
A GRAPIDCAL SIMULATION TOOL FOR

LOGICAL TOKEN-BASED DISTRIBUTED

MUTUAL EXCLUSION ALGORITHMS

By

LATA R.N. SINGH

Master of Science (Physics)

School of Sciences, Gujarat University,

Gujarat, INDIA

1988

Submitted to the faculty of the
Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirement for

the Degree of
MASTER OF SCIENCE

December 1994

A GRAPHICAL SIMULATION TOOL FOR

LOGICAL TOKEN-BASED DISTRIBUTED

MUTUAL EXCLUSION ALGORITHMS

Thesis Approved:

ii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my major advisor, Dr. K.M. George,

for his guidance, inspiration, and friendship. Many thanks also go to Dr. Mitch L. Neilsen

without whose constant guidance and valuable suggestion would not have led me to the

successful completion of this work. My sincere thanks to Dr. Huizhu Lu for serving on

my graduate committee.

Special thanks go to Dr. Dan Storm, who supported me during my masters course

and gave opportunity to apply my skills in the area of Agriculture Engineering.

My deepest gratitude is due to those nearest my heart. Many thanks to my

supporting and loving husband, who inspired me and helped me in the completion of this

thesis. Finally, I would like to express my gratitude to my parents who provided

everything I wanted in my life till now and to my brother and sisters who constantly

encouraged me to acheived my goals.

111

TABLE OF CONTENTS

Chap ter Page

I . INTR ODU CTION

I I . OVER VIEW OF MU TU AL EX CLU SION IN D ISTR IBU TED
SY STEMS . 4

2 . 1 D efinitions . 4
2 . 1 .I Token . 4
2 .I .2 Time Stamping . 5

2 .2 Princip les for distributed mutual exclusion 6
2 .2 .I Permission based algorithms . 6
2 .2 .2 Token Based Algorithms . 6

I II . LITERA TUR E SUR VEY . 9

3 .I Survey of Permission Based Algorithms 9
3 . 1 .I Lamp ort' s Mutu al Exclusion Algorithm 9

3 . 1 .2 R icart and Agarwala' s Algo rithm I 0
3 . 1 . 3 Carvalho and R oucairol ' s Algorithm IO
3 . 1 .4 Maekawa' s Algorithm in D ecentralized System II

3 .2 Survey of Token Based Algorithms I2

3 .2 .I Algorithms with no Logical Structure I2
3 .2 .l .I Suzuki and K asami ' s Algorithm I 3
3 .2 . 1 .2 Heuristically- aided Algorithm I 3
3 .2 . 1 .3 Algorithm U sing D ynamic Information Structure I 4

3 .2 .2 Algorithms with Logical Structure 15
3 .2 .2 .I Token Based Algorithm using Logical R ing 15
3 .2 .2 .2 Tree Based Algorithm by R aymond 15
3 .2 .2 . 3 A D istributed Algorithm by Naimi & Trehel . . . I 8
3 .2 .2 .4 A D istributed Algorithm by R aynal 22
3 .2 .2 .5 A Generalized Structure for Tree Based

Algorithms . 2 3
3 .2 .2 .6 Fair Mutual Exclusion on a Grap h of Process . . . 2 9
3 .2 .2 . 7 D ag Ba sed Algorithm for D istributed Mutual

Exclusion . 3 0
3 .2 .2 . 8 A D istributed Algorithm on a Ri ng o f Processes . 3 3

IV

Chap ter Page

IV. D ESIGN AND IMPLEMENTATION ISSU ES 35

4.1 Imp lementation Platform and Environment 35

4.1.1 Sequent Symmetry S/81 . 36
4.1.2 X 11 Window system . 36
4.1.3 Motif . 37

4.2 D esign of the Tool . 37

4.3 I mp lementation D etail s . 40
4.4 Overview of Grap hical U ser Interface 42

V. SIMU LATION RESU LTS . 5 0

5 .1 Samp le Simulation . 5 0
5 .2 D iscussion of Results . 54

5 .2.1 A New Classification of Logical Token-Based Mutual
Exclusion Algorithms . 54

5 .2 .2 Statistical Analysis . 57
5 .2.2.1 Neilsen' s Algorithm 65

5 .2.2.2 Raymond' s Algorithm 65

5 .2 .2.3 Naimi' s Algorithm . 66
5 .2.2.4 Raynar s Algorithm . 66

VI . CONCLU SIONS . 69

6.1 Summary . 69

6.2 Conclusions . 69
6.3 Future Work . 70

R EFER ENCES . 72

APPEND ICES . 74

APPEND IX A - GLOSSARY AND TRAD EMARK INFORMATION 75

APPEND IX B - U SER GU ID E FOR " SIMME" . 78

APPEND IX C- SY STEM AD MINISTRATOR GU ID E FOR " SIMME" . . . 82

APPEND IX D - LISTING OF PROGRAM FILES 84

v

LIST OF TABLES

Table Page

I. Simulation Configuration . 58

II. Simulation Results obtained for Heavy Load . 59

III. Simulation Results obtained for Light Load . 60

IV. Simulation Results obtained for 50% Load . 60

vi

LIST OF FIGUR ES

Figure Page

1 . Taxonomy of D istributed Mutual Exclusion Algorithms 8

2. Examp le of Logical Tree Based Algorithm . 1 9

3 . Initial situation of an Examp le of Tree Based Algorithm 25

4 . Final Configuration of an Examp le of Tree Based Algorithm 27

5 . Examp le of D ag Based Algorithm . 3 1

6 . D evelop ing a Site Neighbors File for a Tree Based Network 4 1

7 . Linear rep resentation of a Star Network . 42

8 a. Initial Screen . 43

8 b . D ata Menu with " Node Information" selected . 44

8 c . D ata Menu with " Site R equest R ate" selected . 44

8 d . D ata Menu with " Site Behavior" selected . 45

8 e . D ata Menu with " Site Neighbor File" selected . 45

8 f. A Snap shot of " Visualization" Mode . 46

8 g . A Snap shot of " Execute" Mode . 4 7

8 h. Statistics Summary Screen . 4 8

8 i . A Grap h p lotted through Statistics Menu . 4 8

8j . Help Menu Screen . 49

Vll

Figure Page

8 k. Ex it Menu Screen . 4 9

9a. Summary of Statistics obtained from " Visualization" mode 5 1

9b. Summa ry of Statistics obtained from " Ex ecute" mode 5 1

1 Oa. A vg . Synchronization Delay Time Graph for " Visualization" mode 52

1 Ob. A vg. Message Complex ity Graph for " Visualization" mode 52

1 0c . Avg. Synchronization Delay Time Graph for " Exe cute" mode 53

1 Od. Avg. Message Complex ity Graph for " Ex ecute" mode 5 3

1 1 . A Classification of Logical Token-Based Algorithms in terms of

Statitic and Dyna mic Structure . 5 5

1 2 . A Classification of Logical Token-Based Algorithm in terms of

Tra nsit and Prox y mode . 56

1 3 . A Two-Dimensional Classification of Logical Token-Based Algorithms

using adaptive reversal techinq ues . 57

14 a. S ite Neighbor File (linear6.nbr) . 5 8

14 b . Behavior Data File (raynal .bev) . 5 8

1 5a. Avg. Synchroniza tion Delay Time Graph for Neilsen ' s Algorithm 6 1

15 b . Avg. Message Complex ity Graph for Neilsen' s Algorithm 6 1

15 c. Avg. Synchroniza tion Delay Time Graph for Raymond ' s Algorithm 62

15 d . Avg. Message Complex ity Graph for Raymond' s Algorithm 62

15 e . Avg. Synchronization Delay Time Graph for Naimi ' s Algorithm 63

15 f. Avg. Message Complex ity Graph for Naimi ' s Algorithm 63

15 g. Avg. Synchroniza tion Delay Time Graph for Raynal ' s Algorithm 64

15 h . A vg. Message Complex ity Graph for Raynal ' s Algorithm 64

Vlll

Figure Page

1 6. List showing Algorithms and its corresponding Files 8 1

IX

CHAPTER I

I NTRODUCTION

I n multiprocessing systems, there are many processes working together. They

often share resources, such as memory, fi les or printers. A situation may arise where

many processes are using a shared resource and correct operation of the system depends

on when processes access that shared resource . This is cal led a race condition. In order

to avoid race conditions. mutual exclusion is required, that is, \Vhen one process is

accessing the resource, other processes are excluded from accessing the same resource.

The part of program where the shared resource is accessed is cal led a critical section

"cs". To have a good solution to mutual exclusion, the fol lowing conditions should be

satisfied always [TAN 91] :

• One and only one process can be inside its critical section at any given time .

• No assumptions should be made regarding the speed or number of processors.

• No process running outside its critical section may block other processes .

• Each process should be al lowed to enter its critical section within a finite time.

Multiprocessing systems can be either centralized or distributed. A Centralized

system is composed of several terminals sharing single resources l ike CPU, Memory and

other peripherals . Thus, in central ized systems, control l ing algorithms are based on the

existence of shared memory and al l processes have access to this common memory.

Mutual exclusion in the centralized system can be solved by either " lock" variables or by

2

interprocess communication primitives such as semaphores. event counters. and monitors.

Various algorithms have been proposed, l ike Decker' s algorithn1. Dijkstra· s alg orithm.

Hyman' s algorithm, and Peterson' s algorithm [RAY 8 6] . All these algorithms use a shared

variable that acts as a lock on a resource whenever a process is accessing it and when the

process has finished accessing the resource the lock is removed.

A distributed system is one that runs on a collection of machines. not having

shared memory or a global clock, but sti l l appears to function l ike a single machine. In

general , a distributed system wi ll have the fol lowing properties [TAN 9 1] :

There is no shared memory, and therefore al l the information is scattered on

various machines connected by a computer network .

Processes make decisions ba sed on locally available information.

Failure of one process should not effect the system.

There is no global clock to synchronize the event.

Processes communicate with each other through message passing only.

The mechanism of sharing resources in a distributed system is different from a

centralized system. Mutual exclusion in a distributed system can be achieved by receiving

permission from all sites explicitly or implicitly, for instance by receiving the single token

in the system. Definition of terms associated with mutual exclusion in distributed system

is explained in Cha pter I I .

Algorithms to achieve mutual exclusion in the distributed systems ca n be classified

into two classes: Permission based and T oke'1 based. The token based algorithms ca n be

further clas sified into two classes: Algorithms with no logical structure imposed on the

3

system and Algorithms with logical structure imposed on the system. These algorithn1s

a re reviewed in the literature survey of Chapter I I I .

The purpose o f this research i s t o develop a package to simulate the logical token­

based distributed mutual exclusion algorithm using an adaptation of reversal techniques.

These reversal techniques are discussed in chapter V. The tool, thus ca n be useful for the

fol lowing purposes.

The graphical tool can be used to understand the working of the mutual exclusion

algorithm, with a view to improve them. The visualization capabilities can help the user,

to identify any hidden problems that make the algorithm unsui table for his particular

network.

The tool can be used as an aid to educational purposes.

The performa nce study of algorithms, in terms of Message Complexity and

Synchronization Delay can be done under different load conditions.

The design and implementation details of the simulation tool are discussed in

Chapter IV . The performance study of the algorithms implemented, and the statistical

results obtained, are discussed in Chapter V .

F inally, the thesis concludes with summa ry, conclusion and a brief discussion of

future work in Chapter VI .

CHAPTER II

OVERVIEW OF MUTUAL EXCLUSION IN DISTRIBUTED SYSTEMS

The concept of mutual exclusion exists tn both centralized and distributed

systems. In distributed systems several uncoordinated users from different sites may access

a shared resource concurrently. Therefore, all these concurrent requests should be

serialized using some algorithm so that each request is satisfied within a finite time. The

problem of mutual exclusion in distributed systems is more complex because a distributed

system consists of geographically dispersed information sites: s1, s2, s3, • • • S0, which are

connected by computer network and they communicate only via message passing. There

is no common clock and the sites do not share memory. Further the messages can be

delayed or lost and the nodes as well as the channels connecting the nodes can fail. In

addition there is no centralized coordinator to coordinate all the activities.

2.1 Definitions

2.1.1 Token

Token is a privilege or priority that circulates the logical structure in a distributed

system. The site possessing the token can enter critical section while other sites have to

wait till they receive the token.

4

5

2 . 1 .2 Time Stamping

Since in distributed systems there is no common physical clock, there should be

some mechanism to set order, on a set of messages. This mechanism was proposed by

Lamport [LAM 78] and is called Time Stamping or principle of a Logical clock.

The mechanism works as follows:

Each site possesses a logical clock hi which is set to zero initially. Every time a

message is to be issued by process pi, it stamps the message by (m, hi, i) where "m" is

the message, "�" is the clock value, and "i" is the process id.

The clock is managed as follows:

• When process Pi issues a message (m, hi, i), the � value is incremented by 1 and

then issued.

• When Pi receives a message (m, �, j) it sets � to the value (max (hi, hj) + 1), i.e.,

it sets its own clock with maximum of local clock value and the clock value of the

requesting process, so that any problem of drift among various clocks of communicating

processes is avoided.

Thus each event or message is time stamped and the order of events is maintained.

