

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

MULTIPLIERLESS CSD TECHNIQUES FOR HIGH PERFORMANCE FPGA

IMPLEMENTATION OF DIGITAL FILTERS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

YUNHUA WANG
Norman, Oklahoma

2007

UMI Number: 3283840

3283840
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

MULTIPLIERLESS CSD TECHNIQUES FOR HIGH PERFORMANCE FPGA
IMPLEMENTATION OF DIGITAL FILTERS

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

 Dr. JOSEPH P. HAVLICEK, CHAIR

Dr. LINDA S. DEBRUNNER, CO-CHAIR

Dr. VICTOR E. DEBRUNNER

Dr. MURAD ÖZAYDIN

Dr. MONTE TULL

©Copyright by YUNHUA WANG 2007
All Rights Reserved.

 iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Dr. Linda

DeBrunner, for her invaluable wisdom and encouragement. Her brilliant guidance,

patience and support motivate me to pursue challenges and inspire me to seek

higher understanding in my study. Her sincere friendship and kind help in my life is

such a blessing that will be hidden in my heart forever.

I am also grateful to my dissertation advisor, Dr. Joseph P. Havlicek, for his

great classes, for broadening my knowledge to image processing areas, for

reviewing my papers, dissertation and presentation slides, for the cheers-ups and

jokes.

I would also like to thank my committee members Dr. Victor DeBrunner,

for introducing me to this field, for reviewing my papers, for his time and kindly

sharing his knowledge. I also like to thank Dr. Monte Tull and Dr. Murad Özaydin

for their helpful questions, comments, and suggestions, and for their time and

sincere evaluation in this dissertation. Your assistance is highly appreciated.

I am very grateful to my dear family, my husband Dr. Dayong Zhou

providing a lot of love and concern. Also my girls DiDi Zhou, CoCo Zhou and baby

Joy, thanks for their sweet cooperation.

v

My appreciation also extends to all friends who have supported and assisted

me throughout the completion of my research.

Finally, I want to thank my parents for constant support of my life, thank

you for always being there!

Thank God — my heavenly father! Thank you for your love!

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS.. vi

LIST OF TABLES .. ix

LIST OF FIGURES ... xii

ABSTRACT.. xiv

Chapter 1 .. 1

Introduction... 1

1.1 Introduction to digital filters .. 1

1.2 Problem statement.. 5

1.3 Original contributions .. 9

1.4 Organization of the dissertation ... 10

Chapter 2 .. 11

Overview of filter implementation techniques in FPGAs....................... 11

2.1 Introduction of filter implementation solutions 11

2.2 FPGA DSP implementation issues 12

2.3 Current filter implementation techniques 13

2.4 Modified radix-4 Booth’s recoding multiplier................... 20

2.5 Multiplierless techniques in filter implementations........... 24

Chapter 3 .. 42

vii

A novel multiplierless hardware implementation method for adaptive filter

coefficients... 42

3.1 Introduction.. 42

3.2 New 2’s complement to CSD conversion method (FastCSD)

... 45

3.3 Comparison with Booth’s recoding and LUT techniques.. 57

Chapter 4 .. 60

A multiplier structure based on a novel real-time CSD recoding 60

4.1 Introduction.. 60

4.2 Real-time CSD Multiplier Structure 62

4.3 Comparison with Booth’s recoding and other CSD recoding

techniques ... 69

Chapter 5 .. 72

Extension topics .. 72

5.1 A multi-input CSD multiplier unit suitable for DSP algorithm

implementations.. 72

5.2 Optimizing filter order and coefficient length in the design of

high performance filters for high throughput FPGA

implementations.. 87

Chapter 6 .. 104

Conclusions and future works... 104

viii

6.1 Conclusions.. 104

6.2 Future works .. 108

REFERENCES... 110

APPENDIX A .. 119

Nomenclatures and abbreviations ... 119

APPENDIX B .. 122

Selected Matlab® codes.. 122

APPENDIX C .. 127

Selected VHDL codes ... 127

ix

LIST OF TABLES

TABLE 2.1 RADIX-4 MODIFIED BOOTH’S RECODING [27].. 21

TABLE 2.2 CANONICAL RECODING [28] ... 27

TABLE 2.3 THE FIRST 13 SAMPLES MATLAB® SIMULATION RESULTS FOR LOOP

FILTER ... 39

TABLE 2.4 COMPLEXITY COMPARISON OF EXAMPLE LOOP FILTER WITH WORDLENGTH

OF 20 BITS.. 40

TABLE 2.5 FPGA IMPLEMENTATION COMPARISON OF EXAMPLE LOOP FILTER WITH

WORDLENGTH OF 20 BITS .. 41

TABLE 3.1. THE TRUTH TABLE FOR MASK GENERATOR .. 53

TABLE 3.2 PERFORMANCE ANALYSIS OF FASTCSD(× INDICATES THE MOST COSTLY

OPERATIONS IN EACH STEP. NOTE: STEP 2 AND STEP 3 CAN BE DONE

SIMULTANEOUSLY).. 58

TABLE 4.1 RECODING SCHEME OF CSD ALGORITHM. .. 64

TABLE 4.2 COMPLEXITY COMPARISON ON AVERAGE PERCENTAGE OF DATA IN THE

TRADITIONAL MULTIPLIER, RADIX-4 BOOTH’S RECODING MULTIPLIER,

SELF-TIMED CSD RECODING MULTIPLIER AND PROPOSED CSD RECODING

MULTIPLIER ... 71

TABLE 5.1 COMPLEXITY OF THE TRADITIONAL MULTIPLIER, CSD-ENCODED

MULTIPLIER, AND MULTI-INPUT CSD MULTIPLIER................................. 77

x

TABLE 5.2 QUANTIZATION AND FILTER OUTPUT ERROR POWER COMPARISON 86

TABLE 5.3 THE RELATIONSHIP BETWEEN THE ORDER OF THE FILTER DESIGN AND THE

LENGTH OF THE QUANTIZED COEFFICIENTS (NOT INCLUDING THE SIGN BIT)

.. 94

TABLE 5.4 THE RESULTS OF FILTER ORDER, WORDLENGTH OF COEFFICIENTS

REQUIRED, TOTAL NUMBER OF BINARY AND NONZERO CSD BITS, WHEN

STOPBAND ATTENUATION IS CHANGED (NOT INCLUDING THE SIGN BIT). 97

TABLE 5.5 COMPLEXITY COMPARISON OF MULTIPLIER-BASED AND MULTIPLIERLESS

ADAPTIVE FIR FILTERS OF ORDER N.. 103

xi

LIST OF FIGURES

FIGURE 1.1 LMS ADAPTIVE FIR FILTER [3]. .. 5

FIGURE 2.1 MULTIPLY-ACCUMULATOR IMPLEMENTATION OF DIGITAL FILTER USING

SEQUENTIAL 2’S COMPLEMENT MULTIPLIER [27]. 15

FIGURE 2.2 SCHEMATIC DEPICTION OF A RIGHT-SHIFTING 2’S COMPLEMENT

ITERATIVE SHIFT/ADD MULTIPLIER [27]. .. 16

FIGURE 2.3 CONSTANT COEFFICIENT MULTIPLIER (KCM) FILTER DESIGN [29]..... 18

FIGURE 2.4 DISTRIBUTED ARITHMETIC (DA) 4-TAP FIR FILTER DESIGN [30]. 19

FIGURE 2.5 HARDWARE REALIZATION OF MULTIPLE GENERATION PART WITH

RADIX-4 BOOTH’S RECODING [27]. .. 23

FIGURE 2.6 MULTIPLICATION BY 93
128 USING (A) 2’S COMPLEMENT MULTIPLIER

WITH 4 ADDS/SUBTRACTORS; (B) CSD REPRESENTATION WITH 3

ADDS/SUBTRACTORS (C) MAG METHOD WITH 2 ADDS/SUBTRACTORS. 32

FIGURE 2.7 ERROR-FEEDBACK ΔΣ ARCHITECTURE [46]. .. 35

FIGURE 2.8 FREQUENCY RESPONSES FOR DIFFERENT QUANTIZATION LEVELS OF

EXAMPLE 199 TAPS LOOP FILTER.. 36

FIGURE 2.9 THE FILTER STRUCTURE OF THE EXAMPLE 199 TAPS LOOP FILTER. 37

FIGURE 2.10 HCUB ALGORITHM IMPLEMENTATION OF EXAMPLE LOOP FILTER WITH

NONZERO COEFFICIENTS SET {262144, 344064, 49215, -56441, 33016,

xii

13787, 6840, -3969, 2726, AND -1120}. .. 38

FIGURE 2.11 THE ISE SIMULATION RESULTS OF LOOP FILTER (THE FIRST 13 SAMPLES

FROM 200). .. 40

FIGURE 3.1 BLOCK DIAGRAM FOR FASTCSD.. 47

FIGURE 3.2 THE IMPLEMENTATION OF THE MASK GENERATOR............................... 54

FIGURE 3.3 AN EXAMPLE OF NEW 2’S COMPLIMENT TO CSD CONVERSION PROCESS.

... 56

FIGURE 4.1 IMPLEMENTATION OF MULTIPLE GENERATIONS AND SHIFT CONTROL PART

OF CSD RECODING MULTIPLIER IN LOGIC GATES.................................. 65

FIGURE 4.2 REAL-TIME CSD MULTIPLICATION BASED ON OUR NOVEL CSD RECODER.

... 67

FIGURE 4.3 REAL-TIME CSD RECODER BLOCK DIAGRAM....................................... 68

FIGURE 5.1 DETAILED VIEW OF THE PROPOSED MULTIPLE-INPUT CSD MULTIPLIER

UNIT. .. 75

FIGURE 5.2 TRANSPOSED FORM FIR FILTER STRUCTURE.. 80

FIGURE 5.3 DIRECT FORM IIT IIR FILTER STRUCTURE... 81

FIGURE 5.4 ADAPTIVE TRANSPOSED FORM FIR FILTER USING MULTIPLE-INPUT CSD

MULTIPLIER UNIT. .. 82

FIGURE 5.5 USING THE PROPOSED MULTI-INPUT MULTIPLIER UNIT TO EFFICIENT

IMPLEMENT FIR FILTER BANKS. ... 85

FIGURE 5.6 FREQUENCY RESPONSES FOR DIFFERENT COEFFICIENT QUANTIZATION

xiii

LEVELS FOR THE 90TH ORDER LOW PASS FIR EXAMPLE FILTER (NOT

INCLUDING THE SIGN BIT IN BIT COUNTS). .. 91

FIGURE 5.7 COEFFICIENT QUANTIZATION EFFECTS ON THE EXAMPLE FIR FILTER (NOT

INCLUDING THE SIGN BIT IN BIT COUNTS). .. 92

FIGURE 5.8 THE EFFECTS ON FREQUENCY RESPONSE OF THE TRADEOFF BETWEEN

FILTER ORDER AND COEFFICIENT LENGTH. ... 95

FIGURE 5.9 MSE FOR VARYING BIT LENGTHS USED PER COEFFICIENT (PLUS THE SIGN

BIT). ... 100

FIGURE 5.10 MSE FOR VARYING NUMBERS OF FILTER TAPS OF THE IDENTIFIED

SYSTEM WITH 11 BITS PER COEFFICIENT (INCLUDING THE SIGN

BIT, 52μ −=).. 100

FIGURE 5.11 PROPOSED STRUCTURE OF N+1 TAPS FIR ADAPTABLE FILTER. 101

FIGURE 5.12 MSE FOR VARYING FILTER TAPS WHERE THE MULTIPLICATION IS A

SHIFT AND THE COEFFICIENTS IN THE IDENTIFIED SYSTEM HAVE 8 BITS

(INCLUDING THE SIGN BIT, 52μ −=). .. 102

xiv

ABSTRACT

Implementation of digital signal processing (DSP) algorithms in hardware,

such as field programmable gate arrays (FPGAs), requires a large number of

multipliers. Fast, low area multiply-adds have become critical in modern

commercial and military DSP applications. In many contemporary real-time DSP

and multimedia applications, system performance is severely impacted by the

limitations of currently available speed, energy efficiency, and area requirement of

an onboard silicon multiplier.

My research focus is on two key ideas for improving DSP performance:

1. Develop new high performance, efficient shift-add techniques

(“multiplierless”) to implement the multiply-add operations without the

need for a traditional multiplier structure.

2. There is a growing trend toward design prototyping and even

production in FPGAs as opposed to dedicated DSP processors or ASICs;

leverage this trend synergistically with the new multiplierless structures

to improve performance.

My work is based on a dramatic new technique for converting between 2’s

complement and CSD number systems, and results in high-performance structures

xv

that are particularly effective for implementing adaptive systems in reconfigurable

logic.

Adaptive system implementations require real-time conversion of

coefficients to Canonical Signed Digit (CSD) or similar representations to benefit

from multiplierless techniques for implementing filters. Multiplierless approaches

are used to reduce the hardware and increase the throughput. This dissertation

introduces the first non-iterative hardware algorithm to convert 2’s complement

numbers to their CSD representations (FastCSD) using a fixed number of shift and

logic operations. As a result, the power consumption and area requirements

required for hardware implementation of DSP algorithms in which the coefficients

are not known a priori can be greatly reduced. Because all CSD digits are produced

simultaneously, the conversion speed and thus the throughput are improved when

compared to overlap-and-scan techniques such as Booth’s recoding.

I leverage FastCSD to develop a new, high performance iterative

multiplierless structure based on a novel real-time CSD recoding, so that more zero

partial products are introduced. Up to 66.7% zero partial products occur compared

to 50% in the traditional modified Booth’s recoding. Also, this structure reduces

the non-zero partial products to a minimum. As a result, the number of arithmetic

operations in the carry-save structure is reduced. Thus, an overall speed-up, as well

as low-power consumption can be achieved. Furthermore, because the proposed

xvi

structure involves real time CSD recoding and does not require a fixed value for the

multiplier input to be known a priori, the proposed multiplier can be applied to

implement digital filters with non-fixed filter coefficients, such as adaptive filters.

I also introduce a new multi-input Canonical Signed Digit (CSD) multiplier

unit, which requires fewer shift/add/subtract operations and reduced CSD number

conversion overhead compared to existing techniques. This results in reduced

power consumption and area requirements in the hardware implementation of DSP

algorithms. Furthermore, because all the products are produced simultaneously, the

multiplication speed and thus the throughput are improved. The multi-input

multiplier unit is applied to implement digital filters with non-fixed filter

coefficients, such as adaptive filters. The implementation cost of these digital filters

can be further reduced by limiting the wordlength of the input signal with little or

no sacrifice to the filter performance, which is confirmed by my simulation results.

The proposed multiplier unit can also be applied to other DSP algorithms, such as

digital filter banks or matrix and vector multiplications.

Finally, the tradeoff between filter order and coefficient length in the design

and implementation of high-performance filters in Field Programmable Gate

Arrays (FPGAs) is discussed. Non-minimum order FIR filters are designed for

implementation using Canonical Signed Digit (CSD) multiplierless

implementation techniques. By increasing the filter order, the length of the

xvii

coefficients can be decreased without reducing the filter performance. Thus, an

overall hardware savings can be achieved.

1

Chapter 1

INTRODUCTION

1.1 Introduction to digital filters

Digital filters are among the most significant components in DSP

applications. Often, DSP algorithms are implemented using general purpose DSP

processors. Although those DSP processors typically have high-speed multiply and

accumulator circuits, only a limited number of operations can be performed before

the next sample arrives, thereby limiting the bandwidth.

VLSI based filters including those using FPGAs and ASICs, are

implemented with a parallel-pipelined architecture, enhancing the overall

performance. For high-performance applications, VLSI implementations provide

better device utilization through conservation of board space and system power

consumption, which is an important advantage not available with many stand-alone

DSP chips. Digital filter implementation in FPGAs and other VLSI

implementations allows for higher sampling rates and lower cost than that available

2

from traditional DSP chips [1].

Finite impulse response (FIR) filters are widely used in many digital signal

processing application areas such as communications and signal preconditioning.

Many important properties make FIR filters attractive, such as simple structure,

easily achieved linear-phase performance and pipelined design. FIR filter operation

can be represented by the following equation [2]:

1 1

0 0

() () ()
M M

k
k k

k k

y n h x n k H z h z
− −

−

= =

= − ⇔ =∑ ∑ (1.1)

where M is the filter length and the kh are the filter coefficients.

The basic structures of FIR filters can be classified into several major forms:

direct form, cascade form, polyphase, lattice, etc.

An infinite impulse response (IIR) filter is a recursive filter in which the

current output depends on previous outputs as well as inputs. To meet certain

specifications, an IIR filter can often be much more efficient in terms of order

compared to an FIR filter. The main drawbacks of IIR filters are that potential

instability can be introduced by feedback, limit cycles may occur, phase response is

typically non-linear and it is hard to implement in a pipelined design.

The basic IIR equation is given by [2]:

3

1

1 0

() () ()
N M

k k
k k

y n a y n k b x n k
−

= =

=− − + −∑ ∑ (1.2)

with the direct form transform function

1 1

0 1 1
1

1
()

1

M
M

N
N

b b z b zH z
a z a z

− −
−

−

+ + +
=

+ + +
 (1.3)

where M is the maximum input delay, the bk are the numerator coefficients; N is

the maximum output delay, and the aj are the denominator coefficients.

