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CHAPTER 1

INTRODUCTION

In multiprocessing systems, there are many processes working together. They
often share resources, such as memory, files or printers. A situation may arise where
many processes are using a shared resource and correct operation of the system depends
on when processes access that shared resource. This is called a race condition. In order
to avoid race conditions, mutual exclusion is required, that is, when one process is
accessing the resource, other processes are excluded from accessing the same resource.
The part of program where the shared resource is accessed is called a critical section
"cs". To have a good solution to mutual exclusion, the following conditions should be
satistied always [TAN 91]:

* One and only one process can be inside its critical section at any given time.

* No assumptions should be made regarding the speed or number of processors.
» No process running outside its critical section may block other processes.

* Each process should be allowed to enter its critical section within a finite time.

Multiprocessing systems can be either centralized or distributed. A Centralized
system is composed of several terminals sharing single resources like CPU, Memory and
other peripherals. Thus, in centralized systems, controlling algorithms are based on the
existence of shared memory and all processes have access to this common memory.

Mutual exclusion in the centralized system can be solved by either "lock" variables or by
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interprocess communication primitives such as semaphores. event counters, and monitors.
Various algorithms have been proposed, like Decker’s algorithm. Dijkstra’s algorithm.
Hyman’s algorithm, and Peterson’s algorithm [RAY 86]. All these algorithms use a shared
variable that acts as a lock on a resource whenever a process is accessing it and when the
process has finished accessing the resource the lock is removed.

A distributed system is one that runs on a collection of machines, not having
shared memory or a global clock, but still appears to function like a single machine. In
general, a distributed system will have the following properties [TAN 91]:

. There is no shared memory, and therefore all the information is scattered on

various machines connected by a computer network.

. Processes make decisions based on locally available information.

. Failure of one process should not effect the system.

. There is no global clock to synchronize the event.

. Processes communicate with each other through message passing only.

The mechanism of sharing resources in a distributed system is different from a
centralized system. Mutual exclusion in a distributed system can be achieved by receiving
permission from all sites explicitly or implicitly, for instance by receiving the single token
in the system. Definition of terms associated with mutual exclusion in distributed system
is explained in Chapter II.

Algorithms to achieve mutual exclusion in the distributed systems can be classified
into two classes: Permission based and Token based. The token based algorithms can be

further classified into two classes: Algorithms with no logical structure imposed on the
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system and Algorithms with logical structure imposed on the system. These algorithms
are reviewed in the literature survey of Chapter III.

The purpose of this research is to develop a package to simulate the logical token-
based distributed mutual exclusion algorithm using an adaptation of reversal techniques.
These reversal techniques are discussed in chapter V. The tool, thus can be useful for the
following purposes.

. The graphical tool can be used to understand the working of the mutual exclusion
algorithm, with a view to improve them. The visualization capabilities can help the user,

to identify any hidden problems that make the algorithm unsuitable for his particular

network.
. The tool can be used as an aid to educational purposes.
. The performance study of algorithms, in terms of Message Complexity and

Synchronization Delay can be done under different load conditions.

The design and implementation details of the simulation tool are discussed in
Chapter 1V. The performance study of the algorithms implemented, and the statistical
results obtained, are discussed in Chapter V.

Finally, the thesis concludes with summary, conclusion and a brief discussion of

future work in Chapter VI.



CHAPTER 1II

OVERVIEW OF MUTUAL EXCLUSION IN DISTRIBUTED SYSTEMS

The concept of mutual exclusion exists in both centralized and distributed
systems. In distributed systems several uncoordinated users from different sites may access
a shared resource concurrently. Therefore, all these concurrent requests should be
serialized using some algorithm so that each request is satisfied within a finite time. The
problem of mutual exclusion in distributed systems is more complex because a distributed
system consists of geographically dispersed information sites: s, s,, S5, . .. S, Which are
connected by computer network and they communicate only via message passing. There
is no common clock and the sites do not share memory. Further the messages can be
delayed or lost and the nodes as well as the channels connecting the nodes can fail. In

addition there is no centralized coordinator to coordinate all the activities.

2.1 Definitions

2.1.1 Token

Token is a privilege or priority that circulates the logical structure in a distributed
system. The site possessing the token can enter critical section while other sites have to

wait till they receive the token.



2.1.2 Time Stamping

Since in distributed systems there is no common physical clock, there should be
some mechanism to set order, on a set of messages. This mechanism was proposed by
Lamport [LAM 78] and is called Time Stamping or principle of a Logical clock.

The mechanism works as follows:

Each site possesses a logical clock h; which is set to zero initially. Every time a
message is to be issued by process p;, it stamps the message by (m, h,, 1) where "m" is
the message, "h," is the clock value, and "i" is the process id.

The clock is managed as follows:

. When process p; issues a message (m, h, 1), the h, value is incremented by 1 and
then issued.

. When p; receives a message (m, h;, j) it sets h; to the value (max (h;, h) + 1), i.e,,
it sets its own clock with maximum of local clock value and the clock value of the
requesting process, so that any problem of drift among various clocks of communicating
processes is avoided.

Thus each event or message is time stamped and the order of events is maintained.
To resolve any conflict among the events with same time stamped value, the following
rules are observed.

1. h; < h; implies m; precedes m; in the logical clock.
2. if hy=h;and i <j then m; precedes m; else m; precedes m;.

And, this way a total ordering of events can be maintained in the system.



2.2 Principles for distributed mutual exclusion

Various algorithms have been designed for achieving mutual exclusion. These algorithms

are based on any of the two principles, permission based [RAY 91] and token based

[RAY 91].

2.2.1 Permission based algorithms

Consider geographically dispersed information sites s,, s,, . .. s,, of a distributed
system. In permission based algorithms, a site wanting to enter a critical section, first gets
permission from all other sites, i.e., it sends request messages to all sites or set of sites
depending on the algorithm adopted and waits for their permission. The other sites give
permission to the requesting site if they are not using critical section. Otherwise they
delay giving permission until they finish using the critical section. The requesting site on
receiving permission from all the sites enters the critical section.

Refinements have been done to reduce the number of the messages required to
send per critical section request. Timestamping is done on each event to maintain the

order of events.

2.2.2 Token Based Algorithms

Systems based on the token concept are simple. Token-based algorithms work as
follows. A process holding token can enter critical section while other processes just wait
till they get the token. Always only one token is present in the system. This gives mutual

exclusion among processes. The movement of token can be either perpetual mobile or



token-requesting method.

In perpetual mobile method, the processes in the system are arranged in a logical
ring structure and the token keeps rotating in the ring. Process holding a token, if it so
wants, can access critical section and after using it, passes the token to its neighbor. But,
if a process does not want to enter critical section, it simply passes the token to its
neighbor. Thus, the token keeps revolving in the ring.

In token-requesting method, a node makes request to all other nodes and the token
holding node after using the critical section passes the token to the requesting node. The
token-based method can be further classified into two categories.

. Token-based method with Logical structure imposed on the physical network.

. Token-based method with no Logical structure imposed on the physical network.
In logical structured token-based method, a logical structure like a ring, a tree, or a dag
is imposed on the physical network.

Refinements have been done to decrease the number of messages per critical
section such as logically structuring the requesting processes as a tree or making a
heuristic guess to locate the token holder or using parallel flooding technique. A

taxonomy of distributed mutual exclusion algorithms is shown in the figure 1.
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Figure 1: Taxonomy of Distributed Mutual Exclusion Algorithms



CHAPTER III
LITERATURE SURVEY

As shown by the taxonomy (Figure 1), distributed mutual exclusion algorithms can
be classified into:
. Permission based algorithms
. Token based algorithms

Algorithms related to each of these categories are discussed in this chapter.
3.1 Survey of Permission Based Algorithms

In permission-based algorithms, each site before entering critical section, takes
permission from all other sites or set of sites depending on the algorithm. Some

permission-based algorithms are as follows:

3.1.1 Lamport’s Mutual Exclusion Algorithm [RAY 86]

Lamport, in order to implement mutual exclusion in a distributed system, has
adapted the centralized algorithm for the same. In the algorithm for the centralized
system, a queue is maintained for request and release of messages. Requests are enqueued
in the order of their arrival and the serving is done in the same order.

Lamport’s algorithm maintains order of the message by using timestamping of

each event. A site wanting to enter critical section broadcasts the message to all sites. All
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sites acknowledge the request. The site after using the critical section again broadcasts the
release of critical section message to all sites. Each site has a single message queue with
messages totally ordered. Site having the oldest timestamped value enters the critical

section next. To enforce mutual exclusion, 3(n-1) messages are required. where "n" is

number of sites in the distributed system.

3.1.2 Ricart and Agarwala’s Algorithm [RIC 81]

Ricart and Agarwala’s Algorithm has further reduced the number of messages
required per critical section. The site wanting to enter critical section sends request
messages to all other sites. Other sites on receiving the request, reply giving permission
to enter critical section. The reply can be sent immediately or can be delayed until the site
completes the processing of critical section. Timestamping technique is used to maintain

the order of events. Number of messages required per critical section is 2(n-1).

