
USING A DISK OPERATOR TO CONVERT RASTER

IMAGES OF ENGINEERING DRAWINGS TO

VECTOR IMAGES

By

REDDY V. V. S. ~LIDI

Bachelor of Engineering
Andhra University

Waltair, India
1985

Master of Technology
Indian Institute of Technology

Kharagpur, India
1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1992

USING A DISK OPERATOR TO CONVERT RASTER

IMAGES OF ENGINEERING DRAWINGS TO

VECTOR IMAGES

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude and

appreciation to my main adviser, Dr. William D. Miller

for his invaluable guidance, encouragement, availability

and patience. I am grateful to my other committee members

Dr. Blayne Mayfield and Dr. H. Lu for their encouragement

and inspiration throughout my project.

Special thanks are due to Mr. Robert Webster, and

Mr. Bruce Taylor of American Small Business Computers,

Pryor, for providing financial support and facilities for

research and for their constant encouragement.

I also wish to thank Dr. Frank Collins, Department

of Psychology, for his encouragement in all my efforts.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. 1

General Statement of the Problem. . 1

II. LITERATURE REVIEW . 3

Introduction. 3
Thresholding Methods. . . • . • 3
Edge Fitting Methods. 7
Linking of Edge Elements. . . . 9

III. GENERAL APPROACH TO THE PROBLEM . 13

Introduction. 13
Compression of Bilevel Images 13
Locating Edges/Lines. • . 16
Conversion to Vectors 22
Storing the Vectors in a File • 24

IV. IMPLEMENTATION DETAILS ... 25

Introduction
Scanning Algorithm .. .
Linking Algorithm . . .

V. RESULTS AND CONCLUSIONS ..

25
25
28

31

Introduction. • • . 31
Results and Conclusions 32
Recommendations for Further Study 34

BIBLIOGRAPHY . 35

APPENDIXES . . 39

APPENDIX A - TAG IMAGE FILE FORMAT. 40

APPENDIX B - DESIGN CAD FILE FORMAT 50

APPENDIX C - SCANNING ALGORITHM CODE. 54

iv

LIST OF FIGURES

Figure

1. TIFF File Header ...

2. Hueckel Edge Operator Disk ..

Page

15

17

3. Approximation of Circular and Discrete Disks. . 19

4. Frequencies of Hi .•.. 21

v

CHAPTER I

INTRODUCTION

General Statement of the Problem

As more and more business and technical information is

stored and manipulated electronically, there is an

increasing gap between the accessibility of this information

and older records stored on paper. Accordingly, finding ways

to scan old documents and store them efficiently is becoming

more important. In particular, millions of old engineering

drawings describing objects or products that are still in

use need to be scanned in enterprises all over the world.

A typical digitizing device produces the raster scan of

a document, so that no structure beyond individual

brightness variation is directly recorded. This

representation not only omits some of the information which

actually interests th~ user, but it is also far more bulky

than a representation in terms of vectors or other more

meaningful objects. This is especially true for engineering

drawings, which typically consist of figures depicted with

narrow lines, surrounded by blank space. Thus, converting

line drawings into vector form which could be represented by

a standard CAD system would bring many benefits. Some

1

software which does this is currently available, but its

performance is not completely satisfactory, since it needs

considerable effort from the user.

2

Therefore, the purpose of this study is to investigate

conversion of line drawings to vector form, using a

mathematically sophisticated edgejline detection algorithm

proposed by Manfred H. Hueckel. The aim is to produce a scan

conversion program which is fully automatic, or at least

requires much less operator effort than anything presently

available.

CHAPTER II

LITERATURE REVIEW

Introduction

The most important aspect of conversion of raster

images to vectors is the recognition of edges in scenes.

Edges are primitive features of an image that are widely

used to outline the boundaries of objects [ABDQDA79]. They

are the input to higher level routines which assemble them

into vectors. There are two approaches to object recognition

i) Thresholding - In this method discontinuities in an

image are enhanced by some operator. If the

discontinuity is greater than a threshold value an edge

is deemed to be present [ABDQDA79].

ii) Edge Fitting - It is the process of finding the boundary

between two regions of different light intensities, or

some other image attribute in a picture by fitting some

ideal function and determining whether the match is good

in terms of the mean square method.

Thresholding Methods

Abdou and Pratt [ABDQDA79] described two techniques for

the design and evaluation of edge detectors using the

3

4

thresholding technique. In one approach, edge detection is

considered as a statistical decision process, and in the

other, edge detection is considered as a deterministic

pattern recognition and classification task. They have shown

that both these methods gave consistent results. They

concluded that

i) template edge detectors require more operations than

differential edge detectors, and

ii) Prewitt and Sobel differential edge detectors are the

best of the class of 3x3 pixel differential edge

operators.

Template matching is one of the most widely used

approaches. A pattern is compared with stored models of

known patterns, also known as edge masks, and the best match

is chosen.

Prewitt [PREOEA70] described a template matching

technique using eight edge masks. In this approach, a match

with each of the eight masks is calculated at each of the

pixels in the image, and the edge magnitude is determined by

the mask with the highest output.

Rosenfeld and Thurston [ROSEAC71] conducted several

experiments to find out the optimal size of the edge masks.

Template matching has the following drawbacks

[DAVCOT86]:

i) Different masks are needed for the accurate

estimation of edge magnitude and orientation.

ii) Optimization of noise suppression imposes

additional conditions on template matching masks.

5

Griffith [GRIEDI73] described a method of edge

detection in simple scenes us~ng a priori information. An

initial investigatio'n is made on an entire scene with just

enough effort per unit area to find the most distinct edge

lines. Suppose that knowing the positions of these lines

allows us to single out 1/10th of area of the field as

constituting the only regions in which more subtle lines

could lie. We concentrate on these areas applying the

operator more densely to search for previously undetected

edges. Griffith employed a five stage line detection system.

1) Feature point extraction based on intensity values of

pixels.

2) Line extraction from the feature points

3) Heuristic approach to join the lines.

4) Heuristic approach to predict the locations of

missing lines.

5) Verification of the existence of proposed edge lines.

The main drawbacks of Grif'fi th' s operator are

[DAVAS075] as follows:

1) It is not clear if the analysis can be extended to

objects that are inherently noisy or to textured

objects.

2) Extension to include curved surfaces is not clear.

3) The operator ignores regions with edge or line not

6

centered, and if such regions are not ignored it

results in a very high (70%) false positive error rate,

i.e., the operator finds an edge, where in fact

there is none.

