
THE DAMPED NEWTON METHOD

--AN ANN LEARNING

ALGORITHM

By

LIYA WANG

Bachelor of Science
China University of Mining and Technology

XuZhou, P.R. of China
1985

Master of Science
Northern Arizona University

Flagstaff, Arizona
May, 1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirement for
the Degree of

MASTER OF SCIENCE
December, 1995

OKLAHOMA STATE Uf.JIVERSITY

THE DAMPED NEWTON METHOD

--AN ANN LEARNING

ALGORITHM

Thesis Approved:

Dean of the Graduate College

ii

PREFACE

This paper presents a new learning algorithm for training fully-connected, feedforward

artificial neural networks. The proposed learning algorithm will be suitable for training

neural networks to solve approximation problems.

The framework of the new ANN learning algorithm is based on Newton's method for

solving non-linear least squares problems. To improve the stability of the new learning

algorithm, the Levenberg-Marquardt technique for safe-guarding the Gauss-Newton

method is incorporated into the Newton method. This damped version of Newton's

method has been implemented using FORTRAN 77, along with some other well-known

ANN learning algorithms in order to evaluate the performance of the new learning

algorithm. Satisfactory numerical results have been obtained. It is shown that the

proposed new learning algorithm has a better performance than the other algorithms in

dealing with function approximation problems and problems which may require a high

precision of training accuracy.

I would like to express my sincere gratitude to my thesis advisor, Dr. J. P. Chandler,

for his guidance in choosing the topic of this thesis and for his thoughtful. suggestions and

encouragement in pin-pointing and solving problems that I have encountered throughout

my thesis work. Special thanks are also due to Dr. K. M. George and Dr. G. E. Hedrick of

the Department of Computer Science, who served as the committee members for this

iii

thesis. Their patience in reviewing and revising this report is also much appreciated.

Finally, I would like to thank my parents, Qinghuo Wang and ChuenLing Yang, for

rearing me very thoughtfully. My deepest appreciation is extended especially to my

mother, who suffered very much in her life and raised my brother and me under some

difficult circumstances.

IV

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1

1.1 ANN History 1

1.2 ANN Models and Applications 2

1.3 Feedforward ANN 3

1.4 Learning in Feedforward ANN 5

1.5 Learning Algorithms for Feedforward ANN 6

1.6 The Purpose of the Paper 8

2. NON-LINEAR OPTIMIZATION 9

2.1 Fundamental Concepts 9

2.2 General Descent 18

2.3 Steepest Descent Method 21

2.4 The Newton Method 23

2.5 Conjugate Gradient Descent Method 26

2.6 Least Squares Minimization
/', ~ ,.

! /I'·Fln' - i\/, !,J+ 0',) .. f .. ~.~ .. /I~"' • , ••••• ~ •• ~ \, ••••.•• ; ••• ~ ••••••••••• 31

2.7 The Levenberg-Marquardt Method 34

3. ANN LEARNING ALGORITHMS 42

3.1 Architecture of Feedforward ANN 42

v

3.2 Dynamic Adaptation in Feedforward ANN

3.3 Propagated Computations in Feedforward ANN

3.4 Classical Learning Algorithms

3.5 Implementation of The Levenberg-Marquardt Method

4. THE DAMPED NEWTON LEARNING ALGORITHM

4.1 The Damped Newton Method

4.2 The Damped Newton Learning Algorithm

5. IMPLEMENTATION AND TEST RESULTS

5.1 Language Implementations

5.2 Neural Network Design

5.3 Test Problems

5.4 Test Results

6. CONCLUSION

6.1 Conclusion

6.2 Recommendation for Future Work

7. REFERENCES

8. APPENDICES

8.1 Program List

vi

48

53

60

68

71

71

72

75

75

78

80

81

88

88

88

90

94

94

LIST OF TABLES

"
Table #

Table 1: 2-parity Test Results

Table 2: 3-parity Test Results

Table 3: 4-parity Test Results

Table 4: Cancer Problem Test Results

Table 5: Building Problem Test Results

Table 6: Heart Problem Test Results

Table 7: GNLMD Performance Test Results on Building Problem

Table 8: NLMD Performance Test Results on Building Problem

Table 9: GNLMD Performance Test Results on Heart Problem

Table 10: NLMD Performance Test Results on Heart Problem

vii

Page

82

83

83

84

84

85

86

86

87

87

LIST OF FIGURES

Chapter.Section.Figure Number

Figure 1.3.1. A simulated neuron

Figure 1.3.2. The Sigmoid function

Figure 1.3.3. A neural network for XOR classification

Figure 3.1.1. Architecture of a three-layer neural network

Figure 3.1.2. The Sigmoid function

Figure 3.1.3. The hyperbolic tangent function

Figure 3.3.1. Part of a neural network

viii

Page

3

4

4

43

45

46

53

1. INTRODUCTION

1.1 ANN History

Artificial Neural Networks (ANNs) emerged in the 1940s when people used a single

threshold device to model the functionality of a biological neuron [20]. Simulating the

network structure of the human brain, those artificial neurons were linked together to

form a network (called artificial neural network, neural network, or neural net, etc.).

While a human brain is characterized by its learning capability, the learning capacity of

the linked neurons was first shown in the book titled "The Organization of Behavior" by

Donald Hebb, published around 1950 [18]. Two early successes in the 1950s and 1960s

were Rosenblatt's Perceptron and Widrow's ADALINE (ADAptive LINear Element),

equipped with the Perceptron learning law and Widrow's learning law respectively [18].

Both were able to learn and to perform accordingly. Despite some setbacks in the late

1960s and 1970s, the ANN researches regained their strength in the 1980s due to the

contributions of many dedicated scholars. The publication .of the famous Error Back­

Propagation Algorithm (Backpropagation, Backprop, or BB Algorithm) by Rumelhart,

Hinton, and Williams in 1986 (also independently done by Paul Werbos in 1974 [30]) set

the milestone for the ANN's prosperity beginning in the late 1980s [15]. Today, the

studies of ANNs have become an independent and very broad field, and involve the

endeavors of thousands of scholars and engineers in many different fields allover the

world.

1

1.2 ANN Models and Applications

An artificial neural network is an infonnation processing system [10]. It usually

consists of a large number of artificial neurons. These neurons are linked together through

direct connections to form a network. Currently there are several such network models:

feedforward network model, feedback (recurrent) network model, and cellular model.

One example of the feedforward network is the fully-connected feedforward neural

network. Such networks are very useful in dealing with classification problems and

function approximation problems. The Hopfield network and the Boltzmann machine are

examples of the recurrent models. They are often used in speech processing and pattern

recognition [20]. The Kohonen map is a fonn of the cellular model. Such network is self­

organizing and is mostly used in speech recognition [20].

An ANN can be considered to be a parallel machine. It distributes its computing power

among all neurons in the network. Each neuron,a simple local processing unit, contributes

to the final output of the network. This characteristic of the ANN is very helpful to the

application problems that require massive and high-speed data processing capacities.

Today, ANNs have been used in many fields. Such fields include data encoding and

compression, signal and image processing, speech recognition, pattern classification,

noise filtering, stock market predictions, credit card application processing, and modeling

[2]. Currently, there are several kinds of neural network chips and hundreds of software

packages available for developing neural network applications. Thousands of neural

network applications have been carried out successfully and more are being explored in

new areas and in new fields.

2

1.3 Feedforward ANN

In this paper, we concentrate on one particular ANN model: the fully-connected,

feedforward neural network. In the sections that follow, all neural networks mentioned

will refer to the fully-connected, feedforward neural networks unless otherwise stated.

A fundamental feature of the feedforward neural network is its adaptive behavior, i.e.,

the capability to learn. When a feedforward ANN is employed to tackle a problem, all

that are needed is some training examples of the problem, i.e., some input-output

patterns. Based on those sample patterns, the ANN, when properly set up, not only tries to

learn how to handle those samples correctly, but also summarizes the learning results and

tries to handle samples in the entire problem domain. This capability of the ANN s is

especially useful to solve the kind of problems whose underlying ideas are not clear

and/or there are no fast rules that can easily be applied.

The basic building blocks of a feedforward neural network are the artificial neurons

and the connections. A connection usually has a weight on it to represent the level of

importance of (or contribution from) that connection, except perhaps for the output

connections of the network. A neuron (Figure 1.3.1) is a basic processing unit: it sums up

all its inputs, modulates each by its corresponding connection weight, and then transforms

the result via some activation function to yield the output of the neuron.

Input weight weighted activation

10 sum function

output

...-__ .. o=f(u)

Figure 1.3.1: A simulated neuron.

3

The type of the activation function determines the sort of problems that an ANN can

solve. For example, ANNs with step (threshold) activation functions can only solve

classification problems. In order to approximate non-linear mappings, non-linear

activation functions have to be used. In this paper, the non-linear sigmoidal activation

function will be used (Figure 1.3.2).

1

0.4

/
0.2

-10 -5 5 10
A.

Figure 1.3.2: The Sigmoid function

input

Figure 1.3.3: a neural network for XOR classification

4

All neurons in a feedforward network are organized into layers or slabs (Figure 1.3.3).

The outputs of the neurons in one layer (or the inputs of the network) are all linked only

to each of the neurons in the next layer, except for the output layer of the network. A

neural network connected this way is called a fully-connected neural network. When

input signals are fed in, the computation of the network is carried out on a layer-by-Iayer

basis, starting at the input layer. This processing pattern continues until the outputs of the

network have been produced. Such a computation process is called a forward pass, which

is a left-to-right pass as shown in a network layout.

1.4 Learning in Feedforward ANN

Learning is an intrinsic requirement of neural networks--an untrained network with

randomly assigned connection weights can do nothing meaningful. The knowledge

representation system employed by an ANN is opaque: the ANN has to learn its own

representation because programming it by hand is not possible. That is, a neural net has to

be trained in order to perform a defined task. Thus, the use of a neural network usually

involves two major stages: the learning stage and the performing stage. During the

learning stage, a neural network produces output for each input sample and the result is

compared with the required output. If a mistake is made or the approximation result is not

desirable, then the net tries to learn from this example and modifies its behavior in order

to make fewer mistakes or better approximation results. Such a way of training is called

supervised training or learning with a teacher. After perhaps hundreds, sometimes even

up to hundreds of thousands of round of repetitions as the net goes through all the training

examples, the trained network will enter the performing stage. In this stage, the ANN is

5

used, based upon its generalization of the training examples, to compute outputs for other

non-example inputs.

While the learning of a neural network is observed as a change of behavior, inside the

neural network, learning takes place in the form of weight changing. Usually, some sort

of optimization function is used to measure the output errors. Then, a learning algorithm

is applied to transform the measured error information into weight changes. The major

learning algorithms that are used for training the feedforward nets are those that enforce

the learning process by means of backpropagation. Those learning algorithms are

discussed in the next section.

1.5 Learning Algorithms for Feedforward ANN

A learning law governs how a neural network enforces learning. The following is a

general outline of the learning procedure used in all of the backpropagation algorithms:

• The network usually starts out with a random set of weights.

• Examples (input-output pairs) are presented at the input side of the network.

• Each input-output pair requires two stages: a forward pass and a backward

pass. The forward pass is to present a sample input to the network and to let

activation flow until they reach the output layer.

• During the backward pass, the network's actual output from the forward pass

is compared with the desired output and error estimates are computed for the

output nodes. Then the network adjusts its weights in a backward fashion,

starting at the output layer (or saves all adjustments and changes weights after

all examples have been presented), in order to reduce the errors.

6

• The process is repeated many times until some error criteria are met.

Several mathematical models in optimization theory can be used in carrying out the

learning process of the above procedure. In that regard, the learning process corresponds

to the minimization process of the models. Among the available optimization models, the

Least Squares model is the one used the most in ANNs. Suppose that n, t, and m are the

dimensions of the input vector, weight vector, and output vector respectively and s is the

number of training examples. For each i=l, ... , m, let Yj (x, w) be the i-th coordinate in

the output vector. Then, the least squares model for training an ANN is

(1.5.1)

where Xj is the j-th input vector, and yj, j is the i-th coordinate of the output vector Yj,

corresponding to the input Xj.

In the above optimization model, learning corresponds to minimizing E(w) with regard

to the weight vector w. There are many ways to achieve this optimization goal and it is

the mathematical methods used in the algorithms that distinguish one from the others.

Currently, most of the gradient-based backpropagation learning algorithms can be traced

to three basic mathematical methods, which are well established in the optimization

theory. They are the Steepest Descent method, the Conjugate Gradient method, and the

Newton method. Many learning algorithms have been successfully built upon those

methods and more modified versions have come out in order to improve the performance

of the original versions. One remarkable method that has been used in some modified

algorithms is the Levenberg-Marquardt method [24], which is a modification of the

Gauss-Newton method (derived from the Newton method). In this paper, we develop a

7

new ANN learning algorithm that will be based on the framework of the Levenberg­

Marquardt method. The goal of the paper is stated in the next section.

1.6 The Purpose of the Paper

The aim of this paper is to introduce a new supervised learning algorithm for training

fully-connected, feedforward neural networks. The proposed algorithm is based on the

well-known Newton numerical approximation method and the Levenberg-Marquardt

improvement of the Gauss-Newton method. Specifically, we incorporate Newton's

method with the technique used in the Levenberg-Marquardt method to derive an

improved version of the Newton method.

To investigate further into the subject, we first need some background knowledge. In

theory, there is considerable overlap between the fields of neural networks and statistics.

Many well-known results from the statistical theory of non-linear models, as we shall see

in the next few chapters, can be applied directly to feedforward neural networks. The next

Chapter is devoted to a brief introduction of non-linear optimization theory.

8

2. NON-LINEAR OPTIMIZATION

In this chapter, we will introduce some of the classical minimization methods.

Although, the approaches to derive these methods are different, they have two things in

common. First, all these methods are iterative. That is to say, to locate a minimizer x * of a

function J, a sequence {x(k) } of points is generated. If the sequence converges, then an

estimate of x * to a satisfactory degree of accuracy has been attained. Second, all these

methods are descent methods that contain the following two fundamental steps at each

iteration.

1) Determine a search direction along which a reduction off in function values is

possible.

2) Choose a step size so that minimization does take place.

We shall start, in section 2.2, with a discussion of a general descent method consisting

of the above two basic steps and then study the classical ones in the sections that follow.

The first section below provides some of the background knowledge we will need for the

discussion of later sections.

2.1 Fundamental Concepts

Let 9\ be the set of all real numbers.

Linear and matrix algebra

An mXn matrix A E 9\mxn given by

9

can be expressed compactly as A=[aij]mxn• It has m rows and n columns. An mxl matrix

will be a column vector of dimension m and a lxn matrix will be called a row vector of

dimension n. In our discussion, matrices are denoted by uppercase bold face letters and

vectors by lowercase bold face letters.

The transpose of any matrix is obtained by rewriting all columns as rows. Thus, the

transpose of an mXn matrix are an nXm matrix. In symbol, the transpose of a matrix A is

denoted by AT. Note that for any matrix A, we have

and

where Ae 9tmxn, Be 9tnxl, and AB=[i aikbkj] •
k=l mxl

An nxn matrix is called a square matrix. A symmetric matrix is a square matrix A such

that

A=AT

A diagonal matrix De 9tnxn is a square matrix whose entries dij=O, for all i=!:j, and is

written as

D=diag(dl1 , ... ,dnn).

A diagonal matrix is called the identity matrix if all of its diagonal elements are equal

to 1. An identity matrix is often denoted by I.

10

A square matrix B is said to be the inverse of another square matrix A if

AB=I.

In this case, B can be written as B=A-t, and it could be shown that BA=I. A square

matrix A is a singular matrix if its inverse does not exist. Otherwise, it is said to be non-

singular.

A symmetric matrix AE 9\nxn is said to be positive definite (negative definite) if the

quadratic form x T Ax satisfies

A matrix A is positive (or negative) semidefinite if the equality sign is included in the

condition above. Note that the matrices AT A and AA T are always semidefinite for any A.

If a matrix A is positive or negative definite, then its inverse matrix exists.

A system of linear equations, given by

{
allxl + "':+ aln = bl

. ,

amlxl + •.• +amn =bm

can be written in matrix form as

Ax=b,

where A=[aij]mxn, X=(Xi)T, and b=(bDT. The system is solvable if the inverse matrix of A

exists. In case A-I exists, the solution of the system can be written as

To solve a system of linear equations, we need an algorithmic procedure. The

algorithm we shall use later on is based on the well-known Gaussian elimination method.

To reduce the round-off error associated with finite-digit arithmetic, a technique called

11

maximal column pivoting or partial pivoting is incorporated into the algorithm [9], which

is listed below.

Algorithm 2. 1. 1: given an nxn system of linear equations Anxn x=b, with A nxn=(au) the coefficient matrix.

1. set a(i, J)=aij, all i, j, and For i=1, ... , n, set NROW(/)=i.

2. For i=1, ... , n-1, repeat step 3,4,5, and 6.

3. Let p be the smallest integer with i:O; p:o; n, and

I a(NROW(p),i~ = max la(NROW(j), i)l.
'''','''n

4. If a(NROW(p), 1)=0, then print "no unique solution exists" and stop.

5. If NROW(/) * NROW(p), then set

NCOPY = NROW(/), NROW(/)=NROW(p), NROW(p)=NCOPY.

6. For j= i+1, ... , n, do 6.1 and 6.2

6.1. set m(NROW(j), I) = a(NROW(j), i) .
a(NROW(i), i)

6.2. Let ENROWl..!) = ENROWl..!) - m(NROW(j), I) ENRO'N(/).

7. If a(NROW(n), n)=O, then print "no unique solution exists" and stop.

8. Otherwise, set

x = _a.:.,.(N._R_O_W_(:..n.:..:.),_n _+-,-1)
n a(NROW(n),n)

9. For i= n -1, ... , 1, set

n
a(NROW(i),n+1)- L a(NROW(i),j)'Xj

j=i+i
xi=------------~------------

a(NROW(i),i)

10. Output the solution x=(x 1, ... , xn).

The inner product of two real numbered n-dimensional vectors x=(xD and w=(wD is

defined as

T T n
<x, W>=X W=W X= L WiXi •

i=i

12

A p-norm (or Lp-norm) of a vector x=(xikn is given by

A frequently used norm is the 2-norm, also called the Euclidean norm. In 2 or 3

dimensional real spaces, the 2-norm of a vector is just the length of the vector.

In a Euclidean normed vector space, we have Schwarz's inequality (Cauchy-Schwarz)

1< x, y >1 = IXT yl ~ IIxlI~2I1YII~2 , with

equality holding if and only if X=Ay, for some AE 9t

Multivariate analysis

A set D c 9\n is a convex set if whenever Xl, X2 E D, the line segment

lies entirely in D.

A real-valued functionf :9\n~9\ is continuous at X E 9\n, if any sequence {X(k)} such

that

A function f is said to be continuous on 9\n, iff is continuous at each XE 9\n.

A real-valued vector function F:9\n ~9\m , F(X)=(fl(X), ... ,fm(x))T, is continuous on

9\n, if eachfi is continuous on 9\n, i=l, ... ,m.

Let f :9\n ~9\ be a twice differentiable function. The first partial derivatives of f with

regard to (w.r.t.) Xi, i=l, ... , n, is denoted by

13

(if (x) .
JJ(x):=--, l=1, ... ,n, ax i

and the second partial derivative is written as

The gradient g(x) or Vf(x) offis defined upon all the first partials off given by

._ ._(if(x)_ T
g(x) . - Vf (x) . - --a;- - (J ti (x), ... ,J nf (x)) .

The Hessian matrix H(x) or V 2f(x) of the functionfis defined to be

J~f(x) J IJ 2f(x) JIJnf(x)

H(x):=V2f(x):= ~[(if~X)r =
J 2JJ(x) J 2J 2f(x) J 2J n f(x)

JnJJ(x) J nJ 2f(x) J~f(x) nXn

Let F:9\n~9\m , F(x)=(fi(x), ... ,fm(X))T, be a vector function (written in bold face).

Then, The first order derivative of F W.r.t. x is defined by

v F(x) = (Vfl (x), ... , Vfl (x)).

transpose is defined to be the Jacobian matrix J(x) of F(x), i.e.,

J til (x) J 2fl (x)

J (x) . = aF(x) = J ti2 (x) J 2f2 (x) . ax

The following formulas [10] are useful for differentiating scalar functions with

respect to a vector.

14

(2.1.1) ! (F(x) T G(X)) = [OF~X) r G(x) + [iJG~X) r F(x), where F(x) and G(x)

are vector functions.

(2.1.2)

(2.1.3)
a ax (x T x) = 2x,

(2.1.4)
a ax (x T Ay) = Ay,

(2.1.5)
a ax (yT Ax) = (yT Af = AT y,

(2.1.6)
a ax (x T Ax) = (A+AT)X,

Let f9\n~9\ be a function of X=(Xl, ... , xn), having continuous partial derivatives.

Assume xi=h(t) is differentiable for all i=l, ... , n. Then, the Chain rule of differentiation is

(if (t) _ i (if (x) dx i (t)
-at-i=la;;-at·

Taylor Theorem: Let f9\n ~9\ have continuous first (second) partial derivatives and

x * E 9\. Then, for any x near x *, there exists S E (0, 1) such that

J(x) = J(x*) + g(yl (x - x*)

* T * 1 *T * (J (x) = J (x) + g(x) (x - x) + - (x - x) H(y)(x - x)),
2

where, y=x* + Sex-x*), g is the gradient vector ofJand H is the Hessian matrix off

A critical point of a functionf9\n~9\, having continuous first partial derivatives, is a

point x * in the domain of J at where

15

* g(x)=0,

where g is the gradient off The point x * is a strong global minimizer of J if

J(x) > J(x*), for all x in the domain off

The point x * is a strong local minimizer of J if the above condition holds on a convex

subset of the domain of f Note that a minimizer is necessarily a critical point. For a

critical point to be a strong local minimizer off, we have the following theorem [36].

Theorem 2.i.2: If 1. J:9\D---t9\ has continuous first and second partial derivatives in an

open convex set D containing x *;

2. x * is a critical point of J in D;

3. H(x*) is positive definite, where H is the Hessian matrix off,

then, x* is a strong local minimizer ofJover D.

line search

The minimization of a univariate function of the form l/J (a)=J (x+ap) over an interval

(a, b) c 9\ requires the uses of line search techniques. The commonly used such line

search techniques are the Golden Section search method, Bisection method, Quadratic

interpolation method, and Cubic Interpolation method. The following algorithm [28] is

based on the quadratic interpolation method, which we shall use later.

Algorithm 2.1.2: Quadratic Interpolation: given an initial interval (a1, b1), a point C1E (a1, b1), and tolerance.

2. set k=1.

3. set

(Note: if denominator in the above formula is 0, then stop.)

16

fx=f(X *)

if X * < Ck and fx < fc

then set ak+1=ak, bk+1=Ck, Ck+1= X *

fb=f c f c=f x.

else if x * > Ck and fx > fc

then set ak+1=ak, bk+1= X *, Ck+1= Ck.

fb=fx.

else if x * < Ck and fx > fc

then set ak+1= X *, bk+1= bk, Ck+1= Ck.

fa=fx.

else set ak+1=Ck, bk+1=bk, Ck+1= X *,

fa=fc, fc=fx.

4. if bk+1-ak+1< tolerance, or (f(Ck)-f(Ck+1))/f(Ck) < tolerance, then stop

5. otherwise, set k=k+ 1, go to 3.

In the above algorithms, it is assumed that a minimizer lies in the given initial interval.

If this is not available, then methods have to be incorporated into the algorithms to locate

such an interval first. The methods that are commonly in use to find such an interval are

the function comparison method and extrapolation method, which are listed in [28].

Rate of convergence

If a minimization method for minimizing a functionf generates a convergent sequence

{X(k)} that approaches a minimizer x * of J, we then are interested in the speed of

convergence of the algorithm. An algorithm is said to give p-th order rate of convergence

if p is the largest number such that the limit

17

· IIX(k+l) - X t
P=hm p

H= Ilx(k) -xt
exists. An algorithm with first-order rate of convergence is called an algorithm of linear

convergence and if, in addition, P=O, then it is said to be of superlinear convergence.

Having covered some of the basic knowledge that we shall need in later sections, we

now start with the introduction of a basic minimization technique--the general descent

method.

2.2 General Descent

In this section, we discuss a general descent scheme for minimizing a function, which

forms the skeleton of all the algorithms we shall introduce in this chapter. We need the

following definition to start with [36].

Definition 2.2.1: Assumef:9\n~9\ has first partial derivatives at a point x*, and let p E

9\n be a non-zero vector. Then, p is downhill for f at x * if and only if g(x *) T P <0, where g

is the gradient off

Let function 19\n ~ 9\ have continuous second partial derivatives at a point Xo E 9\n,

then by Taylor's theorem, we have

(2.2.1)

where y=Xo + Sap, for some e E (0, 1). It is not hard to show that as a ~ 0, the sign of

the last two terms in (2.2.1) would be dominated by the sign of the term ag(xo) Tp [36].

Now, assuming that p is downhill at xo, i.e., g(XO)Tp < 0, we then have, for a sufficiently

small,

18

jexo+ap) <jexo).

This implies that the function value of j would be reduced if we take an appropriate

step along a downhill direction. Hence, starting with an initial point x(O), we could use the

Taylor expansion of j around x(O) to find another point, say xCI), which results in the

function-value reduction of J, and then, successively repeat the processes for the newly

derived point X(k), k=1, 2, This iterative process will generate a sequence { X(k) } that

results in the successive reduction of j in function values. Such consideration yields the

following general descent algorithmic scheme [36]:

Algorithm 2.2. 1: Let an estimate xeD) of an unconstrained minimizer x* of f be given

1. Set k=O.

2. Compute p(k) such that g(X(k)Tp(k) < O.

3. Compute a(k) such that f(x(k)+a(k)p(k)) < f(X(k)).

4. Compute X(k+1) = x(k)+a(k)p(k).

5. If X(k+1) satisfies given convergence criteria, then stop.

6. Set k=k+ 1, go to 2.

In Algorithm 2.2.1, it is readily seen that Step 2 and 3 are the two fundamental

procedures that we have outlined in section 2.1, though detailed methods as how to carry

out those two steps are not given.

Clearly, there are many choices of a(k) and p(k) that satisfy the criteria in Step 2 and 3

of Algorithm 2.2.1. However, the choices of a(k) and p(k) alone are not sufficient to ensure

convergence of {X(k)} to a minimizer of f The conditions to ensure that {X(k)} will

converge to a minimizer ofj can be found in [36].

