SPLIT-STEP FOURIER METHOD FOR

GENERALIZED NONLINEAR

SCHRODINGER EQUATION

By
WEIMING ZHENG
Master of Science
Shanghai Institute of computer Technology
Shanghai, P.R.C

1686

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 1994

SPLIT-STEP FOURIER METHOD FOR

GENERALIZED NONLINEAR

SCHRODINGER EQUATION

Thesis Approved:

%%M@Zw

Thesis Advisor

ey

¢ homue (. Collne

Dean of the Graduate College

i1

ACKNOWLEDGMENTS

I wish to express my gratitude to all the individuals who assisted me in this project
and during my coursework at Oklahoma State University. In particular, I would like to IR.
thank my major advisor, Dr. J. P. Chandler, for his guidance and invaluable aid. Also, I
wish to thank Dr. Lu and Dr. George for their very instructive courses which gave me the
necessary knowledge to complete my research. Finally, I wish to express my appreciation

to Dr. H. Burchard, Dr. J. S. Krasinski, and all other professors who taught me at

Oklahoma State University. Without this background, this work would never have been

completed.

i

TABLE OF CONTENTS

Chapter page
I INTRODUCTION ... i it et ittt et it e 1

II. NUMERICAL METHODottt it iiiaen s 4
II. FASTFOURIER TRANSFORM(FFT)ciiiiiiii it .13
IV. ALGORITHM AND IMPLEMENTATION o oiaa.. 17
V. NUMERICAL TEST e it 19
VI. SOLITON SOLUTIONS FOR GNLS EQUATION 25
VI CONCLUSION . .. e i e e e et e i eaes 29
REFERENCES . . i i i i e it e e 31
APPENDIX A - PROGRAM TO SOLVE THE GNLS EQUATION.............. 34
APPENDIX B - FIGURES OF OUTPUT OF SOLITON SOLUTIONS 46

iv

LIST OF TABLES AND FIGURES

Table

page
I. Output of associated linerequation...............coviinnt, 20
IO. Output for plane wave solution withdifferentAz.................... 21
II. Output for plane wave solution withdifferent N.................... 22
IV. Output for plane wave solution withdifferentAz................... 23
(enhanced algorithm)
V. Output for plane wave solution withdifferentN.................... 23
(enhanced algorithm)
VI. Output for plane wave solution with perturbation of periodicity....... 24
VII. Outputforsolitonsolution. i, 26
VIII. Output of invariant for soliton solution 28
Figures
L Hatfunction......... ..o ittt 6
II. Initial soliton ploted with length of the interval=8m 46
III. Soliton with stable propagationcciiiineneirrenennn 47
IV. Soliton with clearly visible deformationforbigz.................... 48
V. Iniual soliton ploted with length of the interval =20 49
VI. Soliton with stable propagation (L=20%).ccvuun.. 50

Chapter 1

1. Introduction

Nonlinear propagation techniques are now creating a revolution in telecommu-
nications. Since Mollenauer et al. [22] demonstrated the propagation of solitons
through a single-mode fiber, the potential application of optical solitons in the
field of optical fiber communication has induced a large amount of theoretical and
experimental work in this area.

A soliton is a kind of nonlinear wave. Usually, waves will disperse after a long
distance propagation in the medium, but the nounlinear property of a medium can
make waves became narrower and narrower. If these effects balance, these waves
become solitons. So a soliton can move stably, and we can use this property in
communication. Optical solitons are ideal carriers of information because they can
improve the transmission rate of information.

As pulses get shorter and more intense, both dispersive and nonlinear effects
become more important. The following generalized nonlinear Schrédinger equation
including higher-order dispersion terms and higher-order nonlinear terms is suitable

for description of pulses as short as 10 fs [12].

A = PA 2i JAPPA O|A|?
2. T34 ﬁzaﬁ ﬁBan‘ Il APA+ ==~ Trdp] (01)
where

z is the z coordinate of an optical fiber,

~N

T =t — iz and t is the time,

we use T instead of t, since in this way we can eliminate a term,
A is the slowly varying amplitude of the wave,

v is the noulinearity coefficient,

« is the absorption coefficient,

By, = L8
2= dw? w=wy’

ﬁ _ d%3
3 — duwrd w=wg?

0 is the wavenumber,

wg is the carrier frequency,

Tg is a parameter related to the slope of the Raman gain and it is estimated
to be about 5 fs.

Since shorter pulses mean more information transferred on a single optical
fiber, this will greatly reduce the cost of communication. On the other hand, ”"An
understanding of the soliton behavior in the femtosecond regime is, however, far
from complete. ” [12, pp. 43, pp. 142].

If we set the particular coefficient values in the above equation as a = 0,
Tp =0, 33 = 0, wy = 00, then the equation is the well-known nonlinear Schrodinger
Equation (NLS)[12, 14].

The present thesis consists of the following chapters. In Chapter 1, the intro-
duction, some background about the GNLS equation is presented. In Chapter 2,

we introduce an overview of numerical methods, in particular, the spectral method

and split-step technique. In Chapter 3, we introduce the fast Fourier transform,
which is important for the split-step Fourier method. In Chapter 4, we justify the
split-step Fourier method for the GNLS and propose a numerical algorithm. In
Chapter 5, we discuss the numerical results of our algorithm. In Chapter 6, we

discuss soliton solutions, and finally in Chapter 7, we summarize our work and

present the conclusions.

Chapter 2
Numerical Method

Roughly speaking, there are two numerical methods for solving initial value
problems in partial differential equation (the method of lines could belong to
either of them):

(1) Finite difference methods
Finite difference methods for solving initial boundary value problem determine

approximation at finite number of points in the domain and involve four basic

steps:

1. Subdivide the domain , for example by the uniform mesh,

Ty — ;= ALL‘, j=1, 2, ... N.

[y

. Replace derivatives by proper finite difference quotients to approximate

the differential equation.
3. Impose the boundary and initial conditions on the system generated in step 2.

4. Solve the finite difference equations generated in steps 2 and 3 [34].

The basic idea is to replace a differential equation and auxiliary condition by

a system of algebraic equations.

For example, if we apply finite difference methods to the GNLS Equation:

2

du Pu 1 Ou 5 21 8]u|2 dlul?
az 5 zﬁza 7~ 65 90 = y[julu + — o Oz TRu——-aaC] (0.2)

u(z,0) = f(z)
u(0,t) = u(27,t)

then the above problem can be discretized as

m m—1

p L. — 9, m m - m m __ ,m
ult = uj L@ uly = 2ul +ull 1 Mo — Julyy +3u —u

At 2u1 M ﬁ Ax? 653 5 }+LIX1‘3 =
R +i: [ul [*]+12A:iuj-"_1|‘u;"_1 Tyl mliUle;;Ag.ll- Tl | (03)
uj = f(zy)
ug = Uy

(2) Function approximation methods.

Both spectral methods and finite element methods belong to this category, but
finite element methods use local functions with fixed low degree to approximate
unknown functions.