3.1.3 Carvalho and Roucairol’s Algorithm [CAR 83]

This algorithm is a modified form of Ricart and Agarwala’s Algorithm. Here, the
number of messages per critical section request is further reduced. In this algorithm, a
site, if using critical section can keep using it until another site sends a request for critical
section. A single queue server is maintained and the ordering of messages is maintained

using timestamping of the events. The number of messages here varies between 0 and 2(n-

1).
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3.1.4 Maekawa’s Algorithm in Decentralized System [MAE 85]

Maekawa has divided all sites into groups or sets. This further reduces the number
of messages per critical section to sqrt(n). A site in a system has to get permission only
from its group members and if the permission is granted then that site can go ahead to use
critical section. Otherwise the site has to wait till it gets permission from all other
members of the group.

Groups so formed have the following properties:

. For any combination of i and j, 1 <=1i, j <= n.
5, A8 # 0
. The set s;,, 1 <=1 <= n always contains i
. The size of s, |s; , is k for any i
Sp =180 = ...= sy =k
. Any j, 1 <=j <=n,is contained in D ss, ] <=i<=n

Where constant k denotes the number of members in a group, and D denotes the number
of groups in which a site is a member.
The group can be formed in many ways. one way is;
N=[D-1)K+l
where k = sqrt(n).
There can be simultaneous requests from various sites, which can result in
deadlock. This is solved in the following way:

. A site makes REQUEST to members in its group.
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. Each member gives permission and locks itself.
. If a site gets permission from all its members, it executes critical section and then

sends a RELEASE message to unlock them.

. If a member is already locked by another site, it sends an INQUIRE message to
other members of the group.
. On receiving an Inquire message, the priority is checked by sequence number and
the corresponding action is taken to RELINQUISH the lock.

Thus the number of messages required per critical section varies from 3*sqrt(n)

to S*sqrt(n), i.e., c*sqrt(n), Where c is a constant ranging from 3 to S.

3.2 Survey of Token Based Algorithms

Algorithms using token requesting method to achieve mutual exclusion in
distributed system are discussed in this section. Token-based algorithms can be further
classified as those,

. With logical structure

. With no logical structure

3.2.1 Algorithms with no Logical Structure

In this category, the algorithms do not impose any logical structure on the physical
network. However, a site can enter the critical section only after possessing a token.

Related algorithms are discussed in this subsection.
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3.2.1.1 Suzuki and Kasami’s Algorithm [RAY 86]: Message traffic is further

reduced in this algorithm to n messages per critical section request, where n is the number
of sites in the system. Each node requesting to use critical section, sends a message to all
other nodes. Token contains the timestamp value of all processes visited by it. Site
holding the token, and using critical section, checks the request array and token array to
find the first site whose request timestamp is greater than its timestamp in token array and
sends the token to it. n messages are required: (n-1) messages to send request to all sites

and 1 message to receive a token.

3.2.1.2 Heuristically-aided Algorithm [SIN 92]: Heuristically-aided algorithm is
an improvement on the Suzuki-Kasami’s algorithm. All above-mentioned algorithms are
deterministic in nature. This means, each site does not maintain the state information of
all other sites but, when a site wants to make a request for critical section, it sends the
request message to all the other sites and the token is assigned to a site depending on the
lowest timestamp value of the received request messages from different requesting sites.

In Heuristic method, each site maintains the state information of all sites. Thus a
site wanting to make request knows the set of sites that may probably be holding the
token and hence the request is sent only to those sites. This decreases the number of
messages sent per critical section. The set of sites are those sites that are either holding
the token or requesting the token. Heuristic guessing can be achieved by the following
data structure. Each site has 2 state vectors. One state vector stores the state of sites and
other stores highest sequence number of each site. The state of sites can be any of the

four.
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R = Requesting the token, N= Not requesting the token,
H = Holding the token, but not executing critical section,
E = Executing critical section.

Token also maintains state vector and sequence number of all sites. Whenever the
request or token is received, the state vector is updated. Each set should have at least one
sites in the state vector that is requesting. Number of messages vary from 0 to n, where

n is number of sites in the system.

3.2.1.3 Algorithm Using Dynamic Information Structure [SIN 89]: This algorithm

is based on having dynamic state information of all the sites. The state information is
updated continuously as requests are made. The sites are arranged in a specific order say
S;» S, - . - S, such that each site has to request only to all the sites in the right of it and
to no sites in the left of it. Only after getting the permission, a site can enter the critical
section. Thus each site maintains a request set (i.e., sites from which it has to obtain
permission before entering critical section) and an inform set (sites to which it has to
inform after its completion of critical section).

An interesting feature of the algorithm is that its information structure adapts itself
to the environments of heterogeneous traffic of critical section requests and therefore to
statistical fluctuations in traffic of critical section requests to optimize the performance.
A site that is always requesting will be on the right-hand side and hence reduces the
number of messages. While the sites that are less busy will be clustered on the left. This
helps in increasing performance of the system in terms of number of messages sent per

critical section. Messages vary from 0 to 2(n-1).
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3.2.2 Algorithms with Logical Structure

Algorithms that impose a logical structure on the physical network are discussed
in this subsection. The logical structure may, however, be static or dynamic in nature. If
the logical structure imposed on physical network does not change with the movement of
request message or token, then the structure is static. But, if the logical structure keeps

changing dynamically with the movement of token, then the structure is dynamic.

3.2.2.1 Token Based Algorithm using Logical Ring [RAY 86]: In this algorithm,

all the nodes of the distributed system are arranged in a logical ring. The token, a special
privilege to enter critical section keeps rotating in the logical ring. A node that possesses
a token and wants to enter critical section, can enter the critical section, otherwise it waits
for the turn. After a node exits critical section, it passes the token to its neighbor. The
token moves in one direction and so there is no starvation. Messages required in the best

case is 1 and in the worst case is infinity.

3.2.2.2 Tree Based Algorithm by Raymond [RAY 89]: Here the request of any site
(X) is only sent to its neighboring node (Y) which in turn forwards it, to its neighbor, in
the direction of a token holder. Thus the number of messages per critical section depends
on the topology that is a tree. The node does not have to know the whole tree but only
knows its neighbor. Each node has a variable HOLDER that shows the direction of the
token holder node.

Thus when a node sends a request to neighbor Y, neighbor Y will start functioning

on X’s behalf and forwards the message.
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Hence 3 kinds of messages are sent REQUEST, PRIVILEGE, and INITIALIZE.

A REQUEST message is sent when a site wants to access critical section, to the
neighboring site in the direction of the token holder node. A PRIVILEGE message is sent
by the token holder node to its neighboring node that is in the direction of the requesting
node. INITIALIZE message is sent at the start of the whole process, when one site is
arbitrarily given the privilege and that site sends a message to its neighbors about its
privilege. The neighboring site initializes its HOLDER variable and passes it further to

its neighbor.
ALGORITHM :

Procedure initalization()
begin
if (holding the token) then
begin
holder = self;
using = true;
end
else
begin
holder = name of neighbor in whose subtree the token is present;
using = false;
end
send initialize(i) message to all neighboring nodes;
end.

Procedure send_req()

begin
if (holder < self and request q < empty and not asked) then
begin
send request to holder;
asked = true;
end;
end.

procedure recv_req()
begin



enqueue request to request_q;
if (holder < self)
send request to holder;
end.

procedure execute cs()
begin
if (holder < self)
begin
send request to holder;
wait until a privilege message is received;
end
using = true;
CRITICAL SECTION;
using = false;
if (request_q < empty)
begin
assign_privilege();
end;
end.

procedure assign_privilege()
begin
if (holder = self and not using and request q < empty) then
begin
holder = dequeue(request_q);
asked = false;
if (holder = self) then
begin
using = true;
(initiate entry into critical section)
end
else
send privilege to holder;
end
end

17

Various other topologies like line, radiating star, ring etc., can be applied using the

same algorithm. This algorithm can be further optimized by using piggy back strategy and

greedy strategy.
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3.2.2.3 A Distributed Algorithm by Naimi & Trehel [TRE 87]: The algorithm uses

logical rooted tree structure where each node that is requesting the critical section
becomes the root of the logical tree. Thus, the structure of the tree keeps changing
dynamically. Each requesting node sends the request to only one site and that site sends
permission to the requesting site. This single node to which the request is sent is the last
node that was holding the token. Thus, it has two data structures.

. Logical rooted tree: The rooted tree is maintained by updating the tree such that
the new requesting site, if it is not the root, is transformed to be the root and sites that
are between the root and the requesting node will have the new root as "last".

. Waiting queue : It holds the order in which the privilege is given.

Thus, there are cases when many sites are requesting simultaneously and hence several
rooted trees are formed and when all the transit messages arrive they form a single rooted
tree.

In this algorithm, there is no need to maintain the logical clock. Number of
messages per critical section is order of log |n|. Example 1, illustrates this algorithm and
Figures 2(a), 2(b), 2(c), 2(d), 2(e) respectively show the dynamic change in the logical
structure.

Example 1: [TRE 87]

* Initial state of the distributed system. Site 1 has privilege.
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2 3 4 5
1
Figure 2 (a):
* Site 2 invokes the critical section. It sends a request to site 1. Site 2 becomes the

root. Site 2 has privilege and enters the critical section.

Figure 2 (b):

* Site 3 invokes the critical section. It sends a request to site 1 which transmits to

site 2. Site 2 is in the critical section : site 3 waits
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Figure 2(c):

* Site 4 requests the critical section. It sends a request to site 1 which transmits to

site 3. Site 2 is in the critical section; sites 3 and 4 wait.

