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CHAPTER I 

INTRODUCTION 

Controller area network (CAN) is a real-time serial communication network that is 

presently being used for in-vehicle networking. In-vehicle communication is used in 

cars, agricultural trucks, military and construction vehicles, industrial and factory 

automation communications, and other event control and information sharing systems. 

The value for such in-vehicle serial communications is to reduce the harness size, 

manufacturing and maintenance complexity, eliminate sensors, increase diagnosability, 

and facilitate in-vehicle electronic options. The effort to develop a common protocol 

standard has been perceived by Robert Bosch GmbH and Intel Corporation. A similar 

network model is also being researched by Philips, Chrysler, and other automotive 

companies. Most of the work has been published in a series of papers in the Society of 

Automotive Engineers (SAE). CAN features include an open system to expand the 

network without topological changes, high reliability, low cost, minimum CPU burden 

for communication, maximum transparency, data consistency, and speedy transmission 

for real-time applications. 

The need for an efficient and low cost network for in-vehicle communication has 

created a wide number of research areas. The necessity to standardize such a network has 

become essential. One of the primary research areas now is to find efficient protocols 

over the existing hardware to shape the network into the OSI seven layer reference model. 

Since CAN is a typical real-time network with its own way of handling collisions, 

priority arbitration, addressing, and error control, the typical network algorithms do not 



apply very well for this kind of network. The architectural details, standards, and 

pro!ocols of the CAN are discussed in Chapter II. 
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A major concern is the performance of such a network under heavy load. This means 

that as the message rate increases, the throughput and delay should remain stable. The 

messages may be either periodic or sporadic. The scheduling of such messages is tricky 

in a real-time network system, where deadlines need to be met. A thorough investigation 

of various real-time scheduling algorithms is discussed in Chapter III. 

The purpose of this research is to find an efficient way of handling the periodic and 

sporadic message set that the CAN application presents. The objective is also to schedule 

messages within the network to reduce transmission delay, and hence achieve the much 

desired higher network throughput. At present, the network is designed to operate under 

less than a 30% load. A comprehensive CAN simulation model has been developed to 

test and analyze the network performance. The distinctive feature of the simulation 

program is its bitwise trace of the CAN protocols. Also, functions of error management 

and fault confinement have been included to analyze message error and node failure 

overheads. The implementation details ofthe simulation, and the performance evaluation 

are discussed in Chapter IV. Finally, the thesis concludes with a summary and a brief 

discussion of future research in Chapter V. 



CHAPTER II 

OVERVIEW OF THE CONTROLLER AREA NETWORK 

Why CAN? 

The following are some of the standard network topologies, and their limitations that 

make them unsuitable for real-time applications [Phai86]. 

I . The star network topology has a central node, to which are connected several 

nodes in a star. This arrangement offers waterproof arbitration schemes, but the 

failure of the central node results in network failure. 

2. The token bus is another topology that has good configuration flexibility. 

However, the network does not offer multimastership. The token is held by a single 

node at a time, and only that node is allowed to transmit messages. The failure of 

the node holding the token results in a substantial time loss. Recovery from failure 

requires complex logic. 

3. The token ring network is similar to the token bus with the difference being in 

the physical rather than the logical ring structure. These networks are suited for 

high speed data transfer with token mastership, and priority based access to tokens. 

Again, the probability of a ring failure is a major drawback. 

4. The bus topology using Carrier Sense Multiple Access with Collision 

Detection (CSMAICD) protocols offers multimastership by allowing any node to 

transmit when the bus is idle. The drawback in these networks is the destruction of 

messages when a collision occurs, and the retransmission of messages that involves 

substantial time loss and increased recovery logic. 

3 



The CAN has the following properties that make it most suitable for a real-time 

network. 

1. Prioritized bitwise arbitration for fast transmission of high priority messages 

with a latency time as short as 150 microseconds. 

2. Guarantee of latency times. 

3. High transmission rates in the range of 1 Mbps for a bus length of 40m. 
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4. An open system that allows configuration flexibility to add or delete any number 

of nodes without changing the underlying software or hardware of any node, with the 

constraints being physical limitations, and electrical load on the bus. 

5. Multicast reception with time synchronization enables any number of nodes to 

receive a message. 

6. Object-oriented communication that increases hardware transparency and system 

wide data consistency. 

7. Multimastership that allows any node to start transmission when the bus is free. 

8. A powerful error handling and signaling mechanism by means of bus 

monitoring, cyclic redundancy checks, bit stuffing, and message frame checks. 

9. Automatic retransmission of corrupted messages as soon as the bus is idle again. 

10. A distinction between temporary and permanent failure of nodes, and 

autonomous switching off of defective nodes. 

CAN Hardware 

The CAN architecture is based on a multimaster single bi-directional bus topology as 

shown in Figure 1. A node forms the point of contact with the communication channel, 

while the station is where the sensor and its microprocessor resides. All nodes are linked 

to the station via a communication controller. The stations may be data acquisition 

sensors or computers. A block implementation of a CAN station is as shown in Figure 2. 

The I/0 devices receive data from acquisition sensors and the station CPU processes the 
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Figure 1. CAN Topology 

data. The processed data is stored as communication objects within the shared RAM. 

The bus interface initiates a message transfer when it senses the bus to be idle. Similarly, 

a message is received by the bus interface by matching an appropriate communication 

object within the RAM. Once the data is copied into the RAM, the CPU processes it, and 

initiates an I/0 transfer to the sensor. 

Figure 2. CAN Functional Diagram (Source [Arne87]) 

The CAN bus is a single bi-directional channel that may have a single wire, two 

differential wires, or optical fibers with T -junctions. The bus can have two logical 

values, termed dominant (logical 0) and recessive (logical I). The recessive bit is 



represented by a mean voltage level of two voltages, V CAN H and V CAN L that are 
- -

defined with respect to the ground voltages of the electronic control unit (ECU). During 

the recessive state they are fixed to a mean voltage level. A recessive bit is transmitted 

during an idle state condition. The dominant state is a differential voltage greater than a 

minimum threshold, and overwrites the recessive state during arbitration [Bosc91 J. 
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The main components of the communication controller include a dual port RAM (DP­

RAM), an interface management processor (IMP), and a processor interface unit (PIU). 

Other components include a bus timing logic (BTL), a transceive logic (TCL), an error 

management logic (EML), a bit stream processor (BSP), and a clock generator (CG). A 

block diagram representation is as shown below in Figure 3. 
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The DP RAM forms a communication buffer between the station microprocessor and 

the IMP. Messages are stored as communication objects in the DP RAM. Each 

communication object consists of an identifier, a control segment, and a data segment. It 

has a global status register and a control register that help create communication objects 

to be used by the IMP. The IMP controls the transmission and reception of data between 

the serial bus and the DP RAM. It performs these tasks by means of acceptance and 

transmission filtering. This is done by scanning the communication objects in the DP 

RAM through its data paths. It computes the address for a communication buffer access 

and manipulates the appropriate control bits to execute the CPU's receive and transmit 

commands. 

The PIU links the DP RAM to the station CPU. It consists of an 8-bit multiplexed 

data/address bus, read/write control, address latch enable, chip select, interrupt output, 

external interrupt input, reset, ready output signal, two 8-bit output ports 0 and 1, and 3 

chip select output lines to connect additional peripheral devices. The PIU connections to 

the host microcontrollers is discussed in more detail in [Phai88]. 

The bus timing logic (BTL) synchronizes the station clock with the signal clock on the 

bus using a comparator. It also provides programmable time segments to compensate for 

the propagation delays and phase shifts. The transceive logic (TCL) performs bit stuffing 

and Cyclic Redundancy Check (CRC) sequence generation using an output driver and 

several shift registers. The bit stream processor (BSP) controls the flow of bits between 

the parallel IMP interface and the serial CAN bus interface. It performs bit reception, 

bitwise arbitration, bit transmission, error signaling and control ofTCL. The error 

management logic (EML) gets error signals from the BSP, and takes action by signaling 

the BSP, the TCL, and the IMP of error statistics. The clock generator (CG) has an 

oscillator, a clock divider register, and a driver circuit. The oscillator is driven by an 

external crystal, or in case of low baud rates by a ceramic resonator. The clock's output is 

programmable [Phai88]. 



CAN Standards and Protocols 

The characteristic features of the CAN includes its layered structure and physical 

properties. The CAN implements a serial communication protocol with three well 

defined layers. The protocol description follows from the layered structure according to 

the ISOIOSI reference model. 

The physical layer performs bit level functions of decoding I encoding, 

synchroruzation, timing, high voltage protection, and drive capability. The upper layer 

being the data link layer is sub-divided into two sub layers, namely the medium access 

control (MAC) sublayer, and the logical link layer (LLC). The MAC sublayer performs 

message level functions of fault confinement, message validation, error detection and 

signaling, acknowledgment, message frarrung, transfer rate, timing, data encapsulation I 

decapsulation, serialization I deserialization and arbitration. The LLC sublayer performs 

object level functions of prioritized message handling, message buffering, overload 

notification, and recovery management. The almost non existent application layer has 

controller level functions such as data collection through sensors, request for data from 

other sensors, and sending messages across the network. 

A bus arbitration protocol is used as a means of resolving collisions by consensus 

rather than a central arbiter making decisions. The time required to resolve a conflict is 

bounded by the number of arbitration bits used. The arbitration is shown by means of 

square wave forms, where each cycle represents a bit level as seen below in Figure 4. 
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The CAN bus can be viewed as an OR gate whose value is morutored by all nodes 

connected to the bus. If one can violate the Boolean rule, and assume that a 0 when 

ORed with a 1 results in a 0, then the protocol is easily understood. Since every station is 

synchronized to read the same bit field, whenever a station detects a dominant bus level 

of 0, while it actually sent a recessive bit 1, the station backs off, and thus loses the 

arbitration. Eventually when all the arbitration bits are sent the winner holds the bus, as 

the case with station #I in Figure 4. Hence the arbitration results in the message with the 
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Figure 4. Collision Resolution by Non-Destructive Bitwise Arbitration 

highest priority (lowest binary value) winning. 

Communication modes are offive types, namely command, request, proprietary, sleep 

I wakeup, and acknowledgment [Bosc92]. Command mode provides the capability to 

send commands to nodes to take necessary actions. Addressing a destination may be 

explicit with a destination address, or implicit with an extended data content. The request 

mode facilitates information request globally from all nodes, or from a specific 

destination. This mode provides messages to be sent to devices that can distinguish them 

properly without conflicts. The source address field of the message may have the 

sender's address when transmitting a message, or the receiver's address when the message 

is a destination specific request. The acknowledgment mode provides for a positive 

acknowledgment (ACK) for an error free message transfer, or a negative 

acknowledgment (NACK) for an erratic message transfer that results in an automatic 

retransmission. A sleep mode enables the CAN device to be in an inactive state, reducing 



power consumption as the bus drivers are disco:rinected. The internal activity gets 

restarted by a wake-up signal. 
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Message transfer for the CAN 2.0 version provides an extended frame in addition to 

the standard frame defined in the CAN 1.011.2 version. Both a standard message format 

with a 11 bit identifier, and an extended frame format with 29 bits have been incorporated 

in the CAN 2.0 version. This is to make the CAN 2.0 version compatible with the CAN 

1.011.2 versions. The extended frame format allows the CAN to address a large implicit 

data content address. This way CAN performs functional addressing using the data 

content rather than the physical address itself [Phai86] . 

CAN performs message passing using communication objects. Information from 

sensors is written into the data segment of the proper communication object within the 

DP RAM. A transfer is initiated by a transmission request in the control segment. 

Transmission and error handling is then performed without the CPU involvement. This 

helps to fire and forget messages [Kien86]. Message reception is performed by reading 

the data segment onto an already set up communication object. There are four kinds of 

frames in the CAN namely, a data frame that carries data from transmitters to receivers, a 

remote frame to request the transmission of a data frame with the same identifier, an error 

frame to signal a bus error, and an overload frame to provide an extra delay between 

succeeding data or remote frames. Data and remote frames may be used in both standard 

as well as extended frame formats . 

A data frame is composed of seven fields : START OF FRAME (SOF), 

ARBITRATION (ARB), CONTROL (CTR), DATA, CRC, ACK, and END OF FRAME 

(EOF) as shown in Figure 5. The SOF field consists of a single dominant bit to mark the 

beginning of the message frame. The ARB field for the standard frame format has an 11 

bit identifier, and a Remote Transmission Request (RTR) bit. The extended format ARB 

field has a 29 bit identifier, a Substitute Remote Request (SRR) bit, an Identifier 

Extension (IDE) bit, and an RTR bit. In both formats the first 11 bits represent the base 
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id, ID 1, that defines the base priority of the message, while the 18 additional bits forming 

the extended id, ID2, in the extended format represent data content implicitly. In both 

~--------- Data Frame ________ ,~ k 
( 

s 

.o ARB ~TR 

Interframe 
space 

~ F 

(3+ bits) Start of frame 
(I bit) 

Arbitration field 
(11 or 29 bits) 

Control field 
(6 bits) 

DATA 

Data field 

(0 to 64 bits) 

~ 
CRC ~ EOF 

CRC field 
(16 bits) 

K 

ACK field 
(2 bits) 

End of frame 
(7 bits) Interframe 

space 
(3+ bits) 

Figure 5. Data Frame Format (Source [Bosc91]) 

formats, the RTR bit is dominant for a data frame, while it is recessive for a remote 

frame. This bit notifies the network that the message is a remote request. The SRR bit is 

placed in the RTR bit field position in the extended frame, and is recessive to ensure that 

the standard frame prevails over the extended frame in the event of a collision, when the 

base identifiers of these dissimilar frames is the same. This bit tells the network that the 

message is in an extended frame format. TI1e CTR field has six bits. For the standard 

format it has an IDE bit, a reserved bit rO, and a four bit data length code (DLC). The 

IDE bit is in the control field for standard format and is dominant, while it is recessive in 



the extended format. The DLC represents the length ofthe data bytes in binary. The 

standard frame format for the ARB and the CTR fields is as shown in Figure 6. 

In the extended format two reserved bits rO, and r1 are followed by a four bit DLC. 
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Both the reserved bits are sent dominant in an extended frame. The ARB and CTR fields 
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Figure 6. Standard Format for ARB and CTR Fields (Source [Bosc91]) 

for an extended frame are as shown in Figure 7. The DATA field has 0 to 8 bytes of data 

that are transferred MSB first. The CRC field has 16 bits, containing a 15 bit CRC 

sequence followed by a CRC delimiter bit that is recessive. The ACK field is two bits 

long, and contains the ACK slot, and the ACK delimiter that is recessive. A positive 

acknowledgment of reception of data is reported by super scribing the recessive ACK slot 

bit with a dominant bit by the receiving stations. Finally a seven bit EOF field is used to 

mark the end of the message frame. All seven bits are recessive. 
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A remote frame is used by a receiver to initiate the transmission of data to the source 

node. A remote frame contains the address of the transmitter. It is void of the DATA 

field. The RTR bit is set to recessive, to indicate a remote transmission request. 