To resolve any conflict among the events with same time stamped value, the following

rules are observed.

1 . � < hj implies mi precedes mj in the logical clock.

2. if�=� and i < j then mi precedes mj else mj precedes mi.

And, this way a total ordering of events can be maintained in the system.

6

2.2 Principles for distributed mutual exclusion

Various algorithms have been designed for achieving mutual exclusion. These algorithms

are based on any of the two principles, permission based [RAY 91] and token based

[RAY 91].

2.2.1 Permission based algorithms

Consider geographically dispersed information sites s1, s2, • • • sn, of a distributed

system. In permission based algorithms, a site wanting to enter a critical section, first gets

permission from all other sites, i.e., it sends request messages to all sites or set of sites

depending on the algorithm adopted and waits for their permission. The other sites give

permission to the requesting site if they are not using critical section. Otherwise they

delay giving permission until they finish using the critical section. The requesting site on

receiving permission from all the sites enters the critical section.

Refinements have been done to reduce the number of the messages required to

send per critical section request. Timestamping is done on each event to maintain the

order of events.

2.2.2 Token Based Algorithms

Systems based on the token concept are simple. Token-based algorithms work as

follows. A process holding token can enter critical section while other processes just wait

till they get the token. Always only one token is present in the system. This gives mutual

exclusion among processes. The movement of token can be either perpetual mobile or

7

token-r eq uesting method.

In per petual mobile method, the pr ocesses in the system ar e arranged in a logical

r ing str uctur e and the token keeps rotating in the ring. Process holding a token. if it so

wants, can access critical section and after using it, passes the token to its neighbor. But.

if a process does not want to enter cr itical section, it simply pas ses the token to its

neighbor. Thus, the token keeps r evolving in the r ing.

In token- req uesting method, a node makes req uest to all other nodes and the token

holding node after using the critical section passes the token to the r eq uesting node. The

token- based method can be fur ther classified into two categories.

Token- based method with Logical str uctur e imposed on the physical network.

Token- based method with no Logical structure imposed on the physical network.

In logical structured token-bas ed method, a logical str uctur e l ike a ring, a tree, or a dag

is imposed on the physical network.

Refinements have been done to decr ease the number of messages per critical

section such as logically str ucturing the r eq uesting processes as a tr ee or making a

heur is tic guess to locate the token holder or using par al le l fl ooding techniq ue. A

taxonomy of distr ibuted mutual exclusion algor ithms is shown in the figure I .

PERMISSION
BASED

DIST M.E. ALGO.

WITH LOGICAL
STRUCTURE

TOKEN
BASED

WITH NO LOGICAL
STRUCTURE

Figure 1: Taxonomy of Distributed Mutual Exclusion Algorithms

8

CHAPTER III

LITERATURE SURVEY

As shown by the taxonomy (Figure I), distributed mutual exclusion algorithms can

be classified into:

• Permission based algorithms

Token based algorithms

Algorithms related to each of these categories are discussed in this chapter.

3.1 Survey of Permission Based Algorithms

In permission-based algorithms, each site before entering critical section, takes

permission from all other sites or set of sites depending on the algorithm. Some

permission-based algorithms are as follows:

3 .1.1 Lamport's Mutual Exclusion Algorithm [RAY 86]

Lamport, in order to implement mutual exclusion in a distributed system, has

adapted the centralized algorithm for the same. In the algorithm for the centralized

system, a queue is maintained for request and release of messages. Requests are enqueued

in the order of their arrival and the serving is done in the same order.

Lamport's algorithm maintains order of the message by using timestamping of

each event. A site wanting to enter critical section broadcasts the message to all sites. All

9

1 0

sites acknowledge the req uest . The site after using the critical section again broadcasts the

release of critical section message to all sites. Each site has a single message q ueue with

messages totally ordered. S ite having the oldest timestamped value enters the critical

section next. To enforce mutual exclusion, 3(n-l) messages are req uired. where "n" is

number of sites in the distributed system.

3 . 1 .2 Ri cart and Agarwala' s Algorithm [RIC 8 1]

Ricart and Agarwala' s Algorithm has further reduced the number of messages

req uired per critical section. The site wanting to enter critical section sends req uest

messages to all other sites. Other sites on receiving the req uest, reply giving permission

to enter critical section. The reply can be sent immediately or can be delayed until the site

completes the processing of critical section. Timestamping techniq ue is used to maintain

the order of events. Number of messages req uired per critical section is 2(n-l) .

3 . 1 .3 Carvalho and Roucairol' s Algorithm [CAR 83]

This algorithm is a modified form of Ri cart and Agarwala' s Algorithm. He re , the

number of messages per critical section req uest is further reduced. In this algorithm, a

site, if using critical section can keep using it until another site sends a req uest for critical

section. A single q ueue server is maintained and the ordering of messages is maintained

using timestamping of the events. The number of messages here varies between 0 and 2(n-

I).

1 1

3 . 1 .4 Maekawa's Algorithm in Decentralized System [MAE 85]

Maekawa has divided all sites into groups or sets. This further reduces the number

of messages per critical section to sqrt(n). A site in a system has to get permission only

from its group members and if the permission is granted then that site can go ahead to use

critical section. Otherwise the site has to wait till it gets permission from all other

members of the group.

Groups so formed have the following properties:

• For any combination of i and j, 1 <= i, j <= n.

s. "' s. � 0 I j

• The set si, 1 <= i <= n always contains i

The size of si, :si: , is k for any i

• Any j, 1 <= j <= n, is contained in D si's, 1 <= i <= n

Where constant k denotes the number of members in a group, and D denotes the number

of groups in which a site is a member.

The group can be formed in many ways. one way is;

N = (D - 1) K +1

where k = sqrt(n).

There can be simultaneous requests from various sites, which can result In

deadlock. This is solved in the following way:

• A site makes REQUEST to members in its group.

• Each member gives permission and locks itself.

12

• If a site gets permission from all its members, it executes critical section and then

sends a RELEASE message to unlock them.

• If a member is already locked by another site, it sends an INQUIRE message to

other members of the group.

• On receiving an Inquire message, the priority is checked by sequence number and

the corresponding action is taken to RELINQUISH the lock.

Thus the number of messages required per critical section varies from 3*sqrt(n)

to 5*sqrt(n), i.e., c*sqrt(n), Where c is a constant ranging from 3 to 5.

3.2 Survey of Token Based Algorithms

Algorithms ustng token requesting method to achieve mutual exclusion in

distributed system are discussed in this section. Token-based algorithms can be further

classified as those,

• With logical structure

• With no logical structure

3 .2.1 Algorithms with no Logical Structure

In this category, the algorithms do not impose any logical structure on the physical

network. However, a site can enter the critical section only after possessing a token.

Related algorithms are discussed in this subsection.

13

3.2.1.1 Suzuki and Kasami's Algorithm [RAY 86]: Message traffic is further

reduced in this algorithm to n messages per critical section request, where n is the number

of sites in the system. Each node requesting to use critical section, sends a message to all

other nodes. Token contains the timestamp value of all processes visited by it. Site

holding the token, and using critical section, checks the request array and token array to

find the first site whose request timestamp is greater than its timestamp in token array and

sends the token to it. n messages are required: (n-1) messages to send request to all sites

and I message to receive a token.

3 .2.1.2 Heuristically-aided Algorithm [SIN 92]: Heuristically-aided algorithm is

an improvement on the Suzuki-Kasami's algorithm. All above-mentioned algorithms are

deterministic in nature. This means, each site does not maintain the state information of

all other sites but, when a site wants to make a request for critical section, it sends the

request message to all the other sites and the token is assigned to a site depending on the

lowest timestamp value of the received request messages from different requesting sites.

In Heuristic method, each site maintains the state information of all sites. Thus a

site wanting to make request knows the set of sites that may probably be holding the

token and hence the request is sent only to those sites. This decreases the number of

messages sent per critical section. The set of sites are those sites that are either holding

the token or requesting the token. Heuristic guessing can be achieved by the following

data structure. Each site has 2 state vectors. One state vector stores the state of sites and

other stores highest sequence number of each site. The state of sites can be any of the

four.

R = Requesting the token, N= Not requesting the token,

H = Holding the token, but not executing critical section,

E = Executing critical section.

14

Token also maintains state vector and sequence number of all sites. Whenever the

request or token is received, the state vector is updated. Each set should have at least one

sites in the state vector that is requesting. Number of messages vary from 0 to n, where

n is number of sites in the system.

3.2.1.3 Algorithm Using Dynamic Information Structure [SIN 89]: This algorithm

is based on having dynamic state information of all the sites. The state information is

updated continuously as requests are made. The sites are arranged in a specific order say

s1, s2, • • • sn such that each site has to request only to all the sites in the right of it and

to no sites in the left of it. Only after getting the permission, a site can enter the critical

section. Thus each site maintains a request set (i.e., sites from which it has to obtain

permission before entering critical section) and an inform set (sites to which it has to

inform after its completion of critical section).

An interesting feature of the algorithm is that its information structure adapts itself

to the environments of heterogeneous traffic of critical section requests and therefore to

statistical fluctuations in traffic of critical section requests to optimize the performance.

A site that is always requesting will be on the right-hand side and hence reduces the

number of messages. While the sites that are less busy will be clustered on the left. This

helps in increasing performance of the system in terms of number of messages sent per

critical section. Messages vary from 0 to 2(n-1).

15

3.2.2 Algorithms with Logical Structure

Algorithms that impose a logical structure on the physical network are discussed

in this subsection. The logical structure may, however, be static or dynamic in nature. If

the logical structure imposed on physical network does not change with the movement of

request message or token, then the structure is static. But, if the logical structure keeps

changing dynamically with the movement of token, then the structure is dynamic.

3.2.2.1 Token Based Algorithm using Logical Ring [RAY 86]: In this algorithm,

all the nodes of the distributed system are arranged in a logical ring. The token, a special

privilege to enter critical section keeps rotating in the logical ring. A node that possesses

a token and wants to enter critical section, can enter the critical section, otherwise it waits

for the turn. After a node exits critical section, it passes the token to its neighbor. The

token moves in one direction and so there is no starvation. Messages required in the best

case is 1 and in the worst case is infinity.

3.2.2.2 Tree Based Algorithm by Raymond [RAY 89]: Here the request of any site

(X) is only sent to its neighboring node (Y) which in turn forwards it, to its neighbor, in

the direction of a token holder. Thus the number of messages per critical section depends

on the topology that is a tree. The node does not have to know the whole tree but only

knows its neighbor. Each node has a variable HOLDER that shows the direction of the

token holder node.

Thus when a node sends a request to neighbor Y, neighbor Y will start functioning

on X's behalf and forwards the message.

16

Hence 3 kinds of messages are sent REQUEST, PRIVILEGE, and INITIALIZE.

A REQUEST message is sent when a site wants to access critical section, to the

neighboring site in the direction of the token holder node. A PRIVILEGE message is sent

by the token holder node to its neighboring node that is in the direction of the requesting

node. INITIALIZE message is sent at the start of the whole process, when one site is

arbitrarily given the privilege and that site sends a message to its neighbors about its

privilege. The neighboring site initializes its HOLDER variable and passes it further to

its neighbor.

ALGORITHM :

Procedure initalization()
begin

end.

if (holding the token) then
begin

end
else
begin

end

holder = self;
using = true;

holder = name of neighbor in whose subtree the token is present;
using = false;

send initialize(i) message to all neighboring nodes;

Procedure send _req()
begin

end.

if (holder <> self and request_ q <> empty and not asked) then
begin

end;

send request to holder;
asked = true;

procedure recv _req()
begin

end.

enqueue request to request_ q;
if (holder <> self)

send request to holder;

procedure execute_ cs()
begin

end.

if (holder <> self)
begin

send request to holder;
wait until a privilege message is received;

end
using = true;
CRITICAL SECTION;
using = false;
if (request_q <> empty)
begin

assign _privilege();
end;

procedure assign _privilege()
begin

end

if (holder= self and not using and request_q <> empty) then
begin

end

holder = dequeue(request_q);
asked = false;
if (holder = self) then
begin

end
else

using = true;
(initiate entry into critical section)

send privilege to holder;

17

Various other topologies like line, radiating star, ring etc., can be applied using the

same algorithm. This algorithm can be further optimized by using piggy back strategy and

greedy strategy.

I 8

3 .2.2.3 A Distributed Algorithm by Naimi & Trehel [TRE 87] : The algorithm uses

logical rooted tree structure where each node that is requesting the critical section

becomes the root of the logical tree. Thus, the structure of the tree keeps changing

dynamically. Each requesting node sends the request to only one site and that site sends

permission to the requesting site. This single node to which the request is sent is the last

node that was holding the token. Thus, it has two data structures.

• Logical rooted tree: The rooted tree is maintained by updating the tree such that

the new requesting site, if it is not the root, is transformed to be the root and sites that

are between the root and the requesting node will have the new root as "last".

• Waiting queue : It holds the order in which the privilege is given.

Thus, there are cases when many sites are requesting simultaneously and hence several

rooted trees are formed and when all the transit messages arrive they form a single rooted

tree.

In this algorithm, there is no need to maintain the logical clock. Number of

messages per critical section is order of log :n:. Example I, illustrates this algorithm and

Figures 2(a), 2(b), 2(c), 2(d), 2(e) respectively show the dynamic change in the logical

structure.