Suppose we are given the differential equation

du
5{ = Au (04)

In the finite element method we determine an approximation of the form
N
un(z,t) = Z a,(t)dn(z)
n=1
to the solution of the above equation. This method involves three steps:

1. Choose a finite dimension space S. For example, the space
spanned by ¢;(z),1=1,2,...N,

where ¢;(x) is hat function defined by

p
E-Tioa x‘._lSzSz‘.

Az
¢i(z) = | M= <z <3y,
0 otherwise
.
-‘.
A
l -
1 L x
Nicr o N Xy 1

Figure 1. Hat functions are basis functions for finite element methods.

2. Approximate u(x,t) by
un(z,t) = L, au(t)du(z)
Substitute u(x,t) into the equation
% = Au.
To minimize the the residual R = %1} — Au
we choose ¢;(z),7 = 1,2,...N as weight functions.
Then we get (¢, 28 — Auy) =0

k=1, 2,3, ... N,

or the Galerkin Equation:

Tonun) — (¢, Aun(z,t))

where (u,v) denotes the scalar product of the vectors u and v.

3. Solve the above system of ordinary differential equations

subject to the initial condition.

The system of ordinary differential equations could be solved

by single step (Runge-Kutta) or multistep methods.

We have the following mathematical framework for spectral methods [9].

Let H

be a Hilbert space, u(z,t) € H. Let By be the approximation space. Then we can

write
N
UN(l'3 t) = Z; an(t)d)n(l')

For the differential equation

Ju
— = Au
ot
the semi-discrete spectral approximations have the form
BuN

'Ft—' = PNA(}DNUN)

where P, is a projection operator. We have various choices for By and Py.

The different spectral methods and pseudospectral methods differ mainly in

their way of minimizing the following residual function:

BuN
R=-——~-~A4
at uN

Some important spectral methods are:

(0.6)

oo

1. Galerkin approximation [9]
This method is very similar to finite element method, but here we use different

base function and weight function. If we expand the solution in the form:

N
UN(ZI), t) = Z anC)n (OT)

n=]1

Natural idea 1s to choose a; to minimize

du duy
(a—;v - AUN, Ef’\— - A'UN)
To do so, we only need [9]
PyR=0
That is,
Ju
(60, 7 — Aux)
k=1, 2,3, ... N.

Equivalently, this method determines the expansion coeflicient a, by the Galerkin

equation

— e = (9, Aun(z, 1)) (0.8)

For the Galerkin method, we assume that all the expansion functions satisfy
homogeneous boundary condition individually, but this is not required for the Tau

approximation [9].

2. Tau method

The approximate solution is assumed to have the form

N+k
uN($’ t) = Z An®n (09)
n=1
n=1,.N
which satisfy the equation
da,
pTab (¢, Aun(z, 1)) (0.10)
n =12, 3,..,N, and
N+k
Y B¢, =0 (0.11)
n=1}

Here we expand more terms than the expansion in the Galerkin method to give

more freedom to satisfy boundary constraints.

3. Pseudospectral approximation (3,9]
Let D be the domain of a unknown function: {z;|i = 1,2..N} C D. These
points are called collocation points. In this method we determine the expansion

coefficients by the equation

N
u(z;,t) = Z: an@n(i) (0.12)

1=1,..N.

If ¢o(z) = €e*™* | i =+/—1 and we let

N
5_; @n0n(z:) = u(z:)

10

then this method is called the Fourier pseudospectral method. We can prove that
(a1, uy,...a,) is the DFT (discrete Fourier transform) of (u;, us, ...u,). If A is linear,
we can write equation (2) in the form:

Oun _
—é—t— ~ FNIAF[U,‘]

where F is the DFT of (u,, ug, ...up)

4. Split-step Fourier method

Given the nonlinear equation

%% = Au (0.13)
where A is a nonlinear differential operator, the basic idea of the split-step method
is to split the operator A into different pieces. For each of the pieces, if we have
different schemes for updating the variable from timestep n to timestep n+1, then

we let these pieces of the operator act separately.

For example, we may rewrite the above equation in the form:

o - -
a—‘t‘ =D+ N (0.14)

where D is a linear differential operator and N is a nonlinear operator. The split-
step Fourier method use the following scheme:

In the first step, let D =0, and we have
uy(z,t + h) = exp(hN)u(z, t) (0.15)
In the second step, let N = 0, and we have

u(z,t + h) = exp(hD)uy(z,t + h) (0.16)

11

The linear step D is implemented by the FFT (fast Fourier transform), that is,
exp(hD)y(z,t) = {F explhD(iw)|F}y(z,t)

where F denote the DFT and D(iw) is obtained by replacing 5‘9_; by tw.

For the NLS equation T. R. Taha and M. J. Ablowitz [2] compared seven nu-
merical methods and concluded that the split method is the best method, followed
by pseudospectral method. The reason why the split step spectral method is so

fast may be explained by the following considerations.

(1) Generally, the Fourier expansions have exponential convergence, if the so-
lution function is infinitely differentiable. But this is not always true; D. Gottlieb
and S. A. Orszag [9] gave some examples showing spectral approximation with al-
gebraic order for some mixed initial-boundary value problem. On the other hand,
if a function has a discontinuity at zo, then its Fourier expansion will not converge
uniformly in the neighborhood of zg. This nonuniform behavior of convergence is
called the Gibbs phenomenon [9]. In other words, if f(x) has some discontinuity at

Zg, its Fourier expansion may have bad accuracy near zg.

(2) If the Fourier methods or Chebyshev methods [3,9] are used, then the fast
Fourier transform can be used which also makes the spectral methods more efficient

than finite difference methods.
Since the spectral method may get same accuracy for a relatively small number
of grid points, it can also save memory space.

There are some drawbacks of spectral methods. Usually, spectral methods are

12

more difficult to program than finite difference methods. If the domains of the
problems are irregular, spectral methods will loss accuracy and efficiency heavily
[3). For Fourier spectral methods, if the solution of the problem is not a periodic
function, then the error will have a lower bound, that is, the solution has limited

accuracy, even as Az — 0, and N — oo.

13

Chapter 3

Fast Fourier Transform (FFT)

To make this thesis self-contained, we introduce the fast Fourler transform
(FFT) briefly.
Let x = (z1, 79, ...,2,) be a vector. Then the discrete Fourier transform (DFT)
of x is defined by X = (X, X5, ..., X)),
where
n—1

Xk = Z IL'ju)jk, }\, = 0, 1,2, n—=1

j=0
w = exp{—i27/n}, i = V-1

The DFT plays a key role in physics, because it can be used to describe the
relation between the time domain and frequency domain. The DFT has also many
applications in mathematics problems such as interpolation problems, and solving
partial differential equations. The discrete Fourier transform of an n-vector can
be computed in a straightforward way using n? multiplication and fewer than n?
additions. An efficient method for computing the DFT (using O(n log n) arithmetic
operations) is called the fast Fourier transform or FFT [19,20].

Since Cooley and Tukey introduced the fast Fourier transform in 1965 [20], the
use of the FFT method has increased in various areas. Some authors even claim
that the FFT has changed the face of science and engineering so much so that life
as we know it would be very different without the FFT [8].