Figure 2(d):

* Site 2 releases the critical section. It gives privilege to site 3. Site 2 requests
critical section again. It sends a request to site 3 which transmits to site 4. Site 3 is in the

critical section. Sites 4 and 2 wait.
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Figure 2(e):

Specification of the algorithm are given below:
All the sites execute the same algorithm. Each site has local variables namely;
Privilege, requesting_c_s: Boolean
Where, Privilege is true if site i controls the critical section and requesting_c_s is true if
site 1 has invoked the critical section and remains true until it releases the critical section.
* A site i may enter the critical section if "privilege" = true and "requesting_c s " = true.
* A site 1 gives privilege to another site if "privilege" = true and "requesting_c_s" = false.
* A site i may transmit a request to another site if "last" < nil.
Algorithm:
procedure initialization()
begin

last = 1;

% initialization of last is the same for every site %

next = nil ; requesting_c_s = false;

if last = me then

privilege = true;last = nil;
else
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privilege = false;
endif;
end % initialization %

procedure request_c_s()
begin
requesting_c_s = true;
if last < nil then
send(req,me) to last
last = nil;
endif
end %request ¢ s %

procedure release c_s()
begin
requesting_c_s = false;
if last < nil then
send(ok,me) to next,
next = nil;
privilege = false;
endif
end %release ¢ s %

procedure receiving_message(message,k)

case
message = REQ --> case
last=nil-->  if requesting_c_s then
next =k;
else
privilege = false;
send(ok,me) to next
next = nil;
endif
last < nil --> send(req,k) to last;
endcase;
last = k;
message= OK --> privilege = true;
endcase

3.2.2.4 A Distributed Algorithm by Raynal [RAY 86]: Raynal has proposed a

token-based algorithm which can work for various network topologies like tree, line, ring,



23

and complete network. The number of messages per critical section depends on the
topology of the particular network.

In the arbitrary network, a node requesting for token sends its request to its
neighboring node. The REQUEST message consists of the following structure. req-id and
req-info. req-id consists of reqg-origin and req-time (reg-time is the logical time as
specified by lamport). reg-info contains a sender and already seen nodes. When the
neighbor receives the request, if it has the token, checks the request-array for pending
request and sends the token to the oldest of them through the already-seen nodes. If the
neighbor does not have the token, it forwards it to its neighbor and adds its node number
to the already seen node list. The node also updates the request array to delete any old
request received from the same node earlier or adds it in as a new request.

This algorithm can be used on any arbitrary network. Each node maintains local

information only. This algorithm uses distributed communication techniques to achieve

mutual exclusion.

3.2.2.5 A Generalized Structure for Tree Based Algorithms [RAYUR]: This

algorithm imposes a dynamic rooted tree structure to connect nodes logically. Each node
contains local information regarding the state, behavior and its relative position in the
system. The variables used in the algorithm are as follows :

1. Token-here;: True if node i has the token.

2. Asked;: True if node i is currently waiting for the token or executing critical section.
3. Parent;: If node i is not possessing the token and wants to get it, it sends a request(i)

to parent.
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4. Lender;: It indicates the node to which node i will have to give back the token once
it exits critical section.

5. Behavior(i): It can be either of the following:

Transit: When node i receives a request from node j, it just forwards it to its parent, It

sets parent, = j.

Proxy: When node i receives a request from node j, it takes the request on its own

account. It now considers node j as its mandator and requests the token for itself from its

parent, When node i receives the token from some node k then it passes it on to node j.

If the token has been lent to node i then node i sets its parent, = k else it sets parent, =

NIL and node i will become the lender.

6. Mandator(i): This is used in proxy behavior of nodes as explained above.

If more than one request is queued on a node then they are handled in a fair way by using

policies like FIFO. This happens when more than one node have parent, = same node j.

Then node j can receive multiple requests.

Example [RAYUR] :

The set of variables defined above constitute the information structure of each site
in a tree structured token based algorithm. The following example illustrates the
algorithm. The Figure 3 below describes the initial situation. Node 8 wishes to enter the
critical section, and the token is with node number 1; only nodes belonging to the oriented
path (defined by the successive variables parent) linking node 8 to node 1 are shown in
the Figure 3. Nodes 3, 5, and 6 are assumed to be permanently proxy (they are circles in

the figures), whereas nodes 1, 2, 4, 7, 8, are assumed to be permanently transit.
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Figure 3: Initial situation of an Example of Tree Based Algorithm

Node 8 wishes to enter the critical section and not token_hereg:

0 send request(8) to parent; = 7; asked, = true; mandator; = 8

Node 7 receives request(8) and behavior, = transit and not token_here,:

send request(8) to parent, = 6; parent, = 8

Node 6 receives request(8) and behavior, = proxy and not token_here,:

% 6 takes the request on its own account % send request(6) to parent, = 5; asked, = true;
mandator, = 8

Node 5 receives request(6) and behavior; = proxy and not token_here,:

% S takes the request on its own account % send request(5) to parent; = 4; asked, = true;
mandator, = 6;

Node 4 receives request(5) and behavior, = transit and not token_here,:

send request(5) to parent, = 3; parent, = 5

Node 3 receives request(5) and behavior, = proxy and not token_here;:

% 3 takes the request on its own account % send request(3) to parent, = 2; asked, = true;
mandator, = 5;

Node 2 receives request(3) and behavior, = transit and not token_here,:

send request(3) to parent, = 1; parent, = 3;
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Node 1 receives request(3) and behavior, = transit and token_here, and asked;:
% 1 gives up the token to 3 since its behavior is transit % send token(nil) to 3;
parent, = 3; token_here = false;
Node 3 receives token(nil) and mandator; = 5:
% 3 becomes the lender
% parent, = nil ; send token(3) to mandator, = 5; mandator; = nil;
Node 5 receives token(3) and mandator = 6:
parent; = 3 % 3 is the sender of the token %
% complete the mandate for node 6 % send token(3) to mandator; = 6; mandator = nil;
asked, = false;
Node 6 receives token(3) and mandator,= 8:
parent, = 5 %S5 is the sender of the token %
% complete the mandate for node 8 % send token(3) to mandator, = 8; mandator, = nil;
asked, = false;
Node 8 receives token(3) and mandatorg = 8:
parent; = 6 %6 is the sender of the token %
lender; =3 % the token will be returned to node 3 %  token_here; = true
CRITICAL SECTION
send token(nil) to lendery = 3; token_here; = false; asked,; = false
Node 3 receives token(nil) and mandator, = nil:
token_here, = true; asked, = false;

At the end the rooted tree is shown below in Figure 4:
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Figure 4: Final Configuration of an Example of Tree Based Algorithm

algorithm:

procedure call_to_enter_cs()
begin
wait(not asked, );
asked, := true;
if not token_here,; then mandator, := i;
send request(i) to father;;
wait(token_here;); % receipt of token sets lender; %
endif
end % enter_cs %

procedure call to_exit_cs

begin
if lender; < i then send token(nil) to lender;; token here, = false; endif;
asked, = false;

end % exit_cs %

procedure receipt_request(j)
begin
wait(not asked,);
case of behavior; = proxy
begin % i becomes proxy of j %
asked; = true;
if token_here,
then % i temporarily lends the token %
send token(i) to j;  token_here; = false;
else % i requires the token %
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mandator; = j;
send request(i) to father,:

endif
end
behavior; = transit
begin

if token_here,
then % give up the token %
lender; = nil;
send token(nil) to j; token here; = false;
else % forward the request %
send request(j) to father,
endif
father; = j;
end
endcase
end % request %

procedure receipt_token

begin

token_here, = true;
case of mandator; = nil
begin % case :return of the token after temporary lending %
asked, = false
end
mandator; = i
begin % claim of i will be satisfied %
% update the position variables %
if j = nil then % i will not have to give back the token (no lender) %
lender; =1;  father; = nil
else % 1 will have to give back the token %
% update the path towards lender %
lender; = j; father; =k;
endif;
mandator; = nil
end
mandator; < nil
begin % case : i honors the request of its mandator, %
% meanwhile, its behavior may have changed %
asked, = false;
case of behavior; = proxy
begin
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if j = nil then % 1 becomes the lender and temporary lends the token %

lender; = i; father; = nil
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send token(i) to mandator;;
asked, = true

else % j is the lender of the token %
father; = k;
send token(j) to mandator;

endif
end
behavior, = transit
begin
if j = nil then % the token must not be returned %
lender; = nil ; father, = mandator;
send token(nil) to mandator,
else % j is the lender of the token %
father; =k;
send token(j) to mandator;,
endif
end
endcase
mandator; = nil ; token_here; = false
end
endcase

end % Token %

3.2.2.6 Fair Mutual Exclusion on a Graph of Process [VAN 87]: Van de

Snepscheut suggested the following algorithm:

Each communication channel is made to point to the processes in the tree having
the privilege. A process that wants the privilege, sends a request along the directed path
of a communication channel toward the processes having the privilege. The token travels
along the same path but in opposite direction. The privilege on traveling the channel
reverses the direction of the communication channel. Once the privilege reaches a process
all communication channel now points toward that process. If more than one request is
queuing on a process then the privilege is sent to one process and a request is also sent

so that the privilege comes back and all pending requests are satisfied. This algorithm is
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extended to a graph as follows. Depth first search technique is used to construct a palm
tree in the undirected graph whose root is the node with the privilege. All channels are
directed to the root. The other modification is that all the outgoing channels from the node

receiving privilege are inverted not just the channel on which the privilege travels.