An error frame has two fields consisting of a six equal bit ERROR FLAG that is a 

superposition of error flags contributed by various stations, and an eight bit ERROR 
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Figure 7. Extended Format for ARB and CTR Fields (Source [Bosc91]) 

delimiter that are all recessive. All active nodes send an ACTIVE ERROR FLAG that 

consists of six dominant bits, while the passive nodes send a PASSIVE ERROR FLAG 

that consists of six recessive bits. An ERROR FLAG violates the bit stuffing rule, and 

hence all other nodes on the bus detect an error condition, and in turn signal errors. 

An overload frame has two fields consisting of six OVERLOAD FLAG bits that are 

dominant, and eight OVERLOAD delimiter bits that are all recessive. An overload 

condition may occur when the delay of the next data or remote frame falls short of the 



interframe space, or when a dominant bit is detected at the first, and second bit of 

intermission, or when a dominant bit is detected at the eighth (last) bit of an error frame 

or an overload frame. 
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An interframe space has two fields namely, a three bit INTERMISSION field in which 

all bits are recessive, followed by an arbitrary number of bits in the BUS IDLE field . In 

addition to the above, an error passive station that was a transmitter ofthe last message 

has an eight bit SUSPEND TRANSMISSION field following the INTERMISSION field 

in which all bits are recessive. The overload and error frames are not preceded by a 

interframe space. Any dominant bit detected during the BUS IDLE period is interpreted 

as a SOF of a new message. 

Message Filtering is used by a station to receive a message that belongs to it, and 

hence implement a multicast network. This is achieved by having optional mask registers 

that allow any identifier bit to be set 'don't care' for message filtering, and may be used to 

select a group of identifiers to be mapped into the attached receive buffers. The mask 

registers may be programmed, to be enabled or disabled for message filtering. The length 

of the mask register can comprise the whole identifier or only part of it. 

Every node on the network checks the message identifier on the bus to see if it 

matches with the object identifier in the DP RAM. If a match occurs, the message is 

copied into the proper communication object in the DP RAM. 

Message validation is performed by both the transmitter and the receivers of the 

message. A message is valid for the transmitter if it does not detect an error at the end of 

the EOF bits. The message is valid for a receiver, if no error is detected until the 

penultimate bit of EOF is received. Corrupted messages result in automatic 

retransmission. 

Error detection and signaling is performed by the error management logic (EML) that 

is connected to the bus. All global errors, local errors, 5 randomly distributed errors in a 

message, burst errors of length less than 15 in a message, and errors of any odd number in 
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a message are detected [Gupt88] . The total residual error probability for undetected 

corrupted messages is less than the message error rate which is ( 4. 7 * 10-11) [Bosc91]. 

The message recovery time after detection of an error is about 29 bit times. Five different 

types of errors are detected, namely bit errors, stuff errors, CRC errors, form errors, and 

acknowledgment errors. 

A bit error is detected if a transmitter detects a bus value that is different from the bit 

value it sent. Bit stuffing, ACK flagging, and overwriting of passive error flags are 

exceptions to the rule. 

A stuff error is detected when there are six consecutive equal bits that violate the law 

of bit stuffing for a CAN. The exceptions to the rule are the ERROR FLAGS, and 

OVERLOAD FLAGS that send six consecutive dominant or recessive bits. 

A CRC error occurs when the CRC sequence computed by the receiver does not 

match the sequence sent by the transmitter. 

A form error is detected when a fixed form bit field has an illegal bit. For example, if 

the SOF bit is received as a recessive bit, a form error occurs. 

An acknowledgment error is detected by a transmitter, when it does not read a positive 

acknowledgment in the form of a dominant bit in the ACK slot field. 

Fault confinement is implemented by having two error counts, namely a TRANSMIT 

ERROR COUNT, and a RECEIVER ERROR COUNT at each node. Initially, all nodes 

start out as active nodes with zero error counts. When a transmitter or a receiver detects 

an error its corresponding error count is incremented by one. If a transmitter, or a 

receiver detects an error condition during transmission of an error flag, the corresponding 

error count is incremented by eight. Successful transmission, and reception of a message 

results in decrementing the corresponding error count by one. If either of a node's error 

count exceeds 127, it becomes an error passive node. Similarly if both the node's error 

counts become less than 128, then it becomes an error active node. An error active node 

signals errors with an ACTIVE ERROR FLAG consisting of dominant bits, while an 
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error passive node uses a PASSIVE ERROR FLAG consisting of recessive bits. An error 

active node is hence used as a better judge of an error occurrence, while an error passive 

node's error signals may be overridden. If the TRANSMIT ERROR COUNT of a node 

exceeds 255, it becomes bus off. A bus off node is inactive on the bus. This feature 

enables the CAN to isolate a faulty node. 

Bit timings for the nominal bit time is divided into separate non-overlapping time 

segments namely, synchronization segment (SYN_SEG) that is 1 time quanta long, 

propagation segment (PROP _SEG) that is 1 to 8 time quanta long, phase buffer segment 

1 (PHASE_ SEG 1) that is 1 to 8 time quanta long, and phase buffer segment 2 

(PHASE_ SEG2) that is the maximum of PHASE_ SEG 1 and information processing time 

[Bosc91]. The information processing is less than or equal to 2 time quanta long. The 

total time quanta in a bit time is programmable to between 8 to 25. Synchronization is 

achieved by hard synchronization and resynchronization that are described in [Bosc91]. 

CAN Enterprise 

CAN networks have been on the scene since the need for an electronic network for the 

highly competitive automotive industry was required. Also, CAN provides a real-time 

and multimaster support with nondestructive collision resolution. The American 

Trucking Association (A TA), the Society of Automotive Engineers (SAE), and the 

International Standards Organization (ISO), along with various automotive and 

semiconductor manufacturers worked toward developing an in-vehicle network. The 

CAN components, like the Intel 82526, have been on the market since 1988. Many 

automobile corporations like Chrysler, and Robert Bosch GmbH have been perceiving the 

design and implementation of such real-time distributed systems for their cars. Also, 

much interest is being generated in the aviation and earth moving equipment industries. 

An Inter Controller Area Network (ICAN) was proposed in SAE 11583 by the Intel Corp. 

Intel's 82526 integrated the IMP, DP RAM and PIU units into one single chip. Chrysler 
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Corp. came up with their Chrysler Collision Detection (CCD) for serial data 

conununication multiplex bus. In 1985, Robert Bosch GmbH and Intel joined together to 

develop an in-vehicle network device with CAN specifications [Iver88]. Philips built 

various components to support testing and design of CANs [Eyho89]. Motorola 

developed a single chip microcontroller MC68HC04 for a basic CAN architecture 

[Jord88]. The difference in its implementation was that conununication between the CPU 

and the CAN interface is via a dual register with a context switch. This has a limitation 

in that it can receive a small number of messages at the full data rate. 

Also, since an onboard CAN simulation package exists, efforts can be made to test 

protocols on the CAN hardware itself. Also, Philips provides a NetSim PC-based 

simulator to which a CAN network must be described in terms of number of nodes, 

transmission speed, message identifiers, message length, and a noise margin. The output 

provides results of the simulation, such as network delay, network throughput, and bus 

load. Robert Bosch GmbH has provided an on board simulator, with which some 

specifications and performance measures can be obtained. All of these are presented in 

their draft of 11939 in the SAE Reconunended Practices. The CAN 2.0 high speed 

proposal for an International Draft Standard, (September, 1991) focuses mainly on the 

CAN's data link layer and its differences with previous versions. 

At Oklahoma State University, research was perceived by Dr. Marvin Stone and Dr. 

Huizhu Lu's student Mr. Zhengou Wang on a priority exchange algorithm to schedule 

sporadic message generations with a maximum arrival rate. The assumption made here 

was that the arrival rates of messages are Poisson. The message priority assignment 

algorithm as they called it made a worst case analysis by considering the transmission 

time and an allowed transmission delay for each message type as the parameter to assign 

priorities. Priorities were exchanged as and when the service time of a message exceeded 

the allowed transmission delay of that message from the time it arrived. 



CHAPTER III 

REAL-TIME ENVIRONMENT 

Concepts 

Real-time computing implies the use of a computer in conjunction with an external 

process. The concept of a real-time system is more specifically defmed as the ability of a 

computer to respond to stimuli from an external event in a timely fashion. The computer 

needs to be fast enough to complete the execution of the process. In a real-time network 

this translates to the speed of communication between processors or sensors. 

A real-time environment is one in which responses to events should occur before a 

deadline. In a hard real-time system violation of such critical timing constraints result in 

material and/or human disasters. In contrast, a soft real-time system is one in which the 

real-time constraints are relaxed, and violation of deadlines do not result in catastrophies. 

It is obvious from its nature of operation that the CAN is a hard real-time environment 

where deadlines must be met. For example, a failure to signal a braking action in an 

automobile could lead to a fatal accident. Hence, one of the chief concerns is to minimize 

delays within the network. 

One of the major hurdles in achieving system reliability, in such hard real-time 

systems, is finding an efficient way to schedule the events. I have considered the real­

time scheduling as my research basis, since it is adaptable into a CAN type of 

environment. It has been my endeavor to pursue system configurations that are 

representative of the CAN. The following discussion provides the various analogies that 

18 
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can be related from the typical real-time computer systems to the CAN. First of all, a 

non:-preemptive process scheduling aptly represents CAN messages since they cannot be 

removed from the bus once they are placed on it. Secondly, a uniprocessor machine can 

be easily viewed as the single channel of communication that the CAN adopts for 

message transfer. Scheduling overhead is assumed to be negligible in a real-time 

computer system. Also, exclusive access to the CAN bus is guaranteed once arbitration 

resolves bus contention. Finally, the processes arriving in a computer system can be 

readily equated to the messages generated in the CAN. 

Sporadic and periodic messages 

CAN messages are both periodic as well as sporadic in nature. Hence, a translation 

needs to be performed to have one type of message. The sporadic messages that are 

asynchronous in nature can be easily transformed to their periodic counterparts [Jeff91]. 

A periodic message is one that is generated repetitively in fixed time intervals. A typical 

periodic message Mp is defined as Mp = ( c, p) where 'c' is the communication cost, and 

'p' is the period. A message Mp arriving at time ·tk has the following rules of generation:-

• the (k + 1 )-th generation of message Mp will occur at time tk+ 1 = tk + p. 

• the k-th transfer of the message Mp cannot start before tk and must be completed 

no later than its deadline tk + p. That is, the transmission time needs to be in the 

interval (tk, tk + p ). 

A typical sporadic message is one that is generated in response to an internal or 

external event. A sporadic message Ms is defined as Ms = ( c, p ), where the 'c' is the 

communication cost, and 'p' is the least interval oftime before the next generation of such 

a message. A message Ms arriving at time tk has the following rules of generation:-

• the (k + 1 )-th generation of message Ms will occur no earlier than tk + p; that is, 

tk+ 1 >= tk + p. 
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• the k-th transfer of message Ms cannot start before tk, and must complete no later 

than its deadline at tk + p. 

Thus, the two message types differ only by the first rule. A periodic rate can be 

imposed on the sporadic message by using the period 'p', that is the shortest interval of 

time in which a sporadic message arrives. Hence, any scheduling scheme for periodic 

messages can be used to schedule sporadic messages as well. Also, since the CAN 

messages are mostly periodic, it is convenient to use the above convention to define 

messages. A feasible schedule involves ordering messages in such a manner that all 

messages meet their deadlines. 

Approaches to Scheduling 

Two distinct approaches to scheduling messages are on-line (dynamic scheduling) and 

off-line (static scheduling). Since most messages are periodic, and their characteristics 

are known in advance, off-line scheduling is more suitable. A schedule length equal to 

the least common multiple of all message periods can be used to decide if the message set 

is schedulable or not [Xu93]. Also, it seems to be the only practical means of providing 

predictability in a real-time system. 

Two parameters that can be used in the CAN message scheduling are message 

deadlines and message priorities. If message deadlines are equated to the corresponding 

message periods plus their previous deadlines, then an optimal priority assignment 

scheme can be used to resolve collisions during arbitration. Since priorities on the CAN 

are programmable, a priority assignment strategy based on a pre-computed schedule can 

be implemented. 
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Scheduling Issues 

One of the chief concerns in a hard real-time system using pre-run-time scheduling is 

satisfying relevant timing constraints. The objective also is to minimize the schedule 

length which is the longest time taken to transfer all messages. Two main theorems are 

discussed in detail in [Jeff91J. In terms of message scheduling, ifM = {MJ, ..... , Mn} is a 

set of periodic messages, where M = ( Ci, Pi), then the messages are in increasing order of 

periods. In other words, for all messages, Mi and Mj , i > j implies Pi >= Pj. The two 

necessary conditions for this message set to be schedulable are:-

• The overall bus utilization cannot exceed 1 00%; that is, 

n 
2: ( cifpj) ::; 1 
i=l 

• For any i between 1 and n, and L between PI and Pi, 

L 2 ( Ci + 2: ( (L-1) I Pj) * Cj) 

This suggests a non-preemptive schedule with no inserted idle time. The right hand 

side of the equation gives the bus utilization that can be realized in the interval L, 

starting at the generation of message Mi and ending before its deadline. 

Real-time scheduling algorithms 

Following are real-time scheduling algorithms proposed in the literature: 

Earliest deadline first (EDF) scheduling, which is also called relative urgency (R U) 

scheduling, has been proven to be universal for sporadic and periodic message sets. A 

concrete message translated from concrete task is one that has a release time associated 

with it. In [Jeff91 ], it has been proven that non preemptive scheduling of concrete 

periodic tasks is NP-hard in the strong sense. 

In EDF scheduling, a message is assigned the highest priority if the deadline of its 

current request is the earliest [Liu73]. Scheduling decisions are made at the time of each 



message generation. Thus, this suits a dynamic scheduling scheme, where priorities are 

assigned based on the current request. 
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The rate monotonic priority assignment algorithm when translated to message 

scheduling says that messages with higher generation rates get higher priorities [Mok83]. 

This essentially means that a message with the highest priority has the maximum arrival 

rate. That is the message with the shortest period has the highest priority. The heuristics 

here are based on the fact that the most important, or time critical message is the one that 

is generated most often. Hence, the algorithm is suited for static priority assignments, 

where priorities are decided based on message periods that are known in advance. 

The mixed scheduling algorithm provides a mixed approach that can schedule a set of 

messages with shorter periods by using a fixed priority schedule that is static, and the 

remaining set of messages with larger periods by an EDF schedule that is dynamic. 

Hence, this type of scheduling takes the potential advantages of both on-line as well as 

off-line scheduling techniques to provide an optimal schedule. 

A priority exchange algorithm has been discussed in [Wang92] for a CAN real-time 

environment. It assigns priority by increasing order of transmission times of the 

messages. Priorities are then exchanged based on their deadline requirements until the 

messages are ensured of meeting their deadlines. This study was based on a maximwn 

arrival rate analysis ofthe messages. A Poisson distribution of message generation, and 

exponential transfer times, was considered for this purpose. The results showed that 

under heavier loads the system experienced larger delays for lower priority messages, 

whereas under lighter loads it remained stable. 