Although the FFT algorithm has been known only since the mid-1960s, the

14

efficient method for computing the DFT had been independently discovered by as
many as a dozen individuals, starting with Gauss in 1805 [21,24]. Danielson and
Lanczos showed (1940s) that a DFT of length N can be rewritten as the sum of
two DFTs each of length N/2 [34]. It is wonderful that the D-L lemma can be
used recursively. If N is a power of 2 then we can continuously use the D-L lemma
until a transform of length 1 is reached that is the identity transform. (If possible
we prefer n = 2™.)

After Cooley and Tukey proposed the FFT, many developments have been
made in the area. Various radixes such as radix-2, radix-4, radix-8, mixed radix
and split-radix transforms [23,33] have been considered. To improve the efficiency
of the algorithm, many authors proposed various algorithms from different stand-
points. Winograd and some others developed an algorithm that used only O(n)
multiplications [27]. Some other researchers developed algorithms to reduce the
numbers of both additions and multiplications.

Mathematically, there are at least two interpretations of FFT. First, we can
let each FFT algorithm correspond to a factorization of the DFT matrix. In fact,

the complex Fourier transform of a vector x can be expressed as a matrix [8]

multiplication

N=Tz

where T is an n x n matrix of complex exponentials with

tix = exp(i2mjk/n)

In computing the fast Fourier transform, we factor T as

T = PF,..FF

where F; is the matrix corresponding to the i-th transform step and P is the per-
mutation matrix corresponding to bit-reversal, which is a symmetric permutation
matrix. The permutation P is required because the transformed result is initially
in bit-reversed order, i.e. the Fourier coefficient X; with j = jm2™ '+ ...+ 22+ 5
is found in location j/, where jr is the bit-reversal of j and j/ is defined by
=712+ o+ 12+ e

In other words, if we represent j in binary form by [j172...Jm-1] where j; is 0 or
1, then the bit-reversal of j is [j,u_1...51]. i.e. the same bits in reverse order. The

matrices F; can be further factored to yield

F = R,

where R; is a diagonal matrix of rotation factors called twiddle factors and 7; can
be partitioned into n/2 identical square submatrices, each a matrix of the complex
Fourier transform of dimension n/2 [8].

Another point of view of the FFT is that we can interpret the component of

z = (ag, ay...a,—1) as the coeflicients of a polynomial [34]

0 1 -1
P(z) = apx” + 12" + ...ap1 2"

Let w be the n-th roots of 1; then computing the DFT of x is equivalent to evalu-

ating the polynomial at w°...w™! ie. at each of the n-th roots of unity. Based on

16

the same strategy of Divide and Conquer, we may use recursion to evaluate the

polynomial p at n points. That is

P(z) = Payen(2?) + 2 Poga(?)

P(III) = Peuen(xz) - mPodd(l'2)

It is suffices to evaluate p.uen and poaa at 1,w?...., then do n/2 multiplications
for P,44(x?) and n additions and subtractions. The polynomials peyen and poad
can be evaluated recursively by the same scheme. That is, they are polynomials
of degree n/2-1 and will be evaluated at the n/2th roots of unity: 1,w,...w™?" 1.
Clearly, when the polynomial to be evaluated is a constant, there is no work to be

done, and hence we have finished the recursion.

0A a, A PA

3= 3hT "32 arz T ﬁ"a:rs
+iy[|A[PA + (% - TR)IAP + (— — T A2541 (0.17)
Let
N = iy|A)7
(- T)A Z; (= - ng—;i
Then the algorithm is:
A = [exp(N(zn)A2)] - AT (0.18)
AV = [exp(M (2m)Az)] - AL (0.19)
AP = Foteap(LAz)) - F[AM) (0.20)

-

where [A{"] is a vector, and F[A"] is its DFT (discrete Fourier transform), L is
obtained by replacing the differential operator % in the operator by iw, where w
is the frequency in the Fourier domain. [ezp(LAz)]- F[A) is the inner product of
the vector [exp(LAz)] and the vector F[A{"]. F is implemented by the fast Fourier
transform (FFT).

We implement the algorithm in a double precision FORTRAN code. To im-
prove the speed of the computation, we use real arithmetic to implement complex
operations. The FFT subroutine is obtained from the book "Numerical Recipes”
[21]. The user may rewrite the subroutine for the initial condition to fit a special

problem.

19

Chapter 5

Numerical tests

If we set & = 0, then the GNLS equation has the progressive plane wave solution
A(z,T) = axexp(i(kz — sT))

If we substitute the above equation into the GNLS equation, we will get the

following dispersion relation:

k= B2s?/2 + B3s/6 + vaz(1 + s) /wo

The solution is quite simple , but it can be used to test the program.
To test the program, we set §; = 2, 3 = 0.1, v = 0,a = 0 then the equation
becomes:
A 0*°A 1 84 _

—5; + Z-a—Té' - @57':3' = (. (021)

This is a linear equation with dispersion relation:

k=s*+0.15%/6

20

Table 1. If we set s= 6 then the theoretical solution is A(z,T) = exp(i(39.62-6T)

We run the program with N = 128.

Az Z-out Lo, error

1.0000000000000D-03 | 1.0000000000000D-01 | 3.3938130084010D-14

1.0000000000000D-03 | 1.0000000000000D-02 | 2.9809488211185D-14

1.0000000000000 1.0000000000000 3.3084646133830D-14
0.50000000000000 1.0000000000000 3.3306690738755D-14
1.0000000000000D-01 | 1.0000000000000 3.5638159090468D-14
1.0000000000000D-02 | 1.0000000000000 3.8413716652030D-14
5.0000000000000D-03 | 1.0000000000000 4.8849813083507D-14
1.0000000000000D-03 | 1.0000000000000 1.0080825063596D-13

where z-out is the value of z at which the solution is desired.

L is infinity norm of errors (39}.

From Table 1, we can see that it does not make a big difference when the
stepsize of z decreases. Actually, the errors in Table 1 are only roundoff errors due
to finite precision; There is no trancation error. The reason could be explained by
that

1. The pseudospectral method is exact at the collocation points.

2. ”...time discretization errors in both difference and spectral methods are
typically much smaller than are spatial discretization errors.” [9]

The program works well for a linear problem.

Now, we consider the following mixed initial-boundary value problem with 5,

=2,03=01,vy=-2,a=0, Tg = 0.1, wp = 100, N = 128. That is, we include

the nonlinear step for the GNLS equation.

0A O°A 184 . ., idlAPA olAJ?