3.2.2.7 Dag Based Algorithm for Distributed Mutual Exclusion [NEI 89]: The

algorithm is as follows :

Each node maintains three variables.

1. Last: A logical dag structure is imposed by the last variable on the nodes. When a node
receives a request message, it passes it to the neighboring node that is pointed by its "last"
variable.

2. Next: This variable indicates the node that will be granted mutual exclusion after the
current node. If it is less than zero then the current node will hold the privilege.

3. Holding: When a node is holding the privilege but is not in its critical section then
holding is set to true.

A sink node is the last node in the implicit waiting queue also it is the last node
in the path along which a request travels. When a non-sink node receives a request
message, it passes it on to its neighboring node indicated by variable "Last". It then sets
its variable "last" to point to the node from which it received the request.

When a sink node(i) receives a request message, it sets its variable "Next" to point
to node(j) initiating the request. Now node(i) becomes a non-sink node and node(j)
becomes the new sink node.

The above algorithm is illustrated by the following example [NEI 89]. Consider
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a system consisting of 6 nodes, as shown in figure 5. Assume that Node 5 holds the token
initially. Let the directed edges indicate the direction in which the LAST variables are
pointing. The initial configuration is shown in Figure 5a. Suppose node 5 wants to enter
the critical section. Since node 5 holds the token, it can enter immediately. Now, suppose
node 3 wants to enter the critical section. It sends a REQUEST message to node 4 and
sets its LAST variable to 0 to become a new sink (ref. figure 5b). Node 4 receives the
request and sets its LAST variable to point to node 5, on behalf of node 3 (ref. to figure
5c). Node 5 receives the REQUEST message. Since node 5 is a sink node, it sets its
NEXT variable to point to node 3 and sets its LAST variable to point to node 4 to
become on-sink. When node 5 leaves the critical section, it sends a PRIVILEGE message
to the node indicated by its NEXT variable, i.e., node 3. Finally, node 3 receives the

PRIVILEGE message and enters the critical section (ref. figure 5d).

Figure 5 (a):
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Figure 5 (b):
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Figure 5 (c):
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Figure S (d):

algorithm :

There are two procedures at each node: P1 and P2. Procedure P1 is executed when
node i requests for entry into the critical section, and procedure P2 is executed when it
receives a request from some other node.

procedure P1; (* Enter critical section *)
begin
if (not HOLDING ) then
begin
send REQUEST(I,I) to LAST;
LAST :=0;
wait until a PRIVILEGE message is received
end;
HOLDING:= false;
CRITICAL SECTION
if (NEXT != 0) then
begin
send PRIVILEGE message to NEXT
NEXT:=0;
end;
else HOLDING := true;
end;

PROCEDURE P2 (* Handle REQUEST(X,Y) msg *)
begin
if (LAST=0) then
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begin
send PRIVILEGE message to Y;
HOLDING := false;

end;
else send REQUEST(I<Y) to LAST;
LAST = X;

end;

PROCEDURE INIT; (* Initialize nodes *)

begin
if (holding the token ) then
begin
HOLDING := true;
LAST:= 0;
NEXT:=0;
send INITIALIZE(I) message to all neighboring nodes;
end;
else
begin
wait for INITIALIZE(J) message to arrive from node j;
HOLDING :=false;
LAST:=]J;
NEXT:=0;
send INITIALIZE(I) message to all neighboring nodes, except node j;
end;
end;

3.2.2.8 A Distributed Algorithm on a Ring of Processes [MAR 85]: The set of

processes that want to use critical section is called masters. When a process wants to enter
critical section, it communicates with another process called the server. Therefore, for N
masters there are N servers. Each master communicates only with its server and servers
communicate with each other.

A.J. Martin has suggested three solutions when the communication network among

the servers is a ring. They are

1. Perpetuum Mobile: The privilege circulates continuously. When a process wants to
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enter critical section, it waits for its turn till its server gets privilege. If a node does not
want to use critical section then it passes on the privilege to a neighboring node.

2. Reflecting Privilege: In this solution the request moves in one direction and the
privilege in the opposite direction.

3. Drifting Privilege: In this solution both the request and privilege move in the same
direction.

Martin concludes that the second solution is most elegant and efficient among the
three solutions. In the second solution the completion of pending request is used to
transmit the privilege reducing the communication traffic to its minimum.

This thesis is concerned with the development of a graphical simulation tool for
distributed mutual exclusion algorithms. The design and implementation issues associated

to the tool are examined in the next chapter.



CHAPTER IV

DESIGN AND IMPLEMENTATION ISSUES

4.1 Implementation Platform and Environment

The graphical tool for simulation has been implemented on the Symmetry S/81
system running the X Window system under the DYNIX/Ptx operating system.
DYNIX/Ptx is a UNIX system port that is compatible with AT&T System V 3.2 [SEQ
90]. The X Window system or X allows programmers to develop portable graphical user
interface (GUI). X allows programs to display windows containing text and graphics on
any hardware that supports the X protocol. Thus, X-based application can work on
heterogeneous environment consisting of mainframes, workstations and personal
computers. The X Window system has Client-Server architecture. A Server is a process
responsible for all input and output devices and a client is the application.

The X-interface, provides GUI capability to an application program. It is written
either in Xlib or Toolkit. Xlib is a set of standard C library functions and works as a low
level interface to X. Toolkits is a set of higher level subroutine libraries and is used to
implement a set of user interface features. The simulation tool is developed using the
Motif widget set, Xlib functions, and C programming language. Graphs are plotted using

BLT package.
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4.1.1 Sequent Symmetry S/81

Sequent Symmetry is a main frame-class multiprocessing system. It can run both
Dynix V 3.0 and Dynix/Ptx. It is implemented on the Unix platform and is a true
multiprocessor system, having multiple CPUs and a single common memory. Sequent

symmetry systems have the following characteristics{SEQ 90].

. True multiprocessor, having multiple CPUs.

. Single common memory shared by all processors.

. All processors, I/0 controller and memory modules are plugged into a single high
speed bus.

. All processors are tightly coupled.

. All processors are dynamically load balanced.

. All processors are symmetric.

. Hardware support for mutual exclusion, is support exclusive access to shared data
structure.

4.1.2 X11 Window system

X11 Window system developed by MIT, provided GUI capability to programs
using it. X window system requires bitmapped graphic display terminal, so that the
graphic image can be constructed using pixel. The window system uses client-server
architecture to communicate with the X client, which is X window based application and
the X server, a software to deal with I/O of the bitmapped graphic-display terminal, in

the X protocol. From the X client point of view, X protocol is a collection of function
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libraries. The Xlib is a library that implements the X protocol for the C programming
language. These functions in Xlib are preprogrammed to create, move, and destroy
windows or draw lines etc. A level above Xlib is X Toolkit or Xt, where X window
applications can be written from a higher level. Widgets are preprogrammed graphics
objects that can be used by GUI programs. Some popular widget sets on X window
system are Motif by OSF, Open Look by AT & T, and Athena by MIT. These widget sets

provide menus, buttons, dialogboxes etc., to be used in a GUI application.

4.1.3 Motif

Motif is the widget set developed by OSF, which provides GUI on any system that
supports X window system. Motif is a widely available application programming interface
and provides distinctive three-dimensional appearance. It requires an X window system
including Xlib and Xt intrinsics. Number of widgets can be defined and are instantiated
into objects in the application program like Pushbutton, Text, Messagebox, and Scrolled

window.

4.2 Design of the Tool

In the distributed system, sites communicate with each other only through message
passing, since there is no shared memory. Therefore, for a site to request the service of
resource or enter critical section, it has to receive permission from all other sites in the

system. In the simulation of the algorithm in this thesis, the following assumptions are

made:
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* Messages are not lost or altered in the system, while they are sent from one site to
another.

* The messages are delivered in the order they are sent.

* The communication medium is reliable and there is no node failure.

* The internode communication time is always the same between two sites during the
entire simulation period and is set by the user.

* The critical section time for each site is the same and this constant is set by the user
before the starting of the simulation.

Various parameters are given by the user like the topology of the network, number
of sites in the system, internode communication time, critical section execution time by
each site, request rate of each site as a probability also termed as traffic load, and period
of the simulation.

Each of the implemented algorithms is described in Chapter III. Initially, the token
holder node is selected at random. A global clock is maintained throughout the simulation
period, which keeps track of the generation of request, forwarding of the request and
critical section execution. At each clock tick, requests are generated by sites depending
on the respective traffic load. These requests are sent in the direction of a site holding
token by the method dictated by the chosen algorithm. The request for access to critical
section by nodes is generated by Monte Carlo methods that is described below.

Monte Carlo Method: The Monte Carlo method used in the simulation is as follows :
1. The user sets the probability of request generation by each site. Each site is assumed

to be independent.
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Let f,,...f, be the probabilities of generating request for critical section by site,,
site,, . . . site,.
2. A random number (E) is generated.
If, 0<E <=f, then site 1 generates a request and so on.
3. Once, a site makes a request, it cannot make another request until the earlier request
made by it has been satisfied.