Example I : [TRE 87]

* Initial state of the distributed system. Site I has privilege.

19

2 3 4
5

Figure 2 (a):

* Site 2 invokes the critical section. It sends a request to site 1. Site 2 becomes the

root. Site 2 has privilege and enters the critical section.

3 4

2

Figure 2 (b) :

5

* S ite 3 invokes the critical section. It sends a request to site 1 which transmits to

site 2. Site 2 is in the critical section : site 3 waits

20

4 5

2

3

Figure 2(c) :

* Site 4 requests the critical section. It sends a request to site 1 which transmits to

site 3 . S ite 2 is in the critical section; sites 3 and 4 wait.

2 5
I

t

1

Figure 2(d):

* Site 2 releases the critical section. It gives privilege to site 3 . Site 2 requests

critical section again. It sends a request to site 3 which transmits to site 4. Site 3 is in the

critical section. Sites 4 and 2 wait.

2 1

5

3

2

Figure 2(e) :

Specification of the algorithm are given below:

All the sites execute the same algorithm. Each site has local variables namely;

Privilege, requesting_ c _ s : Boolean

Where, Privilege is true if site i controls the critical section and requesting_ c _ s is true if

site i has invoked the critical section and remains true until it releases the critical section.

• A site i may enter the critical section if "privilege" = true and "requesting_ c _ s " = true.

• A site i gives privilege to another site if "privilege"= true and "requesting_c_s" = false.

• A site i may transmit a request to another site if "last" <> nil .

Algorithm:

procedure initialization()
begin

last= 1 ;
% initialization o f last is the same for every site %

next= nil ; requesting_c_s = false;
if last = me then

privilege = true;last = nil;
else

privilege = false;
endif;

end % initialization %

procedure request_ c _ s()
begin

requesting_ c _ s = true;
if last <> nil then

endif

send(req,me) to last
last = nil;

end %request_ c _ s o/o

procedure release_ c _ s()
begin

requesting_ c _ s = false;
if last <> nil then

endif

send(ok,me) to next,
next= nil;
privilege = false;

end o/orelease c s %

procedure receiving_ message(message,k)
case

message = REQ --> case
last=nil--> if requesting_c_s then

next =k;
else

endif

privilege = false;
send(ok,me) to next
next= nil;

last <> nil --> send(req,k) to last;
endcase;
last = k;

message= OK --> privilege= true;
end case

22

3 .2.2.4 A Distributed Algorithm by Raynal [RAY 86] : Raynal has proposed a

token-based algorithm which can work for various network topologies like tree, line, ring,

23

and complete network. The number of messages per critical section depends on the

topology of the part icular network.

In the a rbitrary network, a node requesting for token sends its request to its

neighboring node. The REQUEST message consists of the fol lowing structure. req-id and

req-info. req-id consists of req-origin and req-time (req-time is the logical time as

specified by I amport). req-info contains a sender and already seen nodes. When the

neighbor receives the request, if it ha s the token, checks the request-a rray for pending

request and sends the token to the oldest of them through the already-seen nodes. I f the

neighbor does not have the token, it forwa rds it to its neighbor a nd adds its node number

to the already seen node list. The node also updates the request a rray to delete any old

request received from the sa me node earlier or adds it in a s a new request.

This algorithm can be used on any arbitrary network. Each node maintains local

information only . This algorithm uses distributed communication techniques to achieve

mutual exclusion.

3 .2 . 2 . 5 A Generalized Structure for Tree Based Algorithms [RA YUR]: This

algorithm imposes a dynamic rooted tree structure to connect nodes logical ly. Each node

contains local information rega rding the state, behavior and its relative position in the

system. The variables used in the algorithm are as fol lows :

1 . Token- herei: True if node i ha s the token .

2 . Askedi: True if node i is currently waiting for the token or executing critical section.

3 . Parenti: I f node i is not possessing the token and wa nts to get it, it sends a request(i)

to pa renti.

24

4 . Lenderi: It indicates the node to which node i will have to give back the token once

it exits critical section.

5. Behavior(i) : It can be either of the following :

Transit: When node i receives a request from node j , it just forwards it to its parenti. It

sets parenti = j .

Proxy: When node i receives a request from node j , it takes the request on its own

account. It now considers node j as its mandator and requests the token for itself from its

parenti. When node i receives the token from some node k then it passes it on to node j .

I f the token has been lent to node i then node i sets its parenti = k else it sets parenti =

NIL and node i will become the lender.

6. Mandator(i): This is used in proxy behavior of nodes as explained above.

If more than one request is queued on a node then they are handled in a fair way by using

policies like FIFO. This happens when more than one node have parenti = same node j .

Then node j can receive multiple requests.

Example [RA YUR] :

The set of variables defined above constitute the information structure of each site

in a tree structured token based algorithm. The following example illustrates the

algorithm. The Figure 3 below describes the initial situation. Node 8 wishes to enter the

critical section, and the token is with node number 1 ; only nodes belonging to the oriented

path (defined by the successive variables parent) linking node 8 to node 1 are shown in

the Figure 3 . Nodes 3, 5, and 6 are assumed to be permanently proxy (they are circles in

the figures), whereas nodes 1 , 2, 4, 7, 8, are assumed to be permanently transit.

8 _ _.,... 7 ... 1

Figure 3 : Initial situation of an Example of Tree Based Algorithm

Node 8 wishes to enter the critical section and not token_ heres:

0 send request(8) to parents = 7; askeds = true; mandators = 8

Node 7 receives request(8) and behavior7 = transit and not token_here7:

send request(8) to parent7 = 6; parent7 = 8

Node 6 receives request(8) and behavior6 = proxy and not token_here6:

25

o/o 6 takes the request on its own account % send request(6) to parent6 = 5; asked6 = true;

mandator6 = 8

Node 5 receives request(6) and behaviors = proxy and not token_heres :

% 5 takes the request on its own account % send request(5) to parents = 4 ; askeds = true;

mandators = 6;

Node 4 receives request(5) and behavior4 = transit and not token_here4:

send request(5) to parent4 = 3; parent4 = 5

Node 3 receives request(5) and behavior3 = proxy and not token_here3:

% 3 takes the request on its own account % send request(3) to parent3 = 2; asked3 = true;

mandator 3 = 5 ;

Node 2 receives request(3) and behavior2 = transit and not token_here2:

send request(3) to paren� = 1 ; paren� = 3;

Node 1 receives request(3) and behavior1 = transit and token_here1 and asked1 :

% 1 gives up the token to 3 since its behavior i s transit % send token(nil) to 3 ;

parent1 = 3; token_ here = false;

Node 3 receives token(nil) and mandator3 = 5:

o/o 3 becomes the lender

% parent3 = nil ; send token(3) to mandator3 = 5; mandator3 = nil;

Node 5 receives token(3) and mandators= 6:

parents = 3 % 3 is the sender of the token %

26

% complete the mandate for node 6 % send token(3) to mandators= 6; mandators= nil;

askeds = false;

Node 6 receives token(3) and mandator6 = 8:

parent6 = 5 o/o5 is the sender of the token o/o

% complete the mandate for node 8 o/o send token(3) to mandator6 = 8; mandator6 = nil;

asked6 = false;

Node 8 receives token(3) and mandators= 8:

parents= 6

lenders= 3

%6 is the sender of the token %

% the token will be returned to node 3 o/o token_ heres = true

CRITICAL SECTION

send token(nil) to lenders = 3; token_heres = false; askeds = false

Node 3 receives token(nil) and mandator3 = nil :

token _here3 = true; asked3 = false;

At the end the rooted tree is shown below in Figure 4 :

1

7 _ _,..,. 8

/
4

2

Figure 4 : Final Configuration of an Example of Tree Based Algorithm

algorithm:

procedure call_ to_ enter_ cs()
begin

wait(not askedi);
askedi := true;
if not token _herei then mandatori := i;

send request(i) to fatheri;
wait(token_herei); o/o receipt of token sets lenderi o/o

endif
end o/o enter cs %

procedure call_ to_ exit_ cs
begin

if lenderi <> i then send token(nil) to lenderi; token_herei = false; endif;
askedi = false;

end o/o exit cs %

procedure receipt_requestU)
begin

wait(not askedi);
case of behaviori = proxy

begin % i becomes proxy of j %
askedi = true;
if token _herei
then % i temporarily lends the token o/o

send token(i) to j ; token_herei = false;
else o/o i requires the token o/o

27

mandatori = j;
send request(i) to father1:

end if
end
behaviori = transit
begin
if token _herei

then o/o give up the token o/o
lenderi = ni l;
send token(nil) to j; token_herei = false;
else % forward the request o/o

send request(j) to fatheri
endif
fatheri = j;
end

end case
end 0/o request 0/o

procedure receipt_ token
begin

token_herei = true;
case of mandatori = nil

begin % case :return of the token after temporary lending 0/o
askedi = false

end
mandatori = i
begin o/o claim of i will be satisfied o/o

% update the position variables o/o
if j = nil then % i will not have to give back the token (no lender) %

lenderi = i; fatheri = nil
else o/o i will have to give back the token o/o

o/o update the path towards lender o/o
lenderi = j ; fatheri =k;

endif;
mandatori = nil
end
mandatori <> nil
begin % case : i honors the request of its mandator, o/o

% meanwhile, its behavior may have changed 0/o
askedi = false;
case of behaviori = proxy

begin

28

if j = nil then o/o i becomes the lender and temporary lends the token %
lenderi = i; fatheri = nil

send token(i) to mandatori;
askedi = true

else % j is the lender of the token o/o
fatheri = k;
send tokenG) to mandatori

end if
end
behaviori = transit
begin

if j = nil then o/o the token must not be returned o/o

end
end case

lenderi = nil ; fatheri = mandatori;
send token(nil) to mandatori

else % j is the lender of the token o/o
fatheri =k;
send tokenG) to mandatori

endif

mandatori = nil ; token_ herei = false
end
endcase

end %Token%

29

3 .2.2.6 Fair Mutual Exclusion on a Graph of Process [VAN 87] : Van de

Snepscheut suggested the following algorithm:

Each communication channel is made to point to the processes in the tree having

the privilege. A process that wants the privilege, sends a request along the directed path

of a communication channel toward the processes having the privilege. The token travels

along the same path but in opposite direction. The privilege on traveling the channel

reverses the direction of the communication channel. Once the privilege reaches a process

all communication channel now points toward that process. If more than one request is

queuing on a process then the privilege is sent to one process and a request is also sent

so that the privilege comes back and all pending requests are satisfied. This algorithm is

30

extended to a graph as fol lo\vs . Depth first search technique is used to construct a paln1

tree i n the undirected graph whose root is the node \Vith the privi lege. Al l channels are

directed to the root. The other modification is that al l the outgoing channels fron1 the node

receiving privilege are inverted not just the channel on which the privi lege travels.

3 .2 . 2 . 7 Dag Based Algorithn1 for Distributed Mutual Exclusion [NEI 89]: The

algorithm is as fol l ows :

E ach node maintains three variables.

1 . Last : A logical dag structure is imposed by the last variable on the nodes. When a node

receives a request message, it passes it to the neighboring node that is pointed by its " last"

variable .

2 . Next: This variable indicates the node that \Vi l l be granted mutual exclusion after the

current node . I f it is less than zero then the current node wi l l hold the privi lege.

3. Holding : When a node is holding the privi lege but is not in its critical section then

hol ding is set to true.

A sink node is the last node in the implicit waiting queue also it is the last node

in the path along which a request travels. When a non-sink node receives a request

message, i t passes it on to its neighboring node indicated by variable "Last" . It then sets

its variable " last" to point to the node from which it received the request .

When a sink node(i) receives a request message, it sets its variable "Next" to point

to node(j) initiating the request. Now node(i) becomes a non-sink node and node(j)

becomes the ne\\' sink node.

The above algorithm is i l lustrated by the fol lowing example [NE I 89]. Consider

31

a system consisting of 6 nodes, as shown in figure 5 . Assume that Node 5 holds the token

initially. Let the directed edges indicate the direction in which the LAST variables are

pointing. The initial configuration is shown in Figure Sa. Suppose node 5 wants to enter

the critical section. Since node 5 holds the token, it can enter immediately. Now, suppose

node 3 wants to enter the critical section. It sends a REQUEST message to node 4 and

sets its LAST variable to 0 to become a new sink (ref. figure 5b). Node 4 receives the

request and sets its LAST variable to point to node 5 , on behalf of node 3 (ref. to figure

5c). Node 5 receives the REQUEST message. Since node 5 is a sink node, it sets its

NEXT variable to point to node 3 and sets its LAST variable to point to node 4 to

become on-sink. When node 5 leaves the critical section, it sends a PRIVILEGE message

to the node indicated by its NEXT variable, i .e . , node 3. Finally, node 3 receives the

PRIVILEGE message and enters the critical section (ref. figure 5d).