5= T ot ~soars = TRANAY g5 — 0]
Table 2.
Az z-out L, error L, relative error
1.0000D-04 | 1.0000D-03 | 3.4523536330405D-06 | 9.2420709913220D-05
1.0000D-03 | 1.0000D-01 | 3.4547117312748D-04 | 5.1077108002296D-04
1.0000D-02 | 1.0000D-01 | 3.4547117313591D-04 | 5.1077108004455D-04
1.0000D-01 | 1.0000 3.4515901820111D-03 | 9.8970811276756D-03
5.0000D-02 | 1.0000 3.4515901820225D-03 | 9.8970811277047D-03
1.0000D-02 | 1.0000 3.4515901820309D-03 | 9.8970811277655D-03
1.0000D-03 | 1.0000 3.4515901821377D-03 | 9.8970811280756D-03
Table 3
N Az z-out | Lo error L relative error
256 | 1.0D-03 | 1.D-01 | 8.6649296361174D-05 | 1.2816912888162D-04
512 | 1.0D-03 | 1.D-01 | 2.1679952097020D-05 | 3.2072137772496D-05
1024 | 1.0D-03 | 1.D-01 | 5.4210902762615D-06 | 8.0199016464118D-06
1024 | 1.0D-02 | 1.0 2.2384277262317D-02 | 10.2103249330695
1024 | 1.0D-03 | 1.0 4.7118171342954D-02 | 7.0282392416296

where L, relative error is the infinity norm of relative error {3,21].

(0.22)

22

Table 2, and Table 3 show that the errors are much bigger than the errors of
the linear problem and the errors do not converge rapidly to zero as N increases, or
as Az decreases. Since the above equation is obtained by adding nonlinear steps
to the linear equation, the bigger error must be caused by the nonlinear part. If
we want to improve the accuracy efficiently, we only need to improve the accuracy
of the nonlinear steps. If we examine the nonlinear part carefully, we can see that
the derivative in the nonlinear operator is evaluated by a 3-point formula, and the
error for this formula is second order, which is the bottle-neck in the accuracy of
the overall algorithm.

Now we use a 5-point formula to evaluate the derivative in nonlinear steps, in
which the error is fifth order.

Table 4. Progressive plane wave solution with 8, =2, 83 =0.1,y=-2,a=0

TR =0, Wy = 100

Az z-out L., error

1.0000000000000D-01 | 1.0000000000000 5.9519327331538D-05

1.0000000000000D-02 | 1.0000000000000 5.9519327315544D-05

5.0000000000000D-03 | 1.0000000000000 5.9519327334993D-05

1.0000000000000D-03 | 1.0000000000000 5.9519327400503D-05

1.0000000000000D-03

1.0000000000000D-04

1.0000000000000D-07

1.0000000000000D-01

1.0000000000000D-02

1.0000000000000D-05

5.9577604658101D-06

5.9567595906210D-07

5.9577526527639D-10

23

Table 5. Progressive plane wave solution with 8, =2, 83, =0.12,vy=-2,a=0

TR =0, Wy = 100

N Az z-out L, error

128 | 1.25000000000D-03 | 1.00000000000000 | 5.9574326256490D-05

256 | 0.01 1.0 3.7523477387173D-06
512 | 0.01 1.0 2.3497629336039D-07
1024 | 0.01 1.0 1.4694140970184D-08

We have improved the accuracy dramatically. The results in Table 4 and Table
5 show that we have improved accuracy about 100 times over the one with 3 point
formula. In another words, the errors have been reduced down to 1% of error of
algorithm with 3-point formula.

Since we can get accuracy of more than 5 digits within 20 seconds when we
solve the progressive plane wave solution, we did not count the CPU time. From
table 5, we can find easily that the error will decrease as the number of grid points
N increases, so we may improve accuracy further if we use a bigger N. But the split
step Fourier method is very sensitive for the periodicity of boundary condition. If
we disturb the periodicity by subtracting a small number from 2 7, we have the

following results:

Table 6. Progressive plane wave solution with 8, =2, 33 =01,y =-2,a=0

Tpr =0.1, wg = 100 N = 256, L = length of the interval

L Az z-out L. error

27 1.0000000D-02 | 1.00000 3.7525799286659D-06
2 71-0.0001 1.000000D-02 | 1.0000 0.35021404768869

2 7-0.000001 { 1.0000D-02 1.0000 3.2529175756306D-03
27 1.0D-03 1.0000000000000D-01 | 3.7525553560087D-07
2 7-0.000001 | 1.000D-03 1.00000D-01 7.3680337973683D-06

So if the periodicity is not satisfied and z is big enough, then accuracy could be
bad. Since the basis functions in the Fourier method are periodic and approximate
solutions are also periodic, the approximate solution can not converge to a solution
without periodicity. We got very good accuracy for the progressive plane wave

solution since it is periodic.

25

Chapter 6
Soliton Solutions for GNLS the Equation

Generally, the GNLS equation has no soliton solutions, but for some special
coefficients, the GNLS equation has a soliton solution, or exact solution. For ex-
ample, the NLS equation is the special case of the GNLS equation and it has
envelope soliton solutions. There are various methods to get the soliton solutions
for a soliton equation such as the inverse scattering method, Hirota method, pro-
longation method, Backlund transform method [40], trace method [14,16,17] and
so on. I got N-soliton solutions of NLS equation by the trace methods and proved
that the N-soliton solutions obtained by inverse scattering, Hirota method, and
trace method are equivalent [14].

If we set the coefficient of the higher-order nonlinear term and higher-order
disperse terms very small, then we can consider the GNLS as a perturbed NLS

equation.

We set the initial condition (mathematically, for z = 0) of the GNLS equation

as follows:
A(T,0) = sech(T)

Then we have output as follows:

Table 7. Soliton solution with 8, = 0.02, 33 = 0.0012, v = —0.02,a = 0,

TR :0, Wy = 100

N

L, error

Az

Z-out

64

128

2.5443370713321D-06
2.5244348991198D-06
2.5147018525744D-06
2.5098352640913D-06
2.5074020049061D-06
2.5061853653815D-06
3.9253598949636D-04
3.9254346963622D-04
3.9261830140740D-04

3.9270151896993D-04

1.0000000000D-02

1.0D-02

1.0D-02

1.0D-02

1.0D-02

1.0D-02

1.0000000000000D-02

1.0000000000000D-01

1.0000000000000

2.0000000000000

1.0000000000000

1.0000000000000

1.0000000000000

1.0000000000000

1.0000000000000

1.0000000000000

10.0000000000000

10.0000000000000

10.0000000000000

10.0000000000000

From the Table 7, we find that L., decreases very slowly as Az decreases or as

N increases. This can be explained by that the major part of the errors is caused

by nonperiodicity of soliton solution, which does not depend on Az or N and it is

related z-out.

We plot numerical output in Figure 2, 3, 4, 5, 6.

Figure 2 is an initial soliton with A(T) = sech(T) and the number of grid points

N =256, length = 8.

Figure 3 is the output of the GNLS equation for above initial soliton with 3,

=0.02, 33 = 0.0012, v = -0.02, a = 0, Tp = 0, wp = 100, N = 256, length = 87, z

= 100. The figure shows that the soliton propagates stably.

Figure 4 is the output of the GNLS equation for the same initial soliton as
above with 3 =0.02, 83 = 0.0012, v = -0.02, a = 0, Tp = 0, wy = 100, N = 256,
length = 8, z = 300.

The figure shows that the soliton has clearly visible deformation, if z is big.

Figure 5 is initial soliton with A(T) = sech(T) and the number of grid points
N =256, length = 207

Figure 6 is output of the GNLS equation for initial soliton in Figure 5 with 5,
=0.02, 33 = 0.0012, v =-0.02, a = 0, Tr = 0, wp = 100, N = 256, length = 207,
z = 60. The figure shows that the soliton propagates stably.

