
A BITWISE SIMULATION OF THE

CONTROLLER AREA NETWORK

By

NAT ARAJAN S. PENNATHUR

Bachelor of Engineering

University ofMysore

Mandya, India

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1993

OKLAHOr-M STATE UNIVERSITY

A BITWISE SIMULATION OF THE

CONTROLLER AREA NETWORK

Thesis Approved:

..___...... Thesis Adviser U

L/Dean of the Graduate College

11

ACKNOWLEDGMENTS

I sincerely thank Dr. K. M. George for his able guidance throughout the course of my

research work. He has contributed in a great way by making valuable suggestions at

critical junctures. Also, it would have not been possible for me to fulfill this research

objective without the efforts of Dr. Mitch Neilsen. He was a great source of inspiration

during the various phases of my work. He was actively involved in the design,

implementation, and analysis of the simulation. I am also thankful to him for

meticulously evaluating my thesis report. I also wish to sincerely thank Dr. Marvin Stone

for providing me with all the technical details concerning the CAN. Every discussion

with him has been a pleasurable experience, and a path to further knowledge. It has been

a very exciting experience to have worked with him.

I am deeply indebted to .my beloved parents who have provided moral support in all

my endeavors. I am grateful to have received their blessings at all times. I have also

drawn lots of inspiration from friends and family alike. I wish to make special mention

of some close friends and colleagues including Ganesh, Raja, Prasad, John, Jay, Sam,

J.D, Kam, Will, Aaron, Daphna, Kim, and Chitti for their constant encouragement.

Finally, I wish to thank my stars for having achieved this objective.

iii

TABLE OF CONTENTS

I. INTRODUCTION 1

II. OVERVIEW OF THE CAN.......... 3

Why CAN?..................... .. 3

CAN Hardware........ 4

CAN Standards and Protocols 8
Bus Arbitration Protocol....... 8
Communication Modes 9
Message Transfer........ 10
Message Filtering 14
Message Validation 14
Error Detection and Signaling 14
Fault Confinement.. 15
Bit Timings....................................... 16

CAN Enterprise ~. 16

III. REAL TIME ENVIRONMENT.. I 8

Concepts I 8

Sporadic and Periodic Messages I 9

Approaches to Scheduling....... 20

Scheduling Issues 21

Real-time Scheduling Algorithms...... 21
Earliest Deadline First Scheduling.. 21
Rate Monotonic Priority Assignment...................................... 22
Mixed Scheduling........................ 22
Priority Exchange Algorithm 22
Earliest Deadline First with

Dynamic Deadline Modification.......... 22
Least Slack Algorithm... 22

iv

IV. SIMULATION OF THE CAN.. 25

M.odel 25

Design.... 25
Protocol Specification 25
Topological Module Specification... 27
Node Module Specification.............................. 27

Implementation........................ 28

Statistical and Graphical Analysis.............. 31

Verification.................. 32
Network Load.... 33
Network Throughput 34
Time Analysis..... 35
Response Time Characteristics.. 35
Latency Characteristics........................... 36
Error Analysis..................................... 37
Network Collisions 38

V. CONCLUSIONS 39

Surrnnary of Results........ 39

Conclusions 39

Future Research 40

REFERENCES........... 41

APPENDIX A- GLOSSARY.... 44

APPENDIX B- SIMULATION PROGRAM 47

APPENDIX C- INPUT DATA..... 89

APPENDIX D- STATISTICS 107

v

LIST OF FIGURES

Figure Page

1. CAN Topology............ 5

2. CAN Functional Diagram.... 5

3. Block Diagram of the CAN Architecture....... 6

4. Collision Resolution
by Non-Destructive Bitwise Arbitration... 9

5. Data Frame Format 11

6. Standard Format for ARB and CTR Fields... 12

7. Extended Format for ARB and CTR Fields.......... 13

8. A Rate Monotonic Priority Assigrunent 24

9. CAN Simulation Model................... 26

10. Bit Transfer Flow Diagram........... 29

11. Load Characteristics ;.... 33

12. Throughput vs Load 34

13. Time Characteristics 3 5

14. Response Time Characteristics................. 36

15. Latency Characteristics....................... 3 7

16. Error Characteristics 3 7

17. Collisions vs Load....... 38

vi

CHAPTER I

INTRODUCTION

Controller area network (CAN) is a real-time serial communication network that is

presently being used for in-vehicle networking. In-vehicle communication is used in

cars, agricultural trucks, military and construction vehicles, industrial and factory

automation communications, and other event control and information sharing systems.

The value for such in-vehicle serial communications is to reduce the harness size,

manufacturing and maintenance complexity, eliminate sensors, increase diagnosability,

and facilitate in-vehicle electronic options. The effort to develop a common protocol

standard has been perceived by Robert Bosch GmbH and Intel Corporation. A similar

network model is also being researched by Philips, Chrysler, and other automotive

companies. Most of the work has been published in a series of papers in the Society of

Automotive Engineers (SAE). CAN features include an open system to expand the

network without topological changes, high reliability, low cost, minimum CPU burden

for communication, maximum transparency, data consistency, and speedy transmission

for real-time applications.

The need for an efficient and low cost network for in-vehicle communication has

created a wide number of research areas. The necessity to standardize such a network has

become essential. One of the primary research areas now is to find efficient protocols

over the existing hardware to shape the network into the OSI seven layer reference model.

Since CAN is a typical real-time network with its own way of handling collisions,

priority arbitration, addressing, and error control, the typical network algorithms do not

apply very well for this kind of network. The architectural details, standards, and

pro!ocols of the CAN are discussed in Chapter II.

2

A major concern is the performance of such a network under heavy load. This means

that as the message rate increases, the throughput and delay should remain stable. The

messages may be either periodic or sporadic. The scheduling of such messages is tricky

in a real-time network system, where deadlines need to be met. A thorough investigation

of various real-time scheduling algorithms is discussed in Chapter III.

The purpose of this research is to find an efficient way of handling the periodic and

sporadic message set that the CAN application presents. The objective is also to schedule

messages within the network to reduce transmission delay, and hence achieve the much

desired higher network throughput. At present, the network is designed to operate under

less than a 30% load. A comprehensive CAN simulation model has been developed to

test and analyze the network performance. The distinctive feature of the simulation

program is its bitwise trace of the CAN protocols. Also, functions of error management

and fault confinement have been included to analyze message error and node failure

overheads. The implementation details ofthe simulation, and the performance evaluation

are discussed in Chapter IV. Finally, the thesis concludes with a summary and a brief

discussion of future research in Chapter V.

CHAPTER II

OVERVIEW OF THE CONTROLLER AREA NETWORK

Why CAN?

The following are some of the standard network topologies, and their limitations that

make them unsuitable for real-time applications [Phai86].

I . The star network topology has a central node, to which are connected several

nodes in a star. This arrangement offers waterproof arbitration schemes, but the

failure of the central node results in network failure.

2. The token bus is another topology that has good configuration flexibility.

However, the network does not offer multimastership. The token is held by a single

node at a time, and only that node is allowed to transmit messages. The failure of

the node holding the token results in a substantial time loss. Recovery from failure

requires complex logic.

3. The token ring network is similar to the token bus with the difference being in

the physical rather than the logical ring structure. These networks are suited for

high speed data transfer with token mastership, and priority based access to tokens.

Again, the probability of a ring failure is a major drawback.

4. The bus topology using Carrier Sense Multiple Access with Collision

Detection (CSMAICD) protocols offers multimastership by allowing any node to

transmit when the bus is idle. The drawback in these networks is the destruction of

messages when a collision occurs, and the retransmission of messages that involves

substantial time loss and increased recovery logic.

3

The CAN has the following properties that make it most suitable for a real-time

network.

1. Prioritized bitwise arbitration for fast transmission of high priority messages

with a latency time as short as 150 microseconds.

2. Guarantee of latency times.

3. High transmission rates in the range of 1 Mbps for a bus length of 40m.

4

4. An open system that allows configuration flexibility to add or delete any number

of nodes without changing the underlying software or hardware of any node, with the

constraints being physical limitations, and electrical load on the bus.

5. Multicast reception with time synchronization enables any number of nodes to

receive a message.

6. Object-oriented communication that increases hardware transparency and system

wide data consistency.

7. Multimastership that allows any node to start transmission when the bus is free.

8. A powerful error handling and signaling mechanism by means of bus

monitoring, cyclic redundancy checks, bit stuffing, and message frame checks.

9. Automatic retransmission of corrupted messages as soon as the bus is idle again.

10. A distinction between temporary and permanent failure of nodes, and

autonomous switching off of defective nodes.

CAN Hardware

The CAN architecture is based on a multimaster single bi-directional bus topology as

shown in Figure 1. A node forms the point of contact with the communication channel,

while the station is where the sensor and its microprocessor resides. All nodes are linked

to the station via a communication controller. The stations may be data acquisition

sensors or computers. A block implementation of a CAN station is as shown in Figure 2.

The I/0 devices receive data from acquisition sensors and the station CPU processes the

5

,. -

~,.._"'
;

Station Station Station
#I #2 #3

/,
.......... CAN BUS /

Station Station Station
#4 #5 #6

II' . ' ' ~
i _ .

.. - ..
~ _ _,. . .. c=:.:! '

Figure 1. CAN Topology

data. The processed data is stored as communication objects within the shared RAM.

The bus interface initiates a message transfer when it senses the bus to be idle. Similarly,

a message is received by the bus interface by matching an appropriate communication

object within the RAM. Once the data is copied into the RAM, the CPU processes it, and

initiates an I/0 transfer to the sensor.

Figure 2. CAN Functional Diagram (Source [Arne87])

The CAN bus is a single bi-directional channel that may have a single wire, two

differential wires, or optical fibers with T -junctions. The bus can have two logical

values, termed dominant (logical 0) and recessive (logical I). The recessive bit is

represented by a mean voltage level of two voltages, V CAN H and V CAN L that are
- -

defined with respect to the ground voltages of the electronic control unit (ECU). During

the recessive state they are fixed to a mean voltage level. A recessive bit is transmitted

during an idle state condition. The dominant state is a differential voltage greater than a

minimum threshold, and overwrites the recessive state during arbitration [Bosc91 J.

6

The main components of the communication controller include a dual port RAM (DP­

RAM), an interface management processor (IMP), and a processor interface unit (PIU).

Other components include a bus timing logic (BTL), a transceive logic (TCL), an error

management logic (EML), a bit stream processor (BSP), and a clock generator (CG). A

block diagram representation is as shown below in Figure 3.

-
to
st at ion
-

c PU

-

Processor

Interface

Unit

(PIU)

__n_n__
Station Clock

1/0

I
I PORTO

I

Dual Port
RAM

nterface

Management .. ~,. ' ·=· ~
'..11 •. X'

Processor

Clock IMP)
Generator
(CG)

110

I
I PORTl

I

Bus
Time -
Logic
(BTL)

~ransceive

LOgic -
1-

TCL)

e rror
Management
LOgic
EML)

Bit
Stream 1--

Processor
(BSP)

Figure 3. Block Diagram ofthe CAN Architecture (Source [Phai88])

r-

r-~
~

N

~

~
~

'--

7

The DP RAM forms a communication buffer between the station microprocessor and

the IMP. Messages are stored as communication objects in the DP RAM. Each

communication object consists of an identifier, a control segment, and a data segment. It

has a global status register and a control register that help create communication objects

to be used by the IMP. The IMP controls the transmission and reception of data between

the serial bus and the DP RAM. It performs these tasks by means of acceptance and

transmission filtering. This is done by scanning the communication objects in the DP

RAM through its data paths. It computes the address for a communication buffer access

and manipulates the appropriate control bits to execute the CPU's receive and transmit

commands.

The PIU links the DP RAM to the station CPU. It consists of an 8-bit multiplexed

data/address bus, read/write control, address latch enable, chip select, interrupt output,

external interrupt input, reset, ready output signal, two 8-bit output ports 0 and 1, and 3

chip select output lines to connect additional peripheral devices. The PIU connections to

the host microcontrollers is discussed in more detail in [Phai88].

The bus timing logic (BTL) synchronizes the station clock with the signal clock on the

bus using a comparator. It also provides programmable time segments to compensate for

the propagation delays and phase shifts. The transceive logic (TCL) performs bit stuffing

and Cyclic Redundancy Check (CRC) sequence generation using an output driver and

several shift registers. The bit stream processor (BSP) controls the flow of bits between

the parallel IMP interface and the serial CAN bus interface. It performs bit reception,

bitwise arbitration, bit transmission, error signaling and control ofTCL. The error

management logic (EML) gets error signals from the BSP, and takes action by signaling

the BSP, the TCL, and the IMP of error statistics. The clock generator (CG) has an

oscillator, a clock divider register, and a driver circuit. The oscillator is driven by an

external crystal, or in case of low baud rates by a ceramic resonator. The clock's output is

programmable [Phai88].

CAN Standards and Protocols

The characteristic features of the CAN includes its layered structure and physical

properties. The CAN implements a serial communication protocol with three well

defined layers. The protocol description follows from the layered structure according to

the ISOIOSI reference model.

The physical layer performs bit level functions of decoding I encoding,

synchroruzation, timing, high voltage protection, and drive capability. The upper layer

being the data link layer is sub-divided into two sub layers, namely the medium access

control (MAC) sublayer, and the logical link layer (LLC). The MAC sublayer performs

message level functions of fault confinement, message validation, error detection and

signaling, acknowledgment, message frarrung, transfer rate, timing, data encapsulation I

decapsulation, serialization I deserialization and arbitration. The LLC sublayer performs

object level functions of prioritized message handling, message buffering, overload

notification, and recovery management. The almost non existent application layer has

controller level functions such as data collection through sensors, request for data from

other sensors, and sending messages across the network.

A bus arbitration protocol is used as a means of resolving collisions by consensus

rather than a central arbiter making decisions. The time required to resolve a conflict is

bounded by the number of arbitration bits used. The arbitration is shown by means of

square wave forms, where each cycle represents a bit level as seen below in Figure 4.

8

The CAN bus can be viewed as an OR gate whose value is morutored by all nodes

connected to the bus. If one can violate the Boolean rule, and assume that a 0 when

ORed with a 1 results in a 0, then the protocol is easily understood. Since every station is

synchronized to read the same bit field, whenever a station detects a dominant bus level

of 0, while it actually sent a recessive bit 1, the station backs off, and thus loses the

arbitration. Eventually when all the arbitration bits are sent the winner holds the bus, as

the case with station #I in Figure 4. Hence the arbitration results in the message with the

9

Clock

Station 1
I 0 0 0 0 I 0 I 0 Wi1U1er

Station 2 0
Loser

Station 3 0 I 0 I 0 0 I Loser

Bus Value ; 0
I

I 0 0 0 0 0

* represents the point at which the station loses the arbitration

Figure 4. Collision Resolution by Non-Destructive Bitwise Arbitration

highest priority (lowest binary value) winning.

Communication modes are offive types, namely command, request, proprietary, sleep

I wakeup, and acknowledgment [Bosc92]. Command mode provides the capability to

send commands to nodes to take necessary actions. Addressing a destination may be

explicit with a destination address, or implicit with an extended data content. The request

mode facilitates information request globally from all nodes, or from a specific

destination. This mode provides messages to be sent to devices that can distinguish them

properly without conflicts. The source address field of the message may have the

sender's address when transmitting a message, or the receiver's address when the message

is a destination specific request. The acknowledgment mode provides for a positive

acknowledgment (ACK) for an error free message transfer, or a negative

acknowledgment (NACK) for an erratic message transfer that results in an automatic

retransmission. A sleep mode enables the CAN device to be in an inactive state, reducing

power consumption as the bus drivers are disco:rinected. The internal activity gets

restarted by a wake-up signal.

10

Message transfer for the CAN 2.0 version provides an extended frame in addition to

the standard frame defined in the CAN 1.011.2 version. Both a standard message format

with a 11 bit identifier, and an extended frame format with 29 bits have been incorporated

in the CAN 2.0 version. This is to make the CAN 2.0 version compatible with the CAN

1.011.2 versions. The extended frame format allows the CAN to address a large implicit

data content address. This way CAN performs functional addressing using the data

content rather than the physical address itself [Phai86] .

CAN performs message passing using communication objects. Information from

sensors is written into the data segment of the proper communication object within the

DP RAM. A transfer is initiated by a transmission request in the control segment.