Earliest deadline first with dynamic deadline modification (EDF I DDM) was studied 

by [Jeff92]. This scheme is used to dynamically alter deadlines of resource requesting 

tasks. This is more suitable for a process scheduling scenario rather than message 

scheduling. 
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The least slack algorithm is another on-line scheduling technique where preemption is 

allowed [Mok83]. The slack time of a message is defined as the time interval remaining 

between the message transfer completion time and its deadline. It is taken to be zero if 

the message misses its deadline. Intuitively it turns out to be the maximum time a 

process can be delayed before it is bound to miss its current deadline. In a least slack 

algoritlun, at any point oftime the message with the least slack time is scheduled next. 

Hence, it is essentially an on-line scheduling scheme. 

From the above discussions about various scheduling schemes, one of the key 

considerations in making a choice is to look at the system configuration. If the on-line 

scheduler is going to burden the system resources with a high scheduling overhead, then 

dynamic scheduling would be a bad choice. Another viewpoint is that if the message 

generation is highly unpredictable resulting in a lot of deadlines being missed, then an 

off-line scheduler is not helpful. Hence, a careful assessment of what a priori knowledge 

of the message set is available can determine which type of algorithm should be used. 

The most important characteristics to look for in a message set would be periodicity, 

release times, and deadlines requirements. 

The CAN message set is known, and most messages are periodic in nature. Hence, an 

off-line scheduler is most preferable. Also, on-line scheduling involves additional 

scheduling overhead to perform scheduling functions while the network is running. 

Another potential disadvantage is the requirement of additional hardware required to 

support an on-line scheduler. A modified version of the rate monotonic priority 

assignment algorithm is well suited for scheduling the messages in CAN. Priorities are 

assigned by increasing order of periods. Ties in message priorities are broken arbitrarily. 

An example of an priority assignment is as shown in Figure 8. 
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Message 20 10 5 100 70 500 40 
Periods 

Default 
I 2 3 4 5 6 7 

Priority 

Message 5 !0 20 40 70 !00 500 
Periods 

Assigned 
I 2 3 4 5 6 7 

Priority 

Figure 8. A Rate Monotonic Priority Assignment 

The main difference encountered in message scheduling as opposed to process 

scheduling is in the occurrence of error conditions resulting in retransmissions. Of 

course, message scheduling does not involve process synchronization, precedence 

relations, or interprocess communication as in process scheduling. 



CHAPTER IV 

SIMULATION OF THE CAN 

Model 

Simulation offers a flexible approach for performance evaluation of the CAN, and any 

computer network in general. It requires few assumptions and approximations of the 

network details. A detailed modeling of the CAN is useful to explore the various design 

aspects. It also aids in predicting changes in network performance, and comparing 

alternate designs. Analytical and graphical results can aid the network designer in 

creating a prototype model. The major drawback is the inability to predict the system 

reliability. 

Various modeling approaches including queuing models, Petri nets, and finite state 

machines have been used in the past. A queuing network model does not represent the 

protocol aspects of the CAN, while the finite state machine model cannot handle the 

topological features of the CAN. Petri net models can be used to verify the CAN 

protocols. A more simplistic model for discrete event simulation of the CAN is presented 

in Figure 9. 

Design 

The program design was made in three phases. The three phases are specification of 

the protocols, specification of the topology, and specification of the nodes. The first 

phase was to make a detailed study of the CAN protocols. The protocol specifications 

includes the rules of communication dictated by protocols within the network. This part 
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forms the core of the simulation, as it represents the flow of control within the simulation 

program itself. The important CAN protocols to be studied are the arbitration, message 

transfer, error detection, error signaling, and retransmission. Since the CAN is a real­

time network, and messages are mostly periodic, an off-line scheme is adopted as 

suggested in the previous chapter. As the arbitration, error checking and message transfer 

operations are bitwise, a bit by bit simulation methodology is used (i.e., bit transfers are 

simulated instead of message transfers). 

The second phase involves the topological module specification. This essentially 

determines the physical layout and the physical transmission characteristics under which 

the network operates. The layout specification is simply the way in which all nodes on 

the network are connected to the single CAN bus as in Figure I . The bus topology of the 

CAN offers multimastership and multicast reception. Thus, any node that has a message 

to be transmitted simply transmits it, bit by bit, on the bus. If a collision occurs, 

arbitration is used to determine the winner. All nodes receive all messages in the 

simulation because the mask register functionality does not affect the network 

performance. The most important physical characteristic of the CAN medium is the baud 

rate. A CAN bus with a transfer rate of250 kbps is selected. The unit of time in the 

simulation is assumed to be one bit time; that is, the time taken to transmit a single bit. In 

physical terms, one bit time is 4 f.!S for a 250 kbaud bus. So all times within the 

simulation are converted to bit time by dividing the simulation bit time (in f.!S) by 4. The 

electrical characteristics ofthe CAN are significant only with respect to voltage 

fluctuations that result in error conditions. 

The final phase of the design is the node module specification. This include~ the 

specifications of attributes of all nodes connected to the bus. The primary goals of a node 

are message generation, message transfer, and message reception. All other station 

details are less important. The following are the main features to look for in a node. The 

first feature is the type of messages it generates, whether periodic or sporadic. All 
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sporadic messages are translated to periodic messages by the simple technique described 

in Chapter III. The second feature in a node is its message characteristics. This includes 

message length, message representation (standard/extended), message mode 

(data/remote/error/overload), message release times, and message default priority, if any. 

Finally, each node receives messages depending on the kind of objects it has. This 

feature is ignored as all nodes on the network in the simulation receive all messages. 

Implementation 

CAN is a dedicated network being used for specific real-time applications. It has its 

own distinct protocols, and standards that define its operation. We develop a simulation 

package using a bottom-up design. The CAN simulator is coded in the C programming 

language, and presented in Appendix B. The implementation details of the program are 

described below. 

One of the key issues in a simulation is to map the physical time to the simulation time 

within the program. This parameter indicates the total simulation time for which the trace 

has been generated. A global clock forms the simulation time, and it maps to each unit of 

time spent in the network. Initialization of all node parameters, after reading input values 

is performed first. The periods of all messages are then tested for the two real-time 

constraints mentioned in Chapter III. 

Priorities are assigned to messages based on their schedule order. The simulation gets 

underway with the arrival of a new message. The first arrival of a message is determined 

by its release time. Once a message is released it arrives at its periodic rate. If no 

message is arrives, then the bus is in an idle state. Each idle state results in the 

incrementing of an idle time counter. When one or more messages are generated at the 

same point in time, a message cycle is started. If more than one message arrives, an 

arbitration process is initiated to resolve the conflict. The eventual transmitter of the 

message starts a message transfer. A conceptual flow diagram of the bit transfer, 
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including the arbitration protocol, is shown in Figure 10. Every bit put onto the CAN bus 

is a !ogical value, found by testing the appropriate bit position within the transmitted 

message using Boolean logic. Every bit transfer results in an additional bit time being 

spent in the simulation. After the lapse of a bit time the bit is received by all receivers 

simultaneously. Ifmore than five consecutive bits of equal value are sent, then a bit stuff 

is simulated by incrementing the simulation time by one. Thus, all bits within a CAN 

message are sent until an EOF or an error condition is detected. 

Errors are generated at random times. Error value is determined using the following 

formula: 

random_ value = (r * c) mod error _rate 

error _point = random_ value + simulation_ clock 

where 'r' is a random number generated by a random number generator, c = 10n, 

such that 'n' is the required number of digits for the random value, and error _rate is used 

to vary error points within the simulation. 

When an error occurs, a bit being transmitted is complemented to produce an error. 

Every bit is monitored for an erroneous transmission by the transmitter and all receivers. 

The transmitter detects bit errors and acknowledgment errors, while the receivers detect 

frame errors, CRC errors, and stuff errors. 

Messages are generated at each station in conformance with the frame formats. The 

extended frame is taken to be the basic data structure. The standard frame is built over 

the extended frame by ignoring the extended identifier fields during transmission. The 

first six bits are used for priority assignments for a total of 63 messages The extended 

data content has not been used as proposed, since its content is not required, and does not 

affect the simulation in any way. The data for each frame consists of 0 to 8 bytes, and is 

generated randomly in a byte by byte fashion. The data details are not considered as their 

functional value is immaterial. 
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A 15-bit frame check sequence is derived using the code given in [Bosc91]. A 15-bit 

shift register is used to perform polynomial division using a polynomial generator, and 

the remainder of this computation is the CRC sequence. This value is computed for the 

bits ranging from the SOF field to the end of the DATA field. The receivers on their part 

compute a similar frame check sequence, using the same code. A check is made to see if 

the receiver's CRC value matches with that of the transmitter. A CRC error is signaled if 

a mismatch occurs. All of the receivers flag a positive acknowledgment by overwriting 

the recessive ACK SLOT with a dominant bit. After all EOF bits are sent, control is 

returned to the message cycle routine that keeps checking for the next message arrival 

until all of the simulation time has elapsed. At the end of the run, various statistics are 

calculated and output. The parameters under study are throughput, latency, time, 

response, error, and collision characteristics. A detailed discussion ofthe graphical, and 

statistical analysis ensues. 

Statistical and Graphical Analysis 

The input data for the simulation is selected from the CAN specification manual 

[Bosc92]. This set is used because it represents a real-life CAN situation. Also, 

additional data has been included by modifying the original CAN set in [Bosc92] to 

facilitate testing, and obtain various network performance measures. The input data 

format that is used in the input data file is as follows: 

Simulation time (in milliseconds) 
Bandwidth (in number of bits per bit time) 
Error rate for the random error generation 
Node_ name Number_ of_ messages Number_ of_ objects 
Msg_name Release Priority Period No_of 

time data_bytes 
Objects 

Data(l)l 
Remote(O) 

Standard (I )I 
Extended(O) 

Simulation runs have been performed in the time range of 100 ms to 1 0 seconds. This 

is done to accommodate for load variations, error rates, and irregularity in message 

generation times. The bandwidth is used to increase the simulation length to produce the 
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effect. The error rate parameter is used as a means of varying error generation points and 

rates. Each node is defined with a certain number of messages and objects. A node may 

use more than one type of message. Any node can generate only one message at a time. 

So, an upper bound of message arrivals is the number of nodes on the network. Each 

message in tum has a period (in ms), a release time, a default priority in the range of 0 to 

63, a number of data bytes in the range 0 to 8, a remote or data flag, and a standard or 

extended frame flag. Since the first 6 bits in the arbitration field have been used for 

priority assignment, only 63 messages can be input to the program. Since most messages 

on the CAN are periodic, all messages have been taken to be of that nature. All message 

release times are 0. The objects may be used to simulate the message filtering 

functionality or a destination specific transmission. 

Verification of the simulation is performed on a single node with a single message. 

The message is an 8-byte extended data frame, with a period of 10 ms. A 100 ms run, 

with no errors and no collisions, produced the following results:-

Total number of messages transmitted= 10 

Idle time= 94.82 ms Busy time= 5.18 ms Error time= 0 ms 

Load= 5.18% Throughput= 100 msgsls 

It is obvious that a message with a period of 10 ms arrives 10 times in a 100 ms run, 

and so, 10 messages are transmitted. This also leads to a throughput of 1 00 msgsls ( 1 0 

messages* 10 such runs). The sum of the idle and busy times gives the total simulation 

time. The message consists of 128 bits inclusive of the interframe space to give a total 

transmission time of5.12 ms ((128 bits* 4 J..I.Sibit * 10 messages) I 1000). So, the 

network load over a 100 ms period is (5.12 I 100) * 100, that is 5.12% = 5.18%. The 

small difference is due to some additional bits being sent at the end of the simulation. 

The simulation is performed on 8 different input message sets, with 2, 3, 10, 17, 20, 

30, 40, and 50 nodes corressponding to 3, 5, 17, 24, 27, 39, 50, and 60 messages 

respectively. The above load conditions are labelled 1, 2, 3, 4, 5, 6, 7, and 8 respectively 
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for curves and load points in the graphs. This gives a variation in the offered load on the 

netv,rork. The input files for the 8 different message sets are given in Appendix C. The 

message specifications were adopted from [Bosc92]. The statistics are computed and 

output at 5 sampling intervals within the trace. The statistics at the end of each run is 

presented in Appendix D, with inputs being numbered in Roman numerals. The output 

includes network and node statistics that help in making a comprehensive performance 

evaluation of the network. The following discussion analyzes the results obtained out of 

the statistics using some representative graphs. 

Network load is defined as the ratio of utilized bus time to the total bus time; that is, 

Load= (Busy time+ Error overhead time) I Total bus time 

where Total bus time is the total simulation run time. 

The utilized time includes useful message transmission, as well as error message 

transmission time. The 5 different runs produce graphs as shown in Figure 11. 
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Initially, all runs have a high load signifying the simultaneous release of messages by 

all nodes on the network. Then, there is a near exponential decrease in the load as the 

distribution of message generation times is more varied. Towards the end, the graphs 

tend to become horizontal curves representing a more steady state system behavior. It 

can be observed that as the message set gets larger the exponential decrease lessens. This 

signifies that as the message set increases, more transmissions are getting clustered 

together. 

Network throughput is defined as the total number of messages transmitted per 

second, and is the given by the formula: 

Throughput= Total number of messages transmitted I Total bus time 

The throughput versus load graph is as shown in Figure 12. A predicted behavior is 

seen in the form of a linear shaped graph, but at the second sampling point a sharper rise 

occurs. This may be attributed to the fact that more messages get transmitted as the load 

is increased. Also a lower number of errors for this load point increases productive 

transmission. This observation is made from the error graph in Figure 16. 
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The time analysis graphs of Figure 13 shows the three major time parameters analyzed 

in the simulation with respect to the load. It can be seen that the sum of all three time 

quantities is equal to the simulation time which is 100 ms in this case. Idle time is the 

time for which no transmission takes place, that is the bus is in an idle state. 
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Figure 13. Time Characteristics 

The idle time graph is linearly decreasing with increased load. This is obvious from the 

fact that as more messages are generated the bus is free for a smaller amount of time. 

Busy time is the time for which the bus is busy due to transmission of a data or a remote 

frame. A variation in the linear behavior after the second load point is due to the greater 

number of message transfers as discussed earlier. Similar reasoning can be used to 

attribute the cause of the decline in error times after the third load points. Error time is 

the time for which the bus is utilized to transmit error messages. The unevenness of this 

graph is because of the random distribution of error generations. 

The average response time in a network is the average amount oftime taken by all 

messages to gain bus access, once they are generated. The graphs in Figure 14 shows the 



changes in the average response times at various sampling points within the simulation 

trace. The graphs for the 8 different topological conditions present interesting 

characteristics of the CAN. The first two load conditions have negligible amount of 

average response times. Fewer nodes that offer a lower load produce a more stable 
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Figure 14. Response Time Characteristics 

response time, while more than 20 nodes offering greater loads show a sharp increase in 

the response times until the initial overload is accommodated. This shows a slow 

response for a maximum arrival rate at the beginning, resulting in delayed service. 