Adaptive filters have achieved widespread acceptance and are included in

many digital signal processing application areas. Whenever there are situations

where the prescribed specifications are not available, or are time-varying, a digital

filter with adaptive coefficients, known as an adaptive filter, is employed as the

solution. These situations include applications such as system identification, active

noise control (ANC), and others [3].

Adaptive filters automatically adjust their coefficients to get the best results

according to some objective function. The objective function yields a coefficient

update (learning) algorithm. The choice of the algorithm is generally the most

crucial aspect of the overall adaptive process. In this dissertation, I would like to

introduce the Least Mean Square (LMS) update method [3]. This algorithm is

widely used in various applications of adaptive filtering due to its computational

4

simplicity. This solution uses an approximation to the gradient in the direction that

obtains the minimum mean square error (MSE).

A general block diagram of a LMS adaptive filter is illustrated in Figure 1.1

[3], where estimation error ()e n is:

 () () ()e n d n y n= − (1.4)

where n is the iteration number, ()d n is desired output and ()y n is filter output.

Then, the tap-coefficient adaptation equation is given by:

()
()

()

()
()

()

()

()
()

()

0 0

1 1

1
1 1

1N N

w n w n x n
w n w n x n

e n

w n w n x n N

μ

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

+ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

#

 (1.5)

where ()x n represents the input signal, μ denotes gradient step size, and ()kw n is

the vector of time-varying filter coefficients.

The filter output ()y n can be written:

() () () ()0 1 1 Ny n w x n w x n w x n N= + − + + −" . (1.6)

The learning error ()e n is computed based on the desired output ()d n as

shown in (1.4). This error is used to update the time-varying FIR filter coefficients

5

as in (1.5). Then, the filter output ()y n is calculated as in (1.6) above. It is, of

course, the convolution of the input ()x n with the FIR time-varying filter

coefficients ().kw n In all practical applications, this loop is computed repeatedly.

The gradient step size, µ, is chosen carefully to ensure convergence (not too large)

without being so conservative (not too small) that the learning rate is too slow.

Figure 1.1 LMS adaptive FIR filter [3].

The basic structures for adaptive filtering can be classified into FIR

adaptive filters and IIR adaptive filters.

1.2 Problem statement

Implementation of digital signal processing (DSP) algorithms and

 W ()x n ()y n

Adaptation
Algorithm

()d n+
()e n

−

6

multimedia applications in hardware, such as field programmable gate arrays

(FPGAs) and digital signal processors, requires a large number of multiplications.

Fast, low area multiply-adds are critical in DSP implementations in modern

commercial and military DSP applications.

In many contemporary real-time DSP and multimedia applications, system

performance is severely impacted by the limitations of currently available speed,

energy efficiency, and area requirement of an onboard silicon multiplier. This is

exacerbated in handheld multimedia devices due to the small size and limited

battery lifetimes. Therefore, there has been a lot of research carried out on the

development of advanced multiplier techniques to reduce the energy consumption,

area requirements, and/or computation time, e.g. [4]-[12].

My research in this dissertation is focused on the implementation of

adaptable algorithms in DSP applications. Such as, adaptive filters, Active Noise

Control (ANC) etc.. The coefficients of an adaptive filter change with time. These

filters can automatically adjust their coefficients to get the best result according to

some objective function. The objective function yields a coefficient update

(learning) algorithm. For real-time implementation of digital filters, parallel

implementation of the multiplications is typically required. Many researchers have

addressed the question of how to implement the multiplications for

fixed-coefficient filters. Recently there has been a renewed interest in

7

adaptable-coefficient filters [6], [8], [13]. In general, there is a tradeoff between the

hardware complexity and the filter performance associated with the wordlength of

the multipliers (usually coefficients). Increased coefficient wordlength increases

implementation complexity, and decreased coefficient wordlength results in

greater filter response error. In fixed coefficient filters, multiplierless techniques

are sometimes implemented by encoding the coefficients in Canonical Signed Digit

(CSD) number system [14] or Signed Power of Two (SPT) representation [8].

Further improvement can be achieved by using dependence-graph algorithms, such

as Multiplier Adder Graph (MAG) [15] or Bull-Horrocks’ algorithm [16]. Most of

those approaches cannot be applied to real-time implementation of adaptive and

non-fixed coefficient systems; e.g., LUT and dependence-graph algorithms which

require the value of the filter coefficients to be known a priori. Some researchers

have considered techniques for implementing adaptive filters that use specialized

encoding of the inputs. CSD coding of coefficients for adaptive filters has been

proposed [6], and non-uniform quantization of inputs has been considered [17].

 In this dissertation, I consider the case of adaptive filters in which the filter

coefficients cannot be known a priori. To decrease the implementation complexity

without increasing the filter response error, developing new time and space

efficient techniques for high performance FPGA implementation of adaptive and

non-fixed coefficient digital filters become critical, which include new algorithm to

convert 2’s complement to CSD and new high performance “multiplierless”

8

multiply-add structures.

The result of my research will be new multiply-add algorithms and

architectures providing

• Significantly reduced space complexity

• Significantly reduced time complexity

• Significantly reduced power consumption

 compared to the current state of the art.

Many modern DSP processors are optimized for floating point coefficients;

the new techniques developed in this dissertation provide a performance advantage

for fixed point filter implementations. Thus, the techniques developed here are

more appropriate for FPGA implementations.

The new techniques developed in this dissertation are particularly well

suited for implementing high speed adaptive filters implementations where

adaptation can be applied in both the coefficient values and their word lengths. This

fits well with the reconfigurable hardware capabilities available in an FPGA

implementation as opposed to ASIC or dedicated DSP processor.

9

1.3 Original contributions

This dissertation makes the following contributions:

• Developed the first non-iterative hardware algorithm to convert 2’s

complement to CSD (FastCSD) [18].

• Faster than almost all existing techniques

• Lower space complexity

• Lower power consumption

• Leveraged FastCSD [18] to develop a new, high performance iterative

multiplier structure based on novel real-time CSD recoding [19], [20],

which has simpler structure than other competitive techniques with less

computational complexity and low power consumptions.

• Compared with other CSD multipliers: faster, smaller, better power

efficiency and/or flexibility

• Compared to traditional array multipliers: lower area, lower power

consumption

• Compared to traditional iterative multipliers: faster, lower power

consumption

10

• Developed the first multi-input multiplier unit suitable for adaptive DSP

algorithm implementations [21].

• Optimized filter order and coefficient length for design of high performance

FIR filters [22].

1.4 Organization of the dissertation

This dissertation will be organized as follows. The first chapter provides

some introductory discussion. The second chapter provides an overview of filter

implementation techniques in FPGAs. I review some common filter design

techniques, and then multiplierless techniques in filter design are introduced. A

novel hardware implementation method for adaptive filter coefficients and a

multiplier structure based on a novel real-time CSD recoding will be studied and

developed in Chapter 3 and Chapter 4, respectively. In Chapter 5, I consider two

extension topics, the first is a multi-input multiplier unit suitable for adaptive DSP

algorithm implementations; the other one is a method that optimizes filter order and

coefficient length in the design of high performance filters for high throughput

FPGA implementations. In Chapter 6, I summarize my contributions and outline

areas for future work.

11

Chapter 2

 OVERVIEW OF FILTER IMPLEMENTATION

TECHNIQUES IN FPGAS

2.1 Introduction of filter implementation solutions

Digital Signal Processing (DSP) is one of the most active areas in VLSI

research and development [2]. Traditionally, DSP algorithms are implemented

either using general purpose DSP processors [23] or using Application Specific

Integrated Circuits (ASICs) [24]. Although DSP processors are less expensive and

flexible, they have the disadvantage of low speed. The applications of those

processors are limited since many DSP applications require high speed and high

throughput. On the other hand, ASICs which are high speed, but expensive and less

flexible, cannot satisfy the needs of all designers.

An FPGA is a network of reconfigurable hardware with reconfigurable

interconnects that can be easily programmed, which provides solutions that

maintain both the advantages of the approach based on DSP processors and the

approach based on ASICs [25], [26]. An integrated chip designer can use an FPGA

12

to dynamically design a chip, test it, reconfigure it, and settle on a design that can

then be used to manufacture an ASIC. The major advantages of FPGAs are

• Versatility

• Flexibility

• Huge performance gain for some applications

• Re-useable hardware designs

2.2 FPGA DSP implementation issues

Based on the advantages above, many DSP algorithms, such as FFTs, FIR

or IIR filters, to name just a few, previously built with ASICs or DSP processors,

are now routinely replaced by FPGAs [1]. Also, some recent FPGAs include DSP

features [25], such as ALTERA® Stratex and XILINX® Virtex II, which makes

FPGAs more attractive for DSP algorithm implementations.

There is a growing trend toward design prototyping and even production in

FPGAs as opposed to dedicated DSP processors or ASICs. I leverage this trend

synergistically with the new multiplierless structures to further improve the

performance.

13

The reasons for me to choose FPGA as the design platform are listed here.

First of all, the new techniques developed in this dissertation provide a

performance advantage for fixed point filter implementations. Many modern DSP

processor are optimized for floating point coefficients [24]; thus the techniques

developed here are more appropriate for FPGA implementations [25].

Secondly, the new techniques developed in this dissertation are particularly

well suited for implementing adaptive filters. Adaptation can be applied in both the

coefficient values and their word lengths. This fits well with the reconfigurable

hardware capabilities available in an FPGA implementation as opposed to ASIC or

dedicated DSP processor [25].

Finally, the new techniques developed in this dissertation are particularly

well suited for high speed FPGA implementations as opposed to DSP processor

[25].

 2.3 Current filter implementation techniques

The most common filter implementation approaches are multiplier-based

design and LUT-based design [27].

14

2.3.1 Multiplier-Based design

To better understand multiplier based design techniques, let us discuss the

characteristics of the multiplier first. Multiplication involves two basic operations:

generation of partial products and accumulation of partial products. Hence, all

techniques for speeding up multiplication can be categorized into to two main

groups: those that seek to reduce the number of nonzero partial products and those

that seek to accelerate the accumulation of partial products [27].

There are three types of multipliers: sequential/iterative multipliers, parallel

multipliers and array multipliers [28]. Sequential multipliers, also called iterative

multipliers in some literature, generate partial products sequentially and add each

newly generated product to previously accumulated partial products. The major

properties for this type of multipliers are small area consumption, reduced pin

count and wire length, and high clock rate but low speed. Parallel multipliers

generate partial products in parallel and accumulate them using a fast

multi-operand adder. Using this type of multiplier, the execution speed is increased

by sacrificing area. An array of identical cells generates new partial products and

accumulates them simultaneously in an array multiplier, such that no separate

circuits are required for generation and accumulation; in this way, execution time is

reduced, but hardware complexity is increased [28].

Here, let’s study the basic idea of multiplication by considering a sequential

15

fixed-width 2’s complement multiplier as an example. Suppose inputs and

coefficients are all n-bit wide, then the product will be 2n-bit wide. Often, the

product will be quantized to n-bits by eliminating the n Least Significant Bits

(LSBs). This approach can reduce area consumption, but rounding error is

introduced. When it is applied to basic Multiply-Accumulator (MAC) filter design

in Figure 2.1 [27], we can see the area consumption is reduced by sacrificing speed.

Figure 2.1 Multiply-Accumulator implementation of digital filter using
sequential 2’s complement multiplier [27].

Figure 2.2 shows a possible hardware realization of the sequential 2’s

complement iterative multiplier with additions and right-shifting [27]. For an n-bit

+

×

Accumulator

h

x[n]

y[n]

Multiply-Accumulator

2’s Complement multiplier

16

by n-bit multiplication, the right-shifting only requires n-bit adder in stead of 2n-bit

in the left-shifting structure. Note that the multiplier and the lower half of the partial

product can share the same register, which is a common area-optimization method

in the sequential multipliers [27]. Typically, the multiplier and partial products are

right-shifted one bit at a time per iteration. Therefore, the product is completed after

n iterations, which requires n add/shift operations, regardless of the operands’

value.

Figure 2.2 Schematic depiction of a right-shifting 2’s complement iterative
shift/add multiplier [27].

17

2.3.2 LUT-based design

Another commonly used technique in FPGA design is the Look-Up-Table

(LUT) [29]. Many algorithms used in DSP, such as filtering, are based on constant

coefficient values. Usually for the multipliers involved in these types of algorithms,

output purely depends on the input data. Thus, a Look-Up-Table can be used to

implement the multiplier by storing pre-computed partial products of the fixed

coefficient in distributed ROM to reduce the logic cost. This kind of design

technique includes Constant Coefficient Multiplier (KCM) (see Figure 2.3) [29]

and Distributed Arithmetic (DA) approaches [30].

An advantage of LUT architectures is that they simplify timing of

synchronous logic, so they are fast. However, the disadvantage is an unusually

large number of memory cells required to implement some designs, as in the case

when the number of inputs is large, which requires much area. Also, the

multiplier’s wordlength usually is fixed and the value of multiplier should be

known ahead of time [29].

Another Look-Up-Table based design is Distributed Arithmetic which is

used to design bit-level architectures for vector-vector multiplications based on

saving partial products in memories [30]. Because the coefficients are known ahead

of time, it is possible to pre-calculate the result of a multiplication. FIR filter can be

presented as a product of two length-M vectors H (coefficients) and X (inputs).

18

Figure 2.3 Constant Coefficient Multiplier (KCM) filter design [29].

Then, the output of an FIR filter can be expressed as a summation of products:

1

0
()

M

k
k

Y H X h x n k
−

=
= = −∑i , where y(n) is the filter output at time n, hk is the kth

coefficient (which does not change over time) and x(n-k) is the input signal delayed

by k samples and x(n-k) consists of N bits { x0(n-k), x1(n-k), x2(n-k)……, xN-1(n-k)},

where x0(n-k) is the sign bit [31].

We can express x(n-k) as
1

0
1

() () ()2
N

b
b

b
x n k x n k x n k

−
−

=
− = − − + −∑ , so

1 1

0
0 1
1 1 1

0
1 0 0

() () ()2

() 2 ()

M N
b

k b
k b
N M M

b
k b k

b k k

y n h x n k x n k

h x n k h x n k

− −
−

= =

− − −
−

= = =

⎡ ⎤
= − − + −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑ ∑
.

 (2.1)

x[n] y[n]
8

0 x C
1 x C

254 x C
255 x C

C is the constant
coefficient

19

Figure 2.4 [30] shows a 4-tap Distributed Arithmetic (DA) filter design,

where M =4 is the number of filter-taps. The accumulation can be efficiently

implemented using a shift-adder, and the resulting LUT is defined also shown in

Figure 2.4 [30]. After N look-up cycles, the output is computed.

Assume that a LUT and a general-purpose multiplier have the same delay t,

the computational latencies are Nt for DA and Mt for a general-purpose multiplier

based MAC. If N<< M, the speed of DA can be much faster than the MAC-based

design [26].

Figure 2.4 Distributed Arithmetic (DA) 4-tap FIR filter design [30].

20

2.4 Modified radix-4 Booth’s recoding multiplier

Booth’s recoding is a tricky way to reduce the number of partial products in

a binary multiplier [12]. The basic idea is to replace additions arising from a string

of ones with a single subtraction at rightmost in a run of ones, then add back a one

before the leftmost one in the run based on:

1 1 12 2 2 2 2 2j j i i j i− + ++ + + + = −" (2.2)

The longer the sequence of 1s, the larger savings can be achieved, for

example, number “0011110” is recoded by “01000 1 0”. Therefore, many zero

partial products are generated. However, the original proposed Booth’s recoding

algorithm can only speed up multiplication when a multiplier has many consecutive

1’s, and Booth’s recoding becomes very inefficient when a multiplier has

alternative 1 and 0’s, e.g. the number “010101” is represented by “1 1 1 1 1 1 ”,

requiring more add/shift operations.

The radix-4 modified Booth’s recoding algorithm has been widely used in

modern high-speed multiplication circuits [32]. Using a modified Booth algorithm,

sequential 3-bit segments of a 2’s complement number are converted into the digit

set{ }2, 1, 0± ± . This technique reduces an n-bit 2’s complement multiplier to

2n⎡ ⎤⎢ ⎥ digits. The number of partial products has been reduced to n/2 which can be

readily calculated by shift/add/subtract operations, such that these multipliers can

21

achieve about 40% reduction in area and power consumption [27].

The radix-4 modified Booth’s recoding is performed by the scheme shown

in Table 2.1 [27]. The 2’s complement number b is converted to b', where the digit

bi' of the Booth’s recoded number b' is obtained from the three digits b2i+1, b2i and

b2i-1 of a 2’s complement number b, a is the multiplicand.

TABLE 2.1 RADIX-4 MODIFIED BOOTH’S RECODING [27]

b2i +1 b2i b2i-1 '
ib Operation

0 0 0 0 +0

0 0 1 1 +a

0 1 0 1 +a

0 1 1 2 +2a

1 0 0 -2 -2a

1 0 1 -1 -a

1 1 0 -1 -a

1 1 1 0 0

22

Possible hardware implementation of the multiple generation part of a

radix-4 multiplier based on Booth’s recoding is shown in Figure 2.5 [27]. Since five

possible multiples of multiplicand a (0, ±1, ±2) are involved, we need at least 3 bits

to encode a desired multiple. A simple and efficient encoding is to devote one bit to

distinguish 0 from nonzero digits, one bit to the sign of a nonzero digit, and one bit

to the magnitude of a nonzero digit. The recoding circuit thus has three inputs and

produces three outputs, where “neg” indicates if the multiple should be added or

subtracted, “non0” indicates if the multiple is nonzero, and “two” indicates that a

nonzero multiple of 2.