Transmission and error handling is then performed without the CPU involvement. This

helps to fire and forget messages [Kien86]. Message reception is performed by reading

the data segment onto an already set up communication object. There are four kinds of

frames in the CAN namely, a data frame that carries data from transmitters to receivers, a

remote frame to request the transmission of a data frame with the same identifier, an error

frame to signal a bus error, and an overload frame to provide an extra delay between

succeeding data or remote frames. Data and remote frames may be used in both standard

as well as extended frame formats .

A data frame is composed of seven fields : START OF FRAME (SOF),

ARBITRATION (ARB), CONTROL (CTR), DATA, CRC, ACK, and END OF FRAME

(EOF) as shown in Figure 5. The SOF field consists of a single dominant bit to mark the

beginning of the message frame. The ARB field for the standard frame format has an 11

bit identifier, and a Remote Transmission Request (RTR) bit. The extended format ARB

field has a 29 bit identifier, a Substitute Remote Request (SRR) bit, an Identifier

Extension (IDE) bit, and an RTR bit. In both formats the first 11 bits represent the base

11

id, ID 1, that defines the base priority of the message, while the 18 additional bits forming

the extended id, ID2, in the extended format represent data content implicitly. In both

~--------- Data Frame ________ ,~ k
(

s

.o ARB ~TR

Interframe
space

~ F

(3+ bits) Start of frame
(I bit)

Arbitration field
(11 or 29 bits)

Control field
(6 bits)

DATA

Data field

(0 to 64 bits)

~
CRC ~ EOF

CRC field
(16 bits)

K

ACK field
(2 bits)

End of frame
(7 bits) Interframe

space
(3+ bits)

Figure 5. Data Frame Format (Source [Bosc91])

formats, the RTR bit is dominant for a data frame, while it is recessive for a remote

frame. This bit notifies the network that the message is a remote request. The SRR bit is

placed in the RTR bit field position in the extended frame, and is recessive to ensure that

the standard frame prevails over the extended frame in the event of a collision, when the

base identifiers of these dissimilar frames is the same. This bit tells the network that the

message is in an extended frame format. TI1e CTR field has six bits. For the standard

format it has an IDE bit, a reserved bit rO, and a four bit data length code (DLC). The

IDE bit is in the control field for standard format and is dominant, while it is recessive in

the extended format. The DLC represents the length ofthe data bytes in binary. The

standard frame format for the ARB and the CTR fields is as shown in Figure 6.

In the extended format two reserved bits rO, and r1 are followed by a four bit DLC.

12

Both the reserved bits are sent dominant in an extended frame. The ARB and CTR fields

Arbitration field (ARB)

v (12 bits)

' I' /

?•

R
s

T
I ID

11
0

- R
F

nteJframe I

Control field (CTR)

v (6 bits)
' v

I' / I'

I

D
r

0
DLC

E

Data field
(0-8 bytes)

DATA

s pace Start of Frame field
(3+ bits) (1 bit) Identifier field Remote

(11 bits) Transmission
Request field

(1 bit)
Identifier

Extension field
(1 bit)

Reserved
field
(I bit)

[ata Length
Code field
(4 bits)

Data field
(0 to 64 bits)

Figure 6. Standard Format for ARB and CTR Fields (Source [Bosc91])

for an extended frame are as shown in Figure 7. The DATA field has 0 to 8 bytes of data

that are transferred MSB first. The CRC field has 16 bits, containing a 15 bit CRC

sequence followed by a CRC delimiter bit that is recessive. The ACK field is two bits

long, and contains the ACK slot, and the ACK delimiter that is recessive. A positive

acknowledgment of reception of data is reported by super scribing the recessive ACK slot

bit with a dominant bit by the receiving stations. Finally a seven bit EOF field is used to

mark the end of the message frame. All seven bits are recessive.

13

A remote frame is used by a receiver to initiate the transmission of data to the source

node. A remote frame contains the address of the transmitter. It is void of the DATA

field. The RTR bit is set to recessive, to indicate a remote transmission request.

An error frame has two fields consisting of a six equal bit ERROR FLAG that is a

superposition of error flags contributed by various stations, and an eight bit ERROR

K

s

0
IDI

F

nJframe j_
space Start of Fram

3+ bits) field

Arbitration field (ARB)

(32 bits)

s

R D

R E

(I bit) Identifier field

(11 bits)

Substitute

ID2

Control field (CTR) Data field

)K (6 bits))K (0-8 bytes)

R

T r

0
R

DLC DATA

Remote

Request field

(I bit)
Identifier

Extension

field

Identifier field R
(18 b.) emote

Its . .
Transmtsston Reserved

field 0 and I D t Le gtl
I bit each) a a n 1

Code field
(4 b'ts) Data field

1 (0 to 64 bits)

I bit

Request field

I bit

Figure 7. Extended Format for ARB and CTR Fields (Source [Bosc91])

delimiter that are all recessive. All active nodes send an ACTIVE ERROR FLAG that

consists of six dominant bits, while the passive nodes send a PASSIVE ERROR FLAG

that consists of six recessive bits. An ERROR FLAG violates the bit stuffing rule, and

hence all other nodes on the bus detect an error condition, and in turn signal errors.

An overload frame has two fields consisting of six OVERLOAD FLAG bits that are

dominant, and eight OVERLOAD delimiter bits that are all recessive. An overload

condition may occur when the delay of the next data or remote frame falls short of the

interframe space, or when a dominant bit is detected at the first, and second bit of

intermission, or when a dominant bit is detected at the eighth (last) bit of an error frame

or an overload frame.

14

An interframe space has two fields namely, a three bit INTERMISSION field in which

all bits are recessive, followed by an arbitrary number of bits in the BUS IDLE field . In

addition to the above, an error passive station that was a transmitter ofthe last message

has an eight bit SUSPEND TRANSMISSION field following the INTERMISSION field

in which all bits are recessive. The overload and error frames are not preceded by a

interframe space. Any dominant bit detected during the BUS IDLE period is interpreted

as a SOF of a new message.

Message Filtering is used by a station to receive a message that belongs to it, and

hence implement a multicast network. This is achieved by having optional mask registers

that allow any identifier bit to be set 'don't care' for message filtering, and may be used to

select a group of identifiers to be mapped into the attached receive buffers. The mask

registers may be programmed, to be enabled or disabled for message filtering. The length

of the mask register can comprise the whole identifier or only part of it.

Every node on the network checks the message identifier on the bus to see if it

matches with the object identifier in the DP RAM. If a match occurs, the message is

copied into the proper communication object in the DP RAM.

Message validation is performed by both the transmitter and the receivers of the

message. A message is valid for the transmitter if it does not detect an error at the end of

the EOF bits. The message is valid for a receiver, if no error is detected until the

penultimate bit of EOF is received. Corrupted messages result in automatic

retransmission.

Error detection and signaling is performed by the error management logic (EML) that

is connected to the bus. All global errors, local errors, 5 randomly distributed errors in a

message, burst errors of length less than 15 in a message, and errors of any odd number in

15

a message are detected [Gupt88] . The total residual error probability for undetected

corrupted messages is less than the message error rate which is (4. 7 * 10-11) [Bosc91].

The message recovery time after detection of an error is about 29 bit times. Five different

types of errors are detected, namely bit errors, stuff errors, CRC errors, form errors, and

acknowledgment errors.

A bit error is detected if a transmitter detects a bus value that is different from the bit

value it sent. Bit stuffing, ACK flagging, and overwriting of passive error flags are

exceptions to the rule.

A stuff error is detected when there are six consecutive equal bits that violate the law

of bit stuffing for a CAN. The exceptions to the rule are the ERROR FLAGS, and

OVERLOAD FLAGS that send six consecutive dominant or recessive bits.

A CRC error occurs when the CRC sequence computed by the receiver does not

match the sequence sent by the transmitter.

A form error is detected when a fixed form bit field has an illegal bit. For example, if

the SOF bit is received as a recessive bit, a form error occurs.

An acknowledgment error is detected by a transmitter, when it does not read a positive

acknowledgment in the form of a dominant bit in the ACK slot field.

Fault confinement is implemented by having two error counts, namely a TRANSMIT

ERROR COUNT, and a RECEIVER ERROR COUNT at each node. Initially, all nodes

start out as active nodes with zero error counts. When a transmitter or a receiver detects

an error its corresponding error count is incremented by one. If a transmitter, or a

receiver detects an error condition during transmission of an error flag, the corresponding

error count is incremented by eight. Successful transmission, and reception of a message

results in decrementing the corresponding error count by one. If either of a node's error

count exceeds 127, it becomes an error passive node. Similarly if both the node's error

counts become less than 128, then it becomes an error active node. An error active node

signals errors with an ACTIVE ERROR FLAG consisting of dominant bits, while an

16

error passive node uses a PASSIVE ERROR FLAG consisting of recessive bits. An error

active node is hence used as a better judge of an error occurrence, while an error passive

node's error signals may be overridden. If the TRANSMIT ERROR COUNT of a node

exceeds 255, it becomes bus off. A bus off node is inactive on the bus. This feature

enables the CAN to isolate a faulty node.

Bit timings for the nominal bit time is divided into separate non-overlapping time

segments namely, synchronization segment (SYN_SEG) that is 1 time quanta long,

propagation segment (PROP _SEG) that is 1 to 8 time quanta long, phase buffer segment

1 (PHASE_ SEG 1) that is 1 to 8 time quanta long, and phase buffer segment 2

(PHASE_ SEG2) that is the maximum of PHASE_ SEG 1 and information processing time

[Bosc91]. The information processing is less than or equal to 2 time quanta long. The

total time quanta in a bit time is programmable to between 8 to 25. Synchronization is

achieved by hard synchronization and resynchronization that are described in [Bosc91].

CAN Enterprise

CAN networks have been on the scene since the need for an electronic network for the

highly competitive automotive industry was required. Also, CAN provides a real-time

and multimaster support with nondestructive collision resolution. The American

Trucking Association (A TA), the Society of Automotive Engineers (SAE), and the

International Standards Organization (ISO), along with various automotive and

semiconductor manufacturers worked toward developing an in-vehicle network. The

CAN components, like the Intel 82526, have been on the market since 1988. Many

automobile corporations like Chrysler, and Robert Bosch GmbH have been perceiving the

design and implementation of such real-time distributed systems for their cars. Also,

much interest is being generated in the aviation and earth moving equipment industries.

An Inter Controller Area Network (ICAN) was proposed in SAE 11583 by the Intel Corp.

Intel's 82526 integrated the IMP, DP RAM and PIU units into one single chip. Chrysler

17

Corp. came up with their Chrysler Collision Detection (CCD) for serial data

conununication multiplex bus. In 1985, Robert Bosch GmbH and Intel joined together to

develop an in-vehicle network device with CAN specifications [Iver88]. Philips built

various components to support testing and design of CANs [Eyho89]. Motorola

developed a single chip microcontroller MC68HC04 for a basic CAN architecture

[Jord88]. The difference in its implementation was that conununication between the CPU

and the CAN interface is via a dual register with a context switch. This has a limitation

in that it can receive a small number of messages at the full data rate.

Also, since an onboard CAN simulation package exists, efforts can be made to test

protocols on the CAN hardware itself. Also, Philips provides a NetSim PC-based

simulator to which a CAN network must be described in terms of number of nodes,

transmission speed, message identifiers, message length, and a noise margin. The output

provides results of the simulation, such as network delay, network throughput, and bus

load. Robert Bosch GmbH has provided an on board simulator, with which some

specifications and performance measures can be obtained. All of these are presented in

their draft of 11939 in the SAE Reconunended Practices. The CAN 2.0 high speed

proposal for an International Draft Standard, (September, 1991) focuses mainly on the

CAN's data link layer and its differences with previous versions.

At Oklahoma State University, research was perceived by Dr. Marvin Stone and Dr.

Huizhu Lu's student Mr. Zhengou Wang on a priority exchange algorithm to schedule

sporadic message generations with a maximum arrival rate. The assumption made here

was that the arrival rates of messages are Poisson. The message priority assignment

algorithm as they called it made a worst case analysis by considering the transmission

time and an allowed transmission delay for each message type as the parameter to assign

priorities. Priorities were exchanged as and when the service time of a message exceeded

the allowed transmission delay of that message from the time it arrived.

CHAPTER III

REAL-TIME ENVIRONMENT

Concepts

Real-time computing implies the use of a computer in conjunction with an external

process. The concept of a real-time system is more specifically defmed as the ability of a

computer to respond to stimuli from an external event in a timely fashion. The computer

needs to be fast enough to complete the execution of the process. In a real-time network

this translates to the speed of communication between processors or sensors.

A real-time environment is one in which responses to events should occur before a

deadline. In a hard real-time system violation of such critical timing constraints result in

material and/or human disasters. In contrast, a soft real-time system is one in which the

real-time constraints are relaxed, and violation of deadlines do not result in catastrophies.

It is obvious from its nature of operation that the CAN is a hard real-time environment

where deadlines must be met. For example, a failure to signal a braking action in an

automobile could lead to a fatal accident. Hence, one of the chief concerns is to minimize

delays within the network.

One of the major hurdles in achieving system reliability, in such hard real-time

systems, is finding an efficient way to schedule the events. I have considered the real­

time scheduling as my research basis, since it is adaptable into a CAN type of

environment. It has been my endeavor to pursue system configurations that are

representative of the CAN. The following discussion provides the various analogies that

18

19

can be related from the typical real-time computer systems to the CAN. First of all, a

non:-preemptive process scheduling aptly represents CAN messages since they cannot be

removed from the bus once they are placed on it. Secondly, a uniprocessor machine can

be easily viewed as the single channel of communication that the CAN adopts for

message transfer. Scheduling overhead is assumed to be negligible in a real-time

computer system. Also, exclusive access to the CAN bus is guaranteed once arbitration

resolves bus contention. Finally, the processes arriving in a computer system can be

readily equated to the messages generated in the CAN.

Sporadic and periodic messages

CAN messages are both periodic as well as sporadic in nature. Hence, a translation

needs to be performed to have one type of message. The sporadic messages that are

asynchronous in nature can be easily transformed to their periodic counterparts [Jeff91].

A periodic message is one that is generated repetitively in fixed time intervals. A typical

periodic message Mp is defined as Mp = (c, p) where 'c' is the communication cost, and

'p' is the period. A message Mp arriving at time ·tk has the following rules of generation:-

• the (k + 1)-th generation of message Mp will occur at time tk+ 1 = tk + p.

• the k-th transfer of the message Mp cannot start before tk and must be completed

no later than its deadline tk + p. That is, the transmission time needs to be in the

interval (tk, tk + p).

A typical sporadic message is one that is generated in response to an internal or

external event. A sporadic message Ms is defined as Ms = (c, p), where the 'c' is the

communication cost, and 'p' is the least interval oftime before the next generation of such

a message. A message Ms arriving at time tk has the following rules of generation:-

• the (k + 1)-th generation of message Ms will occur no earlier than tk + p; that is,

tk+ 1 >= tk + p.

20

• the k-th transfer of message Ms cannot start before tk, and must complete no later

than its deadline at tk + p.

Thus, the two message types differ only by the first rule. A periodic rate can be

imposed on the sporadic message by using the period 'p', that is the shortest interval of

time in which a sporadic message arrives. Hence, any scheduling scheme for periodic

messages can be used to schedule sporadic messages as well. Also, since the CAN

messages are mostly periodic, it is convenient to use the above convention to define

messages. A feasible schedule involves ordering messages in such a manner that all

messages meet their deadlines.

Approaches to Scheduling

Two distinct approaches to scheduling messages are on-line (dynamic scheduling) and

off-line (static scheduling). Since most messages are periodic, and their characteristics

are known in advance, off-line scheduling is more suitable. A schedule length equal to

the least common multiple of all message periods can be used to decide if the message set

is schedulable or not [Xu93]. Also, it seems to be the only practical means of providing

predictability in a real-time system.

Two parameters that can be used in the CAN message scheduling are message

deadlines and message priorities. If message deadlines are equated to the corresponding

message periods plus their previous deadlines, then an optimal priority assignment

scheme can be used to resolve collisions during arbitration. Since priorities on the CAN

are programmable, a priority assignment strategy based on a pre-computed schedule can

be implemented.

21

Scheduling Issues

One of the chief concerns in a hard real-time system using pre-run-time scheduling is

satisfying relevant timing constraints. The objective also is to minimize the schedule

length which is the longest time taken to transfer all messages. Two main theorems are

discussed in detail in [Jeff91J. In terms of message scheduling, ifM = {MJ, , Mn} is a

set of periodic messages, where M = (Ci, Pi), then the messages are in increasing order of

periods. In other words, for all messages, Mi and Mj , i > j implies Pi >= Pj. The two

necessary conditions for this message set to be schedulable are:-

• The overall bus utilization cannot exceed 1 00%; that is,

n
2: (cifpj) ::; 1
i=l

• For any i between 1 and n, and L between PI and Pi,

L 2 (Ci + 2: ((L-1) I Pj) * Cj)

This suggests a non-preemptive schedule with no inserted idle time. The right hand

side of the equation gives the bus utilization that can be realized in the interval L,

starting at the generation of message Mi and ending before its deadline.