One of the key parameters under study in a network is its delay or latency 

characteristics. The network delay in terms of the transmission time is not a useful 
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performance measurement quantity. This is because of the insignificant time involved in 

message transmission. The average latency, defined for all messages missing their 

deadlines, is the average time elapsed between message deadlines and their actual 

completion of transfer. The graphs of Figure 15 trace latency characteristics. As 

expected, lower loads produce lower latency times, while larger loads have higher 



latencies. The first four load conditions have 0 latencies throughput as no message 

misses its deadline. The last configuration has a greater slope due to large number of 

messages missing their deadlines at the beginning. 
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The graphs of Figure 16 shows the number of errors produced at different load points. 

It shows a random distribution, and signifies its effect on the system behavior as 
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Figure 16. Error Characteristics 



discussed in the previous graph analysis. The variations in error rates may also be 

attributed to the nature of the message set. If more messages have larger periods, then 

lesser number of errors hit the messages, while smaller periods cause a higher error rate. 

Changing the error distributions produces graphs almost similar to the one in Figure 16. 
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The graph of Figure 17 shows the number of collisions at different load points. This is a 

linear shaped graph with a break at the second load point. So, loads above 30% produce 

greater number of collisions. It is interesting to compare this almost linear nature to that 

of the Ethernet. Since, Ethernet uses a !-persistent CSMA/CD, collisions become more 

rampant as each collision results in destruction of all messages in contention. This 

scenario is aggravated with the arrival of more messages. Thus, throughput 

characteristics of an Ethernet is a rapid linear rise in throughput for light load conditions, 

as most of the channel idle time is avoided [Stal88]. After a peak load condition of 

around 20%, an exponential decay in the throughput occurs for heavier loads. This gives 

the CAN a definitive edge over Ethernet for real-time operations under heavy loads. 



CHAPTER V 

CONCLUSIONS 

Summary ofResults 

The Controller Area Network (CAN) has already been proven to work well under 

loads of 30%. The present simulation has load conditions varying from 0 to 100%. Most 

results show good performance under loads of 40%. Although loads under 3 0% produce 

a very low throughput. The inclusion of errors in the simulation produce measures of 

error tolerance. A stable system operates with a maximum of around 20 errors over a 1 00 

ms period. There is no latency for load conditions reaching 60%. A topology with 50 

nodes and 60 messages results in a greater number of messages missing their deadlines. 

On the whole, the network performs admirably with a load as high as 40%. The 

throughput achieved for this scenario is around 500 messages/sec. From the time 

characteristics it is clear that there is a large idle time that can provide for some additional 

loading if necessary. Response times are faster for loads lesser than 60%, with the 

average response times being less than 6 ms over a 1 00 ms run. 

Conclusions 

From the analysis, it is clear that the network begins to degrade under severe loads. 

Since no message can afford to miss its deadline, guaranteed performance is mandatory. 

An added load of 10% to the original CAN specifications does not affect the network 
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performance. An error rate of 1 error every 1250 bits provides near optimal performance. 

Considering the fact that a pessimistic approach is chosen in terms of release times, a 

better performance can be assured for a more typical CAN environment. 

The rate monotonic priority assignment algorithm seams to work well with the 

predominantly periodic message set. Some refinements to the scheduling algorithms can 

be used to test the network performance. The test for the two real-time constraints is vital 

in deciding if a schedule is safe or not. It is also evident that the CAN's versatile 

arbitration protocol enhances performance by avoiding delays due to message 

destruction. Thus, the CAN has proven to be an efficient real-time network. 

Future Research 

Since CAN is a developing network, research findings are essential for its growth. 

Every network goes through an evolution, and its success depends on how well a 

performance evaluation is made before formally setting standards. This thesis opens up 

several avenues for research. Studies in the changes of key network parameters has 

revealed some network limitations. The simulation program has been crucial in arriving 

at the above conclusions. The bit by bit logic within the simulation has aided in error 

analysis. It is also useful for making design changes in the message formats . A full scale 

investigation of different topologies could be made. This could give an insight into a 

wide range of design issues. One of the aspects left out of the study was fault tolerance. 

Although the fault confrnement logic has been implemented within the simulation, it 

could not provide adequate results. This was due to the fact that enough errors were not 

generated to create faulty nodes. Modifying the simulation could give some fault 

tolerance measures. 
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APPENDIX A 

GLOSSARY 
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]-persistent CSMAICD is a scheme where a node detecting a collision backs off for a 

random time, and retransmits with a probability of 1; that is whenever the bus is 

idle. 

Bandwidth is the maximum possible data rate within the network in terms of bits per 

second. 

Bit time is the unit time taken to transmit a bit across the bus. 

Broadcast networks are those where messages rriay be received by all stations. 

Bus off node is one that has an error count greater than 256. 

Bus topology has a single communication channel to which all nodes are connected. 

CSMAICD is a carrier sense multiple access collision detection mechanism. 
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Collisions are the result of overlapping transmission of messages by more than one node. 

Contention is a dispute between more than one node for access to a common channel at 

the same time. 

Error active node is one that has both its error counts less than or equal to 127. 

Error passive node is one that has either error count greater than 127. 

Information processing time is the time segment starting from the sample point, and 

begins a bit level. 

Message is information sent on a bus with a fixed format. 

Multicast networks are those where more than one node may receive a message. 

Nominal bit rate is the number of bits transmitted per second. 

Nominal bit time is a reciprocal of the nominal bit rate, and is divided into four segments 

as below. 

Peak load is the maximum load conditions occurring in the network. 

Phase segment] and Phase segment2 are used to compensate for edge phase errors. 

Propagation segment is used to compensate for physical delays within the network. 

Protocol is a formal set of conventions governing the format and relative timing of 

message exchange. 



Receiver is a communicating device that receives a message from an alien device. 

Ring topology has a circular channel to which nodes are connected. 

Sample point is the point of time at which the bus level is read and interpreted as the 

value ofthat bit. 

Star topology has a central node to which all other nodes are linked. 

Station is a device that processes, sends, and receives data over a network. 

Synchronization segment is used by the nodes on the bus to synchronize. 

Time quantum is a fixed unit of time derived from the oscillator period. 

Transmitter is a communicating device that sends out a message to one or more alien 

devices. 

Tree has a hierarchical structure with a root node and several layers of nodes below it. 
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Procedure call representation: 

main() 

sys_init() 

packs _init() 

packr_init() 

get_parm() 

node_ addressing() 

edf_ schedule() 

msg_cycl() 

packet_gen() 

crc_gen() 

arbitrate() 

statistics() 

msg transfr() 

transmit() 

get_ bit() 

rand_ error() 

msg_ filter() 

receive() 

ere check() 

bit_stuff() 

send_ error_ frame() 

send_ overload_ frame() 
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#include <stdio.h> 

#include <fcntl.h> 

#include <math.h> 

#include <stdlib.h> 

#include <time.h> 

#include <malloc.h> 

#define M MSGS 10 

#define TOT MSGS 100 

#define MAX NODES 60 

#defme MAX NAME 10 

#define MAX OBJS 60 

#define MAX OVERHEAD 67 

#define MAX_MSG_LEN 132 

#define SAMPLES 4 

#define RAND RATE 1000 

#define YES 1 

#define NO 0 

#define BUSY 1 
#define IDLE 0 

#define OVER 0 

#define FAILURE 0 

#define SUCCESS 1 

#define OVERLOAD ERROR 2 

#define FORM ERROR 3 

#define CRC ERROR 4 

#define ACK ERROR 5 

#define ACTIVE 1 

#define PASSIVE 0 

#define BUS OFF -1 

int busy_ time, latency, slack_ time, response_ time, remote; 

int losers, idle_ time, errors, msg_ time, error_ overhead; 

int sample_ count, sim _ cnt, count, data _frame, standard; 

long int tic, finish, sample_ time, sample _period; 

int rand _rate, error_period, bandwidth, random_error; 
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int collisions, transmitted, missed, retransmitted; 

char bus, bus_flag; 

int max _period, min _period, periodic_ error; 

int nr, n, m, total_msgs, totai_nodes, simulation_time; 

int no_ of_ receivers, ones, zeros, prv _bit, pos; 

int ack _count, overload_ count, ere_ count, form_ count; 

FILE *ip, *op, *st; 

typedef struct { I* formatted message *I 

unsigned char eof; 

unsigned char ack; 

unsigned char crc[2]; 

unsigned char dat[8]; 

unsigned char ctr; 

unsigned char arb( 4]; 

unsigned char sof; 

unsigned char isp; 

}PACKET; 

typedef struct { I* message parameters *I 

int data _len, period, release, deadline, prior; 

int msg_format, msg_mode, arb_lost, error_flag; 

float trans_ time; 

char msg_narne(MAX_NAME]; 

} MESSAGE; 

typedef struct { I* node parameters *I 

PACKET packs, packr; 

MESSAGE msg[M_MSGS]; 

int curr_msg, no_of_msgs; 

char node_ narne[MAX _NAME]; 

int no_of_objs, object[MAX_OBJS]; 

unsigned char ovrhd _de lim, err_ flag, err_ delirn; 

unsigned char ovrhd _flag, address; 

char prv _bus, prv _bus_ flag; 

int status, bit_ val, transfer, receive; 
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int dead_count, recv_err_cnt, trans_err_cnt; 

int error_ count, lost_ count, trans_ count; 

} NODE; 

NODE node[MAX_NODES]; 

typedef struct { /* scheduling parameters *I 

int dead, node, msg; 

float trans; 

} ORDER; 

ORDER order[TOT_MSGS]; 

/* This function performs initialization of the transmitter packet when new message is 

created. */ 

void packs_init(int S) 

{ 

} 

intj, i; 

i = S; 

node[i].packs.eof= 0; 

node[i].packs.ack = 0; 

node[i].packs.crc[O] = 0; 

node(i].packs.crc(1] = 0; 

for G = O;j < 8;j++) 

node[i].packs.datUJ = 0; 

node[i].packs.ctr = 0; 

for G = O;j < 4;j++) 

node[i].packs.arb[j] = 0; 

node[i].packs.sof = 0; 

node[i].packs.isp = 0; 

return; 
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I* This function performs initialization of the receiver packet when a new message is 

created. *I 

void packr_init(int R) 

{ 

} 

intj, i; 

i=R; 

node[i].packr.eof = 0; 

node[i].packr.ack = 0; 

node[i].packr.crc[O] = 0; 

node[i].packr.crc[l] = 0; 

for (j = O;j < 8;j++) 

node[i].packr.dat[j] = 0; 

node[i].packr.ctr = 0; 

for (j = O;j < 4;j++) 

node[i] .packr.arb[j] = 0; 

node[i].packr.sof= 0; 

node[i].packr.isp = 0; 

return; 

I* This function performs initialization of the simulation parameters when a new run is 

started up. *I 

void sys _ init() 

{ 

int i, j, k, temp; 

ones= 0; 

zeros= 0; 

count = 0; 

prv_bit = 1; 

idle_time = 0; 

busy_time = 0; 

response_time = 0; 

slack_time = 0; 

collisions = 0; 

losers= 0; 
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latency= 0; 

remote= 0; 

missed= 0; 

error_ overhead = 0; 

msg_time = 0; 

errors= 0; 

total_msgs = 0; 

pos = 0; 

tic= 0; 

retransmitted= 0; 

transmitted = 0; 

data _frame = 1 ; 

standard = 1 ; 

sample_ count = 1; 

overload_count = 0; 

form_ count= 0; 

ack _count = 0; 

crc_count = 0; 

I* total simulation time is represented in terms of bit times *I 

I* transmission speed is assumed to be 250 kbps *I 

finish= (bandwidth)* ((simulation_time * 1000)14); 

sample _period = finish I SAMPLES; 

sample_ time = sample _period; 

I* periodic error rate *I 

error_period = (error_period * 1000) I 4; 

periodic_ error = error _period; 

random_error = rand_error(tic); 

bus= 1; 

bus_ flag = IDLE; 

for (i = O;i < MAX_NODES;i++) { 

for (j = O;j < M_MSGS; j++) { 

node[i].msgO].data_len = 0; 

node[iJ.msg[j] .period = 0; 

node[i}.msg[j].release = 0; 

node[i}.msg[j] .deadline = 0; 

node[i}.msg[j].trans_time = 0; 
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} 

node[i].msgu].prior = 0; 

node[i].msgu].arb_lost = 0; 

node[i) .msgDJ .error _flag = 0; 

} 

packs _init(i); 

packr _init(i); 

node[i].no_of_msgs = 0; 

for (j = O;j < MAX_OBJS;j++) 

node[i].objectO] = 0; 

node[i].curr_msg = 0; 

node[i].prv_bus= 1; 

node[i].prv_bus_flag =IDLE; 

node[i).transfer =NO; 

node[i].receive =YES; 

node[i).bit_ val= 1; 

node[i].ovrhd_flag = 0; 

node[i].ovrhd _ delim = 0; 

node[i].err_flag = 0; 

node[i].err_delirn = 0; 

node[i).status =ACTIVE; 

node[i].recv_err_cnt = 0; 

node[i].trans_err_cnt = 0; 

node[i].trans_count = 0; 

node[i].lost_count = 0; 

node[i].error_count = 0; 

node[i] .dead_count = 0; 

} 

I* Statistics for the simulation at specified sampling points and at end of the simulation 

run. */ 

void statistics() 

{ 

int i, denorn; 

float Total_busy _time, Total_tirne; 
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float Idle_time, Busy_time, Error_overhead; 

float Response_time, Slack_time, Latency; 

float Throughput, Load, Success; 

if (sample_count = 1) { 

fprintf(st, 11\n\tNumber of nodes= %d\t\t11,total_nodes); 

fprintf(st, 11Number of messages= %d\n\n",total_msgs); 

fprintf(st, 11 \t. ................ ......... ..... 11
); 

fprintf(st, 11 .......... ..................... \n"); 

} 

fprintf(st, 11\n"); 

fprintf( st, 11 \ t -------------------------------11
); 

fprintf( st, 11-------------------------------\n"); 

fprintf(st,"\tNetwork Statistics\t\t"); 

fprintf(st,"Sampling Point %d at %d ms\n",sample_count, (tic*4)/1000); 

fprintf( st, 11 \ t -------------------------------"); 

fprintf( st, "-------------------------------\n"); 

fprintf(st,"\n\tTotal number of messages transmitted\t= %10d\n", transmitted); 

fprintf(st,"\n\tTotal number ofremote messages \t= %10d\n", remote); 

fprintf( st, 11\n \tTotal number of collisions \t\t= %1 Od\n", collisions); 

fprintf(st,"\n\tTotal number ofmsgs losing arbitration\t= %10d\n11 ,losers); 

fprintf(st,"\n\tTotal number of errors encountered \t= %1 Od\n", errors); 

fprintf(st,"\n\tTotal number of overload errors \t= %1 Od\n",overload_count); 

fprintf(st,"\n\tTotal number of acknowledgement errors \t= %10d\n", ack_count); 

fprintf(st,"\n\tTotal number of form errors \t\t= %10d\n11 ,form_count); 

fprintf(st,11\n\tTotal number of ere errors \t\t= %10d\n",crc_count); 

fprintf(st,"\n\tTotal number ofmsgs resent\t\t= %10d\n11 ,retransmitted); 

