sizes 
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Fig. G.9: Correlate the  experimental  results of  fluid loss with the critical silica   

                 flour concentrations for 5 micron average pore diameter of filter disc   

                  and different sand size 

 
Fig. G.10: Straight line plot of Eq. B-10 to correlate the fluid loss with the critical  

                 silica flour  concentration for 35 micron  pore  diameter of filter disc at  

                 different sand sizes, as shown in Fig. G.7 
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Fig. G.11: Straight line plot of Eq. B-10 to correlate the fluid loss with the critical  

                 silica flour  concentration for 10 micron  pore  diameter of filter disc at  

                 different sand sizes, as shown in Fig. G.8 

 
Fig. G.12: Straight line plot of Eq. B-10 to correlate the fluid loss with the critical  

                 silica flour  concentration for 5 micron  pore  diameter of filter disc at  

                 different sand sizes, as shown in Fig. G.9 
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                  3- The values of B, α, and xcr of the exponential relationships were plotted 

and correlated as linear functions and substituted in Eq. 8.2 to develop charts of fluid 

loss for same pore diameter of filter disc and different sand sizes, as shown in Figs. 8.3 

to 8.5. 

 

 

 

 

Fig. G.13: Linear function plot of B values at different sand sizes for 35 micron   

                pore diameter of filter disc 
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Fig. G.14: Linear function plot of α values at different sand sizes for 35 micron   

                pore diameter of filter disc 

 

Fig. G.15: Linear function plot of xcr values at different sand sizes for 35 micron   

                pore diameter of filter disc 
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Fig. G.16: Linear function plot of B values at different sand sizes for 10 micron   

                pore diameter of filter disc 

 
Fig. G.17: Linear function plot of α values at different sand sizes for 10 micron   

                pore diameter of filter disc 

y = 0.0004x + 1.15 
R² = 0.81 

1.1

1.2

1.3

1.4

1.5

1.6

300 500 700 900 1100 1300

B
 

Sand Size, micron 

y = -7E-05x + 0.661 
R² = 1 

0.56

0.58

0.60

0.62

0.64

0.66

300 500 700 900 1100 1300

α
 

Sand Size, micron 



266 

 
 

Fig. G.18: Linear function plot of xcr values at different sand sizes for 10 micron    

                pore diameter of filter disc 

 
Fig. G.19: Linear function plot of B values at different sand sizes for 5 micron pore   

                diameter of filter disc 
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Fig. G.20: Linear function plot of α values at different sand sizes for 5 micron pore  

                diameter of filter disc 

 
Fig. G.21: Linear function plot of xcr values at different sand sizes for 5 micron 

     pore diameter of filter disc 
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                 4- The values of a1, b1, a2, b2, a3, and b3  of Eq. 8.3 were plotted against pore 

diameter of filter disc and correlated as linear functions and substituted in Eq. 8.3 to 

develop general empirical correlation of fluid loss at any pore diameter of filter disc and 

sand size, as illustrated in Eq. 8.4. 

 

 

 
Fig. G.22: Linear function plot of a1 at different pore diameters of filter discs 
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Fig. G.23: Linear function plot of b1 at different pore diameters of filter discs 

 
 

Fig. G.24: Linear function plot of a2 at different pore diameters of filter discs 
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Fig. G.25: Linear function plot of b2 at different pore diameters of filter discs 

 
 

Fig. G.26: Linear function plot of a3 at different pore diameters of filter discs 
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Fig. G.27: Linear function plot of b3 at different pore diameters of filter discs 
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Appendix H: Correlation of critical silica flour concentration  

 
 

                 The empirical correlation of critical silica flour concentration at any pore 

diameter of filter disc and sand size was developed as described in the following. 

                 1- The values of critical silica flour concentration of same pore diameter of 

filter disc were plotted against sand size and correlated as linear function, as shown in 

Fig. H.1. 

 

 

 

Fig. H.1: Correlate the critical silica flour concentrations for 35, 10, and 5 micron   

                 pore diameter of filter discs and different sand sizes 
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                     2- The values of As and Bs of the linear function of the critical silica flour 

concentration were plotted against the sand size and correlated as linear functions and 

substituted in the linear function of the critical silica flour concentration to develop 

general empirical correlation can be used at any pore diameter of filter disc and sand 

size, as shown in Eq. 8.5. 