Real-time scheduling algorithms

Following are real-time scheduling algorithms proposed in the literature:

Earliest deadline first (EDF) scheduling, which is also called relative urgency (R U)

scheduling, has been proven to be universal for sporadic and periodic message sets. A

concrete message translated from concrete task is one that has a release time associated

with it. In [Jeff91], it has been proven that non preemptive scheduling of concrete

periodic tasks is NP-hard in the strong sense.

In EDF scheduling, a message is assigned the highest priority if the deadline of its

current request is the earliest [Liu73]. Scheduling decisions are made at the time of each

message generation. Thus, this suits a dynamic scheduling scheme, where priorities are

assigned based on the current request.

22

The rate monotonic priority assignment algorithm when translated to message

scheduling says that messages with higher generation rates get higher priorities [Mok83].

This essentially means that a message with the highest priority has the maximum arrival

rate. That is the message with the shortest period has the highest priority. The heuristics

here are based on the fact that the most important, or time critical message is the one that

is generated most often. Hence, the algorithm is suited for static priority assignments,

where priorities are decided based on message periods that are known in advance.

The mixed scheduling algorithm provides a mixed approach that can schedule a set of

messages with shorter periods by using a fixed priority schedule that is static, and the

remaining set of messages with larger periods by an EDF schedule that is dynamic.

Hence, this type of scheduling takes the potential advantages of both on-line as well as

off-line scheduling techniques to provide an optimal schedule.

A priority exchange algorithm has been discussed in [Wang92] for a CAN real-time

environment. It assigns priority by increasing order of transmission times of the

messages. Priorities are then exchanged based on their deadline requirements until the

messages are ensured of meeting their deadlines. This study was based on a maximwn

arrival rate analysis ofthe messages. A Poisson distribution of message generation, and

exponential transfer times, was considered for this purpose. The results showed that

under heavier loads the system experienced larger delays for lower priority messages,

whereas under lighter loads it remained stable.

Earliest deadline first with dynamic deadline modification (EDF I DDM) was studied

by [Jeff92]. This scheme is used to dynamically alter deadlines of resource requesting

tasks. This is more suitable for a process scheduling scenario rather than message

scheduling.

23

The least slack algorithm is another on-line scheduling technique where preemption is

allowed [Mok83]. The slack time of a message is defined as the time interval remaining

between the message transfer completion time and its deadline. It is taken to be zero if

the message misses its deadline. Intuitively it turns out to be the maximum time a

process can be delayed before it is bound to miss its current deadline. In a least slack

algoritlun, at any point oftime the message with the least slack time is scheduled next.

Hence, it is essentially an on-line scheduling scheme.

From the above discussions about various scheduling schemes, one of the key

considerations in making a choice is to look at the system configuration. If the on-line

scheduler is going to burden the system resources with a high scheduling overhead, then

dynamic scheduling would be a bad choice. Another viewpoint is that if the message

generation is highly unpredictable resulting in a lot of deadlines being missed, then an

off-line scheduler is not helpful. Hence, a careful assessment of what a priori knowledge

of the message set is available can determine which type of algorithm should be used.

The most important characteristics to look for in a message set would be periodicity,

release times, and deadlines requirements.

The CAN message set is known, and most messages are periodic in nature. Hence, an

off-line scheduler is most preferable. Also, on-line scheduling involves additional

scheduling overhead to perform scheduling functions while the network is running.

Another potential disadvantage is the requirement of additional hardware required to

support an on-line scheduler. A modified version of the rate monotonic priority

assignment algorithm is well suited for scheduling the messages in CAN. Priorities are

assigned by increasing order of periods. Ties in message priorities are broken arbitrarily.

An example of an priority assignment is as shown in Figure 8.

24

Message 20 10 5 100 70 500 40
Periods

Default
I 2 3 4 5 6 7

Priority

Message 5 !0 20 40 70 !00 500
Periods

Assigned
I 2 3 4 5 6 7

Priority

Figure 8. A Rate Monotonic Priority Assignment

The main difference encountered in message scheduling as opposed to process

scheduling is in the occurrence of error conditions resulting in retransmissions. Of

course, message scheduling does not involve process synchronization, precedence

relations, or interprocess communication as in process scheduling.

CHAPTER IV

SIMULATION OF THE CAN

Model

Simulation offers a flexible approach for performance evaluation of the CAN, and any

computer network in general. It requires few assumptions and approximations of the

network details. A detailed modeling of the CAN is useful to explore the various design

aspects. It also aids in predicting changes in network performance, and comparing

alternate designs. Analytical and graphical results can aid the network designer in

creating a prototype model. The major drawback is the inability to predict the system

reliability.

Various modeling approaches including queuing models, Petri nets, and finite state

machines have been used in the past. A queuing network model does not represent the

protocol aspects of the CAN, while the finite state machine model cannot handle the

topological features of the CAN. Petri net models can be used to verify the CAN

protocols. A more simplistic model for discrete event simulation of the CAN is presented

in Figure 9.

Design

The program design was made in three phases. The three phases are specification of

the protocols, specification of the topology, and specification of the nodes. The first

phase was to make a detailed study of the CAN protocols. The protocol specifications

includes the rules of communication dictated by protocols within the network. This part

25

Station#
Pre-scheduler

Arrival queue
1

\ - - - - "v-------+---11

\

\
I

Bit
---.,2 \ \ 11 . I !Error

f- - - - 1-r-------+--~ 1------1~ r--
v I Transfer I \ KJeneration

I
I
I I
I I

I

---., n \ Logic

IK-- - ~------+--J; \ ' 1----1!
I

V N
~1\----------------------~

'---~I'-1R.'"etransmission Logic backoff signal
Arbiter

II\
Station#

Transfer queue

/1

[~
: 1- :(f----i--1 ----!

I

I

I

' I
I •!
\~ ~~-f-----1
[
',_ error signal
I

Multicast V
1-"-----if

Reception ·~

v
with 1\

Message I
~---If

\
Filtering

Figure 9. CAN Simulation Model

''·

CAN

BUS

26

27

forms the core of the simulation, as it represents the flow of control within the simulation

program itself. The important CAN protocols to be studied are the arbitration, message

transfer, error detection, error signaling, and retransmission. Since the CAN is a real­

time network, and messages are mostly periodic, an off-line scheme is adopted as

suggested in the previous chapter. As the arbitration, error checking and message transfer

operations are bitwise, a bit by bit simulation methodology is used (i.e., bit transfers are

simulated instead of message transfers).

The second phase involves the topological module specification. This essentially

determines the physical layout and the physical transmission characteristics under which

the network operates. The layout specification is simply the way in which all nodes on

the network are connected to the single CAN bus as in Figure I . The bus topology of the

CAN offers multimastership and multicast reception. Thus, any node that has a message

to be transmitted simply transmits it, bit by bit, on the bus. If a collision occurs,

arbitration is used to determine the winner. All nodes receive all messages in the

simulation because the mask register functionality does not affect the network

performance. The most important physical characteristic of the CAN medium is the baud

rate. A CAN bus with a transfer rate of250 kbps is selected. The unit of time in the

simulation is assumed to be one bit time; that is, the time taken to transmit a single bit. In

physical terms, one bit time is 4 f.!S for a 250 kbaud bus. So all times within the

simulation are converted to bit time by dividing the simulation bit time (in f.!S) by 4. The

electrical characteristics ofthe CAN are significant only with respect to voltage

fluctuations that result in error conditions.

The final phase of the design is the node module specification. This include~ the

specifications of attributes of all nodes connected to the bus. The primary goals of a node

are message generation, message transfer, and message reception. All other station

details are less important. The following are the main features to look for in a node. The

first feature is the type of messages it generates, whether periodic or sporadic. All

28

sporadic messages are translated to periodic messages by the simple technique described

in Chapter III. The second feature in a node is its message characteristics. This includes

message length, message representation (standard/extended), message mode

(data/remote/error/overload), message release times, and message default priority, if any.

Finally, each node receives messages depending on the kind of objects it has. This

feature is ignored as all nodes on the network in the simulation receive all messages.

Implementation

CAN is a dedicated network being used for specific real-time applications. It has its

own distinct protocols, and standards that define its operation. We develop a simulation

package using a bottom-up design. The CAN simulator is coded in the C programming

language, and presented in Appendix B. The implementation details of the program are

described below.

One of the key issues in a simulation is to map the physical time to the simulation time

within the program. This parameter indicates the total simulation time for which the trace

has been generated. A global clock forms the simulation time, and it maps to each unit of

time spent in the network. Initialization of all node parameters, after reading input values

is performed first. The periods of all messages are then tested for the two real-time

constraints mentioned in Chapter III.

Priorities are assigned to messages based on their schedule order. The simulation gets

underway with the arrival of a new message. The first arrival of a message is determined

by its release time. Once a message is released it arrives at its periodic rate. If no

message is arrives, then the bus is in an idle state. Each idle state results in the

incrementing of an idle time counter. When one or more messages are generated at the

same point in time, a message cycle is started. If more than one message arrives, an

arbitration process is initiated to resolve the conflict. The eventual transmitter of the

message starts a message transfer. A conceptual flow diagram of the bit transfer,

Send
Overload
frame

Send Next
until EOF

ARB Bit

Until

DATA/CRC

DATA

Send MSB

in DATA

Send Next

Bit

Acknowledgment

Error

Figure 10. Bit Transfer Flow Diagram

Get
Bit

Until
ARB/
DATI
CRC

29

30

including the arbitration protocol, is shown in Figure 10. Every bit put onto the CAN bus

is a !ogical value, found by testing the appropriate bit position within the transmitted

message using Boolean logic. Every bit transfer results in an additional bit time being

spent in the simulation. After the lapse of a bit time the bit is received by all receivers

simultaneously. Ifmore than five consecutive bits of equal value are sent, then a bit stuff

is simulated by incrementing the simulation time by one. Thus, all bits within a CAN

message are sent until an EOF or an error condition is detected.

Errors are generated at random times. Error value is determined using the following

formula:

random_ value = (r * c) mod error _rate

error _point = random_ value + simulation_ clock

where 'r' is a random number generated by a random number generator, c = 10n,

such that 'n' is the required number of digits for the random value, and error _rate is used

to vary error points within the simulation.

When an error occurs, a bit being transmitted is complemented to produce an error.

Every bit is monitored for an erroneous transmission by the transmitter and all receivers.

The transmitter detects bit errors and acknowledgment errors, while the receivers detect

frame errors, CRC errors, and stuff errors.

Messages are generated at each station in conformance with the frame formats. The

extended frame is taken to be the basic data structure. The standard frame is built over

the extended frame by ignoring the extended identifier fields during transmission. The

first six bits are used for priority assignments for a total of 63 messages The extended

data content has not been used as proposed, since its content is not required, and does not

affect the simulation in any way. The data for each frame consists of 0 to 8 bytes, and is

generated randomly in a byte by byte fashion. The data details are not considered as their

functional value is immaterial.

31

A 15-bit frame check sequence is derived using the code given in [Bosc91]. A 15-bit

shift register is used to perform polynomial division using a polynomial generator, and

the remainder of this computation is the CRC sequence. This value is computed for the

bits ranging from the SOF field to the end of the DATA field. The receivers on their part

compute a similar frame check sequence, using the same code. A check is made to see if

the receiver's CRC value matches with that of the transmitter. A CRC error is signaled if

a mismatch occurs. All of the receivers flag a positive acknowledgment by overwriting

the recessive ACK SLOT with a dominant bit. After all EOF bits are sent, control is

returned to the message cycle routine that keeps checking for the next message arrival

until all of the simulation time has elapsed. At the end of the run, various statistics are

calculated and output. The parameters under study are throughput, latency, time,

response, error, and collision characteristics. A detailed discussion ofthe graphical, and

statistical analysis ensues.

Statistical and Graphical Analysis

The input data for the simulation is selected from the CAN specification manual

[Bosc92]. This set is used because it represents a real-life CAN situation. Also,

additional data has been included by modifying the original CAN set in [Bosc92] to

facilitate testing, and obtain various network performance measures. The input data

format that is used in the input data file is as follows:

Simulation time (in milliseconds)
Bandwidth (in number of bits per bit time)
Error rate for the random error generation
Node_ name Number_ of_ messages Number_ of_ objects
Msg_name Release Priority Period No_of

time data_bytes
Objects

Data(l)l
Remote(O)

Standard (I)I
Extended(O)

Simulation runs have been performed in the time range of 100 ms to 1 0 seconds. This

is done to accommodate for load variations, error rates, and irregularity in message

generation times. The bandwidth is used to increase the simulation length to produce the

32

effect. The error rate parameter is used as a means of varying error generation points and

rates. Each node is defined with a certain number of messages and objects. A node may

use more than one type of message. Any node can generate only one message at a time.

So, an upper bound of message arrivals is the number of nodes on the network. Each

message in tum has a period (in ms), a release time, a default priority in the range of 0 to

63, a number of data bytes in the range 0 to 8, a remote or data flag, and a standard or

extended frame flag. Since the first 6 bits in the arbitration field have been used for

priority assignment, only 63 messages can be input to the program. Since most messages

on the CAN are periodic, all messages have been taken to be of that nature. All message

release times are 0. The objects may be used to simulate the message filtering

functionality or a destination specific transmission.

Verification of the simulation is performed on a single node with a single message.

The message is an 8-byte extended data frame, with a period of 10 ms. A 100 ms run,

with no errors and no collisions, produced the following results:-

Total number of messages transmitted= 10

Idle time= 94.82 ms Busy time= 5.18 ms Error time= 0 ms

Load= 5.18% Throughput= 100 msgsls

It is obvious that a message with a period of 10 ms arrives 10 times in a 100 ms run,

and so, 10 messages are transmitted. This also leads to a throughput of 1 00 msgsls (1 0

messages* 10 such runs). The sum of the idle and busy times gives the total simulation

time. The message consists of 128 bits inclusive of the interframe space to give a total

transmission time of5.12 ms ((128 bits* 4 J..I.Sibit * 10 messages) I 1000). So, the

network load over a 100 ms period is (5.12 I 100) * 100, that is 5.12% = 5.18%. The

small difference is due to some additional bits being sent at the end of the simulation.

The simulation is performed on 8 different input message sets, with 2, 3, 10, 17, 20,

30, 40, and 50 nodes corressponding to 3, 5, 17, 24, 27, 39, 50, and 60 messages

respectively. The above load conditions are labelled 1, 2, 3, 4, 5, 6, 7, and 8 respectively

33

for curves and load points in the graphs. This gives a variation in the offered load on the

netv,rork. The input files for the 8 different message sets are given in Appendix C. The

message specifications were adopted from [Bosc92]. The statistics are computed and

output at 5 sampling intervals within the trace. The statistics at the end of each run is

presented in Appendix D, with inputs being numbered in Roman numerals. The output

includes network and node statistics that help in making a comprehensive performance

evaluation of the network. The following discussion analyzes the results obtained out of

the statistics using some representative graphs.

Network load is defined as the ratio of utilized bus time to the total bus time; that is,

Load= (Busy time+ Error overhead time) I Total bus time

where Total bus time is the total simulation run time.

The utilized time includes useful message transmission, as well as error message

transmission time. The 5 different runs produce graphs as shown in Figure 11.

100

90

80
,.-.. 70 --'$. ..._,
'"0 60

C\1
0

,.....l 50
~

1-<
0 z 40 -
Q)

30 z
20

10

0

0

·----·

~--- 5 ~·----·--6 ·------·----
~ 3 ---o--4---<>----- o ---------2

· ---------. __ 1 _______ , ___________________ ~·

20 40 60 80 100

Simulation time (rns)

Figure 11. Load Characteristics

34

Initially, all runs have a high load signifying the simultaneous release of messages by

all nodes on the network. Then, there is a near exponential decrease in the load as the

distribution of message generation times is more varied. Towards the end, the graphs

tend to become horizontal curves representing a more steady state system behavior. It

can be observed that as the message set gets larger the exponential decrease lessens. This

signifies that as the message set increases, more transmissions are getting clustered

together.