Idle_time = ((float)idle_time * 4.0) I 1000.0; 

fprintf(st,"\n\tldle time in the network \t\t= %10.2fms\n",Idle_time); 

Busy_time = ((float)busy_time * 4.0) I 1000.0; 

fprintf(st, 11\n\tBusy time in the network \t\t= %1 0.2fms\n11 , Busy _time); 

Error_overhead = ((float)error_overhead * 4.0)'1 1000.0; 

fprintf(st,"\n\tError overhead time\t\t\t= %10.2fms\n",Error_overhead); 

Response_time = (((float)response_time*4.0)/1000.0)1(float)transmitted; 

fprintf(st, 11\n\tA verage response time\t\t\t= %1 0.2f ms\n" ,Response_ time); 

Slack_time = (((float)slack_time * 4.0)/lOOO.O)I(float)transmitted; 

fprintf(st, 11\n\tAverage slack time\t\t\t= %10.2fms\n",Slack_time); 
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} 

Latency= (((float)latency * 4.0) 1 1000.0) I (float) transmitted; 

fprintf(st,"\n\tAverage latency time\t\t\t= %1 0.2f ms\n" ,Latency); 

Total_busy_time = Busy_time + Error_overhead; 

Total_time = Busy_time + Error_overhead + Idle_time; 

fprintf(st,"\n\tSimulation time\t\t\t\t=% 1 0.2f ms\n" ,Total_time); 

Load= (Total_busy_time I Total_time) * 100.0; 

fprintf(st,"\n\tNetwork load \t\t\t\t= %10.2f%%\n", Load); 

Throughput= ((float)transmitted I Total_time) * 1000.0; 

fprintf(st,"\n\tNetwork throughput\t\t\t= %10.2fmsgsls\n11 ,Throughput); 

fpri ntf( st, 11 \n \ t -------------------------------11 ) ; 

fprintf( st, "-------------------------------\0"); 

fprintf(st, "\n\tNode Statistics\n11); 

fprintf( st, "\ t ---------------\n \n 11); 

fprintf( st, 11\t -------------------------------"); 

fprintf( st, "---------------\n "); 

fprintf(st,"\tNode No of No of No of Percent \n"); 

fprintf(st,"\t msgs arbits deadlines sucess \n 11); 

fprintf(st,"\t sent lost missed in trans.\n"); 

fprintf( st, "\t -------------------------------"); 

fprintf( st, 11---------------\n 11) ; 

for (i = O;i < total_nodes;i++) { 

fprintf( st, 11\n \ t%-1 Os" ,node[i] .node_ name); 

fprintf(st,"%5d11 ,node[i].trans _count); . 

fprintf(st, "%8d" ,node[i] .lost_ count); 

fprintf(st,11%8d11,node[i].dead_count); 

denom = node[i].trans_count + node[i].error_count; 

if (denom != 0) { 

Success= (float)node[i].trans_count I (float)denom; 

fprintf(st,11% 11 .2f',Success); 

} 

else 

fprintf(st," --"); 

} 

fprintf( st, 11\n \ t -------------------------------11
); 

fprintf( st, 11------------ ---\n "); 

56 



I* This function gives a random point at which an error may be generated within the 

simulation. The random generator function uses the linear congruential algorithm. The 

seed value is specified by the global simulaiton clock 'tic'. *I 

int rand_ error(long seed) 

{ 

} 

int rand_ val; 

srand48 (seed); 

rand_ val= (int)(drand48() * 1000000)% rand_rate; 

return( rand_ val); 

I* This function generates addresses for the nodes. *I 

void node_ addressing() 

{ 

} 

int i; 

unsigned char base address; 

base_ address = 0; 

for (i = O;i < total_nodes;i++) { 

node(i].address = base_ address + i; 

} 

return; 
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I* This function obtains the input parameters for the simulation from an input file named 

input#, where # gives the order of the file. The parameters include node, and message 

data such as node name, number of objects, number of messages, message name, message 

period, message release time, message priority, message data length, type of format 

(standard/extended), message mode (data/remote), and node objects. *I 

void get_parm() 

{ 

int i, j, num; 

static char line[82]; 

total_ nodes= 0; 

i = 0; 



} 

while (fgets(line, 80, ip) !=NULL) { 

sscanf(line,"%s %d %d",&node[i].node_name,&node[i].no_of_msgs, 

&node[i].no_of_objs); 

num = node[i].no_of_msgs; 

for (j = O;j < num;j++) { 

fgets(line, 80, ip ); 

sscanf(line, "o/os %d o/od o/od o/od %d o/od o/od", &node[i].msg[j].msg_name, 

&node[i] .msg[j] .period, &node[i].msg[j].release, &node[i].msg[j] .prior, 

&node[i].msg[j].data_len, &node[i].msg[j].msg_format, 

&node[i].msg[j] .msg_ mode); 

node(i].msg[j].period = (node[i].msg[j].period * 1000)/ 4; 

} 

for (j = O;j < node[i].no_of_objs;j++) { 

fgets(line, 80, ip); 

sscanf(line, "o/od", &node[i] .object[j]); 

} 

total_ nodes++; 

i++; 

} 

58 

I* This function receives the bit sent over the CAN bus. It is implemented in such a way 

that all nodes receive the message. The receivers detect and signal errors to the 

transmitter, to initiate a retransmission. */ 

int receive(int r_bit, int br, int indr, int nr) 

{ 

intj; 

unsigned arr_crc = 0, check; 

switch (pos) { 

case 0: /*reception of the interfrarne space bits*/ 

/* Overload condition if less than 3 recessive bits *I 

if(r_bit != 1) { 

return( OVERLOAD_ ERROR); 

} 

node[nr].packr.isp J= (r_bit << br); 



return(SUCCESS); 

break; 

case I : /* reception of the SOF bit *I 

I* form violation if a recessive SOF is sent *I 

if (r_ bit != 0) { 

return( PO RM _ERROR); 

} 

node[nr].packr.sof 1= (r_bit << br); 

return(SUCCESS); 

break; 

case 2: I* reception of the arbitration bits *I 

node[nr].packr.arb[indr] I= (r_bit << br); 

I* remote message sensing *I 

if (!data_frame && 

(((standard) && (indr = 2) && (br = 4) && (r_bit = 1)) II 
((!standard) && (indr = 0) && (br = 0) && (r_bit = 1)))) 

for G = O;j < node[nr].no_of_objs;j++) 

if (node[nr].object[j] = node[n].address) { 

node[nr].rnsgUJ.deadline =tic+ 150; 

return(SUCCESS); 

} 

return(SUCCESS); 

break; 

case 3: /*reception ofthe control bits *I 

node[nr].packr.ctr 1= (r_bit << br); 

return(SUCCESS); 

break; 

case 4: I* reception ofthe data bits *I 

node[nr].packr.dat[indr] I= (r_bit << br); 

return(SUCCESS); 

break; 
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case 5: I* reception of the CRC sequence bits *I 

node[nr].packr.crc[indr] 1= (r_bit << br); 

I* CRC sequence check by receivers *I 

if ((indr = 0) && (br = 0)) { 

arr_crc = node[nr].packr.crc[O]; 

arr_crc 1= (node[nr].packr.crc[ l ] << 8); 

check= ere check(nr); 

if(check != arr_crc) { 

} 

retum(CRC _ERROR); 

} 

return(SUCCESS); 

break; 

case 6: I* reception of the acknowledgement bits *I 

if(br = 0) 

node[nr].packr.ack 1= (r_bit << br); 

else { 

I* acknowledgement posting by receivers *I 

node[nr].packr.ack 1= (0 << br); 

if(node[nr].recv_err_cnt != 0) {I* fault confinement *I 

} 

node[nr].recv _err_cnt--; 

if ((node[nr].trans_err_cnt < 128) && 

(node[nr].recv_err_cnt < 128)) 

node[nr].status =ACTIVE; 

} 

I* negative acknowledgement detected by the transmitter *I 

if((br = 0) && (node[nr].packr.ack != 1)) { 

retum(ACK_ERROR); 

} 

retum(SUCCESS); 

break; 

case 7: I* reception ofthe EOF bits*/ 

I* form violation in EOF bits with 
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the detection of dominant bit *I 

if (r_bit != 1) { 

return(FORM _ERROR); 

} 

node[nr].packr.eofl= (r_bit << br); 

return(SUCCESS); 

break; 

} 

return(OVER); I* end ofmessage reception *I 

} 

61 

!* This routine is the core of the bit by bit simulation. It represents a dominant bit on the 

bus with a logical 0, and a recessive bit with a logical 1. It also creats an error condition 

by complementing the true vale at the appropriate error time. *I 

int get_ bit( unsigned char g_ val, int bits) 

{ 

if(g_val & (1 <<bits)) { 

if (tic= random_error) { 

random_error = tic+ rand_error(tic); 

return(O); I* send errorneous bit *I 

} 

if(tic = periodic_error) { 

periodic_ error += error _period; 

return(O); I* send errorneous bit *I 

} 

return(l); /*send the correct bit *I 

} 

else { 

if (tic = random_error) { 

random_error =tic+ rand_error(tic); 

return(O); I* send errorneous bit *I 

} 

if (tic = periodic_ error) { 

periodic_error +=error __period; 

return(O); I* send errorneous bit *I 



62 

} 

return(O); I* send the correct bit *I 

}. 

} 

I* This function transmits a bit over the bus. The sender station transmits bit by bit. The 

sender station also monitors the CAN bus for potential errors during transmission. 

Successful transmission of a bits continues unless an error condition is detected. *I 

int transmit(int n) 

{ 

inti, b, bit_ val, bit_ flag; 

unsigned char val; 

I* bus is held by the current transmitter *I 

node[n].prv_bus_flag =BUSY; 

bus_flag =BUSY; 

while (pos <= 8) { 

switch (pos) { 

case 0: I* transmission of interframe space bits *I 

val = node[n].packs.isp; 

for (b = 2;b >= O;b--) { 

bit_ val = get_ bit( val, b); 

if ((bit_flag = msg_filter(bit_ val,b,O,O)) !=SUCCESS) 

return(bit_flag); 
) } 

printf(" isp %2X\n", node[n].packr.isp); 

pos++; 

break; 

case 1: I* transmission of SOF bit *I 

val= node[n].packs.sof; 

bit_ val = get_bit(val, 0); 

if ((bit_ flag = msg_filter(bit_ val,b,O,O)) != SUCCESS) 

return(bit_flag); 

printf(" sof%2X\n", node[n].packr.sof); 



pos++; 

break; 

case 2: I* transmission of arbitration bits *I 

for (i = 3;i >= O;i--) { 

val= node[n].packs.arb[i]; 

for (b = 7;b >= O;b--) { 

bit_ val =get_ bit( val, b); 

if ((bit_flag = msg_filter(bit_ val,b,i,O)) !=SUCCESS) 

return(bit_ flag); 

} 

printf(" arb %d %02X\n" ,i, node[ n] .packr.arb[i]); 

} 

pos++; 

break; 

case 3: I* transmission of control bits *I 

val= node[n].packs.ctr; 

for (b = S;b >= O;b--) { 

if ((bit_flag = msg_filter(bit_ val,b,O,O)) !=SUCCESS) 

return(bit_ flag); 

} 

printf(" ctr %02X\n", node[n].packr.ctr); 

pos++; 

break; 

case 4: /* transmission of data bits *I 

for (i = 7;i >= O;i--) { 

val= node[n].packs.dat[i]; 

for (b = 7;b >= O;b--) { 

bit_ val= get_ bit( val, b); 

if ((bit_ flag = msg_filter(bit_ val,b,i,O)) !=SUCCESS) 

return(bit_ flag); 

} 

printf(" dat %d %02X\n",i, node[n].packr.dat[i]); 

} 
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pos++; 

break; 

case 5: /* transmission of CRC sequence bits *I 

for (i = 1 ;i >= O;i--) { 

val= node[n].packs.crc[i]; 

for (b = 7;b >= O;b--) { 

bit_ val= get_bit(val, b); 

if ((bit_flag = msg_filter(bit_ val,b,i,O)) !=SUCCESS) 

return(bit_ flag); 

} 

printf(" ere o/od %02X\n",i, node[n].packr.crc[i]); 

} 

pos++; 

break; 

case 6: /* transmission of acknowledgment bits */ 

val= node[n].packs.ack; 

for (b = 1 ;b >= O;b--) { 

bit_ val =get_ bit( val, b); 

if ((bit_flag = msg_filter(bit_ val,b,O,O)) != SUCCESS) 

return(bit_ flag); 

} 

printf('1 ack %2X\n", node[n].packr.ack); 

pos++; 

break; 

case 7: /*transmission of EOF bits *I 

val = node[n].packs.eof; 

for (b = 6;b >= O;b--) { 

bit_ val= get_bit(val, b); 

if ((bit_flag = msg_filter(bit_val,b,O,O)) !=SUCCESS) 

return(bit_ flag); 

} 

printf(" eof%2X\n", node[n].packr.eof); 

pos++; 
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} 

} 

} 

break; 

case 8: I* end of message transmission *I 

return(OVER); 

I* This function checks if the current time is a sampling point, and if so, the statistics 

routine is invoked to compute and output the statistics at that point in time. *I 

void sample() 

{ 

} 

if (tic= sample_time) { 

statisticsQ; 

sample_time +=sample _period; 

sample_ count-t+; 

} 

I* This module simulates the bit stuffing function by adding a bit time whenever 5 

consecutive bits of equal value are detected. *I 

void bit_stuff(int bit_rd) 

{ 

if (bit_rd = 1) { 

if(prv_bit = 1) { 

ones++; I* track recessive bits *I 

if (ones > 5) { 

msg time++; 

tic++; /* a complement bit is stuffed * I 

sample(); 

ones = 0; 

} 

} 

65 



} 

else { 

zeros= 0; 

prv_bit = 1; 

} 

} 

else { 

if (prv _bit = 0) { 

zeros++; /* track dominant bits */ 

if (zeros> 5) { 

msg_ time++; 

tic++; /* a complement bit is stuffed*/ 

sample(); 

zeros= 0; 

} 

} 

else { 

} 

ones= 0; 

prv _bit= 0; 

} 

return; 
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I* This function performs message filtering within the CAN nodes. The broadcast bit is 

sent to nodes that find a match with their communication objects. *I 

int msg_filter(int bit_ val, int bm, int indm, int nm) 