The traffic load for each site is probabilistic in nature. Simulation can be done for
different load factors, namely, Heavy Load, Light Load and as set by user.

Heavy Load is a situation when all sites have high probability of making request
always. A site is never idle. Once the request made by a site is satisfied, it makes the
request again for critical section. Thus, the probability of making request is 100%. Here,
when a site makes a request, it always has to wait for the token because some other site
is using the critical section. Maximum number of messages are flowing in the system
during the simulation period.

Light Load is a situation when all sites have low probability of making request
always. The sites in the system are idle most of the time. At any given instant of time,
maximum of one site is making a request and hence the number of messages flowing in
the system are minimum during the simulation period. There are various methods of
simulating a light load. The method adopted in this thesis is as follows. When a site is
executing critical section, no other site can make a request. When a site finishes executing
critical section then one site is selected at random to make a request.

The traffic load of each site in terms of the probability can be set by the user to
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test the particular case.

After the request generation is started, the working of the mutual exclusion
algorithm can be visualized on the screen. Movement of requests and token can be
dynamically visualized on the screen. However, the visualization can be done only for
limited number of nodes to give clear graphics on a screen of limited size. Also, as
described earlier, simulation is a dynamic process, large number of nodes would make the
screen cluttered and difficult for a user to understand. Simulation for large number of

nodes can be done without visualizing the sites using the ’Execute’ option.
4.3 Implementation Details

For the system of n sites, the sites are always numbered from 0 to n-1. A global
clock is maintained to keep track of internode communication time, simulation time and
critical section execution time. A global array "global array" is also maintained for each
algorithm. It contains five fields. These five fields in the structure are used to store ’code
number’, ’from node #’, ’to node #’, ’source node #’ and ’time left’. Where, ’code
number’ represents ’1° for request, 2’ for token, and ’3’ for critical section; ’from node
# represents the node # from which the message is sent; ’to node #’ represents the node
# to which the message is sent; ’source node # represents the node from which the
request originated; ’time left’ represents the time remaining for completion of the
operation.

At each clock tick of the simulation period, Monte Carlo simulation method,

discussed in section 4.2, is used to select the sites from the set of sites that can make
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request then. All the information is stored in the "global array" described above.
Processing of new request message, forwarding message, sending request, execution of
the critical section and, processing of the new request messages are registered in this
global array. The field indicating “time left’ in the global array is an important parameter.
After each time unit, the "time left’ field is decrement by one unit and checked to see, if
any of the above operations can be completed and appropriate action is then executed.
Parallel handling of the request messages from various sites to their corresponding
neighbor, is efficiently handled by the "global array".

The topology of the network is given through an external file indicating the neighbor of
each sites in the system. For example, a tree based topology on a system of six sites, can
be stored in a file, by knowing the neighbors of each site in that system. Figure 6

illustrates the development of site neighbor file, "nbhr file".

f;\ @ nodes ---> neighbor nbhr file

2
0 -->1 1
1 --->0,2,5 025
2 --»1,34 134
3 =2 2
OO s o 2
S > 1

Figure 6: Developing a Site neighbors File for a Tree Based Network

There are two options in which the simulation can be executed, with or without

visualization. Visualization is limited to a system consisting of maximum 8§ nodes. But,



42
without visualization, in the Execute’ option, the upper limit on the number of sites is
imposed only by the memory capability of the computer on which the simulation is run.
In ’visualization’ option, the topology of the system is always represented in a linear
form. This is done to maintain the symmetry in the visualization. The linear representation

of a star-based network is shown in Figure 7.

Figure 7: Linear representation of a Star Network

4.4 Overview of Graphical User Interface

The data needed to run, the simulation is obtained from the user through the
Graphical User Interface. It consists of a menubar having "Algorithm’, ’Data’, ’Run’,
’Statistics’, "Help’ and ’Exit’ menus. A snapshot of the initial screen of the tool is shown
in figure 8a. An ’Algorithm’ menu allows the user to choose the distributed mutual
exclusion algorithm for simulation. The algorithms available for simulation are by Neilsen
[NEI 89], Raymond [RAY 89], Naimi [TRE 87] and Raynal [RAYUR]. The required data
for the simulation can be entered through the ’Data’ menu. It consists of the following

submenus: Node Information, Request Rate, Site Behavior and Site Neighbor Files.
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Figure 8a: Initial Screen

Number of nodes in the system, internode communication time, critical section execution
time, and simulation period can be entered through the ’Node Information’ submenu. The
load of the site (Heavy load, Light load, or, as set by user) can be entered through the
’Request Rate’ submenu. The behavior of the site (Transit or Proxy) is entered through
the ’Site Behavior’ submenu. The file providing, the topology of the network is chosen
from ’Site Neighbor File’ submenu. The snapshot of the Data menu is shown in Figures
8b, 8c, 8d,8e.

The tool has an option of visualizing the simulation and executing without visualization.
These can be done through the ’Run’ menu. A Visualization screen consists of 3

subscreens namely display screen, description screen, and status screen. The visualization

starts.
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Figure 8c: Data Menu with "Site Request Rate" selected
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with displaying initial configuration in the display screen. The simulation proceeds with
dynamically displaying the movement of token, the movement of request and the
execution of the critical section. The description of the visualization is displayed in the
description screen. The description highlights the following.

* Generation of new request at each clock tick.

* Sending/Forwarding the request to the neighboring site.

» Sending/Forwarding the token to the requesting site.

» Execution of critical section.

The information contained locally at each site in the system at every clock tick is

displayed in the status screen. The snapshot of visualization is shown in Figure 8f.
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Figure 8f: A Snapshot of "Visualization" mode



47

Execution mode contains the description screen only. The snapshot of execution mode

is shown in Figure 8g.
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Figure 8g: A Snapshot of "Execute" mode

Statistics of the simulation can be obtained by choosing ’Statistics’ menu. Statistics is
displayed as a summary report in which the summary of the simulation at different load
setting can be viewed at a time. The graphs are plotted by interfacing through BLT
package. Snapshots for the Statistics menu are shown in figure 8h, 8i.

Help menu gives a brief description of all the algorithms implemented and also gives the
key to use the package. Exit menu is used to exit the tool. The snapshot of the Help menu

is shown in figure 8j and Exit menu in 8k.
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CHAPTER V
SIMULATION RESULTS
5.1 Sample Simulation

Sample simulations were performed using the following configuration:
Algorithm : Neilsen’s Dag-based Distributed Algorithm[NEI89]
# of Nodes : 6 (for Visualization option)

: 100 (for Execute option)

Internode Communication Time : 7 Secs.

Critical Section Execution Time : 5 Secs.

Simulation Period : 100 Secs.
Requesting Probability : Heavy Load (100%)
Sites Behavior : Transit mode.
Topology : Linear

The summary of statistics obtained in the visualization mode is shown in Figure
9a and that obtained in the execution mode is shown in Figure 9b. The respective graphs

generated by the tool are shown in Figures 10a, 10b, 10c,and 10d.
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REPORT ON NEILSEN’S DAG-BASED MUTUAL EXCLUSION ALGORITHM

Total number of nodes 16
Intemode communication time : 7 secs
Critical section Execution time : 3 secs

FOR HEAVY LOAD

Simulation Period : 100 secs
Total Request Made 017
Total Finished Request o 11

lower bound of Message Complexity : 0 messages
Upper bound of Message Complexity : 5 messages
Average Message Complexity : 1.32 messages
lower bound of Synchronization Delay : 0 secs.
Upper bound of Synchronization Delay : 7 secs.
Average Synchronization Delay : 3.97 secs.
FOR LIGHT LOAD
**+* NO INFORMATION AVAILABLE ***
LOAD AS SET BY USER

**** NO INFORMATION AVAILABLE ***

Figure 9a: Summary of Statistics obtained from "Visualization" mode

REPORT ON NEILSEN’S DAG-BASED MUTUAL EXCLUSION ALGORITHM

Total number of nodes 1 100
Intemode communication time . 7 secs
Critical section Execution time : 3 secs

FOR HEAVY LOAD

Simulation Period : 100 secs
Total Request Made 2111
Total Finished Request 211

lower bound of Message Complexity : 0 messages
Upper bound of Message Complexity : 2 messages
Average Message Complexity : 1.08 messages
lower bound of Synchronization Delay : 0 secs.
Upper bound of Synchronization Delay : 7 secs.
Average Synchronization Delay 1 3.97 secs.
FOR LIGHT LOAD
**+** NO INFORMATION AVAILABLE ***
LOAD AS SET BY USER

**** NO INFORMATION AVAILABLE ***

Figure 9b: Summary of Statistics obtained from "Execute" mode
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g':igure 1. Avg. Synchronization Delay
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Figure 10c: Avg. Synchronization Delay Time Graph for "Execute” mode
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Figure 10d: Avg. Message Complexity Graph for "Execute" mode
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5.2 Discussion of Results

After studying the algorithms and simulating each of them. the following results

were obtained.

5.2.1 A New Classification of Logical Token-Based Mutual Exclusion Algorithms

Based on simulation, a new insight to classifving the mutual exclusion algorithms
was observed. As stated earlier. distributed mutual exclusion algorithms are classified in
to two classes, namely: Permission-based algorithms and token-based algorithms. In token-
based algorithms. there are two subclasses. They are token based algorithms with logical
structure imposed on a physical network and with no logical structure imposed on a
physical network. A taxonomy of distributed mutual exclusion algorithms is given in
Chapter 2.