From these figures, we find that if z is not very big, then the errors are small.

Generally, a soliton equation has an infinite number of conserved quantities.
The conserved quantities are not only useful to keep track of the numerical cal-
culation, but also very useful as mathematical tool to prove the existence and
uniqueness of the solution.

We can prove that

E= / |A|*dT = constant

is an invariant.

28

Table 8. shows an invariant of the soliton solution with 3, = 0.02, 33 = 0.0012,

v=-002,a0a=0,Tg =0, wg =100, N = 128

Az Z-0out invariant E

1.0000000000D-01 | 50.0000000000 | 40.591701777239
1.0000000000D-01 | 10.0000000000 | 40.591663813317
1.0000000000D-01 | 5.00000000000 | 40.591659328647
1.0000000000D-02 | 1.0000000D-01 | 40.591654865618

1.0000000000D-01 | 1.0000000000 | 40.591655750701

From the output of our program, we can observe the conservation of the invari-

ant for the soliton solution.

Chapter 7

Conclusions

We have presented a split step Fourier method for solving the GNLS eqution.

According to numerical test, we have the following conclusions:

1. When we use the split step Fourier method to solve the GNLS equation, if
solution is a periodic function, then errors mainly are caused by nonlinear steps.
To improve the accuracy, we should concentrate on nonlinear steps. By using a

more precise formula to approximate derivatives, we have improved the accuracy

dramatically.

2. Errors increase as z increases and decrease as N (the number of grid points

for T) increases.

3. The split step method is very sensitive to the periodic boundary coundition.
If the periodicity is not satisfied and z is big enough, then we will lose accuracy

heavily.

4. If the coefficients of the GNLS equation are not big or z is not big, then we
can get good accuracy for the soliton solution, and the soliton solution can keep
the invariant constant quite well. If z is big, we have only limited accuracy for
soliton solution due to nonperiodicity of the solutions, even as Az — 0, and N —
co. This is a major disadvantage of Fourier spectral methods.

Since the GNLS equation was deduced in 1987 [41], it is quite new and it

30

has direct physical application. There is a lots of work we can do, such as exact
solution under some restrictions, the existence and uniqueness of solutions for
the GNLS equation, stability and error estimation of spectral methods, analytic

methods under some restrictions, other numerical methods, and so on. But these

are beyond the scope of this thesis.

10.

11.

12.

31

REFERENCES

Bertrand Mercier, _An Introduction to the Numerical Anal
Springer-Verlag (1989)

Thiab R. Taha and Mark J.Ablowitz, Analytical and Numerical Aspects of Certain

Nonlinear Schrodinger Equations. Journal of Computational Physics, 55 (1984)
pp. 231-253

John Philip Boyd, Chebyshev and Fourier Spectral Methods,
Springer-Verlag (1989)

D. Pathria and J. L1. Morris, Pseudo-spectral Solution of Nonlinear Schrodinger
Equations, Journal of Computational Physics, 87 (1990) pp. 108-125.

Wilhelm Heinrichs, Splitting Techniques for the Pseudospectral Approximation of
the Unsteady Stokes Equations, SIAM J. Numer. Anal. 30 (1993) pp. 19-39.

Christophe Devulder and Martine Marion, A Class of Numerical Algorithms For

Large Time Integration: the Nonlinear Galerkin Method. SIAM J. Numer. Anal. 29
(1992) pp. 462-483

Govind P. Agrawal and M. J. Potasek, Nonlinear Pulse Distortion in Single-mode
Optical Fiber at the Zero-dispersion Wavelength. Physical Review A. 33,
(March, 1986) pp. 1765-1766.

Charles Van Loan, Computational Frameworks for the Fast Fourier Transform,
SIAM (1992)

David Gottlieb and Steven A. Orszag, Numerical Analysis of Spectral Methods:
Theory and Applications, SIAM (1977)

P. Dutt, Stability and Convergence of Spectral Method for Hyperbolic Initial-
Boundary Value Problems, Mathematics of Computation 53 (1989) pp. 547-561

J. A. C. Weideman and A. Cloot, Spectral Methods and Mappings for Evolution
Equations on Infinite Line, Spectral and High Order Method for P.D.E.,
Icoshom'89 Conference, North-Holland (1990)

Govind P. Agrawal, Nonlinear Fiber Optics, Academic Press (1989)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

32

E. O. Brigham, The Fast Fourier Transformation and Its Application, Prentice-Hall,
Englewood Cliffs, N.J. (1988)

Weiming Zheng, Trace Method and Some Nonlinear Evolution Equations, Appl.
Math. and Compu. Math. Vol. 5, No. 2 Oct. (1991) 1-11

R. Tolimieri, Man and C. Lu, Algorithm for Discrete Fourier Transform and
Convolution, Springer-Verlag, New York, (1989)

Weiming Zheng, The Sine-Gordon Equation and The Trace Method, J. Phys. A:
Math Gen. 19 (1986) L485

Weiming Zheng, N-soliton Solution of the G. Z. Tu Equation, Science Bulletin
Vol. 32, No. 3 Feb. (1987) 210

Cheng Ansheng, Weiming Zheng, Yu Guai Ping, Some New Feature of Optical
Soliton Communication, Optical Fiber and Electric Cable, April (1990)

E. Linzer and E. Feig, Implementation of efficient FFT algorithm on fused
multiply/add architectures, Technical Report RC17330 IBM Reseach, Yorktow
Heights, NY, 1990; IEEE Trans. Signal Process.

J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex
Fourier series, Math.Comput., Vol. 19, pp. 297-301, Apr. (1965)

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical
Recipes, Cambridge (1992)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Expeimental observation of
picosecond pulse narrowing and soliton effect in single-mode optical fibers, Opt.
Lett., Vol. 8 pp. 289, (1983)

Henrick V. Sorensen, Michael T. Heideman and Sidney Burrus, On Computing
the Split-Radix FFT, IEEE Trans. Acoust. Speech Signal Process (1986)
pp.152-156

M. T. Heideman, D. H. Johnson, and C. S. Burrus, Gauss and the history of the
FFT, IEEE Acoust., Speech, Signal Processing, Mag., Vol. 1, Oct. (1984)
pp. 14-21

L. R. Rabiner and C. M. Rader, Eds., Digital Signal Processing, Selected Reprints.
New York: IEEE Press (1972)

R. Yavne, An economical method for calculating the discrete Fourier transform,
in Proc. Fall Joint Comput. Conf.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

33

(1968) pp.115-125.

S. Winograd, On computing the discrete Fourier transform, Math. Comput.,
Vol. 32, (1978) pp. 175-199

S. Winograd, On the multiplicative complexity of the discrete Fourier transform,
Adv. Math,,Vol.32, May (1979) pp. 83-117

S. Winograd, Arithmetic Complexity of Computation, SIAM CBMS-NSF Series,
No. 33 Philadelphia PA: SIAM, (1980)

T. Heideman and C. S. Burrus, Multiply/add tradeoffs in length-2n FFT algorithms,
in Proc. IEEE Int. Conf. ASSP, Tampa, FL, Apr. (1985)

T. Heideman and C. S. Burrus, On the number of multiplications necessary to

compute a length-2n DFT, IEEE Trans. Acoust., Speech, Signal Processing,
Vol 34 No. 1 February (1986) pp. 91-95.