Chow [CHOABD72] described an edge detection method for

histograms of cineangiograms. An image is divided into a

regular array of overlapping subimages and individual

histograms are constructed for each one. A threshold value

is selected to construct a binary picture from a gray image.

Disadvantages attributed to this method are that it involves

a lot of computation [DAVMVT90], there is no good global

threshold value, and it is not suited to complex pictures

[DAVAS075].

Nevatia and Babu [NEVLFE80] described an edge detection

approach to find out edges in aerial pictures by using edge

masks followed by thinning and thresholding the edge

magnitudes. Then the linked elements are approximated by

piecewise linear segments.

Canny [CANACA86] described a procedure for the

detection of edges using a computational approach. He

proposed a detector which used an adaptive thresholding

technique with hysteresis to eliminate streaking of edge

contours.

Davies [DAVMVT90] observes that the thesholding

approach is error prone, or else quite difficult to

implement in practice for real images.

7

Edge Fitting Methods

Hueckel [HUEAOW71] used an analytical approach to edge

detection. His approach, described here briefly, is

explained in detail in the next chapter. Define the

difference N, between the neighborhood of an image and the

ideal step by

where A(x) - image intensity at point x, and

S(x,E) - intensity of the ideal step function for

a chosen vector of parameter €.

The problem is reduced to finding minimum N2 on an area R of

a circular disk. Hueckel approximated A(x) and S(x,E) by a

radial Fourier series where only the first nine functions

are used. So,

N' 2 =~(a· - s·(€))2
1,.0 1 1

where ai, and si are coefficients of expansion of Fourier

series. Hueckel obtained a solution for E, and having

calculated N', the presence of an edge is determined by

requiring the step height h to be large and N' to be small.

Hueckel [HUEALV73] proposed a modified operator to detect

edges and lines.

Nevatia [NEVEOA77] tried to simplify the Hueckel edge

operator using a fewer terms for approximating a step. But,

he found that there was a performance loss when noise was

present.

8

Nevatia [NEVACE77], extended the Hueckel edge operator

to color images. He gave three alternative definitions of a

color edge. Nevatia defined the step in color as having

three components, and let the degrees of fit for the three

be Nl, N2, and N3, and

Nl 2 = £(al· - sl·) 2
h.o 1 1

where ali, and sli are the terms of expansion for the signal

and the step for the first component of a color image.

Similarly N2, and N3 are defined. Now, an optimal step in

color space is defined by determining the three components

such that

is minimum.

Kundu [KUNRED90] proposed another edge detection

method based on a statistical classification technique. It

uses two characteristics of natural edges for their

detection:

i) near and around the step and linear edges the pixels,

when classified into two nearly equal groups, display

markedly different average intensity values, and

ii) members of each group show strong spatial correlation.

This approach combines thresholding and spatial correlation.

The edge detector described tries to locate the edges at

points where these two conditions are satisfied with strong

statistical evidence. An edge operator is described in 3

phases. In phase I step and linear edges are detected, in

9

phase II thin lines are detected, and in phase III spurious

and missing edges are treated. Kundu says that this operator

is computationally simple.

Stein and Medioni [STEETD90] described a different

approach to recognize two-dimensional objects without

resorting to thresholding or edge fitting. Their

representation of a model or scene is based on polygonal

approximation wherein curves are approximated by several

polygons with different line fitting tolerances. Groups of

consecutive segments are gray coded and entered into a hash

table. Then recognition of objects proceeds by segmenting

the scene into a polygonal approximation. The models for

matching objects are created by random overlapping of more

than 3 and less than 7 random·triangles.

Gokmen and Li [GOKEDW90] presented an edge detection

algorithm using regularization theory. In the algorithm, the

energy functional in the standard regularization has been

modified to spatially control the smoothness over the image

to locate the edges accurately. The authors say that their

algorithm smoothens nois~ without degrading discontinuities

and offe.rs an efficient alternative to the existing edge

detectors for edge detection and surface reconstruction.

Linking of Edge Elements

once the edges in an image are detected by using any

one of the several edge operators available, it becomes

10

necessary to connect the edge elements properly to form

object boundaries. This can be difficult, because many of

the edge detection operators may generate edges that may not

correspond to the actual boundaries of an object.

There are a number of schemes available for relinking

broken boundary elements.

A simple technique as described by Nevatia [NEVMP82] is

to link points in a neighborhood of, say 8 pixels, if they

have similar or same orientation.

The Hough transform [HOUMAM62] is one of the techniques

of edge element aggregation. The theory of Hough Transform

technique which became widely known due to Duda and Hart

[DUDUOH72] is as follows. The general equation of a straight

line can be written as

x cos e + y sin e = r

where e is the angle made by normal to the line with the x

axis and r is the length of this normal. For any point

(xi,Yi) on this line the above equation becomes

xi cos e + Yi sin e = r
This equation corresponds to a sinusoidal curve in (r,e)

space. This relationship between the image plane and the

(r,e) plane is called Hough transformation. The curves

corresponding to collinear figure points intersect at a

point. This point defines the line passing through the

collinear points in the (r,e) plane. Now, the detection of a

group of collinear points reduces to constructing the

11

transform curves in the (r,e) plane for each point and

picking the points where three or more such curves coincide.

In actual practice, r is limited to the size of the image

plane and e € [0,2~] [DUDUOH72].

Nevatia observes that the Hough transform technique

does not examine the proximity of the clustered points and

hence groups of contiguous point must be separated from a

cluster of collinear points [NEVMP82].

Nevatia [NEVLOB76] described a six step procedure to

link the edge elements detected by an operator. Each edge

element is assumed to have a position and a direction

associated with it. The entire 360 range of directions is

divided into a number equiangular intervals (say, 12). Then,

linking in an interval is limited to those edges which fall

into that interval. Each image is divided into

strips/buckets of some fixed size, (say, 3 pixels) and edges

in each strip are linked together. If two consecutive edge

elements in a bucket differ in y coordinate by a small

distance of a threshold value, say 2 pixels, then those two

elements belong to the same segment. After linking elements

in a bucket, segments in adjacent buckets are linked without

resulting in a change of orientation of the segment.

Finally, segments which exceed a fixed number of pixels in

length are retained.

Davies [DAVMVT90] observes that noise spurs around

boundaries can be eliminated efficiently by removing lines

that are shorter than three pixels.