The major advantages of radix-4 Booth’s recoding are [27]:

• Halving of the number of partial products. This is important in circuit

design as it relates to the propagation delay of the circuit, and the

complexity and power consumption of its implementation. It can encode

the digits by looking at three bits at a time.

• Avoiding implementation of calculating multiples of 3. Instead of using

shift and add to generate a multiply by 3, generating partial products only

needs shifting and negating with radix-4 Booth’s recoding.

• Potential advantage: It might reduce the number of 1’s in the multiplier.

23

Figure 2.5 Hardware realization of multiple generation part with radix-4
Booth’s recoding [27].

The disadvantage of Booth’s recoding is the increased area; compared with

a standard 2’s complement multiplier that doesn’t use Booth’s recoding, since it

needs to handle signed numbers, such that the additional recoding logic and

subtractions are required in Booth multipliers.

It is possible to extend radix-4 recoding scheme to higher radices to achieve

more savings, such as the radix-8 modified Booth’s algorithm [27].

24

2.5 Multiplierless techniques in filter implementations

As we know multipliers are the most expensive building blocks in terms of

silicon area and throughput in digital filter implementations. Thus, a great effort

has been made to speed up and simplify the multiplication [4]-[12]. Many

researchers have addressed this problem by restricting the coefficient wordlength,

or by quantizing filter coefficients to the limit number of power-of-two [33]-[35].

In these cases, a conventional multiplier is avoided altogether [36]. Multiplications

can be replaced by simple shift and add operations [36]. This results in

multiplierless techniques. Instead of traditional multiply-add implementations,

these multiplierless techniques use the knowledge that multiplication by a

power-of-two can be simply obtained by shifting the data bus by the appropriate

number of bits. Thus, filter coefficients can be realized by incorporating a few

adders (or subtractors) and bit shifters. The bit shifters are implemented by

choosing the appropriate interconnections [37]. The number of add/shift operations

is directly related to the power consumption and area required, and it depends on

the number of 1’s in the multiplier.

Usually, multiplierless techniques are divided into alternate number

representations and constant multiplication problems. As we discussed in section

2.3.1, there are two ways to speed up multiplication. One is by reducing the number

of operands (partial products) to be added; the other is by adding the operands

25

faster (accelerating accumulation) [27]. Most multiplierless techniques make use of

all the essences of the above two categories, since filter coefficients are realized by

the limit number of power-of-two, and thus, the number of operands to be added is

significantly reduced. At the same time, only simple shift and add/subtract

operations are involved in most multiplierless techniques, the resultant increase in

speed is also huge [36].

2.5.1 Alternate number representations

Further benefits can be achieved by considering alternate number

representations, such as the Canonical Signed Digit (CSD) number system [14] or

Signed Power of Two (SPT) representation [8] and Minimal Signed Digit (MSD)

[38].

2.5.1.1 Canonical Signed Digit (CSD)

CSD representation [39] is a radix-two number system with digit set

{ 1, 0, 1}− that has the “canonical” property that no two consecutive bits in the

CSD number are nonzero and the possible number of nonzero bits in a CSD number

is minimal [14]. For example, the 2’s complement number

26

10101101 01010101x= = , where “ 1 ” stands for “-1”. This representation

replaces the additions arising from a string of ones in a binary number with a single

subtraction, so that the “shift-and-add” algorithm becomes “shift-and-add/subtract”,

i.e. a multiplier can be realized by incorporating a few adders (or subtractors) and

bit shifters. CSD numbers have proven to be useful in implementing multiplierless

multiplication with reduced complexity, because the cost of multiplication is a

direct function of the number of nonzero bits in the multiplier, which can be

reduced by using CSD representation. It is shown in [9] that the probability that a

CSD digit jc has a nonzero value is given by

 (1) 1 3 (1 9)[1 (1 2)]n
jP c n= = + − − (2.3)

where n is the number of bits in the representation.

As n becomes large, the probability tends towards 1/3, and we see that for

an n-bit CSD multiplier, the number of add/subtract operations never exceeds n/2

and can be reduced to n/3 on average, as the wordlength of multiplier grows [14].

To benefit from the CSD implementation advantages, the conversion of

numbers from 2’s complement to CSD format must be implemented in hardware.

Many researchers have addressed the question of how to convert 2’s complement to

CSD numbers. Unfortunately, the cost of conversion using methods such as those

based on Look-Up-Table (LUT) [29], canonical recoding techniques [40] or

27

complicated digital circuits [10], often outweighs the implementation advantages

of CSD.

The canonical recoding was studied by Reitwiesner in [40]. He converts a

2’s complement number x into its canonical form z which contains the minimal

number of non-zero bits as well as add/subtract operations by using the look-up

table described in Table 2.2 [28]. Where ci is the previous carry and is ci+1 the next

carry.

TABLE 2.2 CANONICAL RECODING [28]

xi +1 xi ci zi ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 0 0

1 0 1 -1 1

1 1 0 -1 1

1 1 1 0 1

28

The main drawback to canonical recoding is that the bits of the multiplier

are generated sequentially along with carry bits, while Booth’s recoding is

carry-free and can be applied in parallel [28].

Also, in order to take full advantage of the minimal number of add/subtract

operations, the number of those operations must be variable which is difficult to

implement [28].

Ruiz and Manzano proposed a self-timed CSD multiplier based on the

canonical recoding algorithm in [10].

2.5.1.2 Minimal Signed Digit (MSD)

Another popular radix-two number representation is Minimal Signed Digit

Example: Assume c0=0

 x=0111001 → z0=1, c1=0

 x=011100 → z1=0, c2=0

 x=01110 → z2=0, c3=0

 x=0111 → z3= –1, c4=1

 x=011 → z4= 0, c5=1

 x=01 → z5=0, c6=1

 x=(0)0 → z6=1, c7=0

 z= 1001001

29

(MSD) [38] which includes all of the signed-digit representations having the same

number of non-zero digits as CSD. So, the MSD representation of a number is not

unique. In other words, CSD is just a special MSD number. For example, the

decimal number 105 can be expressed as:

10105 10101001 10011001CSD MSDx = = = . Although the CSD representation is

good for one constant, it is not the best for multiplication by multiple constants

because the CSD representation of a constant is unique and independent of the

other constants, leading to limited sub-expressions for multiple constants. Using

MSD representation, a given number can have multiple representations. By

properly exploiting the redundancy of MSD representations, the hardware

implementation can be significantly optimized by combining sub-expressions

occurring in coefficients. Consider the previous example, 10101001CSD requires 3

adders. However, 10011001 (8 1)(16 1)MSD = − − only needs 2 adders.

2.5.2 Constant multiplication problems

If the value of a multiplier is known a priori, the CSD expression can be

calculated offline, and it can be further improved by constant multiplication

techniques [41], such as Dempster-Macleod’s algorithm [15] or Bull-Horrocks’

algorithm [16].

30

Constant Multiplication (CM) problems include Single Constant

Multiplication (SCM) problems and Multiple Constant Multiplication (MCM)

problems. Usually, these problems are solved by using graph topology, so the

techniques developed to handle these problems are also called dependence-graph

algorithms [41].

2.5.2.1 Single Constant Multiplication methods (SCM)

Through the use of CSD representations, the number of adders and shifters

can be greatly reduced. However, further improvement is possible. Sometimes it is

more efficient to first factor the multiplier into several factors, then realize each

factor in a simple combination of powers-of-two, sums of two powers-of-two, or

differences of two powers-of-two. The problem of finding a multiplierless

multiplier block for the multiplication by a constant with the least number of

add/subtracts is known as the SCM problem, and it is NP-complete as shown in

[42]. An optimal solution for a constant less than or equal to 12 bits is called

Multiplier Adder Graph (MAG) which is designed by Dempster and Macleod in

[15]. Further improvement for constants up to 19 bits has been discussed in [43].

Using this idea, more adders can be saved. For example, consider a multiplier

93
128a = . The 2’s complement representation is

31

 1 3 4 5 793 0.1011101 2 2 2 2 2
128

a − − − − −= = = + + + + (2.4)

which needs four adders. If we rewrite the multiplier a using CSD, we get

 2 5 7
7

93 10100101 1 2 2 2
128 2

a − − −= = = − − + . (2.5)

An implementation using this CSD representation requires three 2-input

adders and 3 shifts:

2 5 72 2 2ax x x x x− − −= − − + . (2.6)

We can rewrite a using MAG method as

93 31 3 (32 1) (4 1)
128 32 4 32 4

a − −
= = × = × (2.7)

to obtain

5 2(1 2)(1 2)ax x− −= − − (2.8)

which can be computed using 2 adders and 2 shifts.

Figure 2.6 shows these three types of implementations of multiplier

93
128a =

visualized as graphs.

32

(a)

(b)

(c)

Figure 2.6 Multiplication by 93
128 using (a) 2’s complement multiplier with 4

adds/subtractors; (b) CSD representation with 3 adds/subtractors (c) MAG
method with 2 adds/subtractors.

X
- -

2-5
2-2

aX

33

In hardware implementations, the shifts are typically implemented through

routing of signals rather than a clocked shifter circuit. This routing requirement

may or may not increase area needs [37].

2.5.2.2 Multiple constant multiplication methods

An extension of SCM is the problem of finding a multiplierless multiplier

block for the parallel multiplications by a set of N constants w0, w1..., wN with the

least number of add/subtracts. These problems are known as MCM problems [41].

Some well known algorithms to solve MCM problem that are frequently used in

FIR filters are Bull-Horrocks’ algorithm (BHA) [16] and its improved version

Bull-Horrocks Modified (BHM) [44]. These two algorithms simultaneously

multiply one input by N constants; thus, savings can be achieved by the overlapping

of intermediate results. Another MCM method which yields better results is RAG-n

[44]. It relies on the availability of an optimal single constant decomposition

lookup table and is limited to 19 bits. Since the sub-expressions are actually MAGs,

the MCM problem is also NP-complete.

Currently the best heuristic method for solving MCM problems that I know

is provided by Voronenko and Püschel in [41], which is called Hcub. Below I will

implement and compare this method with multiplier based design and CSD

34

encoded design. I will use an example loop filter that is a component in the

delta-sigma digital to analog (DA) converter to get better understanding of

multiplierless techniques.

2.5.3 Implementation of loop filter using multiplierless techniques

Delta-sigma (ΔΣ) modulation has become the most popular method for

high-resolution A/D and D/A conversion [45]. Using feedback to shape the errors

results in a high-speed, low-resolution quantizer. Better SNR and linearity can be

achieved than with conventional converters [46]. The error-feedback ΔΣ

modulator topology is shown in Figure 2.7 [46]. Clever algorithms for the loop

filter must be combined with novel digital hardware to reduce space and increase

throughput. Multiplierless techniques become the method of choice to implement

the loop filter in this system [47].

The desired loop filter is a deep band-pass FIR filter, to get the best results

without increasing the space; specialized filter design algorithms used by the Naval

Research Laboratory (NRL) generate a very sparse, high order (198) filter with ten

nonzero coefficients given by

[1 1.3125 0.1877 -0.2153 0.1259 0.0526 0.0261 -0.0151 0.0104 -0.0043].

35

Figure 2.7 Error-feedback ΔΣ architecture [46].

Multiplying these coefficients by 218 generates integer values which are easier to

manipulate for implementation:

[262144 344064 49215 -56441 33016 13787 6840 -3969 2726 -1120].

In Figure 2.8, I compare the frequency response results of the example loop

filter with different quantization levels. Also, I implement and analyze candidate

system architectures that balance speed, space and power, including multiplier

based design, CSD number system design, and MCM design. I chose transposed

form as the basic filter structure (shown in Figure 2.9); 20 bits for each coefficient

hi (including sign bit) and each input sample x(n), internal computations ym use 40

bits (no rounding). For MCM techniques, I use the Hcub method [41], a recent

algorithm that has the current best results to my knowledge. Also, I use the Hcub

generator [48] to create the directed acyclic graph (DAG) for the multiplierless

multiplier block that implements the parallel multiplications of the ten nonzero

coefficients in the loop filter.

+

+

Q

Loop filter

x(n) y(n)

e(n) +
_

+

_

Quantizer

36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Normalized Frequency (×π rad/sample)

 M
ag

ni
tu

de
 (d

B
)

Frequency Response

H double-precision
H 20 bits
H 18 bits
H 15 bits
H 12 bits

0.44 0.46 0.48 0.5 0.52 0.54

-82

-80

-78

-76

-74

-72

-70

-68

-66

-64

-62

Normalized Frequency (×π rad/sample)

 M
ag

ni
tu

de
 (d

B
)

H double-precision
H 20 bits
H 18 bits
H 15 bits
H 12 bits

Figure 2.8 Frequency responses for different quantization levels of example
199 taps loop filter.

37

Figure 2.9 The filter structure of the example 199 taps loop filter.

The directed acyclic graph is shown in Figure 2.10. MATLAB® and

XILINX® ISE are used to simulate the hardware implementation (shown in Table

2.3 and Figure 2.11).

The complexity comparison using the number of adders is listed in Table

2.4. Hcub based design is compared with the traditional 2’s complement

implementation for which 55 adders and 65 shifters are needed and CSD which

uses 30 adders and 40 shifts. The best technique uses an Hcub MCM method to

achieve an average improvement of 72.73% over 2’s complement representation

and 50% improvement over CSD in terms of the number of adders required. Table

2.5 lists the FPGA implementation comparison with multiplier based design, CSD

based design and Hcub method design. The results show that the Hcub design is the

best in terms of the area.

z-1

()x n

()y n
z-1 z-1

0h
ym(198)

V197

h197 h196 h1

ym(197) ym(196) ym(0) ym(1)

V196 V1 V0

h198

20 bits

40 bits

38

Figure 2.10 Hcub algorithm implementation of example loop filter with
nonzero coefficients set {262144, 344064, 49215, -56441, 33016, 13787, 6840,

-3969, 2726, and -1120}.

262144 x(n)
-3969 x(n)

49215 x(n)

2726 x(n)

13787 x(n)

-1120 x(n)

-56441 x(n)

6840 x(n)

33016 x(n)

x(n)
+ -

2

7

-
12 -

-
18

+
4

3

-
2 -6

-
10

+

-3

2

+
-

8
2

1

+

+

4

+
8

3
3

3

5 -
 -

344064 x(n)
14

39

TABLE 2.3 THE FIRST 13 SAMPLES MATLAB® SIMULATION RESULTS
FOR LOOP FILTER

x(n) y(n)

0 0

2.2522e+005 5.904e+010

-1.3176e+005 -3.454e+010

1.0737e+005 1.0564e+011

-1.142e+005 -7.527e+010

-1.3381e+005 1.8632e+009

2.6214e+005 2.9428e+010

-1.0596e+005 -7.3815e+010

21908 9.5937e+010

27069 -2.9361e+010

-1.9787e+005 -4.4333e+010

2.3228e+005 7.0205e+010

-35502 -7.7387e+010

40

Figure 2.11 The ISE simulation results of loop filter (the first 13 samples from
200).

TABLE 2.4 COMPLEXITY COMPARISON OF EXAMPLE LOOP FILTER

WITH WORDLENGTH OF 20 BITS

Number of

adders/subtractors

Number

of shifts

Number of

negations

Improvement over

2’s complement by

counting adders in

%

2’s

complement
55 65 0

CSD 30 40 45.45%

Hcub 15 21 3 72.73%

41

TABLE 2.5 FPGA IMPLEMENTATION COMPARISON OF EXAMPLE LOOP
FILTER WITH WORDLENGTH OF 20 BITS

Xilinx Selected

Device :

4vlx15sf363-12

Multiplier based

design

CSD multiplierless

based design

Hcub MCM

method design

Number of Slices
4758 out of

6144
77%

4826 out of

6144
78%

4786 out of

6144
77%

Number of Slice Flip

Flops

7736 out of

12288
62%

7752 out of

12288
63%

7848 out of

12288
63%

Number of 4 input

LUTs

1109 out of

12288
9%

1077 out of

12288
8%

767 out of

12288
6%

Number of bonded

IOBs
62 out of 240 25% 62 out of 240 25%

62 out of

240
25%

Number of DSP48s 6 out of 32 18%

42

Chapter 3

A NOVEL MULTIPLIERLESS HARDWARE

IMPLEMENTATION METHOD FOR ADAPTIVE

FILTER COEFFICIENTS

3.1 Introduction

 “Implementation is everything” in the construction of practical adaptive

filters [49]. These practical hardware implementations typically require high

throughput, low power consumption and small area. For fixed coefficient filters,

multiplierless implementation approaches are used. However, since the coefficients

of an adaptive filter are not fixed, general multipliers are needed. Multipliers are

expensive in terms of chip area, power consumption, and operation time. For

practical high performance adaptive filters, this limitation must be overcome.

Multipliers are often implemented in hardware using shift-and-add

techniques. The number of add operations depends on the number of 1’s in the

binary multiplier. The number of add/shift operations is directly related to the

power consumption and area required. Array techniques are used to achieve high

43

throughput, at the cost of significant increases in power and area.

One effective method to reduce the number of shift/add operations in

multiplier hardware is to reduce the wordlength of the multipliers (e.g. filter

coefficients). However, reducing the wordlength can significantly degrade the

performance of the implemented algorithm.