19

A frequently used technique to determine a(k) in Step 3 above is to estimate a local

minimizer of J (x(k)+ap(k») which is regarded as a function of a. Then, at least

approximately, a(k) would satisfy the requirement

(2.2.2)

Let l/J: 9\ ~ 9\ be defined by

(2.2.3)

Then (2.2.2) is equivalent to finding a local minimizer ark] of l/J, so that, at least

approximately,

(2.2.4)

where l/J' is the first derivative of l/J. Normally, (2.2.4) is a non-linear equation and can

not be solved analytically. Numerically, this can be done by using one of the line search

techniques mentioned in section 2.1. Hereafter, for all the algorithms we will introduce,

we shall use (2.2.2) as the criterion for computing ark] at each iteration.

An important consequence of using (2.2.2) is an equation that shows the relation

between the search direction p(k) and the gradient g(k+l) ofJat x(k+l). We have

By (2.2.4),

(2.2.5)

d l/J'(a) =-J(X(k) +ap(k))
da
n d d = L-J(X(k) +ap(k))_(X(k) +ap(k))

i=ldxi da
= g(X(k) +ap(k))T p(k).
~-~-

l/J'(a(k)) = 0, which imPJi~: ~hat l"

g(k+!rp(k) = l/J'(a(k)) = 0.
..,....-----

20

The geometric meaning of (2.2.5) is that the two vectors p and g are orthogonal.

Many methods have been introduced for the determination of the p(k),S in Algorithm

2.2.1. The following few sections will discuss some of them in detail.

2.3 Steepest Descent Method

Suppose that the gradient vector g of a given functionj can be calculated analytically,

then we can choose for the vector p in Algorithm 2.2.1 as -g. That is, the descent direction

p(k) at each iteration will be _g(k):= _g(X(k») = -V(J)X(k) .

Assume g(k) '# 0, we have

"'l

I i
., p(k)T~_(k)= _g(k)T g(k) = _~(gi(k»)2 < o.
---.".:~.'_ I

(2.3.1)

Hence, if we choose the search direction p(k)= _g[k1, then p(k) is downhill for j at X(k) for

each integer k > o.

Note that since, by Taylor's theorem, for a(k) sufficient small, we have a truncated first

order Taylor representation ofjthat yields the following approximation.

(2.3.2)

In (2.3.2), we can see that the reduction of j in function values at each iteration
;;;,+"" .{ ~,{h~"{,-\< ~

depends approximately on the magnitude of p(k) Tg(k), which, b;' Schwarz' inequality, is

bounded by the product of the 2-norms (Euclidean norm) of the 2 factors, i.e.,

(2.3.3)

with equality holds if and only if p(k) = A g(k) (AE 9\). Hence, if we take p(k) = _g(k), then
~,..,..,~,~---~.-~-

p&;:)g(k) has maximum magnitude. This would result in approximately the maximum

21

· reduction of function values off at each iteration. Such a consideration justifies the name

steepest descent method for the descent method obtained via taking p(k)= _g(k) in ---_.------
Algorithm 2.2.1. The steepest descent method is contained in the following algorithm

[36].

Algorithm 2.3. 1: Let an estimate x(O) of an unconstrained minimizer x* of f be given

1. Set k=O.

2. Compute p(k) froI'!1J!(~~== :g(X(k)). ~~'

search

5. If X(k+1) satisfies given convergence criteria, then stop.

6. Set k=k+ 1, go to 2.

The proof of the convergence of the sequence {X(k)} to a minimizer off is the same as

that of the general descent method, assuming thatfhas continuous second partials [36].

One advantage of using this steepest descent algorithm is that the sequence {X(k)}

generated by Algorithm 2.3.1 will converge for any given initial estimate x(O) in the

domain of f This enables it to be regarded as a general purpose minimization method.

However, the rate of convergence of Algorithm 2.3.1 is only linear [26], which is

considered slow. The computations involved in Algorithm 2.3.1 are simple except for the

computations required for performing a line search which may vary depending on the

search method used.

22

2.4 Newton's Method

To derive Newton's method for minimization problems, we need a stronger

assumption than that of section 2.3 to start with. In this section, function f"9\ll -? 9\ will

be assumed to have continuous third partial derivatives in a convex neighborhood D of a

critical point x * E 9\ll and its Hessian matrix H(x *) being positive definite. Then, by

Theorem 2.1.2, x* is a local minimizer off. This yields the necessary condition

(2.4.1) g(x*)=o,

where g(X)=(gl(X), ... , gll(X» =(dd(x), ... , d nf(x») is the gradient off.

If we could solve (2.4.1), then the solution would be a minimizer of f However, in

general, (2.4.1) is a system of non-linear equations. To solve it, iterative methods have to

be used.

Consider gi (x)=d i (f(x» over D. Now, each gi (x) has continuous second order partials

by hypothesis. Hence, for an estimate xED, we have, for each xED, the Taylor

expansion off around x,

(2.4.2)

where, Yi=X +8i(x -x), for some 8i E (0,1), all i=l, ... , n.

If x is sufficiently close to X, the last term in (2.4.2) could be dropped. Then, letting

x=X and taking into account of (2.4.1), we would obtain

(2.4.3)

23

Since the approximation (2.4.3) are true for all i=l, ... , n, we then have, using the

Hessian matrix off at x ,

(2.4.4) H(x)(x*- x)=:-g(x).

Hence

(2.4.5)

(2.4.5) suggests that, for an initial estimate x(O) of a solution x * of (2.4.1), we can

approximate x* with arbitrary accuracy by generating the sequence {X(k)} via the iteration

(2.4.6)

This iterative procedure for estimating a critical point off is called Newton's method. '-,-------- -"."~'.

Unlike the derivation of the Steepest Descent method which involves using a first order

Taylor approximation of f, ~l1e derivation of the Newton method requires the uses of

sec0I!~LQrcl~r ,Taylor representation off, which approximates f much better than does the

first order one. This yields a much better rate of convergence for Newton's method to

minimize a function than that of the Steepest Descent method, though more conditions

have to be met in order for Newton's method to converge.

Note that Newton's method could be regarded as a special case of the general descent

method of section 2.2 by taking the descent direction

(2.4.7) p(k)= _H(X(k)ylg(X(k»)
~

at each iteration. However, the original Newton method does not include the second

fundamental step for determining a step size of movement at each iteration, as we have

mentioned in section 2.1. This can cause some unstable behavior of the Newton method.

Therefore, to safeguard Newton's method against failures caused by lack of validity of

24

approximating f by the second order Taylor representation, the fundamental step for

choosing ark] has been incorporated into the original Newton method to ensure the

validity of the approximation of f The following algorithm is based on this modified

Newton's method.

Algorithm 2.4. 1: Let an estimate x(O) of an unconstrained minimizer x* of f be given.

1. Set k=O.

3. Compute p(k) by solving the system of linear equations

H(k)p(k)= _g(k). "
/" -~.'\

," \

4. Compute {a~~sing one of the line search methods mentioned in 2.1.
,"-

6. If X(k+1) satisfies given convergence criteria, then stop.

7. Set k=k+ 1, go to 2.

The sequence {X(k)} generated by Algorithm 2.4.1 will converge to a minimizer off if

some other conditions are met [36] and it can be shown that the rate of convergence of

Algorithm 2.4.1 (without step 4 in Algorithm 2.4.1) is of order 2, if it does converge. This

is the fastest rate normally encountered in non-linear optimization [28].

However, Newton's method is still subject to the following causes of failure during the

(k+ 1)-st iteration.

1. The direction p(k) is orthogonal to g(k) or nearly orthogonal to g(k).

2. H(k)-l exists but is not positive definite.

3. H(k)-l does not exist.

To overcome these deficiencies of Newton's method, other techniques have to be

incorporated into Algorithm 2.4.1 [36]. Note that the case of Failure 1 could be detected

25

by using the condition 'lg(k)T p(k)1 ~ ellg(k)IIJp(k)112' for some sufficiently small number E,
, ,

and, if this is the case at an iteration, we then could simply take a steepest descent step,

i.e., taking p(k)= _g(k). We could also safeguard Newton's method against Failure 3 by

taking a steepest descent step whenever the system of linear equations for p(k) is not

solvable. For the remaining failure case, we could take p(k)= _p(k) or a steepest descent --,,' (~

step if it does happen. J

As we can see in the above discussion, one basic step that we could take, when

Newton's method fails to yield a downhill step, is i:l~te~p~~Ldes~~Q!..Step,~~~_~ays

~<!QwnhiILstep. Hence, we could combine the Steepest Descent method and the Newton

method to yield a hybrid algorithm which is more stable than Newton's method.

However, we are not going any further in this line of thought.

If the function f is the non-linear least squares function, then we will have a uniform

treatment for safeguarding the Newton method. Such an approach involves the ideas of

Levenberg and Marquardt that we shall discuss shortly.

The next section introduces the conjugate gradient method that is derived from more

profound mathematics.

2.5 Conjugate Gradient Descent Method

The following definition and facts are needed for the establishment of the conjugate

gradient descent method [36].

Definition 2.5.1: Let A be a symmetric nXn matrix. Then the vectors p(i) (i=O, 1, ...)

are A-conjugate if and only if p(i) T Ap(i)=O (i;f:. j).

26

Theorem 2.5.1: If 1. A is an nXn symmetric positive definite matrix;

2. p(k) *- ° (k = 0, ... ,n-l) are A-conjugate;

3. v is any vector in 9ill,

then, (a) p(k) (k = 0, ... , n-l) form a basis for 9ill ;

n-l p(i)T Av
(b) v = L C)T (k) p(k). (see [36] for a proof)

'<_'I [j'Oop' Ap
~ .~,

We are interested in a quadratic functionJ: 9ill ~ 9i of the form

where A is an nXn symmetric positive definite matrix, b is an nxl vector, and c is a real

number. Obviously, such a quadratic function has a global minimizer, where the gradient

vector g ofJvanishes. That is, taking the derivative ofJwith respect to x, we obtain

(2.5.1)

g(x) = 'VJ(x) = 'V(~ x T AX) + 'V(b T x) + 'V(e)

=l.(A+AT)x+b, i.e.,
2

g(x) = Ax + b (since A is symmetric).

If x * is a minimizer off, then

(2.5.2) g(x *) =A x * +b=O or equivalently

(2.5.3) x * = _A-1 b, since A is positive definite and hence non-singular.

Now, let us apply the general descent algorithm to the above quadratic function.

Suppose we choose the descent directions p(k), k=O, ... ,n-l, such that

27

(Assumption:)

This gives us

(2.5.4)

1. g(x(O)) T p(O)<O, where x(O) is an initial estimate

2. p(k+l) chosen such that p(k+l)Ap(j)=O, (j=0, ... , k)

X(k+l) = x(O) + I a(j)p (l) , k=O, ... , n-1.
j=O

Plugging (2.5.4) into (2.5.1), we get

(2.5.5)

g(k+l) = g(X(k+I») = AX(k+l) + b

= Ax(O) +b+ Ia(j) Ap(j).
j=O

Since by (2.2.5), g(k+I)T p (k) = 0, multiplying p(k) T to both side of (2.5.5), and then

solving for a(k), by hypothesis 2 above, the resulting solution will simplify to

(2.5.6)
p(k)T Ax(O)

a (k) = _ -=--__ _
p(k)T Ap(k)

p(k)Tb

(k)T (k)' k=O, ... , n-1.
p Ap

Now, taking k=n-l in (2.5.4), we obtain

n-l p (j)T Ax(O) n-l p (j)Tb
x(n) = x(O) - I, p(j) - I, p(j)

j=OP (j)T Ap (j) j=OP (j)T Ap (j)

n-l p (j)T Ax(O) . n-l p (j)T A(A -lb) .
=x(O)-I, p(])-I, pc])

j=OP (j)T Ap (j) j=O P (j)T Ap (j)

=x(O) _x(O) +A-lb (Theorem 25.1)

= A -lb.

By (2.5.3), we have x(n)= x* i.e., x(n) is the minimizer off Hence, the minimizer x*

off can be obtained in n iterations (could be less than n iterations, see [36]).

i

To generalize this remarkable result to non-quadratic functions, we first note that,

again by Taylor's theorem, a function F3tn -7 9\ which has continuous second partial

28

derivatives at a point x * E 9\D could be well approximated by the truncated second order

Taylor representation, i.e.,

(2.5.7) (*) * T * 1 * T (*) * f (x) == f x + g(x) (x - x) + 2 (x - x) H x (x - x).

Assuming x * is a critical point off, we then have g(x *)=0. Hence, (2.5.7) becomes
'!

(2.5.8)
(*) 1 2 * (*) * f(x) == f x +2~ (x-x)H x (x-x)

1
=_xT Ax+bTx+c,

2
'1

where, A=H(x*), b= -H(x*) x*, and c = (x·) +l:(~!!(~:l~':'

This shows that f can be approximated by a quadratic function and, hence, the above

results about quadratic functions could be used. Upon the assumption that the Hessian

matrix H(x*) is positive definite, the above quadratic function (2.5.8) can be used to find

a minimizer of the original function f, which is readily seen to be the same as the

minimizer of the quadratic function (2.5.8). Such consideration yields the iterative

scheme for the conjugate direction algorithm, which involves the successive

approximation of f by a quadratic function at each iteration. Note that the convergence

property of the quadratic function does not hold for non-quadratic functions, i.e., a

satisfactory minimizer will not generally be located within n iterations. For non-quadratic

functions, a new sequence of p(k),S, (k=O, ... , n-l) should be constructed if the current

approximation by one quadratic function is not sufficiently good. Hence, a reset of the

parameters after every n iterations may seem to be a reasonable strategy to be used in

algorithms for minimizing non-quadratic functions [18].

29

Notice that there are many methods to compute p(k),s such that assumption 2 above

could be satisfied. One way to construct p(k) at ~ach iter~!!~n is to take p(k) as a linear ----.. ~ .. -..- .. - -~- .,. --.-.,--~ ------~'--.--.--.-~".~,~. "-'-.'--'--.'.-

combination of _g(k~~~.J!_~~_~ ap.(L!!~~~e the E~e._fQl1.iugq,te. _g!:~4ie.!:l~lP:e.!~.od. Such a
< •••• _.-. " ---.----~---,.- ,----.--~- .-----'"-"~~~ "'"

construction is encoded in the following conjugate gradient algorithm.

Algorithm 2.5.1: Let an estimate X(l) of an unconstrained minimizer x* of f be given which is sufficiently

close to x*.

1. Set k=1, p(l)= r(l)= _g(X(l».

2. Compute the Hessian matrix H(k) =H(X(k».

3. Compute ~~k)._~y-.using a line search technique [36] or by using the
{.

(k)T r(k)
following formula a(k) = (~T (k) (k) (or using an approximation of H(k»

p H p

[24].

4. Compute x(k+l)=x(k)+a(k)p(k) and r(k+l)= _g(X(k+l».

I' 5.(~ go to 10.
\ ,=.

6. Compute p(k) using one of the following:

• (Hestenes and Stiefel)

•

•

(Fletcher and Reeves)

(Polak and Ribiere)
{3(k) = r(k+l)T (r(k+l) - r(k»

p(k)T r(k)

8. If convergence is obtained, go to 11.

/'i\, ~7' \ ,. 9. Set k=k+ 1, go to 2.
'\(,[.1'" '/
,) ',' \. '\ '--
'--' " 10. Set p(k+l)= r(k+l) go to 2.

11. Set XO=X(k+l).

12. Stop.

30

Algorithm 2.5.1 follows the same descent pattern as we have always mentioned, i.e.,

first determine the search direction(Step 6, 7, given an initial pCl)) and then choose a step

size (Step 3, 4). The rate of convergence of this algorithm is superlinear. If the formula

given in Step 3 above is used, the algorithm suffers from the same problems as that of

Newton's method, since the conditions on the Hessian matrix ofJmight be violated at an

iteration. Hence, it might need the same treatments as we have mentioned in the

discussion of the Newton method. Another treatment, which does not require the

computation of the Hessian matrix H(x)--using a line search instead, can be found in

[36].

2.6 Least Squares Minimization

In this section, we specialize the above methods to a particular kind of functions that is

a sum of the squares of non-linear functions. The special form of this kind of functions

enables us to describe the methods in more detail and, as we shall see, to derive a new

method, namely, the Gauss-Newton method.

Consider a function of 1 real variables Xi (i=l, ... ,l) and n real variables Wj (j=1, ... , n)

Y: 9\1 X 9\n --7 9\ be a function. Writing them in vector form, we have

Furthermore, let m vectors Xi (i=1, ... , m) and m real numbers Yi. be given. We are

interested in estimating a local minimizer of E: 9\n --7 9\ defined, as a function of w, by

(2.6.1)

Let

1 m 2
E(w) = - I(Y(xp w) - yJ .

2i=1

31

(2.6.2)

where Vi(W)=Y(xj, w), i= 1, ... , m, and y = (yI, ... , Yrn) T. Then (2.6.1) can be written as

(2.6.3)

Let f: 9\n ~ 9\rn be defined by

(2.6.4) few) = V(w) - y

Then, (2.6.1) can also be written in vector form as

(2.6.5)
1

E(w)=-f(w)T few).
2

The gradient vector g(W)=(gl(W), ... , grn(w)) of E(w) is given by

(2.6.6)

g .(w) = dE = If.(w) dfi(w)
l dw· J dw i J=! i

m

= I,f/w)dJ/w), i = 1, ... , n.
j=!

Using the Jacobian matrix] rnxn off (w), whose element is given by Jilw)=~Ji(w), i=1,

... , m andj=1, ... , n, we have

(2.6.7) g(w)=] (w) Yew).

The Hessian matrix H(w) of E(w) can be decomposed via the following treatment.

Consider the ij-element Hij of H(w),

Now, if we let Ti be the Hessian Matrix of A , i.e.,

32

(2.6.8)

then a decomposition of the Hessian matrix of E(w) is

(2.6.9)

m

H(w) =J(W)T J(w) + Ifi (w)Ti (w)
i=1

=J(W)T J(w)+S(w),

m

where, Sew) = Ifi (W)Ti (w).
;=1

Clearly, the decomposition (2.6.9) of the Hessian matrix displays a considerable

structure and hence gives us more alternatives when applying Newton's method to the

function E(w).

Now, let us apply all the methods introduced in the previous sections to the function

E(w). For the Steepest Descent method and the Conjugate Gradient method, all we need

is the gradient of E(w) at each iteration and hence equation (2.6.7) can be utilized to do

so. For Newton's method, the gradient of E(w) and the Hessian matrix of E(w) are

needed. Thus, equations (2.6.7), (2.6.8), and (2.6.9) can be used for the computations.

One alternative when using the Newton method is that we could drop the term Sew) in

(2.6.9) if E(w) is expanded at a critical point x* for points sufficiently close to x*. Then

the Hessian matrix H(w) of E(w) is approximated by

(2.6.10) H(w) =J (w) TJ(W).

This changed form of the Newton method is called the Gauss-Newton method [36]. In

this method, the Hessian matrix H(w) is computed approximately by using only the first

order partials of E(w), which is less costly in computations. The following is an

algorithmic implementation of the Gauss-Newton modification of the Newton method.

33

Note that, like Algorithm 2.4.1 of the Newton method, the fundamental step for choosing

ark] has been incorporated into the original Gauss-Newton method, which does not have

such a step, to ensure the validity of the approximation of E(w).

Algorithm 2.6.1: Let an estimate w(O) of an unconstrained minimizer w' of E(w) be given.

1. Set k=O.

2. Compute g(k) and jk) via

gik)=d;E(w(k)) and

J;j(k)=dj!i(W(k)), i, j=1, ... , n.

3. Compute p(k) by solving the system of linear equations

(jk)T jk))p(k)= _g(k).

4. Compute U(k+1) by using one of the line search methods mentioned in 2.1.

5. Compute W(k+1) = W(k)+U(k) p(k).

6. If W(k+1) satisfies given convergence criteria, then stop.

7. Set k=k+ 1, go to 2.

However, in the Gauss-Newton version of the Newton method, all the drawbacks of

Newton's method still remain and may become worse since the approximated Hessian

matrix is probably more vulnerable to singular problems. In the next section, we shall see

that the Levenberg-Marquardt method could be very helpful to handle all those

drawbacks.

2.7 The Levenberg-Marquardt Method

The formulation of the Levenberg-Marquardt method, as often seen in the

optimization literature, is based on the Gauss-Newton method for dealing with non-linear

least squares problems. When the Gauss-Newton method is utilized for a minimization

problem, we need to solve the system of linear equations given by

34

(2.7.1)

and then to update the estimate via

(2.7.2)

As we have seen in section 2.6, depending on the matrix jk) Tjk), the Gauss-Newton

method sometimes suffers the following problems in practice:

1. The direction p(k) is orthogonal or nearly orthogonal to g(k).

2. (jk) T jk)r1 does not exist.

Failure 1 above generally results in little or no progress of the minimization process or

something even worse. When case 2 happens, there is no way to update the variables and

hence some alternative methods need to be used to handle the problem. As mentioned

also in section 2.4, the solution to both of the problems is to take a steepest descent step if

either of the cases does occur.

We have seen that one important choice at each iteration of every gradient-based

method is to choose the search direction p(k). Progress will be made if this direction is

close to that of _g(k). Levenberg [23] and Marquardt [24] have described methods for

determining a direction, between p(k) and _g(k) , that will ensure that the process makes

progress even if either of the above cases occur. In their treatment, the essential idea is

that the update ~ (k) = a(k)p(k) at each iteration should be determined by solving one of the

following system of linear equations.

(2.7.3) (jk) Tjk) + A(k)I) ~(k)= _g(k), or

(2.7.4) (jk) Tjk) + A(k)D) ~(k)= _g(k),

35

where A (k»O is a real number and D is a diagonal matrix whose elements are the diagonal

elements of jk)Tjk).

In his treatment [23], Levenberg linearized the functionsfi's in (2.7.5) below by their

(2.7.5)
1 m 2

E(w)=-Lh,
2i=1

first order Taylor expansions to obtain the approximation E(w) of E(w) at an initial point

Wo by the following.

(2.7.6)

Since (2.7.6) generally gives poor approximation when dw is large in absolute value,

Levenberg used the following minimization scheme in order to minimize the sum of

squares of the residuals and to limit the step size simultaneously.

(2.7.7) = 1- n ()2
E(w)=-E(w)+ La j dW j ,

A j=1

where A-I is a positive number expressing the relative importance of the residuals and

increments in the minimization process and aj' s are positive constants that represent the

relative importance of damping the different increments. In his reasoning, A-I can be

determined approximately by

(2.7.8)

n (n (}J,. J2 2La. L-' ·Ii
j=1 J i=1 aw.

A-I = I Wo

E(wo)

36

The choices of the weighting constants aj's are arbitrary. One way is to set them all equal

to unity, in which case, it can be shown [23] that the system of equations we need to solve

to determine the step size at each iteration is

(2.7.9)

This method is called Levenberg I. Another strategy (Levenberg II) to choose aj' s is to

let

(2.7.10) (J
2

_ n dh ._
a j - ~ :1... ' J-l, ... ,n.

I-lOW·
J Wo

Then, the system of equations we need to solve becomes [23]

(2.7.11)

where A(k) is given by (2.7.8) and D is a diagonal matrix whose elements are the diagonal

elements of jk) T jk).

Levenberg's method (Levenberg I or Levenberg II) sometimes fail because the

minimization process on the first iteration may lead to a very small A that results in a very

long step that is nearly orthogonal to -g to a point far from the global minimum, from

which the method never returns. Marquardt [24] invented a better strategy for selecting A.

He started off with the Gauss-Newton method and came up with the system equations

(2.7.4) whose solutions would determine both of the direction and size of the next step in

the minimization process. In his treatment, he showed that the minimization process

would make progress if A (k) was sufficiently large. The validity of his formulation is

based on the following three theorems cited from [36].

37

Theorem 2.7.1: If

Theorem 2.7.2: If

Theorem 2.7.3: If

1. bO is arbitrary;

2. Q=JT J, where J is an mXn matrix;

3. VE 9\ll and v 7; 0;

6. <1>(~) = IIJ~ + vll~

then t/>(~o)=rnin{t/>(~)}.
~En

1. bO is arbitrary;

2. Q=JT J, where J is an rnxn matrix;

3. VE 9\ll and v 7; 0;

then II~(A)II~ is a continuous monotone decreasing function of A and II~(A)II~ --7 0, as A --70.

1. bO is arbitrary;

2. Q=JT J, where J is an mxn matrix;

3. VE9\ll and v 7; 0;

4. (Q+AI)~ = -Jv

then 1fI is monotone increasing function of A and tp(A) --7 1, as A --700.

Proofs of the above theorems can be found in [36].

Theorem 2.7.1 says that ~ (k) depends upon the choice of A (k) at each iteration. By

(2.6.3), the Gauss-Newton!Levenberg-Marquardt approximation of the E(w) is, over a

sufficiently small neighborhood of a current estimate wof a local minimizer w* of E(w),

38

,I
,,j)

(2.7.12)
E(w+L\) = IIV(w+ L\)-YII~

== E(w) + 2f(w)T J(w)L\ + L\T(J(W)T J(W) + AI)L\ ./'
/

Now we can see that, by Theorem 2.7.2, if 'A, is sufficiently large, then, lI~t, where ~

is the solution of (2.7.3) (i.e., the Levenberg-Marquardt update of W(k»), is sufficiently

small so that the quadratic approximation (2.7.12) becomes valid. This ensures that

E (w + ~) < E (w), that is, the reduction of function values of E(w) at each iteration.

Notice also that, by Theorem 2.7.3, as 'A, increases, the direction of ~ in (2.7.3)

approaches that of -g(w)=f(wf J(w). Hence, even if jk) Tjk) is singular or its

A

solution does not lead to a downhill direction, the direction of the update L\ can still be

made downhill for E(w) at w by taking 'A, sufficiently big. Thus, we can ensure the

reduction of function values at each iteration of the minimization process by properly

setting each 'A,(k) big enough. This way, all the drawbacks of the original Gauss-Newton

method are removed.

Both Levenberg and Marquardt have suggested that the matrix Q=JT J should be

scaled so that its diagonal elements become equal to unity, since the properties of the

gradient methods are scale-variant [24]. It can be shown [23, 24, 28] that this is

equivalent to solving

(2.7.13)

where, D=diag(Qll, ... , Qnn).

39

This treatment makes the method scale-invariant. However, theorem 2.7.3 fails

because of this change (other two theorems still hold). Instead of approaching _lg as
It

A~OO, the direction of the update ~ becomes

(2.7.14)

Nevertheless, we then have

(2.7.15)

i.e., still downhill in the limit. Hence, all previous discussion for (2.7.3) still applies if the

diagonal matrix D is used instead of the identity matrix I.