Figure 5 (a) :

0-.... � 0-.... � 0
Figure 5 (b):

algorithm :

Figure 5 (c) :

Figure 5 (d) :

32

There are two procedures at each node : PI and P2 . Procedure PI is executed when

node i requests for entry into the critical section, and procedure P2 is executed when it

receives a request from some other node.

procedure PI; (* Enter critical section *)
begin

end;

if (not HOLDING) then
begin

end;

send REQUEST(I ,I) to LAST;
LAST := 0;
wait until a PRIVILEGE message is received

HOLDING:= false;
CRITICAL SECTION

if (NEXT != 0) then
begin

end;

send PRIVILEGE message to NEXT
NEXT:=O;

else HOLDING := true;

PROCEDURE P2 (* Handle REQUEST(X, Y) msg *)
begin

if (LAST=O) then

end;

begin

end;

send PRIVILEGE message to Y;
HOLDING := false;

else send REQUEST(I <Y) to LAST;
LAST := X;

PROCEDURE INIT; (* Initialize nodes *)
begin

else

end;

if (holding the token) then
begin

end;

begin

end;

HOLDING := true;
LAST:= 0;
NEXT:=O;
send INITIALIZE(I) message to all neighboring nodes;

wait for INITIALIZE(J) message to arrive from node j;
HOLDING :=false;
LAST:=J;
NEXT:=O;
send INITIALIZE(I) message to all neighboring nodes, except node j;

3 3

3 .2 .2 .8 A Distributed Algorithm on a Ring of Processes [MAR 85] : The set of

processes that want to use critical section is called masters. When a process wants to enter

critical section, it communicates with another process called the server. Therefore, for N

masters there are N servers. Each master communicates only with its server and servers

communicate with each other.

A.J. Martin has suggested three solutions when the communication network among

the servers is a ring. They are

1 . Perpetuum Mobile: The privilege circulates continuously. When a process wants to

34

enter critical section, i t waits for its turn ti ll its server gets privilege. If a node does not

want to use critical section then it passes on the privilege to a neighboring node.

2. Reflecting Privilege: In this solution the request moves in one direction and the

privilege in the opposite direction.

3 . Drifting Privilege : In this solution both the request and privilege move in the same

direction.

Martin concludes that the second solution is most elegant and efficient among the

three solutions. In the second solution the completion of pending request is used to

transmit the privilege reducing the communication traffic to its minimum.

This thesis is concerned with the development of a graphical simulation tool for

distributed mutual exclusion algorithms. The design and implementation issues associated

to the too 1 are examined in the next chapter.

CHAPTER IV

DESIGN AND IMPLEMENTATION ISSUES

4. 1 Implementation Platform and Environment

The graphical tool for simulation has been implemented on the Symmetry S/8 1

system running the X Window system under the D YNIX!Ptx operating system.

DYNIX!Ptx is a UNIX system port that is compatible with AT&T System V 3 .2 [SEQ

90] . The X Window system or X allows programmers to develop portable graphical user

interface (GUI) . X allows programs to display windows containing text and graphics on

any hardware that supports the X protocol . Thus, X-based application can work on

heterogeneous environment consisting of mainframes, workstations and personal

computers. The X Window system has Client-Server architecture. A Server is a process

responsible for all input and output devices and a client is the application.

The X-interface, provides GUI capability to an application program. It is written

either in Xlib or Toolkit. Xlib is a set of standard C library functions and works as a low

level interface to X. Toolkits is a set of higher level subroutine libraries and is used to

implement a set of user interface features. The simulation tool is developed using the

Motif widget set, Xlib functions, and C programming language. Graphs are plotted using

BL T package.

35

36

4. 1 . 1 Sequent Symmetry S/8 I

Sequent Symmetry is a main frame-class multiprocessing system. It can run both

Dynix V 3 .0 and Dynix!Ptx. It is implemented on the Unix platform and is a true

multiprocessor system, having multiple CPU s and a single common memory. Sequent

symmetry systems have the following characteristics[SEQ 90] .

True multiprocessor, having multiple CPUs.

• Single common memory shared by all processors.

All processors, I/0 controller and memory modules are plugged into a single high

speed bus.

All processors are tightly coupled.

• All processors are dynamically load balanced.

All processors are symmetric.

Hardware support for mutual exclusion, is support exclusive access to shared data

structure.

4 . 1 .2 X I I Window system

X I I Window system developed by MIT, provided GUI capability to programs

using it. X window system requires bitmapped graphic display terminal, so that the

graphic image can be constructed using pixel . The window system uses client -server

architecture to communicate with the X client, which is X window based application and

the X server, a software to deal with 110 of the bitmapped graphic-display terminal, in

the X protocol . From the X client point of view, X protocol is a collection of function

3 7

libraries. The Xlib i s a library that implements the X protocol for the C programming

language. These functions in Xlib are preprogrammed to create. move, and destroy

windows or draw lines etc. A level above Xlib is X Toolkit or Xt. where X window

applications can be written from a higher level . Widgets are preprogrammed graphics

objects that can be used by GUI programs. Some popular widget sets on X window

system are Motif by OSF, Open Look by AT & T, and Athena by MIT. These widget sets

provide menus, buttons, dialogboxes etc . , to be used in a GUI application.

4 . 1 . 3 Motif

Motif is the widget set developed by OSF, which provides GUI on any system that

supports X window system. Motif is a widely available application programming interface

and provides distinctive three-dimensional appearance. It requires an X window system

including Xlib and Xt intrinsics. Number of widgets can be defined and are instantiated

into objects in the application program like Pushbutton, Text, Messagebox, and Scrolled

window.

4 .2 Design of the Tool

In the distributed system, sites communicate with each other only through message

passing, since there is no shared memory. Therefore, for a site to request the service of

resource or enter critical section, it has to receive permission from all other sites in the

system. In the simulation of the algorithm in this thesis, the following assumptions are

made:

3 8

• Messages are not lost or altered i n the system, while they are sent from one site to

another.

• The messages are delivered in the order they are sent.

• The communication medium is reliable and there is no node failure .

• The internode communication time is always the same between two sites during the

entire simulation period and is set by the user.

• The critical section time for each site is the same and this constant is set by the user

before the starting of the simulation.

Various parameters are given by the user like the topology of the network, number

of sites in the system, internode communication time, critical section execution time by

each site, request rate of each site as a probability also termed as traffic load, and period

of the simulation.

Each of the implemented algorithms is described in Chapter I I I . Initially, the token

holder node is selected at random. A global clock is maintained throughout the simulation

period, which keeps track of the generation of request, forwarding of the request and

critical section execution. At each clock tick, requests are generated by sites depending

on the respective traffic load. These requests are sent in the direction of a site holding

token by the method dictated by the chosen algorithm. The request for access to critical

section by nodes is generated by Monte Carlo methods that is described below.

Monte Carlo Method: The Monte Carlo method used in the simulation is as fol lows :

1 . The user sets the probability of request generation by each site. Each �ite is assumed

to be independent.

39

Let fi , . . . fn be the probabilities of generating request for critical section by site 1 ,

site2, • • • siten.

2. A random number (E) is generated.

If, 0 < E <= f1 then site 1 generates a request and so on.

3 . Once, a site makes a request, it cannot make another request until the earlier request

made by it has been satisfied.

The traffic load for each site is probabilistic in nature. Simulation can be done for

different load factors, namely, Heavy Load, Light Load and as set by user.

Heavy Load is a situation when all sites have high probability of making request

always. A site is never idle. Once the request made by a site is satisfied, it makes the

request again for critical section. Thus, the probability of making request is 1 00%. Here,

when a site makes a request, it always has to wait for the token because some other site

is using the critical section. Maximum number of messages are flowing in the system

during the simulation period.

Light Load is a situation when all sites have low probability of making request

always. The sites in the system are idle most of the time. At any given instant of time,

maximum of one site is making a request and hence the number of messages flowing in

the system are minimum during the simulation period. There are various methods of

simulating a light load. The method adopted in this thesis is as follows. When a site is

executing critical section, no other site can make a request. When a site finishes executing

critical section then one site is selected at random to make a request.

The traffic load of each site in terms of the probability can be set by the user to

40

test the particular case.

After the request generation is started, the working of the mutual exclusion

algorithm can be visualized on the screen. Movement of requests and token can be

dynamically visualized on the screen. However, the visualization can be done only for

limited number of nodes to give clear graphics on a screen of limited size. Also, as

described earlier, simulation is a dynamic process, large number of nodes would make the

screen cluttered and difficult for a user to understand. Simulation for large number of

nodes can be done without visualizing the sites using the 'Execute ' option.

4.3 Implementation Details

For the system of n sites, the sites are always numbered from 0 to n- 1 . A global

clock is maintained to keep track of internode communication time, simulation time and

critical section execution time. A global array "global_array" is also maintained for each

algorithm. It contains five fields. These five fields in the structure are used to store 'code

number ' , ' from node #' , 'to node #' , ' source node # ' and ' time left' . Where, ' code

number' represents ' 1 ' for request, '2 ' for token, and '3 ' for critical section; ' from node

#' represents the node # from which the message is sent; ' to node #' represents the node

to which the message is sent; ' source node #' represents the node from which the

request originated; ' time left' represents the time remaining for completion of the

operation.

At each clock tick of the simulation period, Monte Carlo simulation method,

discussed in section 4 .2, is used to select the sites from the set of sites that can make

4 1

request then. All the information is stored in the "global_array" described above.

Processing of new request message, forwarding message, sending request, execution of

the critical section and, processing of the new request messages are registered in this

global array. The field indicating ' time left' in the global array is an important parameter.

After each time unit, the 'time left' field is decrement by one unit and checked to see, if

any of the above operations can be completed and appropriate action is then executed.

Parallel handling of the request messages from various sites to their corresponding

neighbor, is efficiently handled by the "global_array" .

The topology of the network is given through an external file indicating the neighbor of

each sites in the system. For example, a tree based topology on a system of six sites, can

be stored in a file, by knowing the neighbors of each site in that system. Figure 6

illustrates the development of site neighbor file, "nbhr_file" .

nodes - - - :::> neighbor nblu_f!le

0 --->

1 ---> 0, 2, 5 0 2 5
2 ---> 1 , 3, 4 1 3 4
3 ---> 2 2
4 ---> 2 2
5 ---> 1

Figure 6 : Developing a Site neighbors File for a Tree Based Network

There are two options in which the simulation can be executed, with or without

visualization. Visualization is limited to a system consisting of maximum 8 nodes. But,

42

without visualization, in the ' Execute' option, the upper l in1it on the number of sites is

imposed only by the memory capabil ity of the con1puter on \:vhich the simulation is run .

In ' visualization' option, the topology of the systen1 is ahvays represented in a linear

form. This is done to maintain the symmetry in the visualization. The l inear representation

of a star- based net\vork is shown in Figure 7 .

Figure 7 : Linear representation of a Star Network

4.4 Overview of Graphical User Interface

The data needed to run, the simulation is obtained from the user through the

Graphical User Interface. It consists of a menu bar having ' Algorithm' , ' Data' , ' Run' ,

' Statistics' , ' Help' and ' Exit' menus . A snapshot of the initial screen of the tool is shown

in figure 8 a. An ' Algorithm' menu al lows the user to choose the distributed mutual

exclusion algorithm for simulation . The algorithms available for simulation are by Neilsen

[NEI 8 9] , Raymond [RAY 8 9] , Naimi [TRE 8 7] and Raynal [RA YUR] . The required data

for the simulation can be entered through the ' Data' menu. It consists of the fol lowing

submenus: Node Information, Request Rate, Site Behavior and Site Neighbor Files.

S I M U L A TI O N P A C K A G E

F O R

T O K E N - B A S E D D I S T R I B U TE D

M U T U A L E X C L U S I O N A L G O R I TH M S

(SIMME)

UTA • .N. SINGH

COMI'CJTE.R SCIENCE DEJ'ARTMEHT

0/CUHOittA STAT£ UNN£RSITY

Figure 8a: Initial Screen

43

Number of nodes in the system, internode communication time, critical section execution

time, and simulation period can be entered through the 'Node Information' submenu. The

load of the site (Heavy load, Light load, or, as set by user) can be entered through the

'Request Rate' submenu. The behavior of the site (Transit or Proxy) is entered through

the 'S ite Behavior' submenu. The file providing, the topology of the network is chosen

from ' Site Neighbor File' submenu. The snapshot of the Data menu is shown in Figures

8b, 8c, 8d,8e.

The tool has an option of visualizing the simulation and executing without visualization.

These can be done through the 'Run' menu. A Visualization screen consists of 3

subscreens namely display screen, description screen, and status screen. The visualization

starts.

-
- :: 1 '" I

-- · - � -- -

C K A G E

R I B U T E D

... _...,._,....,_""..,..!!IIIWI ... _......IA L G 0 R I T H M S

(SJMME)

LATA II..N. SINGH

COMPUTE/i SCIEIVCE D£PARTM£.Nr

0/CI.AJ(OMA STATE. UNIY£RSITY

STIU.WA TE/i. 0/C - 7«J7j

Figure 8b: Data Menu with "Node Information" selected

� - - - z::: • r
!1 ... 1 0. !o-' '!'� "'"

�11e Requ.l Rlitil
Sue • _

I E=:J M U L A T I O N P A C K A G E

7 E=:J F O R
I E=:J
. E=:J N - B A S E D D I S T R I B U T E D
' E=:J
' cc=J E X C L U S I O N A L G O R I T H M S

I� � (S!MME)

LATA II..N. SINOR

COMPUTE/i SCIENCE. D£PARTM£.Nr

OICI.AJ(OIM STATE UN/Yf.RJfTY

ST/U.WA TER. 0/C - l«Jlj

Figure 8c: Data Menu with "Site Request Rate" selected

44

-�lot Proi!Y • 11TI'W\an • OJI
\ I tA I S1t.- .._..,.