When the value of the multiplier is known, multiplication can be

implemented using alternate number representations for the multiplier, such as the

CSD [39] or SPT representation [8]. CSD representation has proven to be useful for

implementing multipliers with less complexity, because the cost of multiplication

is a direct function of the number of nonzero bits in the multiplier. It is shown in [9]

that for a n-bit 2’s complement multiplier the number of add/subtract operations

never exceeds n/2 and can be reduced to n/3 on average, as the wordlength of

multiplier grows.

Many researchers have addressed the question of how to convert 2’s

complement to CSD numbers. Some of these approaches are from the point of view

of reducing computational complexity [50], [51], but are not suitable for

implementation into hardware. Other approaches try to improve the

implementation efficiency by limiting the area and power consumption [10], [11].

However, some introduce errors, and others are still complex.

44

If the multiplier is known a priori, as is the case for most FIR and IIR filter

implementations, the CSD expression can be calculated offline and the

implementation can be further improved via computational techniques such as

Dempster-Macleod’s algorithm [15]. Using this technique, more adders can be

saved. However, when the multiplier is unknown or can change over time, as is the

case for adaptive filters, these techniques are not applicable. To benefit from the

CSD implementation advantages, the conversion of numbers from 2’s complement

to CSD format must be implemented in hardware. Unfortunately, the cost of

conversion using methods such as those based on Look-Up-Table (LUT) [29] or

canonical recoding techniques [40] often outweighs the implementation advantages

of CSD.

In this chapter, I introduce a new hardware implementation method to

convert 2’s complement numbers to CSD numbers; we call it FastCSD [18]. My

method has several advantages. First, unlike LUT methods, my technique does not

require a fixed word length to be known a priori. In addition, the proposed method

uses a limited number of shift and logic operations, instead of the overlap and

scanning used for methods like Booth’s recoding [12] and canonical recording.

This allows the number of computational cycles to be fixed and independent of the

wordlength of the multiplier, k . So, the time required is constant. Furthermore,

because all the CSD bits are produced simultaneously, the conversion speed, and

45

thus the throughput, is improved.

FastCSD can be applied to efficiently implement digital filters with

non-fixed coefficients, such as adaptive filters. The implementation can be further

improved through the use of parallel processing with a reasonable sacrifice in the

area consumption using FPGAs.

3.2 New 2’s complement to CSD conversion method (FastCSD)

The new method to convert a 2’s complement number to CSD

representation is a simple series of shift and logic operations, which are

implemented in six processing steps as shown in Figure 3.1 and described in the

following paragraphs.

Step 1: Transform x to difference form: x = 2x - x . To reduce the many

additions arising from a string of ones, we use the simple concept that 2x x x= − to

convert x to another form we refer to as the difference form signed (DFS) number

[19], [20]. In the DFS representation, a number may contain instances of the digit

pairs “ 11” and “1 1 ,” but sequences of two consecutive ones or two consecutive

negative one digits cannot occur. DFS conversion is illustrated in the following

example:

46

The DFS number is a signed binary representation that can be written as two

binary numbers: the magnitude of x and the sign of x, which together represent the

signed binary number. The ones in ()sign x indicate which digit positions have a

negative weight. This form can be computed simply with an arithmetic shift left by

one bit 1x << and bitwise logic operations:

Magnitude of x: 1 .x x x= << ⊕

Sign of x: () 1& .sign x x x= <<

A closer look at the DFS number reveals that the DFS representation of x

exactly coincides with the Booth’s recoding representation of x. However, the

notation in our discussion here will be simplified by the use of the term DFS.

Additionally, the concept of the DFS representation provides a new insight into

Booth’s recoding [12]. We now summarize some of the key properties of the DFS

number representation.

Theorem 1: No two consecutive nonzero bits in the difference form of x

have the same sign.

47

Figure 3.1 Block diagram for FastCSD.

48

Proof: If two consecutive nonzero bits in the difference form of x have the

same sign, i.e. “11” or “ 11 ”, then the corresponding positions of 2x and x should

be either “11” and “ 00 ” or “ 00 ” and “11”. However since 2 1x x= << , then the

(i+1)th bit of 2x must be the same as the ith bit of x which cannot be the case. Hence,

the difference form cannot contain a sequence “11” or “ 11 ”. ■

Theorem 2: To convert a 2’s complement number x to the CSD

representation, we only need to replace occurrences of the bit pair “ 11” with “ 01 ”

and/or the bit pair “1 1 ” with “ 01 ” in the difference form of x starting from the

least significant bit (LSB).

Proof: Let DFSx be a DFS number and let M ∈] be the number of

sequences of two or more consecutive nonzero digits that occur in DFSx , where

0.M ≥ If 0,M = then DFSx is already a valid CSD representation. Therefore, it is

sufficient to consider only cases where 1.M ≥ Let 1 2, , , MΓ Γ Γ… denote the

sequences of two or more consecutive nonzero digits that occur in DFSx in order of

decreasing length (so that 1Γ is the longest such sequence) and let mk denote the

length in digits of the sequence .mΓ It follows immediately from Theorem 1 that

mΓ is an alternating sequence of mk occurrences of the digits “1” and “ 1 ”, where

2.mk ≥ If the low-order digit pair of mΓ is “1 1 ”, then it may be replaced by the

49

equivalent digit pair “01”; alternatively, if the low order digit pair is “ 11”, then it

may be replaced by the equivalent pair “0 1 ”. This replacement converts mΓ from

a sequence of mk consecutive nonzero digits to a sequence of 2mk − consecutive

nonzero digits and may be repeated until the length of mΓ is reduced to zero. The

desired result follows immediately by repeating this argument for all .m M≤ ■

Step 2: Locating “ 11 ” and “ 11 ”s. To locate the positions of the “ 11”

and “1 1 ” strings, I find the digits that are ‘ 1 ’ from the ‘1’s in ()sign x , then use

“shift/and” operation to get two vectors A and B.

A= 1& ()x sign x<<

where each ‘1’ in A corresponds to a string “ 11”.

B= 1& ()x sign x>>

where each ‘1’ in B corresponds to a string “11 ”.

Note that 1x >> denotes a logical right shift by one bit.

Theorem 3: Each ‘1’ in A denotes the position of a “ 11” string in the

difference form, and each ‘1’ in B corresponds to a string “11 ” in the difference

form.

50

Proof:

1 11
 11 & () 10if 11 { , after 1 ,

 010() 10

 11 1 11if 11 { , after 1
() 01 & () 01 ,

 0

 0
if 0 {

i

x
x sign x sx x

sign x

x xx x
sign x sign x

x
x

s

A

A

<< ×
=

= ⇔ << ⇒
=

= << ×= ⇔ << ⇒
= ×

× ×

=
= ⇔ 1 0, after 1

() 0 & () 0 ,
 00

xx
ign x sign x

A

<< ×<< ⇒
= ×

where × indicates don’t care (can be either ‘1’ or ‘0’), and is can not be ‘1’, based

on Theorem 1. Since if '1'is = and 1 '1'is + = , that means the difference form of x

has a consecutive “ 11 ” in the corresponding position, which is impossible. Thus,

each ‘1’ in A stands for a pair of “ 11”. ■

Similarly,

51

2

1 11
 11 & () 01if 11 { , after 1 ,

 010() 01

 11 1 11if 11 { , after 1
() 10 & () 10 ,

 0

 0
if 0 {

i

x
x sign x sx x

sign x

x xx x
sign x sign x

x
x

sig

B

B

+

>> ×
=

= ⇔ >> ⇒
=

= >> ×= ⇔ >> ⇒
= ×

× ×

=
= ⇔ 1 0, after 1

() 0 & () 0 ,
 00

xx
n x sign x

A

>> ×>> ⇒
= ×

where 2is + can not be ‘1’, for the same reason as above. So each ‘1’ in B stands for

a pair “11 ”. ■

After the proof, the following additional corollary is immediate:

Corollary 3A: There are no consecutive ‘1’s in A or B.

Step 3: Generate mask vector M. (Note that steps 2 and 3 can be

computed concurrently.) Step 2 replaces strings of ones with pairs of “ 11”s and

“11 ”s. To achieve a CSD representation, I want to replace the strings “ 11” with

“ 01 ” and “11 ” with “ 01 ” to eliminate consecutive nonzero bits. However, I

cannot do both “ 11” to “01 ” and “11 ” to “01” transformations at the same time

using simple logic operations; also, I cannot do the two operations sequentially. For

52

example, if “111 ” and “ 111 ” exist in the same sequence, no matter which

replacement I do first the result has consecutive nonzero bits, such as “011” or

“ 011 ”.

So an alternative approach is needed. This leads to Theorem 4 as follows:

Theorem 4: The zero bits in the difference form of x correspond to zero

digits in the CSD form.

Proof: It follows from Theorem 2 that, to convert the DFS representation of

x to CSD, it is required only to replace occurrences “ 11 ” with “ 01 ” and

occurrences “11 ” with “ 01 ”. These replacements will never generate a carry.

Moreover, the resulting two-bit segments will never propagate a carry. Therefore,

zero bits in DFS representation will always remain unchanged in the CSD

representation. ■

Based on Theorem 4, it can be observed that the zeros in the difference form

of x separate the sequence into several parts. We want to transform “ 11” to “ 01 ”

and “11 ” to “01” separately beginning with the nonzero bit adjacent to the ‘0’

(working from right to left). We form a mask vector M to separate the

subsequences. M has the same length as x, whenever the subsequence begins with

‘1’, the corresponding subsequence in M is all ones, otherwise it is all zeros. For

53

example, if 01100110111,x = then 01100110000.=M

Table 3.1 shows the truth table of mask generator and its hardware

implementation is shown in Figure 3.2.

TABLE 3.1. THE TRUTH TABLE FOR MASK GENERATOR

1iM − 1ix − ix ()isign x iM

× × 0 0 0

× 0 1 0 1

× 0 1 1 0

0 1 1 × 0

1 1 1 × 1

Note: × indicates don’t care, it can be either ‘1’ or ‘0’.

The characteristic equation, derived from the truth table in Table 3.1 is:

1 1
() i i ii i i i

x sign x x x x
− −

= +M M (3.1)

where |x| is the magnitude of the difference form of a binary number x, sign(x) is the

sign of x.

54

Figure 3.2 The implementation of the mask generator.

Step 4: Separate two types of subsequences. Using C= &A M we

determine the subsequence “ 11”s since each ‘1’ in C stands for the pair “ 11”, at

the corresponding position of ‘ 1 ’. Note that there are no consecutive ‘1’s in C

because of the inherited property of A. Similarly, using D= & B M , we can

determine the location of the “11 ” sequences. Also, there are no consecutive ‘1’s

in D.

Step 5: Convert 11 to 01 . I use C to convert the substrings “ 11” to “ 01 ”

as follows:

55

() () (1)

new

new

x x

sign x sign x

C

C | C >>

= ⊕

= ⊕ .

 (3.2)

The following display illustrates the technique schematically.

new i-1

 11 () 10
 01 11 10 11
 01 00 10() 10 () 01 01 | (1) 110

()

new

new

new

ne

x sign x
xx x
x

sign x sign x x c
sign x

C

C

C C

⎧ =
⎧⎪ == ⊕⎪ ⎪

⇔ = ⇒ ⇒⎨ ⎨ ⊕=⎪ ⎪ =⎩⎪ >>=⎩
 01w

where 1ic − can not be ‘1’, based on Theorem 1.

Step 6: Convert 11 to 01 . Similar to Step 5, I convert “1 1 ” to “ 01 ” using

D as follows:

() ()

(1)

new

new

sign CSD sign x

CSD x

D

D

= ⊕

= << ⊕ .

 (3.3)

Example: Figure 3.3 shows the conversion of x=101110110101 to CSD.

Note that the double dash lines separate the steps enumerated above.

56

Figure 3.3 An example of new 2’s compliment to CSD conversion process.

57

3.3 Comparison with Booth’s recoding and LUT techniques

The radix-4 modified Booth’s recoding algorithm has been widely used in

modern high-speed multiplication circuits [27]. Using a modified Booth algorithm,

adjacent 3-bit segments of 2’s complement numbers are converted into the digit

set { }2, 1, 0± ± . Although modified Booth’s recoding reduces a k-bit 2’s

complement multiplier to 2k⎡ ⎤⎢ ⎥ digits, it is based on overlapped multiple-bit

scanning schemes. So, no matter how large the radix is, the number of scan cycles

is a function of the multiplier word length k. As k increases, the number of scan

cycles increases as well. Booth’s recoding can be used for parallel multipliers if

duplicated recoding logic and multiple selection circuits are used, however, that

requires huge area consumption.

FastCSD is a fully parallel process; it reduces the number of add/subtract

operations to the minimum. Unlike the modified Booth’s recoding algorithm, the

number of operations of FastCSD is fixed as well as the total delay time. So, the

time is constant regardless of the word length k. The detailed performance analysis

is given in Table 3.2. Compared with the modified Booth’s recoding algorithm

whose operation time is a function of multiplier word length k, FastCSD requires a

delay of only 4 shifts and 8 logic gates for the worst case. Furthermore, the

throughput can be further improved by incorporating parallel processing. My

method is attractive in terms of both throughput and computational complexity.

58

TABLE 3.2 PERFORMANCE ANALYSIS OF FASTCSD (× INDICATES THE
MOST COSTLY OPERATIONS IN EACH STEP. NOTE: STEP 2 AND STEP 3

CAN BE DONE SIMULTANEOUSLY)

 Operations # of
Shifts

of logic
operations

A/M=
all{0}

B=all{0}/
M=all{1}

The
worst
case

Step
1

1

() 1&

x x x

sign x x x

= << ⊕

= <<

1

1

1

2

×

×

×

Step
2

1& ()

1& ()

x sign x

x sign x

A

B

= <<

= >>

1

1

1

1

× × ×

Step
3

1

1

() i ii i

ii i

x sign x x

x x
−

−

=

+

M

M
 3

Step
4

C= &A M

D= & B M

 1

2

×

Step
5 () () (1)

new

new

x x

sign x sign x

= ⊕

⊕ >>

C

= C C

1

1

2

×

×

Step
6

() ()

(1)

new

new

sign CSD sign x

CSD x

D

D

= ⊕

= << ⊕

1

1

1

×

×

Total cost of delay
3 shifts

+ 4
logics

3 shifts +
5 logics

4 shifts
+ 8

logics

59

Another commonly used technique for FPGA-based hardware is

Look-Up-Table (LUT) [29], [52]. Many algorithms used in DSP, such as filters, are

based on constant coefficient values. So, a Look-Up-Table can be used to

implement the multiplier by storing pre-computed partial products of the fixed

coefficient in distributed ROM to reduce the logic content. An advantage of this

approach is that the delay is just a memory access; so it is fast. However, a

disadvantage is that the table size grows exponentially with the input, so it is

space-intensive. So, a LUT approach requires the multiplier’s word length to be

fixed and the value of multiplier to be known prior to implementation.

The proposed method does not have the disadvantages of the LUT

implementation. It does not require a fixed multiplier word length, nor is it required

for the multiplier value to be known a priori. Thus, my method can be applied to

efficiently implement digital filters with non-fixed coefficients, such as adaptive

filters. In addition, my method is simple, requiring only several shifts and logic

operations. Since my method produces all of the CSD digits simultaneously, the

conversion speed, and thus the throughput, is improved.

60

Chapter 4

A MULTIPLIER STRUCTURE BASED ON A NOVEL

REAL-TIME CSD RECODING

4.1 Introduction

Adaptive filters have achieved widespread acceptance and are included in

many digital signal processing application areas such as communications and

signal preconditioning [3]. The coefficients of an adaptive filter change with time,

based on the adaptation (learning) algorithm. Many researchers have addressed the

question of how to implement the multiplications for fixed-coefficient filters, but

these techniques are not applicable to adaptive filters and other inner-product

computations in which the multipliers are not know a priori. Recently there has

been a renewed interest in adaptable-coefficient filters [3], [6], [8], [13], [17]. My

previous work with adaptive filter implementations has focused on the

development of an efficient multiplier [21], [53].

In general, there is a tradeoff between the hardware complexity and the

filter performance associated with the wordlength of the multipliers (usually

61

coefficients). Increased coefficient wordlength increases implementation

complexity, and decreased coefficient wordlength results in greater filter response

error. This tradeoff is fundamental to the implementation of all filters.

In fixed coefficient filters, multiplierless techniques are typically

implemented by encoding the coefficients in CSD [39] or SPT representations [8].

If the multiplier is known a priori, the CSD expression can be calculated offline

and it can be further improved by Dempster-Macleod’s algorithm [15] or similar

techniques [16], [41], [44], which can save additional adders. However, when the

multiplier is unknown or non-fixed, these techniques cannot be applied. In this case,

the conversion of numbers from 2’s complement to CSD format can be

implemented in hardware to simplify the multiplications. The conversion can be

implemented with look-up tables [29] or canonical recoding techniques [40], but

these all are costly in terms of the additional implementation overhead.