Following Marquardt's treatment, it should be noticed that setting A (k) equal to zero

leads to the Gauss-Newton method. Hence, at the beginning of each iteration, A(k) is

reduced by the factor v, since a smaller A (k) gives performance of the algorithm that is

more close to that of the Gauss-Newton method.

Summarizing the above discussion, we are now ready to gIve the Levenberg-

Marquardt version of the Gauss-Newton method.

Algorithm 2.7.1: Let an estimate w(O) of an unconstrained minimizer w' of E(w) be given.

1. Set k=O, A(k)=~O .. :91, v=1O.

2. Compute g(k) and jk) via

g;(k)=d;E(w(k») and

l(k)

3. SetA(k)= --;-.

4. Compute p(k) by solving the system of linear equations

40

7. If W(k+1) satisfies given convergence criteria, then stop.

8. Set k=k+ 1, go to 2.

Note that there is no fundamental step 2, i.e., determining a step size, in Algorithm

2.7.1. Such a step can be observed in the process of increasing the value of A (k) in order to

result in the function-value reduction of E(w). In the algorithm, as A (k) increases, not only

the direction of p(k) is approaching a downhill direction but also the step size that is

decreased by the factor of (A(k)) along that direction (see (2.7.14)). And, in the limit, the

step size becomes infinitesimal along a downhill direction.

We have seen in this section that the Levenberg-Marquardt method is a very effective

technique in overcoming the deficiencies of the Gauss-Newton method. The main task of

this paper is to incorporate such a technique into the Newton method and hence

implement this new method as an ANN learning law for training feedforward neural

networks. Before doing this, we first explore some of the classical ANN learning

algorithms that are based on the optimization models we have developed in this Chapter.

Having developed some of the mathematical models that we will need in the ANN

studies, we next concentrate on the implementations of those models using the ANN

structures. The next chapter gives full treatment of some of the classical gradient-based

ANN learning laws for training fully-connected, feedforward neural networks.

41

3. ANN LEARNING ALGORITHMS

In this chapter, we describe some of the classical learning algorithms for training fully­

connected, feedforward neural networks in detail. This includes their basic concepts,

learning criteria, propagated computations, and learning algorithms.

3.1 Architecture of Feedforward ANN

In chapter one, we have seen an example of a feedforward neural network with two

layers. In general, such a neural network can have any number of layers. The layers of a

neural network usually have a left-to-right layout with the last one on the right being the

output layer. The number of layers is defined to be the number of layers with weighted

connections. Note that we treat the input layer of the network as just some connection

nodes. The hidden layers of a network are all of the layers except the output layer of the

network and, hence, the number of hidden layers is the number of layers in a network

minus one. In theory, a feedforward neural network with at most two hidden layers can

approximate any function practically encountered. However, no construction method has

yet been found as how to build a three-layer neural network for every given such

function [1 0].

Notation

The notations we will use in this paper are shown in Figure 3.1.1. In the layout, all

neurons in a layer are consecutively indexed, beginning at 1, in an up-down fashion. The

layers are indexed in a left-to-right order and they are identified by square-bracketed

42

W[l] =(W1 .)
W[2] = (W2.) J,I

J,I
W[3] = (W3 .)

J,I
input

output
-~

"
u[o] u[3] 1 1

[0]
u2

[31
u2

:
u[Ol

3 '-, _----
second layer third layer

------ ------
first layer

Figure 3.1.1: Architecture of a three-layered neural network

superscripts. All inputs to a neuron in layer k are denoted as UJk-11 where i=O, 1,2, ... , nk-l

(nk-l = number of neurons in (k-1)-st layer), and in the case of k-1=0, then the u;Ol are the

inputs of the network. Here, we have assumed an extra bias node for each layer, which

connects forward to each neuron in the next layer. Such nodes have no input connections

from the previous layer and have a constant output value of -1, i.e., ubk1 = -1, for all k=O,

1, ... ,K-I. The weight on each of those constant connections corresponds to the bias of the

neuron to which the connection is linked. Note that for each k >2, u;k-l1 is also the output

of neuron i in the (k-1)-st layer. The outputs of the network are (U;K1)T, written in vector

form with K being the number of layers of the network. A weight is marked as Wj~i1, il=O,

where k is the layer index and ''j, i" means that the weight is on the connection from the i-

th neuron in layer k-1 to the j-th neuron in the k-th layer. In vector form, these are denoted

43

as W[k1=(Wj~il) T for the weights in the k-th layer and U[k1=(U~kl) T for the outputs of the k-

th layer and the inputs of the (k+ 1)-st layer. The weighted sum of the inputs of a neuron,

say neuron), in layer k is denoted by

(3.1.1)

Hence, the output of the neuron} in layer k can be written as

(3.1.2) ujkl = J yl (V~kl), ItO, and u6k1 = -1, where,

J}kl is the activation function of that neuron. In vector form, it will be

(3.1.3)

(3.1.4)

The Activation function and its bias input

Perceptrons form a subclass of feedforward neural networks. In a perceptron, the

activation function is a step function. This limits the applications of the perceptron

networks to only classification problems. In order to introduce non-linearity into a neural

network, non-linear activation functions have to be used. It is only the use of non-linear

activation functions that enables multilayer neural networks to solve all kinds of

mapping-approximation problems [37]. Many non-linear function will do the job,

although which one to use depends upon the requirement of the learning algorithm being

used. For gradient-based learning algorithms, the activation functions are required to be

differentiable. The most common choices for feedforward networks are the sigmoidal

44

functions. Two forms of such sigmoidal functions are given below with their graphs

shown in the Figures that follow [2]. Since we can scale the input and output values to

within the interval (0,1) or (-1,1), there is no fundamental difference between the two

except for computational considerations. In this paper, the Sigmoid function is used.

(3.1.5)

(3.1.6)

-10

1
f(x)=--

l+ex

eX _ e-x

f(x) = X -x
e +e

-5

0.4

/
0.2

(Sigmoid function)

(Hyperbolic tangent function)

5
x

10

Figure 3.1.2: The Sigmoid function.

45

-10 -5 5 10

I
x

-0.5

),
By (3.1.1) and (3.1.2) above, each neuron in a neural network defines a hyperplane in a

space of dimension ni ' which is the number of variable inputs to that unit [37]. The

position of this hyperplane is determined by the weights. Without a bias, the hyperplane is

constrained to pass through the origin of the hyperspace. This yields some limitations on

the problems that an unbiased ANN can solve. For example, without a bias, a neural

network can not even solve the XOR problems without changing the domains of the input

values.

Initiation of weights and bias

The weights in a neural network are initially chosen to be small random numbers.

Since the activation function is usually active over a small interval and levels out outside

of the interval, the slopes over the rest of the interval are very small. If the initial weights

are too large, the activation functions may saturate at the beginning and the network

46

might get stuck in a very flat plateau or a local minimum near the starting point [16].

Thus, some optimal way to set up the initial random weights is desired. In this paper, the

initial weights of all test neural networks are chosen as random numbers uniformly

-0.5 05
distributed between ------- and ----.--- [10], where the fan-in of

fan - in of that unit fan - in of that unit

a node is the number of inputs including the bias input to that unit.

Computation in feedforward ANNs

As we have seen in Chapter 1, a neural network performs computation tasks on a layer

basis. That is, when all the inputs of network are ready, the neurons in the first layer are

activated and pass the results to the next layer which is in tum waiting for all its inputs to

be provided. This pattern continues until the outputs of the network have all been

produced. The following procedure gives an outline of such a forward pass of

computations in the network, called aforward computation of the network.

1. The weight vectors wlk1 and the activation functions f[kl , k=1, 2, ... , K. are all given, where K is

the number of layers in the network.

2. JOl=x , where x is any given input vector.

3. For k=1, 2, ... , K, compute Jk1= f[k1(vk1) by using (3.1.1) and (3.1.2).

4. y=JKl will be the output of the network.

Mathematically, we think of a neural network as a mapping N:9\n--79\ffi written as

y=N(x) , where nand m are the dimensions of the input vector and output vector

respectively. In this treatment, the layered structure of an ANN can be seen as comprising

the recursive computations involved in evaluating the function N at an XE 9\n.

47

3.2 Dynamic Adaptation in Feedforward ANN

A feedforward ANN exhibits dynamic changes of behavior in its training session.

Based on example learning, the error made by the ANN upon an input will be realized by

a pre-defined measuring function called the error function, cost function or energy

function [20]. To correct the error, the error function is investigated for the sources of the

error and the level of error contribution of each source, among all the neurons in the

network. Then, changes of connection-weights are made in order to reduce the erroneous

outputs of the network. This adaptation of behavior ends when the network has produced

outputs close enough to the desired ones or when an optimal point is reached with regard

to some generalization criterion. The following details the concepts involved in the above

discussion of an ANN learning process.

Supervised learning

To train a feedforward ANN, supervised learning is used. This requires that sample

inputs are gathered from the domain of the problem and their correct outputs provided for

the quantitative realization of errors being made by the network. Normally, two such sets

are chosen. One is for the training examples and the other is for the testing of the network

after it has been trained. The number of examples in the training set depends on the

number of weights used in the network. A general rule of thumb is that the number of

samples should be larger than the number of adaptive parameters [37], preferably much

larger. This rule has often been violated in practice which has led to problems of

overfitting in many applications.

48

Another training paradigm is to divide all the samples into 3 sets [26], i.e., a learning

set, a validation set, and a test set. When training an ANN, the learning process will be

stopped when an optimal point is reached regarding the validation set. This way, better

generalization might be achieved.

On-line and off-line learning

On-line learning means that updating of the weights takes place each time an example

is presented to a neural network and errors have been produced. In off-line learning (also

called batch learning), weight updating is postponed until all examples have been

presented once to the network. In the on-line learning mode, the learning process is more

sensitive to each individual example and, hence, it may help in escaping from local

minima of the cost function [10], though no proof of such assertion has been shown yet.

On the contrary, off-line learning introduces some inherent averaging and filtering effects

due to the additive collection of all the weight updates. It is asserted that on-line learning

is faster and more effective than the off-line learning [10], though, from the viewpoint of

optimization theory, the batch learning is more consistent with the optimization models

used to implement learning algorithms.

Learning criterion

In supervised training, a learning criterion is used to measure the performance of a

neural network. Mathematically, this can be achieved by using an error function.

Different learning algorithms implement the learning process using different kinds of

49

error information. For the gradient-based learning laws used in training feedforward

ANNs, the error function should be continuously differentiable to the first, second, or the

third order depending upon the choice of methods used. Some of the common choices are

the sum-of-squared-errors function and the absolute value error function (shown below

respectively). In (3.2.1), the constant 1. is used to simplify the calculation of derivatives
2

of E(w) [10].

and

_ s (m 1 [K] I) (3.2.2) E(W)-~l ~fi (xj,w)-Yj,i ,

where the notations are the same as those used in Chapter 1 and Chapter 2.

Learning algorithms and their evaluation

The role of the learning algorithm is to make the transition from realized errors to

weight changes--thus enforcing the learning process. For the gradient-based learning

algorithms, this is often achieved by employing an error function and an optimization

method to minimize this error function with regard to the connection weights. The

implementation of the minimization methods involves the computations of the partial

derivatives of the error function. To evaluate those partial derivatives, the global error

function has to be parametrized successively via the transformations made by the neurons

in each layer. Such a parametrization process corresponds to a backward pass through the

50

neural network. Then, upon this backward parametrization, various differential items of

information are obtained, and the amount of weight update is approximately computed for

each of the connection weights in the network. The mathematical formulas involved in

this process will be developed in section 3.3.

Different learning algorithms have different learning performances. To compare

among those learning algorithms, standard measurements have been developed. The

commonly used measures are the speed of learning, computation complexity, and the

memory usage. For each of the learning algorithms we will introduce, we shall give,

whenever possible, their performance evaluation in terms of the above three

measurements.

One drawback of all the gradient-based learning algorithms that we will introduce in

this paper is that the minimization process of the error function may get stuck at a local

minimizer of the error function and hence stop making further progress [35]. Currently,

there is no theoretical treatment to overcome this deficiency of the gradient-based

learning algorithms. However, practical experiences have shown that a local minimum is

not very often encountered [35]. One strategy that could be used in dealing with local

minima problems is to run the learning algorithm several times, each time with a new set

of initial random weights [35].

Stopping Criteria

There are several conditions that can be used to stop the learning process of an ANN.

1. The function values (or the RMS values, see below for RMS) are reduced to

51

within tolerance [15], i.e.,

E(W(k») < tolerance.

2. The reduction in function values at iteration k+ 1 is within tolerance [34], i.e.,

3. The reduction in RMS values at iteration k+ 1 is within tolerance, i.e.,

where, RMS(E(w)) :=
E(w)

Number of Training Examples

4. The weight updates at iteration k+ 1 are within tolerance, i.e.,

II~W(kt < tolerance, or

5. (For classification problems only), each pattern has been recognized to within

tolerance [35], i.e.,

actual output aj (W(k+l), Xl) - desired output OJ (Xl) < tolerance,

for all j over the output dimension and all Xl E training set.

6. The number of iterations exceeds some pre-defined limit.

The stopping condition of a learning process is closely related to the generalizing

ability of a neural network. To improve the generalization performance of the network, a

validation set can be used while training the network and the training can be stopped once

a minimum of the error on the validation set is reached [26]. This technique is often used

in practice to avoid overfitting problems when training a neural network.

52

Generalization

The practical use of ANNs depends on their generalization capability. It is desirable

that a trained ANN generalize the learning results ideally over the entire problem domain.

However, this is not always practically achievable since no theoretical treatment has yet

been found to control effectively the behavior of an ANN over the entire problem

domain. Among the ANNs' generalization problems, overfitting is the one commonly

encountered. To say that a trained ANN is overfitted on the training example means that

the net conforms to the training examples, but with wild meandering outside of the

training set[35], which is not desired. Such problems are usually due to the inadequate

number or range of training examples. To avoid overfitting, a rule of thumb is to have the

number of training examples much greater than the number of trainable weights.

3.3 Propagated Computations in Feedforward ANN

We have seen that an ANN produces its output via forward computations with the uses

of the recursive formulas (3.1.3) and (3.1.4). In this section, we develop mechanics for

the computations of the partial derivatives of the error function, which are needed in the

implementation of the gradient-based learning algorithms.

inputs from
(k-1)-st layer

W [k 1
J ,n k-1

k-th layer

Figure 3.3.1: Part of a neural network

53

outputs to
(k+ 1)-st layer

Throughout discussion in the rest of this chapter, we suppose a given neural network

of K layers. Furthermore, we will use the sum-of-squared-errors function E(w) defined by

(3.2.1) in our discussion. Since differentiation is additive, it suffices for us to consider the

following function «3.3.1)) for one input pattern (Xl, Yl) instead [10]. This is actually the

error function used for on-line training. Summing up the derivatives over all the input

samples later on would constitute the off-line training model.

(3.3.1) _ 1 (m ([Kl)2) _ 1 ([Kl)T([Kl) E(w) - - L f j (Xl' W) - YI,j - - f (Xl' W) - Y/ f (Xl' W) - Y/ .
2 J=l 2

We begin by considering the network locally at a neuron, say neuron j at the k-th layer

(Figure 3.3.1).

By (3.1.2), i.e., U)kl = fYl (V)kl), /1:0, and ~kl = -1,

we have

(3.3.2)

and

(3.3.3)

,
"

Note that the derivatives (U)kl) and (U)kl) can be calculated analytically once a

proper activation function is chosen. We call such derivatives the local derivatives [8].

Using the Chain rule and (3.3.2), we have,

(3.3.4)

54

(3.3.5)

(3.3.6)
a,Pl ;:U-~kl(v[kl) av[kl ,

j - VJ j j j _ ([kl) [k-ll·...Lf) (b (3 3 4))
dw[.k.l av[.kl dw[k] - uj • ui ,If-V, Y .. .

j,1 j j,1

In (3.3.4), (3.3.5), and (3.3.6), W)~l is given and will be known from the

av[kl

forward computation of the network upon a given input. Hence, the derivatives dw~k] ,

j,1

au[.kl au[k1

-fu ,itO, and ------d=ll, #0, are computable for any neuron in the network once an input
dw.. au .

./,1 I

is fed. Such derivatives are also called local derivatives [8]. To distinguish those local

partial derivatives given by (3.3.5) and (3.3.6) from other partial derivatives that involve

neurons over at least two layers, we make the following definitions [8].

(3.3.7)
au[k1

([k1)i._ j ([kl)i
U j . - au[k-1l and Uo := 0, i:;t(),

I

(3.3.8)
au[kl

([k1)(i)._ .i .
U j . - --[k-l ' J=I=O,

dw ..
j,1

au[kd

In general, the computation of derivatives of the form aut~l ' where kl and k2 are two
I

layer indices with kl > k2, requires propagation through the network layout. We have, by

the Chain Rule,

(3.3.9) (by 3.3.7).

(3.3.9) is a forward propagation formula. The derivative of U ~ kJl with regard to

55

u ~ k 2 1 can be recursively computed by generating the partials

(hPl
--iJ for k= k2+1, k2+2, ... , kl' i=FO,
du;

with the base case at k = k2+ 1 reducing (3.3.9) to a local derivative. Note that the

sequence k=k2+1, k2+2, ... , kl' goes forward in the network. If kl = k2, then the derivative

is unity.

Based on (3.3.9), we can derive formula (3.3.10) for computing the partial derivatives

mPd
of the form, Jv(kzl . By the Chain Rule, we get, for kl > k2'

I

(3.3.10)

The recursion of (3.3.10) that could be seen as determined by (3.3.9) is again in a

forward fashion. A special case of (3.3.10) is when kl = k2+1, where

(3.3.11)

(since u.;kzl is not a function of u;kzl if s -::j:. i)

Another recursive formula we shall need is the backpropagation of the partials of the

56

dE
error function, i.e. dU[kl' The base of the recursion is when k=K. In this case, the

]

corresponding derivatives are defined by local derivatives and hence are computable.

That is,

dE _ d (1 m ([Kl)2)
au[Kl - au[Kl i~ is (XI' w) - Yl,s

] .I

1 [m d(U[K\X w)- Y)J =_ "'2([Kl()_) s I' 1,01'
2 ;;1 Us XI' W YI,s au[Kl

]

Since U~Kl(XI' w) is not a function of U~Kl for S -::1= j, we have,

(3.3.12) ,j-::l=o.

It is easily seen that (3.3.12) is computable after the forward computation of the

network upon input Xl. Note that following (3.3.12), we have

(3.3.13)

For k < K, we have, again by the Chain Rule,

(3.3.14)

To compute ~;tl ' starting at the output layer, we can use (3.3.14) recursively to
.I

generate the derivatives d~l for k=K, K-1, K-2, ... , kl. The base case in the sequence is
dU j

given by (3.1.12). The recursion of (3.3.14) is readily seen to operate in a backward

fashion.

57

When computing the Hessian matrix of E(w), we need to calculate the term

a2 E
----(jl,jz=tO) with k l2k2• By the Chain Rule, we have [6]
av[.ktl av[k21

it h

(3.3.15)

Consider

(by (3.3.11))

(by (3.3.15))

Thus, we have obtained, for h,jz:f:.O,

(3.3.16)

Each factor in the right-hand side of (3.3.16) is given, local, or computable via a

58

d2E
previous formula, except the terms av[kt+l]d~l~]' whose computations involve the

S h

d2E
recurSIve uses of (3.3.16). Hence, to compute we back-propagate the av[ktlav[k2] ,

it 12

computations of

d2E
av[k] [~]' for k=K, K-l, K-2, ... , kj •

. av.
it 12

When k=K, we have the base case

d (dE J au[K] 'dE d ('J av[K] _ it [K] [K] it
- au[ktl dU[K] av[~] (U jt) + au[K] av[K] (Uh) av[~]

it it 12 it it 12

Using (3.3.13) and factoring out a term, we then obtain [6]

(3.3.17)

av[K] dE
Since ~~2] and ~ can be calculated via the uses of (3.3.10) and (3.3.14), formula

av. au.!
12 i

(3.3.17) can be used to compute the base case of (3.3.16). Note that the calculation of

59

dv [kll dv [kz 1
l! 12

requires the forward propagation of first-order partial derivatives, the

backward propagation of the first-order partials of E(w), and the second order partials.

Those propagation formulas that we have developed in this section will enable us to

derive the learning algorithms based on the methods we have introduced in Chapter 2.

We carry out the derivation in the next section.

3.4 Classical Learning Algorithms

Based on the classical optimization methods introduced in Chapter 2, we develop their

corresponding learning algorithms for training feedforward ANNs. The only major task

that is needed to yield our learning algorithms from the algorithms of Chapter 2 is the

calculation of all the first (andlor second) partial derivatives of the error function with

regard to the weights. Such computations are characterized by the special recursive form

of the network function given by (3.1.3) and (3.1.4). Since the error function is recursive,

the computations of the derivatives are also recursive.

While the derivation of all formulas in the previous section and the current section are

valid for any proper choice of an activation function, we shall use the Sigmoid function

defined by (3.1.5) as the activation function for each neuron in the network. For

convenience, the Sigmoid is cited below along with its derivatives [6].

(3.4.1)

(3.4.2)

1
f(x) = 1 -x

+e
(Sigmoid function)

f'(x) = 1 .e-X = 1 (1+e-X)-l
(l+e-xt (l+e-x) (l+e-x)

= f(x)(l- f(x))

60

,
f"(x) = (f(x)(I- f(x))) = f'(x)(l- f(x)) - f(x)f'(x)

(3.4.3) = f(x)(l- f(X))2 - f(x)f(x)(I- f(x))

= f(x)(l- f(x))(l- 2f(x))

The first-order and second-order derivatives of the Sigmoid function are needed when

evaluating the local derivatives defined by (3.3.2) and (3.3.3).

Steepest Descent Learning Algorithm

For the Steepest Descent method, we need all the first order partial derivatives of the

error function with regard to a connection weight. By the Chain rule, we have, for a layer

index k<K,

(3.4.4)
aE _ aE au~kl _ aE ([kl)(i) .

aw[.k] - au[kl aw[k] - au[k1 uj ,J ::j:. o.
j,1 j j,1 j

aE
Based on the recursion of au[kl given by (3.3.14), we can see that (3.4.4) is a

j

backward propagation formula. The base case of the recursion (3.4.4) is when k=K, where

we have

(3.4.5)

aE = aE ([Kl)(i)
aw[Kl au[Kl uj

j,1 j

(by (3.3.12) and (3.3.8)).

The last expression in (3.4.5) is computable upon a forward computation of the

network. Hence, any derivative a~l of E can be computed by the uses of (3.4.4) and
aw ..

],1

(3.4.5). This yields the gradient of E at Xl. To determine the step size of a downhill move

along the direction of the gradient, one simple ad hoc method is to fix a step size

61

beforehand. A better approach is to use a line search method as mentioned in section 2.1.

Upon the above preliminaries, we are now ready to give the first learning algorithm

that is based on the Steepest Descent method.

Algorithm 3.4.1: Given a set 5={(XI, YI)I X, =input, YI =desired output of X, } of L training patterns

and given a network setup of K layers with input dimension of n and output

dimension of m.

[k'l 1. Initialize all weights W j,i as random numbers uniformly distributed between

-0.5 d ------an ------
0.5

fan - in of that unit fan - in of that unit

set stopping Tolerance

set W(1)=(W}~?) and k=1.

2. For each input X, E 5, repeat step 3, 4, 5, and 6.

3. Compute the actual output of the network by using (3.1.3) and (3.1.4).

4. Compute the gradient g(k) of E(w) via the use of (3.4.4), (3.4.5), and (3.4.2),

and set p(k)= _g(k).

5. Determine the step size a(k) by using a line search technique such that

() (,)(k+l) 6. (on-line version) Update the weights w k+1 =(W)~il) via

(off-line version) Accumulate the weight updates W(k+1) given above over all

input patterns.

(k 1) ([k'l)(k+l) 7. If all the weights w + =(W j,i) is such that the following convergence

criterion is satisfied, then stop.

L

Otherwise, set k=k+ 1 , go to 2.

62

The rate of convergence of Algorithm 3.4.1 is linear. The computational complexity of

this algorithm is fairly simple except for the linear search method used.

The steepest descent method is rarely used today in the field of optimization because

of its slow rate of convergence. However, it is still employed in ANN learning algorithms

due to its simplicity. Various modified versions for speeding up Algorithm 3.4.1 have

been proposed. However, investigation of those speeding up algorithms is out of the

scope of this paper. Further development in this direction can be found in [10].

Algorithm for Computing the Hessian Matrix of E

The derivation of our proposed damped Newton learning algorithm requires the uses of

both the gradient g and the Hessian matrix H of E(w), which might also be needed for

the Conjugate Gradient learning algorithm. The calculation of the gradient g has been

derived above. We now derive the formulas for computing the Hessian matrix H.

a2E
The element of the Hessian matrix H of E(w) is of the form , jl, h:f=O.

aw[kd aw[k2]

11"1 jz"2

Since the Hessian matrix is symmetric, we only need to compute the second derivatives

with kl ~ k2• In the following discussion, without loss of generality, we shall assume kl ~

k2. Note that this means there is no connection from neuron ii in layer kl to neuron i2 in

layer k2•

Considering the first order partial derivative of E(w) locally at w~~:~, we have, by the

Chain Rule and (3.3.4) [6],

63

(3.4.6)

Differentiating (3.4.6) with respect to W[k2] , we obtain, for kl > k2
12"2

This gives us

(3.4.7)

When kl = k2, since U,[k1-1] is not a function of W J[k
2] in (3.4.6), we have

1 2,l2

(3.4.8)

Each factor on the right-hand side of (3.4.7) and (3.4.8) can be computed either locally

or by a propagation formula derived in the previous section. Note that the computation of

normally requires multiple forward and backward passes through the

network, the number of which scales with the number of hidden nodes in the network [6].

64

The following algorithm is for the computation of the Hessian matrix of E(w).

Algorithm 3.4.2: (Exact calculation of Hessian Matrix H of E(w»

Assume given an input pattern (XI, Y/)

1. Compute the following

{ U}kll k=1, 2, ... , K, j=0, 1, ... , 11k}, by (3.1.3) and (3.1.4),

,
{ (u}kl) I k=1, 2, ... , K, j=0, 1, ... , 11k}, via (3.4.2),

"
{(u~kl) I k=1, 2, ... , K, j=0, 1, ... , 11k}, by (3.4.3),

{ (u}k1)i I k=1, 2, ... , K, j=0, 1, ... , 11k, i=0, 1, ... , 11k.1} via (3.3.7).

t1iPd
2. Compute { du(~21 I K?k"?~"21} by forward propagation formula (3.3.9).