12

Canny's method [CANACA86] of thresholding is a more

computationally efficient method. In his method, intensity

gradients above some upper threshold value are taken to

indicate an edge in the boundary, and gradients above some

lower threshold value are taken to indicate an edge only if

they are adjacent to positions that have already been

accepted as edges. In this approach, edge detection and

linking of edges proceed together.

Marr and Hildreth [MARTOE80] presented an edge detector

which is computationally complex in nature. Their theory is

based on two main ideas. First, one simplifies the detection

of intensity changes by dealing with the image separately at

different resolutions. The detection process then can be

based on finding zero-crossings in a second derivative

operator. Marr and Hildreth used Laplacian operator. Next

step of combining the information obtained in the first step

is based on their assumption that coincidence of zero

crossings sufficient evidence for the existence of a

physical edge. Like Canny's approach, this method also tries

to combine edge detection and aggregation of edge elements.

Martelli [MARAA076] presented a method for detecting

edges and finding contours in noisy pictures. In his method

of edge detection the author treated the optimization

problem as a shortest path problem on a graph.

CHAPTER III

GENERAL APPROACH TO THE PROBLEM

Introduction

The problem of converting raster images to vector

images is divided into four major parts

i) Decompression of the image data (if the image is

compressed).

ii) Locating edges/lines in an image using an edge

detection operator.

iii) Properly linking the edge elements found by the

operator.

iv) Storing the vector data in a file for

subsequent use.

Compression of BileVel Images

There have been some attempts on the part of scanner

vendors and some software developers for the last few years

to standardize the format of an image file. One of the

widely accepted format is Tag Image File Format (TIFF). The

structure of the TIFF file is briefly described below

[ACTIF90].

The TIFF file begins with an 8 byte header that points

13

14

to one or more image file directories. The image file

directories contain information about the images, as well as

pointers to the actual image data as shown in fig. 1.

First word in the image file header specifies the byte

order used in the file - Big Endian, or Little Endian. In

Big Endian byte order, the address of the most significant

byte is placed at the lowest address, and vice versa in

Little Endian byte order. The second word gives the version

number. It is useful in checking if the file is a TIFF file

and if nothing has changed. Next long word (bytes 4-7)

contains the offset of the image file directory.

The Image file directory consists of a 2-byte count of

the number of fields, followed by a sequence of 12-byte

field entries, followed by a 4-byte offset of the next image

file directory if it exists. Details of the directory entry

are as shown in fig. 1.

For bilevel images, there are two compression schemes

available to compress data.

i) CCITT Group 3 !-dimensional Modified Huffman run

length encoding [ACTIF90].

ii) PackBits compression, a simple byte oriented run

length scheme [ACTIF90].

Decompression schemes for these two are described in

[ACTIF90].

0
2

A
A+2
A+14
A+26

A

"'
A

c

\ !/

Byte Order
Version

Offset of Oth IFD

Entry Count
Directory Entry 0
Directory Entry 1
D1rectory Entry 2

Offset of next lrD

Figure 1. TIFF File Header

15

Directory Entry

X Tag
X+2 Type

X+4 Length

Xt8 y Value 0

_t
y Value

16

Locating Edges/Lines

The following factors are considered before choosing an

edge detector.

i) Since the type of images intended to be

processed are confined to engineering drawings,

pictures are less likely to be noisy.

ii) The edge detector must be able to locate edges

and lines properly in a bilevel image by

averaging out pixels on edges and lines in a

region.

iii) Since the intended images are bilevel as

opposed.to grayscale, thresholding techniques

are not considered.

Under these assumptions, the Hueckel edge detection

algorithm is best suited for the present purposes to find

edges and lines in an image [HUEALV73]. The theory of the

Hueckel edge operator is described here.

Define b_ and b+ as the brightness values of the two

regions as shown in fig. 2, t_, and t+ as the step values of

brightness, and r_ and r+ as the radial distances to the two

regions as shown in fig. 2. Let ex = cos a and cy = sin a.

Define x, y as the Cartesian coordinates in the picture

plane. Let S(x, y, ex, cy, r_, r+, t_, t+, b_) be the

function defining a pattern, edge, line, or edge-line.

17

(Cx,Cy)

o unit vector

Figure 2. Hueckel Edge Operator Disk

Now, edge and line are defined in terms of the edge-

line region (b) in fig. 2. An edge-line is pure edge if

r_ = r+ or t_ = 0 or t+ = 0 and a pure line if t_ = t+.

Therefore, this operator offers a choice of three different

modes of pattern recognition.

Define D to be a set of grid squares to best

approximate a circular disk. Assume D to be a subgrid of a

18

digitized picture. Define the x, y coordinate system so that

D' = {(x, y) I x2 + y2 ~ 1} to best approximateD

I(x, y) = intensity value at (x, y)

I = the function which is given by I(x, y) over D

The disk to be applied over the image is assumed to be

continuous, whereas D is not continuous in actual practice.

If a continuous disk and a discrete disk are superimposed

then some squares in disk D fall outside D' and some squares

outside of D have corners which fall inside D' as shown in

fig. 3. To minimize this error due to transition from a

discrete disk to a continuous disk, some particular disk

sizes are chosen [HUEAOW71]. From an investigation it is

found that disks with 32, 52, 69, 88, 137 grid squares are

the most favorable ones. The corresponding radii of D' are

given by

k r =(area of D/~)z

The error due to the approximation of the function I by

s given by

I-s= (S(I(x, y) - S(x, y))2 dxdy)~
1i

Figure 3. Approximation of Circular and
Discrete Disks

19

20

should be minimum for the edge-line operator. Depending upon

the accuracy of the fit, the operator indicates failure or

success of detection.

To minimize computation, Hueckel used radial Fourier

series taking the first nine functions to approximate I. The

function I is represented as I 0 after this approximation.

The set of all real functions over D' is a Hilbert space H.

Let {Hi(x, y) I i = O, ... , oo} be an orthonormal basis of H.

tuple= ((ex, cy), r_, r+, t_, t+, b_)

ai =]Hi(x, y). I 0 (x, y, tuple) dxdy
D'

si ={Hi(x, y). S(x, y, tuple) dxdy
1:f

oO 2
N0 (tuple) =~(a· - s·(tuple)) 2

'"0 1 1
2 8

N (tuple) = ~0 (ai- si(tuple)) 2

The operator should minimize N0 • The equations of Hi

fori= 0 to 8 are given in [HUEALV73], and are not

reproduced here. The frequency of Hi is defined as the

number of zero crossing lines, excluding the periphery of

the disk D' as shown in fig. 4.