Network throughput is defined as the total number of messages transmitted per

second, and is the given by the formula:

Throughput= Total number of messages transmitted I Total bus time

The throughput versus load graph is as shown in Figure 12. A predicted behavior is

seen in the form of a linear shaped graph, but at the second sampling point a sharper rise

occurs. This may be attributed to the fact that more messages get transmitted as the load

is increased. Also a lower number of errors for this load point increases productive

transmission. This observation is made from the error graph in Figure 16.

,........_

1600

1400

~ 1200
bJ)
[/)

s 1000
"-"

800

600 3

400 2 /
200 - 1~

o .~
0 20 40

4

60

Load(%) _

Figure 12. Throughput vs Load

5

80 100

35

The time analysis graphs of Figure 13 shows the three major time parameters analyzed

in the simulation with respect to the load. It can be seen that the sum of all three time

quantities is equal to the simulation time which is 100 ms in this case. Idle time is the

time for which no transmission takes place, that is the bus is in an idle state.

40
30
20
10

Busy time

0 ~~~--r------+------~------+-----~

0 20 40 60 80 100

Load(%)

Figure 13. Time Characteristics

The idle time graph is linearly decreasing with increased load. This is obvious from the

fact that as more messages are generated the bus is free for a smaller amount of time.

Busy time is the time for which the bus is busy due to transmission of a data or a remote

frame. A variation in the linear behavior after the second load point is due to the greater

number of message transfers as discussed earlier. Similar reasoning can be used to

attribute the cause of the decline in error times after the third load points. Error time is

the time for which the bus is utilized to transmit error messages. The unevenness of this

graph is because of the random distribution of error generations.

The average response time in a network is the average amount oftime taken by all

messages to gain bus access, once they are generated. The graphs in Figure 14 shows the

changes in the average response times at various sampling points within the simulation

trace. The graphs for the 8 different topological conditions present interesting

characteristics of the CAN. The first two load conditions have negligible amount of

average response times. Fewer nodes that offer a lower load produce a more stable

,-....
Cfl

16
a 14_,
Q)

s 12
[::

10 Q)
Cfl
~ 8 0
0.
Cfl

6 Q)

~
Q) 4 -OJ)
~ 3
~ 2 -Q)
:>
< 0 -

2
~ ~ ~-- ~ ~

0 20 40 60 80 100

Simulation Time (ms)

Figure 14. Response Time Characteristics

response time, while more than 20 nodes offering greater loads show a sharp increase in

the response times until the initial overload is accommodated. This shows a slow

response for a maximum arrival rate at the beginning, resulting in delayed service.

One of the key parameters under study in a network is its delay or latency

characteristics. The network delay in terms of the transmission time is not a useful

36

performance measurement quantity. This is because of the insignificant time involved in

message transmission. The average latency, defined for all messages missing their

deadlines, is the average time elapsed between message deadlines and their actual

completion of transfer. The graphs of Figure 15 trace latency characteristics. As

expected, lower loads produce lower latency times, while larger loads have higher

latencies. The first four load conditions have 0 latencies throughput as no message

misses its deadline. The last configuration has a greater slope due to large number of

messages missing their deadlines at the beginning.

1.2 --
,......._
{/) 1 E
'-"
>-. 0.8 -(.)

r:::
I!)

C\1 0.6
......:l
I!)

0.4 OJ)
Cl:l
1-<
I!)

:> 0.2
~

0
---~ 6 6!-----~tJ\-. - - - -6

-----~==========~w~1~~2~~w-~3--4.--w w
0 20 40 60 80 100

Simulation Time (ms)

Figure 15. Latency Characteristics

37

The graphs of Figure 16 shows the number of errors produced at different load points.

It shows a random distribution, and signifies its effect on the system behavior as

20 2

{/)
;.... 15 0
I::
~
<+-<
0
;....

10 -
I!)

..D

§ 5 1
z

0 .

0 20 40 60 80 100

Load(%)

Figure 16. Error Characteristics

discussed in the previous graph analysis. The variations in error rates may also be

attributed to the nature of the message set. If more messages have larger periods, then

lesser number of errors hit the messages, while smaller periods cause a higher error rate.

Changing the error distributions produces graphs almost similar to the one in Figure 16.

180

160

140

rn 120
~
0 100
~ 80 ..-
0 3
u 60

40 2
20

0

0 20 40 60 80 100

Load(%)

Figure 17. Collisions vs Load

38

The graph of Figure 17 shows the number of collisions at different load points. This is a

linear shaped graph with a break at the second load point. So, loads above 30% produce

greater number of collisions. It is interesting to compare this almost linear nature to that

of the Ethernet. Since, Ethernet uses a !-persistent CSMA/CD, collisions become more

rampant as each collision results in destruction of all messages in contention. This

scenario is aggravated with the arrival of more messages. Thus, throughput

characteristics of an Ethernet is a rapid linear rise in throughput for light load conditions,

as most of the channel idle time is avoided [Stal88]. After a peak load condition of

around 20%, an exponential decay in the throughput occurs for heavier loads. This gives

the CAN a definitive edge over Ethernet for real-time operations under heavy loads.

CHAPTER V

CONCLUSIONS

Summary ofResults

The Controller Area Network (CAN) has already been proven to work well under

loads of 30%. The present simulation has load conditions varying from 0 to 100%. Most

results show good performance under loads of 40%. Although loads under 3 0% produce

a very low throughput. The inclusion of errors in the simulation produce measures of

error tolerance. A stable system operates with a maximum of around 20 errors over a 1 00

ms period. There is no latency for load conditions reaching 60%. A topology with 50

nodes and 60 messages results in a greater number of messages missing their deadlines.

On the whole, the network performs admirably with a load as high as 40%. The

throughput achieved for this scenario is around 500 messages/sec. From the time

characteristics it is clear that there is a large idle time that can provide for some additional

loading if necessary. Response times are faster for loads lesser than 60%, with the

average response times being less than 6 ms over a 1 00 ms run.

Conclusions

From the analysis, it is clear that the network begins to degrade under severe loads.

Since no message can afford to miss its deadline, guaranteed performance is mandatory.

An added load of 10% to the original CAN specifications does not affect the network

39

40

performance. An error rate of 1 error every 1250 bits provides near optimal performance.

Considering the fact that a pessimistic approach is chosen in terms of release times, a

better performance can be assured for a more typical CAN environment.

The rate monotonic priority assignment algorithm seams to work well with the

predominantly periodic message set. Some refinements to the scheduling algorithms can

be used to test the network performance. The test for the two real-time constraints is vital

in deciding if a schedule is safe or not. It is also evident that the CAN's versatile

arbitration protocol enhances performance by avoiding delays due to message

destruction. Thus, the CAN has proven to be an efficient real-time network.

Future Research

Since CAN is a developing network, research findings are essential for its growth.

Every network goes through an evolution, and its success depends on how well a

performance evaluation is made before formally setting standards. This thesis opens up

several avenues for research. Studies in the changes of key network parameters has

revealed some network limitations. The simulation program has been crucial in arriving

at the above conclusions. The bit by bit logic within the simulation has aided in error

analysis. It is also useful for making design changes in the message formats . A full scale

investigation of different topologies could be made. This could give an insight into a

wide range of design issues. One of the aspects left out of the study was fault tolerance.

Although the fault confrnement logic has been implemented within the simulation, it

could not provide adequate results. This was due to the fact that enough errors were not

generated to create faulty nodes. Modifying the simulation could give some fault

tolerance measures.

REFERENCES

[Arne87] Arnett, J.D., A High Performance Solution for in Vehicle Networking­

Controller Area Network(CAN). Earthmoving Industry Conference, Peoria,

IL, April 7, 1987, SAE paper #870823.

[Bosc91] CAN Specification Version 2.0, Robert Bosch GmbH, September, 1991.

[Bosc92] J1939 Recommended Practices for a Serial Control and Communications

Vehicle Network (Class C), Robert Bosch GmbH, December, 1992.

[Eyho89] Ey, Horst., Controller Area Network (CAN) Components, Electronic

Component and Application, vol. 9, no. 3, 1989, pp. 155-158.

[Gupt88] CAN Facilitates In-Vehicle Serial Communications, On Board

Communication for Machinery and Control, ASAE paper #88-1649.

[Harb91] Harbison, Samuel P., and Steele, Guy L. Jr., C: A Reference Manual, Third

Edition, Prentice Hall Software Series, Englewood Cliffs, NJ, 1991.

[Inte88] Intel Corp. Auto-Communication Chip Replace Bulky Wires, Design News,

vol. 44, August 1988, pp. 120.

[Iver88] Iversen, Wesley R., Intel Gets a Jump on the Auto Multiplex Market,

Electronics, vol. 61, March 88, pp. 31-32.

[Jeff91] Jeffay, K., Stanat, D. F., and Martel, C. V., On Non-Preemptive Scheduling of

Periodic and Sporadic Tasks, Proceedings ofthe Twelfth IEEE Real Time

Systems Symposium, San Antonio, Texas, December 1991, pp. 129- 139.

41

[Jef£92] Jeffay, K., Scheduling Sporadic Tasks with Shared Resources in Hard Real

Time Systems, Proceedings of the Thirteenth IEEE Real Time Systems

Symposium, Phoenix, Arizona, December 1992, pp. 89-99.

42

[John86] Johnson, Wand Volk, J., A Proposal for a Vehicle Network Protocol

Standard, Feb. 1986, SAE paper #860392.[Jord88] Jordan, Pat., Controller

Area Network, Electronics and Wireless World, vol. 94, Aug. 88, pp. 816-819.

[Jurg86] Jurgen, R. K., Coming from Detroit: Networks on Wheels, IEEE Spectrum,

June 86, pp. 53-59.

[Kien86] Kiencke, U., Dais, S. and Litschel, M .. , Automotive Serial Controller Area

Network, International Congress and Exposition, Detroit, Michigan, Feb. 24-

29, 1986, SAE paper #860391.

[Liu73] Liu, C. L., and Layland, J. W., Scheduling algorithms for Multiprogramming

in a Hard Real Time Environment, Journal of the Association for Computing

Machinery, Vol. 20, No. 1, January 1973, pp. 46- 61.

[Mies86] Miesterfeld, F. 0. R., Chrysler Collision Detection (C2D)- A Revolutionary

Vehicle Network, International Congress and Exposition, Detroit, Michigan,

February 24-28, 1986, SAE paper #860389.

[Mok83] Mok, A. K., Fundamental Design Problems of Distributed Systems for the

Hard Real Time Environment, Ph. D. Thesis, Massachusetts Institute of

Technology, MITILCS/TR-297, May 1983.

[Phai86] Phail, F. H., Arnett, D. J., In-Vehicle Networking- Serial Communication

Requirements and Directions, SAE paper #860390.

[Phai88] Phail, F. H., Controller Area Network- An In-Vehicle Network Solution,

1988 International Summer Meeting of the American Society of Agricultural

Engineers, paper #88-3021.

[Stal88] Stallings, William., Data and Computer Communications, Second Edition,

Macmillan Publishing Company, New York, 1988.

[Xu93] Xu, J., and Pamas, D. L., On Satisfying Timing Constraints in Hard Real

Time Systems, IEEE Transactions on Software Engineering, Vol. 19, No. 1,

January 1993, pp. 70 - 84.

[Wang91] Wang, Z., Analysis and Design of Controller Area Networks, MS. Thesis,

Oklahoma State University, December 1991.

[Wang92] Wang, Zhengou., Stone, Marvin., and Lu, Huizhu., A Message Priority

Assignment Algorithm for CAN Based Networks, Proceedings of the 20-th

Annual Computer Science Conference, Kansas City, MO, March 3-5, 1992,

pp. 25-32.

43

APPENDIX A

GLOSSARY

44

]-persistent CSMAICD is a scheme where a node detecting a collision backs off for a

random time, and retransmits with a probability of 1; that is whenever the bus is

idle.

Bandwidth is the maximum possible data rate within the network in terms of bits per

second.

Bit time is the unit time taken to transmit a bit across the bus.

Broadcast networks are those where messages rriay be received by all stations.

Bus off node is one that has an error count greater than 256.

Bus topology has a single communication channel to which all nodes are connected.

CSMAICD is a carrier sense multiple access collision detection mechanism.

45

Collisions are the result of overlapping transmission of messages by more than one node.

Contention is a dispute between more than one node for access to a common channel at

the same time.

Error active node is one that has both its error counts less than or equal to 127.

Error passive node is one that has either error count greater than 127.

Information processing time is the time segment starting from the sample point, and

begins a bit level.

Message is information sent on a bus with a fixed format.

Multicast networks are those where more than one node may receive a message.

Nominal bit rate is the number of bits transmitted per second.

Nominal bit time is a reciprocal of the nominal bit rate, and is divided into four segments

as below.

Peak load is the maximum load conditions occurring in the network.

Phase segment] and Phase segment2 are used to compensate for edge phase errors.

Propagation segment is used to compensate for physical delays within the network.

Protocol is a formal set of conventions governing the format and relative timing of

message exchange.

Receiver is a communicating device that receives a message from an alien device.

Ring topology has a circular channel to which nodes are connected.

Sample point is the point of time at which the bus level is read and interpreted as the

value ofthat bit.

Star topology has a central node to which all other nodes are linked.

Station is a device that processes, sends, and receives data over a network.

Synchronization segment is used by the nodes on the bus to synchronize.

Time quantum is a fixed unit of time derived from the oscillator period.

Transmitter is a communicating device that sends out a message to one or more alien

devices.

Tree has a hierarchical structure with a root node and several layers of nodes below it.

46

APPENDIXB

SIMULATION PROGRAM

47

Procedure call representation:

main()

sys_init()

packs _init()

packr_init()

get_parm()

node_ addressing()

edf_ schedule()

msg_cycl()

packet_gen()

crc_gen()

arbitrate()

statistics()

msg transfr()

transmit()

get_ bit()

rand_ error()

msg_ filter()

receive()

ere check()

bit_stuff()

send_ error_ frame()

send_ overload_ frame()

48

#include <stdio.h>

#include <fcntl.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include <malloc.h>

#define M MSGS 10

#define TOT MSGS 100

#define MAX NODES 60

#defme MAX NAME 10

#define MAX OBJS 60

#define MAX OVERHEAD 67

#define MAX_MSG_LEN 132

#define SAMPLES 4

#define RAND RATE 1000

#define YES 1

#define NO 0

#define BUSY 1
#define IDLE 0

#define OVER 0

#define FAILURE 0

#define SUCCESS 1

#define OVERLOAD ERROR 2

#define FORM ERROR 3

#define CRC ERROR 4

#define ACK ERROR 5

#define ACTIVE 1

#define PASSIVE 0

#define BUS OFF -1

int busy_ time, latency, slack_ time, response_ time, remote;

int losers, idle_ time, errors, msg_ time, error_ overhead;

int sample_ count, sim _ cnt, count, data _frame, standard;

long int tic, finish, sample_ time, sample _period;

int rand _rate, error_period, bandwidth, random_error;

49

int collisions, transmitted, missed, retransmitted;

char bus, bus_flag;

int max _period, min _period, periodic_ error;

int nr, n, m, total_msgs, totai_nodes, simulation_time;

int no_ of_ receivers, ones, zeros, prv _bit, pos;

int ack _count, overload_ count, ere_ count, form_ count;

FILE *ip, *op, *st;

typedef struct { I* formatted message *I

unsigned char eof;

unsigned char ack;

unsigned char crc[2];

unsigned char dat[8];

unsigned char ctr;

unsigned char arb(4];

unsigned char sof;

unsigned char isp;

}PACKET;

typedef struct { I* message parameters *I

int data _len, period, release, deadline, prior;

int msg_format, msg_mode, arb_lost, error_flag;

float trans_ time;

char msg_narne(MAX_NAME];

} MESSAGE;

typedef struct { I* node parameters *I

PACKET packs, packr;

MESSAGE msg[M_MSGS];

int curr_msg, no_of_msgs;

char node_ narne[MAX _NAME];

int no_of_objs, object[MAX_OBJS];

unsigned char ovrhd _de lim, err_ flag, err_ delirn;

unsigned char ovrhd _flag, address;

char prv _bus, prv _bus_ flag;

int status, bit_ val, transfer, receive;

50

int dead_count, recv_err_cnt, trans_err_cnt;

int error_ count, lost_ count, trans_ count;

} NODE;

NODE node[MAX_NODES];

typedef struct { /* scheduling parameters *I

int dead, node, msg;

float trans;

} ORDER;

ORDER order[TOT_MSGS];

/* This function performs initialization of the transmitter packet when new message is

created. */

void packs_init(int S)