12

av[kd

3. Compute { dv(~21 I K?k1"2~"21} by forward propagation formula (3.3.10).

h

dE
4. Calculate {--uJ I k=1, 2, ... , K, j=0, 1, ... , Ilk } via the back-propagation

duj

formula (3.3.14).

5. Generate { dv[k!~~[k21 I K?k1"2~"21} by using the backward recursive formula

h 12

(3.3.16).

dE
6. Evaluate { [ktl [k21 I K?k1"2~"21} via (3.4.7) and (3.4.8). aw . . aw ..

h,l! 12.'2

7. Obtain the Hessian Matrix H of E(w) by symmetry and stop.

The Gauss Newton Learning Algorithm

The implementation of the Gauss-Newton version of Newton's method requires the

calculation of the gradient of E(w) and the Jacobian matrix J of the vector function

65

defined by the network. The element of the Jacobian matrix is of the form

(3.4.9) (by (3.3.6)).

By using (3.3.14), we can compute (3.4.9) via backward propagation after a forward

computation through the network. The following algorithm is the Gauss-Newton learning

algorithm, which is based on Algorithm 2.6.1.

Algorithm 3.4.3: Given a set 5={(X/, Y/)I X, =input, YI =desired output of X, } of L training patterns

and given a network setup of K layers with input dimension of n and output

dimension of m.

[k'] 1. Initialize all weights W j,i as random numbers uniformly distributed between

-0.5 d 0.5 ------ an ------
fan - in of that unit fan - in of that unit

set stopping Tolerance

2. For each pattern (XI, Y/) E 5, repeat step 2.1, 2.2, and 2.3, with g(k)=O.

2.1. Using the weight W(k), compute the actual output of the network by

using (3.1.3) and (3.1.4).

2.2. Obtain the gradient g(x/) of E(w) via the use of (3.4.4), (3.4.5), and

(3.3.8),

2.3. sum up g(X/)'S, i.e., g(k)=g(k)+ g(x/)

3. For each pattern (XI, Y/) E 5, repeat step 3.1 and 3.2 with J(k)= o.

3.1. Compute the Jacobian Matrix J(W(k), XI) via (3.4.9).

3.2. sum up J(W(k), X/)'S, i.e., J(k)= J(k)+ J(W(k), XI).

4. Set H(k)= J(k) T J(k) and compute p(k) by solving the system of linear equations

H(k)p(k)= _g(k).

5. Compute a(k+1) one of the line search methods in section 2.1.

66

(k 1) ('l)(k+l) 7. If all the weights w + =(W}~i) is such that the following convergence

criterion is satisfied, then go to 8.

Otherwise, set k=k+ 1, go to 2.

8 . Set WO=W(k+1) and stop.

Conjugate Descent Learning Algorithm

The following learning algorithm is based on Algorithm 2.5.1 of the conjugate descent

method. It is used for the off-line training model.

Algorithm 3.4.4: Given a set S={(X/, Y/)I X, =input, YI =desired output of X, } of L training patterns

and given a network setup of K layers with input dimension of n and output

dimension of m.

1. Initialize all weights W}~? as random numbers uniformly distributed between

-0.5 d 0.5 -----------an -----------
fan - in of that unit fan - in of that unit

Set stopping Tolerance

set W(l)=(W}~?) and k=1.

2. For each pattern (XI, Y/) E S, repeat step 2.1, 2.2, 2.3, 2.4, with g(k)=O.

2.1. Using the weight W(k), compute the actual output of the network by

using (3.1.3) and (3.1.4).

2.2. Calculate error information by using (3.3.12), based on the desired

output Y/,

2.3. Obtain the gradient g(x/) of E(w) via the use of (3.4.4), (3.4.5), and

(3.3.8),

2.4. sum up g(X/)'S, i.e., g(k)=g(k)+ g(x/)

3. If k=1, then set p(l)= r(l)= _g(l).

67

4. Compute U(k) by using a line search technique [36]

Ck)T rCk)
or by using the formula aCk) = C0T Ck) Ck) (or using an approximation of

p H p

5. Compute W(k+1)=W(k)+U(k)p(k) and, using step 2 to compute g(k+1), and set

6. If k=O mod n, go to 10.

7. Compute ~(k) using one of the following:

•

•

•

(Hestenes and Stiefel)

(Fletcher and Reeves)

(Polak and Ribiere)
{3Ck) = r Ck+1)T (r(k+l) - rCk»

pCk)T rCk)

() (,)Ck+l) 9. If all the weights W k+1 =(W)~i 1) is such that the following convergence

criterion is satisfied, then go to 11.

L

Otherwise, set k=k+ 1, go to 2.

10. Set p(k+1)= r(k+1) go to 2.

11. Set WO=W(k+1) and stop.

3.5 Implementation of the Levenberg-Marquardt Method

The Levenberg-Marquardt technique is used to improve the stability of the Gauss-

Newton method, as we have seen in Chapter 2. Specifically, instead of solving a system

of linear equation given by

(3.5.1) (step 4, Algorithm 3.4.3),

68

in the treatment of Levenberg and Marquardt, we solve the system determined by

(3.5.2)

where D=diag(Qll, ... , Qnn) for Q=jk) Tjk). Based on Algorithm 2.7.1 and Algorithm

3.4.3, the Levenberg-Marquardt version of the Gauss-Newton method is straightforward.

Algorithm 3.5.1: Given a set S={(X/, Y/)I XI =input, YI =desired output of XI } of L training patterns

and given a network setup of K layers with input dimension of n and output

dimension of m.

[k'J 1. Initialize all weights Wj,i as random numbers uniformly distributed between

-0.5 d 0.5 ------ an ------
fan - in of that unit fan - in of that unit

set stopping Tolerance

2. For each pattern (XI, Y/) E S, repeat step 2.1, 2.2, and, 2.3, with g(k)=O.

2.1. Using the weight W(k), compute the actual output of the network by

using (3.1.3) and (3.1.4).

2.2. Obtain the gradient g(x/) of E(w) via the use of (3.4.4), (3.4.6), and

(3.3.8),

2.3. sum up g(X/)'S, i.e., g(k)=g(k)+ g(x/)

3. For each pattern (XI, Y/) E S, repeat step 3.1 and 3.2 with J(k)= o.

3.1. Compute the Jacobian Matrix J(W(k), XI) via (3.4.8).

3.2. sum up J(W(k), X/)'S, i.e., J(k)= J(k)+ J(W(k), XI).

Aik)

4. Set H(k)= J(k)TJ(k) and ",(k)= -v-'

6. Compute p(k) by solving the system of linear equations

(H(k)+ ",(k)D)p(k)= _g(k).

Otherwise, goto 8.

69

8. If all the weights W(k+1) =((W)~;l)(k+l) is such that the following convergence

criterion is satisfied, then go to 9.

Otherwise, set k=k+ 1 , goto 2.

9. Set wo=W(k+1) and stop.

70

4. THE DAMPED NEWTON LEARNING ALGORITHM

In this Chapter, we develop the proposed ANN learning algorithm. This includes its

foundation and the algorithmic implementation. In Section 2.7, we have seen that the

Levenberg-Marquardt method is a very effective technique to improve the stability of the

Gauss-Newton method. In this Chapter, we incorporate such a technique into Newton's

method in order to improve the convergence properties of the Newton method, and

implement this new method as an ANN learning law for training feedforward neural

networks. The two sections, Section 4.1 and 4.2, can be treated as extensions of Section

2.7 of Chapter 2 and Section 3.5 of Chapter 3 respectively.

4.1 The Damped Newton Method

When Newton method is used for solving non-linear least squares problems, it suffers

the same deficiencies as the Gauss-Newton method we have discussed in Section 2.7 and

it may also fail because of non-positive definiteness of the Hessian matrix of E(w). To

improve the stability of the Newton method, we incorporate the Levenberg-Marquardt

technique into Newton's method. Recall that, at each iteration in the Newton method, we

determine a downhill step Il(k) by solving the system of linear equations given by

(4.1.1)

where g(k) is the gradient of the error function E(w) and H(k) is the Hessian matrix of

E(w). To overcome the singular and non-positive definite problems of the matrix H(k)

that may exist, we solve the following system of linear equations instead.

(4.1.2)

71

where A (k) > 0 and D is a diagonal matrix whose elements are the absolute values of the

diagonal elements of H(k).

The theoretical foundation for the above formulation is related to the three theorems of

Section 2.7. In the three theorems, it is assumed that the matrix Q being symmetric and

positive semidefinite. The latter condition is violated in the above formulation since the

Hessian matrix could be non-positive definite. By adding a positive number to each of the

diagonal elements of the Hessian matrix H, the resulting matrix could be made positive

definite if the added constants are sufficiently large. Hence, upon the restriction that A is

sufficiently large, the three theorems in section 2.7 can still be used to justify the

formulation (4.1.2). All results obtained in the discussion of the Gauss-Newton/

Levenberg-Marquardt method (Section 2.7) can now be applied to this extended method.

This modified version of the Newton method might be called the "Extended" Levenberg­

Marquardt method, or the Damped Newton method.

In the next section, we develop an arithmetic implementation of this Damped Newton

method as an ANN learning algorithm for training feedforward neural networks.

4.2 The Damped Newton Learning Algorithm

To implement the damped Newton method as an ANN learning law, we need to

compute the gradient g and the Hessian matrix H of the error function E(w). Based on

our previous work on such computations, a slight modification of the Algorithm 3.5.1

would yield our goal algorithm.

72

The Damped Newton Learning Algorithm

Algorithm 4.2.1: Given a set 5={(XI, YI)I X, =input, YI =desired output of X, } of L training patterns

and given a network setup of K layers with input dimension of n and output

dimension of m.

[k'l 1. Initialize all weights W j,i as random numbers uniformly distributed between

-05 d 05 ------ an ------
fan - in of that unit fan - in of that unit

set stopping Tolerance

2. For each pattern (XI, YI) E 5, repeat step 2.1, 2.2, and 2.3, with g(k)=O.

2.1. Using the weight W(k), compute the actual output of the network by

using (3.1.3) and (3.1.4).

2.2. Obtain the gradient g(xl) of E(w) via the use of (3.4.4), (3.4.5), and

(3.3.8),

2.3. sum up g(XI)'S, i.e., g(k)=g(k)+ g(xl)

3. For each pattern (XI, YI) E 5, repeat step 3.1 and 3.2 with H(k)= o.

3.1. Use Algorithm 3.4.2 to compute the Hessian matrix H(W(k), XI) of E(w).

3.2. Sum up H(W(k), XI)'S, i.e., H(k)= H(k)+ H(W(k), XI).

ACk)
4. Set ;>...(k)= -v-'

5. Compute p(k) by solving the system of linear equations

Otherwise, goto 8.

(k 1) ([k'l)Ck+l) 8. If all the weights w + =(W j,i) is such that the following convergence

criterion is satisfied, then go to 9.

73

Otherwise, set k=k+ 1 , goto 2.

9. Set WO=W{k+1) and stop.

To test our proposed learning algorithm, we will implement it using the FORTRAN

language. Some other algorithms will also be implemented in order to assess the

performance of the new algorithm. The next chapter deals with those implementations

and tests.

74

5. IMPLEMENTATION AND TEST RESULTS

5.1 Language Implementations

To test the new damped Newton learning algorithm, we implement it using the

standard FORTRAN 77 language. To compare its performance in enforcing the learning

process of ANNs with that of some other methods, the steepest descent learning

algorithm and the Gauss-NewtonJLevenberg-Marquardt learning algorithm are also

programmed. Their names are STEDES for the steepest descent learning algorithm,

GNLMD for the Gauss-NewtonJLevenberg-Marquardt learning algorithm, and NLMD for

the Damped Newton learning algorithm.

The network structure of an ANN is represented by two two-dimensional arrays. The

first one is array LAYER, which contains information such as the number of layers in the

network, the number of nodes in each layer, and some indexing information. One

problem encountered in the implementation is the indexing of neurons and weights. In the

program, the following indexing formulas are used.

• The index of neuron i in layer k is (k:E~umber of nodes in layer sJ + i •
s=o

Note that the first summation in the above formula depends on the layer only, and

for convenience, the summation for each layer is computed early and stored in the

second row of array LAYER. Note also that neuron number 0 in each layer is the

bias node.

• The index of a connection weight w;~l is defined by

75

(k~)
.~numberOfnOdeinlayers{numberOfnOdeinlayer(S-I)+I) + G -I)· numberofnodesinlayer(k -I) + i

The first summation also depends on the layer only and the values are computed

and stored in the third row of the array LA YER.

The second array representing a neural network is a two-dimensional array, NEURON,

whose first dimension is over the nodes index. It stores the output u[klof each neuron, the
.I

,
first derivative (U)kl) of the activation function, and the partial derivatives of the

form d~l . The storage requirement of NEURON is of order O(n), where n is the total
duj

number of nodes in the network (including input and bias nodes).

All the weights are stored in the first row of the two-dimensional array WEIGHT with

the first dimension over the weight index. The second and the third rows of WEIGHT are

used to store the gradient vector of the error function with regard to a pattern and that of

the error function over all the patterns respectively. This array takes storage of order, at

most, O(mK), where m is the maximum number of nodes in a layer and K is the number

of weighted layers in the network. For the steepest descent learning algorithm, the above

storage are all that it needs. For the Gauss-Newton learning algorithm, more rows of the

array WEIGHT are needed to store the Jacobian matrix of E(w), and a storage for the

Hessian matrix of E(w) is also required. The storage requirement of the Hessian matrix is

of order O(m2K2), with m and K being defined above. For the Damped Newton learning

algorithm, the array HESIAN for the Hessian matrix of E(w) is needed and, in addition, a

76

dU[kd mlkd
storage of order O(n2) is needed to store information of the form J __ .I - and

du[~l' dv[~l'
I I

dv[.k~~[~l . The latter array, UUVV, is also needed for the Gauss-NewtonJLevenberg-
.II 12

Marquardt learning algorithm. In the program, other derivatives whose storage are not

allocated are computed when needed. The formulas for computing those pieces of

information are listed below.

" ,
3) (U)kl) = (U)kl) (1-2u)kl)

The program is divided into functional subroutines. The major subroutines are the

following.

INITWT () --initialize all connection weights.

NETOUT () --compute the outputs of all neurons in the network upon an input.

COMGRA () --calculate the gradient of E(w) with regard to an learning pattern.

DEU () --compute the derivatives of the form ~~l .

J

FIDITV () --find an interval for a line search.

QINTER () --perform quadratic interpolation to locate a minimizer (Algorithm 2.1.2).

STEDES () --implement the steepest descent learning algorithm (Algorithm 3.4.1).

RR () --compute the squared sum function value upon a learning example.

77

DUUVV()
au[kd dv[kd

--compute derivatives of the form aut10J and ----bJ.
i dv i

COMJAC () --compute the Jacobian matrix of the network function and approximate

the Hessian matrix by the product of the Jacobian matrices.

LSOLV () --solve a system of linear equations (Algorithm 2.1.1).

DEW () --comp,ute derivatives of the form dv[k~~[.I0J •

11 12

COMHAS () --compute the Hessian matrix of E(w) for the Damped Newton learning

algorithm.

GNLMD () --implement the Gauss-Newton!Levenberg-Marquardt learning algorithm

(Algorithm 3.5.1).

NLMD () --implement the Damped Newton learning algorithm (Algorithm 4.2.1).

The program is written in FORTRAN 77 with double precision. It is compiled by

using ptx/FORTRAN compiler which is compatible with ANSI Standard FORTRAN 77.

The test results are described in section 5.3.

5.2 Neural Network Design

The design of a neural network is highly problem-oriented. It is the problem that

determines what ANN topology and what stopping condition for training should be used.

The topology of the ANN determines the number of connection weights. Using more

connection weights implies that the ANN might need more training examples. If, in the

training process, the error function values converge to a value above the requirement,

78

then more connection weights (by means of adding more nodes and/or hidden layers) are

needed in order to further reduce the error function values.

Normally, for a given problem, training is done on different topologies of ANNs in

order to determine which one might fit the requirements of the problem. At this stage, the

stopping conditions used in the training might be any of the stopping condition 2, 3, 4 or

6 as mentioned in section 3.2, Chapter 3. Once a set of optimal ANN topologies are

obtained, then the training of the ANNs are concentrated on the generalization of the

ANNs. The generalization ability of the ANN is highly sensitive to when to stop the

training process. A good fitting of the training examples does not mean that the ANN

will generalize well over the entire problem domain. Thus, to obtain better generalization

results, some optimal stopping point has to be set before the training starts. The uses of

validation sets provide some tools for obtaining such a optimal point. In such a training

paradigm, the training process is stopped when the errors on the validation examples are

reduced within tolerance. In this stage, the stopping condition used for the training might
,

be the stopping condition 1, 3, or 5. However, in this paper, we are not concerned with

the generalization of the ANNs, since it depends on the training ability of the learning

algorithms, i.e., the ability to reduce the error function values to within a specified level

of tolerance. Hence, to test our new Damped Newton learning algorithm, we emphasize

on the training side, that is, whether it trains an ANN or not.

79

5.3 Test Problems

The goal of our testing is to explore the feasibility of the proposed new damped

Newton learning algorithm for training fully-connected, feedforward neural networks and,

if feasible, to assess its performance compared with existing learning algorithms.

The first test problem is the parity problem obtained from the benchmark problems for

training neural networks in the artificial intelligence depository at Carnegie Mellon

University (Anonymous FTP: /afs/cs/projectlconnectfbench on ftp.cs.cmu.edu). We test

the learning algorithms on three sub-problems of the parity problem, i.e., the 2-, 3-, and 4-

parity problems. Details of those problems follow.

Number of

Problem Type of Problems Inputs Outputs Examples

2-parity(XOR) Classification 2 1 4

3-parity Classification 3 1 8

4-parity Classification 4 1 16

Note that in this ~-parity problem, the requirement is that the ANN should be able to

classify each pattern correctly up to a given tolerance. Hence, all the examples are used in

the training sessions and generalization of the ANN is not a concern in this problem.

Three more test problems are chosen from the PROBENl [26]. Two of those are

function approximation problems and the other is a classification problem. The following

lists information about those test problems.

Number of

Problem Type of Problems Inputs Outputs Examples

cancer Classification 9 2 699

building Approximation 14 3 4208

heart Approximation 35 1 920

80

5.4 Test Results

The initial set of connection weights in an ANN affects the learning process of the

neural network. Hence, it is necessary to obtain testing results with regard to different set

of initial connection weights. The test results obtained in this section are the results of

several runs, each time with a new set of random connection weights. In the program, a

pseudo-random number generator [32] is used to produce the random numbers needed.

The generator takes an integer seed number as its input and could produce a sequence of

random numbers unique to each seed number. This way, the weight initialization process

could be reproduced so that we can start different learning algorithms with the same ANN

topology and the same set of initial connection weights.

The program has been run on the test problems and numerical results have been

obtained. The testing results are described below according to the following comparison

criteria.

1. Feasibility test: with a fixed stopping criterion, the program was run on the

three test problems. For each problem, ten runs have been

performed for each of the three learning algorithms. The

initial weights of the network are different for each run,

while they are the same for each of the three learning

algorithms at each run (i.e., using the same seed for

generating the pseudo-random numbers). The results

obtained are the average of the ten runs or fewer if learning

fails because of local minimum problems.

81

2. Performance test: the same as above but with varied stopping conditions to

assess the performance of the new algorithm when high

precision over the training set is needed.

The following lists the parameters used in the three learning algorithms.

• initial A=O.OI

• increase/decrease factor ~=5.0

The feasibility test has been done on all of the test problems mentioned in the last

section. For the classification problems, the stopping condition used is No.5, i.e., to

classify each pattern correctly to within a 0.1 tolerance. The results are listed in the

following tables. In the tables, the symbol "L" means a local minimum was encountered,

i.e., patterns can not all be classified correctly within the given tolerance, and "F" implies

that the method failed. In such cases, they are not counted in the averages.

Table 1: Test Results on the 2·parity Problem with a 2·4·1 ANN Topology

seed number for generating initial random weights average

Algorithm 1 17 21 27 40 45 66 78 81 96

Steepest Descent 80 61 68 49 106 103 104 106 35 259 97.1

Gauss-Newton/LM 6 9 6 L 6 15 5 L 2 11 7.5

Damped Newton 21 L 9 15 18 16 17 37 17 19 18.8

Note: 4 training examples are used.

82

Table 2: Test Results on the 3-parity Problem with a 3-6-1 ANN Topology

seed number for generating initial random weights average

Algorithm 1 17 21 27 40 45 66 78 81 96

Steepest Descent 135 402 3660 5541 11821 480 3401 149 4696 189 3047.4

Gauss-Newton/LM 16 6 3 7 5 6 10 12 7 9 8.1

Damped Newton L 28 12 14 28 16 L 15 19 23 19.4

..
Note: 8 trammg examples are used.

Table 3: Test Results on the 3-parity Problem with a 4-8-1 ANN Topology

seed number for generating initial random weights average

Algorithm 1 17 21 27 40 45 66 78 81 96

Steepest Descent 1121 1334 18576 4325 1489 2783 2811 F 23230 2242 3617.2

Gauss-Newton/LM L L 105 132 L L 119 101 18 57 88.7

Damped Newton 21 116 22 34 54 L 77 59 55 119 61.4

. .
Note: 16 trammg examples are used .

The stopping conditions used for testing the cancer classification problem and the

other two approximation problems are somewhat complicated. We first run the Gauss-

NewtonlLevenberg-Marquardt learning algorithm (or the Damped Newton) with a

relative RMS stopping condition (Stopping Condition #3) to determine a point of

convergence. Note that this stopping condition sometimes does not work well when used

in the steepest descent learning algorithm, since the reduction of function values from one

iteration to the next could be very small. Then, upon the knowledge of this point, we used

the stopping condition #1, i.e., learning is stopped when the error function values are

reduced within a given tolerance (which is greater than the function value at the point of

83

convergence). In the following, results of the Steepest Descent learning algorithm are

obtained with a tolerance of 0.001 with stopping condition #1 (using RMS values) and

the results of the other two methods are gotten when the reduction of RMS values is

within tolerance of O.lx 1 0-16 (Stop Condition #3).

Table 4: Test Results on the Cancer Problem with a 9-2 ANN Topology

seed number for generating initial random weights average

Algorithm 1 17 21 27 40 45 66 78 81 96

Steepest Descent 2173 2184 2190 2190 1924 2037 2165 2130 346 2180 1951.9

Gauss-Newton/LM 58 57 58 56 56 56 56 57 56 56 56.6

Damped Newton 12 12 12 12 12 12 13 12 12 12 12.1

. .
Note: (1) 525 trammg examples are used .

(2) Local miminum=0.2246622184498266780 (with a 10.15 accuracy).

(3) Training for Steepest Descent algorithm stopped when function values are reduced below 0.231.

Table 5: Test Results on the Building Problem with a 14-3 ANN Topology

seed number for generating initial random weights average

Algorithm 1 17 21 27 40 45 66 78 81 96

Steepest Descent 748 757 757 771 753 760 773 763 747 767 759.6

Gauss-Newton/LM 7 7 7 7 7 7 7 7 7 7 7

Damped Newton 6 6 6 6 6 6 5 5 6 6 5.8

. . Note: (1) 500 trammg examples are used .

(2) Local miminum=0.0602037866342696670 (with a]0.15 accuracy).

(3) Training for Steepest Descent algorithm stopped when function values are reduced below 0.0603.

84

Table 6: Test Results on the Heart Problem with a 35-1 ANN Topology

seed number for generating initial random weights average

Algorithm 1 17 21 27 40 45 66 78 81 96

Steepest Descent 325 341 331 336 324 325 322 327 335 335 330.1

Gauss-Newton/LM 9 10 9 9 9 9 9 9 9 9 9.1

Damped Newton 5 5 5 5 5 5 6 5 5 6 5.2

Note: (1) 690 training examples are used.

(2) Local miminum=0.1970472022241477990 (with a]0.15 accuracy).

(3) Training for Steepest Descent algorithm stopped when function values are reduced below 0.198.

One advantage of using the Newton method over the Gauss-Newton method is that the

former converges to a minimum point with quadratic convergence as opposed to the

linear convergence for the Gauss-Newton method. When testing, this property is reflected

by the speed at which the norm of the weight updates approaches O. For the damped

Newton method, its speed of convergence is weaker than that of the Newton method and

is close to quadratic as can be observed in the following tables. The stopping condition

used for the tests is the relative RMS (Stopping Condition #3) with a much smaller

tolerance of O.lxlO-16 than that used in the above tests. This stronger requirement is

needed when high precision on the training set is required.

85

Table 7: Performance Test Results (the Gauss-NewtonlLevenberg-Marquardt
Algorithm) on the Building Problem with a 14-3 ANN Topology

actual RMS epoch)}II] II!1ttiI2

0.3719656416874160150 0 0.1000000E-01 5.000000

0.0764699001570153846 1 0.2000000E-02 2.851237

0.0603818254426006184 2 0.4000000E-03 0.6581495

0.0602039906224533627 3 0.8000000E-04 0.1705101

0.0602037872064130574 4 0.1600000E-04 0.8345467E-02

0.0602037866363822171 5 0.3200000E-05 0.4318909E-03

0.0602037866342778116 6 0.6400000E-06 0.2682336E-04

0.0602037866342696670 7 0.1280000E-06 0.1654361E-05

0.0602037866342696492 8 0.2560000E-07 0.1031173E-06

. . Note: (1) 500 trammg examples are used .

Table 8: Performance Test Results (the Damped Newton Algorithm) on

the Building Problem with a 14-3 ANN Topology

actual RMS epoch AlII] II!1w112

0.3719656416874160150 0 0.1000000E-01 5.000000

0.0787833370965010093 1 0.2000000E-02 2.805360

0.0613366701825997751 2 0.4000000E-03 0.9584970

0.0602151588752766375 3 0.8000000E-04 0.4732735

0.0602037887783644087 4 0.1600000E-04 0.8338464E-01

0.0602037866342702443 5 0.3200000E-05 0.1488150E-02

0.0602037866342696847 6 0.6400000E-06 o . 1317166E-05

0.0602037866342696670 7 o .1280000E-06 0.2642247E-09

Note: (1) 690 training examples are used.