For the acceptance of an edge or line in the operator,

the acceptance criterion is as follows.

where conf and diff are two threshold values to accept an

edgejline. Conf is related to the noisiness of a pattern and

diff to the contrast of the pattern. The values of conf and

diff are to be chosen based on the noise of the pictures

likely to be processed, and after conducting several

21

OCD®®
Ho Hs

@8@@
Hs

Hs

Figure 4. Frequencies of Hi

experimen~s with different values. The values used by

Hueckel are conf = 0.5 and diff = 2.5 for dark line

detection.

22

The given algorithm gets the intensity values of the

pixels in the picture over an area that lies within a chosen

disk size, conf, diff, and pattern P. P = 0, 1, 2 tells the

operator to look for edge-lines, edges, and lines. If P = 2

then PP = -1, o, +1 tells the operator to look for dark

lines only, all lines, and white lines only respectively.

The operator returns either success (succ = 1), or failure

(succ = O) and indicates to the main program to try (try =

1) the operator again after relocating the disk in the

vicinity. Absence of a pattern is assumed at a location

within the disk area when succ = 0 and try = 0.

Conversion to Vectors

After the edge operator finds the edge/line points in

the image, all the related points must be linked and grouped

as vectors.

Nevatia [NEVLOB76] observes that the difficulty in

locating boundaries of objects is due to the fact that local

surface discontinuities do not necessarily correspond to the

object boundaries. He presented an algorithm to find groups

of edges that connect in an approximate straight line.

In view of its simplicity, and the possible use of some

of the parameters from the Hueckel edge operator in

23

implementing it, the algorithm suggested by Nevatia is more

appropriate for the present purpose of vector conversion.

Therefore, it is decided to use this algorithm with suitable

modifications as applicable to our requirements. The

algorithm is described as presented in [NEVLOB76].

The following assumptions are made about the edge

elements.

i) Each edge element is considered to have a

position and direction associated with it.

ii) Two oppositely directed elements are considered

to have different directions (differing by

180°).

iii) Length of an edge element as determined by an

edge operator is unimportant.

Following are the steps in the algorithm.

1) Examine each edge element and put it in a set Ej if

its direction falls within a chosen rangeA8, of the

2)

3)

direction ej.

Transform the coordinates so that the new x-axis, X'

lies along 8j.

Divide the image plane into parallel strips of a fixed

size, normal to X'. Each edge element in Ej will fall

into one group (bucket) of direction. These can be

ordered by the value of y coordinate.

4) Link the edges in one group (bucket). If two

consecutive elements in the edge list for a bucket

differ by a small amount, within a threshold value;

then the two belong to the same segment.

5) Then link segments in neighboring buckets. If the end

points of two segments in adjacent buckets are within

some threshold value of their x and y coordinates then

they belong to the same segment.

6) Retain only segments whose length is above a (threshold

value) fixed number of pixels.

Storing the Vectors in a File

The x and y coordinates of the vector points making

lines are stored in ASCII format in a file so that these

points. can be joined together by any CAD software for

further manipulation. One of the file formats available is

Design CAD file format [ASBDCD91]. The specifics of this

file format can be found in Appendix B.

24

CHAPTER IV

IMPLEMENTATION DETAILS

Introduction

For its simplicity and availability of orientation of

vectors, Hueckel's edge de·tector is used to find the

instances of edges and lines as discussed in earlier

chapters. The scanning algorithm by which the operator is

applied over an image and the edge aggregation algorithm are

presented here.

Other features like getting the names of the input

raster image file and output drawing file, listing the files

in a directory, allowing the user to alter or choose some

parameters, etc., are added at appropriate stages of the

program.

Scanning Algorithm

Starting from the top left hand corner of an image, the

image is traversed horizontally by the edge detection

operator moving four pixels at one time. Since the diameter

of the operator disk is nine pixels, steps of four pixel

movement seem to be appropriate horizontally and vertically

for a preliminary scan. When the operator finds an instance

25

26

of an edge or line, it follows the line as long as

successful detections continue. The traversal path of the

operator is noted down in a separate memory buffer. When the

end of a line is reached, and traversal resumes where the

edge was first detected. When the number of vectors reaches

a limit (say 3000, depending on the available memory), they

are aggregated to reduce the number of continuous line

segments. At this point, the number of points that

constitute a vector are printed in the output file along

with the number of them. The algorithm is as follows.

scan()

{

int x, y, II x, y coordinates

midx, midy, II coordinates of the center of

II the operator

succ, II indicates if the operator found a line

linestart, 11 boolean, indicates a line has

II begun

dumx[], dumy[]; II vectors along a path go here

for(y = 4; y < maxvalue of y; y += 4){

for(x = 4; x <max value of x; x += 4){

linestart = O;

while(the point was not visited){

read disk; 11 fill the operator disk with

II intensity values.

call edge detector(try,succ, ...);

if(try){ II try is global

if(succ){

if(the center point is close to the

center of the operator){

mark point as visited;

if(linestart)

mark the points along the vector;

else

linestart = 1; II a line starts

dumx[count] = midx;

dumy[count++] = midy;

move midx,midy along the vector;

} II end if (the center ..)

else

repositi~n the operator close to

vector;

} II end if (succ)

else{ II no line is found, but retry

reposition the operator as per parameters

from operator

}

if end of image is reached break;

} II end if (try)

try = O; II reset try

27

} II end while

call link_vect(); 11 connect the vector points

reset count = O; II counter for # of vector

II points

if(# of vectors >= threshold value){

output vector points in a file;

reset counter for # of vector points;

}

} 11 end for

} II end for

output remaining vector points;

}I* end of scan() *I

Linking Algorithm

As seen above, when the end of a vector is reached,

linking of the vector points is done. In this process,

starting from the first noted point on the vector, three

consecutive points are, checked to see if they are close

enough to be on a single line. A threshold value (say 3°) is

chosen for checking this. If three points can be assumed to

be on a line, then the last point of the three points is

checked in the same way, until the end of the vector is

reached. Whenever the three consecutive points, as found by

the edge detector, make two line segments, they are noted

down as two separate line segments of a vector. If there is

29

only one point in a vector it may be omitted. When the total

number of vector points reaches a threshold value (say,

3000), they are output into the output file in the

appropriate format, and the corresponding counters are

reset.