{

}

intj, i;

i = S;

node[i].packs.eof= 0;

node[i].packs.ack = 0;

node[i].packs.crc[O] = 0;

node(i].packs.crc(1] = 0;

for G = O;j < 8;j++)

node[i].packs.datUJ = 0;

node[i].packs.ctr = 0;

for G = O;j < 4;j++)

node[i].packs.arb[j] = 0;

node[i].packs.sof = 0;

node[i].packs.isp = 0;

return;

51

I* This function performs initialization of the receiver packet when a new message is

created. *I

void packr_init(int R)

{

}

intj, i;

i=R;

node[i].packr.eof = 0;

node[i].packr.ack = 0;

node[i].packr.crc[O] = 0;

node[i].packr.crc[l] = 0;

for (j = O;j < 8;j++)

node[i].packr.dat[j] = 0;

node[i].packr.ctr = 0;

for (j = O;j < 4;j++)

node[i] .packr.arb[j] = 0;

node[i].packr.sof= 0;

node[i].packr.isp = 0;

return;

I* This function performs initialization of the simulation parameters when a new run is

started up. *I

void sys _ init()

{

int i, j, k, temp;

ones= 0;

zeros= 0;

count = 0;

prv_bit = 1;

idle_time = 0;

busy_time = 0;

response_time = 0;

slack_time = 0;

collisions = 0;

losers= 0;

52

latency= 0;

remote= 0;

missed= 0;

error_ overhead = 0;

msg_time = 0;

errors= 0;

total_msgs = 0;

pos = 0;

tic= 0;

retransmitted= 0;

transmitted = 0;

data _frame = 1 ;

standard = 1 ;

sample_ count = 1;

overload_count = 0;

form_ count= 0;

ack _count = 0;

crc_count = 0;

I* total simulation time is represented in terms of bit times *I

I* transmission speed is assumed to be 250 kbps *I

finish= (bandwidth)* ((simulation_time * 1000)14);

sample _period = finish I SAMPLES;

sample_ time = sample _period;

I* periodic error rate *I

error_period = (error_period * 1000) I 4;

periodic_ error = error _period;

random_error = rand_error(tic);

bus= 1;

bus_ flag = IDLE;

for (i = O;i < MAX_NODES;i++) {

for (j = O;j < M_MSGS; j++) {

node[i].msgO].data_len = 0;

node[iJ.msg[j] .period = 0;

node[i}.msg[j].release = 0;

node[i}.msg[j] .deadline = 0;

node[i}.msg[j].trans_time = 0;

53

}

node[i].msgu].prior = 0;

node[i].msgu].arb_lost = 0;

node[i) .msgDJ .error _flag = 0;

}

packs _init(i);

packr _init(i);

node[i].no_of_msgs = 0;

for (j = O;j < MAX_OBJS;j++)

node[i].objectO] = 0;

node[i].curr_msg = 0;

node[i].prv_bus= 1;

node[i].prv_bus_flag =IDLE;

node[i).transfer =NO;

node[i].receive =YES;

node[i).bit_ val= 1;

node[i].ovrhd_flag = 0;

node[i].ovrhd _ delim = 0;

node[i].err_flag = 0;

node[i].err_delirn = 0;

node[i).status =ACTIVE;

node[i].recv_err_cnt = 0;

node[i].trans_err_cnt = 0;

node[i].trans_count = 0;

node[i].lost_count = 0;

node[i].error_count = 0;

node[i] .dead_count = 0;

}

I* Statistics for the simulation at specified sampling points and at end of the simulation

run. */

void statistics()

{

int i, denorn;

float Total_busy _time, Total_tirne;

54

float Idle_time, Busy_time, Error_overhead;

float Response_time, Slack_time, Latency;

float Throughput, Load, Success;

if (sample_count = 1) {

fprintf(st, 11\n\tNumber of nodes= %d\t\t11,total_nodes);

fprintf(st, 11Number of messages= %d\n\n",total_msgs);

fprintf(st, 11 \t. 11
);

fprintf(st, 11 \n");

}

fprintf(st, 11\n");

fprintf(st, 11 \ t -------------------------------11
);

fprintf(st, 11-------------------------------\n");

fprintf(st,"\tNetwork Statistics\t\t");

fprintf(st,"Sampling Point %d at %d ms\n",sample_count, (tic*4)/1000);

fprintf(st, 11 \ t -------------------------------");

fprintf(st, "-------------------------------\n");

fprintf(st,"\n\tTotal number of messages transmitted\t= %10d\n", transmitted);

fprintf(st,"\n\tTotal number ofremote messages \t= %10d\n", remote);

fprintf(st, 11\n \tTotal number of collisions \t\t= %1 Od\n", collisions);

fprintf(st,"\n\tTotal number ofmsgs losing arbitration\t= %10d\n11 ,losers);

fprintf(st,"\n\tTotal number of errors encountered \t= %1 Od\n", errors);

fprintf(st,"\n\tTotal number of overload errors \t= %1 Od\n",overload_count);

fprintf(st,"\n\tTotal number of acknowledgement errors \t= %10d\n", ack_count);

fprintf(st,"\n\tTotal number of form errors \t\t= %10d\n11 ,form_count);

fprintf(st,11\n\tTotal number of ere errors \t\t= %10d\n",crc_count);

fprintf(st,"\n\tTotal number ofmsgs resent\t\t= %10d\n11 ,retransmitted);

Idle_time = ((float)idle_time * 4.0) I 1000.0;

fprintf(st,"\n\tldle time in the network \t\t= %10.2fms\n",Idle_time);

Busy_time = ((float)busy_time * 4.0) I 1000.0;

fprintf(st, 11\n\tBusy time in the network \t\t= %1 0.2fms\n11 , Busy _time);

Error_overhead = ((float)error_overhead * 4.0)'1 1000.0;

fprintf(st,"\n\tError overhead time\t\t\t= %10.2fms\n",Error_overhead);

Response_time = (((float)response_time*4.0)/1000.0)1(float)transmitted;

fprintf(st, 11\n\tA verage response time\t\t\t= %1 0.2f ms\n" ,Response_ time);

Slack_time = (((float)slack_time * 4.0)/lOOO.O)I(float)transmitted;

fprintf(st, 11\n\tAverage slack time\t\t\t= %10.2fms\n",Slack_time);

55

}

Latency= (((float)latency * 4.0) 1 1000.0) I (float) transmitted;

fprintf(st,"\n\tAverage latency time\t\t\t= %1 0.2f ms\n" ,Latency);

Total_busy_time = Busy_time + Error_overhead;

Total_time = Busy_time + Error_overhead + Idle_time;

fprintf(st,"\n\tSimulation time\t\t\t\t=% 1 0.2f ms\n" ,Total_time);

Load= (Total_busy_time I Total_time) * 100.0;

fprintf(st,"\n\tNetwork load \t\t\t\t= %10.2f%%\n", Load);

Throughput= ((float)transmitted I Total_time) * 1000.0;

fprintf(st,"\n\tNetwork throughput\t\t\t= %10.2fmsgsls\n11 ,Throughput);

fpri ntf(st, 11 \n \ t -------------------------------11) ;

fprintf(st, "-------------------------------\0");

fprintf(st, "\n\tNode Statistics\n11);

fprintf(st, "\ t ---------------\n \n 11);

fprintf(st, 11\t -------------------------------");

fprintf(st, "---------------\n ");

fprintf(st,"\tNode No of No of No of Percent \n");

fprintf(st,"\t msgs arbits deadlines sucess \n 11);

fprintf(st,"\t sent lost missed in trans.\n");

fprintf(st, "\t -------------------------------");

fprintf(st, 11---------------\n 11) ;

for (i = O;i < total_nodes;i++) {

fprintf(st, 11\n \ t%-1 Os" ,node[i] .node_ name);

fprintf(st,"%5d11 ,node[i].trans _count); .

fprintf(st, "%8d" ,node[i] .lost_ count);

fprintf(st,11%8d11,node[i].dead_count);

denom = node[i].trans_count + node[i].error_count;

if (denom != 0) {

Success= (float)node[i].trans_count I (float)denom;

fprintf(st,11% 11 .2f',Success);

}

else

fprintf(st," --");

}

fprintf(st, 11\n \ t -------------------------------11
);

fprintf(st, 11------------ ---\n ");

56

I* This function gives a random point at which an error may be generated within the

simulation. The random generator function uses the linear congruential algorithm. The

seed value is specified by the global simulaiton clock 'tic'. *I

int rand_ error(long seed)

{

}

int rand_ val;

srand48 (seed);

rand_ val= (int)(drand48() * 1000000)% rand_rate;

return(rand_ val);

I* This function generates addresses for the nodes. *I

void node_ addressing()

{

}

int i;

unsigned char base address;

base_ address = 0;

for (i = O;i < total_nodes;i++) {

node(i].address = base_ address + i;

}

return;

57

I* This function obtains the input parameters for the simulation from an input file named

input#, where # gives the order of the file. The parameters include node, and message

data such as node name, number of objects, number of messages, message name, message

period, message release time, message priority, message data length, type of format

(standard/extended), message mode (data/remote), and node objects. *I

void get_parm()

{

int i, j, num;

static char line[82];

total_ nodes= 0;

i = 0;

}

while (fgets(line, 80, ip) !=NULL) {

sscanf(line,"%s %d %d",&node[i].node_name,&node[i].no_of_msgs,

&node[i].no_of_objs);

num = node[i].no_of_msgs;

for (j = O;j < num;j++) {

fgets(line, 80, ip);

sscanf(line, "o/os %d o/od o/od o/od %d o/od o/od", &node[i].msg[j].msg_name,

&node[i] .msg[j] .period, &node[i].msg[j].release, &node[i].msg[j] .prior,

&node[i].msg[j].data_len, &node[i].msg[j].msg_format,

&node[i].msg[j] .msg_ mode);

node(i].msg[j].period = (node[i].msg[j].period * 1000)/ 4;

}

for (j = O;j < node[i].no_of_objs;j++) {

fgets(line, 80, ip);

sscanf(line, "o/od", &node[i] .object[j]);

}

total_ nodes++;

i++;

}

58

I* This function receives the bit sent over the CAN bus. It is implemented in such a way

that all nodes receive the message. The receivers detect and signal errors to the

transmitter, to initiate a retransmission. */

int receive(int r_bit, int br, int indr, int nr)

{

intj;

unsigned arr_crc = 0, check;

switch (pos) {

case 0: /*reception of the interfrarne space bits*/

/* Overload condition if less than 3 recessive bits *I

if(r_bit != 1) {

return(OVERLOAD_ ERROR);

}

node[nr].packr.isp J= (r_bit << br);

return(SUCCESS);

break;

case I : /* reception of the SOF bit *I

I* form violation if a recessive SOF is sent *I

if (r_ bit != 0) {

return(PO RM _ERROR);

}

node[nr].packr.sof 1= (r_bit << br);

return(SUCCESS);

break;

case 2: I* reception of the arbitration bits *I

node[nr].packr.arb[indr] I= (r_bit << br);

I* remote message sensing *I

if (!data_frame &&

(((standard) && (indr = 2) && (br = 4) && (r_bit = 1)) II
((!standard) && (indr = 0) && (br = 0) && (r_bit = 1))))

for G = O;j < node[nr].no_of_objs;j++)

if (node[nr].object[j] = node[n].address) {

node[nr].rnsgUJ.deadline =tic+ 150;

return(SUCCESS);

}

return(SUCCESS);

break;

case 3: /*reception ofthe control bits *I

node[nr].packr.ctr 1= (r_bit << br);

return(SUCCESS);

break;

case 4: I* reception ofthe data bits *I

node[nr].packr.dat[indr] I= (r_bit << br);

return(SUCCESS);

break;

59

case 5: I* reception of the CRC sequence bits *I

node[nr].packr.crc[indr] 1= (r_bit << br);

I* CRC sequence check by receivers *I

if ((indr = 0) && (br = 0)) {

arr_crc = node[nr].packr.crc[O];

arr_crc 1= (node[nr].packr.crc[l] << 8);

check= ere check(nr);

if(check != arr_crc) {

}

retum(CRC _ERROR);

}

return(SUCCESS);

break;

case 6: I* reception of the acknowledgement bits *I

if(br = 0)

node[nr].packr.ack 1= (r_bit << br);

else {

I* acknowledgement posting by receivers *I

node[nr].packr.ack 1= (0 << br);

if(node[nr].recv_err_cnt != 0) {I* fault confinement *I

}

node[nr].recv _err_cnt--;

if ((node[nr].trans_err_cnt < 128) &&

(node[nr].recv_err_cnt < 128))

node[nr].status =ACTIVE;

}

I* negative acknowledgement detected by the transmitter *I

if((br = 0) && (node[nr].packr.ack != 1)) {

retum(ACK_ERROR);

}

retum(SUCCESS);

break;

case 7: I* reception ofthe EOF bits*/

I* form violation in EOF bits with

60

the detection of dominant bit *I

if (r_bit != 1) {

return(FORM _ERROR);

}

node[nr].packr.eofl= (r_bit << br);

return(SUCCESS);

break;

}

return(OVER); I* end ofmessage reception *I

}

61

!* This routine is the core of the bit by bit simulation. It represents a dominant bit on the

bus with a logical 0, and a recessive bit with a logical 1. It also creats an error condition

by complementing the true vale at the appropriate error time. *I

int get_ bit(unsigned char g_ val, int bits)

{

if(g_val & (1 <<bits)) {

if (tic= random_error) {

random_error = tic+ rand_error(tic);

return(O); I* send errorneous bit *I

}

if(tic = periodic_error) {

periodic_ error += error _period;

return(O); I* send errorneous bit *I

}

return(l); /*send the correct bit *I

}

else {

if (tic = random_error) {

random_error =tic+ rand_error(tic);

return(O); I* send errorneous bit *I

}

if (tic = periodic_ error) {

periodic_error +=error __period;

return(O); I* send errorneous bit *I

62

}

return(O); I* send the correct bit *I

}.

}

I* This function transmits a bit over the bus. The sender station transmits bit by bit. The

sender station also monitors the CAN bus for potential errors during transmission.

Successful transmission of a bits continues unless an error condition is detected. *I

int transmit(int n)

{

inti, b, bit_ val, bit_ flag;

unsigned char val;

I* bus is held by the current transmitter *I

node[n].prv_bus_flag =BUSY;

bus_flag =BUSY;

while (pos <= 8) {

switch (pos) {

case 0: I* transmission of interframe space bits *I

val = node[n].packs.isp;

for (b = 2;b >= O;b--) {

bit_ val = get_ bit(val, b);

if ((bit_flag = msg_filter(bit_ val,b,O,O)) !=SUCCESS)

return(bit_flag);
) }

printf(" isp %2X\n", node[n].packr.isp);

pos++;

break;

case 1: I* transmission of SOF bit *I

val= node[n].packs.sof;

bit_ val = get_bit(val, 0);

if ((bit_ flag = msg_filter(bit_ val,b,O,O)) != SUCCESS)

return(bit_flag);

printf(" sof%2X\n", node[n].packr.sof);

pos++;

break;

case 2: I* transmission of arbitration bits *I

for (i = 3;i >= O;i--) {

val= node[n].packs.arb[i];

for (b = 7;b >= O;b--) {

bit_ val =get_ bit(val, b);

if ((bit_flag = msg_filter(bit_ val,b,i,O)) !=SUCCESS)

return(bit_ flag);

}

printf(" arb %d %02X\n" ,i, node[n] .packr.arb[i]);

}

pos++;

break;

case 3: I* transmission of control bits *I

val= node[n].packs.ctr;

for (b = S;b >= O;b--) {

if ((bit_flag = msg_filter(bit_ val,b,O,O)) !=SUCCESS)

return(bit_ flag);

}

printf(" ctr %02X\n", node[n].packr.ctr);

pos++;

break;

case 4: /* transmission of data bits *I

for (i = 7;i >= O;i--) {

val= node[n].packs.dat[i];

for (b = 7;b >= O;b--) {

bit_ val= get_ bit(val, b);

if ((bit_ flag = msg_filter(bit_ val,b,i,O)) !=SUCCESS)

return(bit_ flag);

}

printf(" dat %d %02X\n",i, node[n].packr.dat[i]);

}

63

pos++;

break;

case 5: /* transmission of CRC sequence bits *I

for (i = 1 ;i >= O;i--) {

val= node[n].packs.crc[i];

for (b = 7;b >= O;b--) {

bit_ val= get_bit(val, b);

if ((bit_flag = msg_filter(bit_ val,b,i,O)) !=SUCCESS)

return(bit_ flag);

}

printf(" ere o/od %02X\n",i, node[n].packr.crc[i]);