In this chapter, I introduce a new iterative multiplier structure which is

based on a novel real-time CSD recoding [19], [20]. Since this structure does not

require a fixed value for the multiplier input to be known a priori, it has broad

applications. The real-time CSD recoding multiplier has several advantages. First,

since it converts 2’s complement numbers to CSD numbers in real time, it requires

less shift/add/subtract operations compared to traditional modified (radix-4) Booth

recoding. As a result, the power consumption and area requirements in the

62

hardware implementation of DSP algorithms can be greatly reduced. In addition,

unlike modified Booth’s recoding [12], only three possible multiples of

multiplicand a (-a, 0, a) are used. So, the overhead for the multiple generation part

of the structure can be reduced. Furthermore, the proposed multiplier can be

applied to efficiently implement digital filters with non-fixed coefficients, such as

adaptive filters [3]. The implementation efficiency can be further improved by

properly incorporating parallel processing with a reasonable sacrifice in the area

consumption of FPGAs.

4.2 Real-time CSD Multiplier Structure

Instead of converting a binary number into its CSD representation, in the

proposed design, the CSD recoder only generates corresponding control signals.

Controlled by these signals, the multiplier actually operates based on the CSD logic.

For better understanding of my method, in this section, I use the Difference Form

Signed (DFS) number system introduced in Chapter 3, which has two main

properties:

Property 1: No two consecutive nonzero bits in the difference form of x

have the same sign.

Property 2: To convert a 2’s complement number x to the CSD

63

representation, we only need to replace occurrences of the bit pair “ 11” with “ 01 ”

and/or the bit pair “1 1 ” with “ 01 ” in the difference form of x starting from the

least significant bit (LSB).

The proofs for these two properties are given in Chapter 3.

The DFS number is not encoded directly in the hardware circuit, since each

DFS number needs twice as much memory space compared to a binary number.

However, it serves as a tool to understand my real-time CSD recoding.

As a DFS number DFSx is scanned in 2-bit segments from right to left (least

to most significant), whenever a pair of nonzero digits is encountered, I convert the

bits based on property 2. Whenever there are 2-bit segments which begin with a ‘0’

bit (such as “ 01 ”, “00” or “01”), then I leave them unchanged. If the 2-bit

segments end with a ‘0’ bit (such as “10” or “ 10 ”), I leave the ‘0’ bit unchanged

and continue scanning the remaining part by 2-bit segments.

For example, consider the following DFS number and its recoded version:

 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1
 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1

DFS

CSD

x
x .

Table 4.1 below shows the real-time CSD recoding as digit-set conversion.

64

TABLE 4.1 RECODING SCHEME OF CSD ALGORITHM.

2’s Complement DFS CSD Control Signals*

1ib + ib 1ib − '
1ib + '

ib ' '
1ib + ' '

ib c1 c2 c3

0 0 0 0 0 0 0 × 0 1

0 0 1 0 1 0 1 0 0 0

0 1 0 1 1 0 1 0 0 0

0 1 1 1 0 # 0 × 1 1

1 0 0 1 0 # 0 × 1 1

1 0 1 1 1 0 1 1 0 0

1 1 0 0 1 0 1 1 0 0

1 1 1 0 0 0 0 × 0 1

* × represents don’t care. # represents that no CSD bit is generated and wait till next bits come.

 In the proposed multiplier structure, I do not convert a number explicitly

into the DFS or CSD representations. Instead, based on the relationship between

the two’s complement number and its DFS representation, as well as Properties 1

and 2, I obtain the digit-set relationships between a two’s complement number, its

DFS representation and its CSD representation, which provides us with the

corresponding signals that are needed to control the accumulation of partial

65

products in the multiplier. These relationships are shown in Table 4.1, where c1, c2

and c3 are control signals based on CSD number conversion. Signal c1 is used to

control the add or subtract operation, i.e. addition is performed if c1=0 and

subtraction is performed if c1 =1. Signal c2 is used to control the number of bits that

are shifted in each iteration, i.e. c2 =1 indicates a right shift by 1 bit and c2 =0

enables right shifting by 2 bits. Finally, c3 is the bypass control signal, where c3 =1

enables the bypass operation. These signals (defined in Table 4.1) are given by (4.1)

and may be efficiently implemented in hardware using the circuits shown in Figure

4.1.

1 1

2 1 1

3 1

()

i

i i i

i i

c b

c b b b

c b b

+

+ −

−

=

= ⊕

= ⊕

 (4.1)

Figure 4.1 Implementation of multiple generations and shift control part of
CSD recoding multiplier in logic gates

66

The block diagram of the proposed iterative multiplier structure based on

this novel CSD encoding is given in Figure 4.2. The corresponding signal flow

chart is provided in Figure 4.3. From the flow chart, it is clear that this encoder

generates directly in hardware the control signals required to realize a multiplier

based on the CSD representation.

From Figures 4.2 and 4.3, it can be seen that the number of iterations

required by the real-time CSD recoding multiplier is data dependent and uses

shifting by a variable number of bits. Usually, shifting by a variable number of bits

means that a register-based shifter is needed, which adds to the time and energy

consumption for each iteration; in contrast, shifting by a constant number of bits

can be conveniently implemented by direct wire connections and requires very low

cost of in terms of energy and chip area.

However, the design proposing here does not in fact require arbitrary shifts,

but only shifts by one or by two bits. Thus, the design can be implemented simply

with a pair of hardwired shifts, where shifting by one bit or by two is selected by the

control signal c2. This implementation enables us to achieve the advantages of

variable shifting at the cost of constant shifting. Note that the computation speed of

the proposed multiplier structure can be further improved through the use of

advanced adders and asynchronous circuit techniques.

67

Figure 4.2 Real-time CSD multiplication based on our novel CSD recoder.

The proposed structure is very simple compared to radix-4 Booth’s

recoding, since instead of computing five multiples of the multiplicand

(0, , 2)a a± ± required for radix-4 Booth’s recoding, only a± are required for the

CSD recoder. As a result, the overhead required for CSD conversion and control

signal generation can be significantly reduced. Also, only approximately 33% of

inputs are passed to the sum-of products accumulation process. The other inputs,

corresponding to zero bits, can be bypassed with the shift register instead. In this

way, the overall computation speed can be improved.

68

Figure 4.3 Real-time CSD recoder block diagram.

69

4.3 Comparison with Booth’s recoding and other CSD recoding

techniques

 Recently many researchers have addressed the question of how to convert

2’s complement to CSD numbers. Some of these approaches are from the point of

view of reducing computational complexity [50], [51], but are not suitable for

implementation into hardware. Other approaches try to improve the

implementation efficiency by limiting the area and power consumption [10], [11].

However, some introduce errors, and others are still complex.

The radix-4 modified Booth’s recoding algorithm has been widely used in

modern high-speed multiplication circuits [27]. Using a modified Booth algorithm,

sequential 3-bit segments of a 2’s complement number are converted into the digit

set{ }2, 1, 0± ± . This technique reduces an n-bit 2’s complement multiplier to

2n⎡ ⎤⎢ ⎥ digits. The partial products can be readily calculated by shift/add/subtract

operations.

On average, Radix-4 Booth’s recoding results in 50% of the partial products

being zero. So, although Booth’s recoding reduces the number of 1’s in multiplier,

the reduction is less than the proposed CSD recoding. Also, after the partial

products are generated in the Booth’s recoding logic, they are all passed into the

accumulation operations, even those partial products that are zero. In this way, the

70

number of arithmetic operations in the carry-save structure is not reduced. So, there

is no decrease in speed or power consumption with this algorithm.

The proposed algorithm further reduces the number of add/subtract

operations. Unlike the modified Booth’s recoding algorithm, once the zero bits in a

CSD number are detected, there is no accumulation required. So, approximately

two thirds of the time the accumulation process is bypassed. So, the algorithm

reduces the latency of the operation, as well as the power consumption of the

circuit.

Compared with other CSD recoding techniques, such as the self-timed CSD

multiplier in [10], the structure is much simpler and faster. In [10], they calculate

their complexity to be even greater than that of Booth’s recoding because their CSD

recoder needs to propagate the carry. Also, five multiples of the multiplicand

(0, , 2)a a± ± are required in their recoder – the same as in Booth’s recoding – in

addition to carry-in and carry-out signals. Thus, their structure is more

complicated.

The proposed real-time CSD recoding multiplier eliminates 66.7% of the

multiple generation operations, on average. For these zero bits, only shifting is

required, and there is no carry propagation at all. It can be seen that the method

offers an attractive tradeoff between operation speed and computational

complexity. The detailed performance analysis is listed in Table 4.2.

71

TABLE 4.2 COMPLEXITY COMPARISON ON AVERAGE PERCENTAGE OF

DATA IN THE TRADITIONAL MULTIPLIER, RADIX-4 BOOTH’S
RECODING MULTIPLIER, SELF-TIMED CSD RECODING MULTIPLIER

AND PROPOSED CSD RECODING MULTIPLIER

Total partial

products

Nonzero

partial

products

Nonzero

Multiples

generated

Bypassed null

partial products

2’s complement

multiplier
100% 50% 50% 0%

Radix-4 Booth’s

recoding
50%

37.5% 75% 0%

Self-timed CSD

recoding
50% 33.3% 66.7% 33.3%

Proposed CSD

recoding
33.3% 33.3% 33.3% 66.7%

72

Chapter 5

EXTENSION TOPICS

In this chapter, I consider two additional topics regarding hardware

implementation of digital filters that are related to, but distinct from the main

results of this dissertation given in Chapter 3 and 4.

5.1 A multi-input CSD multiplier unit suitable for DSP algorithm

implementations

Fast operation, low power consumption and small area requirements are the

main objectives of efficient implementation of DSP algorithms in hardware [26].

Many efforts have been devoted in this area to achieve these often competing goals

[26]. Multiplication is widely used in most DSP algorithms. Multipliers are costly

in terms of chip area, power consumption and operation time [27]. However, it is

possible to avoid multiplication by using shift-and-add techniques [33]-[36]. Many

researchers have addressed the question of how to implement the multiplications

for fixed-coefficient filters to reduce the area required and power consumed [13],

73

[15], [29], [44], [54]-[56]. Some of these approaches are from the point of view of

hardware fabrication and hardware circuit design [56], for example to reduce the

short circuit and leakage currents in the CMOS circuit design, which in turn reduce

the power consumption. Other approaches try to improve the implementation

efficiency of a multiplier by reducing the number of shift/add operations [15], [44],

[55], [56], which leads to a reduction in both the power consumption and area

requirements.

One effective method of reducing the number of shift/add operations in a

multiplier is to reduce the wordlength of the multipliers. However, reducing the

wordlength can ruin the performance of the implemented algorithm [22]. For

example, reducing the number of bits in FIR filter coefficients may degrade the

filter frequency response. Another commonly used method is using alternate

number representations of the multiplier, such as CSD number system [3], [39] or

SPT representation [8].

In this section, I introduce a new multiplier structure: the multi-input CSD

multiplier unit. Since this unit does not require a fixed value for the multiplier input

to be known a priori, it has broad applications. The multi-input multiplier has

several advantages. First, since it uses CSD representation of the multiplier, it

requires fewer shift/add/subtract operations. In addition, since all the

multiplications share one CSD conversion unit, the overhead for generating the

74

control signals is reduced. Furthermore, because all the products are produced

simultaneously, the multiplication speed, and thus the filter throughput, is

improved. Also, the multiplier can be applied to efficiently implement digital filters

with non-fixed coefficients, such as adaptive filters. The implementation efficiency

can be further improved by reducing the wordlength of the input signal with little or

no sacrifice in the filter performance.

To the best of the authors’ knowledge, this is the first time that a multi-input

multiplier has been proposed as a hardware block that is suitable for DSP algorithm

applications; its advantages and applications are studied in this chapter.

5.1.1 Multi-input CSD multiplier structure

Figure 5.1 shows the proposed Multiple-input CSD multiplier with N

multiplicands 1y , 2y , … Ny and one L-bit multiplier x. This multi-input multiplier

is suitable for hardware implementation of many multiplications that have the same

multiplier but different multiplicands.

The common multiplier x is converted to CSD representation to generate

control signals by either a Look-Up-Table (LUT) or canonical recoding techniques

[40] or the new 2’s complement to CSD conversion technique [18] that has been

described in Chapter 3. The real-time CSD recoding multiplier structure [19] that

75

has been discussed in Chapter 4 is also a good choice.

Figure 5.1 Detailed view of the proposed multiple-input
CSD multiplier unit.

x

CSD Converter

∑

∑

∑

Control
x[0] x[1] x[k]

y1
y2

yN

xy1

xy2

xyN

Multi-input
Shifter

Multi-input
Shifter

Multi-input
Shifter

Add/Subtract

Add/Subtract

Add/Subtract

76

The multi-input shifters use the same control signals generated by a CSD

converter; so all multiplicands are shifted by the same number of bits. Since no two

adjacent bits in a CSD number are nonzero, as a result, there are less than 2
L⎡ ⎤⎢ ⎥

control signals []x k (0 2
Lk≤ ≤ ⎡ ⎤⎢ ⎥), where k denotes the thk nonzero digit of the

CSD representation of x . Therefore, the CSD number representation can reduce the

number of add/subtract/shift operations to less than or equal to a number that is

approximately half the number of bits in the multiplier x. To accommodate the

maximum number of nonzero digits in the CSD representation of the input sample,

this multi-input CSD multiplier structure requires 2
L⎡ ⎤⎢ ⎥ shifters. Similarly,

()12
LN ⎡ ⎤ −⎢ ⎥ two-input adders (subtractors) are required to add the coefficient bit

slices.

Table 5.1 lists the number of shift-and-add operations required for the worst

case with the proposed multi-input multiplier, for a CSD based multiplier and for a

traditional binary number representation based multiplier. The shifters in the

proposed multiplier are multi-input shifters. Because these multi-input shifters

have the same control signals, some new techniques could be developed to reduce

the power consumption and area requirements of their hardware implementation.

Nevertheless, the worst case area requirement and power consumption for these

multi-input shifters is the number of inputs times the area requirement and power

77

consumption of a regular shifter. From this table, we can see the proposed design

requires fewer adders, fewer CSD converters and fewer shifters. Other recently

developed efficient single input and single output multiplier techniques [54] can

also be applied to the proposed structure to further reduce the number of

add/subtract/shift operations.

TABLE 5.1 COMPLEXITY OF THE TRADITIONAL MULTIPLIER,

CSD-ENCODED MULTIPLIER, AND MULTI-INPUT CSD MULTIPLIER

Number of

adders/subtractors

Number of CSD

converters
Number of shifters

Traditional

Multiplier
(1)N L − — NL

CSD-recoded

coefficients
()12

LN ⎡ ⎤ −⎢ ⎥ N 2
LN ⎡ ⎤
⎢ ⎥

Multi-input

multiplier ()12
LN ⎡ ⎤ −⎢ ⎥ 1 2

L⎡ ⎤
⎢ ⎥ *

*These shifters are multi-input shifters.

From Figure 5.1 and Table 5.1, it can be seen that one obvious benefit of

this structure is that many control signals can be shared in one multi-input

multiplier instead of performing multiplications one at a time using many

multipliers in hardware. As a result, the overhead required by CSD conversion and

78

control signal generation can be significantly reduced. Also several multiplications

are performed simultaneously, so the overall computation speed can be improved.

The greater the number of inputs in the multi-input multiplier, the greater

the savings in hardware implementation this multiplier will achieve. Although the

advantages of this structure depend on the assumption that all these multiplications

have the same multiplier, this multi-input multiplier could have broad applications

in DSP algorithms implementation, which is illustrated in the following discussion

of applications.

5.1.2 Application to implementation of digital filters

Because digital filters have been and continue to be one of the fundamental

building blocks of many signal processing systems, the design of an efficient,

low-power FIR filter and its implementation is extremely important. It is known

that the major bottleneck of low-power FIR, or IIR, filter implementation is in the

coefficient multipliers. In addition to the studies of fixed-coefficient filters, there

has been a increasing interest in adaptable-coefficient filters or digital filters with

unknown coefficients [3], [6], [8], [13], [17]. Since the proposed multi-input

multiplier does not require a known or fixed multiplicand value, the multiplier is a

good candidate structure for efficient implementation of these digital filters.

79

To implement digital filters with the proposed multi-input CSD multiplier, I

use the fact that in both the transposed form FIR and the canonical structure IIR

digital filters, each input signal (and the output of the IIR filter) needs to multiply

all the coefficients at the same time. If we consider the input signal to be the

multiplier and the coefficients to be the multiplicands, then the proposed

multi-input multiplier structure can be applied directly. As a result, I first describe

the transposed form of the FIR filters and the canonical structure of IIR filters, and

then based on these structures, I propose a novel efficient implementation of FIR

and IIR filters using the proposed multi-input multiplier unit. The implementation

cost could be further reduced by incorporating quantization techniques into the

proposed designs.

5.1.2.1 Transposed form FIR and IIR filter structures

A variation of the direct FIR structure, shown in Figure 5.2, is called the

transposed form [2], in which the input is first multiplied by the filter coefficients,

and then the internal results are appropriately accumulated and delayed.

The output of the filter is given by

 () () ()
1 1

0 0

M M
k

k k
k k

y n h x n k H z h z
− −

−

= =

= − ⇔ =∑ ∑ (5.1)

80

 Figure 5.2 Transposed form FIR filter structure.

where M is filter length and the kh are the filter coefficients.

Similarly the canonical IIR structure, which is called the transposed direct

II realization [2], is shown in Figure 5.3.

The output ()y n is given by:

() () ()
1 0

1
0 1() 11 1

N M
y n a y n j b x n kj kj k

Mb b z b zMH z Na z a zN

= − − + −∑ ∑
= =

− −+ + +
⇔ =

− −+ + +

"

"

 (5.2)

where M is the maximum input delay, the bk are the numerator coefficients; N is

the maximum output delay, and the aj are the denominator coefficients.