{ 

int bit_ read; 

while (run < total_nodes) { 

if (node[nm].receive =YES) { 

bit _read = receive(bit_ val,bm,indm,nm); 

if (bit_ read != SUCCESS) { 

node[ nm ].recv _err_ cnt++; 

if (node[nm].recv_err_cnt >= 128) 

node[nm].status =PASSIVE; 



return(bit_read); 

} 

} 

run++; 

} 

if (!(((pos = 4) && (indm < (8- node[n].msg[m].data_len))) II ((pos = 2) && 

(standard) && ((indm < 2) II ((indm = 2) && (bm < 4)))))) { 

msg_time++; 

I* global simulation clock that keeps ticking at each bit transmission *I 

tic++; 

sample(); 

bit_ stuff(bit_read); 

} 

retum(SUCCESS); 

} 
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I* This function computes the CRC sequence for the frame at the receiving station. The 

CRC sequence is generated by a polynomial division algorithm, using a 15-bit shift 

register. *I 

int ere_ check(int nr) 

{ 

inti, j, k; 

unsigned crc_seq; 

unsigned char ere_ nxt; 

unsigned char nxt_ bit; 

unsigned char msb _bit; 

crc_seq = 0; 

msb_bit = 0; 

nxt bit = O· - ' 
msb_bit = (1 & (crc_seq >> 14)); 

crc_nxt = node[nr].packr.sof" msb_bit; 

crc_seq <<= 1; 

ere_ seq & = Ox00007fff; 

if (ere_ nxt) 

crc_seq "= Ox4599; 



if (standard) 

k=2; 

else 

k = 0; 

for (i = 3;i >= k;i--) { 

for (j = 7;j >= O;j--) { 

if(node(m].paekr.arb(i] & (1 <<j)) 

nxt_bit = 1; 

else 

nxt_bit = 0; 

if (ere_ seq & (1 < < 14)) 

msb_bit = 1; 

else 

msb_bit = 0; 

ere_nxt = nxt_bit" msb_bit; 

ere_seq <<= 1; 

ere_ seq &= Ox00007fff; 

if (ere_ nxt) 

crc_seq "= Ox4599; 

/* accept the first 12 bits for a standard frame *I 

if((standard) && (i = 2) && (j = 4)) 

} 

} 

break; 

for (i = 7;i >= (8- node[n].msg[m].data_len);i--) { 

for (j = 7;j >= O;j--) { 

if (node[nr].packr.dat[i] & (1 << j)) 

nxt_bit = 1; 

else 

nxt_bit = 0; 

if(crc_seq & (1 << 14)) 

msb_bit = 1; 

else 

msb bit= o· - ' 
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} 

crc_nxt = nxt_bit "msb_bit; 

crc_seq <<= 1; 

crc_seq &= Ox00007fff; 

if(crc_nxt) 

} 

} 

crc_seq "= Ox4599; 

crc_seq 1= 1; 

return( ere_ seq); 
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/* This function performs arbitration during bus contention by more than one message. 

The first 6 bits of the arbitration field are used tci determine the winner, depending on 

their priorities. A dominant bit overrides a recessive bit during arbitration. The station 

that detects the bus value to be different from its bit value backs off from transmission. */ 

int arbitrate() 

{ 

int i,j, k, b, bus_ val= 1, bit_flg, I; 

unsigned char val; 

pos = 0; 

val= node[n].packs.isp; 

for (b = 2;b >= O;b--) { 

node[n].bit_ val= get_ bit( val, b); 

if ((bit_flg = msg_filter(node[n].bit_ val,b,O,O)) != SUCCESS) { 

for (1 = 0;1 <total_ nodes;!++) 

} 

if (node[l].transfer =YES) 

node[l] .msg[ node[l] .curr _ msg] .error_ flag= YES; 

return(bit_ fig); 

} 

printf("\n ISP %2X\n", node[n].packr.isp); 

pos++; 

val = node[n].packs.sof; 

node[n].bit_val = get_bit(val, 0); 

if ((bit_flg = msg_filter(node[n].bit_ val,O,O,O)) !=SUCCESS) { 



for (I = 0;1 < total_nodes;l++) 

if (node[I].transfer ==YES) 

node [ 1] .msg [ node[I]. curr _ msg] .error_ flag= YES; 

return(bit_ flg); 

} 

printf(" SOF %2X\n", node[n].packr.sof); 

pos++; 

fprintf(op,"\t(Message,Node) = "); 

for G = 3;j >= O;j--) { 

for (b = 7;b >= O;b--) { 

I* all stations place their bit value on the bus *I 

for(i = O;i < total_nodes;i++) 

if (node[i].transfer =YES) { 

val= node[i].packs.arbOJ; 

node[i]. bit_ val= get_ bit( val, b); 

bus_ val&= node[i].bit_ val; 

} 
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I* every station checks if the bit it placed on the bus is the same as the bit that is being 

transmitted. *I 

for(i = O;i < total_nodes;i++) 

if (node[i].transfer = YES) { 

if((node[i].bit_val !=bus_ val) && (node[i].bi(_val = 1)) { 

node[i] .transfer =NO; 

k = node[i].curr_msg; 

node[i].msg[k].arb_lost =YES; 

node[i].lost_ count++; 

fprintf(op,"(%d,%d), ",k,i); 

losers++; 

count--; 

} 

else { 

n= 1; 

} 

} 

if((bit_flg=msg_filter(node[n).bit_val,b,j,O))!=SUCCESS) { 



for (1 = 0;1 < total_nodes;l++) 

if (node[l].transfer =YES) 

node[l].msg[node[l].curr_msg].error_tlag= YES; 

retum(bit_tlg); 

} 

bus_ val= 1; 

} 

printf(" ARB %d %02X\n'',j, node[n].packr.arbU]); 

} 

fprintf(op,"lost arbitration by time %d\n\n",tic); 

I* more than one message has the same priority assigned to it *I 

if (count > 1) { 

printf("\n Error in priority assignment, Quits\n"); 

exit(O); 

} 

return(SUCCESS); 

} 

I* This function transmits an overload frame when an overload error occurs. * I 

int send_ overload _frame() 

{ 

int i, b, bit_ val; 

unsigned char val; 

val = OxOO; 

for (b = 5;b >= O;b--) {I* six overload flags *I 

bit_ val = get_ bit( val, b); 

if (bit_ val) 

retum(F AIL URE); 

for (i = O;i < total_ nodes;i++) 

if (node[i].receive = YES) 

node[i].ovrhd_flag i= (bit_ val << b); 

tic++; 

sample(); 

msg_ time++; 

} 
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} 

printf("\n ovld_flag %2X\n", node[n].ovrhd_flag); 

val= Oxff; 

for (b = 7;b >= O;b--) {/*eight overload delimiters *I 

bit_ val= get_bit(val, b); 

if (!bit_ val) 

return(F AlLURE); 

for (i = O;i < total_nodes;i++) 

if (node[i].receive = YES) 

node[i].ovrhd_delim i= (bit_ val<< b); 

tic++; 

sample(); 

msg_ time++; 

} 

printf(" ovld_delim %2X\n\n", node[n].ovrhd_delim); 

return(SUCCESS); 

I* This function transmits an error frame when an ACK error, CRC error, form error, or 

bit error occurs. *I 

int send_error_frame(int ne) 

{ 

inti, b, bit_ val; 

unsigned char val; 

!* transmitter sending error frame *I 

if ((ne = n) && (node(n].status =ACTIVE)) { 

node[n].trans_err_cnt += 8; 

if (node(n].trans_err_cnt >= 128) I* error passive node *I 

node[n].status = PASSIVE; 

if (node[n].trans_err_cnt >= 256) /*faulty node */ 

node[n].status = BUS_OFF; 

} 

if(node[ne].status =ACTIVE) 

val = OxOO; 

else 

val = Ox37; 
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} 

for (b = S;b >= O;b--) {/*six error flags *I 

bit_ val= get_bit(val, b); 

for (i = O;i < total_nodes;i++) 

if (node[i].receive =YES) 

node[i].err_flag i= (bit_ val<< b); 

if (node[ne].err_flag !=val) 

return(F AlLURE); 

tic++; 

sample(); 

msg_ time++; 

} 

printf("\n err_flag %2X\n", node[n].err_flag); 

val= Oxff; 

for (b = 7;b >= O;b--) { /* eight error delimiters*/ 

bit_ val = get_bit(val, b); 

I* receiver detects the first bit to be dominant *I 

if ((!bit_ val) && (b = 8)) { 

node[nr].recv _err_cnt += 8; 

if (node[nr].recv _err_cnt >= 128) 

node[nr].status =PASSIVE; 

return(F AlLURE); 

} 

for (i = O;i < total_nodes;i++) 

if (node[i] .receive = YES) 

node[i].err_delim i= (bit_ val<< b); 

tic++; 

sample(); 

msg_ time++; 

} 

print£(" err_delim %2X\n", node[n].err_delim); 

retum(SUCCESS); 
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I* This module performs the initiation of a message transfer. The message may contain a 

data frame, remote frame, error frame, or an overload frame. Transmission is completed 

successfully or an error condition is reported. *I 

void msg_transfer(int mode) 

{ 

inti, k; 

while (mode < 6) { 

switch (mode) { 

case 0: I* action after a successful message transfer *I 

fprintf(op,"\tMessage %d ofNode %d TRANSMITTED ",m,n); 

fprintf(op,"at time %d\n\n",tic); 

busy _time+= msg_time; 

response_time +=(tic- msg_time)- node[n].msg[m].deadline; 

msg_time = 0; 

packs_ init(n); 

for (i = O;i < total_nodes;i++) { 

packr _init(i); 

} 

node[n].trans_count++; 

node[n] .transfer =NO; 

node[n] .prv_bus = 1; 

node[n].prv_bus_flag =IDLE; 

node[n].msg[m].error_flag =NO; 

node[n].msg[m].deadline += node[n].msg[m].period; 

slack_time += node[n].msg[m] .deadline- tic; 

I* check node status *I 

if (node[n].trans_err_cnt != 0) { 

node[n] .trans_ err_ cnt--; 

if ((node[n).trans_err_cnt < 128) && . 

(node[n].recv _err_cnt < 128)) 

node[n].status =ACTIVE; 

} 

if (node[n].msg[m].deadline < tic) { 

fprintf(op,"\n\tMsg %d of node %d MISSED deadline by", m, n); 

fprintf(op,"%d bit times\n\n" , tic- node[n].msg[m].deadline); 



node [n] .dead_ count++; 

latency += tic - node[ n] .msg[ m] .deadline; 

missed++; 

} 

if (data_frame) 

transmitted++; 

else 

remote++; 

return; 

case 1: /* initiation of a data I remote transfer*/ 

mode= transmit(n); 

break; 

case 2: /* action after an overload error occurs *I 

for (i = O;i < total_nodes;i++) 

packr _ init(i); 

retransmitted++; 

errors++; 

overload_ count++; 

fprintf(op,"\tOVERLOAD ERROR in Message o/od of Node o/od ", m, n); 

fprintf(op,"at time o/od\n\n",tic); 

node[ n] .error_ count++; 

node[n].msg[m].error_flag =YES; 

if (!send_overload_frame()) { 

fprintf(op,"\tError in Overload frame at o/od\n\n", tic); 

mode= 3; 

break; 

} 

else { 

} 

error_ overhead += msg_ time; 

msg_time = 0; 

return; 
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case 3: I* action after a form error occurs *I 

for (i = O;i < total_nodes;i++) 

packr_init(i); 

retransmitted++; 

errors++; 

form_ count++; 

fprintf(op,"\tFORM ERROR in Message %d ofNode %d ",m, n); 

fprintf(op,"at time %d\n\n",tic); 

node[n].error_count++; 

node[n].msg[m].error_flag =YES; 

if (!send_error_frame(nr)) { 

fprintf(op,"\tError in ERROR frame at %d\n\n", tic); 

mode = 2; I* Error in Error frame *I 

break; 

} 

else { 

error_ overhead += msg_ time; 

msg_time = 0; 

return; 

} 

case 4: I* action after a CRC error occurs *I 

for (i = O;i < total_nodes;i++) 

packr _ init(i); 

retransmitted++; 

errors++; 

ere_ count++; 

fprintf(op,"\tCRC ERROR in Message %d ", m); 

fprintf(op,"ofNode %d at time %d\n\n", n, tic); 

node[n].error_count++; 

node[n].msg[m].error_flag =YES; 

if (!send_ error _frame( nr)) { 

fprintf(op,"\tError in ERROR frame at %d\n\n" , tic); 

mode = 2; I* Error in Error frame *I 

break; 

} 
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} 

} 

} 

else { 

error_ overhead += msg_ time; 

msg_time = 0; 

return; 

} 

case 5: /*action after a ACK error occurs *I 

for (i = O;i <total_ nodes;i++) 

packr _init(i); 

retransmitted++; 

errors++; 

ack _count++; 

fprintf(op,"\tACK ERROR in Message %d Node %d ",m,n); 

fprintf(op,"at time %d\n\n",tic); 

node[ n ].error_ count++; 

node[n].msg[m].error_flag =YES; 

if(!send_error_frame(n)) { 

fprintf(op,"\tError in ERROR frame at %d\n\n", tic); 

mode = 2; /* Error in Error frame *I 

break; 

} 

else { 

error_overhead += rnsg_time; 

msg_time = 0; 

return; 

} 

default: printf("\n Error in message transfer mode, Quits \n "); 

exit(O); 
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I* This function generates a CRC sequence for the message. The CRC sequence is 

computed for the SOF, arbitration, control, and data fields in that order. *I 

void ere _gen(int Node, int Msg) 

{ 

int i, j, k; 

unsigned ere_ reg; 

unsigned char ere_ nxt; 

unsigned char nxt_ bit; 

unsigned char msb _bit; 

ere_ reg = 0; I* initialize shift register *I 

msb_bit = 0; 

nxt bit= O· - , 
msb_bit = (1 & (erc_reg >> 14)); 

ere nxt = node[Node].packs.sof/\ msb_bit; 

erc_reg <<= 1; 

ere _reg &= Ox00007fff; 

if (erc_nxt) 

ere reg /\= Ox4599; 

if (standard) 

k = 2; 

else 

k = 0; 

for (i = 3;i >= k;i--) { 

for (j = 7;j >= O;j--) { 

if (node[Node].packs.arb[i] & (1 << j)) 

nxt_bit = 1; 

else 

nxt_bit = 0; 

if (crc_reg & (1 << 14)) 

msb_bit = 1; 

else 

msb_bit = 0; 

crc_nxt = nxt_bit 1\ msb_bit; 

ere _reg <<= 1; 
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} 

ere _reg &= Ox00007fff; 

if (ere_ nxt) 

.cre_reg /\= Ox4599; 

I* stop after 12 th bit for standard frames *I 

if ((standard) && (i = k) && (j = 4)) 

break; 