}

pos++;

break;

case 6: /* transmission of acknowledgment bits */

val= node[n].packs.ack;

for (b = 1 ;b >= O;b--) {

bit_ val =get_ bit(val, b);

if ((bit_flag = msg_filter(bit_ val,b,O,O)) != SUCCESS)

return(bit_ flag);

}

printf('1 ack %2X\n", node[n].packr.ack);

pos++;

break;

case 7: /*transmission of EOF bits *I

val = node[n].packs.eof;

for (b = 6;b >= O;b--) {

bit_ val= get_bit(val, b);

if ((bit_flag = msg_filter(bit_val,b,O,O)) !=SUCCESS)

return(bit_ flag);

}

printf(" eof%2X\n", node[n].packr.eof);

pos++;

64

}

}

}

break;

case 8: I* end of message transmission *I

return(OVER);

I* This function checks if the current time is a sampling point, and if so, the statistics

routine is invoked to compute and output the statistics at that point in time. *I

void sample()

{

}

if (tic= sample_time) {

statisticsQ;

sample_time +=sample _period;

sample_ count-t+;

}

I* This module simulates the bit stuffing function by adding a bit time whenever 5

consecutive bits of equal value are detected. *I

void bit_stuff(int bit_rd)

{

if (bit_rd = 1) {

if(prv_bit = 1) {

ones++; I* track recessive bits *I

if (ones > 5) {

msg time++;

tic++; /* a complement bit is stuffed * I

sample();

ones = 0;

}

}

65

}

else {

zeros= 0;

prv_bit = 1;

}

}

else {

if (prv _bit = 0) {

zeros++; /* track dominant bits */

if (zeros> 5) {

msg_ time++;

tic++; /* a complement bit is stuffed*/

sample();

zeros= 0;

}

}

else {

}

ones= 0;

prv _bit= 0;

}

return;

66

I* This function performs message filtering within the CAN nodes. The broadcast bit is

sent to nodes that find a match with their communication objects. *I

int msg_filter(int bit_ val, int bm, int indm, int nm)

{

int bit_ read;

while (run < total_nodes) {

if (node[nm].receive =YES) {

bit _read = receive(bit_ val,bm,indm,nm);

if (bit_ read != SUCCESS) {

node[nm].recv _err_ cnt++;

if (node[nm].recv_err_cnt >= 128)

node[nm].status =PASSIVE;

return(bit_read);

}

}

run++;

}

if (!(((pos = 4) && (indm < (8- node[n].msg[m].data_len))) II ((pos = 2) &&

(standard) && ((indm < 2) II ((indm = 2) && (bm < 4)))))) {

msg_time++;

I* global simulation clock that keeps ticking at each bit transmission *I

tic++;

sample();

bit_ stuff(bit_read);

}

retum(SUCCESS);

}

67

I* This function computes the CRC sequence for the frame at the receiving station. The

CRC sequence is generated by a polynomial division algorithm, using a 15-bit shift

register. *I

int ere_ check(int nr)

{

inti, j, k;

unsigned crc_seq;

unsigned char ere_ nxt;

unsigned char nxt_ bit;

unsigned char msb _bit;

crc_seq = 0;

msb_bit = 0;

nxt bit = O· - '
msb_bit = (1 & (crc_seq >> 14));

crc_nxt = node[nr].packr.sof" msb_bit;

crc_seq <<= 1;

ere_ seq & = Ox00007fff;

if (ere_ nxt)

crc_seq "= Ox4599;

if (standard)

k=2;

else

k = 0;

for (i = 3;i >= k;i--) {

for (j = 7;j >= O;j--) {

if(node(m].paekr.arb(i] & (1 <<j))

nxt_bit = 1;

else

nxt_bit = 0;

if (ere_ seq & (1 < < 14))

msb_bit = 1;

else

msb_bit = 0;

ere_nxt = nxt_bit" msb_bit;

ere_seq <<= 1;

ere_ seq &= Ox00007fff;

if (ere_ nxt)

crc_seq "= Ox4599;

/* accept the first 12 bits for a standard frame *I

if((standard) && (i = 2) && (j = 4))

}

}

break;

for (i = 7;i >= (8- node[n].msg[m].data_len);i--) {

for (j = 7;j >= O;j--) {

if (node[nr].packr.dat[i] & (1 << j))

nxt_bit = 1;

else

nxt_bit = 0;

if(crc_seq & (1 << 14))

msb_bit = 1;

else

msb bit= o· - '

68

}

crc_nxt = nxt_bit "msb_bit;

crc_seq <<= 1;

crc_seq &= Ox00007fff;

if(crc_nxt)

}

}

crc_seq "= Ox4599;

crc_seq 1= 1;

return(ere_ seq);

69

/* This function performs arbitration during bus contention by more than one message.

The first 6 bits of the arbitration field are used tci determine the winner, depending on

their priorities. A dominant bit overrides a recessive bit during arbitration. The station

that detects the bus value to be different from its bit value backs off from transmission. */

int arbitrate()

{

int i,j, k, b, bus_ val= 1, bit_flg, I;

unsigned char val;

pos = 0;

val= node[n].packs.isp;

for (b = 2;b >= O;b--) {

node[n].bit_ val= get_ bit(val, b);

if ((bit_flg = msg_filter(node[n].bit_ val,b,O,O)) != SUCCESS) {

for (1 = 0;1 <total_ nodes;!++)

}

if (node[l].transfer =YES)

node[l] .msg[node[l] .curr _ msg] .error_ flag= YES;

return(bit_ fig);

}

printf("\n ISP %2X\n", node[n].packr.isp);

pos++;

val = node[n].packs.sof;

node[n].bit_val = get_bit(val, 0);

if ((bit_flg = msg_filter(node[n].bit_ val,O,O,O)) !=SUCCESS) {

for (I = 0;1 < total_nodes;l++)

if (node[I].transfer ==YES)

node [1] .msg [node[I]. curr _ msg] .error_ flag= YES;

return(bit_ flg);

}

printf(" SOF %2X\n", node[n].packr.sof);

pos++;

fprintf(op,"\t(Message,Node) = ");

for G = 3;j >= O;j--) {

for (b = 7;b >= O;b--) {

I* all stations place their bit value on the bus *I

for(i = O;i < total_nodes;i++)

if (node[i].transfer =YES) {

val= node[i].packs.arbOJ;

node[i]. bit_ val= get_ bit(val, b);

bus_ val&= node[i].bit_ val;

}

70

I* every station checks if the bit it placed on the bus is the same as the bit that is being

transmitted. *I

for(i = O;i < total_nodes;i++)

if (node[i].transfer = YES) {

if((node[i].bit_val !=bus_ val) && (node[i].bi(_val = 1)) {

node[i] .transfer =NO;

k = node[i].curr_msg;

node[i].msg[k].arb_lost =YES;

node[i].lost_ count++;

fprintf(op,"(%d,%d), ",k,i);

losers++;

count--;

}

else {

n= 1;

}

}

if((bit_flg=msg_filter(node[n).bit_val,b,j,O))!=SUCCESS) {

for (1 = 0;1 < total_nodes;l++)

if (node[l].transfer =YES)

node[l].msg[node[l].curr_msg].error_tlag= YES;

retum(bit_tlg);

}

bus_ val= 1;

}

printf(" ARB %d %02X\n'',j, node[n].packr.arbU]);

}

fprintf(op,"lost arbitration by time %d\n\n",tic);

I* more than one message has the same priority assigned to it *I

if (count > 1) {

printf("\n Error in priority assignment, Quits\n");

exit(O);

}

return(SUCCESS);

}

I* This function transmits an overload frame when an overload error occurs. * I

int send_ overload _frame()

{

int i, b, bit_ val;

unsigned char val;

val = OxOO;

for (b = 5;b >= O;b--) {I* six overload flags *I

bit_ val = get_ bit(val, b);

if (bit_ val)

retum(F AIL URE);

for (i = O;i < total_ nodes;i++)

if (node[i].receive = YES)

node[i].ovrhd_flag i= (bit_ val << b);

tic++;

sample();

msg_ time++;

}

71

}

printf("\n ovld_flag %2X\n", node[n].ovrhd_flag);

val= Oxff;

for (b = 7;b >= O;b--) {/*eight overload delimiters *I

bit_ val= get_bit(val, b);

if (!bit_ val)

return(F AlLURE);

for (i = O;i < total_nodes;i++)

if (node[i].receive = YES)

node[i].ovrhd_delim i= (bit_ val<< b);

tic++;

sample();

msg_ time++;

}

printf(" ovld_delim %2X\n\n", node[n].ovrhd_delim);

return(SUCCESS);

I* This function transmits an error frame when an ACK error, CRC error, form error, or

bit error occurs. *I

int send_error_frame(int ne)

{

inti, b, bit_ val;

unsigned char val;

!* transmitter sending error frame *I

if ((ne = n) && (node(n].status =ACTIVE)) {

node[n].trans_err_cnt += 8;

if (node(n].trans_err_cnt >= 128) I* error passive node *I

node[n].status = PASSIVE;

if (node[n].trans_err_cnt >= 256) /*faulty node */

node[n].status = BUS_OFF;

}

if(node[ne].status =ACTIVE)

val = OxOO;

else

val = Ox37;

72

}

for (b = S;b >= O;b--) {/*six error flags *I

bit_ val= get_bit(val, b);

for (i = O;i < total_nodes;i++)

if (node[i].receive =YES)

node[i].err_flag i= (bit_ val<< b);

if (node[ne].err_flag !=val)

return(F AlLURE);

tic++;

sample();

msg_ time++;

}

printf("\n err_flag %2X\n", node[n].err_flag);

val= Oxff;

for (b = 7;b >= O;b--) { /* eight error delimiters*/

bit_ val = get_bit(val, b);

I* receiver detects the first bit to be dominant *I

if ((!bit_ val) && (b = 8)) {

node[nr].recv _err_cnt += 8;

if (node[nr].recv _err_cnt >= 128)

node[nr].status =PASSIVE;

return(F AlLURE);

}

for (i = O;i < total_nodes;i++)

if (node[i] .receive = YES)

node[i].err_delim i= (bit_ val<< b);

tic++;

sample();

msg_ time++;

}

print£(" err_delim %2X\n", node[n].err_delim);

retum(SUCCESS);

73

74

I* This module performs the initiation of a message transfer. The message may contain a

data frame, remote frame, error frame, or an overload frame. Transmission is completed

successfully or an error condition is reported. *I

void msg_transfer(int mode)

{

inti, k;

while (mode < 6) {

switch (mode) {

case 0: I* action after a successful message transfer *I

fprintf(op,"\tMessage %d ofNode %d TRANSMITTED ",m,n);

fprintf(op,"at time %d\n\n",tic);

busy _time+= msg_time;

response_time +=(tic- msg_time)- node[n].msg[m].deadline;

msg_time = 0;

packs_ init(n);

for (i = O;i < total_nodes;i++) {

packr _init(i);

}

node[n].trans_count++;

node[n] .transfer =NO;

node[n] .prv_bus = 1;

node[n].prv_bus_flag =IDLE;

node[n].msg[m].error_flag =NO;

node[n].msg[m].deadline += node[n].msg[m].period;

slack_time += node[n].msg[m] .deadline- tic;

I* check node status *I

if (node[n].trans_err_cnt != 0) {

node[n] .trans_ err_ cnt--;

if ((node[n).trans_err_cnt < 128) && .

(node[n].recv _err_cnt < 128))

node[n].status =ACTIVE;

}

if (node[n].msg[m].deadline < tic) {

fprintf(op,"\n\tMsg %d of node %d MISSED deadline by", m, n);

fprintf(op,"%d bit times\n\n" , tic- node[n].msg[m].deadline);

node [n] .dead_ count++;

latency += tic - node[n] .msg[m] .deadline;

missed++;

}

if (data_frame)

transmitted++;

else

remote++;

return;

case 1: /* initiation of a data I remote transfer*/

mode= transmit(n);

break;

case 2: /* action after an overload error occurs *I

for (i = O;i < total_nodes;i++)

packr _ init(i);

retransmitted++;

errors++;

overload_ count++;

fprintf(op,"\tOVERLOAD ERROR in Message o/od of Node o/od ", m, n);

fprintf(op,"at time o/od\n\n",tic);

node[n] .error_ count++;

node[n].msg[m].error_flag =YES;

if (!send_overload_frame()) {

fprintf(op,"\tError in Overload frame at o/od\n\n", tic);

mode= 3;

break;

}

else {

}

error_ overhead += msg_ time;

msg_time = 0;

return;

75

case 3: I* action after a form error occurs *I

for (i = O;i < total_nodes;i++)

packr_init(i);

retransmitted++;

errors++;

form_ count++;

fprintf(op,"\tFORM ERROR in Message %d ofNode %d ",m, n);

fprintf(op,"at time %d\n\n",tic);

node[n].error_count++;

node[n].msg[m].error_flag =YES;

if (!send_error_frame(nr)) {

fprintf(op,"\tError in ERROR frame at %d\n\n", tic);

mode = 2; I* Error in Error frame *I

break;

}

else {

error_ overhead += msg_ time;

msg_time = 0;

return;

}

case 4: I* action after a CRC error occurs *I

for (i = O;i < total_nodes;i++)

packr _ init(i);

retransmitted++;

errors++;

ere_ count++;

fprintf(op,"\tCRC ERROR in Message %d ", m);

fprintf(op,"ofNode %d at time %d\n\n", n, tic);

node[n].error_count++;

node[n].msg[m].error_flag =YES;

if (!send_ error _frame(nr)) {

fprintf(op,"\tError in ERROR frame at %d\n\n" , tic);

mode = 2; I* Error in Error frame *I

break;

}

76

}

}

}

else {

error_ overhead += msg_ time;

msg_time = 0;

return;

}

case 5: /*action after a ACK error occurs *I

for (i = O;i <total_ nodes;i++)

packr _init(i);

retransmitted++;

errors++;

ack _count++;

fprintf(op,"\tACK ERROR in Message %d Node %d ",m,n);

fprintf(op,"at time %d\n\n",tic);

node[n].error_ count++;

node[n].msg[m].error_flag =YES;

if(!send_error_frame(n)) {

fprintf(op,"\tError in ERROR frame at %d\n\n", tic);

mode = 2; /* Error in Error frame *I

break;

}

else {

error_overhead += rnsg_time;

msg_time = 0;

return;

}

default: printf("\n Error in message transfer mode, Quits \n ");

exit(O);

77

I* This function generates a CRC sequence for the message. The CRC sequence is

computed for the SOF, arbitration, control, and data fields in that order. *I

void ere _gen(int Node, int Msg)

{

int i, j, k;

unsigned ere_ reg;

unsigned char ere_ nxt;

unsigned char nxt_ bit;

unsigned char msb _bit;

ere_ reg = 0; I* initialize shift register *I

msb_bit = 0;

nxt bit= O· - ,
msb_bit = (1 & (erc_reg >> 14));

ere nxt = node[Node].packs.sof/\ msb_bit;

erc_reg <<= 1;

ere _reg &= Ox00007fff;

if (erc_nxt)

ere reg /\= Ox4599;

if (standard)

k = 2;

else

k = 0;

for (i = 3;i >= k;i--) {

for (j = 7;j >= O;j--) {

if (node[Node].packs.arb[i] & (1 << j))

nxt_bit = 1;

else

nxt_bit = 0;

if (crc_reg & (1 << 14))

msb_bit = 1;

else

msb_bit = 0;

crc_nxt = nxt_bit 1\ msb_bit;

ere _reg <<= 1;

78

}

ere _reg &= Ox00007fff;

if (ere_ nxt)

.cre_reg /\= Ox4599;

I* stop after 12 th bit for standard frames *I

if ((standard) && (i = k) && (j = 4))

break;

}

}

for (i = 7;i >= (8- node[Node].msg[Msg].data_len);i--) {

for (j = 7;j >= O;j--) {

}

if (node[Node].paeks.dat[i] & (1 << j))

nxt_bit = 1;

else

nxt_bit = 0;

if (ere _reg & (1 << 14))

msb bit= 1· - ,
else

msb_bit = 0;

ere_nxt = nxt_bit 1\ msb_bit;

cre_reg <<= 1;

ere _reg &= Ox00007fff;

if (ere_nxt)

ere _reg /\= Ox4599;

}

node[Node].paeks.erc[O] = erc_reg & OxOOff;

node[Node].paeks.ere[l] = (cre_reg & OxffDO) >> 8;

node[Node].paeks.ere[O] 1= 1; I* ere delimiter *I

return;