 

 

 
 

Fig. H.2: Linear function plot of A values at different  pore diameter of filter discs 
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Fig. H.3: Linear function plot of B values at different  pore diameter of filter discs 
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Appendix I: Correlation of the pressure initiate flow 

 

 
                 The empirical correlation of pressure to initiate flow at any pore diameter of 

filter disc, sand size and silica flour concentration was developed as described in the 

following. 

                 1- The experimental data of the pressure initiate flow was correlated with the 

critical silica flour concentration and relationships were developed for 35, 10, and 5 

micron pore diameter of filter disc at different sand sizes, as shown in Figs. I.1 to I.3, by 

applying Eq. B-11 given in Appendix B.  

 

 

Fig. I.1: Correlate the experimental results of pressure initiate flow with the   

                 critical silica flour concentrations for 35 micron average pore diameter   

                 of filter disc and different sand sizes 
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Fig. I.2: Correlate the experimental results of pressure initiate flow with the   

                 critical silica flour concentrations for 10 micron average pore diameter   

                 of filter disc and different sand sizes 

 
Fig. I.3: Correlate the experimental results of pressure initiate flow with the   

                 critical silica flour concentrations for 5 micron average pore diameter of  

                 filter disc and different sand size 
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Fig. I.4: Straight line plot of Eq. B-11 to develop the relationship of the pressure 

initiate flow at different silica flour concentration for 35 micron pore diameter of 

filter disc at different sand sizes, as shown in Fig. I.1 

 
Fig. I.5: Straight line plot of Eq. B-11 to develop the relationship of the pressure 

initiate flow at different silica flour concentration for 10 micron pore diameter of 

filter disc at different sand sizes, as shown in Fig. I.2 

 

Y(12/20) = 0.0002X + 0.00023 
R² = 1 

Y(20/40) = 0.00028X + 0.00029 
R² = 1 

Y(40/70) = 0.00042X + 0.00038 
R² = 1 

0.00025

0.00040

0.00055

0.00070

0.00085

0.00100

0.00115

0.00130

0.0 0.4 0.8 1.2 1.6 2.0

1
/y

 

1/(x-xcr)ᵝ 

12/20 sand

20/40 sand

40/70 sand

β(12/20) = 1.00 
β(20/40) = 1.10 
β(40/70) = 1.15 
 

xcr(12/20) = 0.60 

xcr(20/40) = 0.75 

xcr(40/70) = 0.83 

 

Y(12/20) = 0.0001X + 0.00013 
R² = 1 

Y(20/40) = 0.00015X + 0.00015 
R² = 1 

Y(40/70) = 0.00014X + 0.0002 
R² = 0.9998 

0.0001

0.0003

0.0005

0.0007

0.0009

0.0011

0.0 1.0 2.0 3.0 4.0

1
/y

 

1/(x-xcr)ᵝ 

12/20 sand

20/40 sand

40/70 sand

β(12/20) = 0.67 
β(20/40) = 0.77 
β(40/70) = 0.82 
 

xcr(12/20) = 0.27 

xcr(20/40) = 0.34 

xcr(40/70) = 0.44 

 



278 

 
 

Fig. I.6: Straight line plot of Eq. B-11 to develop the relationship of the pressure 

initiate flow at different  silica flour concentration for 5 micron pore  diameter of 

filter disc at different sand sizes, as shown in Fig. I.3 
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as linear functions and substituted in Eq. 8.6 to develop charts of pressure to initiate 
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Fig. I.7: Linear function plot of A values at different sand sizes for 35 micron   

               pore diameter of filter disc 

 