The linking algorithm is as follows.

link_vect()

{

int i = O;

double delx1, dely1, delx2, dely2;

jx[counter] = dumx[iJ;IIcounter indexs into jx, jy

jy[counter++J = dumy[i++]; II jx[], jy[] are global

if(count == 2){

jx[counter] = dumx[i];

jy[counter++] = dumy[i++J;

}

if(count < 3)

return;

while(i <count){ 11 check linearity of vector

II points

delx1 = dumx[i] - dumx[i-1];

dely1 = dumy[i] - dumy[i-1];

delx2 = dumx[i+1] - dumx[i];

dely2 = dumy[i+1] - dumy[i];

if(abs(tan(delyl,delxl) - tan(dely2,delx2)) <

LIM) {

jx[counter] = dumx[i];

jy[counter++] = dumy[i];

} // end if

i++;

} // end while

jx[counter] = dumx[i];

jy[counter++] = dumy[i];

} /*end of link_vect() */

30

CHAPTER V

RESULTS AND CONCLUSIONS

Introduction

The scan conversion program is menu driven. It has

options to set some parameters related to scanning,

selecting the input raster image file and output drawing

file, listing the files in a directory etc.

When the name of the input raster image file is given,

the program checks to see that it exists, decompresses if

necessary, and proceeds to scan the image. If an existing

output drawing file name is given, it will be reused if the

user chooses to do so. The input file is scanned in

different passes if it cannot be scanned in one pass. The

number of passes required to scan the image is determined by

the available memory and the size of the raster file. During

the scanning procedure, vector points are stored in an array

and attempts to aggregate them are made to reduce the

number. When the number of these vector points reaches a

threshold value after all aggregation, they are output into

the drawing file. The maximum number of points that can

constitute a vector is 200. If any vector has more points,

it is divided into two vectors in the output drawing file.

31

32

This restriction is imposed by the Design CAD file format.

A study was done using a number of ideal cases of

linejedge detection by the Hueckel edge operator with 'conf'

varying from 0.80 to 0.96 at 0.02 intervals and 'diff'

varying from 0.15 to 0.04 at 0.02 intervals. These two

parameters are related to the noisiness and the contrast of

a pattern respectively. The best results were obtained for

conf = 0.96 and diff = 0.04. However, the user can change

these values, if he desires so.

The output vector file is in ASCII format which can be

used by Design CAD software. This vector file can also be

read by other software since it is in ASCII format, and can

also be edited as desired to suit other requirements.

Results and Conclusions

A number of TIFF files were made using a hand scanner,

and the scan conversion program was used to convert them to

vector images.

Comparisons were made between the previously available

program and the current program. The following observations

were made.

1. The previous program always needs input

parameters from the user for the scanning

procedure, whereas the current version needs

no parameters to be given by the user unless he

has encountered an unusual picture which does not

suit the default parameters.

2. The previous program separates the tasks of

scanning an image and converting points to

vectors. The current program performs both the

tasks almost simultaneously, since the track

followed by the operator gives the vector points

along the line. This also reduces user effort.

3. Straight lines are recognized more accurately now

than by the previous program.

4. Since the current version uses a more

sophisticated mathematical approach, it involves

more numerical calculations and takes more

processing time than the previous program.

However, if future plans to extend this program

to grayscale images are carried out, the current'

program will take the same amount of time because

the number of calculations involved remains the

same, whereas the previous program will spend a

lot of additional time in thresholding and

finding edges

5. The vector images generated from the current

program appear to be satisfactory. If the lines

in the input raster images are thicker, there is

some noise in the vector image. This can be

eliminated by editing the output by using any

CAD software.

33

34

Recommendations for Further Study

One of the problems of the raster to vector conversion

is the recognition of text. Small letters of text are

usually not recognized properly by the currently available

operators which are used to recognize edges and lines. Thus

the current conversion program rarely produces readable

results from small letters. This area must be studied to

find out better operators which can work well with both

geometric diagrams and small text.

Processing speed is one of the problems that must be

addressed by further studies.

Thick lines create another problem. They appear as two

parallel lines, sometimes with some noise present between

them. A better method to show such thick lines as single

lines should be investigated. Since the Hueckel's method

allows for scanning operators with other diameters besides

nine pixels, implementing these should add some flexibility
I

for dealing with more or less coarse parts of drawings.

BIBLIOGRAPHY

[ABDQDA79] Abdou, Ikram E., and Pratt, William K.,

Quantitative Design and Evaluation of

Enhancement/Thresholding Edge Detectors, Proceedings of

the IEEE, 67, 5. (May, 1979).

[ACTIF90] Aldus Corporation, Tag Image File Format

Specification, Revision 5.0, (1990).

[ASBDCD91] American Small Business Computers, Design CAD

Drawing File Format, Design CAD 2-D: Reference Manual,

(1991), 445-450.

[CANACA86] Canny, J., A Computational Approach to Edge

Detection, IEEE Transactions on Pattern Analysis and

Machine Intelligence, PAMI-8(6), (Nov., 1986) 676-698.

[CHOABD72] Chow, C.K., and Kaneko, T., Automatic Boundary

Detection of the Left Ventricle from Cineangiograms,

Computers in Biomedical Research, 5, (1972), 388-410.

[DAVCOT86] Davies, E.R., Constraints on the Design of

Template Masks for Edge Detection, Pattern Recognition

Letters and Signal Processing, 4, (1986), 111-120.

[DAVMVT90] Davies, E.R., Machine Vision: Theory, Algorithms,

Practicalities, Academic Press, (1990).

[DAVAS075] Davis, Larry s., A Survey of Edge Detection

Techniques, Computer Graphics and Image Processing,

35

36

(Sep., 1975), 4, 3, 248-270.

[DUDUOH72] Duda, R.O., and Hart, P.E., Use of the Hough

Transformation to Detect Lines and Curves in Pictures,

communications the ACM, 15, (Jan.,,1972), 11-15.

[FOLCGP90] Foley, James D., van Dam, Andries, Feiner,

Steven K., Hughes, John F., Computer Graphics:

Principles and Practice, Second Edition,

Addison-Wesley Publishing Company, (1990).

[GOKEDW90] Gokmen, M., and Li, c.c., Edge Detection With

Iteratively Refined Regularization, lOth

International Conference on Pattern Recognition, I,

(Jun., 1990), 690-693.

[GRIEDI73] Griffith, Arnold K., Edge Detection in Simple

Scenes Using A Priori Information, IEEE Transactions

on Computers, c-22, 4, (Apr., 1973).

[GRIMMF73] Griffith, Arnold K., Mathematical Models for

Automatic Line Detection, Journal of the ACM, 20, 1,

(Jan., 1973), 62-80.