P. Duhamel and H. Hollmann, Existence of a 2° FFT algorithm with a number of
multiplications lower than 2**!, Electron. Lett., Vol. 20, Aug. 16 (1984) pp. 690-692

P. Duhamel and H. Hollmann, Split radix FFT algorithm, Electron. Lett., Vol. 20,
Jan. 5, (1984) pp. 14-16

Sara Baase, Computer Algorithms: Introduction to Design andAnalysis,
Addison-Wesley Publishing Company (1978)

J. B. Martens, Recursive cyclotomix factorization-A new algorithm for calculating
the discrete Fourier transform, IEEE Trans. Acoust., Speech, Signal processing,
Vol. ASSP-32, Aug. (1984) pp. 750-761

M. Vetterli and H. J. Nussbaumer, Simple FFT amd DCT algorithms with
reduced number of operations, Signal Processing, Vol. 6, Aug. (1984)
pp. 267-278

C. S. Burrus and T. W. Parks, DFT/FFT and Convolution Algorithms. New York:
Wiley (1984)

H. W. Johnson and C. S. Burrus, Twiddle factors in the radix-2 FFT, in Proc. 1982
Asilomar conf. Circuits, Syst., Comput., Nov. 1982, pp.413-416.

C. A.Hall and T. A. Porsching, Numerical Analysis of Partial Differential
equations, Prentice Hall, Englewood Cliffs, N.J. (1990)

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform,

41.

SIAM (1981)

Y. Kodama and A. Hasegawa, Nonlinear Pulse Propagation in a Monomode
Dielectric Guide, IEEE Journal of Quantum Electronics, Vol. Qe-23, No. 5,
May (1987)

34

OOO00O0O00000000000

0000000000000 0ONO000O0

APPENDIX A

FORTRAN PROGRAM TO SOLVE
THE GNLS EQUATION

Ref: Thesis W. Zheng

This program solves the generalized
nonlinear Schordinger equation

by the split step Fourier method.

beta3*DDDA/DTTT = i*gama*(lAllAIA +
2i* d(IAIAIA)/DT /omega0O-Tr*A*DIAIA2/dt)
under periodic boundary condition:

A(z,-Pi) = A(z,Pi)

and initial condition

A(0,T)=g(T)

Author: Weiming Zheng

Computer Science Department
Oklahoma State University
Aug. 2, 1994

>k ok ofe 2k oK o sk sk 2 3k ok 2 ok ok ok ok o ok sk 3R e ok e o 3¢ ok e 3k sk ok ok sk ok o ke 3R R R R K kR SkORSR R oK R K

Usage: To fit a special application, the user may rewrite

the subroutine for the initial condition, and call that
subroutine.

To apply the program to an interval other than
(-Pi,Pi), the user should set the length which is the
interval for T.

Parameters and Arguments:

NN -- The number of grid points for the vaniable T.
dz -- The step size for the variable z.

L -- The number of steps for the variable z

ds -- The step size for the variable T.

X -- The array of values for the variable A at all grid points.

It sets the initial value of A (at z=0). And finally, Xis
the solution at z = zout.
Y -- The exact solution components at Z = Zout.
zout -- This is a point at which a solution is desired.
DX --- The numerical derivative of A withrespctioT.
gama, beta2, beta3, alpha, omega0, Tr -- Coefficents of the

C
C
C
C
D(A)/DZ + alpha*A/2+i*beta2*DDA/DTT/2- C
C
C
C
C

C

C

C

Adviser: Dr. J. P. Chandler C
C

C

C

C

C GNLS p.d.e.
C Er -- The error in the solution = max!Y ({1)-X(@)!
C REr -- The relative error = max! (Y(1)-X({1))/X0)I

C E ---invariant of the GNLS equation
C --- -

C

C This program solves the generalized NLS.
PROGRAM gnlsps3
implicit none
INTEGER NN,NN2,j,L.,model
real*8 Pl h lenth
PARAMETER (PI = 3.14159265358979d0)
PARAMETER (NN=512,NN2=2*NN)
PARAMETER (outpt = 10)

C lenthis the length of the interval of T
PARAMETER (lenth = PI*2d0)

C PARAMETER (lenth = 20d0)
CHARACTER flg

L L T LY TP

DOUBLE PRECISION X(NN2),DX(NN2),Y(NN2)

real*8 c,ds,dz,b,Tr,w
real*8 end,gama, omega0, beta2,beta3,alpha
b= 2*Pl/lenth

open(UNIT= 10, FILE = 'Error’, status='UNKOWN")

c=-PI
C tm=time
1 write(*,*)'# Enter the zout '
read(*,*) end
write(*,*)'# Enter thedz '
read(*,*) dz
L= end/dz
ds = 2d0*PI/NN
Cx*x¥* Sets the coefficient of the pde ***¥****
gama = -2D0
gama = -2D-2
beta2 = 2D0
beta2 = 2D-2
alpha = 0DO
beta3 = 1.2D-1
beta3 = 1.2D-3
TR = 040
omegal = 1D2

call inislt(X,NN,ds,gama,betaZ,beta3,omegaO,b)
w = 6d0
call iniplw(X,NN,b,ds,w)

36

37

beta2 = beta2*b*b
beta3 = beta3*b*b*b
omegal = omegal/b
TR = TR*b
do 50 j=1,L,1
call liner(X,NN,ds,dz, alpha, beta2, beta3)
call nolin(X,DX,NN,ds,dz,gama,omega0,TR)
C call liner(X,NN,ds,dz/2., alpha, beta2, beta3)
50 CONTINUE
C BxekrixxskkrkCompute the exact solution **¥%%%
C model = 1 for soliton solution, model = 2 for plane wave solution
model =2

call extsit(Y,NN,ds,gama,beta2,beta3,omega0,b,model,end, model,w)
C % oK ok 5K ok Output*************

call output(X,Y,NN,model)

WRITE(outpt,*) 'dz=', dz

WRITE(outpt,*) ‘zout =',end

WRITE(*,*) "Would you like another test? y/n'

read(*,*) flg

if (flg .EQ. 'y') then

goto 1

end if

close(outpt)

END

@

subroutine output(X,Y,NN,model)

SUBROUTINE OUTPUT (X,Y,NN,model)
This subroutine outputs the results for GNLS PDE.
NN -- The number of grid points for the variable T.
X -- The array of approximate solution values at all grid points.
Y -- The array of exact solution values at all grid points.
model -- model=1 for soliton solution,
model=2 for plane wave solution

implicit NONE
integer 1,NN,model
C lowbd is a small number to check errors and to avoid underflow.
PARAMETER (lowbd = 1d-30)
C outputis parameter of unit when open a file
PARAMETER (outpt = 10)
DOUBLE PRECISION X, Y,Er, REr,sum, tmp,E
DOUBLE PRECISION tmpl,tmp2
dimension X(*),Y(¥)