1 I· I T I O N P A C K A G E

1 I · I
J I· I

F O R

. l�o. I s
� I· I lL ' I · I

II - I � (

E D D I S T R I B U T E D

U S / O N A L G O R I T H M S

SIMME)

UTA R.N SINGH

COMP(TT£11 SCIENCE D£PAilTMENT

OKLAHOMA STAT£ UNN£J<SITY

STIUWATE.R OK - 7.,;75

Figure 8 d : Data Menu with "Site Behavior" Selected

.:..r- - - - - - -- - - -- - - - - ::
- ' . r·,

S I M U L A T I O N P A C K A G E

u .. po

T O K J ' "" �U T E D l ll/lt...,...,..,V.SI.;U..Iv-.9 J
M U T U A ''"'"'• .. � .. ! R I T H M S

nlchloa

...
I l tvo·"""-'""-'"' I

STIUWATE.R OK • 7.,;75

Figure 8e : Data Menu with "Site Neighbor File" selected

45

46

with displaying initial configuration in the display screen. The sin1ulation proceeds \Vith

dynamical ly displaying the movement of token. the movement of request and the

execution of the critical section. The description of the visualization is displayed in the

description screen. The description highlights the following.

• Generation of new req uest at each clock tick .

• Sending/Forwarding the req uest to the neighboring site.

• Sending/Forwarding the token to the requesting site.

• Execution of critical section.

The information contained local ly at each site in the system at every clock tick is

displayed in the status screen. The snapshot of visual ization is sho\\n in Figure 8 f.

lbtl : �1 •"1 ,., Cr t t l cal W. t • • M T ,_ 0 llkl
...,.,. � r,.,. -.. 2,. J
...,. J � ... ,.,. Cr l \ lc.ti s.c-t • • - ,,_ 0 ...
...._ J IJI •-. V t t l c:al llk t l .., :.:. -==�,,.:: �t�� =·r .. , ... o � -

=�� -:::;,: ���u� =':" " T t • 0 -=w .

llj,,-.,1� 1.-. o...- • • • M • • •

IIIDG(-o - >tO.. I I C. r O . l.Sl :: - 1 t£11
ICJI£ 1 1 - 4 1l i(. : O . la&T � - 1 . 11"11
-al •7 - JtQ. IIIC. • O . LJIIS T � l 11(11
IIC.: •J - JIIQ. J I II(. • O \)l&l r · l . J(X"
... �DI � • O . UIS ' • - 1 11(.11
..,. � -- MG. IItl. . o. UIIS' : -L lll(r

�::--------
; . -, ... ,...w .. _ e - , ,

�\ - c.--. - - ­
.

' • • • 1111 - _ ,_

, _ ,......_ , ..

Figure 8 f: A Snapshot of "Visualization" mode

47

Execution mode contains the description screen only. The snapshot of execution mode

is shown in Figure 8g.

- � - - - - - - -- - - - - � - - - - - - - - - z - - - - - --
I • 1-

........ 4 t l .. lor Cr1t1UI S.U• . 1 t• f IIIU .
....... � , te \
·� ... - ., - · ·- - l .. - 1
Jcr l a• • S
... l i.llt,. Crn. tct�I IIIC't t•
Jar , , • • ,
,....,.....,,,., � ,,..,. ._..... 1 \.e 1
£ .-cut a cro ei Crttlcel *t•• o-.,.. 'w lladt J
...,, .. l •• , , 2
J or 1 t .. ! "!
IIIIDdlt 1,t , ,. fr trtuc.ei S.Ctt• et ' •• ' ..c•
...,,,. -.,.., ,,... ._. ,
.... t , . : .
r....,--ct,,.. a....-t e1 lltdl !t ,,.,. lliDdl 1 '-- ._.. o
-.. 1 U. I,. t n t aul ..:lllr\
for ''• � ,
l oren.tt a• oi C n t lc..I Wtt• Ot.w "w 2
....,, ,. , J ... -.. 1 te ... l
St-.lett• O.,.. • I I M · • ·

LATA R.N. SINGH

COM!'I/TU SCIENCE DEJ'AiffM!NT

OKlAHOMA STA TE UNIYE.RS/TY

M S

Figure 8g: A Snapshot of "Execute" mode

Statistics of the simulation can be obtained by choosing 'Statistics ' menu. Statistics is

displayed as a summary report in which the summary of the simulation at different load

setting can be viewed at a time. The graphs are plotted by interfacing through BL T

package. Snapshots for the Statistics menu are shown in figure 8h, 8i.

Help menu gives a brief description of all the algorithms implemented and also gives the

key to use the package. Exit menu is used to exit the tool. The snapshot of the Help menu

is shown in figure 8j and Exit menu in 8k.

- - - - - -- - - - - - % - - -
. r

TATlSTlCS SWMAA
iVIIn mo .ll!D S K--· ..n\R. OC.IAI. "-IDI ""

M U

lou i _ ol _ : 6
[......... �.c:.«l. , •• : 2 t���t.t
���-!!- : 1 e.n

Si&�IM.I4rl ,_. lod
,.,...,_, _

: 1000 .-c.
: U 7

COMPtn£R SCIENCE. DE.l'ARTMENr

OI(U.HOMA STATE UNfVERSITY

Figure 8h: Statistics Summary Screen

�
· - -

-
- - - - - - - -- - - :::: · - - - - - - - · . -,-

-r · -· � - .
. , -

I"M hr �·· llllll -,....__. b � :r

T. -_.. ... _ ,._ .. B--. '- K A G E

F..- 1 . Avg Complexity

� ,...o __ .,._-•-.� ·---•�.-.,-1
� - ,::�·::;::.� 1

A�t S1tlaflecl

R I B U TE D

4. L G O R I TH M S

MENr

"·"""�--,_ ... _,.. fTY ._ ____________________ �

STIUJ/1/ATU. 01(- 7«:J7j

Figure 8i : A Graph plotted through Statistics Menu

48

-1 - -- - - ----- - - -- - - - · · z - ---- - - - - - ---- - - . r

T O K

M U T U J

- · - --- - Im - - - -- - ·

n. • l p i U. -..- v.& .., • fvl l" � � • l .. ac.l
� - ·lr-«t-' «y: I I C: F P I ... l t t l ,. ...,....,_.
,_. l�'� U. � II U .. \r .. lt.

.._.. • 11tA '" U. .__to. ..-. t.e � '• tr t t lul ..n. ••·
,, u. t Loe 1 \4 •• .., '" Uw .,,...t , � ., u. \.aaro-
.. htrr,, .,... .,.,. ,,..1,. u. � 1.--..r• u. '----' -...
t.. lt.. ,. , ,.,.. ' " Uw , ..,. , ,_,. 0.
� U. ld.�l•t-. U. .._.. �. tl It I t .,. ,,.. U. cr • t l u l
.-: t a _. , If I t u ,. , _,. 1 t "-' I t .U • l-.. 1 ..,. tel• ...,l t..
,...._, ,,._,. , , li"l l,.. l l It _... ..,_ ""*' ... ,_.,._.t,lw Y
v. •. ,...... ... v. .,. ,.,

(«ff --·�·· tJrw _.....,, •• :

1. 1...-t : I l .. 1ul ... t� I t ,........, llw U. I� W!l' 1 4tl• .,_ tt.
..... ,.....,_, _ , , � ... lt "­
u. ,.,_..... ,,. ,.... ,.,,... M. 'w 1\f I..._ Wll' ilble.

1. llla!1 : Thu ..,-,ele '"''CAI.a o. ..- ••cl'l •t l l • .-� -.....1
bt l ioa iOtl tl t.." U. CV""W'l II It , urw. u.-
� ! l ! lw l cf U. • t "l l l ...

J. "-lfl,.: ,.,. II ... i.t."'' tlw ,... ! v i i ._ lilA ll U ,..._ 1111 I U
tr l l l cal ._.t ier lJ'w'l .,_1111"'1 u .et t..e ""-

COMPUTER �IENC£ 0£/'ARTME.NT

OKLAHOMA STAT£ UNfY£RS/TY

Figure 8 j : Help Menu Screen

_, -- --- - - -- -- --- - - --- - :: - -· ·· - - - - - -- - - -- - - \ . ·,- .

S I M U L A T I O N P A C K A G E

F O R

T O K E N - B A S E D D I S T R I B U T E D

M U T U A L E X C L U S I O N A L G O R I T H M S

tdlaloa po�

UTA lt.N SINGR

COMPUT£R SC!ENC£ D£/'ARTME.NT

OKLAHOMA STATE. UNIVE..RS/TY

STIUWAT£.1? OK · 7407l

Figure 8 k : Exit Menu Screen

49

CHAPTER V

SIMULATION RESULTS

5 . 1 Sample Simulation

Sample simulations were performed using the following configuration:

Algorithm

of Nodes

Internode Communication Time

Critical Section Execution Time

Simulation Period

Requesting Probability

Sites Behavior

Topology

: Neilsen's Dag-based Distributed Algorithm[NEI89]

: 6 (for Visualization option)

: 1 00 (for Execute option)

: 7 Sees.

: 5 Sees.

: IOO Sees.

: Heavy Load (I 00%)

: Transit mode.

: Linear

The summary of statistics obtained in the visualization mode is shown in Figure

9a and that obtained in the execution mode is shown in Figure 9b. The respective graphs

generated by the tool are shown in Figures 1 Oa, 1 Ob, I Oc,and I Od.

50

REPORT ON NEILSEN ' S DAG-BASED MUTUAL EXCLUSION ALGORITHM

Total number of nodes : 6
Internode communication time : 7 sees

Critical section Execution time : 3 sees

FOR HEAVY LOAD

Simulation Period : I 00 sees

Total Request Made : 1 7

Total Finished Request : I I

lower bound of Message Complexity : 0 messages

Upper bound of Message Complexity : 5 messages

Average Message Complexity 1 .32 messages

lower bound of Synchronization Delay : 0 sees.

Upper bound of Synchronization Delay : 7 sees.

Average Synchronization Delay 3 .97 sees.

FOR LIGHT LOAD

• • • • NO INFORMATION AVAI LABLE • • •

LOAD AS SET BY USER

• • • • NO INFORMATION AVAILABLE • • •

Figure 9a: Summary of Statistics obtained from "Visualization" mode

REPORT ON NEI LSEN ' S DAG-BASED MUTUAL EXCLUSION ALGORITHM

Total number of nodes : 1 00

Internode communication time : 7 sees

Critical section Execution time : 3 sees

FOR HEAVY LOAD

Simulation Period : I 00 sees

Total Request Made : I l l

Total Finished Request : 1 1

lower bound of Message Complexity : 0 messages

Upper bound of Message Complexity : 2 messages

Average Message Complexity : 1 .08 messages

lower bound of Synchronization Delay : 0 sees.

Upper bound of Synchronization Delay : 7 sees.

Average Synchronization Delay : 3 .97 sees.

FOR LIGHT LOAD

•• • • NO INFORMATION AVAILABLE • • •

LOAD AS SET BY USER

• • • • NO INFORMATION AVAILABLE •• •

Figur e 9b: Summary of Statistics obtained fr om "Execute" mode

5 1

�-t:" • g u r e 1 .

t­
�
ca
4)
c
c:
0
...
ca
N
c:
0 2
�

.r:.
CJ
c:
�
CJ)

2

A v g . S y n c h r o n i z a t i o n D e l a y

10 = Ht 41 1 1 L o 11 d fo r 1 00 S t c s .

• 1 0

R e q u e s t S a t i s f i e d

Figure I Oa: Avg. Synchronization Delay Time Graph for "Visualization" mode

4» F i g u r e 1 .
E

t-

...

en
>

<

1 . 5

1

0 . 5

2

A v g . M e s s a g e C o m p l e x i t y

" 10 = Hta i!Y L o a d fo r 1 0 0 S u s .

' • 1 0

R e q u e s t S a t i s f i e d

Figure I Ob: A vg. Message Complexity Graph for "Visualization" mode

52

�· 1 t:::" a g u r e .

1-
>­
ns
Q)
c
c:
0

...
ns
N
c:

'

0 l
...

.s::.
(J
c:
>-

en

C')
>
<

A v g . S y n c h r o n i z a t i o n D e l a y

10 = H t a �· .v L o a d fo r / 0 0 S t c s .

' 6 • 1 0

R e q u e s t S a t i s f i e d

Figure I Oc : Avg. Synchronization Delay Time Graph for "Execute" mode

a> F i g u r e 1 .
E
1-
>-

><
Q)
a.
E
0

0
G)
C')
ns
U')
U')
Q)
�

C')
>
<

A v g . M e s s a g e C o m p l e x i t y

" 10= H t a vy L o a d fo r 1 00 S t c s .