86

Table 9: Performance Test Results (the Gauss-NewtonlLevenberg-Marquardt
Algorithm) on the Heart Problem with a 35-1 ANN Topology

actual RMS epoch A,LKJ
11~W\12

0.3091762029727637360 0 0.1000000E-01 5.000000

0.2000977683803623730 1 0.2000000E-02 3.142956

0.1970759648661704050 2 0.4000000E-03 0.7461564

0.1970474538977780020 3 0.8000000E-04 0.9303208E-01

0.1970472055096417030 4 0.1600000E-04 0.8621738E-02

0.1970472022720594110 5 0.3200000E-05 0.8791360E-03

0.1970472022248880070 6 0.6400000E-06 0.9898951E-04

0.1970472022241596290 7 0.1280000E-06 0.1136560E-04

0.1970472022241478880 8 0.2560000E-07 o .1339874E-05

0.1970472022241477100 9 0.5120000E-08 0.1799136E-06

0.1970472022241478520 10 0.5120000E-09 0.1718461E-05

0.1970472022241476390 10 0.9765625E-01 0.1655321E-07

Note: (1) 500 traimng examples are used.

Table 10: Performance Test Results (the Damped Newton Algorithm) on the Heart
Problem with a 35-1 ANN Topology

actual RMS epoch A,LKJ 11~W\12

0.3091762029727637360 0 0.1000000E-01 5.000000

0.2000021570874490610 1 0.2000000E-02 3.194229

0.1971521541708801450 2 0.4000000E-03 0.7650341

0.1970474745554628800 3 0.8000000E-04 0.1775413

0.1970472022267991890 4 0.1600000E-04 0.9683954E 02

0.1970472022241477280 5 0.3200000E-05 0.3717560E-04

0.1970472022241477460 6 0.6400000E-06 0.6030849E 08

0.1970472022241477100 6 0.1280000E-06 0.6028837E-08

. .
Note: (1) 690 trammg examples are used .

87

6. CONCLUSION

6.1 Conclusion

This study presents a new ANN learning algorithm for training fully-connected,

feedforward neural networks. The new algorithm is based on Newton's method for

solving non-linear least squares problems and the Levenberg-Marquardt technique to

improve the convergence properties of Newton's method. The new algorithm has been

programmed and tested on several real world problems. Satisfactory numerical results

have been obtained. It is shown in this paper that the proposed new learning algorithm is

practically feasibly and has high convergence performance over the existing ANN

learning algorithms when dealing with approximation problems and when high precision

over the training set is required.

6.2 Recommendation for Future Work

Further investigation could be done at several places in the new algorithm. Some

optimal methods could be used in order to improve the performance of the new

algorithm. Those areas are described in the following.

1. Further investigation can be done on some optimal choices of A and the factor fl at

each iteration, which are used in both of the Gauss-NewtonlLevenberg-Marquardt

learning algorithm and the Damped Newton learning algorithm. One approach is

that of Fletcher [5]. Others are covered in references [12], [13], [17] and [33].

88

2. Other paradigms regarding when and how to increase or decrease')... at each iteration

other than that of Marquardt's approach presented in this paper can be

investigated. The references are the same as the above ones.

3. A rigid comparison study is needed to compare thoroughly the performance of the

algorithms mentioned in this paper in order to obtain better understanding of the

learning properties of those algorithms we are concerned with, with regard to

more aspects of the learning process in training ANNs. For example, the Gauss­

Newton method may never have a neighborhood of convergence at a minimum

point, as has been shown in [31]. Such a problem is not encountered in the test

problems we have seen in this thesis report. Proper test problems need to be found

in order to gain understanding of this divergence behavior of the Gauss-Newton

method and the behavior of Newton's method when tested with this kind of

problems.

89

7. REFERENCES

[1] M. AI-Baali and R. Fletcher, "Variational Methods for Non-Linear Least­

Squares", J. Opl Res. Soc., Vol. 36, No.5, pp405-421, 1985.

[2] Christine T. Altendorf, Estimating Soil Water Content Using Soil Temperatures

and a Neural Network, Ph.D. Dissertation, Oklahoma State University, 1993

[3] Roberto Battiti, "First- and Second-Order Methods for Learning: Between

Steepest Descent and Newton's Method", Neural Computation, Vol.4, 1992,

ppI41-166.

[4] Randall Beer, Chie1, Hillel; and Sterling, Leon, "An Artificial Insect", American

Scientist, Volume 79.

[5] Chris Bishop, "A Fast Procedure for Retraining the Multilayer Perceptron",

International Journal of Neural Systems, Vol. 2, No.3 (1991), pp229-236.

[6] Chris Bishop, "Exact Calculation of the Hessian Matrix for the Multilayer

Perceptron", Neural Computation, Vol.4, 1992, pp494-501.

[7] Chris M. Bishop, "Neural Networks and Their Applications", Rev. Sci. Instrum.

Vol.65, No.6, June, 1994.

[8] Wray L. Buntine and Andreas S. Weigend, "Computing Second Derivatives in

Feed-Forward Networks: A Review", IEEE Transactions on Neural Networks, Vol.

5, No.3, pp.480-488, May,1994.

[9] Richard L. Burden and J. Douglas Faires, Numerical Analysis, 4th Edition, PWS­

KENT Publishing Company, Boston, 1988.

90

[10] A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal

Processing, John Wiley & Sons Ltd., Baffins Lane, Chichester, West Sussex P019

IUD, England, 1993.

[11] J. E. Dennis, Jr. and Robert B. Schnabel, Numerical Methods for Unconstrained

Optimization and Nonlinear Equations, Prentice-Hall, Inc., Englewood Cliffs,

New Jersey 07632, 1983.

[12] A. Dold and B. Eckmann, Lecture Notes in Mathematics: Numerical Analysis,

No. 630, Springer-Verlag, Berlin, 1978.

[13] R. Fletcher, Practical Methods of Optimization, Volume 1, John Wiley & Sons,

Chichester, 1980.

[14] A. Forsgren, P.E. Gill, and W. Murray, "Computing Modified Newton Directions

Using A Partial Cholesky Factorization", SIAM J. SCI. COMPUT., Vo1.16, No.1,

pp139-150, January 1995.

[15] Martin T. Hagan and Mohammed B. Menhaj, "Training Feedforward Networks

with the Marquardt Algorithm", IEEE Transactions on Neural Networks, Vol. 5,

No.6, pp.989-994, Nov.,1994.

[16] Martin T. Hagan, Neural Networks, Lecture Notes, Oklahoma State University,

1995.

[17] W. M. Haubler, "A Local Convergence Analysis for the Gauss-Newton and

Levenberg-Morrison-Marquardt Algorithm", Computing, Vo1.31, pp231-244,

1983.

91

[18] Magnus R. Hestenes, Conjugate Direction Methods in Optimization, Springer­

Verlag, 175 Fifth Avenue, New Your, NY 10010, USA, 1980.

[19] Robert Hecht-Nielsen, Neurocomputing, Addison-Wesley Publishing Company,

Inc., 1990.

[20] Nicolaos B. Karayiannis and Anastasios N. Venetsanopoulos, Artificial Neural

Networks, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park,

Norwell, Massachusetts, 02061, 1993.

[21] S.Y. Kung, Digital Neural Network, Princeton University, PTR Prentice-Hall,

Englewood Cliffs, New Jersey 07632, 1993.

[22] Charles L. Lawson and Richard J. Hanson, Solving Least Squares Problems,

Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974.

[23] Kenneth Levenberg, "A Method For the Solution of Certain Non-Linear Problems

in Least Squares", Quart. Appl. Math., No.2, pp.164-168, 1944.

[24] Donald W. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear

Parameters", J. Soc. Indust. Appl. Math., Vo.l1, No.2, pp.431-441, June, 1963

[25] Martin Fodslette Moller, "A Scaled Conjugate Gradient Algorithm for Fast

Supervised Learning", Neural Networks, Vol. 6, pp. 525-553, 1993.

[26] Lutz Prechelt, PROBEN1-A Set of Neural Network Benchmark Problems and

Benchmarking Rules, Technical Report 21194, University Karlsruhe, 1994,

Anonymous FTP: /pub/neuronJprobenl.tar.gz on ftp.ira.uka.de.

[27] David E. Rumelhart, Geoffery E. Hinton, and Ronald J. Williams, "Learning

representations by back-propagating errors", Nature, Vol.323-9, Oct., 1986.

92

[28] L.B. Scales, Introduction to Non-Linear Optimization, Springer-Verlag New York

Inc., 175 Fifth Avenue, New Your, NY 10010, USA, 1985.

[29] F. Beckley Smith, Jr., and David F. Shanno, "An Improved Marquardt Procedure

for Nonlinear Regressions", Technometrics, VoLl3, No.1, pp.63-74, Feb., 1971.

[30] J.G. Taylor, The Promise of Neural Networks, Springer-Verlag, London, 1993.

[31] D. R. Unruh, Basic Fluid Power Research Program, OSU Report, REF 70-1,

Oklahoma State University, 1970.

[32] Shiang-Huey Wang, "Comparison of Backpropagation Neural Networks and

General Regression Neural Networks", M.S. Thesis, Oklahoma State University,

1994.

[33] Andrew R. Webb, "Functional Approximation by Feed-Forward Networks: A

Least-Squares Approach to Generalization", IEEE Transactions on Neural

Networks, Vol. 5, No.3, pp363-371, May, 1994.

[34] Yuan Wei, "An Accelerated Levenberg-Marquardt Algorithm for Nonlinear Least

Square Problems", M.S. Thesis, Oklahoma State University, 1992.

[35] Patrick H. Winston, Artificial Intelligence, Third Edition, Addison-Wesley

Publishing company, Reading, Massachusetts, 1992.

[36] M.A. Wolfe, Numerical Methods for Unconstrained Optimization, Van Nostrand

[37]

Reinhold Company Ltd., Molly Millars Lane, Wokingham, Berkshire, England,

1978.

FAQ, comp.ai.neural-nets, URL: http://wwwipd.ira.uka.de/-precheltlFAQ/neural.:-­-...-----
net-faq.html.

93

8. APPENDICES

8.1 Program List

PROGRAM DRIVER
C***
C
C BY Joseph Wang, Department of Computer Sciences, OSU, 1995
C
C***
C This is the driver of the 3 ANN learning algorithms implemented.
C Before the program is executed, the following 3 data files should be
C set ready. Note that if there are more than one data in a line than
C they should be separated by spaces or commas.
C (1). "net.dat", contains information to specify a network.
C FORMAT: 1st line--number of weighted layers (without input
C layer)
C 2nd line--number of nodes in each layer, starting
C with the input-node layer, all in one
C line.
C
C
C
C
C
C
C
C
C
C
C
C
C

3rd line--an integer seed for generating random
number.

4th line--stopping tolerance.
5th line--choice of learning algorithms.

1= Steepest Descent.
2= Gauss-Newton/Levenberg-Marquadt

algorithm with Identity matrix added.
3= Damped Newton algorithm with Identity

matrix added.
4= Gauss-Newton/Levenberg-Marquadt

algorithm with diagonal matrix added.
5= Damped Newton algorithm with diagonal

matrix added.
C (2). "train.dat", contains training examples.
C FORMAT: 1st line--number of training examples.
C 2nd line--input example, all in one line.
C 3rd line--desired output examples.
C repeat the pattern of 2nd and 3rd lines for each
C example.
C (3). "test.dat", contains test examples
C FORMAT: 1st line--number of testing examples.
C 2nd line--input values, all in one line.
C repeat the 2nd lines for each testing example.
C
C When running,
C STEDES
C GNLMD
C GNLMD
C
C

one of the following routine will be called.
the Steepest Descent learning algorithm
the Gauss-Newton/Levenberg-Marquardt learning algorithm
the Newton/Levenberg-Marquardt learning algorithm

C***
C Important: This program is neural network dependent. That is, the
C program has restriction on the number of neurons in a layer
C and the number of layers in a network. The restriction is
C due to the language deficiency rather than the performance

94

C
C
C
C
C
C
C
C Variables:

of the learning algorithms.
If it is needed to change the capacity of the program, then
the dimensions of all arrays should be adjusted properly.
This only needs to be done for the global variables that
defined below. The dimensions of the arrays in subprograms
will be automatically adjusted by using formal arguments.

C LAYER: to store network structure.
C
C
C
C
C
C
C
C

2 dimension integer array, 1st index over layers (including
the input nodes layer) of the network, the 2nd index are
defined as following:

(*, 1) contains the number of nodes in each layer,
excluding the bias node.

(*, 2) keeps information for indexing neurons in the net.
(*, 3) etgres_-iIl:t:9..~rn~!.t.QP" f or2!lg,§?Si:}]'SLJ~.tl-~LW.ej,ghts in .. _the-.

net.
C INEX: to store learning examples.
C 2 dimension real array, 1st index over input vector, 2nd
C over learning examples.
C OUTEX: to store the desired outputs of learning examples.
C 2 dimension real array, 1st index over output vector, 2nd
C over learning examples.
C TESTEX: to store test examples.
C 2 dimension real array, 1st index over input vector, 2nd
C over testing examples.
C NEURON: to store information related to neurons.
C 2 dimension real array, 1st index over all neurons/nodes in
C the network, the 2nd index are defined as below
C (*, 1) contains output values of each neuron/node in the
C net.
C (*, 2) contains 1st derivatives of the activation function
C of each neurons.
C (*, 3) stores the partials of E(w) w.r.t. a neuron output
C (*, 4) temporary
C WEIGHT: to store information w.r.t. connection weights.
C 2 dimension real array, 1st index over all connection
C weights in the network, the 2nd index are defined as below.
C Note that the 2nd index should be greater than
C (net output dim. + 4).
C (*, 1) contains weight values of all connections.
C (*, 2) stores the partials of E(w) w.r.t. a weight, i.e.,
C the gradtent of E(w) .
C (*, 3) temporary used by STDDES, COMJAC.
C (*, 4) temporary.
C (*, 5+*) storage for the Jacobian matrix.
C UUVV: to store information w.r.t. 2 neurons.
C 3 dimension real array, contains useful derivatives
C (*,*,1) contains partials of the activation function of a
C neuron w.r.t. the output of another neuron in its
C input path.
C (*,*,2) contains partials of the weighted sum function of
C a neuron w.r.t. the weighted sum of another
C neuron in its input path.
C (*,*,3) stores the 2nd order partials of E(w) w.r.t. two
C weighted sum functions v(k1,j1) and v(k1,j2) with
C k1>=k2.
C (*,*,4) temporary
C HESIAN: the Hessian matrix of E(w).
C 3 dimensional real array. 1st index (row) and 2nd index
C forms the indices of the Hessian matrix. 3 storage space

95

C
C
C INDIM:
C OUTDIM:
C NUMEX:
C NUMTEX:
C NUMUNI:
C WTDIM:
C
C SEED:
C
C

are used.

input dimension.
output dimension.
number of learning examples.
number of testing examples.
number of units in the net, including input and bias nodes.
number of weights in the net, dimension of the weight
vector.
SEED of pseudo-random number generator.

C***
C Declaration
C

INTEGER LAYER(-1:11,3)
DOUBLE PRECISION INEX(35, 800), OUTEX(4,800), TESTEX(35,800),

+ WEIGHT(0:199,10), NEURON(0:49,4),
+ UUVV(0:49,0:49, 4), HESIAN(0:199,0:199,3)

INTEGER INDIM, OUTDIM, NUMEX, NUMTEX, WTDIM, SEED, METHOD
C

DOUBLE PRECISION TOLERA, STPSIZ
C
C The following variables are used to pass the dimension indices
C when calling subroutines, their values should be the same as the
C dimensions numbers specified in the above declarations.
C

C

INTEGER LAIDX1, LAIDX2, WTIDX1, WTIDX2, IEIDX1, IEIDX2,
+ OEIDX1, OEIDX2, TEIDX1, TEIDX2, NUIDX1, NUIDX2,
+ UUIDX1, UUIDX2, UUIDX3

LAIDX1=11
LAIDX2=3
IEIDX1=35
IEIDX2=800
OEIDX1=4
OEIDX2=800
TEIDX1=35
TEIDX2=800
WTIDX1=199
WTIDX2=10
NUIDX1=49
NUIDX2=4
UUIDX1=49
UUIDX2=49
UUIDX3=4

C setup internal network representation
CALL SETNET(LAYER, LAIDX1, LAIDX2, SEED, TOLERA, METHOD)
INDIM=LAYER(-1,2)
OUTDIM=LAYER(-1,3)
K=LAYER (-1, 1)
WTDIM=LAYER(K,3)+LAYER(K,1)*(LAYER(K-1,1)+1)

C setup parameters
CALL SETPAR ()

C
C read in training examples

CALL SETEX(INEX, IEIDX1, IEIDX2, OUTEX, OEIDX1, OEIDX2,
+ INDIM, OUTDIM, NUMEX)

C
C check net structure and examples

CALL PRTNET(LAYER, LAIDX1, LAIDX2)

96

C CALL PRTEX(INEX, IEIDX1, IEIDX2, OUTEX, OEIDX1, OEIDX2,
C + INDIM, OUTDIM, NUMEX)
C
C initialize all connection weights
C read in an integer SEED for generating pseudo-random number
C PRINT *, 'Input an integer for the random SEED'
C READ *, SEED

CALL INITWT(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, SEED)
C
C check connection weights

CALL PRTWT(LAYER, LAIDX1, LAIDX2, WEIGHT,WTIDX1)
C
C read in stopping criterion
C PRINT *, 'Input RMS tolerance below'
C READ *, TOLERA
C
C choose a learning algorithm

GO TO 18
16 WRITE (*, 17)
17 FORMAT(/, 'Choose a training method:' ,/,6X,

+ 'l=steepest descent method',/,6X,
+ '2=Gauss-Newton method-(I)' ,/,6X,
+ '3=Damped Newton method-(I) '/,6X,
+ '4=Gauss-Newton method-(D)' ,/,6X,
+ '5=Damped Newton method-(D) ')

READ (*,*) METHOD
C
18 IF (METHOD .EQ. 1) THEN
C The following parameter is not adjustable.

STPSIZ=1.0
CALL STEDES(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

+ NEURON, NUIDX1, NUIDX2, INEX, IEIDX1, IEIDX2,
+ OUTEX, OEIDX1, OEIDX2, NUMEX, WTDIM,
+ INDIM, OUTDIM, STPSIZ, TOLERA)

ELSE IF (METHOD .EQ. 2) THEN
CALL GNLM(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

+ NEURON, NUIDX1, NUIDX2, INEX, IEIDX1, IEIDX2,
+ OUTEX, OEIDX1, OEIDX2, NUMEX,
+ INDIM, OUTDIM, TOLERA,
+ UUVV, UUIDX1, UUIDX2, UUIDX3,
+ HESIAN, WTDIM)

ELSE IF (METHOD .EQ. 3) THEN
CALL NLM(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

+ NEURON, NUIDX1, NUIDX2, INEX, IEIDX1, IEIDX2,
+ OUT EX , OEIDX1, OEIDX2, NUMEX,
+ INDIM, OUTDIM, TOLERA,
+ UUVV, UUIDX1, UUIDX2, UUIDX3,
+ HESIAN, WTDIM)

ELSE IF (METHOD .EQ. 4) THEN
CALL GNLMD(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

+ NEURON, NUIDX1, NUIDX2, INEX, IEIDX1, IEIDX2,
+ OUTEX, OEIDX1, OEIDX2, NUMEX,
+ INDIM, OUTDIM, TOLERA,
+ UUVV, UUIDX1, UUIDX2, UUIDX3,
+ HESIAN, WTDIM)

ELSE IF (METHOD .EQ. 5) THEN
CALL NLMD(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

+ NEURON, NUIDX1, NUIDX2, INEX, IEIDX1, IEIPX2,
+ OUT EX , OEIDX1, OEIDX2, NUMEX,
+ INDIM, OUTDIM, TOLERA,
+ UUVV, UUIDX1, UUIDX2, UUIDX3,

97

+

C

ELSE
HESIAN, WTDIM)

PRINT *, 'Illegal choice, try again.'
GO TO 16

ENDIF

C start testing
C read in testing examples

CALL SETTEX{TESTEX, TEIDX1, TEIDX2, INDIM, NUMTEX)
C
C test network on testing examples

DO 30 J=l, NUMTEX
DO 20 I=l, INDIM

NEURON{I,l)=TESTEX{I,J)
20 CONTINUE

NEURON{O,l)=-l
C compute output for a testing input

CALL NET OUT {LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,
+ NEURON, NUIDX1, NUIDX2)

C
WRITE (*,25) (NEURON{LAYER{LAYER{-1,1),2)+I, 1), OUTEX{I, J),

+ I=l, OUTDIM)
25 FORMAT (2{' a=', G15.10, 'd=', G15.10))
30 CONTINUE
C
C print out the final set of weights

CALL PRTWT{LAYER, LAIDX1, LAIDX2, WEIGHT,WTIDX1)
C
C**************

STOP
END

C**************

C**
SUBROUTINE SETNET{LAYER, LAIDX1, LAIDX2, SEED, TOLERA, METHOD)

C**
C This subroutine is to read the input file, containing specification
C of a neural network structure, and setup program parameters
C representing the network structure.
C

C

INTEGER LAIDX1, LAIDX2, LAYER{-1:LAIDX1, LAIDX2),SEED,METHOD
DOUBLE PRECISION TOLERA
INTEGER IOERR, TEMP1, TEMP2

INUNIT = 50
OPEN{UNIT= INUNIT, FILE='net.dat', STATUS='OLD', IOSTAT IOERR)

IF (IOERR .NE. 0) THEN
PRINT 110, IOERR

110 FORMAT{'can not open net data file (net.dat), IOERR =' ,I10)
GOTO 150

ENDIF
C
C read in the # of layers (excluding input layer of nodes)

READ (INUNIT, *) LAYER(-=-l-;-rl)
C read in the #' s of noo.es--in each layer (1st is # of input nodes)

READ{INUNIT,*) (LAYER{I,l), I= O,LAYER{-l,l))
C

READ{INUNIT,*) SEED
READ{INUNIT,*) TOLERA
READ{INUNIT,*) METHOD

98

C setup input and output dimensions
LAYER(-1,2)= LAYER(O,l)
LAYER(-1,3)= LAYER(LAYER(-l,l) ,1)

C
C setup parameters for indexing NEU:R()N arJ:'a.:Y and WE~~I:I~_':l:r.::r::c:tY

LAYER(0,2)=0
" LAYER (0,3) =0 ,;

LAYER(1,2)=LAYER(0,1)+1
LAYER(1,3)=0
TEMP1=LAYER(0,1)+1
TEMP2=0
DO 115 1=2, LAYER(-l,l)

TEMP1=TEMP1+LAYER(I-1,1)+1
TEMP2=TEMP2+LAYER(I-1,1)*(LAYER(I-2,1)+1)
LAYER(I,2)=TEMP1
LAYER(I,3)=TEMP2

115 CONTINUE
C

CLOSE (UNIT INUNIT)
C**************
150 RETURN

END
C**************
C
C**

SUBROUTINE PRTNET(LAYER, LAIDX1, LAIDX2)
C**
C This subroutine is to print out the network structure.
C

INTEGER LAIDX1, LAIDX2, LAYER(-1:LAIDX1, LAIDX2)
C
C print them out

PRINT 121,LAYER(-1,1)
WRITE (*,122) (LAYER(I,l), I=O,LAYER(-l,l))
WRITE (*,125) (LAYER(I,2), I=O,LAYER(-l,l))
WRITE (*,126) (LAYER(I,3), I=O,LAYER(-l,l))
PRINT 123, LAYER(-1,2)
PRINT 124, LAYER(-1,3)
K=LAYER (-1,1)
PRINT 127, LAYER(K,3)+LAYER(K,1)*(LAYER(K-1,1)+1)

121 FORMAT (I, 'The net has' ,12, lX, 'weighted layers. ')
122 FORMAT ('The number of nodes in each layer is',

+ 14, 100(', ',14))
123 FORMAT ('The input dimension is ',14)
124 FORMAT ('The output dimension is ',14)
125 FORMAT ('The 1st parameter vector=' ,

+ 14, 100(', ',14))
126 FORMAT ('The 2nd parameter vector=',

+ 14, 100(', ',14))
127 FORMAT ('The number of connection weights=',

+ 14, 100(', ',14))
C
C**************

RETURN
END

C**************

C**
SUBROUTINE SETPAR()

C**
C This routine set up all parameters needed in the program

99

C
INTEGER LIM1, LIM2, LIM3, LIM4
DOUBLE PRECISION XMAX, XMIN, INILAM, INIFAC, CUTOFF, SMALL

C
COMMON /LIMIT/XMAX, XMIN
COMMON /LIMIT1/LIM1,LIM2,LIM3
COMMON /LIMIT2/LIM4
COMMON /LEVMAR/INILAM, INIFAC, CUTOFF, SMALL

C XMAX and XMIN is used by NETOUT to compute the output of a neuron.
C Since the Sigmoid function subroutine will overflow for X too
C large or too small, XMAX and XMIN are the limits used to set the
C function values to be 1.0 and 0.0, respectively.

C

XMAX= 700.0
XMIN=-700.0

C LIM1, LIM2, and LIM3 are used in FIDITV to control the loops
LIM1=50
LIM2=1000
LIM3=100

C
C LIM4 is used in QINTER to control a loop

LIM4=100
C
C INILAM and INIFAC are the two initial parameters used for the
C Levenberg-Marquardt modification of the Gauss-Newton method and
C the Newton method. INILAM is the initial LAMBDA value and INIFAC
C is the initial FACTOR value. CUTOFF is used as limit point. When
C LAMBDA is smaller than the CUTOFF, then LAMBDA is set to SMALL.