OO0O0O000O000

C

backspace (10)

*** Output soliton solution ****
if (model .eq. 1) then
WRITE(*,*)' approximate exact'
WRITE(*,*)' solution solution'
do 51i=1,2*NN-1,2
tmpl = sqri((X(1))**2 + (X(i+1))**2)
tmp2 = sqrt((Y(1))**2 + (Y(i+1))**2)
WRITE(*,*) tmpl, tmp2

K %k kk ok FOT plO[only Kokkk K

C WRITE(outpt,*) '# soliton solution Zout=", zout
C WRITE(outpt,*) i/2, tmpl
51 CONTINUE

Er= 0d0

REr =040

do 55 i=1,2*NN
if(abs(tmpl-tmp2) .GT. Er) then
Er = abs(tmp1-tmp?2)

end if

if(abs(tmpl) .GT. lowbd) then
if(abs((tmp1-tmp2)/tmpl) .GT. REr) then
REr = abs(tmp1-tmp2)/abs(tmp1)
end if

end if

55 CONTINUE

C

end if

*** Qutput plane wave solution ****
if (model .eq. 2) then
WRITE(*,*) approximate exact'
WRITE(*,*)" solution solution’
do 61 i=1,2*NN-1,2
WRITE(*,*)(i+1)/2, X(1), X(i+1), Y(1), Y(i+1)

61 CONTINUE

Er= 0d0

REr =0d0

do 65 i=1,2*NN
if(abs(X(i)-Y(i)) .GT. Er) then
Er = abs(X(i)-Y(1))

end if

if(abs(X(i)) .GT. 1d-30) then
if(abs(X(i)-Y(i)/X(i1)) .GT. REr) then
REr = abs((X(i)-Y(1))/X(1))
end if

end if

65 CONTINUE

38

do 12 i=1,NN,1

s = (-PI + i*ds)/b

X(2*i-1) = DCOS(d1*s)/DCOSH(c1*s)

X(2*i) = DSIN(d1*s)/DCOSH(c1*s)
C X(2*i-1) = DCOS(d1*(a+ds*I))/DCOSH(c1*(a+1*ds))
C X(2*i) = DSIN(d1*(a+ds*I))/DCOSH(c1*(a+I*ds))

12 CONTINUE
return
end

oNe!

subroutine iniplw(X,NN,b,ds,w)

subroutine iniplw(X,NN,b,ds,w)
This subroutine sets the initial condition for PDE
with progressive plane waves.
NN -- The number of grid points for the variable T.
ds -- The step size for the variable T.
X -- The array of values for the variable A at all grid points.
It sets the initial value of A (at z =0).
b = 2*pi flenth
w -- A parameter in dispersion relation.
implicit NONE
integer i, NN
DOUBLE PRECISION PI
PARAMETER (PI =3.14159265358979d0)
C DOUBLE PRECISION X(NN¥*2),a,ds
DOUBLE PRECISION X,b,ds,w,s
dimension X(*)
do 11 i=1,NN,1
s = (-PI + i*ds)/b
X(2%*i-1) = DCOS(-w*s)
X(2*1) = DSIN(-w¥*s)
11 CONTINUE
RETURN
END

OO0O000000O0O00

ONQ!

subroutine extslti(Y,NN,ds,gama,beta2,beta3,omega0,b,model,zend)
SUBROUTINE EXTSLT(X,NN,ds,gama,beta2,beta3,omega0,b,model,zend)
This subroutine computes the exact solution for GNLS PDE.
NN -- The number of grid points for variable T.
ds -- The step size for the variable T.

oNoNoNOK®

C X -- The array of value for variable A at all grid points.
C gama, beta2, beta3, alpha, omega0, Tr -- Coefficents of the
C GNLS p.d.e.

C end -- this is the value of z at which a solution desired.
e e e e e e e e e e et e e e m mm s e e et e m e e e e e e

C This subroutine sets the exact solution for GNLS PDE.
implicit NONE
DOUBLE PRECISION PI,gama,beta2,beta3,omega0
integer i, NN, model
DOUBLE PRECISION Y,ds,c1,d1,b,s,c2,d2, zend,f,w
dimension Y(*)
PARAMETER (PI = 3.14159265358979d0)
¢l = SQRT(-6d0*gama/beta3/omegal)

¢ c¢l1=1d0
d1l = omegaQ*beta3*cl*cl1+2d0*gama
if(d1 .NE. 0d0) then
d1 = omega0*(gama+beta2*cl*cl)/d1
end if
d2 = -beta2*(c1*c1-d1*d1)/2d0-beta3*(d1*d1*d1-3*c1*c1*d1)/6d0
c2 = beta2*c1*d1 + beta3*(c1*cl*cl1-3d0*c1*d1*d1)/6d0
do 55 i=1,NN,1
s = (-PI +i*ds)/b
y(2*i-1) = DCOS(d 1 *s+d2*zend)/DCOSH(c1*s+c2*zend)
y(2*i) = DSIN(d1*s+d2*zend)/DCOSH(c1*s+c2*zend)

C Compute the dispersion relation ****x*
w = 6d0
f=beta2*w*w/2d0+beta3*w*w*w/6d0+gama*(1d0+2d0*w/omega0)
if (model .eq. 2) then
Y (2*i-1) = COS(f*zend -w*s)
Y (2*i) = SIN(f*zend -w*s)
end if

55 CONTINUE

return

end

subroutine liner(X,NN,ds,dz, alpha, beta2, beta3)
C--een ecemmemmmmamemceecmcesmessmeem=e——-- -
C subroutine liner(X,NN,ds,dz, alpha, beta2, beta3)
C This subroutine computes the linear step for the PDE
C NN -- The number of grid points for the variable T.
C
C

ds -- The step size for the variable T.
X -- The array of values for the variable A at all grid points.

C
C

beta2, beta3, alpha -- Coefficents of the GNLS p.d.e.
dz -- stepsize for z

e D L L LT T T P L Y e LD T T T Gy

implicit NONE

integer NN,i, isign

DOUBLE PRECISION X

DOUBLE PRECISION ds,dz

DOUBLE PRECISION pi, tmpi,temp, cr, ci
DOUBLE PRECISION alpha, beta2, beta3
DOUBLE PRECISION b1, b3,be2
dimension X(*)

PARAMETER (PI =3.14159265358979d0)

C****** L Operaﬁon FR KKK KKK

bl = -alpha/2.0

be2 = beta2/2.0

b3 = -beta3/6.0

isign=1

call dfourl(X,NN,isign)

do 20 i=1,2*NN-1,2

temp = -PI*(i-1)/ds/NN

cr = bl*dz

ci = (b3*temp*temp*temp + be2*temp*temp)*dz
tmpi = X(i)*COS(ci)-X(i+1)*SIN(ci)
X(1+1) = X(@i+1)*COS(ci)+X(1)*SIN(ci)
X(1) = tmpi

cr = (exp(cr))/NN

X(@i+1) = X(@{i+1)*cr

X(i) = X(@i)*cr

20 CONTINUE

00

OO0O00O0O000OO0

isign=-1

call dfour1(X,NN,isign)
return

end

subroutine nolin(X,DX,NN,ds,dz,gama,omega0,TR)

subroutine nolin(X,DX,NN,ds,dz,gama,omega0,TR)

This subroutine computes a nonlinear step for GNLS PDE.