In this thesis the emphasis is on logical token based algorithms. A detailed study
of these algorithms shows that the logical structure can be either static or dynamic in
nature. Static structure 1s the logical structure imposed on the physical network that does
not change with the movement of the request messages or the token message during the
entire period of mutual exclusion by various sites in the system. However, the edges
joining a site to its neighboring sites which direct the flow of messages in terms of
requests or token passing, may or may not change their direction. Algorithm proposed by
Neilsen and Mizuno[NEI 89] uses the technique of reversing the edges between the
neighboring sites in the static structure. While the algorithm proposed by A.J. Martin

[MAR 85] is with no edge reversal (direction between a node and its neighbor can
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reverse), in which the direction of flow of request and token remain fixed. Dvramic
structure is the logical structure imposed on the physical network that keeps changing
depending on the movement of the token during the entire process of simulation. This
would lead to the reversal of the path (direction of the path between the requesting node
and the token holding node reverses) or reversal of path and edge. The algorithm
proposed by Naimi and Trehel [NAI 87] uses path reversal technique in dynamic structure
and the algorithm proposed by Raynal [RAYUR] is the combination of the path and the
edge reversal. A Classification of logical token based algorithms in termis of static and

dynamic structure is shown in Figure 11.

WITH LOGICAL

STRUCTURE
STATIC DYNAMIC
STRUCTURE STRUCTURE

WITH EDGE 'WITH NO EDGE WITH PATH COMB OF PATH

REVERSAL 'REVERSAL REVERSAL & EDGE REVERSAL
ALGORITHMS: By MARTIN By NAIMI & .By RAYNAL

By NEILSEN TREHFL

. By RAYMOND

Figure 11: A Classification of Logical Token-Based Algorithms in terms of Static and
Dynamic Structure

The above classification is in terms of logical structure of the system. A careful
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study of the algorithms at each node suggests that algorithms can also be classified in
terms of proxy and transit sites. Raymond’s tree-based algorithm [RAY 89] treats each
site as proxy while Neilsen in Dag-based algorithm [NEI 89] and Naimi [TRE 87] in
logical rooted tree algorithm, treats each site as transit. Raynal [RAYUR] however. in the
Generalized tree-based algorithm uses a combination of transit and proxy sites in the
algorithm. A classification of logical token based algorithm in terms of transit and proxy

sites is shown in Figure 12.

WITH LOGICAL

STRUCTURE
ALL NODES ALL NODES SOME PROXY &
PROXY TRANSIT SOME TRANSIT
ALGORITHMS:
. By RAYMOND _By NAIMI & TREHEL - By RAYNAL
. By NEILSEN

Figure 12: A Classification of Logical Token-Based Algorithm in terms of Transit and
Proxy Nodes

By overlapping the above classifications for the logical token based algorithm, a
two dimensional classification can be presented. Figure 13 shows the relationship between
static and dynamic structure of the system verses proxy and transit behavior of sites for

the logical token based mutual exclusion algorithms using some kind of reversal
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technique.

Raymal
(comb of

edge &
path rev)

Figure 13: A Two-Dimensional Classification of Logical Token Based Algorithm using
adaptive reversal techniques

5.2.2 Statistical Analysis

The simulation was done for logical token based algorithms using an adaptation
of reversal technique, shown in Figure 13, for same number of sites, internode
communication time, critical section execution time, traffic load, simulation period, and
logical structure. The configuration used is shown in Table 1. Linear topology of the
system was set through a site neighbor file (linear6.nbr) shown in Figure 14a.

With the above configuration, the simulation was run for Heavy load, Light Load



and 50% load. The behavior of nodes for Raynal’s algorithm [RAYUR] was set through

a file (raynal.bev) shown in Figurel4b.

# of Nodes Comm. CS Exec Sim Period Topology
Time(secs) Time(secs) (secs)
6 2 1 1000 Linear
Table 1: Simulation Configuration
1 0
02 1
13 0
24 1
35 0
4 0

Figure 14b: Behavior Data File

Figure 14a Site Neighbor File
(raynal.bev)

(linear6.nbr)

Various statistical parameters were collected at each clock tick. These parameters

were noted to calculate Message Complexity and Synchronization Delay for each



algorithm.

Message Complexity is defined as the average number of messages required by a

node to enter the critical section [NEI 89]. Message complexity, however, depends on the

topology of the system. Synchronization Delay is defined as the time gap. when a node,

say node I, leaves the critical section and before another node. say node J, can enter the

critical section. This measures the efficiency of the algorithm in passing the permission

to the requesting node.

The results obtained by the simulation of all the algorithms with the above
configuration are tabulated in Tables II, III, and IV. The graphical results are shown in

Figures 15a, 15b, 15¢, 15d, 15e, 151, 15g, 15h.

Algo Mesg. Complexity in Msgs. Synch. Delay Time in Secs.

rithm Lower Upper Average Lower Upper Average
Bound Bound Bound Bound

Neilsen 0 6 2.56 0 2 1.95

Raymond | 0 10 3.13 0 10 3.15

Naimi 0 6 3.01 0 2 1.95

Raynal 0 4 232 0 4 3.55

Table II: Simulation Results obtained for Heavy Load
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Algo Mesg. Complexity in Msgs. Synch. Delay Time in Secs.
rithm
Lower Upper Average Lower Upper Average
Bound Bound Bound Bound
Neilsen 0 6 2.56 0 12 5.12
Raymond | 0 10 4.40 0 20 8.80
Naimi 0 6 2.23 0 10 4.47
Raynal 0 S 3.25 0 11 7.54
Table III: Simulation Results obtained for Light Load
Algo Mesg. Complexity in Msgs. Synch. Delay Time in Secs.
rithm Lower Upper Average Lower Upper Average
Bound Bound Bound Bound
Neilsen 0 5 2.69 2 4 2.03
Raymond | 0 8 3.15 0 8 3.17
Naimi 0 6 2.91 0 2 1.95
Raynal 0 4 2.33 0 6 3.60

Table IV: Simulation Results obtained for 50% Load
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The analysis of the results obtained are given below.

5.2.2.1 Neilsen’s Algorithm [NEI 89]: The maximum message complexity observed was

6 messages. This agrees with the theoretical result of D+1 messages, where, D is the
diameter of the topology or the length of the longest path[NEI 89]. This happens when
the request is made by a node at one end of the diameter and the token is present at a
node at the other end of the diameter and hence a request requires D messages to reach
the token holding node and one message for sending the token. The minimum message
complexity is zero message which occurs when the token holding node makes the request
and so, minimum synchronization delay is zero.

The upper bound of synchronization delay varies with the loading factor. For a heavy
loaded system, the delay observed was 2 secs(1 message). In the heavy load, all the time
a request message is in the waiting queue of the token-holder node and hence, as soon as
the token-holder node finishes the execution of the critical section, it passes the token to
the requesting node directly which requires only 1 message. In the light node, the situation
is different. Maximum of one request message exists in the system at all time and hence
to get the token, a request has to travel all the way to the token-holder node and hence,

the worst case of synchronization delay was observed as 12 secs (6 messages or D+1

messages).

5.2.2.2 Raymond’s Algorithm: The worst message complexity obtained for both heavy

load and light load was 10 messages(2*5d or 2*D messages) where, D is the diameter of

the system. This case occurs due to D messages required to send the request message to
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the token-holder node at the other end of the system and again D messages to send token
message from the token-holder node to the requesting node. Hence. the worst
synchronization delay observed in light load was 20 secs (10 message = 2*D message).
In the heavy load. a request is always queued in the token-holding node and atmost D
messages are required to send token from the token holding node to the requesting node.
so the worst synchronization delay is D messages. The observed delay in heavy load was

10 secs (5 message = D messages).

5.2.2.3 Naimi's Algorithm: This algorithm imposes a dynamic logical rooted tree

structure. Each node sends request message to the node indicated by its local variable
"last" and so on. The worst case is when a request has to pass through all the nodes
before it reaches the token holder node and hence the upper message complexity is 6
messages (N messages) where. N is number of nodes in the system. The worst
synchronization delay for the heavy load observed was 2 secs(l message) and for the light

load was 10 secs (O(log N)).

5.2.2.4 Raynal’s Algorithm: Raynal’s algorithm is a generalized dynamic tree-based

algorithm where nodes can be either proxy or transit in behavior. The upper bound of
message complexity observed was 5 messages. The upper bound of synchronization delay
for light load was 11 secs (5 messages) and for heavy load was 4 secs (2 messages). The
performance parameters depend on the behavior of the nodes in the system.

All the observed results agree with the theoretical results [NEI 89]. It can be

observed that the heavy loaded system has less synchronization delay time than the light
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loaded system. In the heavy loaded system. there is a pending request at all times in the
system to be satisfied while in light loading. there is no pending request at any time in
the system. Thus. it can be concluded that all algorithms pertorm: better in the heavy
loaded system.

It can also be observed that message comiplexity is independent of the loading
factor. The minimum number of messages required to get a token remains invariant with
the load as the token keeps moving in the system. Message complexity. however. depends
on the topology of the system. The straight line logical structure requires the maximum
number of messages to get a token while the radiating star logical structure requires the
least messages per critical section request [NEI 89].