C

INILAM=O.Ol
INIFAC=5.0
CUTOFF=1.0D-8
SMALL=1.0D-16

C**************
RETURN
END

C**************

C*** *****************
SUBROUTINE SETEX(INEX, IEIDX1, IEIDX2, OUT EX , OEIDX1, OEIDX2,

+ INDIM, OUTDIM, NUMEX)
C*** *****************
C This subroutine is to read the input file, containing the training
C examples(inputs along with desired outputs) and to fill out the
C example arrays.
C

C

C

INTEGER IEIDX1,IEIDX2,OEIDX1,OEIDX2,INDIM, OUTDIM, NUMEX
DOUBLE PRECISION INEX(IEIDX1, IEIDX2), OUTEX(OEIDX1, OEIDX2)

INTEGER IOERR

INUNIT = 50
OPEN(UNIT= INUNIT, FILE='train.dat', STATUS='OLD',

+ IOSTAT
IF (IOERR .NE. 0) THEN

PRINT 210, IOERR

IOERR)

210 FORMAT('can not open training data file, IOERR =' ,I10)
GOTO 245

ENDIF
C
C read in the # of test examples

100

READ(INUNIT,*) NUMEX
C read in the inputs and their corresponding desired outputs

DO 220 J=l, NUMEX
READ(INUNIT,*) (INEX(I,J), I=l,INDIM), (OUTEX(I,J), I=l,OUTDIM)

C READ(INUNIT,*) (OUTEX(I,J), I=l, OUTDIM)
220 CONTINUE
C

CLOSE (UNIT INUNIT)
C**************
245 RETURN

END
C**************

C**
SUBROUTINE SETTEX(TESTEX,TEIDX1,TEIDX2,INDIM,NUMTEX)

C**
C This subroutine is to read the input file, containing the testing
C examples, and fill out the test example arrays.
C

C

C

INTEGER TEIDX1, TEIDX2, INDIM, NUMTEX
DOUBLE PRECISION TESTEX(TEIDX1, TEIDX2)

INTEGER IOERR

INUNIT = 50
OPEN(UNIT= INUNIT, FILE='test.dat', STATUS='OLD',

+ IOSTAT
IF (IOERR .NE. 0) THEN

PRINT 260, IOERR
260 FORMAT('can not open test data file, IOERR =' ,I10)

GO TO 290
ENDIF

C
C read in the # of training examples

READ(INUNIT,*) NUMTEX

IOERR)

C read in the inputs and their corresponding desired outputs
DO 270 J=l, NUMTEX

READ(INUNIT,*) (TESTEX(I,J), I=l,INDIM)
270 CONTINUE
C

CLOSE (UNIT INUNIT)
C**************
290 RETURN

END
C**************

C**
SUBROUTINE PRTEX(INEX, IEIDX1, IEIDX2, OUTEX, OEIDX1, OEIDX2,

+ INDIM, OUTDIM, NUMEX)
C**
C This subroutine is to print out the training examples.
C

INTEGER IEIDX1,IEIDX2,OEIDX1,OEIDX2,INDIM, OUTDIM, NUMEX
DOUBLE PRECISION INEX(IEIDX1, IEIDX2), OUTEX(OEIDX1, OEIDX2)

C
C PRINT them out

PRINT 221, NUMEX
PRINT 222
DO 230 J=l, NUMEX

WRITE (*, 223) (INEX(I,J), I=l, INDIM)

101

WRITE (*, 224) (OUTEX(I,J), I=l, OUTDIM)
230 CONTINUE
C
221 FORMAT (/, 'The number of sample is " I4)
222 FORMAT ('The examples are the following. ')
223 FORMAT ('input ',lX, 30F12.8)
224 FORMAT ('output ',lX, 30F12.8)
C
C**************

RETURN
END

C**************

C**
SUBROUTINE INITWT(LAYER, LAIDX1, LAIDX2, WEIGHT,WTIDX1, SEED)

C**
C This subroutine is to initialize all the connection weights. Each
C weight is initialized to a random number between
C -0.5/Fan-in and 0.5/Fan-in, where Fan-in is the number of nodes
C (including the bias node) in the previous layer.
C The routine will be called after routine SETNET has been called.
C

INTEGER LAYER(-1:LAIDX1, LAIDX2), WTIDX1
DOUBLE PRECISION WEIGHT(0:WTIDX1)

C
INTEGER FANIN, INDEX, SEED

C
C iterate over all layers

DO 320 K=l, LAYER(-l,l)
C number of fan-in nodes=number of nodes+1(bias node)

FANIN=LAYER(K-1,l)+1
C iterate over all neurons in the layer of target connection

DO 310 J=l, LAYER(K,l)
C iterate over all neurons of source connection

DO 305 I=O, LAYER(K-1, 1)
INDEX=LAYER(K, 3)+(J-1)*FANIN+I
WEIGHT(INDEX)=RANDOM(SEED)/FANIN

305 CONTINUE
310 CONTINUE
320 CONTINUE
C
C*************

RETURN
END

C*************

C**
REAL FUNCTION RANDOM(SEED)

C**
C This random number generator return a random number between -0.5 and
C 0.5.
C Reference: "A PORTABLE RANDOM NUMBER GENERATOR FOR USE IN SIGNAL
C
C

PROCESSING", SANDIA NATIONAL LABORATORIES TECHNICAL
REPORT, BY S. D. STEARNS.

C Input: SEED= an integer
C

C
INTEGER SEED

2045*SEED + 1 SEED
SEED SEED - (SEED/1048576)*1048576

102

RANDOM = (SEED+1)/1048577.0 - 0.5
C*************

RETURN
END

C*************

C**
SUBROUTINE PRTWT(LAYER, LAIDX1, LAIDX2, WEIGHT,WTIDX1)

C**
C This routine is to print out all connection weights.
C

INTEGER LAYER(-1:LAIDX1, LAIDX2), WTIDX1
DOUBLE PRECISION WEIGHT(O:WTIDX1)
INTEGER INDEX

C
C iterate over all layers

DO 350 K=l, LAYER(-l,l)
PRINT 326, K, K-1, LAYER (K-1, 1)

326 FORMAT ('LAYER-', I2, (connection from layer' ,I2,
+ ' of " I3, ' nodes)')

C iterate over all neurons in the layer of target connection
DO 340 J=l, LAYER(K,l)

PRINT 328, J
328 FORMAT ('NEURON-' ,I3)

INDEX=LAYER(K, 3)+(J-1)*(LAYER(K-1,1)+1)
WRITE(*,330) (WEIGHT (INDEX+I) , I=0,LAYER((K-1) ,1))

330 FORMAT (100F20.16)
340 CONTINUE
350 CONTINUE
C
C*************

RETURN
END

C*************

C**
SUBROUTINE NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,

+ NEURON, NUIDX1, NUIDX2)
C**
C This routine is to compute the outputs of the network. In the
C process, the output of each neuron is stored in the first raw
C of array NEURON(*,1) in a consistent manner. The indexing
C starts at the input layer, then the 1st layer, and, so forth,
C up to the output layer.
C
C Input: inputs NEURON(*,*) with inputs filled at the beginning
C Output: net outputs in NEURON(*), at the end
C

C

C

INTEGER LAIDX1, LAIDX2, WTIDX1, NUIDX1, NUIDX2,
+ LAYER(-1:LAIDX1, LAIDX2)

DOUBLE PRECISION WEIGHT(O:WTIDX1), NEURON(O:NUIDX1, NUIDX2)

INTEGER FANIN,WINDEX,NINDEX
DOUBLE PRECISION INNERP, SIG, TEMP, XMAX, XMIN
COMMON /LIMIT/XMAX, XMIN

C forward propagated computation over the layers
DO 430 K=l, LAYER(-l,l)

C compute output for each neuron in a layer
DO 420 J=l, LAYER(K, 1)

C fan-in of a neuron

103

C

C

C
C

FANIN=LAYER(K-1,1)+1
locate the weight vector of the j-th neuron in Layer K
WINDEX=LAYER(K,3)+(J-1)*FANIN
locate position of j-th neuron in array NEURON
NINDEX=LAYER(K,2)+J
fire each neuron
compute weighted sum
TEMP=INNERP(NEURON(LAYER(K-1,2) ,1) ,WEIGHT (WINDEX) ,FANIN)
IF (TEMP .GE. XMAX) THEN

NEURON (NINDEX, 1)=1.0
ELSE

IF (TEMP .LE. XMIN) THEN
NEURON (NINDEX, 1) =0.0

ELSE
NEURON (NINDEX, l)=SIG(TEMP)

ENDIF
ENDIF

C compute derivative of the activation function
NEURON (NINDEX, 2)=NEURON(NINDEX,1)*(1. O-NEURON(NINDEX, 1)

420 CONTINUE
C set bias input

NEURON(LAYER(K,2) ,1)= -1.0
430 CONTINUE
C*************

RETURN
END

C*************

C**
DOUBLE PRECISION FUNCTION INNERP(VEC1,VEC2,DIM)

C**
C This subroutine returns the inner product (or weighted sum) of the
C two vector.
C

INTEGER DIM
DOUBLE PRECISION VEC1(DIM) , VEC2(DIM)

C
INNERP=O.O
DO 440 I=l,DIM

INNERP=INNERP+VEC1(I) *VEC2 (I)
440 CONTINUE
C*****************

RETURN
END

C*****************

C**
DOUBLE PRECISION FUNCTION SIG(X)

C**
C Sigmoid activation function.
C

DOUBLE PRECISION X
SIG = 1.0/(1.0+DEXP(-X))

C*****************
RETURN
END

C*****************

C**
SUBROUTINE PRTOUT(LAYER, LAIDX1, LAIDX2, NEURON, NUIDX1)

104

C**
C This routine is to print out outputs of each neuron in the network.
C

C

C

INTEGER LAIDX1, LAIDX2, NUIDX1
INTEGER LAYER(-1:LAIDX1, LAIDX2)
DOUBLE PRECISION NEURON(0:NUIDX1)

PRINT *, 'NETWORK OUTPUT'

DO 470 K=O, LAYER(-l,l)
WRITE (*,450) K, (NEURON(LAYER(K,2)+J),J=O, LAYER(K, 1))

450 FORMAT ('Layer-' ,lX,I2,4X, 30F20.16)
470 CONTINUE
C*************

RETURN
END

C*************

C**
SUBROUTINE COMGRA(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

+ NEURON, NUIDX1, NUIDX2, OEXVEC, OUTDIM)
C**
C This routine is to compute the gradient of the error-squared function.
C The result is stored in the second raw of array WEIGHT ,
C the first raw being the weight vector. This routine requires
C one backward pass through the network. When this routine and the
C routine DEU combined together as one, then only one pass is
C required.
C

INTEGER LAIDX1, LAIDX2, WTIDX1, WTIDX2, NUIDX1, NUIDX2, OUTDIM,
+ LAYER(-1:LAIDX1, LAIDX2)

DOUBLE PRECISION WEIGHT(0:WTIDX1,WTIDX2),NEURON(0:NUIDX1,NUIDX2),
+ o EXVEC (OUTDIM)

C
INTEGER FANIN,WINDEX,N1,N2

C
C compute partials of E(w) w.r.t. u(k,j), all k and j.

CALL DEU(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,
+ NEURON, NUIDX1, NUIDX2, OEXVEC, OUTDIM)

C
C backward propagated computation over the layers

DO 530 K=LAYER(-l,l), 1, -1
C over all neurons in output layer

DO 520 J=l, LAYER(K,l)
C over all fan-in connections of a neuron

DO 510 I=O, LAYER(K-1,l)
C fan-in of a neuron

FANIN=LAYER(K-1,l)+1
C locate position in weight vector

WINDEX=LAYER(K,3) +(J-1) *FANIN+I
C locate positions in array NEURON

N1=LAYER(K,2)+J
N2=LAYER(K-1,2)+I

C compute partial of E(W) w.r.t. w(i,j,k)
WEIGHT(WINDEX,2)= NEURON(N1,2) *NEURON(N2,l) *NEURON(N1,3)

510 CONTINUE
520 CONTINUE
530 CONTINUE
C*************

RETURN

105

END
C*************

C*** *****************
SUBROUTINE DEU(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

+ NEURON, NUIDX1, NUIDX2, OEXVEC, OUTDIM)
C*** *****************
C This routine is to compute the partial derivatives of the error-
C squared function w.r.t the output of each neuron. The result
C is stored in the 3rd raw of array NEURON. This computation
C requires one backward pass through the network.
C The partial derivatives are needed in the computation of the
C gradient and the Hessian matrix of E(w). If only the gradient
C is needed, then this procedure could be integrated into the
C subroutine COMGRA, computing the gradient of E(w).
C

C

INTEGER LAIDX1, LAIDX2, WTIDX1, WTIDX2, NUIDX1, NUIDX2, OUTDIM,
+ LAYER(-1:LAIDX1, LAIDX2)

DOUBLE PRECISION WEIGHT(0:WTIDX1,WTIDX2) ,NEURON(0:NUIDX1,NUIDX2),
+ o EXVEC (OUTDIM)

INTEGER WINDEX,NINDEX,Nl,S
DOUBLE PRECISION TEMPi

C backward propagated computation over the layers
C base case when K=output layer

K=LAYER(-l,l)
C over all neurons in output layer

DO 610 J=l, LAYER(K,l)
C locate position in array NEURON

NINDEX=LAYER(K,2)+J
NEURON(NINDEX,3)=NEURON(NINDEX,1)-OEXVEC(J)

610 CONTINUE
C
C backpropagation over all other layers

DO 640 K=LAYER(-l,l)-l, 1,-1
C over all neurons in a layer

DO 630 J=l, LAYER(K,l)
C locate positions in array NEURON for storage

NINDEX=LAYER(K,2)+J
NEURON (NINDEX, 3) =0

C over all neurons in the next layer
DO 620 S=l, LAYER(K+l,l)

C locate position in weight vector
WINDEX=LAYER(K+l,3)+(S-1)*(LAYER(K,1)+1)+J

C locate positions in array NEURON
Nl=LAYER(K+l,2)+S

C compute partial of E(W) w.r.t. u(k,j)
TEMP1=NEURON(Nl,2)*WEIGHT(WINDEX,1)*NEURON(Nl,3)
NEURON(NINDEX,3)=NEURON(NINDEX,3)+TEMPl

620 CONTINUE
630 CONTINUE
640 CONTINUE
C*************

RETURN
END

C*************

C**
SUBROUTINE STEDES(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

+ NEURON, NUIDX1, NUIDX2, INEX, IEIDX1, IEIDX2,

106

+
+

OUTEX, OEIDX1, OEIDX2, NUMEX, WTDIM,
INDIM, OUTDIM, STPSIZ, TOLERA)

C**
C This routine implements the Steepest Descent learning algorithm 3.4.1
C in batch model.
C

C

C

INTEGER
+
+

DOUBLE
+
+

LAIDX1,LAIDX2,WTIDX1,WTIDX2,NUIDX1,NUIDX2, WTDIM,
IEIDX1,IEIDX2,OEIDX1,OEIDX2,NUMEX,INDIM,OUTDIM,
LAYER(-1:LAIDX1,LAIDX2)

PRECISION WEIGHT(0:WTIDX1,WTIDX2),NEURON(0:NUIDX1,NUIDX2),
INEX(IEIDX1,IEIDX2),OUTEX(OEIDX1,OEIDX2) ,
STPSIZ,TOLERA

INTEGER P, EPOCH
DOUBLE PRECISION RMS, RMSBAK, RR, EA, EB, EC, A, B, C,XTOL

EPOCH=O
C get initial RMS

RMSBAK=O.O
DO 1006 P=l, NUMEX

C setup inputs
DO 1007 I=l, INDIM

NEURON(I,l)=INEX(I,P)
1007 CONTINUE

NEURON(O,l)=-1.0
C compute outputs of all neurons in the network

CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,
+ NEURON, NUIDX1, NUIDX2)

C accumulate error over all patterns
RMSBAK=RMSBAK+RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,NUIDX2,

+ OUTEX(l,P) ,OUTDIM)
1006 CONTINUE

C
1001

1005
C
C

C

1010

C
C

+
C
C

+
C

1020
1030
C
C

RMSBAK=DSQRT(RMSBAK/NUMEX)
WRITE (*,1062) RMSBAK

DO 1005 I=O, WTDIM-1
WEIGHT(I,3)=0.0

CONTINUE

Batch model: accumulate error information over all patterns
DO 1030 P=l, NUMEX

setup inputs
DO 1010 I=l, INDIM

NEURON(I,l)=INEX(I,P)
CONTINUE
NEURON(O,l)=-1.0

compute outputs of all neurons in the network
CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,

NEURON, NUIDX1, NUIDX2)

compute the gradient of E(w) for one pattern
CALL COMGRA(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

NEURON, NUIDX1, NUIDX2, OUTEX(l,P), OUTDIM)
accumulate the NEGATIVE partials over all patterns
DO 1020 I=O, WTDIM-1

WEIGHT(I,3)=WEIGHT(I,3)-WEIGHT(I,2)
CONTINUE

CONTINUE

find a line search interval

107

C

+
+
+

+
+
+

A=O.ODO
CALL FIDITV(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,WTIDX2,

WTDIM, NEURON, NUIDX1, NUIDX2, NUMEX,

IF (A.EQ.O.O)
XTOL=0.5

INEX, IEIDX1, IEIDX2, OUTEX, OEIDX1, OEIDX2,
INDIM, OUTDIM, EA, EB, EC, A, B, C, STPSIZ)

THEN

CALL QINTER(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,WTIDX2,
WTDIM, NEURON, NUIDX1, NUIDX2, NUMEX,
INEX, IEIDX1, IEIDX2, OUTEX, OEIDX1, OEIDX2,
INDIM, OUTDIM, EA, EB, EC, A, B, C,XTOL,STPSIZ)

ELSE IF (A.EQ.-1.0) THEN
PRINT *, 'SEARCH FAILED'
GO TO 1070

ELSE
PRINT *, 'Very big step encountered with B=' B

ENDIF

C use the fixed step size to update the weights
DO 1040 I=O, WTDIM-1

WEIGHT(I,1)=WEIGHT(I,1)+WEIGHT(I,3)*C*STPSIZ
1040 CONTINUE
C

EPOCH=EPOCH+1
RMS=DSQRT(EC*2.0/NUMEX)

c IF (MOD (EPOCH, 100) .EQ. 0) THEN
WRITE (*,1062) RMS, EPOCH, C

1062 FORMAT('RMS error= ',F23.19, 'EPOCH= ',16, 'step size= ',G15.7)
c ENDIF
C check if the convergence criterion is satisfied.

IF (RMSBAK-RMS .GE. TOLERA) THEN
RMSBAK=RMS
GO TO 1001

ENDIF
C otherwise, training done
C
C*************
1070 RETURN

END
C*************

C**
DOUBLE PRECISION FUNCTION RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,

+ NUIDX2, OEXVEC, OUTDIM)
C**
C This routine is to compute the errors of the network outputs
C against the desired outputs.
C

C

C

INTEGER LAIDX1, LAIDX2, NUIDX1, NUIDX2, OUTDIM
INTEGER LAYER(-1:LAIDX1, LAIDX2)
DOUBLE PRECISION NEURON(0:NUIDX1, NUIDX2), OEXVEC(OUTDIM)

INTEGER NINDEX,K

RR=O.O
K=LAYER(-l,l)

C over all neurons in output layer
DO 1110 J=l, LAYER(K,l)

C locate position in array NEURON
NINDEX=LAYER(K,2)+J
RR=RR+(NEURON(NINDEX,1)-OEXVEC(J))**2

108

1110 CONTINUE
C
C*************

RETURN
END

C*************
C
C**

SUBROUTINE FIDITV(LAYER,
+ WTDIM,
+ INEX,
+ INDIM,

LAIDX1,
NEURON,
IEIDX1,
OUTDIM,

LAIDX2, WEIGHT, WTIDX1,WTIDX2,
NUIDX1, NUIDX2, NUMEX,
IEIDX2, OUTEX, OEIDX1, OEIDX2,
EA, EB, EC, A, B, C, STEP)

C**
C This routine is to find an interval (a, b) and a point c on (a, b)
C in order to perform a quadratic interpolation for a proper choice
C of the weight-update step size. Note that a=O.O always.
C First, the program will try to locate an interval (0, x) and the
C point c satisfying the conditions for a quadratic interpolation.
C If the attempt failed, the routine will either reach out beyond
C 100.0 for a possible maximum step size that still results in
C reduction of function values, in which case no interpolation will
C be performed, or fail to locate an interval.
C On exit:
C A=O.O ==> interval found (then, a quadratic interpolation is

performed) . C
C
C
C

C

C

A=-1.0
A=-2.0

==>
==>

interval not found, method failed.
interval not found, use C as step size.

INTEGER LAIDX1, LAIDX2, WTIDX1, WTIDX2, NUIDX1, NUIDX2,NUMEX,
+ LAYER(-1:LAIDX1, LAIDX2), IEIDX1,IEIDX2,OEIDX1,OEIDX2,
+ INDIM, OUTDIM, WTDIM

DOUBLE PRECISION WEIGHT(O:WTIDX1, WTIDX2),
+ INEX(IEIDX1,IEIDX2) ,OUTEX(OEIDX1,OEIDX2),
+ NEURON(O:NUIDX1, NUIDX2),
+ EA, EB, EC, A, B, C, STEP

COMMON /LIMIT1/LIM1,LIM2,LIM3

INTEGER FANIN,WINDEX,NINDEX, P
DOUBLE PRECISION INNERP, SIG, TEMP, RR

C get E(A) with a step size A=O, i.e., at w=w+O.O*step*dw
A=O.O

C

1331

C
C

+
C

+
1332

C
C
C

EA=O.O
DO 1332 P=l, NUMEX

setup inputs
DO 1331 1=1, INDIM

NEURON(I,l)=INEX(I,P)
CONTINUE
NEURON(O,l)=-1.0

compute outputs of all neurons in the network
CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,

NEURON, NUIDX1, NUIDX2)
accumulate error over all patterns
EA=EA+RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,NUIDX2,

OUTEX(l,P),OUTDIM)
CONTINUE
EA=0.5*EA

find the internal point C beginning at 2.0, then as close to A=O.O
as possible such that E(c) < E(a) .

109

C

C

1340

C

1333

C
C

+
C

+
1334

1342
C

C=4.0
DO 1342 J=l, LIM1

C=C*0.5
update weights with step size C=1.0
DO 1340 I=O, WTDIM-1

WEIGHT(I,4)=WEIGHT(I,1)+WEIGHT(I,3)*STEP*C
CONTINUE
EC=O.O
DO 1334 P=l, NUMEX

setup inputs
DO 1333 I=l, INDIM

NEURON(I,l)=INEX(I,P)
CONTINUE
NEURON(0,1)=-1.0

compute outputs of all neurons in the network
CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT(0,4), WTIDX1,

NEURON, NUIDX1, NUIDX2)
accumulate error over all patterns
EC=EC+RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,NUIDX2,

OUTEX(l,P) ,OUTDIM)
CONTINUE
EC=0.5*EC
IF (EC.LT.EA) GO TO 1343

CONTINUE
otherwise, search failed, exit with error code A= -1.0
A=-1.0
GO TO 1390

C --- locate the right end point B
1343 B=C+1. 0

DO 1370, J=1,LIM2
IF (J.GT.LIM3) THEN

C take bigger step
B=B+10.0

1361

C

1362

C
C

C
+

+

ELSE
B=B+1.0

ENDIF
EB=O.O
DO 1361 I=O, WTDIM-1

WEIGHT(I,4)=WEIGHT(I,1)+WEIGHT(I,3)*STEP*B
CONTINUE
DO 1363 P=l, NUMEX

setup inputs
DO 1362 I=l, INDIM

NEURON(I,l)=INEX(I,P)
CONTINUE
NEURON (0 , 1) = -1. 0

compute outputs of all neurons in the network
CALL NET OUT (LAYER, LAIDX1, LAIDX2, WEIGHT(0,4), WTIDX1,

NEURON, NUIDX1, NUIDX2)
accumulate error over all patterns
EB=EB+RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,NUIDX2,

OUTEX(l,P),OUTDIM)
1363 CONTINUE

C
EB=0.5*EB
terminate if new E(b) > E(c)
IF (EB .GT. EC) GOTO 1390
IF (EB .LT. EC) THEN

110

EC=EB
C=B

ENDIF
13 7 0 CONTINUE
C
C otherwise, search failed, exit with error code A= -2.0

C=B
EC=EB
A=-2.0

C*************
1390 RETURN

END
C*************
C
C**

SUBROUTINE QINTER(LAYER,
+ WTDIM,
+ INEX,
+ INDIM,

LAIDX1,
NEURON,
IEIDX1,
OUTDIM,

LAIDX2,
NUIDX1,
IEIDX2,
EA, EB,

WEIGHT, WTIDX1, WTIDX2,
NUIDX2, NUMEX,
OUT EX , OEIDX1, OEIDX2,
EC, A, B, C, XTOL, STEP)

C**
C This routine performs a quadratic interpolation on the points
C (a, E(a)), (b, E(b)), and (c, E(c)) over the interval (a, b).
C Successive iterations of quadratic interpolations are performed
C until the interval (a, b) is reduced within tolerance. On exit,
C point c is the desired step size.
C

C

C

C
1405

C
C

1410
C

C

1420

C
C

+
+

+
+
+

INTEGER LAIDX1, LAIDX2, WTIDX1, WTIDX2, NUIDX1, NUIDX2, NUMEX,
LAYER(-1:LAIDX1, LAIDX2) ,IEIDX1,IEIDX2, OEIDX1,OEIDX2,
INDIM, OUTDIM, WTDIM

DOUBLE PRECISION WEIGHT(0:WTIDX1, WTIDX2),
NEURON(0:NUIDX1, NUIDX2),
INEX(IEIDX1,IEIDX2) ,OUTEX(OEIDX1,OEIDX2),
EA, EB, EC, A, B, C, EX, X, XTOL, STEP

COMMON /LIMIT2/LIM4

INTEGER CONTER, P
DOUBLE PRECISION INNERP, SIG, TEMP, RR, Y, Z

CONTER=O
compute point of interpolation
Y= ((B**2-C**2)*EA+(C**2-A**2)*EB+(A**2-B**2)*EC)
Z= (2.0*((B-C)*EA+(C-A)*EB+(A-B)*EC))
IF (Z .EQ. 0.0) GO TO 1440
X=Y/Z

compute net output at w+x*dw
DO 1410 1=0, WTDIM-1

WEIGHT(I,4)=WEIGHT(I,l)+X*STEP*WEIGHT(I,3)
CONTINUE
compute squared-error at w+X*dw
EX=O.O
DO 1430 P=l, NUMEX

setup inputs
DO 1420 1=1, INDIM

NEURON(I,l)=INEX(I,P)
CONTINUE
NEURON (0 , 1) = -1. 0

compute outputs of all neurons in the network
CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT(0,4), WTIDX1,

111

+
C

+

NEURON, NUIDX1, NUIDX2)
accumulate error over all patterns
EX=EX+RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,NUIDX2,

OUTEX(l,P) ,OUTDIM)
1430 CONTINUE

C

C

EX=0.5*EX

IF (X.LT.C .AND. EX.LT.EC) THEN
B=C
C=X
EB=EC
EC=EX

ELSE IF (X.GT.C .AND. EX.GT.EC) THEN
B=X
EB=EX

ELSE IF (X.LT.C .AND. EX.GT.EC) THEN
A=X
EA=EX

ELSE
A=C
C=X
EA=EC
EC=EX

ENDIF

CONTER=CONTER+l
C check stopping condition

IF (CONTER.EQ.LIM4) GOTO 1440
IF (B-C.LT.XTOL .OR. C-A.LT.XTOL) GO TO 1440
GOTO 1405

C*************
1440 RETURN

END
C*************
C
C
C**

SUBROUTINE DUUVV(LAYER, LAIDX1,LAIDX2,WEIGHT,WTIDX1,WTIDX2,
+ NEURON,NUIDX1,NUIDX2,UUVV,UUIDX1,UUIDX2,UUIDX3)