79

80

I* This function generates a packet for each message that arrives at a node. A packet is

created in conformance with the frame format in the CAN 2.0 version. Both standard and

extended frames are developed. The basic structure is that of a extended frame. Standard

frames are built over the extended frame. *I

void packet_gen(int node_ no, int msg_ no)

{

inti, j;

I* interframe space consists of 3 recessive bits *I

node[node_no].packs.isp 1= Ox7;

printf("\n isp = %2X", node[node_no].packs.isp);

I* start of frame is a single dominant bit *I

node[node_no].packs.sof= 0;

printf("\n sof = %2X", node[node_ no]. packs.sof);

I* following 5 bits are used to represent node address *I

node[node_no].packs.arb[3] I= (node[node_no].address >> 3);

I* first 6 arbitration bits are used for priority *I

node[node_no].packs.arb[3] j= (node[node_no].msg[msg_no].prior << 2);

node[node_no].packs.arb[2] 1= (node[node_no].address << 5);

if (standard) {

if (data_ frame)

node[node_no].packs.arb[2] 1= (OxO); /* RTR bit is dominant*/

else /* if remote frame *I

node[node_no].packs.arb[2] 1= (Oxl <<4);/*RTR 12th bit*/

node[node_no].packs.arb[2] 1= (OxOf); /* 13th onward bits*/

node[node_no].packs.arb[l] 1= (Oxff);

node[node_no].packs.arb[O] j= (Oxff);

}

else { /* extended format *I

node[node_no].packs.arb[2] 1= (Oxl << 4); /* SRR bit*/

node[node_no] .packs.arb[2] 1= (Oxl << 3); /*IDE bit*/

node[node_ no].packs.arb[l] &= (OxOO); /* extended ID to be set* I

node[node _no]. packs.arb[O] &= (OxOO);

if (data_frame)

node[node_no].packs.arb[O] 1= (OxO); /* RTR bit domi*/

else /* if remote frame *I

}

node[node_no].packs.arb[O] 1= (Oxl);/*RTR 32th bit*/

}

printf("\n arb = ");

for (i = 3;i >= O;i--)

printf("%02X", node[node_no].packs.arb[i]);

I* last 4 control bits give the binary value of data length in bytes *I

if (standard)

node[node_no] .packs.ctr 1= (Oxl << 4); /*IDE and rO bits*/

else

node[node_no].packs.ctr I= (OxO << 4); /* rO and rl bits*/

node [node_ no]. packs.ctr 1= node[node_ no] .msg[msg_ no] . data _len;

printf("\n ctr = %02X", node[node_ no].packs.ctr);

I* data bytes are generated randomly *I

for (i = 7;i >= (8-node[node_no].msg[msg_no].data_len);i--) {

node[node_no].packs.dat[i] = (randO% 256);

}

for (i = (7-node(node_no].msg[msg_no].data_len);i >= O;i--)

node[node_no].packs.dat[i] = Oxff; /* dont care bytes*/

printf('1\n dat = 11);

for (i = 7;i >= O;i--)

printf("%02X11
, node[node_ no].packs.dat[i]);

I* a 15-bit CRC sequence is obtained *I

crc_gen(node_no, msg_no);

printf(11\n ere= %2X",node[node_no].packs.crc[l]);

printf("%02X\n" ,node[node_ no]. packs.crc[O]);

I* ack bits are recessive before transmission */

node[node_no].packs.ack I= 3;

printf(" ack = %2X\n", node[node_no].packs.ack);

I* 7 end of frame bits are recessive *I

node[node_ no] .packs.eof I= Ox7f;

printf(" eof = %02X\n", node[node_no].packs.eof);

return;

81

82

I* This function performs the message cycle. It checks for new message arrivals,

initiates arbitration if more than one message has arrived, then calls the message transfer

routine to transmit the message. *I

void msg_ cycl()

{

int i, j, k, l;

static unsigned long int next_ arrival = 0;

int mode, filter;

long int next;

int IS_THERE_A_MSG;

bus_ flag = IDLE;

transmitted = 0;

pos = 0;

I* initial message deadlines are their release times *I

for (i = O;i < total_nodes;i++)

for G = O;j < node[i].no_of_msgs;j++)

node[i] .msgOJ.deadline = node[i].msg[j].release;

I* cycle until end of the simulation run *I

while (tic <=finish) {

I* check each node for message arrivals *I

for G = O;j < total_nodes;j++) {

next= 1 00000000;

IS_THERE_A_MSG =NO;

for (I = 0;1 < node[j].no_of_,_msgs;l++)

if (node[j].msg[l].deadline <=next) {

IS_THERE_A_MSG =YES;

k = 1;

next= nodeO] .msg[l].deadline;

}

I* process each node message *I

if((IS_THERE_A_MSG =YES) &&

(node[j].msg[k].deadline <= tic)) {

node[j] .transfer = YES;

node[j].curr_msg = k;

if (node[j] .msg[k] .msg_ mode)

data_ frame = 1;

else

data_ frame= 0; /*remote request*/

if (node[j] .msg[k J .msg_ format= 1)

standard = 1 ;

else

standard= 0; /*extended frame format*/

/* generate a packet is message is already not there*/

if ((node[j].msg[k].arb_Jost !=YES) &&

(node[j].msg[k].error_flag !=YES))

packet_genG, k);

n= J;

m=k;

count++; /*number of messages arrivals*/

}

}

msg_time = 0;

mode= 1;

I* arbitrate to resolve bus contention */

if (count > 1) {

collisions++;

mode = arbitrate(count);

m = node[n].curr_msg;

pos = 3;

}

node[n].msg[m].arb_lost =NO;

if (node[n].msg[m].rnsg_format = 1)

standard = I ;

else

standard = 0; /*extended frame format*/

if (node[n].msg[m].msg_ mode = 1)

data_ frame = 1 ;

else

data_frame = 0; I* remote request*/

/* no message has arrived, bus is idle state *I

if (count= 0) {

83

}

tic++;

sample();

idle_ time++;

if (tic >== periodic_ error)

periodic_ error += error _period;

if (tic>== random_error)

random_ error== tic+ rand_ error(tic);

count= 0;

}

I* initiate a message transfer *I

else {

count= 0;

if ((bus_flag =IDLE) && (node[n].status != BUS_OFF)) {

msg_ transfer(mode);

if (tic>= finish)

return;

bus_flag =IDLE;

pos = 0;

}

}

}

84

I* This function performs a priority assignment using the rate monotonic priority

assignment algorithm. Higher priorities are assigned to message with smaller periods.

The message set is also tested for the two real time constraints before assigning priorities.

*I
void prior_ assign()

{

inti, j, k, l, temp;

float cost_ fn, schedulables;

int p _max, interval_ L;

cost fn = O· - '
I* test for the first real time constraint *I

I* total cost function is less than unity *I

for (i = O;i < total_nodes;i++)

for U = O;j < node(i].no_of_msgs;j++) {

node[i].msg[j].trans_time = (node[i].msg[j].data_len*8.0+MAX_OVERHEAD);

cost_fn += node[i].msg[j].trans_time I node[i].msg[j].period;

total_ msgs++;

}

printf("cost function is %f\n",cost_fn);

if (cost_fn >= 1.0) {

printf("No schedule for this message set, Quits\n\n");

exit(O);

}

I* message ordering by message periods *I

l = 0;

for (i = O;i < total_nodes;i++) {

if(node[i].no_of_msgs = 1) {

order[l].msg = 0;

order[l].node = i;

order[l].dead = node(i].msg[O].period;

order[l].trans = node[i].msg[O].trans time;

1++;

}

else {

for (k = O;k < node[i].no_of_msgs;k++) {

order[l].msg = k;

}

}

order[l].node = i;
order[l].dead = node[i] .msg[k].period;

order[l].trans = node[i].msg(k].trans_time; ·

1++;

}

for (i = O;i < total_ msgs - 1 ;i++)

for U = O;j < total_ msgs - 1 ;j++)

if (order[j].dead > order[j+ 1].dead) {

85

}

temp = order[j].dead;

order OJ .dead = order[j+ I J .dead;

order[j+ 1].dead = temp;

temp= order[j].msg;

order[j] .msg = order[j + 1] .msg;

order[j+ 1].msg =temp;

temp= order[j].node;

order[j].node = order[j+ 1].node;

order[j+ 1] .node =temp;

temp= order[j].trans;

order[j].trans = order[j+ l].trans;

order[j+ 1]. trans = temp;

}

for (i = O;i < total_msgs;i++) {

j = order[i] .node;

k = order[i].msg;

node[j].msg[k].prior = i;

}

max_period = order[total_msgs-l].dead;

min _period= order[O].dead;

/* test for second real time constraint *I

/* no inserted idle time *I

p_max = order[total_msgs-1].dead;

interval_L = p_max- 10;

schedulables = order[total_msgs-l].trans;

for (i = total_msgs- 2;i >= O;i--)

schedulables += floor(((interval_L-1)/order[i].dead))*order[i].trans;

if (interval_L < schedulables) {

printf("No schedule for this message set, Quits\n\n");

exit(O);

}

86

I* This function is the main routine that controls the flow within the program. It also

invokes 5 simulation runs for 5 different message sets from input file named input#. *I

main()

{

static char buff[82];

char infile[1 0], statfile[l 0], outfile[l 0];

rand _rate = RAND_ RATE;

system(''tput clear");

sim cnt =I· - '
while (sim_cnt <= 8) {

sprintf(outfile, "output%1d", sim_cnt);

if ((op = fopen(outfile, "w'')) = NULL) {

printf("Error: %s file not created\n\n", outfile);

exit(I);

}

sprintf(statfile, "statistix% 1 d", sim _ cnt);

if ((st = fopen(statfile,"w")) =NULL) {

printf("Error: %s file not created\n\n", statfile);

exit(l);

}

sprintf(infile, "input%ld", sim_cnt++);

if ((ip = fopen(infile,"r")) =NULL) {

printf("Error: input file %s not created\n\n", infile);

exit(l);

}

fgets(buff, 80, ip);

sscanf(buff, "%d", &simulation_ time);

printf("\n\n Simulation time %d milli seconds\n\n", simulation_time);

fgets(buff, 80, ip);

sscanf(buff,"%d", &bandwidth);

printf("Bandwidth %d bits per bit time\n\n", .bandwidth);

fgets(buff, 80, ip);

sscanf(buff, "%d", &error _period);

printf("Error period %d error/ms\n\n", error _period);

fprintf(st, "\t.. ");

fprintf(st," \n");

87

}

.c: . tfi(t •'\n\t\t\tSTATISTICS OF SIMULATION RUN %d\n\n", (sim cnt-1)); tpnn ·· s' -
fprintf(oP' "\n\n\t. ");

II \ ")· fprintf(oP• · · · .. · · n '
fprintf(oP•"\n\t\t\tEVENTS OF SIMULATION RUN o/od\n\n",(sim_cnt-1));

"\t ")· fprintf(oP' ·· .. · ·· · · · .. · '
It \ \ ")· fprintf(oP• · · · .. n n '

sys_initO;

get_parJ110;
node addressing();

prior_ assign();

msg_cyclO;
fprintf(op, "\n\n\t.. ");

fprintf(op," \n");

fprintf(st,"\t. ");

fprintf(st," \n");

printf(''\n\n\n END OF SIMULATION RUN %d\n\n",(sim_cnt-l));

fclose(ip);

}

fclose(st);

fclose(op);

system("tput clear");

printf("\n\n\n END OF SIMULA TION\n\n");

printf("\n\n\n ADIOS ! BYE ! SA YONARA!\n\n\n\n");
return;

stop()

{

}

fflush(stdin);

fflush(stdollt);
printf("\n

getchar();
C . ") ontmue ... ;

88

APPENDIX C

INPUT DATA

89

90

Input file I

100
1

engine! 2 3
MSGll 10 1 31 8 1 1
MSG12 50 0 30 8 0 1
2
0
0
engine2 1 1
MSG13 250 0 29 8 I 1
0

91

Input file II

100
1
1
engine 3 3
MSG11 10 1 31 8 1 1

MSG12 50 0 30 8 0 1

MSG13 250 0 29 8 1 1

2
0
0
torque 1 2
MSG21 10 0 28 8 1 1
0
0
trans1 1 1
MSG31 10 0 27 8 1 0
0

92

Input file III

100

engme 3 3
MSG11 10 1 31 8 1 1

MSG12 50 0 30 8 0 1
MSG13 250 0 29 8 1 1

2
0
0
torque 1 2
MSG21 10 0 28 8 1 1
0
0
trans1 1 1
MSG31 10 0 27 8 1 0
0
trans2 3 1
MSG41 10 0 26 8 1
MSG42 100 0 25 8 1
MSG43 1000 0 24 8 1
0
brake 2 1
MSG51 100 0 23 8 1 1
MSG52 1000 0 22 8 1 1
0
retarder 2 1
MSG61 100 0 21 8 1
MSG62 1000 0 20 8 1
0
brk ctrl 1 1
MSG71 50 0 19 8 1
0
axle 2 1
MSG81 30 0 18 8 1 1
MSG82 1000 0 17 8 1 1
0
eng_ con 1 1
MSG91 5000 0 16 8 1
0
ind 1 1
MSG101 20 0 15 8 1 1
0

93

Input file IV

100
1
1
engine 3 3
MSG11 10 1 31 8 1 1

MSG12 50 0 30 8 0 1

MSG13 250 0 29 8 1 1

2
0
0
torque 1 2
MSG21 10 0 28 8 1 1
0
0
trans I 1 1
MSG31 10 0 27 8 1 0

0
trans2 3 1
MSG41 10 0 26 8 1 1
MSG42 100 0 25 8 1 1
MSG43 1000 0 24 8 1
0
brake 2 1
MSG51 100 0 23 8 1 1
MSG52 1000 0 22 8 1 1
0
retarder 2 1
MSG61 100 0 21 8 1 1
MSG62 1000 0 20 8 1 1
0
brk ctrl 1 1
MSG71 50 0 19 8 1 1
0
axle 2 1
MSG81 30 0 18 8 1 1
MSG82 1000 0 17 8 1 1
0
eng_ con 1 1
MSG91 5000 0 16 8 1 1
0
trans con 1 1
MSG101 10 0 15 8 1 1
0

94

retr con 1 1
MSG111 10 0 14 8 1

0
eng_ fluid 1 1
MSG121 1000 0 13 8

0
eng_ temp 1 1
MSG131 1000 0 12 8 1
0
eng_hrs 1 1
MSG141 10 0 11 8 1 1
0
pto_def 1
MSG151 100 0 10 8 1 1
0
idle __pto 1 1
MSG161 1000 0 9 8 1
0
speed 1 1
MSG171 100 0 8 8 1 1
0

95

Input file V

100
1
1
engine 3 3
MSG11 10 1 31 8 1 1
MSG12 50 0 30 8 0 1
MSG13 250 0 29 8 1 1
2
0
0
torque 1 2
MSG21 10 0 28 8 1
0
0
trans I 1 1
MSG31 10 0 27 8 1 0
0
trans2 3 1
MSG41 10 0 26 8 1 1
MSG42 100 0 25 8 1 1
MSG43 1000 0 24 8 1 1
0
brake 2 1
MSG51 100 0 23 8 1 1
MSG52 1000 0 22 8 1 1
0
retarder 2
MSG61 100 0 21 8 1 1
MSG62 1000 0 20 8 1 1
0
brk ctrl 1 1
MSG71 50 0 19 8 1 1
0
axle 2 1
MSG81 30 0 18 8 1 1
MSG82 1000 0 17 8 1 1
0
eng_ con 1 1
MSG91 5000 0 16 8 1 1
0
trans con 1 1
MSG101 10 0 15 8 1 1
0

96

retr con 1 1

MSG111 10 0 14 8

0
eng_ fluid 1 1
MSG121 1000 0 13 8 1 1

0
eng_ temp 1 1
MSG131 1000 0 12 8 1

0
eng_hrs 1 1
MSG141 10 0 11 8 1 1

0
pto_def 1
MSG151 100 0 10 8 1

0
idle_pto 1 1
MSG161 1000 0 9 8
0
speed 1 1
MSG171 100 0 8 8 1

0
calib 1 1
MSG181 10 0 7 8 1 1

0
miles 1 1
MSG1 91 10 0 6 8 1 1
0
ind 1 1
MSG201 20 0 5 8 1 1
0

97

Input file VI

100
1

engine 3 3
MSG11 10 1 31 8 1 1

MSG12 50 0 30 8 0 1

MSG13 250 0 29 8 1 1

2
0

!:0
torque 1 2
MSG21 10 0 28 8 1 1
0
0
trans1 1 1
MSG31 10 0 27 8 1 0
0
trans2 3 1
MSG41 10 0 26 8 1
MSG42 100 0 25 8 1
MSG43 1000 0 24 8 1
0
brake 2 1
MSG51 100 0 23 8 1 1
MSG52 1000 0 22 8 1 1
0
retarder 2 1
MSG61 100 0 21 8 1 1
MSG62 1000 0 20 8 1
0
brk ctrl 1 1
MSG71 50 0 19 8 1
0
axle 2 1
MSG81 30 0 18 8 1 I
MSG82 1000 0 17 8 1 1
0
eng_ con 1 1
MSG91 5000 0 16 8 1 1
0
trans con 1 1
MSG101 10 0 15 8 1 1
0