} 

} 

for (i = 7;i >= (8- node[Node].msg[Msg].data_len);i--) { 

for (j = 7;j >= O;j--) { 

} 

if (node[Node].paeks.dat[i] & (1 << j)) 

nxt_bit = 1; 

else 

nxt_bit = 0; 

if (ere _reg & (1 << 14)) 

msb bit= 1· - , 
else 

msb_bit = 0; 

ere_nxt = nxt_bit 1\ msb_bit; 

cre_reg <<= 1; 

ere _reg &= Ox00007fff; 

if (ere_nxt) 

ere _reg /\= Ox4599; 

} 

node[Node].paeks.erc[O] = erc_reg & OxOOff; 

node[Node].paeks.ere[l] = (cre_reg & OxffDO) >> 8; 

node[Node].paeks.ere[O] 1= 1; I* ere delimiter *I 

return; 
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I* This function generates a packet for each message that arrives at a node. A packet is 

created in conformance with the frame format in the CAN 2.0 version. Both standard and 

extended frames are developed. The basic structure is that of a extended frame. Standard 

frames are built over the extended frame. *I 

void packet_gen(int node_ no, int msg_ no) 

{ 

inti, j; 

I* interframe space consists of 3 recessive bits *I 

node[node_no].packs.isp 1= Ox7; 

printf("\n isp = %2X", node[node_no].packs.isp); 

I* start of frame is a single dominant bit *I 

node[node_no].packs.sof= 0; 

printf("\n sof = %2X", node[ node_ no]. packs.sof); 

I* following 5 bits are used to represent node address *I 

node[node_no].packs.arb[3] I= (node[node_no].address >> 3); 

I* first 6 arbitration bits are used for priority *I 

node[node_no].packs.arb[3] j= (node[node_no].msg[msg_no].prior << 2); 

node[node_no].packs.arb[2] 1= (node[node_no].address << 5); 

if (standard) { 

if (data_ frame) 

node[node_no].packs.arb[2] 1= (OxO); /* RTR bit is dominant*/ 

else /* if remote frame *I 

node[node_no].packs.arb[2] 1= (Oxl <<4);/*RTR 12th bit*/ 

node[node_no].packs.arb[2] 1= (OxOf); /* 13th onward bits*/ 

node[node_no].packs.arb[l] 1= (Oxff); 

node[node_no].packs.arb[O] j= (Oxff); 

} 

else { /* extended format *I 

node[node_no].packs.arb[2] 1= (Oxl << 4); /* SRR bit*/ 

node[node_no] .packs.arb[2] 1= (Oxl << 3); /*IDE bit*/ 

node[ node_ no ].packs.arb[l] &= (OxOO); /* extended ID to be set* I 

node[ node _no]. packs.arb[O] &= (OxOO); 

if (data_frame) 

node[node_no].packs.arb[O] 1= (OxO); /* RTR bit domi*/ 

else /* if remote frame *I 



} 

node[node_no].packs.arb[O] 1= (Oxl);/*RTR 32th bit*/ 

} 

printf("\n arb = "); 

for (i = 3;i >= O;i--) 

printf("%02X", node[node_no].packs.arb[i]); 

I* last 4 control bits give the binary value of data length in bytes *I 

if (standard) 

node[node_no] .packs.ctr 1= (Oxl << 4); /*IDE and rO bits*/ 

else 

node[node_no].packs.ctr I= (OxO << 4); /* rO and rl bits*/ 

node [node_ no]. packs.ctr 1= node[ node_ no] .msg[ msg_ no] . data _len; 

printf("\n ctr = %02X", node[ node_ no ].packs.ctr); 

I* data bytes are generated randomly *I 

for (i = 7;i >= (8-node[node_no].msg[msg_no].data_len);i--) { 

node[node_no].packs.dat[i] = (randO% 256); 

} 

for (i = (7-node(node_no].msg[msg_no].data_len);i >= O;i--) 

node[node_no].packs.dat[i] = Oxff; /* dont care bytes*/ 

printf('1\n dat = 11); 

for (i = 7;i >= O;i--) 

printf("%02X11
, node[ node_ no ].packs.dat[i]); 

I* a 15-bit CRC sequence is obtained *I 

crc_gen(node_no, msg_no); 

printf(11\n ere= %2X",node[node_no].packs.crc[l]); 

printf("%02X\n" ,node[ node_ no]. packs.crc[O]); 

I* ack bits are recessive before transmission */ 

node[node_no].packs.ack I= 3; 

printf(" ack = %2X\n", node[node_no].packs.ack); 

I* 7 end of frame bits are recessive *I 

node[ node_ no] .packs.eof I= Ox7f; 

printf(" eof = %02X\n", node[node_no].packs.eof); 

return; 
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I* This function performs the message cycle. It checks for new message arrivals, 

initiates arbitration if more than one message has arrived, then calls the message transfer 

routine to transmit the message. *I 

void msg_ cycl() 

{ 

int i, j, k, l; 

static unsigned long int next_ arrival = 0; 

int mode, filter; 

long int next; 

int IS_THERE_A_MSG; 

bus_ flag = IDLE; 

transmitted = 0; 

pos = 0; 

I* initial message deadlines are their release times *I 

for (i = O;i < total_nodes;i++) 

for G = O;j < node[i].no_of_msgs;j++) 

node[i] .msgOJ.deadline = node[i].msg[j].release; 

I* cycle until end of the simulation run *I 

while (tic <=finish) { 

I* check each node for message arrivals *I 

for G = O;j < total_nodes;j++) { 

next= 1 00000000; 

IS_THERE_A_MSG =NO; 

for (I = 0;1 < node[j].no_of_,_msgs;l++) 

if (node[j].msg[l].deadline <=next) { 

IS_THERE_A_MSG =YES; 

k = 1; 

next= nodeO] .msg[l].deadline; 

} 

I* process each node message *I 

if((IS_THERE_A_MSG =YES) && 

(node[j].msg[k].deadline <= tic)) { 

node[j] .transfer = YES; 

node[j].curr_msg = k; 

if (node[j] .msg[k] .msg_ mode) 



data_ frame = 1; 

else 

data_ frame= 0; /*remote request*/ 

if (node[j] .msg[k J .msg_ format= 1) 

standard = 1 ; 

else 

standard= 0; /*extended frame format*/ 

/* generate a packet is message is already not there*/ 

if ((node[j].msg[k].arb_Jost !=YES) && 

(node[j].msg[k].error_flag !=YES)) 

packet_genG, k); 

n= J; 

m=k; 

count++; /*number of messages arrivals*/ 

} 

} 

msg_time = 0; 

mode= 1; 

I* arbitrate to resolve bus contention */ 

if (count > 1) { 

collisions++; 

mode = arbitrate( count); 

m = node[n].curr_msg; 

pos = 3; 

} 

node[n].msg[m].arb_lost =NO; 

if (node[n].msg[m].rnsg_format = 1) 

standard = I ; 

else 

standard = 0; /*extended frame format*/ 

if (node[ n ].msg[m ].msg_ mode = 1) 

data_ frame = 1 ; 

else 

data_frame = 0; I* remote request*/ 

/* no message has arrived, bus is idle state *I 

if (count= 0) { 
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} 

tic++; 

sample(); 

idle_ time++; 

if (tic >== periodic_ error) 

periodic_ error += error _period; 

if (tic>== random_error) 

random_ error== tic+ rand_ error( tic); 

count= 0; 

} 

I* initiate a message transfer *I 

else { 

count= 0; 

if ((bus_flag =IDLE) && (node[n].status != BUS_OFF)) { 

msg_ transfer( mode); 

if (tic>= finish) 

return; 

bus_flag =IDLE; 

pos = 0; 

} 

} 

} 
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I* This function performs a priority assignment using the rate monotonic priority 

assignment algorithm. Higher priorities are assigned to message with smaller periods. 

The message set is also tested for the two real time constraints before assigning priorities. 

*I 
void prior_ assign() 

{ 

inti, j, k, l, temp; 

float cost_ fn, schedulables; 

int p _max, interval_ L; 

cost fn = O· - ' 
I* test for the first real time constraint *I 



I* total cost function is less than unity *I 

for (i = O;i < total_nodes;i++) 

for U = O;j < node(i].no_of_msgs;j++) { 

node[i].msg[j].trans_time = (node[i].msg[j].data_len*8.0+MAX_OVERHEAD); 

cost_fn += node[i].msg[j].trans_time I node[i].msg[j].period; 

total_ msgs++; 

} 

printf("cost function is %f\n",cost_fn); 

if (cost_fn >= 1.0) { 

printf("No schedule for this message set, Quits\n\n"); 

exit(O); 

} 

I* message ordering by message periods *I 

l = 0; 

for (i = O;i < total_nodes;i++) { 

if(node[i].no_of_msgs = 1) { 

order[l].msg = 0; 

order[l].node = i; 

order[l].dead = node(i].msg[O].period; 

order[l].trans = node[i].msg[O].trans time; 

1++; 

} 

else { 

for (k = O;k < node[i].no_of_msgs;k++) { 

order[l].msg = k; 

} 

} 

order[l].node = i; 
order[l].dead = node[i] .msg[k].period; 

order[l].trans = node[i].msg(k].trans_time; · 

1++; 

} 

for (i = O;i < total_ msgs - 1 ;i++) 

for U = O;j < total_ msgs - 1 ;j++) 

if ( order[j].dead > order[j+ 1 ].dead) { 
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} 

temp = order[j].dead; 

order OJ .dead = order[j+ I J .dead; 

order[j+ 1 ].dead = temp; 

temp= order[j].msg; 

order[j] .msg = order[j + 1] .msg; 

order[j+ 1 ].msg =temp; 

temp= order[j].node; 

order[j].node = order[j+ 1 ].node; 

order[j+ 1] .node =temp; 

temp= order[j].trans; 

order[j].trans = order[j+ l].trans; 

order[j+ 1]. trans = temp; 

} 

for (i = O;i < total_msgs;i++) { 

j = order[i] .node; 

k = order[i].msg; 

node[j].msg[k].prior = i; 

} 

max_period = order[total_msgs-l].dead; 

min _period= order[O].dead; 

/* test for second real time constraint *I 

/* no inserted idle time *I 

p_max = order[total_msgs-1].dead; 

interval_L = p_max- 10; 

schedulables = order[total_msgs-l].trans; 

for (i = total_msgs- 2;i >= O;i--) 

schedulables += floor(((interval_L-1 )/order[i].dead))*order[i].trans; 

if (interval_L < schedulables) { 

printf("No schedule for this message set, Quits\n\n"); 

exit(O); 

} 
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I* This function is the main routine that controls the flow within the program. It also 

invokes 5 simulation runs for 5 different message sets from input file named input#. *I 

main() 

{ 

static char buff[82]; 

char infile[ 1 0], statfile[l 0], outfile[l 0]; 

rand _rate = RAND_ RATE; 

system(''tput clear"); 

sim cnt =I· - ' 
while (sim_cnt <= 8) { 

sprintf(outfile, "output%1d", sim_cnt); 

if ( ( op = fopen( outfile, "w'')) = NULL) { 

printf("Error: %s file not created\n\n", outfile); 

exit( I); 

} 

sprintf( statfile, "statistix% 1 d", sim _ cnt); 

if ((st = fopen(statfile,"w")) =NULL) { 

printf("Error: %s file not created\n\n", statfile); 

exit(l ); 

} 

sprintf(infile, "input%ld", sim_cnt++); 

if ((ip = fopen(infile,"r")) =NULL) { 

printf("Error: input file %s not created\n\n", infile); 

exit(l ); 

} 

fgets(buff, 80, ip ); 

sscanf(buff, "%d", &simulation_ time); 

printf("\n\n Simulation time %d milli seconds\n\n", simulation_time); 

fgets(buff, 80, ip ); 

sscanf(buff,"%d", &bandwidth); 

printf("Bandwidth %d bits per bit time\n\n", .bandwidth); 

fgets(buff, 80, ip); 

sscanf(buff, "%d", &error _period); 

printf("Error period %d error/ms\n\n", error _period); 

fprintf(st, "\t.. ... ... ... .... ....... ......... "); 

fprintf(st," ............................... \n"); 
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} 

.c: . tfi( t •'\n\t\t\tSTATISTICS OF SIMULATION RUN %d\n\n", (sim cnt-1)); tpnn ·· s' -
fprintf( oP' "\n\n\t. .......... .... ... .. .. .. ....... "); 

II \ " )· fprintf( oP• · ............ · .... · .. · .... · .... n ' 
fprintf(oP•"\n\t\t\tEVENTS OF SIMULATION RUN o/od\n\n",(sim_cnt-1)); 

"\t ")· fprintf( oP' ·· .. · ...... ·· · .... · ........ · .. · ' 
It \ \ ")· fprintf( oP• · .................... · ...... · .. n n ' 

sys_initO; 

get_parJ110; 
node addressing(); 

prior_ assign(); 

msg_cyclO; 
fprintf( op, "\n\n\t.. ............................. "); 

fprintf( op," ............................... \n"); 

fprintf(st,"\t. .............................. "); 

fprintf( st," ........ .. ..................... \n"); 

printf(''\n\n\n END OF SIMULATION RUN %d\n\n",(sim_cnt-l)); 

fclose(ip); 

} 

fclose(st); 

fclose( op); 

system("tput clear"); 

printf("\n\n\n END OF SIMULA TION\n\n"); 

printf("\n\n\n ADIOS ! BYE ! SA YONARA!\n\n\n\n"); 
return; 

stop() 

{ 

} 

fflush(stdin); 

fflush(stdollt); 
printf("\n 

getchar(); 
C . ") ontmue ... ; 
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APPENDIX C 

INPUT DATA 

89 



90 

Input file I 

100 
1 

engine! 2 3 
MSGll 10 1 31 8 1 1 
MSG12 50 0 30 8 0 1 
2 
0 
0 
engine2 1 1 
MSG13 250 0 29 8 I 1 
0 
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Input file II 

100 
1 
1 
engine 3 3 
MSG11 10 1 31 8 1 1 

MSG12 50 0 30 8 0 1 

MSG13 250 0 29 8 1 1 

2 
0 
0 
torque 1 2 
MSG21 10 0 28 8 1 1 
0 
0 
trans1 1 1 
MSG31 10 0 27 8 1 0 
0 
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Input file III 

100 

engme 3 3 
MSG11 10 1 31 8 1 1 

MSG12 50 0 30 8 0 1 
MSG13 250 0 29 8 1 1 

2 
0 
0 
torque 1 2 
MSG21 10 0 28 8 1 1 
0 
0 
trans1 1 1 
MSG31 10 0 27 8 1 0 
0 
trans2 3 1 
MSG41 10 0 26 8 1 
MSG42 100 0 25 8 1 
MSG43 1000 0 24 8 1 
0 
brake 2 1 
MSG51 100 0 23 8 1 1 
MSG52 1000 0 22 8 1 1 
0 
retarder 2 1 
MSG61 100 0 21 8 1 
MSG62 1000 0 20 8 1 
0 
brk ctrl 1 1 
MSG71 50 0 19 8 1 
0 
axle 2 1 
MSG81 30 0 18 8 1 1 
MSG82 1000 0 17 8 1 1 
0 
eng_ con 1 1 
MSG91 5000 0 16 8 1 
0 
ind 1 1 
MSG101 20 0 15 8 1 1 
0 
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Input file IV 