C**
C This routine is to compute the partial derivatives of each neuron
C output function w.r.t the output of each neuron in its connection
C path and, for convenience, the partial derivatives of the weighted
C sum function of each neuron w.r.t a previous weighted sum in its
C input path. The result of the former is stored in the first
C raw of array UUVV and the latter in the 2nd raw. This
C computation requires one forward pass through the network.
C The partial derivatives are needed in the computation of the
C Jacobian and the Hessian matrices of E(w).
C

C

INTEGER LAIDX1, LAIDX2, WTIDX1, WTIDX2, NUIDX1, NUIDX2,
+ LAYER(-1:LAIDX1, LAIDX2), UUIDX1, UUIDX2, UUIDX3

DOUBLE PRECISION WEIGHT(O:WTIDX1,WTIDX2),NEURON(O:NUIDX1,NUIDX2),
+ UUVV(O:UUIDX1, 0:UUIDX2, UUIDX3)

INTEGER WINDEX, Nl, N2, N3, S
DOUBLE PRECISION TEMPi

C forward propagated computation over the layers
DO 2050 K2=1, LAYER(-l,l)

112

C over all neurons in a layer
DO 2040 I=l, LAYER(K2,1)

N2=LAYER(K2,2)+I
C for all neuron in later layers

DO 2030 K1=K2, LAYER(-l,l)

C

C

2010

DO 2020 J=l, LAYER(K1,1)
N1=LAYER(K1,2)+J
IF (K2 .EQ. K1) THEN

IF (J .EQ. I) THEN
UUVV(N1, N2,1)=1
UUVV(N1, N2,2)=1

ELSE
UUVV(N1, N2,1)=0
UUVV(N1, N2,2)=0

ENDIF
ELSE IF (K1 .EQ. K2+1) THEN

WINDEX=LAYER(K1,3)+(J-1)*(LAYER(K1-1,1)+1)+I
UUVV(N1, N2,1)=NEURON(N1,2) *WEIGHT(WINDEX, 1)
UUVV(N1, N2,2)=NEURON(N2,2) *WEIGHT(WINDEX, 1)

ENDIF

ELSE
K=K1-1
over all neurons in previous layer
TEMP1=0.0
DO 2010 S=l, LAYER(K, 1)

WINDEX=LAYER(K1,3)+(J-1)*(LAYER(K,1)+1)+S
N3=LAYER(K,2)+S
TEMP1=TEMP1+WEIGHT(WINDEX,1)*UUVV(N3,N2,1)

CONTINUE
UUVV(N1,N2,1)=TEMP1*NEURON(N1,2)
UUVV(N1,N2,2) =TEMP1*NEURON(N2, 2)

2020 CONTINUE
2030 CONTINUE
2040 CONTINUE
2050 CONTINUE
C
C*************

RETURN
END

C*************

C**
SUBROUTINE COMJAC(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

+ NEURON, NUIDX1, NUIDX2, HESIAN, WTDIM,
+ UUVV, UUIDX1, UUIDX2, UUIDX3, OUTDIM)

C**
C This routine is to compute the Jacobian matrix of the net function and
C approximate the Hessian matrix by using the Jacobian matrix.
C The 1st raw of the J-matrix is over all the weights and the 2nd
C over output dimension. The matrix is actually stored in array
C WEIGHT, starting at the 5th raw of array WEIGHT. The estimated
C Hessian matrix is stored in matrix HESIAN.
C
C

INTEGER LAIDX1, LAIDX2, WTIDX1, WTIDX2, NUIDX1, NUIDX2, WTDIM,
+ OUTDIM, UUIDX1, UUIDX2, UUIDX3, LAYER(-1:LAIDX1, LAIDX2)

DOUBLE PRECISION WEIGHT(0:WTIDX1,WTIDX2),NEURON(0:NUIDX1,NUIDX2),
+ UUVV(0:UUIDX1, 0:UUIDX2, UUIDX3),
+ HESIAN(O:WTIDX1, 0:WTIDX1)

C

113

INTEGER WINDEX,N1,N2,N3, M
C
C over output functions of all neurons in the last layer

DO 2250, M=l, OUTDIM
C over all the connection weights
C over layers

DO 2240 K=l, LAYER(-l,l)
C over all neurons in a layer

DO 2230 J=l, LAYER(K,l)
C over all neurons in the previous layer

DO 2220 I=O, LAYER(K-1,1)
N1=LAYER(LAYER(-1,1),2)+M
N2=LAYER(K,2)+J
N3=LAYER(K-1,2)+I
WINDEX=LAYER(K,3)+(J-1)*(LAYER(K-1,1)+1)+I
WEIGHT(WINDEX,M+4)= UUVV(N1,N2,1)*NEURON(N2,2)

+ *NEURON(N3,1)
2220 CONTINUE
2230 CONTINUE
2240 CONTINUE
2250 CONTINUE
C
C the following estimate the Hessian matrix of E(w)
C

DO 2280 J=O, WTDIM-1
DO 2270 I=J, WTDIM-1

HESIAN(I,J)=O.O

2260

DO 2260 M=l, OUTDIM
HESIAN(I,J)=WEIGHT(J,M+4)*WEIGHT(I,M+4)+HESIAN(I,J)

CONTINUE
HESIAN(J,I)=HESIAN(I,J)

2270
2280
C

CONTINUE
CONTINUE

C*************
2299 RETURN

END
C*************

C**
SUBROUTINE LSOLV (A,BX,N,LDIM,NRANK,PSMAL)

C
C LSOLV 1.6
C

APRIL 1992

C J. P. CHANDLER, COMPUTER SCIENCE DEPARTMENT,
C OKLAHOMA STATE UNIVERSITY
C
C LSOLV SOLVES A SYSTEM OF LINEAR EQUATIONS USING GAUSSIAN
C ELIMINATION WITH PARTIAL PIVOTING.
C IF THE MATRIX OF COEFFICIENTS IS SINGULAR, LSOLV COMPUTES
C THE SOLUTION THAT WOULD RESULT FROM MULTIPLYING A RAO
C PSEUDO INVERSE OF THE COEFFICIENT MATRIX TIMES THE VECTOR OF
C CONSTANTS.
C C. R. RAO AND S. K. MITRA, -GENERALIZED INVERSE OF MATRICES
C AND ITS APPLICATIONS- (WILEY, 1971), PAGE 212
C
C N IS THE NUMBER OF EQUATIONS IN THE LINEAR SYSTEM.
C ON ENTRY, A(*,*) CONTAINS THE MATRIX OF COEFFICIENTS AND
C BX(*) CONTAINS THE VECTOR OF CONSTANTS (THE RIGHTHAND
C SIDES).

114

C ON EXIT, BX(*) CONTAINS THE SOLUTION VECTOR AND A(*,*)
C CONTAINS GARBAGE.
C LDIM IS THE VALUE OF THE DIMENSIONS OF THE ARRAYS A AND BX.
C THE VALUE OF N MUST NOT EXCEED THE VALUE OF LDIM.
C NRANK RETURNS THE RANK OF THE MATRIX A.
C IF NRANK .LT. N THEN THE MATRIX A WAS SINGULAR.
C PSMAL RETURNS THE PIVOT, IF ANY, THAT HAD THE SMALLEST
C NONZERO MAGNITUDE.
C***
C
C

C

C

C

DOUBLE PRECISION A,BX,ZABS,ARG,BIGA,TEMP,EM,SUM,PSMAL,
* RZERO

DIMENSION A(LDIM,N) ,BX(N)

ZABS (ARG) =DABS(ARG)

C CHECK FOR AN INVALID VALUE OF N OR LDIM.
C

RZERO=O.ODO
NRANK=-l
PSMAL=RZERO
IF(N.LT.1 .OR. N.GT.LDIM) GO TO 2495

C
C TRIANGULARIZE THE MATRIX A.
C

C

NRANK=O
IF(N.LT.2) GO TO 2470
NMU=N-1
DO 2460 J=l,NMU

C SEARCH COLUMN J FOR THE PIVOT ELEMENT.
C

C

BIGA=RZERO
DO 2410 K=J,N

TEMP=ZABS(A(K,J))
IF(TEMP.LE.BIGA) GO TO 2410
BIGA=TEMP
JPIV=K

2410 CONTINUE
IF(BIGA.LE.RZERO) GO TO 2460
IF(JPIV.LE.J) GO TO 2430 '

C INTERCHANGE EQUATIONS J AND JPIV.
C

C

DO 2420 L=J,N
TEMP=A(J,L)
A(J,L)=A(JPIV,L)
A(JPIV,L)=TEMP

2420 CONTINUE
TEMP=BX(J)
BX(J)=BX(JPIV)
BX(JPIV)=TEMP

2430 JPU=J+1
DO 2450 K=JPU,N

C PERFORM ELIMINATION ON EQUATION K.
C

EM=A(K,J)/A(J,J)
IF(EM.EQ.RZERO) GO TO 2450

115

C

2440

2450
2460

DO 2440 L=JPU,N
A(K,L)=A(K,L)-EM*A(J,L)
CONTINUE

BX(K)=BX(K)-EM*BX(J)
CONTINUE

CONTINUE

C DO THE BACK SOLUTION.
C

2470 DO 2490 JINV=l,N
J=N+l-JINV
TEMP=A(J,J)
IF (TEMP.NE.RZERO) GO TO 2475
BX(J)=RZERO
GO TO 2490

2475 NRANK=NRANK+l

2480
C

2485
2490

C
2495

C

*
IF(PSMAL.EQ.RZERO .OR. ZABS(TEMP) .LT.ZABS(PSMAL))

PSMAL=TEMP
SUM=RZERO
IF(J.GE.N) GO TO 2485
JPU=J+l
DO 2480 K=JPU,N

SUM=SUM+A(J,K)*BX(K)
CONTINUE

BX(J)=(BX(J)-SUM)/TEMP
CONTINUE

RETURN

C END LSOLV
C

END

C**
SUBROUTINE GNLM(LAYER, LAIDX1, LAIDX2, WEIGHT,

+ NEURON, NUIDX1, NUIDX2, INEX,
+ OUTEX, OEIDX1, OEIDX2, NUMEX,
+ INDIM, OUTDIM, TOLERA,
+ UUVV, UUIDX1, UUIDX2, UUIDX3,
+ HESIAN, WTDIM)

WTIDX1, WTIDX2,
IEIDX1, IEIDX2,

C**
C This routine implements the Gauss-Newton/Levenberg-Marquardt learning
C algorithm, with an add-in identity matrix I.
C

+
+

+
+
+

C

+

C

INTEGER

DOUBLE

INTEGER
DOUBLE

COMMON

LAIDX1,LAIDX2,WTIDX1,WTIDX2,NUIDX1,NUIDX2,
IEIDX1,IEIDX2,OEIDX1,OEIDX2,NUMEX,INDIM,OUTDIM,WTDIM,
LAYER(-1:LAIDX1,LAIDX2),UUIDX1,UUIDX2,UUIDX3

PRECISION WEIGHT(0:WTIDX1,WTIDX2) ,NEURON(0:NUIDX1,NUIDX2),
INEX(IEIDX1,IEIDX2) , OUTEX(OEIDX1,OEIDX2) ,
TOLERA, UUVV(0:UUIDX1,0:UUIDX2,UUIDX3),
HESIAN(0:WTIDX1, 0:WTIDX1, 3)

P, EPOCH, NRANK, DIM, LDIM
PRECISION RMS, RMSBAK, RR, LAMBDA, FACTOR, PSMAL, NORM,

INILAM, INIFAC, CUTOFF, SMALL
/LEVMAR/INILAM, INIFAC, CUTOFF, SMALL

PRINT *, 'Gauss-Newton/Levenberg-Marquardt(I) is working'

116

C
PRINT *, 'tolerance=' TOLERA

EPOCH=O
LAMBDA=INILAM
FACTOR=INIFAC
PRINT *, 'FACTOR=' FACTOR

C --- get initial RMS
RMSBAK=O.O
DO 2506 P=l, NUMEX

C setup inputs
DO 2507 I=l, INDIM

NEURON(I,l)=INEX(I,P)
2507 CONTINUE

C

+

NEURON(O,l)=-1.0
compute outputs of all neurons in the network
CALL NET OUT (LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,

NEURON, NUIDX1, NUIDX2)
C accumulate error over all patterns

RMSBAK=RMSBAK+RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,NUIDX2,
+ OUTEX(l,P),OUTDIM)

2506 CONTINUE
c PRINT*, 'accumulated RMSBAK= " RMSBAK

RMSBAK=DSQRT(RMSBAK/NUMEX)
WRITE (*,2562) RMSBAK, EPOCH, LAMBDA, FACTOR

C
2501 DO 2505 J=O, WTDIM-1

2502

2505
C
C

C

2510

C
C

+
C
C

+
C

2520
C
C

+
c

+
+

C

DO 2502 I=J, WTDIM-1
HESIAN(I,J,3)=0.0
HESIAN(J,I,3)=0.0

CONTINUE
WEIGHT(J,3)=0.0

CONTINUE

Batch model: accumulate error information over all patterns
DO 2540 P=l, NUMEX

setup inputs
DO 2510 I=l, INDIM

NEURON(I,l)=INEX(I,P)
CONTINUE
NEURON(O,l)=-1.0

compute outputs of all neurons in the network
CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,

NEURON, NUIDX1, NUIDX2)

compute the gradient of E(w) for one pattern
CALL COMGRA(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

NEURON, NUIDX1, NUIDX2, OUTEX(l,P), OUTDIM)
accumulate the NEGATIVE gradient over all patterns
DO 2520 I=O, WTDIM-1

WEIGHT(I,3)=WEIGHT(I,3) - WEIGHT(I,2)
CONTINUE

compute the useful partials
CALL DUUVV(LAYER, LAIDX1,LAIDX2,WEIGHT,WTIDX1,WTIDX2,

NEURON,NUIDX1,NUIDX2,UUVV,UUIDX1,UUIDX2,UUIDX3)
compute the Jacobian matrix and estimate the Hessian
CALL COMJAC(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

NEURON, NUIDX1, NUIDX2, HESIAN, WTDIM,
UUVV, UUIDX1, UUIDX2, UUIDX3, OUTDIM)

117

C sum up the Hesians over all patterns
DO 2535 J=O, WTDIM-1

DO 2530 I=J, WTDIM-1
HESIAN(I,J,3)=HESIAN(I,J,3) + HESIAN(I,J,l)
HESIAN(J,I,3)=HESIAN(I,J,3)

2530 CONTINUE
2535 CONTINUE
2540 CONTINUE
C
C --- formulate the linear system equations

IF (LAMBDA .LT. CUTOFF) THEN
LAMBDA=LAMBDA/10

C
C
2545

2550

2555
C ---
2557
2561

C

2564

2563

C

ELSE
LAMBDA=LAMBDA/FACTOR

ENDIF

add in Levenberg-Marquardt parameters
DO 2555 J=O, WTDIM-1

DO 2550 I=J, WTDIM-1
HESIAN(I,J,2)=HESIAN(I,J,3)
HESIAN(J,I,2)=HESIAN(I,J,3)

CONTINUE
WEIGHT(J, 2) =WEIGHT(J, 3)
HESIAN(J,J,2)=HESIAN(J,J,3) + LAMBDA

CONTINUE
setup parameters for calling LSOLVE
FORMAT(20F20.10)
DIM = WTDIM
LDIM=WTIDX1+1
CALL LSOLV(HESIAN(0,0,2),WEIGHT(0,2),DIM,LDIM,NRANK,PSMAL)
checking singularity
IF (NRANK .LT. WTDIM) THEN

PRINT*, 'singular system'
LAMBDA= LAMBDA * FACTOR
DO 2563 J=O, WTDIM-1

DO 2564 I=J, WTDIM-1
HESIAN(I,J,2)=HESIAN(I,J,3)
HESIAN(J,I,2)=HESIAN(I,J,3)

CONTINUE
HESIAN(J,J,2)=HESIAN(J,J,3)+LAMBDA

CONTINUE
GO TO 2561

ENDIF

C temporary updating weights
NORM=O.O
DO 2660, 1=0, WTDIM-1

NORM=NORM+WEIGHT(I,2) **2
WEIGHT(I,2)=WEIGHT(I,1) + WEIGHT(I,2)

2660 CONTINUE
NORM=DSQRT(NORM)

C
C check learning result

RMS=O.O
DO 2570 P=l, NUMEX

C setup inputs
DO 2575 1=1, INDIM

NEURON(I,l)=INEX(I,P)
2575 CONTINUE

NEURON(0,1)=-1.0
C compute outputs of all neurons in the network

118

CALL NETOUT(LAYER, LAIDXl, LAIDX2, WEIGHT(0,2), WTIDXl,
+ NEURON, NUIDXl, NUIDX2)

C accumulate error over all patterns
RMS=RMS+RR(LAYER,LAIDXl,LAIDX2,NEURON,NUIDXl,NUIDX2,

+ OUTEX(l,P),OUTDIM)
c PRINT*, 'accumulating RMS=', RMS
2570 CONTINUE
C
c PRINT *, 'accumulated RMS= RMS

RMS=DSQRT(RMS/NUMEX)
WRITE (*,2562) RMS, EPOCH, LAMBDA,NORM

2562 FORMAT('RMS=', F23.19, 110, ' LAMBDA=',2G15.7)
IF (RMS .GT. RMSBAK) THEN

C

IF (LAMBDA .LT. CUTOFF) THEN
LAMBDA=CUTOFF

ELSE
LAMBDA=LAMBDA*FACTOR

ENDIF
GO TO 2545

ENDIF

EPOCH=EPOCH+l
C update weights

DO 2580 1=0, WTDIM-l
WEIGHT(I,1)=WEIGHT(I,2)

2580 CONTINUE
C check if the convergence criterion is satisfied.

IF (RMSBAK-RMS .GE. TOLERA) THEN
RMSBAK=RMS
GOTO 2501

ENDIF
C otherwise, training done
C
C*************

RETURN
END

C*************

C**
SUBROUTINE DEVV(LAYER, LAIDXl, LAIDX2, WEIGHT, WTIDXl, WTIDX2,

+ NEURON, NUIDXl, NUIDX2,
+ UUVV, UUIDXl, UUIDX2, UUIDX3)

C**
C This routine is to compute the 2nd-order derivatives of the error-
C squared function w.r.t. the weighted sum functions v(kl,jl) and
C v(k2,j2), with kl>=k2. The result is stored in UUVV(*,*,3).
C
C

C

C

INTEGER LAIDXl, LAIDX2, WTIDXl, WTIDX2, NUIDXl, NUIDX2,
+ UUIDXl, UUIDX2, UUIDX3, LAYER(-l:LAIDXl, LAIDX2)

DOUBLE PRECISION WEIGHT(0:WTIDXl,WTIDX2) ,NEURON(0:NUIDXl,NUIDX2),
+ UUVV(O:UUIDXl, 0:UUIDX2, UUIDX3)

INTEGER WINDEX,Nl,N2,N3,S
DOUBLE PRECISION TEMPI, TEMP2

C backward propagation over the net
DO 2180 K2=1, LAYER(-l,l)

C over all neurons in a layer
DO 2170 J2=1, LAYER(K2,1)

N2=LAYER(K2,2)+J2

119

C

2110
C
C

C

2130

C

+
+

+

+
+

base case when k1=K, the output layer
DO 2110 J1=l, LAYER(LAYER(-l,l),l)

N1=LAYER(LAYER(-l,l),2)+J1
UUVV(N1,N2,3)= UUVV(N1,N2,2)*(NEURON (N1, 2) **2 +

NEURON(N1,3)*NEURON(N1,2) *
(1.0 - 2.0*NEURON(N1,l)))

CONTINUE

backward propagation until layer k2
DO 2160 K1=LAYER(-l,l)-l, K2, -1

DO 2150 J1=l, LAYER (K1,1)
N1=LAYER(K1,2)+J1
TEMP1=0.0
TEMP2=0.0
over all neurons in the next layer
DO 2130 S=l, LAYER(K1+1,l)

WINDEX=LAYER(K1+1,3) + (S-1)*(LAYER(K1,l)+1) + J1
N3=LAYER(K1+1,2)+S
TEMP1=TEMP1 + WEIGHT(WINDEX,l)*NEURON(N3,2) *

NEURON(N3,3)
TEMP2=TEMP2 + WEIGHT(WINDEX,l)*UUVV(N3,N2,3)

CONTINUE
UUVV(N1,N2,3)= TEMP1*NEURON(N1,2) *

(l.0-2.0*NEURON(N1,l))*UUVV(N1,N2,2)
+ TEMP2*NEURON(N1,2)

2150 CONTINUE
2160 CONTINUE
2170 CONTINUE
2180 CONTINUE
C
C*************

RETURN
END

C*************

C**
SUBROUTINE COMHAS(LAYER, LAIDX1, LAIDX2, NEURON, NUIDX1, NUIDX2,

+ UUVV, UUIDX1, UUIDX2, UUIDX3, HESIAN, WTIDX1)
C**
C This routine is to compute the Hessian matrix of the error function.
C The result is stored in matrix HESIAN(*,*,l).
C
C

INTEGER LAIDX1, LAIDX2, NUIDX1, NUIDX2, WTIDX1,
+ UUIDX1, UUIDX2, UUIDX3, LAYER(-1:LAIDX1, LAIDX2)

DOUBLE PRECISION NEURON(O:NUIDX1,NUIDX2),
+ UUVV(O:UUIDX1, 0:UUIDX2, UUIDX3),
+ HESIAN(O:WTIDX1, 0:WTIDX1)

C
INTEGER W1,W2,N1,N2,N3,N4,I,J,I1,I2,J1,J2,K1,K2

C
DO 2380 K2=l, LAYER(-l,l)

C over all neurons a layer
DO 2370 J2=l, LAYER(K2,l)

N2=LAYER(K2,2)+J2
C over all neurons in the previous layer

DO 2360 I2=O, LAYER(K2-1,l)
N4=LAYER(K2-1,2)+I2
W2=LAYER(K2,3)+(J2-1)*(LAYER(K2-1,l)+1)+I2

C for all neuron in later layers

120

2330
2340
2350
2360
2370
2380
C
C

+

+
+
+

DO 2350 K1=K2, LAYER{-l,l)
IF (K1.EQ.K2) THEN

I=I2
J=J2

ELSE
I=O
J=l

ENDIF
DO 2340 J1=J, LAYER {K1,1)

N1=LAYER{K1,2)+J1
DO 2330 I1=I, LAYER{K1-1,1)

N3=LAYER{K1-1,2)+I1
W1=LAYER{K1,3)+{J1-1)*{LAYER{K1-1,1)+1)+I1
IF (K1.EQ.K2) THEN

ELSE

HESIAN{W1,W2)=
UUVV{N1,N2,3) * NEURON {N4, 1) *NEURON{N3,1)

HESIAN{W1, W2)=
UUVV{N1,N2,3) *NEURON{N4,1) *NEURON(N3,1)+
NEURON(N1,3)*NEURON{N1,2)*NEURON(N3,2)*
UUVV{N3,N2,2)*NEURON{N4,1)

ENDIF
HESIAN(W2, W1)=HESIAN{W1,W2)

CONTINUE
CONTINUE

CONTINUE
CONTINUE

CONTINUE
CONTINUE

C*************
RETURN
END

C*************

C**
SUBROUTINE NLM(LAYER, LAIDX1, LAIDX2, WEIGHT,

+ NEURON, NUIDX1, NUIDX2, INEX,
+ OUTEX, OEIDX1, OEIDX2, NUMEX,
+ INDIM, OUTDIM, TOLERA,
+ UUVV, UUIDX1, UUIDX2, UUIDX3,
+ HESIAN, WTDIM)

WTIDX1, WTIDX2,
IEIDX1, IEIDX2,

C**
C This routine implements the Damped Newton learning algorithm
C (Algorithm 4.2.1), adding a Identity matrix I.
C

+
+

+
+
+

C

+

C

INTEGER

DOUBLE

INTEGER
DOUBLE

COMMON

LAIDX1,LAIDX2,WTIDX1,WTIDX2,NUIDX1,NUIDX2,
IEIDX1,IEIDX2,OEIDX1,OEIDX2,NUMEX,INDIM,OUTDIM,WTDIM,
LAYER(-1:LAIDX1,LAIDX2) ,UUIDX1,UUIDX2,UUIDX3

PRECISION WEIGHT(0:WTIDX1,WTIDX2),NEURON(0:NUIDX1,NUIDX2),
INEX{IEIDX1,IEIDX2) ,OUTEX{OEIDX1,OEIDX2),
TOLERA, UUVV{0:UUIDX1,0:UUIDX2,UUIDX3),
HESIAN(0:WTIDX1, 0:WTIDX1, 3)

P, EPOCH, NRANK, DIM, LDIM
PRECISION RMS, RMSBAK, RR, LAMBDA, FACTOR, PSMAL, NORM,

INILAM, INIFAC, CUTOFF, SMALL
/LEVMAR/INILAM, INIFAC, CUTOFF, SMALL

PRINT *, 'Newton{I) is working'

121

C
EPOCH=O
LAMBDA=INILAM
FACTOR=INIFAC
PRINT *, 'FACTOR=' FACTOR

C --- get initial RMS
RMSBAK=O.O
DO 2606 P=l, NUMEX

C setup inputs
DO 2607 1=1, INDIM

NEURON(I,l)=INEX(I,P)
2607 CONTINUE

NEURON(0,1)=-1.0
C compute outputs of all neurons in the network

CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,
+ NEURON, NUIDX1, NUIDX2)

C accumulate error over all patterns
RMSBAK=RMSBAK+RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,NUIDX2,

+ OUTEX(l,P) ,OUTDIM)
2606 CONTINUE

RMSBAK=DSQRT(RMSBAK/NUMEX)
WRITE (*,2662) RMSBAK, EPOCH, LAMBDA, FACTOR

C
2601 DO 2605 J=O, WTDIM-1

2602

2605
C
C

C

2610

C
C

+
C
C

+
C

2620
C
C

+

+
+

c

+
C

DO 2602 I=J, WTDIM-1
HESIAN(I,J,3)=0.0
HESIAN(J,I,3)=0.0

CONTINUE
WEIGHT(J,3)=0.0

CONTINUE

Batch model: accumulate error information over all patterns
DO 2640 P=l, NUMEX

setup inputs
DO 2610 1=1, INDIM

NEURON(I,l)=INEX(I,P)
CONTINUE
NEURON(0,1)=-1.0

compute outputs of all neurons in the network
CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,