The graphs and the tables can be used to compare the performance of the
algorithms. It is observed that the algorithm having transit behavior for all sites, proposed
by Neilsen and Mizuno [NEI 89]. gives less average message complexity and delay time
than the algorithm, proposed by Raymond [RAY 89], having proxy behavior for all sites.
Both of these algorithms have static structure. Naimi’s dynamic logical tree-based
algorithm (all sites have transit behavior) also gives good performance. Raynal’s dynamic
tree-based algorithm(sites can have either proxy or transit bchavior) has variable
performance depending on its node behavior. Thus a transit node performs better than
proxy node but with transit node the system requires fully connected network, whereas
system with proxy node need not have fully connected network. Dynamic structure can
perform better than static structure when the loading factor will be different for all nodes.

Dynamic structure would form a minimal logical structure around heavy loaded node and



hence would improve the performance.
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CHAPTER VI

CONCLUSIONS

6.1 Summary

The objective of this research was to develop a GUI tool to visualize logical token-
based mutual exclusion algorithms. A simulation package was developed for several
mutual exclusion algorithms. A new two-dimensional classification of logical token-based
mutual exclusion algorithms showing the relationship between static and dynamic
properties of sites versus proxy and transit behavior of sites in the system was developed.
The classification was motivated by observing the simulation. The performance analysis
of each of the algorithms in terms of message complexity and synchronization delay was
done. All the implemented algorithms were studied under Heavy traffic load and Light
traffic load.

The application package also had visualization capability. The working of the
algorithms were visualized and the movement of the token and request messages could

be seen dynamically.

6.2 Conclusions

After studying the algorithms to achieve mutual exclusion in the distributed

system, it can be concluded that each algorithm is based on the objective of decreasing
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the message complexity and synchronization delay in the system. Each algorithm has
optimized the information storage overhead at each node. In Raymond’s algorithm [RAY
89], each node knows only the neighbor in the tree, while in Naimi and Trehel’s
algorithm [NAI 87], each node knows the "last node", the node which requested the last
in the system so the request is sent only to this "last node". Neilsen [NEI 89] and
Raynal’s [RAYUR] algorithms also impose very little storage overhead on each node.

Topology of the network plays an important factor on its performance. Neilsen
claimed that worst topology is straight line, where messages may have to be sent to the
longest path or the diameter of the system. Raymond, on the other hand, claimed that the
radiating star topology with one node in the center and all other in the leaf level, as the
best topology. Each algorithm performed differently on the same topology adopted.

On simulation of algorithms under different traffic load, it was observed that heavy
traffic load gives better performance in synchronization delay than the light traffic load.

Thus, it has the obvious advantage of minimizing the number of messages when the

network is complete.

6.3 Future Work

In developing the simulation package, assumptions were made that the messages
are not lost or altered in the system, messages are delivered in the order they are sent,
there is no site failure and the internode communication time and critical section execution

time for all sites are same. However, the package can be made more realistic by removing

all these assumptions.
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A generalized algorithm can be developed by merging good features of all these

algorithms in to a single algorithm. Similarly, the visualization can be improved further.
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APPENDIX A
GLOSSARY AND TRADEMARK INFORMATION

Centralized System: It is composed of the number of terminals sharing single resource
like CPU, Memory, and other peripherials.

Client-Server Model: In client-server model, a process known as server is responsible for
providing some facilities to other processes known as clients.

Critical Section: The part of program where the shared resource is accessed is called a
critical section "cs".

CPU: Central processing unit.
DAG: Directed acyclic graph is a simple digraph which does not have any cycles.

Deadlock: A situation when processors get blocked forever and no more work can be
done after that.

Distributed System: A distributed system is one that runs on a collection of machines, not
having shared memory or a global clock, but still appears to function like a single

machine.

Dynamic Structure: The logical structure imposed on the physical network that keeps
changing depending on the movement of the token during the entire process of

simulation.

Event Counters: Event counter is a special kind of variables to obtain mutual exclusion.
The operations defined on event counter "E" are:
Read(E): Returns the current value of E.
Advance(E): Automatically increments E by 1.
Await(E,V): Wait until E has a value of V or more.

Graph: A graph G consists of a nonempty set V called the set of nodes (points, vertices)
of the graph, a set E which is the set of edges of the graph, and a mapping from
the set of edges E to the set of pairs of elements of V.

Graphical User Interface (GUI): A visual representation of a computer program functions
that can be manipulated by nonprogrammatic means.
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Heavy Load: A situation when all sites in the system have high probability of making
request at all the time.

Light Load: A situaton when all the sites in the system have low probability of making
request at all the time.

Message Complexity: Average number of messages required by the node to enter the
critical section.

Line Topology: All sites in the network are connected logically in form of a line.

Monitor: A monitor is collection of procedure, variable. and data structures that are all
grouped together in a special kind of module. It has an important property that
helps for achieving mutual exclusion: only one process can be active at a time in
a monitor.

Multiprocessing System: A single system where more than one CPUS work together.

Mutual Exclusion: This means when one process is accessing the resource. other
processes are excluded from accessing the same resource.

Node: Refer Site.

Physical Network: The actual network connection between different CPUS in the
distributed system.

Protocol: A mutual agreement between a client and server to accomplish certain actions.

Proxy Behavior: When a node i rececives a request from a node j, it takes the request on
its own account. It now considers node j as its mandator and request the token for

itself from its parent(i).

Race Condition: A situation where many processes are using a shared resource and correct
operation of the system depends on when processess access that shared resource.

Radiating Star Topology: All sites in the network are connected logically in the form of
a radiating star.

Semaphor: An abstract data type or object with data types as an integer or binary, a
queue, and a number of operations such as P, V, initialization. P(s) is used to
block a other process, if one is already in critical section. V(s) is to wakeup a

process which is waiting for critical section.

Site: Each CPU or maching which is connected by a high speed network in a distributed
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system.

Starvation State: The state of a process when it cannot access a shared resource for
indefinate period of time in a multiprocessing systen.

Static Structure: The logical structure imposed on the physical network that remains the
same throughout the process of mutual exclusion of various sites in the system.

Synchronization Delay: Time gap between when a node i leaves the critical section and
before another node j can enter the critical section.

Token: A privilege or priority that circulates around the logical structure in a distributed
system.

Transit Behavior: When a node i receives a request from node j in a system, it just
forwards it to its parent(i). This behavior is called transit behavior.

Widgets: A user interface component such as menu, scrollbar, or dialog box.

X Window System: It allows programmers to develop protable GUI.
TRADEMARK INFORMATION

OSF/Motif is a registered trademark of the Open Software Foundation.

The X Window System is a registed trademark of the Massachussetts Institute of
Technology.

UNIX is a registered trademark of AT&T.
DEC is a registered trademark of Digital Equipment Corporation.

DYNIX, DYNIX/ptx, Sequent, and Symmetry are registered trademarks of the Sequent
Computer System, Inc.



APPENDIX B

USER GUIDE FOR "SIMME"

A. INTRODUCTION

The graphical simulation tool "SIMME" is developed to visualize logical token-
based distributed mutual exclusion algorithms. The working of the algorithms can be
visualized and the movement of the token and request messages could be seen
dynamically. This tool has been implemented on Sequent Symmetry S/81 system running
X window system using Motif widget set. Users may interact with the simulation package
by selecting, clicking or dragging with mouse the graphic element or by typing in the data
through the keyboard in the graphic element. Some of the graphic elements used in this
package are MainWindow. Menubar. Menu. FileSelectionBox. Drawing Area Widget,
Pushbutton. Text Widget, Scrollbars. They are explained briefly as follows:

MainWindow is used to organize the contents of a primary window. A main
window frame is the client area and can include Menubar, Scrollbar. command area and

message area.

Menu is used to organize a collection of buttons, labels, and seperator in a
horizontal, vertical or 2-dimensional layout within a seperate menu window.

Menubar organizes a collection of CascadeButtons in a horizontal layout at the top
of a MainWindow.

FileSelectionBox is used to select a file to be read or written from the list of files

in a directory.

Drawing Area Widget provides a blank canvas for interactive drawing using basic
Xlib drawing primitives.

Pushbutton is a button with a label on it which can be clicked using a mouse to
perform the associated action.

Scrollbars are used to scroll the visible area of a component.

Text Widget provides a full-featured text editing capabilities to the user to enter
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text.
B. DESCRIPTION

Simulation tool consists of a horizontal menubar at the top of the MainWindow.
Menubar consists of "Algorithms", "Data". "Run". "Statistics". "Help". "Exit" menupads.
The menus can be pulled down by clicking with the mouse on the corresponding
menupads. The order of entering data is important to run the simulation. The order to be
followed should be the order in the menubar: i.e. first "Algorithm" menu; second "Data"
menu; third "Run" menu; fourth "Statistics" and so on.

1. Algorithm Menu

This menu is used to select the algorithm to simulate. It consists of four options
namely, "Neilsen", "Raymond". "Naimi", "Raynal". An algorithm is selected by clicking
on one of these.