100 
1 
1 
engine 3 3 
MSG11 10 1 31 8 1 1 

MSG12 50 0 30 8 0 1 

MSG13 250 0 29 8 1 1 

2 
0 
0 
torque 1 2 
MSG21 10 0 28 8 1 1 
0 
0 
trans I 1 1 
MSG31 10 0 27 8 1 0 

0 
trans2 3 1 
MSG41 10 0 26 8 1 1 
MSG42 100 0 25 8 1 1 
MSG43 1000 0 24 8 1 
0 
brake 2 1 
MSG51 100 0 23 8 1 1 
MSG52 1000 0 22 8 1 1 
0 
retarder 2 1 
MSG61 100 0 21 8 1 1 
MSG62 1000 0 20 8 1 1 
0 
brk ctrl 1 1 
MSG71 50 0 19 8 1 1 
0 
axle 2 1 
MSG81 30 0 18 8 1 1 
MSG82 1000 0 17 8 1 1 
0 
eng_ con 1 1 
MSG91 5000 0 16 8 1 1 
0 
trans con 1 1 
MSG101 10 0 15 8 1 1 
0 
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retr con 1 1 
MSG111 10 0 14 8 1 

0 
eng_ fluid 1 1 
MSG121 1000 0 13 8 

0 
eng_ temp 1 1 
MSG131 1000 0 12 8 1 
0 
eng_hrs 1 1 
MSG141 10 0 11 8 1 1 
0 
pto_def 1 
MSG151 100 0 10 8 1 1 
0 
idle __pto 1 1 
MSG161 1000 0 9 8 1 
0 
speed 1 1 
MSG171 100 0 8 8 1 1 
0 



95 

Input file V 

100 
1 
1 
engine 3 3 
MSG11 10 1 31 8 1 1 
MSG12 50 0 30 8 0 1 
MSG13 250 0 29 8 1 1 
2 
0 
0 
torque 1 2 
MSG21 10 0 28 8 1 
0 
0 
trans I 1 1 
MSG31 10 0 27 8 1 0 
0 
trans2 3 1 
MSG41 10 0 26 8 1 1 
MSG42 100 0 25 8 1 1 
MSG43 1000 0 24 8 1 1 
0 
brake 2 1 
MSG51 100 0 23 8 1 1 
MSG52 1000 0 22 8 1 1 
0 
retarder 2 
MSG61 100 0 21 8 1 1 
MSG62 1000 0 20 8 1 1 
0 
brk ctrl 1 1 
MSG71 50 0 19 8 1 1 
0 
axle 2 1 
MSG81 30 0 18 8 1 1 
MSG82 1000 0 17 8 1 1 
0 
eng_ con 1 1 
MSG91 5000 0 16 8 1 1 
0 
trans con 1 1 
MSG101 10 0 15 8 1 1 
0 
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retr con 1 1 

MSG111 10 0 14 8 

0 
eng_ fluid 1 1 
MSG121 1000 0 13 8 1 1 

0 
eng_ temp 1 1 
MSG131 1000 0 12 8 1 

0 
eng_hrs 1 1 
MSG141 10 0 11 8 1 1 

0 
pto_def 1 
MSG151 100 0 10 8 1 

0 
idle_pto 1 1 
MSG161 1000 0 9 8 
0 
speed 1 1 
MSG171 100 0 8 8 1 

0 
calib 1 1 
MSG181 10 0 7 8 1 1 

0 
miles 1 1 
MSG1 91 10 0 6 8 1 1 
0 
ind 1 1 
MSG201 20 0 5 8 1 1 
0 
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Input file VI 

100 
1 

engine 3 3 
MSG11 10 1 31 8 1 1 

MSG12 50 0 30 8 0 1 

MSG13 250 0 29 8 1 1 

2 
0 

!:0 
torque 1 2 
MSG21 10 0 28 8 1 1 
0 
0 
trans1 1 1 
MSG31 10 0 27 8 1 0 
0 
trans2 3 1 
MSG41 10 0 26 8 1 
MSG42 100 0 25 8 1 
MSG43 1000 0 24 8 1 
0 
brake 2 1 
MSG51 100 0 23 8 1 1 
MSG52 1000 0 22 8 1 1 
0 
retarder 2 1 
MSG61 100 0 21 8 1 1 
MSG62 1000 0 20 8 1 
0 
brk ctrl 1 1 
MSG71 50 0 19 8 1 
0 
axle 2 1 
MSG81 30 0 18 8 1 I 
MSG82 1000 0 17 8 1 1 
0 
eng_ con 1 1 
MSG91 5000 0 16 8 1 1 
0 
trans con 1 1 
MSG101 10 0 15 8 1 1 
0 
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retr con 1 1 
MSG111 10 0 14 8 1 1 
0 
eng_fluid 1 1 
MSG121 1000 0 13 8 1 1 
0 
eng_ temp 1 1 
MSG131 1000 0 12 8 1 1 
0 
eng_hrs 1 1 
MSG141 10 0 11 8 1 1 
0 
pto_def 1 1 
MSG151 100 0 10 8 1 1 
0 
idle_pto 1 1 
MSG161 1000 0 9 8 1 1 
0 
speed 1 1 
MSG171 100 0 8 8 1 1 
0 
calib 1 
MSG181 10 0 7 8 1 1 
0 
miles 1 1 
MSG191 10 0 6 8 1 1 
0 
fuel 2 1 
MSG201 200 0 5 8 1 1 
MSG202 10 0 4 8 1 1 
0 
ind 1 1 
MSG211 100 0 3 8 1 1 
0 
tire 1 1 
MSG221 10000 0 37 8 1 1 
0 
am by 1 1 
MSG231 1000 0 38 8 1 1 
0 
exhst 1 1 
MSG241 1000 0 39 8 1 1 
0 
power 1 1 
MSG251 1000 0 40 8 1 1 
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0 
fluids 1 1 
MSG261 1000 0 41 8 1 

0 
dash 1 1 
MSG271 10000 0 43 1 1 

0 
water 1 1 
MSG281 10000 0 45 7 1 1 

0 
diag 2 1 
MSG291 600 0 46 3 1 1 
MSG292 700 0 47 3 1 

0 
ind 1 1 
MSG301 20 0 48 8 1 1 

0 
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Input file VII 

100 
1 

engine 3 2 
MSG11 10 1 31 8 1 1 
MSG12 50 0 30 8 0 1 
MSG13 250 0 29 8 1 
2 
0 
torque 1 1 
MSG21 10 0 28 8 
0 
trans1 1 1 
MSG31 10 0 27 8 1 0 
0 
trans2 3 1 
MSG41 10 0 26 8 1 1 
MSG42 100 0 25 8 1 1 
MSG43 1000 0 24 8 1 1 
0 
brake 2 1 
MSG51 100 0 23 8 1 1 
MSG52 1000 0 22 8 1 1 
0 
retarder 2 1 
MSG61 100 0 21 8 1 1 
MSG62 1000 0 20 8 1 1 
0 
brk ctrl 1 1 
MSG71 50 0 19 8 1 
0 
axle 2 1 
MSG81 30 0 18 8 1 
MSG82 1000 0 17 8 1 1 
0 
eng_ con 1 1 
MSG91 5000 0 16 8 1 1 
0 
trans con 1 1 
MSG101 10 0 15 8 1 1 
0 
retr con 1 1 
MSG111 10 0 14 8 1 
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0 
eng_ fluid 1 1 
MSG121 1000 0 13 8 1 

0 
eng_ temp 1 1 
MSG131 1000 0 12 8 1 1 

0 
eng_hrs 1 1 
MSGI41 10 0 11 8 I 1 

0 
pto_def 1 1 
MSG151 100 0 10 8 1 

0 
idle_pto 1 1 
MSG161 1000 0 9 8 1 

0 
speed 1 1 
MSG171 100 0 8 8 1 1 

0 
calib 1 1 
MSG181 10 0 7 8 1 1 
0 
miles 1 1 
MSG191 10 0 6 8 1 
0 
fuel 2 1 
MSG201 200 0 5 8 1 1 
MSG202 10 0 4 8 1 1 
0 
ind 1 1 
MSG211 100 0 3 8 1 1 
0 
tire 1 1 
MSG221 10000 0 37 8 1 1 
0 
am by 1 1 
MSG231 1000 0 38 8 1 1 
0 
exhst 1 1 
MSG241 1000 0 39 8 1 1 
0 
power 1 1 
MSG25 1 1000 0 40 8 1 1 
0 
fluids 1 
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MSG261 1000 0 41 8 1 1 
0 
dash 1 
MSG271 10000 0 43 1 1 

0 
water I 1 
MSG281 10000 0 45 7 1 1 
0 
diag 2 1 
MSG291 600 0 46 3 1 1 

MSG292 700 0 47 3 1 1 
0 
ind 1 1 
MSG301 800 0 36 8 1 1 
0 
ind2 1 1 
MSG311 800 0 35 8 1 1 
0 
ind3 1 1 
MSG321 700 0 34 8 1 1 
0 
ind4 1 1 
MSG331 600 0 33 8 1 1 
0 
ind5 1 1 
MSG341 500 0 32 8 1 1 
0 
ind6 1 1 
MSG351 400 0 63 8 1 
0 
ind7 1 1 
MSG361 300 0 1 8 1 1 
0 
ind8 1 1 
MSG371 30 0 1 8 1 1 
0 
ind9 1 1 
MSG381 40 0 1 8 1 1 
0 
indiO 1 1 
MSG391 50 0 1 8 1 1 
0 
ind11 1 1 
MSG401 60 0 1 8 1 1 
0 
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Input file VIII 

100 
1 
1 
engme 3 3 
MSG11 10 31 8 1 1 

MSG12 50 0 30 8 0 1 

MSG13 250 0 29 8 1 1 

2 
0 
0 
torque 1 2 
MSG21 10 0 28 8 1 1 
0 
0 
trans1 1 1 
MSG31 10 0 27 8 1 0 
0 
trans2 3 1 
MSG41 10 0 26 8 1 1 
MSG42 100 0 25 8 1 1 
MSG43 1000 0 24 8 1 
0 
brake 2 1 
MSG51 100 0 23 8 1 
MSG52 1000 0 22 8 1 1 
0 
retarder 2 
MSG61 100 0 21 8 1 1 
MSG62 1000 0 20 8 1 
0 
brk ctrl 1 1 
MSG71 50 0 19 8 1 
0 
axle 2 1 
MSG81 30 0 18 8 1 1 
MSG82 1000 0 17 8 1 1 
0 
eng_ con 1 1 
MSG91 5000 0 16 8 1 1 
0 
trans con 1 1 
MSG101 10 0 15 8 1 1 
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0 
retr con 1 1 
MSG111 10 0 14 8 1 1 

0 
eng_ fluid 1 1 
MSG121 1000 0 13 8 1 
0 
eng_ temp 1 1 
MSG131 1000 0 12 8 1 1 
0 
eng_hrs 1 1 
MSG141 10 0 11 8 1 1 
0 
pto_def 1 1 
MSG151 100 0 10 8 1 1 
0 
idle_pto 1 1 
MSG161 1000 0 9 8 1 1 
0 
speed 1 1 
MSG171 100 0 8 8 1 1 
0 
calib 1 1 
MSG181 10 0 7 8 1 1 
0 
miles 1 1 
MSG191 10 0 6 8 1 1 
0 
fuel 2 1 
MSG201 200 0 5 8 1 1 
MSG202 10 0 4 8 1 1 
0 
ind 1 1 
MSG211 100 0 3 8 1 1 
0 
tire 1 1 
MSG221 10000 0 37 8 1 1 
0 
am by 1 1 
MSG231 1000 0 38 8 1 1 
0 
exhst 1 1 
MSG241 1000 0 39 8 1 1 
0 
power 1 
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MSG251 1000 0 40 8 1 1 

0 
fluids 1 1 
MSG261 1000 0 41 8 1 1 

0 
dash 1 1 
MSG271 10000 0 43 1 1 1 

0 
water 1 1 
MSG281 10000 0 45 7 1 1 

0 
diag 2 1 
MSG291 600 0 46 3 1 1 
MSG292 700 0 47 3 1 1 
0 
ind 1 1 
MSG301 800 0 36 8 1 1 

0 
ind2 1 1 
MSG311 800 0 35 8 1 1 
0 
ind3 1 1 
MSG321 700 0 34 8 1 1 
0 
ind4 1 1 
MSG331 600 0 33 8 1 
0 
ind5 1 1 
MSG341 500 0 32 8 1 
0 
ind6 1 1 
MSG351 400 0 63 8 1 1 
0 
ind7 1 1 
MSG361 300 0 1 8 1 1 
0 
ind8 1 1 
MSG371 30 0 1 8 1 1 
0 
ind9 1 1 
MSG381 40 0 1 8 1 1 
0 
indiO 1 1 
MSG391 50 0 1 8 1 1 
0 
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ind11 1 1 
MSG401 60 0 1 8 1 1 

0 
ind12 1 1 
MSG411 70 0 1 8 1 
0 
ind13 1 1 
MSG421 80 0 1 8 1 1 
0 
ind14 1 1 
MSG431 90 0 1 8 1 1 
0 
ind15 1 1 
MSG441 100 0 1 8 1 
0 
ind16 1 1 
MSG451 110 0 1 8 1 1 
0 
ind17 
MSG461 120 0 8 1 

0 
ind18 1 1 
MSG471 130 0 1 8 1 1 
0 
ind19 1 1 
MSG481 140 0 1 8 1 
0 
ind20 1 1 
MSG491 150 0 1 8 1 1 
0 
ind21 1 1 
MSG501 160 0 1 8 1 1 
0 
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Input Number l li III IV 

Number of Nodes 2 3 10 17 

Number of Messages 3 5 17 24 

Number of Messages Transmitted 13 23 52 82 

Number of Remote Transmissions 0 10 10 10 

Number of Collisions 3 16 67 102 

Number of Messages Losing Arbitration 3 18 204 521 

Number of Errors 4 19 17 19 

Number of Overload Errors 0 0 0 1 

Number of Acknowledgment Errors 0 4 2 5 

Number of Form Errors 0 4 3 3 

Number of CRC Errors 4 1 1 12 10 

Number of Messages Resent 4 19 17 19 

Idle Time (in ms) 91.06 72.5 1 58.86 42.65 

Busy Time (in ms) 6.83 17.28 32.11 47.65 

Error Time (in ms) 2.11 10.20 9.03 9.70 

Average Response Time (in ms) 0.37 1.03 3.28 4.20 

Average Slack Time (in ms) 33 .72 26.48 195.53 163.15 

Average Latency (in ms) 0.00 0.00 0.00 0.00 

Network Load (in %) 8.94 27.49 41.14 57.35 

Network Throughput (in msgs I second) 130 230 520 820 
--- -- --- -- -- --L___ ___ -
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