[HOUMAM62] Hough, P.V.C., Method and Means for

Recognizing Complex Patterns, u.s. Patent 3069954,

(Dec., 18, 1962).

[HUEAOW71] Hueckel, Manfred H., An Operator Which Locates

Edges in Digitized Pictures, Journal of the ACM,

18, 1, (Jan., 1971), 113-125.

[HUEALV73] Hueckel, Manfred H., A Local Visual Edge 6perator

which Recognizes Edges and Lines, Journal of the ACM,

20, 4, (Oct., 1973), 634-647.

[KUNRED90] Kundu, Amlan, Robust Edge Detection, Pattern

Recognition, 23, (1990), 423-440.

37

[MARTOE80] Marr, D., and Hildreth, E., Theory of Edge

Detection, Proc. of the Royal Society of London, B207,

(1980), 187-217.

[MARAA076] Martelli, A., An Application of Heuristic Search

Methods to Edge and Contour Detection, Communications

of the ACM, (Feb., 1976), 73-83.

[MERASA75] Mero, L., and Vassy, z., A Simplified and Fast

Version of the Hueckel Operator for Finding Optimal

Edges in Pictures, Advance Papers of the Fourth

International Joint Conference on Artificial

Intelligence, Tsibili, U.S.S.R, (Sep., 1975), 650-655.

[NEVLOB76] Nevatia, R., Locating Object Boundaries in

Textured Environments, IEEE Transactions on Computers,

25, (Nov., 1976), 1170-1175.

[NEVEOA77] Nevatip, R., Evaluation of a Simplified Hueckel

Edge-Line Detector, Computer Graphics and Image

Processing, 6, (1977), 582-588.

[NEVACE77] Nevatia R., A Color Edge Detector and Its Use in

Scene Segmentation, IEEE Transactions on Systems. Man,

and Cybernetics, SMC-7, 11, (Nov., 1977), 820-826.

[NEVLFE80] Nevatia R., and Babu, Ramesh K., Linear Feature

Extraction and Description, Computer Graphics and

Image Processing, 13, (1980), 257-269.

[NEVMP82] Nevatia, R., Machine Perception, Prentice-Hall,

Inc., (1982).

[PETAS082] Pete, T., and Malah, D., A Study of edge

detection algorithms, Computer Graphics and Image

Processing, 20, (1982), 1-21.

38

[PRADIP78] Pratt, W.K., Digital Image Processing, John Wiley

& Sons, (1978).

[PREOEA70] Prewitt, J.M.S., Object Enhancement and

Extraction, Picture Processing and Psychopictorics,

Academic Press, (1970).

[ROSDIP81] Rosenfeld, A., and Kak, A., Digital Image

Processing, Academic Press, (1981).

[ROSEAC70] Rosenfeld, A., and Thurston, M., Edge and Curve

Detection for Visual Scene Analysis, IEEE Transactions

on Computers, c-20, (May, 1970), 562-569.

[STEETD90] Stein, Fridtjot, and Medioni, Gerard, Efficient

Two Dimensional. Object Recognition, lOth International

Conference on Pattern Recognition, I! (Jun., 1990),

13-17.

APPENDIXES

39

APPENDIX A

TAG IMAGE FILE FORMAT

The following is the TIFF file format (Revision 5.0).

Only relevant portions from [ACTIF90] are reproduced here.

More details can be obtained from [ACTIT90] or by contacting

at either of the following addresses.

Developer's Desk

Aldus Corporation

411 First Ave. South

Suite 200

Seattle, WA 98104

Windows Marketing Group

Microsoft Corporation

16011 NE 36th Way

Box 97017

Redmond, WA 98073-9717

The largest possible TIFF file is 2**32 bytes in

length. The recommended file extension for MS DOS, UNIX, and

OS/2 is ".TIF" and for Macintosh it is ".TIFF".

Structure

In, TIFF, individual fields are identified with a

unique tag. This allows particular fields to be present or

absent from the file as required by the application.

A TIFF file begins with an 8-byte "image file header"

that points to one or more "image directories". The image

file directories contain information about the images, as

40

41

well as pointers to the actual image data. See fig. 1 (page

15).

We will describe these structures in more detail.

Image File Header

A TIFF file begins with an 8-byte image file header,

containing the following information:

Bytes 0-1: The first word of the file specifies the

byte order used within the file. Legal

values are:

"II" .(hex 4949)

"MM" (hex 4D4D)

In the "II" format, byte order is always

from the least significant to most

significant, for both 16-bit and 32-bit

integers. In the "MM" format, byte order is

always from most significant to least

significant, for both 16-bit and 32-bit

integers. In both formats, characters are

stored into sequential byte locations.

All TIFF readers should support both byte

orders.

Bytes 2-3: The second word of the file is the TIFF

"version number". This number, 42 (2A in

hex), is not be equated with the current

Revision of the TIFF specification. In fact,

the TIFF has never changed, and probably

never will. If it ever does, it means that

TIFF has changed in some way so radical that

a TIFF reader should give up immediately.

The number 42 should be used as an

additional check that it is indeed a TIFF

file. A TIFF file does not have a real

versionjrevision number.

Bytes 4-7: This lon~ w6rd contains the offset (in

bytes) of the first Image File Directory.

The directory may be at any location in the

file after the header but must begin on a

word boundary. In particular, an Image File

Directory may follow the image data it

describes. Readers should simply follow the

pointers, wherever they lead. (The term

"byte offset" is always used in this

document to refer to a location with respect

to the beginning of the file. The first byte

of the file has an offset of 0.)

Image File Directory

42

An Image File Directory (IFD) consists of a 2-byte

count of the number of entries (i.e., the number of fields),

followed by a sequence of 12-byte field entries, followed by

a 4-byte offset of the next IFD (oro if none). Do not

forget to write the 4 bytes of o after the last IFD

Each 12-byte IFD entry has the following format:

Bytes 0-1 contain the Tag for the field.

Bytes 2-3 contain the field Type.

Byte 4-7 contain the Length (or Count) of the

field.

Byte 8-11 contain the Value Offset, the file

offset (in bytes) of the Value for the

field. The Value is expected to begin on

a word boundary; the corresponding]

Value Offset will thus be an even

number. This file offset may point to

anywhere in the file, including after

the image data.

43

The entries in an IFD must be sorted in ascending order

by Tag. Note that this is not the order in which the fields

are described in this document.