NN -- The number of grid points for the variable T.
ds -- The step size for the variable T.
dz -- The step size for the variable z.

X -- The array of values for the variable A at all grid points.

gama, omega0, TR -- Coefficents of the GNLS p.d.e.

42

C DX -- The array of derivative of X.
C--- ——--

.........

implicit NONE
integer NN,i
DOUBLE PRECISION X, DX
DOUBLE PRECISION ds,dz
DOUBLE PRECISION tmpr, tmpi,temp, cr, ci
DOUBLE PRECISION gama, omega0,TR
dimension X(*),DX(*)
do 1 i=1,2*¥*NN-1,2
ci = gama*(X(@i)* X(i) + X(>A+1)* X(+1))*dz
temp = X(i)*COS(ci)-X(i+1)*SIN(ci)
X(@1+1) = X(@+1)*COS(ci)+X{)*SIN(ci)
X(i) = temp
1 CONTINUE
C DX operation ****
C call deriv(X,DX,NN,NN2,ds)
call derivS(X,DX,NN,ds)

C call dxfft(DX,X,NN)

C#**%3x% M operation (exp(i*ci). X Y¥¥xssa®
cr = -2D0*gama/omega0
ci= -gama*TR
do 17 i=1,2*NN-1,2
tmpr = 3D0*cr*(X(1)*DX@@)+X(i+1)*DX(i+1))
tmpi = 2D0*ci*(X(1)*DX({)+X(i+1)*DX(i+1))
* 4 or¥(X(1)*DX(i+1)-X(i+1)*DX())
tmpr = tmpr * dz
tmpi= tmpi * dz
temp = X(i)*DCOS(tmpi)-X(i+1)*DSIN(tmpi)
X(i+1) = X(i+1)*DCOS(tmpi)+X(i)*DSIN(tmpi)
X(i) = temp
X(i) = X(i)*dexp(tmpr)
X(@i+1) = X(i+1)*dexp(tmpr)

17 CONTINUE

return
end

@

subroutine deriv5(X,DX,NN,ds)

C subroutine deriv3(X,DX,NN,ds)

C This subroutine computes the numerical derivative
C for periodic function.

C NN -- The number of grid points for the variable T.
C ds-- The step size for the variable T.

C X -- The array of values for the variable A art all grid points.
¢ DX -- The array of derivative of X.

C implicit NONE
integer NN,NN2 i
C lowbd is a small number to check errors and to avoid underflow.
PARAMETER (lowbd = 1d-30)
DOUBLE PRECISION X, DX
DOUBLE PRECISION ds
DOUBLE PRECISION f1,f2,f4,f5
DIMENSION X(*),DX(*)
NN2 = 2*NN
doli=1NN2
if (1.LE.4) then
fl1 = X(i+NN2-4)
else
fl = X(i-4)
end if
if (i.LE.2) then
2 = X(i+NN2-2)
else
2 = X(i-2)
end if
if (i.gt.NN2-2) then
f4 = X(i+2-NN2)
else
f4 = X(1+2)
end if
if (1.GT.NN2-4) then
5 = X(i+4-NN2)
else
f5 = X(1+4)
end if

if (abs(f4-f2) .LT. lowbd) then
f4= 0d0

else

f4 =2.*(f4 -£2)/3.

end if

if (abs(f1-f5) .LT. lowbd) then
f1=0d0

else

f1 =(f1 -f5)/12.

end if

DX() = (f1+f4)/ds

1 CONTINUE
return
end
C
C SUBROUTINE dfourl(data,nn,isign)
C Refer "Numerical Recipes" Software (1986-92)

45

1.2

0.8

0.6

0.4

0.2

-0.2

Figure 2. Initial 1-soliton with A(T) = sech(T) and the number of grid points N

length = 87

256,

.........

‘out.dat’ —

........

=150

~100

50

100 150

STINOIA

XIANdddV

g

9%

Figure 3. Output of the GNLS equation with f§» =0.02, §3 = 0.0012, y = -0.02, « = 0,
Trh =0, wg = 100, N = 256, length = 87, z = 100.
The figure shows that the soliton propagates stably.
1.2 T T T T 1

‘out,dat” ——

0.8

0.6 |

0.2 F

-0.2
~150 -100 =50 0 50 100 150

Ly

Figure 4. Output of the GNLS eqguation with 3, =0.02) 2, — 0.0012, v — -0.02,
a=0,Tg =0, wy =100, N = 256, length = 87, z = 300.
The figure shows that the soliton has clearly visible deformation, if z is big.
Y T T _ T T

‘out ,dat’ ——

0.3

0.8

007

0.6

0.5

0.4

0.3

0.2

0.1

-0.1

-150

8v

Figure 5. Initial 1-soliton with A(T) = sech(T) and the number of grid points N =256,
length = 207

1.2 T T T T T

‘out.dat’” ————-

0.6 -

0.4

0.2 -

-0.2
-150 -100 -50 0 g0 100 1580

6V

Figure 6. Output of the GNLS equation with f» =0.02, B3 = 0.0012, v = -0.02, o = 0,
Tr =0, wy = 100, N = 256, length = 207, z = (0.
The figure shows that the soliton propagates stably.
1.2 T T T T i

‘out,dat’ ——

0.8 F

-0’2 1 1
~150 -100 -50 0 50 100 150

0¢

£
VITA
Weiming Zheng
Candidate for the Degree of

Master of Science

Thesis: SPLIT-STEP FOURIER METHOD FOR GENERALIZED
NONLINEAR SCHRODINGER EQUATION

Major field: Computer Science
Biographical:

Education: Received Master of Science in applied math from Shanghai Institute of
Computer Technology, Shanghai, P. R. Cin 1986. In 1992, passed the
Comprehensive Exam for Ph.D at Oklahoma State University. Completed
requirements for Master of Science in Computer Science in December, 1994.

Professional Experience: Research Assistant of Shanghai Institute of Computer
Technology, Shanghai, P. R. C from August, 1986 till December, 1989.
Graduate Teaching Assistant of Oklahoma State University, August, 1990
to present.

Professional Memberships: Association for Computing Machinery, Society for
Industrial and Applied Mathematics, American Mathematical Society,
Mathematical Association of America

	001.tif
	002.tif
	003.tif
	004.tif
	005.tif
	006.tif
	007.tif
	008.tif
	009.tif
	010.tif
	011.tif
	012.tif
	013.tif
	014.tif
	015.tif
	016.tif
	017.tif
	018.tif
	019.tif
	020.tif
	021.tif
	022.tif
	023.tif
	024.tif
	025.tif
	026.tif
	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	040.tif
	041.tif
	042.tif
	043.tif
	044.tif
	045.tif
	046.tif
	047.tif
	048.tif
	049.tif
	050.tif
	051.tif
	052.tif
	053.tif
	054.tif