2. Data Menu

After the algorithm is selected, the next step is to provide require data. Data menu
is used for this purpose. Data menu consists of four cascadebuttons namely, "Node
Information", "Requesting Prob.", "Behavior Info", and "Site Neighbor File". Initially only
"Node Information" button is active and the rest of the buttons are inactive. This is done
to make user to enter data in this part first before they proceed furthur. When "Node
Information" button is clicked, a "Node Information" dialog box comes up. Through this
dialog box, number of nodes in the system, internode communication time (time to send
message from one node to another node), critical section execution time, and simulation
time (time one wants to run the simulation) can be entered. This information is fed in
through the keyboard in the text widget. To go from one text field to another text field,
use mouse to click on that text field. The dialog box has "Save" and "Cancel"
pushbuttons. The information entered in the dialog box is saved by pushing the "Save"
button and the information is ignored by pressing the "Cancel" key.

After the data is entered in the "Node Information" dialog box, all the other
cascadebuttons of data menu are activated. When the "Requesting Prob." cacadebutton is
clicked, another pulldown menu comes up to request the user to set the request rate of
each sites in the system. The request rate can be set as heavy load by clicking on "Heavy
Load (100%)" button or can be set as light load by clicking on "Light Load" pushbutton.
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When "As set by user” button is clicked. one more pulldown menu comes up requesting
for "From Screen" or "From External File". User can key in the individual request rate
probabilites from range 0 to 100 for each node in the system by clicking "From Screen"
button and through "Site Request Rate" dialog box. "From Screen" dialogbox contains two
pushbottom; "Save" and "Cancel", when the number of sites in the system is less than 20.
When the number of sites in the system1 is more than 20, two more pushbuttons will be
visible. They are "pgup" and "pgdn". "pgup" will do page up function and "pgdn" will do
page down function. When "save" is clicked, the data of this dialogbox is saved in the
memory for the simulation and a dialogbox comes up to request for the filename to save
so that next time this file can be retrieved directly instead of keying the data from the
keyboard for this part of data. This also contains "Save" and "Cancel" button.A file
containing request rate of each site can be retrieved by chosing "From External File"
button. This button pops up a FileSelectionBox with an information box displaying the
message regarding the file to be selected. After "OK" button is pressed, user can select
a file from current directory or any directory by setting the filter. The file containing the
required information is selected by double clicking on the filename or by selecting the
filename and then clicking on "OK" pushbutton.

"Behavior Info" cascadebutton is clicked to set the behavior for each node. This
menu is similar to "As set by user" button. Behavior is set as proxy by keying in "1" for
that site and as transit behavior key in "0".

Similarly the topolgy of the network can be set through the external file. This can
be done by clicking "Site Neighbor File" and selecting the desired file from the
FileSelectionBox.

3. Run Menu

After all the data is entered, a user is ready to start the simulation. Run menu
consists of two pushbuttons namely, "Visualization" and "Execute". When "Visualization"
is clicked, the simulation can be visualized graphically. A window containing a "Start"
and "Stop" button, a drawing area widget and two text widgets come up. The simulation
starts by clicking the "Start" button and the "Stop" button is pressed to interrupt the
simulation or close this window after the simulation is complete. The simulation is
visualized graphically in the drawing area while in the text widget below drawing area
displays the information about each action taken during the process of simulation. The
content of data structure for each node is displayed in the last textwidget after every clock

tick.

User can run the simulation without visulizing it by pressing "Execute" button of
run menu. A dialog box consisting of the text widget and two pushbuttons namely "Start"
and "Over" comes up. The simulation 1is started as described above by pressing "Start"
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button. Once the "Start" button is clicked both the buttons of the dialogbox are deactivated
and the progress of the simulation is displayed on the text widget by printing proper
messages. After the simulation is over the bottons are activated again and the window can
be closed by pressing "Over" button.

4. Statistics Menu

This menu consists of "Summary" and "Graph" cascadebuttons. Summary of the
simulation can be displayed by clicking on "Summary" button. When this is done, another
pulldown menu comes up requesting the algorithm name for which the summary is to be
displayed i.e. "Neilsen Algo.", "Raymond Algo.", "Naimi Algo.", and "Raynal Algo.". The
statistical summary for any of these algorithms can be displayed by clicking on these
buttons. When one of these algorithms is selected, "Statistics Summary" dialogbox comes
up on which the summary is displayed. This dialogbox can be closed by pressing on
"OK" button. Hard copy of summary can be obtained by printing files "neilsen.sum",

"raymond.sum”, "naimi.sum", "raynal.sum" files from the shell prompt.

Graphs can be displayed similarly i.e. press "Graph" button and then the algorithm
name button and the graph window will come up. To print the graph, click on "Print"
button on the window. This generates a postscript file and this can be latter printed on a
postscript printer. The window can be dismissed by pressing "Quit" button.

5. Help Menu

Help menu gives help to use this tool. Help menu consists of 3 pushbuttons. By
clicking on the related button the help information can be displayed on the dialogbox.

6. Exit menu

To exit the tool, Exit menu can be clicked and then a question dialog box comes
on the front screen to verify the same. By clicking "OK", button the tool can be quit
otherwise the exit message is ignored.



APPENDIX C
SYSTEM ADMINISTRATOR GUIDE FOR "SIMME"

The simulation tool 'SIMME’ is developed using Motif widget set release IV on
Sequent Symettry S/81 running X window system. 'Makefile’ is provided to compile and
generate executable code 'SIMME’. The tool can be used to simulate distributed mutual
exclusion algorithms in two different modes namely, Visualization mode and Execute
mode.

The procedures to simulate each algorithm and mode of operation are stored in a
program file and their repective declaration are stored in a header file. The list of
filenames, their repective algorithms, and the mode of execution are shown in Figure 16.

Algorithm Mode of Execution Program file Header file
Neilsen Execute neilsen.c neilsen.h
Neilsen Visualization neilvisu.c neilvisu.h
Naimi Execute naimi.c naimi.h
Naimi Visualization naivisu.c naivisu.h
Raymond Execute raymond.c raymond.h
Raymond Visualization rayvisu.c rayvisu.h
Raynal Execute raynal.c raynal.h
Raynal Visualization raynalvisu.c raynalvisu.h
---------------- Main Program -------------- tdmea.c tdmea.h

Figure 16: List showing Algorithms and its corresponding files

In the Visualization mode, the simulation can be done for a system with a
maximum of eight nodes. This constraint is due to limited size of the display screen. The
data structure used in this mode is an array of size 10. Hence, with any increase in the
maximum number of nodes in the system, the array size should also be increased
accordingly. In the Execute mode, the dynamic movement of the token and the request
message is not displayed on the screen and hence the simulation can be done for unlimited
number of nodes in the system. The memory is allocated dynamically depending on the
number of nodes in the system as entered by the user. However, the limitation on the
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number of nodes is set by the memory of that computer.

In accepting the probability request rate and the behavior of each node from the
screen, a dialogbox containing a table of maximum 10 entries is displayed on the screen.
This can be increased by increasing ‘max_table’ variable in ‘tdmea.h’ header file.
Correspondingly the table structure which is an array of 20 elements, should also be
modified.

To accept filename. a string of 20 characters are used. For example. string
latestfile in "globalme.h’ header file and string "okfname” in "tdmea.h" header file use 20
characters and 15 characters respectively. These sizes can also be increased if needed.

The variable ‘setwpr pos’ is used to hold the last cursor position in the text
dialogbox which is poped up in the Execute mode and Visualization mode to print the
simulation process information on the screen. This variable is of the type integer and
hence the maximum cursor position is restricted to range of the integer variable. After this
it is reset to zero.

An output file is created to store the simulation results. While running the
simulation, after every clock tick, various statistical parameters are noted. They are stored
in the output file. The nomenclature of the output filename is as follows: first four
character of the algorithm name + load factor of the simulation + extension of the file
(C.out’). For example, the filename of Raymond’s algorithm running for light load will
be ’raymlight.out’.

These files are processesd to create the summary file. To display statistical
summary for a selected algorithm, files with extension ".out’ for that algorithm is opened
and the final statistical result is calculated (Refer PrtSumm() function of tdmea.c
program). The summary is stored in a file named as follows: algorithm name + file
extension (’.sum’). For example, summary file for raymond’s algorithm will be
‘raymond.sum’.

For the help menu. the description of each option is stored in a seperate file. The
files describing the algorithms are ’naimi.hlp’, ’raymond.hlp’, ’raynal.hlp’, and
"neilsen.hlp’. The help file regarding simulation package is ’aboutsim.hlp’ and the help
file about the tool description is 'misc.hlp’.

A list of program files and header files is shown in Appendix D. If any of the
program file is modified then "SIMME" should be recompiled. If any new program file
is added in the application, Makefile should be modified accordingly.



APPENDIX D

LISTING OF PROGRAM FILES

The design and implementation issues of simulation package ’SIMME" is discussed in
Chaper IV. The list of program files and header files are shown in this section.

HEADER FILES:

me.h
globalme.h
tdmea.h
drawfunc.h
neilsen.h
neilvisu.h
naimi.h
naivisu.h
raymond.h
rayvisu.h
raynal.h
raynalvisu.h

PROGRAM FILES:

tdmea.c
execfunc.c
drawfunc.c
neilsen.c
neilvisu.c
naimi.c
naivisu.c
raymond.c
rayvisu.c
raynal.c
raynalvisu.c
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The source code for "SIMME" can be obtained from the following address:

Dr. K.M. GEORGE (Prof.),

Computer Science Department,
Math Science Building,
Oklahoma State University,
Stillwater, OK-74078 .
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