Fig. I.8: Linear function plot of B values at different sand sizes for 35 micron   

               pore diameter of filter disc 
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Fig. I.9: Linear function plot of α values at different sand sizes for 35 micron   

               pore diameter of filter disc 

 
Fig. I.10: Linear function plot of A values at different sand sizes for 10 micron   

               pore diameter of filter disc 
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Fig. I.11: Linear function plot of B values at different sand sizes for 10 micron   

               pore diameter of filter disc 

Fig. I.12: Linear function plot of α values at different sand sizes for 10 micron   

               pore diameter of filter disc 
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Fig. I.13: Linear function plot of A values at different sand sizes for 5 micron pore     

               diameter of filter disc 

 
 

Fig. I.14: Linear function plot of B values at different sand sizes for 5 micron pore   

               diameter of filter disc 
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Fig. I.15: Linear function plot of α values at different sand sizes for 5 micron   

               pore  diameter of filter disc 

 

 

 

 

                  3- The values of a1, b1, a2, b2, a3, and b3  of Eq. 8.7 were plotted against pore 

diameter of filter disc and correlated as linear functions and substituted in Eq. 8.7 to 

develop general empirical correlation of fluid loss at any pore diameter of filter disc and 

sand size, according to Eq. 8.8. 

 

 

 

y = -0.00016x + 0.46 
R² = 1 

0.24

0.27

0.30

0.33

0.36

0.39

0.42

300 500 700 900 1100 1300

α
 

Sand Size, micron 



284 

 
Fig. I.16: Linear function plot of a1 at different pore diameters of filter discs 

 

 
Fig. I.17: Linear function plot of b1 at different pore diameters of filter discs 
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Fig. I.18: Linear function plot of a2 at different pore diameters of filter discs 

 

 
 

Fig. I.19: Linear function plot of b2 at different pore diameters of filter discs 
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Fig. I.20: Linear function plot of a3 at different pore diameters of filter discs 

 

 
Fig. I.21: Linear function plot of b3 at different pore diameters of filter discs 
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Appendix J: Correlation of the filtrate volume 

 
                The  experimental  data  of  the filtrate volume of the silica flour particle-gel  

 

system  were correlated with the filtrate time and empirical correlations were developed 

 

for  35, 10, and 5  micron  pore  diameter  of  filter  disc,  12/20,  20/40,  and 40/70 sand  

 

mesh, and  different silica  flour  concentrations, as shown  in Figs. 9.1 to 9.3  and 9.6 to  

 

9.11, by applying Eq. B-6 given in Appendix B. 

 

 

 

 
Fig. J.1: Straight line plot of Eq. B-6 to develop the exponential relationship of the 

filtrate volume at different silica flour concentration for 35 micron pore diameter  

of filter disc and 12/20 sand mesh, as shown in Fig. 9.1 
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Fig. J.2: Straight line plot of Eq. B-6 to develop the exponential relationship of the 

filtrate volume at different silica flour concentration for 35 micron pore diameter  

of filter disc and 20/40 sand mesh, as shown in Fig. 9.2 

 

Fig. J.3: Straight line plot of Eq. B-6 to develop the exponential relationship of the 

filtrate volume at different silica flour concentration for 35 micron pore diameter  

of filter disc and 40/70 sand mesh, as shown in Fig. 9.3 

 

Y(0.21%) = 2.102X + 2.197 
R² = 1 

Y(0.53%) = 1.860X + 1.946 
R² = 0.1 

Y(1.06%) = 1.497X + 1.610 
R² = 1 

Y(1.60%) = 1.021X + 1.099 
R² = 1 

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

L
n

y
 

xβ 

0.21%

0.53%

1.06%

1.60%

β(0.21%) = 0.02 
β(0.53%) = 0.02 

β(1.06%) = 0.02 

β(1.60%) = 0.05 

 

Y(0.21%) = 2.155X + 2.197 
R² = 1 

Y(0.53%) = 2.447X + 1.609 
R² = 1 

Y(1.06%) = 1.730X + 1.389 
R² = 0.9998 

Y(1.60%) = 2.099X + 0.0006 
R² = 0.98 

0

1

2

3

4

5

0.0 0.3 0.6 0.9 1.2 1.5

L
n

y
 

xβ 

0.21%

0.53%

1.06%

1.60%

β(0.21%) = 0.020 
β(0.53%) = 0.014 

β(1.06%) = 0.030 

β(1.60%) = 0.065 

 