81

 Figure 5.3 Direct form IIt IIR filter structure.

5.1.2.2 Multiple-input CSD multiplier based implementation

From the transposed form filter structures, it can be observed that each input

(and output for the IIR filter) will multiply the input (output) by all the coefficients

simultaneously. So, the proposed multi-input multiplier can be applied directly to

efficiently implement these digital filters. As I mentioned previously, the proposed

multiplier can work with a non-fixed multiplicand, so the implementation of digital

filters based on this multiplier structure can also be applied to hardware

Z-1

Z-1

Z-1

x(n) y(n)

b1

b0

bM

-a1

-aM

-aN

82

implementation of adaptive filters. In Figure 5.4, I give the diagram of the hardware

implementation of an adaptive FIR filter based on the proposed multiplier.

Figure 5.4 Adaptive Transposed Form FIR filter using multiple-input CSD
multiplier unit.

5.1.2.3 Further improvement

The implementation of digital filters using the proposed multi-input CSD

multiplier can greatly reduce the implementation cost, which also in turn reduces

83

the area requirement and power consumption. It is well-known that the

implementation cost of multiplication can be greatly reduced by limiting the

wordlength of the multiplier. However, in a traditional filter implementation, a

reduction in the wordlength of multipliers (usually the filter coefficients) could

perturb the realized frequency response to the extent that the filter design

specification is no longer satisfied. Thus, the reduction is limited by filter

specifications [22].

However, in the proposed implementation, increasing the width of the

adders corresponds to increasing the filter coefficient wordlength. So the frequency

response error can be reduced merely by increasing the width of the adders (which

have typically been reduced in number during the design of the frequency response

by determining the theoretical minimum filter order that is required to meet the

specification). To reduce the multiplication cost, we need to restrict the wordlength

of the filter input signals, which corresponds to Analog-to-Digital (A-D)

conversion noise. However, compared to the filter response error, the A-D noise

contributes less to the final filter output error [57]. This is the significant advantage

of the design since the number of adders that are required is equal to the number of

nonzero digits in the CSD representation of the input sample, which cannot exceed

n/2 for n-bit inputs. As a result, by increasing the width of the adders and reducing

the wordlength of the filter input signals in my implementation, implementation

cost of the digital filter can be greatly reduced with little or no sacrifice in filter

84

performance, which is confirmed by my simulation results given in Section 5.1.4.

5.1.3 Other applications

In addition to the applications of digital filter implementations, the

developed multi-input multiplier can be applied to other DSP algorithms. In Figure

5.5, I present an efficient hardware implementation of FIR filter banks using the

multi-input multiplier.

The ()x n is the input data; ()H j
i represents the jth coefficient of ith filter;

()iy n represents the ith filter output. The developed multi-input CSD multiplier

unit can also be applied to implement matrix multiplications, such as a matrix

multiplied by a vector or a vector times a constant. Other possible applications

include implementing digital image processing algorithms and nonlinear

polynomial filters.

5.1.4 Simulation Results

Here, I provide an FIR filter implementation example, which confirms the

techniques I introduced in Section 5.1.2.3. Consider a low-pass FIR filter with

85

pass-band frequency of 0.6π , stop-band frequency of 0.72π and stop-band ripple

of -50 dB. These specifications are met by a 28th order filter with coefficients:

.

Figure 5.5 Using the proposed multi-input multiplier unit to efficient
implement FIR filter banks.

[0.0166 0.0195 -0.0113 -0.0056 0.0207 -0.0143 -0.0148
 0.0369 -0.0177 -0.0375 0.0718 -0.0199 -0.1242 0.2843
 0.6458 0.2843 -0.1242 -0.0199 0.0718 -0.0375 -0.0177
 0.0369 -0.0148 -0.0143 0.0207

h =

-0.0056 -0.0113 0.0195 0.0166]

∑

()x n 1z− 1z− 1z−

1(0)H

2 (0)H

(0)NH

1(1)H

2 (1)H

(1)NH

1()H M

2 ()H M

()NH M

∑

∑

1()y n

2 ()y n

()Ny n

Multi-input
Multiplier

Multi-input
Multiplier

Multi-input
Multiplier

86

Using 18 bits for intermediate values, simulations are performed for h with

4, 6, 8, 9, 10, 12, and 14 bits; and []x n with 14, 12, 10, 9, 8, 6, and 4 bits, in turn. I

measure the filter performance by computing the output error power

approximation:

 1 2() ()
1 0

K

K
E y n y n

K n
= −∑

+ =
� (5.3)

As shown in Table 5.2, the best combination is 10 bits for h and 8 bits

for []x n . Using this combination to implement this FIR filter by the proposed

multiplier, I only need one 8 bit CSD converter, 4 multi-input shifters (with 28

inputs and wordlength of 10 bits), and 111 adders (with wordlength 18 bits). From

Table 5.2, it can also be inferred that the implementation cost could be further

reduced with small sacrifice of filter performance, for example, if h takes 12 bits

and []x n takes 6 bits.

TABLE 5.2 QUANTIZATION AND FILTER OUTPUT ERROR POWER
COMPARISON

Number of bits for

filter coefficients h
4 6 8 9 10 12 14

Number of bits for

input signals
14 12 10 9 8 6 4

Output error power

(dB)
-26 -42 -55 -60 -65 -55 -41

87

5.2 Optimizing filter order and coefficient length in the design of

high performance filters for high throughput FPGA

implementations

For a given filter design specification, there is generally a minimum order

that is required to meet the specification with an FIR filter; for a given specification

and order, increased quantization generally degrades performance relative to the

ideal specification. There is generally a minimum word length that is required for

the quantized filter implementation to still meet the design specification

The idea following is: compared to the filter with minimum order and

maximum quantization that meets the specification, can we increase the order and

increase the quantization simultaneously to obtain a more efficient filter that still

meets the specification?

The answer appears to be YES.

The efficiency of a hardware filter design utilizing FastCSD and the

real-time CSD recoding multiplier structure that I developed in Chapter 3 and

Chapter 4 can often be further improved reducing the required multiplier

wordlengths through an increase of the filter order beyond the minimum order that

is needed to meet the design specification.

First of all, I look at this with regard to filters having fixed coefficients that

88

are known a priori.

5.2.1 Optimizing filter order and coefficient length in the design of FIR filters

When implementing a filter using VLSI hardware, we must consider

quantization of the coefficients that make up the filter, as well as the quantization of

internal computations (both multiplications and additions) [57]. These will directly,

along with the communications or wiring diagrams, specify the hardware

requirements. The definition of the quantization function affects not only the

hardware requirements, but also the performance of the filter. The quantization of

the fixed-point coefficient values directly influences the area required by the

implementation. Quantization of the input, output and internal computations also

affects the required area. Of course, filter performance is also affected [22].

Quantization can be viewed as a many-to-one function that maps a set of real

numbers to a single value.

This way of defining quantization leads to the idea of further limiting the

range of the quantization function. For example, in filter implementations, one

could use the quantization function so that only “good” filter coefficients are

allowed. By “good,” it would mean in this case that the implementations could only

realize coefficients that are limited combinations (sums and differences) of

89

powers-of-two [35].

Some level of quantization can be imposed on the coefficients that still

allows the filter specifications to be met. However, for long filters, a savings of a

single bit can be significant and worth an increase in the order. In this section, the

order of the filter is increased to improve the filter implementation without a loss in

the performance of the filter. Similar approaches have been considered for lattice

wave digital filters [58] and much smaller filters [59].

Recently, multiplierless techniques, such as CSD number representations

[14] and dependence-graph algorithms [41] have been widely used for

implementing FIR filters in Field Programmable Gate Arrays (FPGAs). In these

implementations, rather than implementing multiplication of inputs by coefficients

using multipliers, the multiplication takes advantage of the a priori knowledge of

the coefficient values to implement the multiplication by a limited number of shifts

and adds/subtracts. To implement the shifts, a simple rewiring can be used rather

than a sequential shift register. In this way, FIR filters with known coefficients can

be implemented to operate with high-throughput and low area requirements.

Typically transpose form filters are used to achieve high-throughput because of

pipelining advantages.

90

5.2.1.1 Quantization effects on example FIR filter implementation

Usually one effective method to reduce the number of shift/add operations

in a multiplication implementation is to reduce the wordlength of the multipliers,

which are typically the coefficients in filter implementation. However, reducing the

coefficients wordlength can ruin the performance of the implemented filter

algorithm [22].

Example 5.1: Consider a non-minimum order FIR filter designed using a

generalized remez technique (firgr in MATLAB®) with the following

specifications: ωp = 0.43; ωs=0.5; Ap=0.2 dB and As=50 dB. Based on the

MATLAB® results, we find that an order of 90 with coefficients quantized

uniformly with at least 19 bits (not including the sign bit) can achieve this

specification.

Figure 5.6 shows the frequency response effects of quantizing the filter

coefficients from 19 bits to 8 bits (not including the sign bit). It can be observed that

with the decrease in the number of bits in the coefficient, the errors get bigger and

bigger.

We can calculate the filter response error power ()fE ω for different

numbers of bits in the coefficients:

91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-60

-50

-40

-30

-20

-10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Reference filter
h 19 bits
h 14 bits
h 12 bits
h 10 bits
h 8 bits

Figure 5.6 Frequency responses for different coefficient quantization levels
for the 90th order low pass FIR example filter (not including the sign bit in bit

counts).

10
ˆ ()() 20log

()f
HE
H

ω
ω

ω
=

.
 (5.4)

Figure 5.7 shows the filter response error power ()fE ω for different

quantization levels; it is clear that as the number of bits decreases, the errors

increase.

92

0 0.5 1 1.5 2 2.5 3
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Frequency

A
m

pl
itu

de
(d

B
)

Ef19 bits

Ef14 bits

Ef12 bits

Ef10 bits

Ef8 bits

Figure 5.7 Coefficient quantization effects on the example FIR filter (not
including the sign bit in bit counts).

How to eliminate or reduce these errors without causing unacceptable

hardware complexity is the main challenge. Further benefits can be achieved by

considering alternate number representations, such as CSD number system. This

representation replaces the additions arising from a string of ones in a binary

number with a single subtraction, so that the “shift-and-add” algorithm becomes

“shift-and-add/subtract” [39]. Thus, filter coefficients can be realized by

incorporating a few adders (or subtractors) and bit shifters. CSD numbers have

93

proven to be useful in implementing multipliers with less complexity, because the

cost of multiplication is a direct function of the number of nonzero bits in the

multiplier, which can be reduced by using CSD numbers [37].

5.2.1.2 Optimizing the example FIR filter design by increasing the order

In general, there is a tradeoff between the hardware complexity and the

filter performance associated with the wordlength of the multipliers. Increased

coefficient wordlength increases implementation complexity, and decreased

coefficient wordlength results in greater filter response error. However, we can

increase the order of the filter to further improve the filter implementation without a

loss in filter performance. For long filters, the results are much more significant

because of the increased effect of saving a bit in each coefficient.

5.2.1.2.1 FIR filter implementations with non-minimum order designs

Consider the previous Example 5.1. The specification can be achieved with

a 90th order filter and coefficients quantized uniformly at 19 bits; however, we can

reduce the length of the quantized coefficients further by increasing the order of the

filter design as shown in Table 5.3.

94

TABLE 5.3 THE RELATIONSHIP BETWEEN THE ORDER OF THE FILTER
DESIGN AND THE LENGTH OF THE QUANTIZED COEFFICIENTS (NOT

INCLUDING THE SIGN BIT)

Order Number of bits per
coefficient

Total number of
binary bits

90 19 1729

92 16 1488

93 14 1316

94 14 1330

95 13 1248

96 13 1261

102 13 1339

103 12 1248

107 12 1296

Since the filter is long, saving even a single bit in each coefficient can

achieve a significant savings in the whole filter design. As a result, the total number

of binary bits (which indicates how complicated the multiplication will be) is

decreased, as is the hardware complexity. Figure 5.8 shows the effects on

frequency response. All these designs meet the filter specification.

95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-60

-50

-40

-30

-20

-10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

90 order with 19 bits

92 order with 16 bits

93 order with 14 bits

95 order with 13 bits

103 order with 12 bits

Figure 5.8 The effects on frequency response of the tradeoff between filter
order and coefficient length.

The hardware complexity can be estimated by using the total number of

binary bits:

Total number of binary bits=Number of taps Number of bits per coefficient× (5.5)

96

5.2.1.2.2 FIR filter implementations with increased constraints

With the same specifications: ωp = 0.43; ωs=0.5; Ap=0.2 dB, Table 5.4

summarizes the results achieved when the rejection band is lowered.

The total number of bits required for these example designs is summarized

in Table 5.4. This measure of complexity is a more generalized approach to area

requirement that would give insight into general designs. However, more accurate

area requirements for these particular filters can be determined through

implementation and/or determining the number of non-zero bits required for a CSD

implementation which is also listed in Table 5.4. As the rejection band attenuation

requirement is increased, the filter order and the number of bits per coefficient

required also increase. The results here are similar to those shown in Table 5.3:

since the filter is long, saving even a single bit in each coefficient can achieve a

significant savings in the whole filter design. As a result, when the order increased,

the total number of binary bits is decreased, as well as the total number of non-zero

CSD bits and the hardware complexity. For this example, using an increased

attenuation requirement in the design process and the original attenuation

requirement for the coefficient quantization led to an increase in the total number of

bits. It appears that this commonly used approach has significant drawbacks with

respect to implementation area.

97

TABLE 5.4 THE RESULTS OF FILTER ORDER, WORDLENGTH OF
COEFFICIENTS REQUIRED, TOTAL NUMBER OF BINARY AND

NONZERO CSD BITS, WHEN STOPBAND ATTENUATION IS CHANGED
(NOT INCLUDING THE SIGN BIT)

As (dB) Order Number of bits
per coefficient

Total number
of binary bits

Total number of
nonzero CSD

bits

178 20 3580 758

183 18 3312 624 80

189 17 3230 600

149 19 2850 626

152 18 2754 580 70

155 16 2496 486

134 18 2430 520

138 16 2224 450 65

142 15 2145 430

105 17 1802 404

108 14 1526 304 55

114 13 1495 287

90 19 1729 430

95 13 1248 258 50

103 12 1248 234

98

5.2.2 Optimizing filter order and coefficient length in the design of

multiplierless adaptive filters

Similar results can be obtained for adaptive systems, which is more directly

relevant to the new techniques introduced in Chapter 3 and 4 of this dissertation.

In this section, I explore the implementation of adaptive finite impulse

response (FIR) filters using VLSI hardware, such as field programmable gate

arrays (FPGAs) [53]. Typically, adaptive filters are implemented using

conventional multipliers because of the need to change the filter coefficients with

the adaptation algorithm [60]. This approach does not allow the implementation to

exploit previously existing multiplierless techniques that are appropriate only for

implementing fixed coefficient filters. The new multiplierless techniques

introduced in Chapter 3 and 4 can be used for implementing adaptive filters, but

coefficient quantization effects must be taken into consideration since most

adaptation algorithms are based on the assumption of infinite precision

coefficients.

To implement an adaptive filter using multiplierless approaches, the

possible coefficients must be significantly limited. The adaptation function must be

defined to select among this restricted set of possible coefficients. Opportunities

arise for further restriction of the set to coefficients that are particularly desirable,

e.g. powers-of-two, sums of two powers-of-two, differences of two powers-of-two.

99

Consider the use of an adaptive filter to identify an 8th order system defined

by the FIR filter with coefficients:

w = [0.03501821523157 0.09678782491413 0.18038616802081 0.25365125649930
 0.28292173233290 0.25365125649930 0.18038616802081 0.09678782491413
 0.03501821523157].

If the wordlength of the coefficients for the adaptation algorithm is limited,

it affects the mean-square-error as shown in Figure 5.9. It is possible to compensate

for limiting the number of bits per coefficient by increasing the order of the

identified system as shown in Figure 5.10.

For the example adaptive filter, suppose that I restrict the number of bits

used for each coefficient of the identified system to 8 – this corresponds to a CSD

representation that uses four or fewer non-zero ({1, 1}) digits. I find in my

simulations that using fewer bits results in divergence of the adaptation algorithm,

i.e. the effective step size is too large. Suppose further, that I also modify the

gradient calculation and the error signal ()e n so that multiplications of ()e nμ ⋅

and () ()e n x nμ ⋅ ⋅ are now replaced only by a shift of bits respectively, where μ is

given in (1.5). This implies that the step size μ and ()e n must be an exact power

of two, i.e. we must have 2 νμ −= . In my simulation, I have chosen 52μ −= and I

use barrel shifters. See Figure 5.11 for this detail in a block diagram form. The

effects of these restrictions are shown via simulation (Figure 5.12).

100

Figure 5.9 MSE for varying bit lengths used per coefficient (plus the sign bit).

Figure 5.10 MSE for varying numbers of filter taps of the identified system
with 11 bits per coefficient (including the sign bit, 52μ −=).

101

Figure 5.11 Proposed Structure of N+1 taps FIR adaptable filter.