98

retr con 1 1
MSG111 10 0 14 8 1 1
0
eng_fluid 1 1
MSG121 1000 0 13 8 1 1
0
eng_ temp 1 1
MSG131 1000 0 12 8 1 1
0
eng_hrs 1 1
MSG141 10 0 11 8 1 1
0
pto_def 1 1
MSG151 100 0 10 8 1 1
0
idle_pto 1 1
MSG161 1000 0 9 8 1 1
0
speed 1 1
MSG171 100 0 8 8 1 1
0
calib 1
MSG181 10 0 7 8 1 1
0
miles 1 1
MSG191 10 0 6 8 1 1
0
fuel 2 1
MSG201 200 0 5 8 1 1
MSG202 10 0 4 8 1 1
0
ind 1 1
MSG211 100 0 3 8 1 1
0
tire 1 1
MSG221 10000 0 37 8 1 1
0
am by 1 1
MSG231 1000 0 38 8 1 1
0
exhst 1 1
MSG241 1000 0 39 8 1 1
0
power 1 1
MSG251 1000 0 40 8 1 1

99

0
fluids 1 1
MSG261 1000 0 41 8 1

0
dash 1 1
MSG271 10000 0 43 1 1

0
water 1 1
MSG281 10000 0 45 7 1 1

0
diag 2 1
MSG291 600 0 46 3 1 1
MSG292 700 0 47 3 1

0
ind 1 1
MSG301 20 0 48 8 1 1

0

100

Input file VII

100
1

engine 3 2
MSG11 10 1 31 8 1 1
MSG12 50 0 30 8 0 1
MSG13 250 0 29 8 1
2
0
torque 1 1
MSG21 10 0 28 8
0
trans1 1 1
MSG31 10 0 27 8 1 0
0
trans2 3 1
MSG41 10 0 26 8 1 1
MSG42 100 0 25 8 1 1
MSG43 1000 0 24 8 1 1
0
brake 2 1
MSG51 100 0 23 8 1 1
MSG52 1000 0 22 8 1 1
0
retarder 2 1
MSG61 100 0 21 8 1 1
MSG62 1000 0 20 8 1 1
0
brk ctrl 1 1
MSG71 50 0 19 8 1
0
axle 2 1
MSG81 30 0 18 8 1
MSG82 1000 0 17 8 1 1
0
eng_ con 1 1
MSG91 5000 0 16 8 1 1
0
trans con 1 1
MSG101 10 0 15 8 1 1
0
retr con 1 1
MSG111 10 0 14 8 1

101

0
eng_ fluid 1 1
MSG121 1000 0 13 8 1

0
eng_ temp 1 1
MSG131 1000 0 12 8 1 1

0
eng_hrs 1 1
MSGI41 10 0 11 8 I 1

0
pto_def 1 1
MSG151 100 0 10 8 1

0
idle_pto 1 1
MSG161 1000 0 9 8 1

0
speed 1 1
MSG171 100 0 8 8 1 1

0
calib 1 1
MSG181 10 0 7 8 1 1
0
miles 1 1
MSG191 10 0 6 8 1
0
fuel 2 1
MSG201 200 0 5 8 1 1
MSG202 10 0 4 8 1 1
0
ind 1 1
MSG211 100 0 3 8 1 1
0
tire 1 1
MSG221 10000 0 37 8 1 1
0
am by 1 1
MSG231 1000 0 38 8 1 1
0
exhst 1 1
MSG241 1000 0 39 8 1 1
0
power 1 1
MSG25 1 1000 0 40 8 1 1
0
fluids 1

102

MSG261 1000 0 41 8 1 1
0
dash 1
MSG271 10000 0 43 1 1

0
water I 1
MSG281 10000 0 45 7 1 1
0
diag 2 1
MSG291 600 0 46 3 1 1

MSG292 700 0 47 3 1 1
0
ind 1 1
MSG301 800 0 36 8 1 1
0
ind2 1 1
MSG311 800 0 35 8 1 1
0
ind3 1 1
MSG321 700 0 34 8 1 1
0
ind4 1 1
MSG331 600 0 33 8 1 1
0
ind5 1 1
MSG341 500 0 32 8 1 1
0
ind6 1 1
MSG351 400 0 63 8 1
0
ind7 1 1
MSG361 300 0 1 8 1 1
0
ind8 1 1
MSG371 30 0 1 8 1 1
0
ind9 1 1
MSG381 40 0 1 8 1 1
0
indiO 1 1
MSG391 50 0 1 8 1 1
0
ind11 1 1
MSG401 60 0 1 8 1 1
0

103

Input file VIII

100
1
1
engme 3 3
MSG11 10 31 8 1 1

MSG12 50 0 30 8 0 1

MSG13 250 0 29 8 1 1

2
0
0
torque 1 2
MSG21 10 0 28 8 1 1
0
0
trans1 1 1
MSG31 10 0 27 8 1 0
0
trans2 3 1
MSG41 10 0 26 8 1 1
MSG42 100 0 25 8 1 1
MSG43 1000 0 24 8 1
0
brake 2 1
MSG51 100 0 23 8 1
MSG52 1000 0 22 8 1 1
0
retarder 2
MSG61 100 0 21 8 1 1
MSG62 1000 0 20 8 1
0
brk ctrl 1 1
MSG71 50 0 19 8 1
0
axle 2 1
MSG81 30 0 18 8 1 1
MSG82 1000 0 17 8 1 1
0
eng_ con 1 1
MSG91 5000 0 16 8 1 1
0
trans con 1 1
MSG101 10 0 15 8 1 1

104

0
retr con 1 1
MSG111 10 0 14 8 1 1

0
eng_ fluid 1 1
MSG121 1000 0 13 8 1
0
eng_ temp 1 1
MSG131 1000 0 12 8 1 1
0
eng_hrs 1 1
MSG141 10 0 11 8 1 1
0
pto_def 1 1
MSG151 100 0 10 8 1 1
0
idle_pto 1 1
MSG161 1000 0 9 8 1 1
0
speed 1 1
MSG171 100 0 8 8 1 1
0
calib 1 1
MSG181 10 0 7 8 1 1
0
miles 1 1
MSG191 10 0 6 8 1 1
0
fuel 2 1
MSG201 200 0 5 8 1 1
MSG202 10 0 4 8 1 1
0
ind 1 1
MSG211 100 0 3 8 1 1
0
tire 1 1
MSG221 10000 0 37 8 1 1
0
am by 1 1
MSG231 1000 0 38 8 1 1
0
exhst 1 1
MSG241 1000 0 39 8 1 1
0
power 1

105

MSG251 1000 0 40 8 1 1

0
fluids 1 1
MSG261 1000 0 41 8 1 1

0
dash 1 1
MSG271 10000 0 43 1 1 1

0
water 1 1
MSG281 10000 0 45 7 1 1

0
diag 2 1
MSG291 600 0 46 3 1 1
MSG292 700 0 47 3 1 1
0
ind 1 1
MSG301 800 0 36 8 1 1

0
ind2 1 1
MSG311 800 0 35 8 1 1
0
ind3 1 1
MSG321 700 0 34 8 1 1
0
ind4 1 1
MSG331 600 0 33 8 1
0
ind5 1 1
MSG341 500 0 32 8 1
0
ind6 1 1
MSG351 400 0 63 8 1 1
0
ind7 1 1
MSG361 300 0 1 8 1 1
0
ind8 1 1
MSG371 30 0 1 8 1 1
0
ind9 1 1
MSG381 40 0 1 8 1 1
0
indiO 1 1
MSG391 50 0 1 8 1 1
0

106

ind11 1 1
MSG401 60 0 1 8 1 1

0
ind12 1 1
MSG411 70 0 1 8 1
0
ind13 1 1
MSG421 80 0 1 8 1 1
0
ind14 1 1
MSG431 90 0 1 8 1 1
0
ind15 1 1
MSG441 100 0 1 8 1
0
ind16 1 1
MSG451 110 0 1 8 1 1
0
ind17
MSG461 120 0 8 1

0
ind18 1 1
MSG471 130 0 1 8 1 1
0
ind19 1 1
MSG481 140 0 1 8 1
0
ind20 1 1
MSG491 150 0 1 8 1 1
0
ind21 1 1
MSG501 160 0 1 8 1 1
0

APPENDIXD

STATISTICS

107

Input Number l li III IV

Number of Nodes 2 3 10 17

Number of Messages 3 5 17 24

Number of Messages Transmitted 13 23 52 82

Number of Remote Transmissions 0 10 10 10

Number of Collisions 3 16 67 102

Number of Messages Losing Arbitration 3 18 204 521

Number of Errors 4 19 17 19

Number of Overload Errors 0 0 0 1

Number of Acknowledgment Errors 0 4 2 5

Number of Form Errors 0 4 3 3

Number of CRC Errors 4 1 1 12 10

Number of Messages Resent 4 19 17 19

Idle Time (in ms) 91.06 72.5 1 58.86 42.65

Busy Time (in ms) 6.83 17.28 32.11 47.65

Error Time (in ms) 2.11 10.20 9.03 9.70

Average Response Time (in ms) 0.37 1.03 3.28 4.20

Average Slack Time (in ms) 33 .72 26.48 195.53 163.15

Average Latency (in ms) 0.00 0.00 0.00 0.00

Network Load (in %) 8.94 27.49 41.14 57.35

Network Throughput (in msgs I second) 130 230 520 820
--- -- --- -- -- --L___ ___ -

v VI

20 30

27 39

107 128

10 10

125 147

828 1528

18 17

0 2

3 2

1 2

14 11

18 17

29.84 21.11

60.61 70.81

9.55 8.08

5.05 7.45

125.88 380.82

0.00 0.06

70.16 78.89

1070 1280
- ---

VII

40

50

142

10

166

2216

20

0

4

0

16

20

11.35

78.06

10.59

9.88

372.88

0.25

88.65

1420

VIII

50

60

155

10

177

3049

16

1

3

1

I 1

16

7.19

84.79

8.01

12.96

346.62

0.60

92.81

1550

0
00

\
,. ~'- '

. :(/•

~

\ .

VITA

Natarajan S. Pennathur

Candidate for the Degree of

Master of Science

Thesis: A BITWISE SIMULATION OF THE CONTROLLER AREA NETWORK

Major Field: Computer Science

Biographical:

Personal Data: Born in Chidarnbaram, India, on March 16, 1967, to Sun dare san,
P. S., and Shyarnala, S.

Education: Received high school certificate from Lindsay Memorial, Kolar Gold
Fields, India, in May 1983; completed undergraduate studies in Computer
Science and Engineering, with a Bachelor of Engineering Degree from the
University of Mysore, India, January 1990; completed requirements for the
Master of Science Degree at Oklahoma State University, Stillwater,
December 1993.

Professional Experience: Lecturer, Department of Computer Science, Bangalore
University, India, January 1990 to August 1991.

	Thesis-1993-P412b_Page_001
	Thesis-1993-P412b_Page_002
	Thesis-1993-P412b_Page_003
	Thesis-1993-P412b_Page_004
	Thesis-1993-P412b_Page_005
	Thesis-1993-P412b_Page_006
	Thesis-1993-P412b_Page_007
	Thesis-1993-P412b_Page_008
	Thesis-1993-P412b_Page_009
	Thesis-1993-P412b_Page_010
	Thesis-1993-P412b_Page_011
	Thesis-1993-P412b_Page_012
	Thesis-1993-P412b_Page_013
	Thesis-1993-P412b_Page_014
	Thesis-1993-P412b_Page_015
	Thesis-1993-P412b_Page_016
	Thesis-1993-P412b_Page_017
	Thesis-1993-P412b_Page_018
	Thesis-1993-P412b_Page_019
	Thesis-1993-P412b_Page_020
	Thesis-1993-P412b_Page_021
	Thesis-1993-P412b_Page_022
	Thesis-1993-P412b_Page_023
	Thesis-1993-P412b_Page_024
	Thesis-1993-P412b_Page_025
	Thesis-1993-P412b_Page_026
	Thesis-1993-P412b_Page_027
	Thesis-1993-P412b_Page_028
	Thesis-1993-P412b_Page_029
	Thesis-1993-P412b_Page_030
	Thesis-1993-P412b_Page_031
	Thesis-1993-P412b_Page_032
	Thesis-1993-P412b_Page_033
	Thesis-1993-P412b_Page_034
	Thesis-1993-P412b_Page_035
	Thesis-1993-P412b_Page_036
	Thesis-1993-P412b_Page_037
	Thesis-1993-P412b_Page_038
	Thesis-1993-P412b_Page_039
	Thesis-1993-P412b_Page_040
	Thesis-1993-P412b_Page_041
	Thesis-1993-P412b_Page_042
	Thesis-1993-P412b_Page_043
	Thesis-1993-P412b_Page_044
	Thesis-1993-P412b_Page_045
	Thesis-1993-P412b_Page_046
	Thesis-1993-P412b_Page_047
	Thesis-1993-P412b_Page_048
	Thesis-1993-P412b_Page_049
	Thesis-1993-P412b_Page_050
	Thesis-1993-P412b_Page_051
	Thesis-1993-P412b_Page_052
	Thesis-1993-P412b_Page_053
	Thesis-1993-P412b_Page_054
	Thesis-1993-P412b_Page_055
	Thesis-1993-P412b_Page_056
	Thesis-1993-P412b_Page_057
	Thesis-1993-P412b_Page_058
	Thesis-1993-P412b_Page_059
	Thesis-1993-P412b_Page_060
	Thesis-1993-P412b_Page_061
	Thesis-1993-P412b_Page_062
	Thesis-1993-P412b_Page_063
	Thesis-1993-P412b_Page_064
	Thesis-1993-P412b_Page_065
	Thesis-1993-P412b_Page_066
	Thesis-1993-P412b_Page_067
	Thesis-1993-P412b_Page_068
	Thesis-1993-P412b_Page_069
	Thesis-1993-P412b_Page_070
	Thesis-1993-P412b_Page_071
	Thesis-1993-P412b_Page_072
	Thesis-1993-P412b_Page_073
	Thesis-1993-P412b_Page_074
	Thesis-1993-P412b_Page_075
	Thesis-1993-P412b_Page_076
	Thesis-1993-P412b_Page_077
	Thesis-1993-P412b_Page_078
	Thesis-1993-P412b_Page_079
	Thesis-1993-P412b_Page_080
	Thesis-1993-P412b_Page_081
	Thesis-1993-P412b_Page_082
	Thesis-1993-P412b_Page_083
	Thesis-1993-P412b_Page_084
	Thesis-1993-P412b_Page_085
	Thesis-1993-P412b_Page_086
	Thesis-1993-P412b_Page_087
	Thesis-1993-P412b_Page_088
	Thesis-1993-P412b_Page_089
	Thesis-1993-P412b_Page_090
	Thesis-1993-P412b_Page_091
	Thesis-1993-P412b_Page_092
	Thesis-1993-P412b_Page_093
	Thesis-1993-P412b_Page_094
	Thesis-1993-P412b_Page_095
	Thesis-1993-P412b_Page_096
	Thesis-1993-P412b_Page_097
	Thesis-1993-P412b_Page_098
	Thesis-1993-P412b_Page_099
	Thesis-1993-P412b_Page_100
	Thesis-1993-P412b_Page_101
	Thesis-1993-P412b_Page_102
	Thesis-1993-P412b_Page_103
	Thesis-1993-P412b_Page_104
	Thesis-1993-P412b_Page_105
	Thesis-1993-P412b_Page_106
	Thesis-1993-P412b_Page_107
	Thesis-1993-P412b_Page_108
	Thesis-1993-P412b_Page_109
	Thesis-1993-P412b_Page_110
	Thesis-1993-P412b_Page_111
	Thesis-1993-P412b_Page_112
	Thesis-1993-P412b_Page_113
	Thesis-1993-P412b_Page_114
	Thesis-1993-P412b_Page_115