289 

 

Fig. J.4: Straight line plot of Eq. B-6 to develop the exponential relationship of the 

filtrate volume at different silica flour concentration for 10 micron pore diameter  

of filter disc and 12/20 sand mesh, as shown in Fig. 9.6 

 
Fig. J.5: Straight line plot of Eq. B-6 to develop the exponential relationship of the 

filtrate volume at different silica flour concentration for 10 micron pore diameter  

of filter disc and 20/40 sand mesh, as shown in Fig. 9.7 
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Fig. J.6: Straight line plot of Eq. B-6 to develop the exponential relationship of the 

filtrate volume at different silica flour concentration for 10 micron pore diameter  

of filter disc and 40/70 sand mesh, as shown in Fig. 9.8 

 
Fig. J.7: Straight line plot of Eq. B-6 to develop the exponential relationship of the 

filtrate volume at  different  silica flour concentration for 5  micron pore diameter  

of filter disc and 12/20 sand mesh, as shown in Fig. 9.9 
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Fig. J.8: Straight line plot of Eq. B-6 to develop the exponential relationship of the 

filtrate volume at  different  silica flour concentration for 5  micron pore diameter  

of filter disc and 20/40 sand mesh, as shown in Fig. 9.10 

 
Fig. J.9: Straight line plot of Eq. B-6 to develop the exponential relationship of the 

filtrate volume at  different  silica flour concentration for 5  micron pore diameter  

of filter disc and 40/70 sand mesh, as shown in Fig. 9.11 
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Appendix K: Correlation of the rate constant of filtrate and spurt loss 

volume  

 

 

 
                   The exponential correlations of the rate constant of filtrate and spurt loss  

volume of the silica flour particle-gel system were developed by the following steps: 

                  1- The rate constant of filtrate were correlated with the silica flour 

concentration at different sand sizes and 35 micron pore diameter of filter disc and 

exponential correlations were developed, as shown in Figs. K.1 and K.2, by applying 

Eq. B-6 given in Appendix B.  

 

 

 

Fig. K.1: The relationship between rate constant of filtrate and silica flour 

concentration at 35 micron pore diameter filter disc and different sand sizes 
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Fig. K.2: The relationship between spurt loss volume and silica flour concentration 

at 35 micron pore diameter filter disc and different sand size 

 
Fig. K.3: Straight line plot of Eq. B-6 at 35 micron pore diameter of filter disc to  

 develop  the  exponential  correlation of the rate constant of filtrate of  

               different sand sizes, as shown in Fig. K.1 
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Fig. K.4: Straight line plot of Eq. B-6 at 35 micron pore diameter of filter disc to  

 develop  the  exponential  correlation of  the  spurt  loss  volume  of   

 sand sizes, as shown in Fig. K.2 

 

 

 

 

 

                     2- The values of A,B, and β of the correlations in Figs. K.1 and K.2 were 

plotted and correlated as linear functions and substituted in Eq. 6.7 to develop 

correlations of rate constant of filtrate and spurt loss volume of the silica flour particle-

gel system at 35 micron pore diameter of filter disc, as shown in Figs. 9.22 and 9.23. 
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Fig. K.5: Linear function plot of A values at different  sand sizes for the rate  

                constants of filtrate of 35 micron pore diameter filter disc  

 
Fig. K.6: Linear function plot of B values at different  sand sizes for the rate  

                constants of filtrate of 35 micron pore diameter filter disc  
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Fig. K.7: Linear function plot of β values at different  sand sizes for the rate  

                constants of filtrate of 35 micron pore diameter filter disc  

 
Fig. K.8: Linear function plot of A values at different  sand sizes for the spurt loss  

               volume of filtrate of 35 micron pore diameter filter disc  
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Fig. K.9: Linear function plot of B values at different  sand sizes for the spurt loss  

               volume of filtrate of 35 micron pore diameter filter disc  

 
Fig. K.10: Linear function plot of β values at different  sand sizes for the spurt loss  

               volume of filtrate of 35 micron pore diameter filter disc  
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