R e q u e s t S a t i s f i e d

Figure I Od : A vg. Message Complexity Graph for "Execute" mode

53

54

5.2 Discussion of Results

After studying the algorithms and simulating each of thern, the fol lo\ving results

were obtained.

5 .2.1 A New Classification of Logical Token-Based Mutual Exclusion Algorithms

Based on simulation, a new insight to c lassifying the mutual exc lusion al goritluns

was observed. As stated earl ier. distributed mutual excl usion algorithn1s arc classified in

to two c lasses, namely: Permission-based algorithms and token-based algorithn1s . In token­

based algorithms. there are t\vo subclasses . They are token based algorithms with logical

structure imposed on a physical network and with no logical structure imposed on a

physical network. A taxonomy of distributed mutual exc lusion algorithms is gi ven in

Chapter 2 .

In th is thesis the emphasis is on logical token based algorithms. A detai led study

of these algorithms shows that the logical structure can be either static or dynam ic in

nature . Static structure is the logical structure imposed on the physical network that does

not change with the movement of the request messages or the token message during the

entire period of mutual exclusion by various sites in the system. However, the edges

joining a site to its neighboring sites which direct the flow of messages in terms of

requests or token passing, may or may not change their direction. Algorithm proposed by

Neil sen and Mizuno [NEI 89] uses the technique of reversing the edges between the

neighboring sites in the static structure. While the algorithm proposed by A . J . Martin

[MAR 85] is with no edge reversal (direction between a node and its neighbor can

55

reverse) , in which the direction of flow of re que st and toke n re main fixe d. pl'11amic

structure is the logical structure impose d on the physical ne t\:vork that kee ps changing

depending on the movement of the toke n during the e ntire proce ss of sin1ulation. This

would lead to the reversal of the path (direction of the path be twee n the re que sting node

and the toke n holding node reve rses) or reve rsal of path and e dge. The algorithn1

proposed by Naimi and Trehe l [NAI 8 7] use s path re ve rsal te chnique in dynamic structure

and the algorithm proposed by Raynal [RA YUR] is the combination of the path and the

edge re versal. A Classification of logical toke n base d alg orithms in te rn1s of static and

dynamic structure is shown in Figure 1 1 .

\VITH EDGE

REVERSAL

ALGORITHMS:
By NEILSEN

. By RAYMOND

WITH LOGICAL
STRUCTURE

WITH NO EDGE WITH PATH

: REVERSAL REVERSAL

. By NAIMI & By MARTIN
TREHEL

COMB OF PATH
& EDGE REVERSAL

. By R.AYNAL

Figure 1 1 : A Classification of Logical Token-Based Algorithms in te rms of Static and
Dynamic Structure

The above classification is in terms of logical structure of the system. A careful

56

study of the algorithms at each node suggests that algorithms can also be classified in

terms of proxy and transit sites. Raymond' s tree-based algorithm [RAY 89] treats each

site as proxy while Neilsen in Dag-based algorithm [NEI 89] and Nain1 i [TRE 87] in

logical rooted tree algorithm. treats each site as transit. Raynal [RA YUR] however. in the

Generalized tree-based algorithm uses a combination of transit and proxy sites in the

algorithm. A classification of logical token based algorithm in terms of transit and proxy

sites is shown in Figure 1 2 .

ALL NODES

PROXY

ALGORITHMS :

. By RAYMOND

WITH LOGICAL

STRUCTURE

ALL NODES

TRANSIT

. By N AIM I & TREHEL

. By NEILSEN

SOME PROXY &
SOME TRANSIT

. By RAYNAL

Figure 1 2 : A Classification of Logical Token-Based Algorithm in terms of Transit and
Proxy Nodes

By overlapping the above classifications for the logical token based algorithm, a

two dimensional c lassification can be presented . Figure 1 3 shows the relationship between

static and dynamic structure of the system verses proxy and transit behavior of sites for

the logical token based mutual exclusion algorithms using some kind of reversal

technique.

s
T

A
T

I
c

I

c

D

rev)

Naimi

(pa.th

rev.)

rev.)

Rayna.l
(path

re .)

Ra.yna.l
(comb of

edge &
path rev)

All Nodes

Transit
All Nodes

Proxy

Comb, of

Tr. & Pro .

57

Figure 1 3 : A Two-Dimensional Classification of Logical Token Based Algorithm using
adaptive reversal techniques

5 .2 .2 Statistical Analysis

The simulation was done for logical token based algorithms using an adaptation

of reversal technique, shown in Figure 1 3 , for same number of sites, internode

communication time, critical section execution time, traffic load, simulation period, and

logical structure. The configuration used is shown in Table I. Linear topology of the

system was set through a site neighbor file (l inear6.nbr) shown in Figure 1 4a.

With the above configuration, the simulation was run for Heavy load, Light Load

58

and 50% load. The behavior of nodes for Raynal ' s algorithm [RA YUR] was set through

a file (raynal .bev) shown in Figure 1 4b.

of Nodes Comm. CS Exec Sim Period Topology

Time(sees) Time(sees) (sees)

6 2 1 1 000 Linear

Table 1 : Simulation Configuration

0 2

1 3

2 4

3 5

4

Figure 1 4a Site Neighbor File
(linear6.nbr)

0

0

0

0

Figure 1 4b: Behavior Data File
(raynal . bev)

Various statistical parameters were collected at each clock tick. These parameters

were noted to calculate Message Complexity and Synchronization Delay for each

59

algorithm.

Message Complexity is defined as the average number of messages required by a

node to enter the critical section [NEI 89] . Message complexity. however. depends on the

topology of the system. Synchronization Delay is defined as the time gap. \Vhen a node,

say node I , leaves the critical section and before another node. say node J. can enter the

critical section. This measures the efficiency of the algorithm in passing the permission

to the requesting node .

The results obtained by the simulation of al l the algorithms with the above

configuration are tabulated in Tables I I , I I I , and IV . The graphical results are shown in

Figures 1 5a, 1 5b, 1 5c, 1 5d, 1 5e, 1 5f, 1 5g, 1 5h.

Algo Mesg. Complexity in Msgs. Synch. Delay Time in Sees.

rithm
Lower Upper Average Lower Upper Average

Bound Bound Bound Bound

Neilsen 0 6 2 . 56 0 2 1 .95

Raymond 0 1 0 3 . 1 3 0 1 0 3 . 1 5

Naimi 0 6 3 . 0 1 0 2 1 .95

Raynal 0 4 2 .32 0 4 3 . 5 5

Table I I : Simulation Results obtained for Heavy Load

60

Algo Mesg. Complexity in Msgs. Syneh . Delay Time in Sees.

rithm
Lower Upper Average Lower Upper Average

Bound Bound Bound Bound

Neilsen 0 6 2 .56 0 1 2 5 . 1 2

Raymond 0 1 0 4 .40 0 20 8 . 80

Naimi 0 6 2 .23 0 1 0 4 .47

Raynal 0 5 3 . 25 0 1 1 7 . 54

Table I I I : Simulation Results obtained for Light Load

Algo Mesg. Complexity in Msgs. Syneh. Delay Time in Sees.

rithm
Lower Upper Average Lower Upper Average

Bound Bound Bound Bound

Nei lsen 0 5 2 .69 2 4 2 . 03

Raymond 0 8 3 . 1 5 0 8 3 . 1 7

Naimi 0 6 2 .9 1 0 2 1 . 95

Raynal 0 4 2 . 33 0 6 3 .60

Table IV: Simulation Results obtained for 50o/o Load

6 T
I

. I

� 5 l
� I

· - I (
I

i 4 r
� 3 t
-cO I .5::: I § 2 +
.2 I
[I

"'" 1 I
�

<

r­
eo

Request Sattsfied

<D
0
N

N
<D
N co

N

�--•--LI-gh_. l _lo_ad
_

ro
_
r _J o_oo_s_ec_s _

_
-_-=_o--_

_
H
_

e_av
_
y

_
Lo

_
ad

_
ro

_
r _1 000 sees -- ---+- at 50 1. Lead fo

�
1 00� sees •

Figure l 5a: A vg. Synchronization Delay Time Graph for Neilsen' s Algorithm

3 T
!

• Llghl load for 1000 sees

Request Sa ttsfled

--fr- Heavy Load for 1000 sees ____. _ al 50 7. !Jlad for 1 000 sees

Figure 1 5b: A vg. MessageComplexity Graph for Neilsen's Algorithm

6 1

12 T

I
r­N

---t•----- Light load for !000 sees

Request Satisfied

C7> <D

� Heavy Load for 1 000 sees -----+- at SO � !.Dad for 1 000 sees

Figure 1 5c : Avg. Synchronization Delay Time Graph for Raymond's Algorithm

6 T

� 5 � i 4 1
!tl � li t!J ii II! --------ft1- Ill lll ! 3) � II! !ll II!

T
!ll 1!1

� 2 � I I
:! r- ;;: � <D co c;; .n � M

...,. <D C7> N .n C7> N N N .n <D r- !2 � � � � 0 N ("') N N N

Request Satisfied

• Light load for 1 000 sees -D-- Heavy Load for 1 000 sees at 50 � !.Dad for 1000 sees

Figure 1 5d: Avg. Message Complexity Graph for Raymond' s Algorithm

62

--il- Light load for I 000 sees

Request Satisfied

"' 0 N
.n N N

N co N co N
C7> C7> N

--D- Heavy Load for 1000 sees ------. - at SO � Load for 1 000 sees /

Figure 1 5e : A vg. Synchronization Delay Time Graph for Naimi ' s Algorithm

35 T
- I
� 3 t i 2. : !' � 1 5

u

--- .----11.11-------- -- ---·-----------

�
1 j ; 0 5

< I
1��--�--�--����--�--�--+---��---�--�--+---r-�--� -�--�

•

r­.n
.n r-

Light load for I 000 sees

� C7>
r­cc

Request Satisfied

co 0 N
..n N N

N co N co N
cc
("'")

---D--- Heavy Load for 1 000 sees -•- at 50 ,; Load for 1 000 sees

Figure 1 5f: Avg. Message Complexity Graph for Naimi ' s Algorithm

63

12 ;

t 10 j I i 8 1 I • • • • • . ----- ---------------
§ 6

:.=:

4 t I
�
N

· a
0 � � ttl li lfJ !! ttl flj � !!I !ll � II � � .c
u z fL
s::
>-

en

�
>

<

o I +--

:::; ..n r- � 0 C'.l ...,. .., r- � 0 c:;. . <.0 GO C7> 0 -
N n <.0 r- co C7> � - n .., � !::: � C'.l ;:;

Request Satisfied

• l.Jghl load for 1000 sees --v--- Heavy Load for 1 000 sees -• - al 50 '- Load for 1 000 sees I

Figure 1 5g: A vg. Synchronization Delay Time Graph for Raynal ' s Algorithm

4 5 T
I

� 4 1 � 3 5 t
E ,

e=
>. _.

")< 2.5
cu

0..
E
0

u

� 15
�

� t :::1 I

t 0 5 T
•

--- ---- ---------- - -tl • ---------

�--- 1!! t!J � t! iii • Iii flj !ll lfJ � flj Ill

:::; ..n r- � 0 C'.l ...,. ..n r- � 0 � ...,. <.0 co 0> 0 N n <.0 r- co 0> � :::; � � !::: � C'.l ;:;
Request Satisfied

Llghl load for 1 000 sees ---G-- Heavy Load for 1000 sees ---+- al 50 � Load for 1 000 sees

Figure 1 5h: A vg. Message Complexity Graph for Raynal ' s Algorithm

64

65

The analysis of the results obtained are given below.

5 .2 .2 . 1 Neilsen' s Algorithm [NEI 89] : The maximum message complexity observed was

6 messages. This agrees with the theoretical result of D+ I messages. where. D is the

diameter of the topology or the length of the longest path[NEI 89] . This happens when

the request is made by a node at one end of the diameter and the token is present at a

node at the other end of the diameter and hence a request requires D messages to reach

the token holding node and one message for sending the token. The minimum message

complexity is zero message which occurs when the token holding node makes the request

and so, minimum synchronization delay is zero.

The upper bound of synchronization delay varies with the loading factor. For a heavy

loaded system, the delay observed was 2 sees(I message). In the heavy load, all the time

a request message is in the waiting queue of the token-holder node and hence, as soon as

the token-holder node finishes the execution of the critical section, it passes the token to

the requesting node directly which requires only 1 message. In the light node, the situation

is different. Maximum of one request message exists in the system at al l time and hence

to get the token, a request has to travel all the way to the token-holder node and hence,

the worst case of synchronization delay was observed as 1 2 sees (6 messages or D+ I

messages).

5 .2 .2 .2 Raymond's Algorithm: The worst message complexity obtained for both heavy

load md l ight load was I O messages(2*5d or 2*D messages) where, D is the diameter of

the system. This case occurs due to D messages required to send the request message to

66

the token-holder node at the other end of the system and again D n1essages to send token

message from the token-holder node to the requesting node . Hence. the worst

synchronization delay observed in l ight load \\·as 20 sees (1 0 message = 2 * D 1nessage) .

In the heavy load. a request is ahvays queued in the token-holding node and atn1ost D

messages are required to send token from the token holding node to the requesting node.

so the worst synchronization delay is D messages. The observed de lay in heavy load \vas

10 sees (5 message = D messages) .