NEURON, NUIDX1, NUIDX2)

compute the gradient of E(w) for one pattern
CALL COMGRA(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

NEURON, NUIDX1, NUIDX2, OUTEX(l,P), OUTDIM)
accumulate the NEGATIVE gradient over all patterns
DO 2620 1=0, WTDIM-1

WEIGHT(I,3)=WEIGHT(I,3) - WEIGHT(I,2)
CONTINUE

compute the useful partials
CALL DUUVV(LAYER, LAIDX1,LAIDX2,WEIGHT,WTIDX1,WTIDX2,

NEURON,NUIDX1,NUIDX2,UUVV,UUIDX1,UUIDX2,UUIDX3)
CALL DEVV(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

NEURON, NUIDX1, NUIDX2,
UUVV, UUIDX1, UUIDX2, UUIDX3)

compute the Hessian matrix
CALL COMHAS(LAYER, LAIDX1, LAIDX2, NEURON, NUIDX1, NUIDX2,

UUVV, UUIDX1, UUIDX2, UUIDX3, HESIAN, WTIDX1)

122

C

2630
2635
2640
C
C ---

C
2645

2650

2655
C

sum up the Hessians over all patterns
DO 2635 J=O, WTDIM-1

DO 2630 I=J, WTDIM-1
HESIAN(I,J,3)=HESIAN(I,J,3) + HESIAN(I,J,1)
HESIAN(J,I,3)=HESIAN(I,J,3)

CONTINUE
CONTINUE

CONTINUE

formulate the linear system equations
IF (LAMBDA .LT. CUTOFF) THEN

LAMBDA=LAMBDA/(FACTOR*2.0)
ELSE

LAMBDA=LAMBDA/FACTOR
ENDIF
add in Levenberg-Marquardt parameters
DO 2655 J=O, WTDIM-1

DO 2650 I=J, WTDIM-1
HESIAN(I,J,2)=HESIAN(I,J,3)
HESIAN(J,I,2)=HESIAN(I,J,3)

CONTINUE
WEIGHT(J,2)=WEIGHT(J,3)
HESIAN(J,J,2)=HESIAN(J,J,3)+LAMBDA

CONTINUE

C --- setup parameters for calling LSOLVE
2661 DIM = WTDIM

LDIM=WTIDX1+1
CALL LSOLV(HESIAN(0,0,2) ,WEIGHT(0,2) ,DIM,LDIM,NRANK,PSMAL)

C
C checking singularity

IF (NRANK .LT. WTDIM) THEN
PRINT*, 'singular system'
LAMBDA=LAMBDA*FACTOR
DO 2663 J=O, WTDIM-1

DO 2664 I=J, WTDIM-1
HESIAN(I,J,2)=HESIAN(I,J,3)
HESIAN(J,I,2)=HESIAN(I,J,3)

2664 CONTINUE
HESIAN(J,J,2)=HESIAN(J,J,3)+LAMBDA

2663 CONTINUE

C

GO TO 2661
ENDIF

NORM=O.O
C temporary updating weights

DO 2660 I=O, WTDIM-1
NORM=NORM+WEIGHT(I,2) **2
WEIGHT(I,2)=WEIGHT(I,1) + WEIGHT(I,2)

2660 CONTINUE
NORM=DSQRT(NORM)

C
C check learning result

RMS=O.O
DO 2670 P=1, NUMEX

C setup inputs
DO 2675 I=1, INDIM

NEURON(I,1)=INEX(I,P)
2675 CONTINUE

NEURON(0,1)=-1.0
C compute outputs of all neurons in the network

123

C
+

+

CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT(0,2), WTIDX1,
NEURON, NUIDX1, NUIDX2)

accumulate error over all patterns
RMS=RMS+RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,NUIDX2,

OUTEX(l,P) ,OUTDIM)
2670 CONTINUE
C

RMS=DSQRT(RMS/NUMEX)
WRITE (*,2662) RMS, EPOCH, LAMBDA, NORM

2662 FORMAT('RMS=', F23.19, I10, , LAMBDA=',2G15.7)
IF (RMS .GT. RMSBAK) THEN

C

IF (LAMBDA .LT. CUTOFF) THEN
LAMBDA=CUTOFF

ELSE
LAMBDA= LAMBDA * FACTOR

ENDIF
GO TO 2645

ENDIF

EPOCH=EPOCH+1
C update weights

DO 2680 I=O, WTDIM-1
WEIGHT(I,l)=WEIGHT(I,2)

2680 CONTINUE
C check if the convergence criterion 1S satisfied.

IF (RMSBAK-RMS .GE. TOLERA) THEN
RMSBAK=RMS
GOTO 2601

ENDIF
C otherwise, training done
C
C*************

RETURN
END

C*************
C**

SUBROUTINE GNLMD(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,
+ NEURON, NUIDX1, NUIDX2, INEX, IEIDX1, IEIDX2,
+ OUTEX, OEIDX1, OEIDX2, NUMEX,
+ INDIM, OUTDIM, TOLERA,
+ UUVV, UUIDX1, UUIDX2, UUIDX3,
+ HESIAN, WTDIM)

C**
C This routine implements the Gauss-Newton/Levenberg-Marquardt learning
C algorithm(Algorithm 3.5.1).
C

INTEGER
+
+

DOUBLE
+
+
+

C
INTEGER
DOUBLE

+
COMMON

C
PRINT *
PRINT *

LAIDX1,LAIDX2,WTIDX1,WTIDX2,NUIDX1,NUIDX2,
IEIDX1,IEIDX2,OEIDX1,OEIDX2,NUMEX,INDIM,OUTDIM,WTDIM,
LAYER(-1:LAIDX1,LAIDX2),UUIDX1,UUIDX2,UUIDX3

PRECISION WEIGHT(0:WTIDX1,WTIDX2) ,NEURON(0:NUIDX1,NUIDX2),
INEX(IEIDX1,IEIDX2),OUTEX(OEIDX1,OEIDX2) ,
TOLERA, UUVV(0:UUIDX1,0:UUIDX2,UUIDX3),
HESIAN(0:WTIDX1, 0:WTIDX1, 3)

P, EPOCH, NRANK, DIM, LDIM
PRECISION RMS, RMSBAK, RR, LAMBDA, FACTOR, PSMAL, NORM,

INILAM, INIFAC, CUTOFF, SMALL
/LEVMAR/INILAM, INIFAC, CUTOFF, SMALL

'Gauss-Newton/Levenberg-Marquardt(D) is working'
'tolerance= " TOLERA

124

C

C ---

C

2707

C

+
C

EPOCH=O
LAMBDA=INILAM
FACTOR=INIFAC
PRINT *, 'FACTOR=' FACTOR
get initial RMS
RMSBAK=O.O
DO 2706 P=l, NUMEX

setup inputs
DO 2707 1=1, INDIM

NEURON(I,l)=INEX(I,P)
CONTINUE
NEURON(0,1)=-1.0
compute outputs of all neurons in the network
CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,

NEURON, NUIDX1, NUIDX2)
accumulate error over all patterns
RMSBAK=RMSBAK+RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,NUIDX2,

+ OUTEX(l,P) ,OUTDIM)
2706 CONTINUE
c PRINT*, 'accumulated RMSBAK= " RMSBAK

RMSBAK=DSQRT(RMSBAK/NUMEX)
WRITE (*,2762) RMSBAK, EPOCH, LAMBDA, FACTOR

C
2701 DO 2705 J=O, WTDIM-1

2702

2705
C
C

C

2710

C
C

+
C
C

+
C

2720
C
C

+
c

+
+

C
C

DO 2702 I=J, WTDIM-1
HESIAN(I,J,3)=0.0
HESIAN(J,I,3)=0.0

CONTINUE
WEIGHT(J,3)=0.0

CONTINUE

Batch model: accumulate error information over all patterns
DO 2740 P=l, NUMEX

setup inputs
DO 2710 1=1, INDIM

NEURON(I,l)=INEX(I,P)
CONTINUE
NEURON(0,1)=-1.0

compute outputs of all neurons in the network
CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,

NEURON, NUIDX1, NUIDX2)

compute the gradient of E(w) for one pattern
CALL COMGRA(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

NEURON, NUIDX1, NUIDX2, OUTEX(l,P), OUTDIM)
accumulate the NEGATIVE gradient over all patterns
DO 2720 1=0, WTDIM-1

WEIGHT(I,3)=WEIGHT(I,3) - WEIGHT(I,2)
CONTINUE

compute the useful partials
CALL DUUVV(LAYER, LAIDX1,LAIDX2,WEIGHT,WTIDX1,WTIDX2,

NEURON,NUIDX1,NUIDX2,UUVV,UUIDX1,UUIDX2,UUIDX3)
compute the Jacobian matrix and estimate the Hessian
CALL COMJAC(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

NEURON, NUIDX1, NUIDX2, HESIAN, WTDIM,
UUVV, UUIDX1, UUIDX2, UUIDX3, OUTDIM)

sum up the Hesians over all patterns

125

DO 2735 J=O, WTDIM-1
DO 2730 I=J, WTDIM-1

HESIAN(I,J,3)=HESIAN(I,J,3) + HESIAN(I,J,l)
HESIAN(J,I,3)=HESIAN(I,J,3)

2730 CONTINUE
2735 CONTINUE
2740 CONTINUE
C
C ---

C
C
2745

2750

2755

formulate the linear system equations
IF (LAMBDA .LT. CUTOFF) THEN

LAMBDA=LAMBDA/(FACTOR*2.0)
ELSE

LAMBDA=LAMBDA/FACTOR
ENDIF

add in Levenberg-Marquardt parameters
DO 2755 J=O, WTDIM-1

DO 2750 I=J, WTDIM-1
HESIAN(I,J,2)=HESIAN(I,J,3)
HESIAN(J,I,2)=HESIAN(I,J,3)

CONTINUE
WEIGHT(J,2)=WEIGHT(J,3)
IF (HESIAN(J,J,3) .LT. SMALL) THEN

HESIAN(J,J,2)=HESIAN(J,J,3)+LAMBDA
ELSE

HESIAN(J,J,2)=HESIAN(J,J,3)+LAMBDA*DABS(HESIAN(J,J,3))
ENDIF
HESIAN(J,J,2)=HESIAN(J,J,3) + LAMBDA

CONTINUE
C --- setup parameters for calling LSOLVE
2757 FORMAT(20F20.10)
2761 DIM = WTDIM

LDIM=WTIDX1+1
CALL LSOLV(HESIAN(0,0,2),WEIGHT(0,2),DIM,LDIM,NRANK,PSMAL)

C checking singularity
IF (NRANK .LT. WTDIM) THEN

PRINT*, 'singular system'
LABMDA=FACTOR*LAMBDA
DO 2763 J=O, WTDIM-1

DO 2764 I=J, WTDIM-1
HESIAN(I,J,2)=HESIAN(I,J,3)
HESIAN(J,I,2)=HESIAN(I,J,3)

2764 CONTINUE
HESIAN(J,J,2)=HESIAN(J,J,3) + LAMBDA

2763 CONTINUE

C

GO TO 2761
ENDIF

C temporary updating weights
NORM=O.O
DO 2660, 1=0, WTDIM-1

NORM=NORM+WEIGHT(I,2) **2
WEIGHT(I,2)=WEIGHT(I,1) + WEIGHT(I,2)

2660 CONTINUE
NORM=DSQRT(NORM)

C
C check learning result

RMS=O.O
DO 2770 P=l, NUMEX

C setup inputs
DO 2775 1=1, INDIM

126

NEURON(I,l)=INEX(I,P)
2775 CONTINUE

NEURON(O,1)=-1.0
C compute outputs of all neurons in the network

CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT(O,2), WTIDX1,
+ NEURON, NUIDX1, NUIDX2)

C accumulate error over all patterns
RMS=RMS+RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,NUIDX2,

+ OUTEX(l,P),OUTDIM)
c PRINT*, 'accumulating RMS=', RMS
2770 CONTINUE
C
c PRINT *, 'accumulated RMS= RMS

RMS=DSQRT(RMS/NUMEX)
WRITE (*,2762) RMS, EPOCH, LAMBDA,NORM

2762 FORMAT('RMS=', F23.19, Il0, ' LAMBDA=' ,2G15.7)
IF (RMS .GT. RMSBAK) THEN

C

IF (LAMBDA .LT. CUTOFF) THEN
LAMBDA=CUTOFF

ELSE
LAMBDA=LAMBDA*FACTOR

ENDIF
GO TO 2745

ENDIF

EPOCH=EPOCH+l
C update weights

DO 2780 I=O, WTDIM-l
WEIGHT(I,1)=WEIGHT(I,2)

2780 CONTINUE
C check if the convergence criterion is satisfied.

IF (RMSBAK-RMS .GE. TOLERA) THEN
RMSBAK=RMS
GO TO 2701

ENDIF
C otherwise, training done
C
C*************

RETURN
END

C*************
C**

SUBROUTINE NLMD(LAYER, LAIDX1, LAIDX2, WEIGHT,
+ NEURON, NUIDX1, NUIDX2, INEX,
+ OUTEX, OEIDX1, OEIDX2, NUMEX,
+ INDIM, OUTDIM, TOLERA,
+ UUVV, UUIDX1, UUIDX2, UUIDX3,
+ HESIAN, WTDIM)

WTIDX1, WTIDX2,
IEIDX1, IEIDX2,

C**
C This routine implements the Damped Newton learning algorithm
C (Algorithm 4.2.1).
C

+
+

+
+
+

C

INTEGER

DOUBLE

LAIDX1,LAIDX2,WTIDX1,WTIDX2,NUIDX1,NUIDX2,
IEIDX1,IEIDX2,OEIDX1,OEIDX2,NUMEX,INDIM,OUTDIM,WTDIM,
LAYER(-1:LAIDX1,LAIDX2),UUIDX1,UUIDX2,UUIDX3

PRECISION WEIGHT(O:WTIDX1,WTIDX2),NEURON(O:NUIDX1,NUIDX2),
INEX(IEIDX1,IEIDX2) ,OUTEX(OEIDX1,OEIDX2),
TOLERA, UUVV(O:UUIDX1,0:UUIDX2,UUIDX3),
HESIAN(O:WTIDX1, 0:WTIDX1, 3)

INTEGER P, EPOCH, NRANK, DIM, LDIM

127

C

C

DOUBLE PRECISION RMS, RMSBAK, RR, LAMBDA, FACTOR, PSMAL, NORM,
+ INILAM, INIFAC, CUTOFF, SMALL

COMMON /LEVMAR/INILAM, INIFAC, CUTOFF, SMALL

PRINT *, 'Newton(D) is working'

EPOCH=O
LAMBDA=INILAM
FACTOR=INIFAC
PRINT *, 'FACTOR=' FACTOR

C --- get initial RMS
RMSBAK=O.O
DO 2806 P=l, NUMEX

C setup inputs
DO 2807 I=l, INDIM

NEURON(I,l)=INEX(I,P)
2807 CONTINUE

NEURON(0,1)=-1.0
C compute outputs of all neurons in the network

CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,
+ NEURON, NUIDX1, NUIDX2)

C accumulate error over all patterns
RMSBAK=RMSBAK+RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,NUIDX2,

+ OUTEX(l,P),OUTDIM)
2806 CONTINUE

RMSBAK=DSQRT(RMSBAK/NUMEX)
WRITE (*,2862) RMSBAK, EPOCH, LAMBDA, FACTOR

C
2801 DO 2805 J=O, WTDIM-1

2802

2805
C
C

C

2810

C
C

+
C
C

+
C

2820
C
C

+

+

DO 2802 I=J, WTDIM-1
HESIAN(I,J,3)=0.0
HESIAN(J,I,3)=0.0

CONTINUE
WEIGHT(J,3)=0.0

CONTINUE

Batch model: accumulate error information over all patterns
DO 2840 P=l, NUMEX

setup inputs
DO 2810 I=l, INDIM

NEURON(I,l)=INEX(I,P)
CONTINUE
NEURON(0,1)=-1.0

compute outputs of all neurons in the network
CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1,

NEURON, NUIDX1, NUIDX2)

compute the gradient of E(w) for one pattern
CALL COMGRA(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

NEURON, NUIDX1, NUIDX2, OUTEX(l,P), OUTDIM)
accumulate the NEGATIVE gradient over all patterns
DO 2820 I=O, WTDIM-1

WEIGHT(I,3)=WEIGHT(I,3) - WEIGHT(I,2)
CONTINUE

compute the useful partials
CALL DUUVV(LAYER, LAIDX1,LAIDX2,WEIGHT,WTIDX1,WTIDX2,

NEURON,NUIDX1,NUIDX2 ,UUVV, UUIDX1 ,UUIDX2 ,UUIDX3)
CALL DEVV(LAYER, LAIDX1, LAIDX2, WEIGHT, WTIDX1, WTIDX2,

NEURON, NUIDX1, NUIDX2,

128

c

C
C

2830
2835
2840
C
C ---

C
2845

2850

2855
C

+ UUVV, UUIDX1, UUIDX2, UUIDX3)
compute the Hessian matrix

+
CALL COMHAS(LAYER, LAIDX1, LAIDX2, NEURON, NUIDX1, NUIDX2,

UUVV, UUIDX1, UUIDX2, UUIDX3, HESIAN, WTIDX1)

sum up the Hesians over all patterns
DO 2835 J=O, WTDIM-1

DO 2830 I=J, WTDIM-1
HESIAN(I,J,3)=HESIAN(I,J,3) + HESIAN(I,J,l)
HESIAN(J,I,3)=HESIAN(I,J,3)

CONTINUE
CONTINUE

CONTINUE

formulate the linear system equations
IF (LAMBDA .LT. CUTOFF) THEN

LAMBDA=LAMBDA/(FACTOR*2.0)
ELSE

LAMBDA=LAMBDA/FACTOR
ENDIF
add in Levenberg-Marquardt parameters
DO 2855 J=O, WTDIM-1

DO 2850 I=J, WTDIM-1
HESIAN(I,J,2)=HESIAN(I,J,3)
HESIAN(J,I,2)=HESIAN(I,J,3)

CONTINUE
WEIGHT(J,2) =WEIGHT(J, 3)
IF (HESIAN(J,J,3) .LT. SMALL) THEN

HESIAN(J,J,2)=HESIAN(J,J,3) + LAMBDA
ELSE

HESIAN(J,J,2)=HESIAN(J,J,3)+LAMBDA*DABS(HESIAN(J,J,3))
ENDIF

CONTINUE

C --- setup parameters for calling LSOLVE
2861 DIM = WTDIM

LDIM=WTIDX1+1
CALL LSOLV(HESIAN(O,O,2),WEIGHT(O,2),DIM,LDIM,NRANK,PSMAL)

C
C checking singularity

IF (NRANK .LT. WTDIM) THEN
PRINT*, 'singular system'
LAMBDA=LAMBDA*FACTOR
DO 2863 J=O, WTDIM-1

DO 2864 I=J, WTDIM-1
HESIAN(I,J,2)=HESIAN(I,J,3)
HESIAN(J,I,2)=HESIAN(I,J,3)

2864 CONTINUE
HESIAN(J,J,2)=HESIAN(J,J,3)+LAMBDA

2863 CONTINUE

C

GOTO 2861
ENDIF

NORM=O.O
C temporary updating weights

DO 2860 I=O, WTDIM-1
NORM=NORM+WEIGHT(I,2) **2
WEIGHT(I,2)=WEIGHT(I,l) + WEIGHT(I,2)

2860 CONTINUE
NORM=DSQRT(NORM)

C

129

C check learning result
RMS=O.O
DO 2870 P=l, NUMEX

C setup inputs
DO 2875 I=l, INDIM

NEURON(I,l)=INEX(I,P)
2875 CONTINUE

NEURON(O,l)=-1.0
C compute outputs of all neurons in the network

CALL NETOUT(LAYER, LAIDX1, LAIDX2, WEIGHT(O,2), WTIDX1,
+ NEURON, NUIDX1, NUIDX2)

C accumulate error over all patterns
RMS=RMS+RR(LAYER,LAIDX1,LAIDX2,NEURON,NUIDX1,NUIDX2,

+ OUTEX(l,P),OUTDIM)
2870 CONTINUE
C

RMS=DSQRT(RMS/NUMEX)
WRITE (*,2862) RMS, EPOCH, LAMBDA, NORM

2862 FORMAT('RMS=', F23.19, I10, , LAMBDA=',2G15.7)
IF (RMS .GT. RMSBAK) THEN

IF (LAMBDA .LT. CUTOFF) THEN
LAMBDA=CUTOFF

C

ELSE
LAMBDA=LAMBDA*FACTOR

ENDIF
GO TO 2845

ENDIF

EPOCH=EPOCH+1
C update weights

DO 2880 I=O, WTDIM-1
WEIGHT(I,l)=WEIGHT(I,2)

2880 CONTINUE
C check if the convergence criterion is satisfied.

IF (RMSBAK-RMS .GE. TOLERA) THEN
RMSBAK=RMS
GO TO 2801

ENDIF
C otherwise, training done
C
C*************

RETURN
END

C*************

130

Thesis:

Major Field:

Biographical:

VITA

LlYA WANG

Candidate for the Degree of

Master of Science

THE DAMPED NEWTON METHOD
--AN ANN LEARNING ALGORITHM

Computer Science

Personal Date: Born in Beijing, P.R. of China, on October 31, 1963.

Education: Received Bachelor of Science degree in Automation and Computer
Science from China University of Mining and Technology in July, 1985;
obtained Master of Science degree in Mathematics from Northern Arizona
University in May, 1993. completed the requirements for the Master of
Science degree in Computer Science at Oklahoma State University in
December 1995.

Experience: Employed as a programmer by China Research Institute of Printing
Science and Technology from September 1985 to June 1990.

	Thesis-1995-W389m513
	Thesis-1995-W389m514
	Thesis-1995-W389m515
	Thesis-1995-W389m516
	Thesis-1995-W389m517
	Thesis-1995-W389m518
	Thesis-1995-W389m519
	Thesis-1995-W389m520
	Thesis-1995-W389m521
	Thesis-1995-W389m522
	Thesis-1995-W389m523
	Thesis-1995-W389m524
	Thesis-1995-W389m525
	Thesis-1995-W389m526
	Thesis-1995-W389m527
	Thesis-1995-W389m528
	Thesis-1995-W389m529
	Thesis-1995-W389m530
	Thesis-1995-W389m531
	Thesis-1995-W389m532
	Thesis-1995-W389m533
	Thesis-1995-W389m534
	Thesis-1995-W389m535
	Thesis-1995-W389m536
	Thesis-1995-W389m537
	Thesis-1995-W389m538
	Thesis-1995-W389m539
	Thesis-1995-W389m540
	Thesis-1995-W389m541
	Thesis-1995-W389m542
	Thesis-1995-W389m543
	Thesis-1995-W389m544
	Thesis-1995-W389m545
	Thesis-1995-W389m546
	Thesis-1995-W389m547
	Thesis-1995-W389m548
	Thesis-1995-W389m549
	Thesis-1995-W389m550
	Thesis-1995-W389m551
	Thesis-1995-W389m552
	Thesis-1995-W389m553
	Thesis-1995-W389m554
	Thesis-1995-W389m555
	Thesis-1995-W389m556
	Thesis-1995-W389m557
	Thesis-1995-W389m558
	Thesis-1995-W389m559
	Thesis-1995-W389m560
	Thesis-1995-W389m561
	Thesis-1995-W389m562
	Thesis-1995-W389m563
	Thesis-1995-W389m564
	Thesis-1995-W389m565
	Thesis-1995-W389m566
	Thesis-1995-W389m567
	Thesis-1995-W389m568
	Thesis-1995-W389m569
	Thesis-1995-W389m570
	Thesis-1995-W389m571
	Thesis-1995-W389m572
	Thesis-1995-W389m573
	Thesis-1995-W389m574
	Thesis-1995-W389m575
	Thesis-1995-W389m576
	Thesis-1995-W389m577
	Thesis-1995-W389m578
	Thesis-1995-W389m579
	Thesis-1995-W389m580
	Thesis-1995-W389m581
	Thesis-1995-W389m582
	Thesis-1995-W389m583
	Thesis-1995-W389m584
	Thesis-1995-W389m585
	Thesis-1995-W389m586
	Thesis-1995-W389m587
	Thesis-1995-W389m588
	Thesis-1995-W389m589
	Thesis-1995-W389m590
	Thesis-1995-W389m591
	Thesis-1995-W389m592
	Thesis-1995-W389m593
	Thesis-1995-W389m594
	Thesis-1995-W389m595
	Thesis-1995-W389m596
	Thesis-1995-W389m597
	Thesis-1995-W389m598
	Thesis-1995-W389m599
	Thesis-1995-W389m600
	Thesis-1995-W389m601
	Thesis-1995-W389m602
	Thesis-1995-W389m603
	Thesis-1995-W389m604
	Thesis-1995-W389m605
	Thesis-1995-W389m606
	Thesis-1995-W389m607
	Thesis-1995-W389m608
	Thesis-1995-W389m609
	Thesis-1995-W389m610
	Thesis-1995-W389m611
	Thesis-1995-W389m612
	Thesis-1995-W389m613
	Thesis-1995-W389m614
	Thesis-1995-W389m615
	Thesis-1995-W389m616
	Thesis-1995-W389m617
	Thesis-1995-W389m618
	Thesis-1995-W389m619
	Thesis-1995-W389m620
	Thesis-1995-W389m621
	Thesis-1995-W389m622
	Thesis-1995-W389m623
	Thesis-1995-W389m624
	Thesis-1995-W389m625
	Thesis-1995-W389m626
	Thesis-1995-W389m627
	Thesis-1995-W389m628
	Thesis-1995-W389m629
	Thesis-1995-W389m630
	Thesis-1995-W389m631
	Thesis-1995-W389m632
	Thesis-1995-W389m633
	Thesis-1995-W389m634
	Thesis-1995-W389m635
	Thesis-1995-W389m636
	Thesis-1995-W389m637
	Thesis-1995-W389m638
	Thesis-1995-W389m639
	Thesis-1995-W389m640
	Thesis-1995-W389m641
	Thesis-1995-W389m642
	Thesis-1995-W389m643
	Thesis-1995-W389m644
	Thesis-1995-W389m645
	Thesis-1995-W389m646
	Thesis-1995-W389m647
	Thesis-1995-W389m648
	Thesis-1995-W389m649
	Thesis-1995-W389m650
	Thesis-1995-W389m651