In order to save time and space, the Value Offset is

interpreted to contain the Value instead of pointing to the

Value if the Value fits into 4 bytes. If the Value is less

than 4 bytes, it is left justified within the 4 byte Value

Offset, i.e., stored in the lower-numbered bytes. Whether or

not the Value Offset fits within 4 bytes is determined by
-

looking at the Type and Length of the field.

44

The Length is specified in terms of the data type, not

the total number of by.tes. A single 16-bit word (SHORT) has

a length of 1, not 2, for example. The data types and their

lengths are described below:

1 = BYTE

2 = ASCII

3 = SHORT

4 = LONG

5 = RATIONAL

An 8-bit unsigned integer.

8-bit bytes that store ASCII codes; the

last byte must be null.

A 16-bit (2-byte) unsigned integer.

A 32-bit (4-byte) unsigned integer.

Two LONG's; the. first represents the

numerator of a fraction, the second the

denominator.

The value of the Length part of an ASCII field entry

includes the null. If padding is necessary, the Length does

not include the pad byte. Note that there is no "count

byte", as there is in Pascal-type strlngs. The Length part

of the field takes care of that. The null is not strictly

necessary, but may make things slightly simpler for c

programmers.

The reader should check the type to ensure that it is

what he expects. TIFF currently allows more than 1 valid

type for some fields. For example, ImageWidth and

ImageLength were specified having type SHORT. Very large

images with more than 64K rows or columns are possible with

some devices even now. Rather than add parallel LONG tags

for these tags, it is cleaner to allow both SHORT and LONG

for ImageWidth and similar fields.

45

Note that there may be more than one IFD. Each IFD is

said to define a "subfile". One potential use of subsequent

subfiles is to describe a "sub-image" that is somehow

related to the main image, such as a reduced resolution

version of the image.

The Fields

This section describes the fields defined in this

version of TIFF. The documentation for each field contains

the name of the field, the Tag value, the field Type, the

Number of Values (N) expected, comments describing the

field, and the default value, if any. Readers must assume

the default value if the field does not exist.

BitsPersample

Tag = 258 (102)

Type = SHORT

N = SamplesPerPixel

Number of bits per sample.

Default = 1.

Compression

Tag = 259 (103)

Type = SHORT

N = 1

1 = No compression, but pack data into bytes as

tightly as possible.

2 = CCITT Group 3 1-dimensional Modified Huffman run

length encoding. BitsPerSample must be 1, since

this type of compression is bilevel images.

32773 = PackBits compression, a simple byte oriented

run length scheme for 1-bit images. Data

compression applies to only raster image data, as

pointed to by StripOffsets. All other TIFF

information remains unaffected.

Default = 1.

ImageLength

Tag = 257 (101)

type = SHORT or LONG

N = 1

The image's length (height) in pixels (Y: vertical).

The number of ~ows (sometimes described as 'scan

lines') in the image.

No default.

ImageWidth

Tag = 256 (100)

Type = SHORT or LONG

N = 1

The image's width in pixels (X: horizontal). The number

of columns in the image.

No default.

46

Photometricinterpretation

Tag = 262 (106)

Type = SHORT

N = 1

0 For bilevel and grayscale images : o is imaged as'

white. 2**BitsPerSample-1 is imaged as black.

1 : For bilevel and grayscale images : 0 is imaged as

black. 2**BitsPerSample-1 is imaged as white.

RowsPerStrip

Tag = 278 (116)

Type = SHORT

N = 1

The number of rows per strip. The image data is

organized into strips for fast access to individual

rows when the data is compressed-though this field is

valid even if the data is not compressed.

RowsPerStrip and ImageLength together tell us the

number of strips in the entire image. The equation is

StripsPerimage = (ImageLength + Row~PerStrip

- 1) I RowsPerStrip.

Note that either SHORT or LONG values can be used to

specify RowsPerStrip. SHORT values may be used for

small TIFF files.

SamplesPerPixel

Tag = 277 (115)

Type = SHORT

47

N = 1

The number of samples per pixel. SamplesPerPixel is 1

for bilevel, grayscale, and palette color images.

SamplesPerPixel is 3 for RGB images.

Default = 1.

StripBytecounts

Tag = 277 (115)

Type = SHORT

N = StripsPerimage for Planarconfiguration equal to

1, SamplesPerPixel * StripsPerimage for

Planarconfiguration equal to 2.

For each strip, the number of bytes in that strip.

No default.

StripOffsets

Tag = 272 (111)

Type = SHORT or LONG

N = StripsPerimage for planar configuration equal

to 1, and SamplesPerPixel * StripsPerimage for

Planarconfiguration equal to 2.

For each strip, the byte offset of that strip with

respect to the beginning of the TIFF file.

No default.

XResolution

Tag = 282 (11A)

Type = RATIONAL

N = 1

48

49

The number of pixels per ResolutionUnit in the X

direction.

No default.

YResolution

Tag = 283 (11B)

Type = RATIONAL

N = 1

The number of pixels per ResolutionUnit in the Y

direction.

No default.

Apart from these fields, information fields like Artist (Tag

= 315), DateTime (306), Software that created the image

(305) etc., are also available.

APPENDIX B

DESIGN CAD DRAWING FILE FORMAT

The Design CAD file format is described here. Only

relevant portions are reproduced from [ASBDCD91].

The Design CAD drawing file is an ASCII file, with the

data present in character format. Each ''record" in the file

is actually a line in a text file. There are four types of

records, or lines, in the file:

1. Header line

2. Entity line

3. Point line

4. string line

The header line tells, among other things, how many

entity lines are to follow. The entity line tells what type

of drawing entity and how many points and strings to follow.

The Point and String lines contain point and strings,

respectively.

THE HEADER LINE

The Header Line contains 5 numbers:

1. The minimum X coordinate in the file.

2. The minimum Y coordinate in the file.

50

3. The horizontal length of the drawing.

4. The vertical height of the drawing.

5. This number is no longer used. A zero remains

here for compatibility.

The coordinates are in arbitrary units. The Drawing

Units Size (entity type 40) can be used to determine the

"real world" coordinates or the size of one Drawing Unit.