μ

()x n w0

w1

w2

wN

-
+

∑ ∑

N+1 shifters N+1 adders N+1 CSD
multipliers

()y n

()d n

N adders 1 subtractor

1 shifter

()e n

Delay

Delay

Delay

Shifter

Shifter

Shifter

Shifter

Quantized to 8 bits

Delay

Quantized to 8 bits

Delay

Delay

Quantized to 8 bits

Delay

Quantized to 8 bits

CSD
Multiplier

CSD
Multiplier

CSD
Multiplier

CSD
Multiplier

Shifter
()e nμ ∗

102

Figure 5.12 MSE for varying filter taps where the multiplication is a shift and
the coefficients in the identified system have 8 bits (including the sign

bit, 52μ −=).

To determine whether this multiplierless approach gives better results in

terms of area when compared to implementations that employ traditional

multipliers, one must analyze the design in terms of known parameters. For the

example, the multiplier-based implementation requires 2N+3 multipliers, 2N+1

adders, and 1 subtractor where N is the order of the system. The area complexity of

traditional multipliers are typically O(b2) where b is the number of bits multiplied.

The multiplierless approach replaces N+2 multiplies by N+2 shifts, and replaces

103

the other N+1 multiplies by combinations of shifts and additions or subtractions.

Because the shifts are not known a priori, they must be implemented using shift

registers, gates (similar to barrel shifter circuits). For a gate implementation, the

shift circuit has area complexity O(b). CSD multiplies can be implemented using

FastCSD or real-time CSD recoding multipliers as introduced in Chapter 3 and 4.

The size of each multiplier is less than or equal to O(b). So, we have replaced the

O(b2) multiplier circuits with circuits that are linear in the number of bits. Table 5.5

gives a detailed comparison between multiplier based and multiplierless adaptive

FIR filter implementation.

In summary, the area of our proposed multiplierless adaptive FIR filter design

is O(Nb) compared to the required area of a multiplier-based adaptive filter, which

is O(Nb2). Additional restrictions in the quantization function can further reduce

the area required.

TABLE 5.5 COMPLEXITY COMPARISON OF MULTIPLIER-BASED AND

MULTIPLIERLESS ADAPTIVE FIR FILTERS OF ORDER N

Number of

b-bit
multipliers

Number
of b-bit
adders

Number of
b-bit

subtractors

Number
of shift
circuits

Number of
CSD

multiplies

Multiplier-based 2N+3 2N+1 1 — —

Multiplierless — 2N+1 1 N+2 N+1

104

Chapter 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

I have reviewed current filter implementation techniques and multiplierless

techniques for high performance FPGA implementation of digital filters in this

dissertation. Current popular multiplierless techniques have been implemented and

compared in detail by designing an example loop filter in Delta-Sigma A/D and

D/A system.

The implementation of adaptive filters cannot benefit from fast, low area

filter design techniques that use a priori information about the filter coefficients. I

propose a novel implementation technique — FastCSD that can be used to

construct general multipliers which require less area and achieve higher throughput

rates. The method for converting a number from 2’s complement representation to

CSD representation can be used to implement adaptive filters in FPGAs or other

custom hardware. Performance analysis indicates that the design provides better

results than are currently available considering both the conversion speed and the

105

computational complexity. Since the technique does not require a specific word

length for the multiplier and does not depend on prior knowledge of the multiplier

value, it has broad applications. The method only requires several shifts and logic

operations, so the complexity of the hardware implementation has been effectively

reduced compared to conventional methods, such as modified Booth’s recoding

and Look-Up-Table based techniques. The throughput of the implementation can

be further improved by incorporating parallel processing with only a modest

increase in area [18].

I have presented an efficient iterative multiplier structure based on a novel

real-time CSD recoding circuit [19], [20]. To the best of my knowledge, this

structure is the first iterative multiplier based on real-time CSD recoding. Because

of the iterative multiplier nature, the proposed design requires lower area compared

with array multipliers. Furthermore, the CSD number property ensures that this

multiplier has the minimum number of nonzero partial products among all radix-2

number representation based multipliers. The number of add/subtract operations is

further reduced through the use of bypass techniques. On average, 66.7% of the

partial product generation operations are replaced with a simple bypass to the

shifting structure and carry propagation is totally eliminated as well. Thus, the

complexity of the hardware implementation is dramatically reduced as compared to

conventional methods, including modified Booth recoding and competing CSD

recoding techniques. This approach achieves an overall speed-up as well as reduced

106

power consumption which is particularly critical in mobile multimedia applications.

Finally, unlike other CSD number based multipliers, the structure proposed here

uses real time CSD recoding, and does not require a fixed value for the multiplier

input to be known a priori; as a result, the proposed multiplier can be used for the

efficient implementation of digital filters with non-fixed filter coefficients, such as

adaptive filters.

Also, I have presented a novel multi-input CSD multiplier unit and its

application to efficient implementation of DSP algorithms, such as the

implementations of digital filters and filter banks [53]. The developed multi-input

CSD multiplier requires less shift/add/subtract operations and CSD conversion

overhead. Consequently, the power consumption and area requirement of the

implemented hardware can be significantly reduced. The technique does not

depend on prior knowledge of the coefficients; therefore, it is suitable for adaptive

filter implementation. The implementation efficiency can be further improved by

reducing the number of input bits without any or with only a small sacrifice in the

filter performance.

Hardware complexity is one of the most important considerations when

implementing digital filter structures in FPGAs. In my dissertation, the tradeoff

between filter order and coefficient length in the design and implementation of

high-performance filters has been presented. Non-minimum order FIR filters are

107

designed for implementation using canonical signed digit (CSD) multiplierless

implementation techniques. By using non-minimum order designs, the length of the

coefficients can be reduced, and thus an overall hardware savings can be achieved.

In addition, I consider the use of overly-stringent specifications combined with

quantization and increased order to improve the filter implementation [22]. In

addition, the FPGA implementation of a multiplierless FIR adaptive filter has been

discussed [53]. Simulations of an adaptive filter were conducted, taking into

account the wordlength of each coefficient, multiply, and addition/subtraction.

Also considered is the filter tap length. The results show that one can compensate

for limiting the number of bits used to represent each coefficient by increasing the

order of the identified system. Because the proposed method produces a space

requirement that is linear in the order, rather than the conventional quadratic in the

order, I have thus effectively reduced the complexity of the hardware

implementation.

This dissertation makes the following contributions:

• Developed the first non-iterative hardware algorithm to convert 2’s

complement to CSD (FastCSD) [18] which is faster than existing

techniques with lower space and power consumptions.

• Leveraged FastCSD [18] to develop a new, high performance iterative

multiplier structure based on novel real-time CSD recoding [19], [20]

108

which has simpler structure than other competitive techniques with less

computational complexity and low power consumptions.

• Developed the first multi-input multiplier unit suitable for adaptive DSP

algorithm implementations [21].

• Optimized filter order and coefficient length for design of high performance

FIR and adaptive filters [22].

6.2 Future works

I plan to incorporate the FastCSD method [18] into the multi-input CSD

multipliers [53] which requires all the CSD digits to be converted simultaneously.

This new multi-input CSD multiplier circuit will allow the construction of high

throughput adaptive filters in FPGAs or other custom hardware under practical

time, space and power constraints.

In this dissertation, I introduced a novel radix-2 CSD iterative multiplier

that implicitly converts 2’s complement to CSD in real-time. However, it would be

interesting to explore higher radix hardware that might further reduce the power

consumption while simultaneously increasing the computational bandwidth

significantly.

109

I would also like to apply FastCSD and real-time CSD recoding multiplier

to Delta-Sigma systems. Hopefully, it will yield a higher resolution and higher

throughput D/A converter.

I also plan to evaluate the new techniques described in this dissertation and

integrate them with my previous work, such as, adaptive nonlinear filter for

adaptive nonlinear echo cancellation in [61] or the adaptive filters considered in

[53], [62], [63], and [64].

110

REFERENCES

[1] G. R. Goslin, "Using Xilinx FPGAs to Design Custom Digital Signal

Processing Devices,” Proc. of the DSPX, 1995, pp. 565-604.

[2] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, New

York: McGraw-Hill Companies, 2000.

[3] S. Haykin, Adaptive filter theory, 4th ed, New York: Prentice Hall, 2002.

[4] J. Kang and J. Gaudiot, “A simple high-speed multiplier design, ” IEEE

Trans. on Computers, vol. 55, No. 10, 2006, pp. 1253-1258.

[5] A. Efthymiou, W. Suntiamorntut, J. Garside, and L.E.M. Brackenbury,

“An Asynchronous, iterative implementation of the original Booth

multiplication algorithm,” in Proc. Int'l. Symp. Asynch. Circuits and Syst.,

2004, pp. 207-215.

[6] M. A. Soderstrand, "CSD multipliers for FPGA DSP applications," in Proc.

IEEE Int’l. Symp. Circuits, Syst., vol.5, 2003, pp. V-469 - V-472.

[7] J. Hensley, A. Lastra, and M. Singh, “An area- and energy efficient

Asynchronous Booth multiplier for mobile devices,” in Proc. IEEE Int’l.

Conf. Computer Design, 2004, pp. 18-25.

111

[8] C.-L. Chen, K.-Y. Khoo, and A. N. J. Willson, "A Simplified signed

powers-of-two conversion for multiplierless adaptive filters," in Proc.

IEEE Int’l. Symp. Circuits, Syst., 1996, pp. 364-367.

[9] G. K. Ma and F. J. Taylor, “Multiplier policies for digital signal

processing,” IEEE ASSP Mag., 1990, pp. 6-20.

[10] G.A. Ruiz and M.A. Manzano, "Self-Timed Multiplier Based on Canonical

Signed-Digit Recoding," IEE Proc. Circuits, Devices, and Systems, vol.

148, no. 5, 2001, pp. 235-241.

[11] S. M. Kim, J. G. Chung, and K. K. Parhi, “Design of low error CSD

fixed-width multiplier,” in Proc. IEEE Int’l. Symp. Circuits, Syst., 2002, pp.

I-69 - I-72.

[12] A.D. Booth, “A Signed Binary Multiplication Technique,” Quarterly J.

Mechanics and Applied Math., vol. 4, 1951, pp. 236-240.

[13] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson, "A

novel high performance distributed arithmetic adaptive filter

implementation on an FPGA," in Proc. IEEE Int’l. Conf. Acoust., Speech,

Signal Proc., vol.5, 2004, pp. V-161 - V-164.

[14] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and.

Implementation, John Wiley, 1999.

112

[15] A. G. Dempster and M. D. Macleod, "Constant integer multiplication using

minimum adders," IEE Proceedings: Circuits, Devices and Systems, vol.

141, 1994, pp. 407-413.

[16] D. B. Bull and D. H. Horrocks, "Primitive operator digital filters," IEE

Proceedings, Part G: Circuits, Devices and Systems, vol. 138, 1991, pp.

401-412.

[17] D. Li and Y. C. Lim, "Multiplierless realization of adaptive filters by

nonuniform quantization of input signal," in Proc. IEEE Int’l. Symp.

Circuits, Syst., 1994, pp. 457-459.

[18] Y. Wang, L. S. DeBrunner, D. Zhou, and V. E. DeBrunner, "A novel

hardware implementation method for adaptive filter coefficients," in Proc.

IEEE Int’l. Conf. Acoust., Speech, Signal Proc., 2007.

[19] Y. Wang, L. S. DeBrunner, D. Zhou, and V. E. DeBrunner, "A multiplier

structure based on a novel real-time CSD recoding," in Proc. IEEE Int’l.

Symp. Circuits, Syst., 2007.

[20] Y. Wang, L.S. DeBrunner, D. Zhou, V.E. DeBrunner, and J. P. Havlicek,

“Efficient iterative multiplier structure based on a novel real-time CSD

recoding,” submitted to IEEE Trans. Circuits and Systems I, 2007.

[21] Y. Wang, L. DeBrunner, V. DeBrunner, and D. Zhou, “A multi-input

multiplier unit suitable for adaptive DSP algorithm implementations,” in

Proc. Asilomar Conf. Signals, Syst., Comput., 2006.

113

[22] L. S. DeBrunner and Y. Wang, "Optimizing filter order and coefficient

length in the design of high performance FIR filters for high throughput

FPGA implementations,” IEEE DSP Workshop, 2006, pp. 608-612.

[23] Berkeley Design Technology Inc., 2000, white paper, “Choosing a DSP

Processor”. http://www.bdti.com/articles/choose_2000.pdf

[24] L. Adams, "Choosing the right architecture for real-time signal processing

designs," Texas Instruments, 2002.

[25] Altera Corp., 2007, white paper, "FPGA vs. DSP Design Reliability and

Maintenance". http://www.altera.com/literature/wp/wp-01023.pdf

[26] U. Meyer-Baese, Digital Signal Processing with Field Programmable

Gate Arrays, Springer-Verlag, Berlin, Germany, 2001.

[27] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs.

London, Oxford Press, 1999.

[28] I. Koren, Computer Arithmetic Algorithms, 2nd ed., Prentice Hall, 2001.

[29] K. Chapman, “Building high performance FIR filter using KCM,” Xilinx

Ltd, 1996.

[30] G. Goslin, “A guide to using field programmable gate arrays (FPGAs) for

application-specific digital signal processing performance,” XILINX Inc.,

1995.

[31] G. Goslin, “Using Xilinx FPGAs to design custom digital signal

processing devices,” in Proceedings of the DSPX, 1995, pp. 565-604.

114

[32] O. L. MacSorley, "High Speed Arithmetic in Binary Computers", Proc. of

IRE, vol.49, no. 1, Jan. 1961. pp. 67-91.

[33] R. C. Agarwal and R. Sudhakar “Multiplier-Less Design of FIR Filters,” in

Proc. IEEE Int’l. Conf. Acoust., Speech, Signal Proc, 1983, pp. 209-212.

[34] N. Benvenuto , L. E. Franks and F. S. Hill “On the Design of FIR Filters

with Power-of-two Coefficients,” IEEE Trans. on Communications, vol.

COM-32, 1974, pp. 1299.

[35] D. Koo and A. Miron “Design of Mulitplierless FIR Digital Filters with

Two to the N th Power Coefficients,” IEEE Trans. on Consumer

Electronics, vol. CE-33, Iss. 3, 1987, pp. 109 - 114.

[36] I. A. Shah and A. K. Bhattacharya, “A Fast Multiplierless Architecture for

General Purpose VLSI FIR Digital Filters,” IEEE Trans. on Consumer

Electronics, vol. CE-33, Iss. 3, 1987, pp. 129 - 135.

[37] H. Samueli, "The design of multiplierless digital data transmission filters

with powers-of-two coefficients," in Proc. IEEE Int. Telecommunications

Symp., 1990, pp.425–429.

[38] A. G. Dempster and M. D. Macleod, “Generation of signed-digit

representations for integer multiplication,” IEEE Signal Process. Lett., vol.

11, no. 5, 2004, pp. 663-665.

[39] P. Pirsch, Architectures for Digital Signal Processing, New York: Wiley,

1998.

115

[40] G.W. Reitwiesner, “Binary Arithmetic,” Advances in Computers, vol. 1,

1960, pp. 231-308.

[41] Y. Voronenko and M. Püschel, "Multiplierless Multiple Constant

Multiplication," ACM Transactions on Algorithms. vol. 3, Iss. 2, 2007.

[42] P. R. Cappello, and K. Steiglitz, "Some complexity issues in digital signal

processing," IEEE Trans. Acoust., Speech, Signal Proc., vol. 32, no. 5,

1984, pp. 1037-1041.

[43] O. Gustafsson, A. G. Dempster, and L. Wanhammar, "Extended results for

minimum-adder constant integer multipliers," in Proc. IEEE Int’l. Symp.

Circuits, Syst., vol. 1, 2002, pp. I-73 - I-76.

[44] A. G. Dempster and M. D. Macleod, “Use of minimum-adder multiplier

blocks in FIR digital filters,” IEEE Trans. Circuits Syst. II, vol. 42, 1995,

pp. 569-577.

[45] P.M. Aziz, H.V.Sorensen, J. vn der Spiegel, "An overview of sigma-delta

converters," IEEE Signal Processing Magazine, vol. 13, Iss. 1, 1996, pp.

61 -84.

[46] D. P. Scholnik, “A parallel digital architecture for delta-sigma

modulation,” in Proc. IEEE Int'l Midwest Symp. Circuits, Syst., vol.1, 2002,

pp. I-352 - I-355.

116

[47] Y. Wang, “Multiplierless implementation of loop filters in parallel

Delta-sigma D/A converters,” Technical Report, Dept. of Electrical and

Computer Engineering, U. of Oklahoma, 2007.

[48] Y. Voronenko, "SPIRAL multiplier block generator," Carnegie Mellon U.,

2006. http://www.ece.cmu.edu/~yvoronen/homepage/mcm/gen.html

[49] John Treichler, plenary comments, IEEE DSP Workshop, 2006.

[50] F. Xu, C. Chang and C. Jong, “HWP: a new insight into canonical signed

digit,” in Proc. IEEE Int’l. Symp. Circuits, Syst., 2004, pp. 201-204.

[51] R. Hashemian, “A new method for conversion of a 2's complement to

canonic signed digit number system and its representation,” in Proc.

Asilomar Conf. Signals, Syst., Comput., 1997, pp.904-907.

[52] Bill Allaire and Bud Fischer, “Block adaptive filter,” Xilinx Application

Note, XAPP 055, version 1.1, 1997.

[53] L. S. DeBrunner, Y. Wang, V. DeBrunner, and M. Tull, "Multiplierless

implementations of adaptive FIR filters," in Proc. Asilomar Conf. Signals,

Syst., Comput., 2003, pp. 2232-2236.