5 . 2 . 2 . 3 Naimi · s Algorithm: This algorithn1 imposes a dynamic logical rooted tree

structure . Each node sends request message to the node indicated hy its local variable

" last" and so on. The \Vorst case is \Vhen a request has to pass through al l the nodes

before it reaches the token holder node and hence the upper message con1plexity is 6

messages (N messages) where . N is number of nodes in the system . The worst

synchronization de lay for the heavy load observed was 2 secs(l message) and for the l ight

load was 1 0 sees (O(log N)) .

5 . 2 . 2 .4 Raynal ' s Algorithm: Raynal ' s algorithm is a generalized dynamic tree-based

algorithm where nodes can be either proxy or transit in behavior. The upper hound of

message complexity observed was 5 messages. The upper bound of synchronization de lay

for l ight load was 11 sees (5 messages) and for heavy load was 4 sees (2 messages) . The

performance parameters depend on the behavior of the nodes in the system.

All the observed results agree with the theoretical results [NEI 89] . I t can be

observed that the heavy loaded system has less synchronization delay time than the l ight

67

loaded system. I n the heavy loaded systen1 . there is a pending request at al l tin1es in the

system to be satisfied while in light loading. there is no pending request at any titne in

the system . Thus. it can be concluded that all algorithn1s perforn1 better in the heavy

loaded system.

I t can also be observed that n1essage con1plexity is independent of the loading

factor. The minimum number of messages required to get a token ren1ains invariant with

the load as the token keeps moving in the systen1 . Message con1plexity . however. depends

on the topology of the system. The straight l ine logical structure requires the n1axin1un1

number of messages to get a token whi le the radiating star logical structure requires the

least messages per critical section request [NEI 89] .

The graphs and the tables can be used to con1pare the perforn1ance of the

algorithms. It is observed that the algorithm having transit behavior for al l sites. proposed

by Neilsen and Mizuno [NEI 89] . gives less average message complexity and delay time

than the algorithm, proposed by Raymond [RAY 89]. having proxy behavior for al l sites.

Both of these algorithms have static structure . Naimi ' s dynamic logical tree-based

algorithm (all sites have transit behavior) also gives good performance . Raynal ' s dynamic

tree-based algorithm(sites can have either proxy or transit behavior) has variable

performance depending on its node behavior . Thus a transit node performs better than

proxy node but with transit node the system requires ful ly connected network, whereas

system with proxy node need not have fully connected network . Dynamic structure can

perform bett�r than static structure when the loading factor wil l be different for all nodes.

Dynamic structure would form a minimal logical structure around heavy loaded node and

68

hence would improve the performance.

CHAPTER V I

CONC L U S I ONS

6 . 1 Summary

The objective of this research was to develop a GUI tool to visualize logical token­

based mutual exc lusion algorithms. A simulation package was developed for several

mutual exclusion algorithms. A ne\v two-dimensional classification of logical token-based

mutual exclusion algorithms showing the relationship between stat ic and dynamic

properties of sites versus proxy and transit behavior of sites in the system was developed .

The c lassification was motivated by observing the simulation. The perforn1ance analysis

of each of the algorithms in terms of message complexity and synchronization delay was

done. Al l the implemented algorithms were studied under Heavy traffic load and Light

traffic load.

The appl ication package also had visualization capabi lity . The working of the

algorithms were visualized and the movement of the token and request messages could

be seen dynamical ly .

6 .2 Conclusions

After studying the algorithms to achieve mutual exclusion in the distributed

system, it can be concluded that each algorithm is based on the objective of decreasing

69

70

the message complexity and synchronization delay in the system. Each algorithm has

optimized the information storage overhead at each node. In Raymond' s algorithm [RAY

89] , each node knows only the neighbor in the tree. while in Naimi and Trehel' s

algorithm [NAI 87] , each node knows the "last node" , the node which requested the last

in the system so the request is sent only to this "last node" . Neilsen [NEI 89] and

Raynal ' s [RA YUR] algorithms also impose very little storage overhead on each node .

Topology of the network plays an important factor on its performance. Neilsen

claimed that worst topology is straight line, where messages may have to be sent to the

longest path or the diameter of the system. Raymond, on the other hand, claimed that the

radiating star topology with one node in the center and all other in the leaf level. as the

best topology. Each algorithm performed differently on the same topology adopted.

On simulation of algorithms under different traffic load, it was observed that heavy

traffic load gives better performance in synchronization delay than the light traffic load.

Thus, it has the obvious advantage of minimizing the number of messages when the

network is complete.

6.3 Future Work

In developing the simulation package, assumptions were made that the messages

are not lost or altered in the system, messages are delivered in the order they are sent,

there is no site failure and the internode communication time and critical section execution

time for all sites are same. However, the package can be made more realistic by removing

all these assumptions.

71

A generalized algorithm c an be developed by merging good features of all these

algorithms in to a single algorithm. Similarly, the visualization can be improved further.

REFERENCES

[CAR 83] O.S .F . Carvalho and G. Roucairol . On mutual exclusion in computer
networks. Communications of the ACM, 26(2) : 1 46- 1 47, 1 983 .

[DAN 9 1] Dan Heller. Motif programming manual for OSF/Motif Version 1 . 1 , vol 6.
0 'Reilly & Associates Inc.

[LAM 78] L.Lamport. Time,clocks and the ordering of events in a distributed system.
Communications of the A CM, 21 (7) : 558-565, 1 978.

[MAE 85] M.Maekawa. A sqrt(n) algorithm for mutual exclusion in decentralized
systems. A CM Transactions on Computer Systems, 3(2) : 1 45- 1 59, 1 985 .

[MAR 85] A.J.Martin. Distributed mutual exclusion on a ring processes. Science of
Computer Programming, 5 :265-276, 1 985 .

[NAI 87] M.Naimi and M.Trehel . How to detect a failure and regenerate the token in
the log(n) distributed algorithm for mutual exclusion. Lecture notes in
Computer Science, 3 1 2: 1 5 5- 1 66, 1 987.

[NEI 89] M.L. Neilsen and M.Mizuno. A dag-based algorithm for distributed mutual
exclusion. In IEEE ,pp 354-360, 1 99 1 .

[RAY 89] K.Raymond. A tree-based algorithm for distributed mutual exclusion. ACM
Transactions on Computer Systems, 7 (1) : 6 1 -77, 1 989.

[RAY 86] M.Raynal. Algorithms for Mutual Exclusion Press, 1 986.

[RAY 9 1] M.Raynal . A simple taxonomy for distributed exclusion algorithms. A CM

Op. Systems Review, Vol. 25,2 (1 99 1), pp 47-50.

[RA YUR] M.Raynal. A very general information structure of tree based distributed
mutual exclusion algorithms. This paper is under review.

[RIC 81] G.Ricart and A.K.Agarwala. An optimal algorithm for mutual exclusion in
computer networks. Communications of the A CM, 24(1) :9- 1 7, 1 981 .

[RIC 83] G.Ricart and A.K.Agarwala. Authors response to 'On mutual exclusion in
computer networks' by Carvalho and Roucairol . Communication of A CM ,

7 2

26(2) : 1 47- 1 48, 1 983 .

[SEQ 90] Symmetry Multiprocessor Architecture Overview. Sequent Computer
Systems, Inc.

73

[SIN 89] M. Singhal . A dynamic information-structure mutual exclusion algorithm for
distributed systems. In IEEE 9th International Conference on distributed

Computing Systems, pp 70-78, 1 989.

[SIN 92] M Singhal . A heuristically-aided algorithm for mutual exclusion algorithm in
distributed systems. Transactions on Computers, 38(5) , 1 992 .

[STY 9 1] OSF !MOTIF Style Guide. Prentice Hall.

[SUZ 85] ! . Suzuki and T. Kasami . A distributed mutual exclusion algorithms. ACM

Transactions on Computer systems, 3(4) : 344-349, 1 985 .

[TAN 9 1] A. Tanenbaum. Modern operating systems. Prentice Hall.

[TRE 87] M. Trehel and M. Naimi . A distributed system for mutual exclusion based
on data structure and fault tolerance. In Proc. IEEE 6th Int. Conf on

Computers and Communication. pp 35-39, 1 987.

[VAN 87] J.L.A. an de Snepscheut. Fair Mutual exclusion on a graph of processes.
Distributed Computing Vol 2: 1 1 3- 1 1 5 , 1 987.

[XLi 9 1] Xlib Reference Manual, vol . 2. 0 'Rielly & Associates Inc.

APPENDICES

7 4

APPENDIX A

GLOSSARY AND TRADEMARK INFORMATION

Centralized S ystem: It is composed of the number of terminals sharing single resource

l ike CPU, Memory, and other peripherials .

Client-Server Model : In client-server model , a process known as server is responsible for

providing some facilities to other processes known as clients.

Critical Section : The part of program where the shared re source i s accessed is called a

c ritical section "cs " .

CPU : Central processing unit.

DAG: Directed acyclic graph is a simple digraph which does not have any cycles.

Deadlock: A situation when processors get blocked forever and no more work can be

done after that.

Distributed System: A distributed system is one that ru ns on a collection of machines, not

having shared memory or a global clock, but still appears to function l ike a single

machine.

Dynamic Structure : The logical structure imposed on the physical network that keeps
c hanging depending on the movement of the token during the entire process of

si mulation .

Event Counters : Event counter i s a special kind of variables to obtain mutual exclusion.

The operations defined on event counter "E" are :
Read(E) : Returns the current value of E.

Advance(E): Automatical ly i ncrements E by I .
Await(E,V) : Wait u ntil E has a value of V or more.

Grap h : A graph G consists of a nonempty set V called the set of nodes (points, vertices)

o f the graph, a set E which is the set of edges of the graph, and a mapping from

the set of edges E to the set of pairs of elements of V.

Graphical User Interface (GUI) : A visual representation of a computer program functions

that can be manipulated by nonprogrammatic means .

75

76

Heavy Load : A situation when al l sites in the system have high probability of n1aking
request at al l the time.

L ight Load : A situaton when al l the sites in the system have low probabi lity of rnaking
request at al l the time.

Message Complexity : Average number of messages required by the node to enter the
critical section.

Line Topology: All sites in the network are connected logical ly in forn1 of a line.

Monitor: A monitor is collection of procedure, variable. and data structures that arc aJ I
grouped together in a special kind of module. It has an important property that
helps for achieving mutual exclusion : only one process can be active at a time in
a monitor.

Multiprocessing System : A single system where more than one CPUS work together.

Mutual Exclusion : This means when one process is accessing the resource. other
processes are excluded from accessing the same resource.

Node : Refer Site .

Physical Network : The actual network connection between different CPUS tn the
distributed system.

Protocol : A mutual agreement between a client and server to accomplish certain actions.

Proxy Behavior : When a node i rececives a request from a node j, it takes the request on
its own account . It now considers node j as its mandator and request the token for
itself from its parent(i) .

Race Condition: A situation where many processes are using a shared resource and correct
operation of the system depends on when processess access that shared resource .

Radiating Star Topology : Al l sites in the network are connected logical ly in the form of
a radiating star.

Semaphor: An abstract data type or object with data types as an integer or binary, a
queue, and a number of operations such as P, V, initialization . P(s) is used to
block a other process, if one is already in critical section. V(s) is to wakeup a

process which is waiting for critical section .

S ite : Each CPU or maching which is connected by a high speed network in a distributed

7 7

system.

S tarvation State : The state of a process \Vhen it cannot access a shared resource for
i ndefinate period of time in a multiprocessing systen1 .

S tatic Structure : The logical structure imposed on the physical network that ren1ains the
same throughout the process of mutual exc lusion of various sites in the systen1 .

Synchronization Delay : Time gap bet\veen \\·hen a node i leaves the critical section and
before another node j can enter the critical section.

Token : A privi lege or priority that circulates around the logi cal structure in a distributed
system.

Transit Behavior : When a node i receives a request fron1 node j in a systen1 , it j ust
forwards it to its parent(i) . This behavior is cal led transit behavior.

Widgets: A user interface component such as menu, scrol lbar. or dialog box.

X Window System : It al lo\\·s programmers to develop protablc GUI .

TRADEMARK INFORMATI ON

O S F/Motif is a registered trademark of the Open Software Foundation .

The X Window System is a registed trademark of the M assachussetts Institute of

Technology.

UNI X is a registered trademark of AT&T.

DEC is a registered trademark of Digital Equipment Corporation.

DYNIX, DYNIX/ptx, Sequent, and Symmetry are registered trademarks of the Sequent

Computer System, I nc .

APPENDI X B

USER GUI DE FOR " S i iv1iv1E"

A . INTRODUCTION

The graphical simulation tool " S I Miv1E" is developed to vi sual ize logical token­
based distributed mutual exclusion algorithn1s. The \vorking of the algorithn1s c an he

visualized and the movement of the token and request n1essages could be seen
dynamical ly . This tool has been implemented on Sequent Symmetry S/8 1 systen1 running
X windo\V system using Motif widget set . Users n1ay interact with the sin1ulation package
by selecting. c l icking or dragging \Vith mouse the graphic element or by typing in the data
through the keyboard in the graphic element. Some of the graphic elements used in thi s
package are Main Window. Menu bar. Menu. Fi leSelectionBox. Drawi ng Area Widget.
Pushbutton. Text Widget. Scrol lbars . They are explained briefly as fo l l ows :

Main Window is used to organize the contents of a primary wi ndow. A mai n
\vindow frame is the c l ient area and can include Menubar. Scro l lbar. command area and

message area.