The Entity Line

The entity line contains 6 or 8 numbers:

1. The type of entity:

0 = Handles

1 = Line

2 = oval

3 = Text

4 = Curve

5 = Arc

6 = Paint-Old Format

15 = Attribute

16 = Circle, Circular arc

17 = Hatch

18 = Dimension, Linear

19 = Dimension, Angular

20 = System Parameters - Old Format

21 = New Layer

22 = Text Arc

51

23 = Layer Names

24 = Arrow

40 = Drawing Unit Size and Cursor Step Size

41 = System Parameters

70 = Point Mark

72 = Diameter or Radius Dimension

73 = Dimension coordinate (HorjVer Distance to

a Reference Point)

2. The Number of points to follow. (0-200)

(or the layer number, if the entity= 21)

3. The line pattern scale. (1 = normal)

4. The line width.

5. The line type. (0-8)

6. The color (1-16)

7. Reserved (Optional to Dimension Entities)

8. Dimension Format (Optional to Dimension Entities)

Following the entity line are the point lines and the

string lines. There is one point line, and one string line

per line. Strings are found on Text, Text Arc, and Hatch

entities.

52

If the entity type is 20, then the drawing parameters

will follow, terminated by an asterisk (*). If the entity

type is 40 or 41, then the number of lines that follow on

that entity. Each line may have more than own value, and the

values do not represent points.

53

Earlier versions of the program have the line type and

color combined in the same value. This format is still

compatible. If there are only 5 values on the entity line,

the color and line type are assumed to be combined in the

fifth value.

THE POINT LINE

The point lines follow the entity line. Each line

contains two numbers: the X and Y coordinates of the point

on the screen. These values will change when the drawing is

retrieved according to the size, location, and angle of the

Retrieve command.

There can be no more than 200 points per entity. A line

or curve entity with more than 200 points may be used by

splitting it into two or more entities.

The point line can contain an X, Y, and Z coordinate,

but the Z coordin~te is ignored in Design CAD 2-D.

THE STRING LINE

The string line contains a string of text. It follows

the point lines. The string line is used only with Text,

Text Arc, Attribute, and Hatch entities. Be sure that the

string is terminated with a carriage return. character,

because trailing blanks will be used in determining the

string length and may cause undesirable results. The maximum

string length is 80 characters.

void scan()

{

APPENDIX C

SCANNING ALGORITHM CODE

int i = o,j, listn, midx, midy, pmidx=O, pmidy=O,

linestart = o, cnt=O, succ, count=O, dumx[200],

dumy[200], index= o, ptr[1000], seg = O;

float ex, cy, r, edjs, lins, delx, dely;

BYTE input[DISKSIZE];

char str[20];

11 = 0; ptr[seg++] = -1;

init_h(); II initialise the h[][] array.

for(iy = 4; iy+5 < isymax; iy += 4){ I* move

horizontally on the image *I
for(ix = 4; ix+5 < isxmax; ix += 4){

linestart = O;

itry = 1;

midx = ix;

midy = iy;

while(!check_visit(midx,midy) && itry){ I* check if

the point was visited already *I

54

if((pmidx -- midx) && (pmidy

break;

midy))

pmidx = midx; pmidy = midy;

if(read_disk(midx,midy,input)){ /* fill and check

if disk has all O's/l's */

//if not, apply edge detector

hoper(input, &succ, &ex, &cy, &r, &edjs,&lins);

if (i try) {

if(succ){ 11 an edgejline is found.

if(fabs(r) < O.lljmax(fabs(cx),fabs(cy))){

setpoint(midx,midy);

if{linestart)

mark_yect{ll); /*mark the points on

the vector as visited */

else

linestart = 1;

if(cx < O){ /* adjust the linejedge

parameters for the image */

ex = - ex;

cy = -cy;

}

dumx[count] midx;

dumy[count++] = midy;

if(fabs(cy) > 0.95) {

midx += 4 * fabs(cy) + 0.5;

55

midy -= (ey <= 0)?(4 *ex+ 0.5):-(4 *

ex+ 0.5);

}

else{

}

midx += 4 * ey + 0.5;

midy += 4 * ex + 0.5;

} // end if(abs)

else{

setpoint(midx,midy);

midx += ((delx = r*ex/0.21) < 0) ? (delx

- 0.5) (delx+0.5);j*reposition

operator to try again */

midy -= ((dely = r*ey/0.21) < O)?(dely-

0.5):(dely+0.5);

} // end else

}// end if(suee)

else{

setpoint(midx,midy);

midx += ((delx = r*exj0.21) < O) ? (delx-

0.5): (delx+0.5); /* repos.

operator to retry */

midy -= ((dely = r*eyj0.21) < 0) ? (dely-

0.5): (dely+0.5);

linestart = O;

if(!delx && !dely) /*if this is the same

56

position as before, abort next trial*/

break;

}// end else

if((midx-5 < O) I I (midx+5 > isxmax) I I
(midy-5 < 0) I I (midy+5 > isymax))

break; /* check for boundary of the image

buffer */

} // end if(itry)

} //end if(read_disk())

else

itry = O;

}/* while*/

if(count){

if(count-1){

}

link_vect(dumx,dumy,&index,count); /*link

vectors */

ptr[seg] = index-1;

seg++;

count = O;

} // end if(count)

if(index >= 3000){ 11 output vectors

,putindc2{seg,ptr);

index = O;

seg = o;

ptr[O] = -1;

57

}

}II for

}II for

if(index < 3000) II output remaining vectors

putindc2(seg,ptr);

} II end of scan.

58

Reddy V. V. s. Mallidi

candidate for the Degree of

Master of Science

Thesis: USING A DISK OPERATOR TO CONVERT RASTER IMAGES OF
ENGINEERING DRAWINGS TO VECTOR IMAGES

Major Field: Computer Science

Biographical:

Personal Data: Born in Pallakadiam, A.P, India, March
16, 1963, the son of M.V.S. Reddy and Sathyavathi.

Education: Received Bachelor of Engineering degree
(Civil Engineering) from Andhra University,
Waltair, India, in May, 1985 and Master of
Technology degree (Civil Engineering), from Indian
Institute of Technology, Kharagpur, India, in
August, 1990; completed requirements for the
Master of Science degree, at Oklahoma State
University, in May, 1992.

Professional Experience: Research Assistant, Department
of Computer Science, Oklahoma State University,
August, 1991, to January, 1992; Programmer,
American Small Business Computers, Pryor, OK, May,
1991, to August, 1991; Programmer, Department of
Psychology, Oklahoma State University, January,
1991, to May, 1991; Para-professional, Help Desk,
University Computer Center, Oklahoma State
University, J~nuary, 1991, to May, 1991;
Programmer, Oklahoma Resources Integrated General
Information Network Systems, Business School,
June, 1990, to December, 1990; Assistant Executive
Engineer, Neyveli Lignite Corporation, Neyveli,
India, July, 1986, to November 1989.