Menu is used to organize a col lection of buttons. labels. and seperator i n a
horizontal , vertical or 2-dimensional layout within a seperate menu window.

Menu bar organizes a collection of Cascade Buttons in a horizontal layout at the top

of a Main Window.

F i leSelectionBox is used to select a file to be read or written from the l ist of fi les

in a directory .

Dra\ving Area Widget provides a blank canvas for interactive drawing using basi c

Xlib drawing primitives.

Pushbutton is a button with a label on it which can be c l icked using a mouse to

perform the associated action.

Scro l lbars are used to scrol l the visible area of a component .

Text Widget provides a ful l-featured text editing capabi l ities to the user to enter

78

79

text.

B . DESCRIPTION

Simulation tool consists of a horizontal menu bar at the top of the Main Window.
Menubar consists of "Algorithms" . " Data" . "Run" . "Statistics" . " Help" . "Exit" n1enupads.
The menus can be pulled down by clicking \Vith the mouse on the corresponding
menupads. The order of entering data is important to run the sin1ulation. The order to he
fol lowed should be the order in the menubar� i . e . first "Algorithm" menu� second " Data"
menu; third " Run" menu� fourth "Statistics" and so on.

1 . Algorithm Menu

This menu is used to select the algorithn1 to simulate. It consists of four options
namely, "Nei lsen", "Raymond". "Naimi " , "Raynal " . An algorithm is selected by cl icking
on one of these.

2 . Data Menu

After the algorithm is selected, the next step is to provide require data. Data menu
is used for this purpose . Data menu consists of four cascadebuttons namely, "Node
Information", "Requesting Pro b. " , "Behavior Info" , and "Site Neighbor Fi le" . Initial ly only
"Node Information" button is active and the rest of the buttons are inactive. This i s done
to make user to enter data in this part first before they proceed furthur. When "Node
Information" button is cl icked, a "Node Information" dialog box comes up. Through this
dialog box, number of nodes in the system, internode communication time (time to send
message from one node to another node), critical section execution time, and simulation
time (time one wants to run the simulation) can be entered. This information is fed in
through the keyboard in the text widget. To go from one text field to another text field,
use mouse to click on that text field. The dialog box has "Save" and "Cancel "
pushbuttons. The information entered in the dialog box is saved by pushing the " Save"
button and the information is ignored by pressing the "Cancel" key .

After the data is entered in the "Node Information" dialog box, al l the other
cascade buttons of data menu are activated . When the "Requesting Pro b. " cacadebutton is
c l icked, another pulldown menu comes up to request the user to set the request rate of
each sites in the system. The request rate can be set as heavy load by clicking on "Heavy
Load (1 00%)" button or can be set as light load by clicking on "Light Load" pushbutton.

80

When "As set by user" button is clicked. one more pull down menu comes up requesting
for "Fr?� Screen" or "From External File" . User can key in the individual request rate
probab1htes from range 0 to 1 00 for each node in the system by clicking "Fron1 Screen"
button and through "Site Request Rate" dialog box. "From Screen" dialogbox contains two
pushbottom; "Save" and "Cancel " . when the number of sites in the svstem is less than 20.
When the number of sites in the systen1 is more than 20. t\vo n1or� pushbuttons \vi l l be
visible . They are "pgup" and "pgdn" . "pgup" wi l l do page up function and "pgdn" wi ll do
page down function. When "save" is clicked, the data of this dialogbox is saved in the
memory for the simulation and a dialogbox comes up to request for the filename to save
so that next time this file can be retrieved directly instead of keying the data from the
keyboard for this part of data. This also contains "Save" and "Cancel " button .A file
containing request rate of each site can be retrieved by chasing "From External File"
button. This button pops up a FileSelectionBox with an information box displaying the
message regarding the file to be selected. After "OK" button is pressed, user can select
a file from current directory or any directory by setting the filter. The file containing the
required information is selected by double clicking on the filename or by selecting the
fi lename and then clicking on "OK" pushbutton.

"Behavior Info" cascadebutton is cl icked to set the behavior for each node. This
menu is similar to "As set by user" button. Behavior is set as proxy by keying in " 1 " for
that site and as transit behavior key in "0" .

Similarly the topolgy of the net\.vork can be set through the external file. This can
be done by clicking "Site Neighbor File" and selecting the desired file from the
F ileSelectionBox.

3 . Run Menu

After al l the data is entered, a user is ready to start the simulation. Run menu

consists of two push buttons namely, "Visualization" and "Execute" . When "Visualization"

is c l icked, the simulation can be visualized graphically . A window containing a "Start"

and " Stop" button, a drawing area widget and two text widgets come up. The simulation

starts by c licking the "Start" button and the "Stop" button is pressed to interrupt the

simulation or close this window after the simulation is complete. The simulation is

visualized graphically in the drawing area while in the text widget below drawing area

displays the information about each action taken during the process of simulation. The

content of data structure for each node is displayed in the last textwidget after every clock

tick.

User can run the simulation without visulizing it by pressing "Execute" button of
run menu. A dialog box consisting of the text widget and two push buttons namely " Start"
and "Over" comes up. The simulation is started as described above by pressing "Start"

8 1

button. Once the "Start" button i s clicked both the buttons of the dialogbox are deactivated
and the progress of the simulation is displayed on the text \\ridget by printing proper
messages. After the simulation is over the bottons are activated again and the mndow can
be closed by pressing "Over" button.

4 . Statistics Menu

This menu consists of "Summary" and "Graph" cascadebuttons. Summary of the
simulation can be displayed by clicking on "Summary" button. When this is done, another
pulldown menu comes up requesting the algorithm name for which the summary is to be
displayed i .e . "Neilsen Algo." , "Raymond Algo . " , "Naimi Algo . " , and "Raynal Algo . " . The
statistical summary for any of these algorithms can be displayed by cl icking on these
buttons. When one of these algorithms is selected, "Statistics Summary" dialog box comes
up on which the summary is displayed. This dialogbox can be closed by pressing on
"OK" button. Hard copy of summary can be obtained by printing files "neilsen .sum",
"raymond.sum", "naimi .sum", "raynal .sum" files from the shell prompt.

Graphs can be displayed similarly i .e . press "Graph" button and then the algorithm
name button and the graph window will come up. To print the graph, click on "Print"
button on the window. This generates a postscript file and this can be latter printed on a
postscript printer. The window can be dismissed by pressing "Quit" button.

5 . Help Menu

Help menu gives help to use this tool. Help menu consists of 3 pushbuttons. By
clicking on the related button the help information can be displayed on the dialogbox.

6. Exit menu

To exit the tool, Exit menu can be clicked and then a question dialog box comes
on the front screen to verify the same. By clicking "OK", button the tool can be quit
otherwise the exit message is ignored.

APPENDIX C

SYSTEM ADMINISTRATOR GUIDE FOR "SIMME"

The simulation tool 'SIMME' is developed using Motif widget set release IV on
Sequent Symettry S/8 1 running X window system. 'Makefile' is provided to compile and
generate executable code ' SIMME ' . The tool can be used to simulate distributed mutual
exclusion algorithms in two different modes namely, Visualization mode and Execute
mode.

The procedures to simulate each algorithm and mode of operation are stored in a
program file and their repective declaration are stored in a header file. The list of
filenames, their repective algorithms, and the mode of execution are shown in Figure 1 6.

Algorithm Mode of Execution Program file Header file

Neilsen Execute neilsen.c nei lsen.h
Neilsen Visualization neilvisu.c neilvisu.h
Naimi Execute na1m1 .c naimi .h
Naimi Visualization naivisu.c naivisu.h
Raymond Execute raymond.c raymond.h
Raymond Visualization rayvisu.c rayvisu.h

Raynal Execute raynal .c raynal .h

Raynal Visualization raynalvisu.c raynalvisu.h
----------------Main Program -------------- tdmea.c tdmea.h

Figure 1 6: List showing Algorithms and its corresponding files

In the Visualization mode, the simulation can be done for a system with a
maximum of eight nodes. This constraint is due to limited size of the display screen. The
data structure used in this mode is an array of size 1 0. Hence, with any increase in the
maximum number of nodes in the system, the array size should also be increased
accordingly. In the Execute mode, the dynamic movement of the token and the request
message is not displayed on the screen and hence the simulation can be done for unlimited
number of nodes in the system. The memory is allocated dynamically depending on the
number of nodes in the system as entered by the user. However, the limitation on the

82

83

number of nodes is set by the memory of that con1puter.

In accepting the probability request rate and the behavior of each node fron1 the
scr�en, a dialog box containing a table of maximum 1 0 entries is displayed on the screen.
Th1s can be increased by increasing ' max table ' variable in ' tdn1ea .h · header file .
Correspondingly the table structure which i� an arrav of 20 clen1ents. should also be
modified.

·

To accept fi lename. a string of 20 characters are used . For exatnple. string
l atestfile in ' globalme.h' header file and string ' okfname · in ' tdn1ea. h · header file use 20
characters and 1 5 characters respectively . These sizes can also be increased if needed .

The variable ' setwpr _pos · is used to hold the last cursor position in the text

dialogbox which is poped up in the Execute mode and Visual ization mode to print the
simulation process information on the screen. This variable is of the type integer and
hence the maximum cursor position is restricted to range of the integer variable . After this
it is reset to zero .

An output file is created to store the simulation results. While running the
simulation, after every clock tick, various statistical parameters are noted . They are stored
in the output file . The nomenclature of the output fi lename is as fol lows : first four

character of the algorithm name + load factor of the simulation + extension of the file
(' .ouf) . For example, the filename of Raymond ' s algorithm running for l ight l oad wi l l
be ' raymlight .out' .

These files are processesd to create the summary file. To display statistical
summary for a selected algorithm, files with extension ' .out' for that algorithm is opened
and the final statistical result is calculated (Refer PrtSumm() function of tdmea. c

program) . The summary is stored in a file named as fol lows : algorithm name + file

extension (' . sum') . For example, summary file for raymond ' s algorithm wi l l be

' raymond. sum ' .

For the help menu. the description o f each option i s stored i n a seperate file . The

fi les describing the algorithms are 'naimi .hlp ' , ' raymond . hlp ' , ' raynal . hlp ' , and
' ne i l sen.hlp ' . The help file regarding simulation package is ' aboutsim.hlp' and the help
file about the too l description is 'misc . hlp ' .

A l ist o f program fi les and header files i s shown in Appendix D . I f any o f the
program file is modified then "SIMME" should be recompi led. If any new program fi le

is added in the appl ication, Makefi le should be modified accordingly .

APPENDIX D

LISTING OF PROGRAM FILES

The design and implementation issues of simulation package 'SIMME' is discussed in
Chaper IV. The list of program files and header files are shown in this section.

HEADER FILES :

me.h
globalme .h
tdmea.h
drawfunc.h
neilsen.h
neilvisu.h
naimi.h
naivisu.h
raymond.h
rayvisu.h
raynal .h
raynalvisu.h

PROGRAM FILES:

tdmea.c
execfunc.c
drawfunc.c
neilsen.c
neilvisu.c
naimi .c
naivisu.c
raymond.c
rayvisu.c
raynal . c
raynalvisu.c

84

The source code for " S IMME " can be obtained from the following address :

Dr. K.M. GEORGE (Prof.) ,

Computer Sc ience Department,

Math Sc ience B u ilding,

Oklahoma State University,

Stillwater, OK-74078 .

85

\'ITA

S i ngh Lata R N .

C andi date for the degree of

tv1 aster of S c i ence

Thesi s : A GRAPH I C A L S I M U LATI ON TOO L FOR LOGI C A L TOK E N - B A S E D

D I STRIB UTED MUTU A L E X C L U S I O N A LG O R I T H M S

�faj or F i e l d : Co mputer Sci ence

B i ograph i cal :

Personal D ata : B o rn i n A h m edabad, I N D I A , on Ju ly 04 , 1 966, daugh ter o f

R. N . S i ngh an d Suvidya .

Educat ion : Graduated from St . Xavi er's Col l ege, A h m edabad, I N D I A i n M ay

1 9 86 � received J\-1aster of S c i ence degree i n Phy s i cs fro m S chool o f
S c i ence, Guj arat U n iversi ty , Ahm edabad, I N D I A i n June 1 9 8 8 . Compl eted

the requ i rem ents for the J\-1 aster of S ci ence degree i n Com puter S c i ence at

the Computer S ci ence Depart m ent at O k l ahoma State U n i versi ty i n

December 1 994 .

Experi ence: Worked as Lecturer an d Program m er i n St . X avi er's Col l ege,
Ahmedabad, IND I A ; e mp l oy ed by Ok l ahoma State Uni versity , B i osystems
and Agri c u lture Engi n eeri ng Department as Grad uate Research A ssi stant

fro m Jan uary 1 993 to M ay 1 9 93 .

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095