[54] K. Dabbagh-Sadeghipour and A. Aghagolzadeh, “A new hardware

efficient, low power FIR digital filter implementation approach,” in Proc.

IEEE Int'l Conf. Electronics, Circuits and Syst., vol.3, 2003, pp. 1144 -

1147.

117

[55] D. Li, “Minimum number of adders for implementing a multiplier and its

application to the design of multiplierless digital filters,” IEEE Trans.

Circuits and Systems, vol. 42, Iss. 7, 1995, pp.453 – 460.

[56] H. R. Mehrvarz and C. Y. Kwok, “ A novel multi-input floating-gate MOS

four-quadrant analog multiplier,” IEEE J. of Solid-State Circuits, vol. 31,

no. 8, 1996, pp. 1123-1131.

[57] D. Chan and L. Rabiner, "Analysis of quantization errors in the direct form

for finite impulse response digital filters," IEEE Trans. on Audio and

Electroacoustics , vol. 21, 1973, pp. 354-366.

[58] Pontus Åström, Peter Nilsson and Mats Torkelsson, “Low Power

Optimization of Bit-Serial Digital Filters,” ASIC Conference and Exhibit,

1997, pp. 229 – 232.

[59] K. Tan, W. F. Leong, S. Kadam, M.A. Soderstrand, and L. G. Johnson,

“Public-domain MATLAB program to generate highly optimized VHDL

for FPGA Implementation,” in Proc. IEEE Int’l. Conf. Acoust., Speech,

Signal Proc., 2001, pp. 514 – 517.

[60] D. T. Franco and L. Carro, "A FPGA Version of a Non-Linear Adaptive

Filter," XII Symp. Integrated Circuits and Systems Design, 1999,

pp.128-131.

118

[61] D. Zhou, Y. Wang, V. DeBrunner, and L. DeBrunner, “Sub-band

Implementation of Adaptive Nonlinear Filter for Adaptive Nonlinear Echo

Cancellation,” J. Multimedia, vol. 2, Iss. 2, 2007, to appear.

[62] Y. Wang, L.S. DeBrunner, J. P. Havlicek and D. Zhou, "Signal Exclusive

Adaptive Average Filter in Impulse Noise Suppression," IEEE Southwest

Symp. Image Analysis and Interpretation, 2006. pp. 51-55.

[63] Y. Wang, L. S. DeBrunner, V. E. DeBrunner, and D. Zhou, "Quantization

effect on phase response and its application to multiplierless ANC," in Proc.

IEEE Int’l. Conf. Acoust., Speech, Signal Proc., vol. 5, 2004, pp. 65-68.

[64] D. Zhou, V. DeBrunner, L. DeBrunner and Y. Wang, "Geometric Based

analysis of FXLMS algorithm," IEEE Statistic Signal Processing 13th

Workshop, July, 2005, pp. 127-132.

119

APPENDIX A

NOMENCLATURES AND ABBREVIATIONS

⎡ ⎤⎢ ⎥

IIt

ΔΣ

A/D

D/A

Ap

As

ANC

ASICs

BHA

BHM

Round towards positive infinity

The transpose of direct form II

Delta-sigma

Analog to digital

Digital to analog

Pass band Attenuation

Stop band Attenuation

Active Noise Control

Application Specific Integrated Circuits

Bull-Horrocks’ algorithm

Bull-Horrocks’ algorithm Modified

120

CM

CMOS

CSD

DA

DAG

DFS

DSP

FFT

FIR

IIR

FPGA

IOBs

KCM

LMS

LSB

Constant Multiplication

Complementary Metal Oxide Silicon

Canonical Signed Digit

Distributed Arithmetic

Directed Acyclic Graph

Difference Form Signed

Digital signal processing

Fast Fourier Transform

Finite Impulse Response

Infinite Impulse Response

Field Programmable Gate Array

Input Output Blocks

Constant Coefficients Multiplier

Least Mean Square

Least Significant Bit

121

LUT

MAC

MAG

MCM

MSD

MSE

NRL

RAG-n

RAM

SCM

SNR

SPT

VLSI

ωp

ωs

Look Up Table

Multiply-Accumulator

Multiplier Adder Graph

Multiple Constant Multiplication

Minimal Signed Digit

Mean Squared Error

Naval Research Laboratory

n-Dimensional Reduced Adder Graph

Random Access Memory

Single Constant Multiplication

Signal-to-noise ratio

Signed Powers-of-Two

Very Large Scale Integration

Pass band Frequency

Stop band Frequency

122

APPENDIX B

SELECTED MATLAB® CODES

1. Codes that generate Figure 3.8

init
fc=0.25; % center frequency
B=0.015; % one-sided bandwidth
fL=fc-B/2; fH=fc+B/2; % edge frequencies
[hopt, delta]=SDfilter_l1([1 0 1.3125 repmat(NaN,1,197)],[fc-B/2, fc+B/2],2.95,'sedumi');
h_n0=[];
N_n0=[];
for i=1:length(hopt)
 if hopt(i)~=0
 h_n0=[h_n0 hopt(i)];
 N_n0=[N_n0 i];
 end
end
h_n0
N_n0
h1= dfilt.dffir(hopt);
hopt1=copy(h1);
wl=20;
set(hopt1,'Arithmetic','fixed')
set(hopt1,'CoeffWordLength',wl);
H_1=get(hopt1,'Numerator');
figure
freqz(H_1,1)
N1=hopt1.CoeffWordLength
hopt2=copy(h1);
wl2=input ('Coefficients Wordlength w2=');
set(hopt2,'Arithmetic','fixed')
set(hopt2,'CoeffWordLength',wl2);
H_2=get(hopt2,'Numerator');
figure
freqz(H_2,1)
N2=hopt2.CoeffWordLength;

hopt3=copy(h1);
wl3=input ('Coefficients Wordlength w3=');
set(hopt3,'Arithmetic','fixed')
set(hopt3,'CoeffWordLength',wl3);
H_3=get(hopt3,'Numerator');
N3=hopt3.CoeffWordLength;

123

hopt4=copy(h1);
wl4=input ('Coefficients Wordlength w4=');
set(hopt4,'Arithmetic','fixed')
set(hopt4,'CoeffWordLength',wl4);
H_4=get(hopt4,'Numerator');
N4=hopt4.CoeffWordLength;

H_1max=max(abs(H_1));
np=ceil(log2(H_1max));
H1_shift=ceil(H_1*2^(N1-2))
H1_n0=[];
N1_n0=[];
for i=1:length(H1_shift)
 if H1_shift(i)~=0
 H1_n0=[H1_n0 H1_shift(i)];
 N1_n0=[N1_n0 i];
 end
end
H1_n0
N1_n0
hopt1_csd=zeros(length(H1_n0),N1+1);
r=[];

for ii=1:length(H1_n0)
 [hopt1_csd(ii,:),r(ii)]=real2csd(H1_n0(ii),N1,0);
end;
non0=sum(sum(abs(hopt1_csd)))
hopt1_csd

href1 = reffilter(h1);% Reference double-precision floating-point filter.
hfvt1 = fvtool(href1,hopt1,hopt2,hopt3,hopt4);
set(hfvt1,'ShowReference','off'); % Reference already displayed once
legend(hfvt1, ['H double-precision'], ['H ' num2str(N1) ' bits'],['H ' num2str(N2) ' bits'],['H '
num2str(N3) ' bits'],['H ' num2str(N4) ' bits'])
set(hfvt1, 'Color', [1 1 1])

2. Codes that generate Figure 5.6-5.7

Wp = 0.43;
Ws = 0.5; % Fc = (Fp+Fst)/2; Transition Width = Fst - Fp
Ap = 0.2;
As = 50;
min_order=90;
deltp=1-10^(-Ap/20);
delts=10^(-As/20);
pass= 0:1/512:Wp;

124

stop= Ws:1/512:1;
[b_m,err_m]=firgr('minorder',[0 Wp Ws 1], [1 1 0 0], [deltp delts]);
[H_m,W_m]=freqz(b_m,1);
[b,err]=firgr(min_order,[0 Wp Ws 1], [1 1 0 0], [deltp delts]);
[H_inf,W]=freqz(b,1);
if sum(abs(H_inf(1:round(512*Wp)))> (1+deltp))|sum(abs(H_inf(1:round(512*Wp)))< (1-deltp))
 error('(H_inf passband does not satisfy the design specification)')
end
tt=sum(abs(H_inf(ceil(512*Ws)+1:512))> delts);
if tt>0
 error('(H_inf stopband does not satisfy the design specification)')
end
h0 = dfilt.dffir(b);
h=copy(h0);
set(h,'Arithmetic','fixed')
h.CoeffWordLength=19;
hh=get(h,'Numerator');
[h16,W16]=freqz(hh,1);
h1 = copy(h);
h1.CoeffWordLength = 14;
h_1=get(h1,'Numerator');
[H1,W23]=freqz(h_1,1);
h2 = copy(h);
h2.CoeffWordLength = input ('Estimated h coefficeints wordlength (1) =');
%h2.CoeffWordLength = 21;
h_2=get(h2,'Numerator');
[H2,W21]=freqz(h_2,1);
h3 = copy(h);
h3.CoeffWordLength = input ('Estimated h coefficeints wordlength (2) =');
%h3.CoeffWordLength = 22;
h_3=get(h3,'Numerator');
[H3,W22]=freqz(h_3,1);
h4 = copy(h);
h4.CoeffWordLength = input ('Estimated h coefficeints wordlength (3) =');

h_4=get(h4,'Numerator');
[H4,W24]=freqz(h_4,1);
href = reffilter(h0); % Reference double-precision floating-point filter.
hfvt = fvtool(href,h,h1,h2,h3,h4);
set(hfvt,'ShowReference','off'); % Reference already displayed once
legend(hfvt, 'Reference filter', 'h 19 bits', ['h ' num2str(h1.CoeffWordLength) ' bits'],['h '
num2str(h2.CoeffWordLength) ' bits'],['h ' num2str(h3.CoeffWordLength) ' bits'],['h '
num2str(h4.CoeffWordLength) ' bits'])
set(hfvt, 'Color', [1 1 1])

diff_h19=H_inf-h16;
diff_h14=H_inf-H1;
diff_h2=H_inf-H2;
diff_h3=H_inf-H3;

125

diff_h4=H_inf-H4;

figure(2)
plot(W,diff_h19)
hold on
plot(W,diff_h14,'y--')
hold on
plot(W,diff_h2,'g-.')
hold on
plot(W,diff_h3,'k:')
hold on
plot(W,diff_h4,'m')

xlabel('Frequency')
ylabel('Amplitude(dB)')
legend('E_f19 bits','E_f14 bits','E_f12 bits','E_f10 bits','E_f8 bits');

3. Codes that generate Figure 5.8

Wp = 0.43;
Ws = 0.5; % Fc = (Fp+Fst)/2; Transition Width = Fst - Fp
Ap = 0.2;
As = 50;
min_order=95;
deltp=1-10^(-Ap/20);
delts=10^(-As/20);
[b,err]=firgr(min_order,[0 Wp Ws 1], [1 1 0 0], [deltp delts]);
[H_inf,W]=freqz(b,1);
h0 = dfilt.dffir(b);
h=copy(h0);
set(h,'Arithmetic','fixed')
h1 = copy(h);
h1.CoeffWordLength = 19;
H_1=get(h1,'Numerator')
H_1max=max(abs(H_1));
np=ceil(log2(H_1max));
if np<0
 np=0;
end
p1=92;
[bp1,errp1]=firgr(p1,[0 Wp Ws 1], [1 1 0 0], [deltp delts]);
hp1= dfilt.dffir(bp1);
set(hp1,'Arithmetic','fixed')
Ht(1)=copy(hp1);
set(Ht(1),'CoeffWordLength',16);
p2=93;
[bp2,errp2]=firgr(p2,[0 Wp Ws 1], [1 1 0 0], [deltp delts]);

126

hp2 = dfilt.dffir(bp2);
set(hp2,'Arithmetic','fixed')
Ht(2)=copy(hp2);
set(Ht(2),'CoeffWordLength',14);
p3=95;
[bp3,errp3]=firgr(p3,[0 Wp Ws 1], [1 1 0 0], [deltp delts]);
hp3 = dfilt.dffir(bp3);
set(hp3,'Arithmetic','fixed')
Ht(3)=copy(hp3);
set(Ht(3),'CoeffWordLength',13);
p4=103;
[bp4,errp4]=firgr(p4,[0 Wp Ws 1], [1 1 0 0], [deltp delts]);
hp4 = dfilt.dffir(bp4);
set(hp4,'Arithmetic','fixed')
Ht(4)=copy(hp4);
set(Ht(4),'CoeffWordLength',12);
hfvt1 = fvtool(h1,Ht(1:4));
set(hfvt1,'ShowReference','off'); % Reference already displayed once
legend(hfvt1, '90 order with 19 bits', '92 order with 16 bits ' ,'93 order with 14 bits','95 order with 13
bits','103 order with 12 bits')
set(hfvt1, 'Color', [1 1 1])

127

APPENDIX C

SELECTED VHDL CODES

1. VHDL code that generate the multiplier based design in Table 2.5

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;

entity run8_18 is
port(xt : in std_logic_vector(19 downto 0);
 yt : out std_logic_vector(39 downto 0);
 clk,reset: in std_logic);
end run8_18;

architecture Behavioral of run8_18 is
 constant L:integer:=198;
 constant o20:std_logic_vector(19 downto 0):="00000000000000000000";
 constant o40:std_logic_vector(39 downto

0):="00";
 constant H0:std_logic_vector(19 downto 0):="01000000000000000000";--

262144
 constant H2:std_logic_vector(19 downto 0):="01010100000000000000";--

344064
 constant H12:std_logic_vector(19 downto 0):="00001100000001000000";-- 49216
 constant H14:std_logic_vector(19 downto 0):="11110010001110000111";--

-56441
 constant H38:std_logic_vector(19 downto 0):="00001000000011111001";--

33017
 constant H72:std_logic_vector(19 downto 0):="00000011010111011100";-- 13788
 constant H110:std_logic_vector(19 downto 0):="00000001101010111001";-- 6841
 constant H150:std_logic_vector(19 downto 0):="11111111000001111111";-- -3969
 constant H182:std_logic_vector(19 downto 0):="00000000101010100111";-- 2727
 constant H198:std_logic_vector(19 downto 0):="11111111101110100000";-- -1120

 type vect is array (0 to L) of std_logic_vector(19 downto 0);
 type vec1 is array (0 to L-1) of std_logic_vector(39 downto 0);
 type vec is array (0 to L) of std_logic_vector(39 downto 0);

begin

 PROCESS(clk)
 variable H : vect:=(0=>H0,2=>H2,12=>H12,14=>H14,38=>H38,72=>H72,

128

110=>H110,150=>H150,182=>H182,198=>H198,others=>o20);
 variable x : std_logic_vector(19 downto 0);

 variable ym:vec;
 variable v:vec1;
 begin
 if reset='1' then
 x:=o20;
 ym:=(others=>o40);
 v:=(others=>o40);
 yt<=o40;

 elsif clk'event and clk='1' then
 x:=xt;
 ym(0):=x*H(0);
 ym(2):=x*H(2);
 ym(12):=x*H(12);
 ym(14):=x*H(14);
 ym(38):=x*H(38);
 ym(72):=x*H(72);
 ym(110):=x*H(110);
 ym(150):=x*H(150);
 ym(182):=x*H(182);
 ym(198):=x*H(198);
 yt<=v(0)+ym(0);
 for k in 0 to L-2 loop
 v(k):=v(k+1)+ym(k+1);
 end loop;
 v(L-1):=ym(L);
 end if;
 end process;
end Behavioral;

2. VHDL code that generate the CSD based design in Table 2.5

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity run8_CSD_18 is
port(xt : in std_logic_vector(19 downto 0);
 yt : out std_logic_vector(39 downto 0);
 clk,reset: in std_logic);
end run8_CSD_18;

129

architecture Behavioral of run8_CSD_18 is
 constant L:integer:=198;
 constant o20:std_logic_vector(19 downto 0):="00000000000000000000";
 constant o40:std_logic_vector(39 downto

0):="00";
 type vec is array (0 to L) of std_logic_vector(19 downto 0);
 type vec1 is array (0 to L) of std_logic_vector(39 downto 0);
 type vect1 is array (0 to L-1) of std_logic_vector(39 downto 0);

 function multi_block(data_in: std_logic_vector(19 downto 0))
 return vec1 is
 VARIABLE Y: vec1;
 VARIABLE

w1,w262144,w344064,w49215,w56441m,w33016,w13787,w6840,w3969m,w2726,w112
0m:std_logic_vector(39 downto 0);

 begin
 w1:= SXT(data_in,40);
 w262144:= SHL(w1,"10010");
 w344064:= (SHL(w1,"10010"))+(SHL(w1,"10000"))+(SHL(w1,"1110"));
 w49215:= (SHL(w1,"10000"))-(SHL(w1,"1110"))+(SHL(w1,"110"));
 w56441m:=

(SHL(w1,"1101"))-(SHL(w1,"10000"))+(SHL(w1,"1010"))-(SHL(w1,"111"))+(SHL(w1,
"11"))-(SHL(w1,"0"));

 w33016:=
(SHL(w1,"1111"))+(SHL(w1,"1000"))-(SHL(w1,"11"))+(SHL(w1,"0"));

 w13787:=
(SHL(w1,"1110"))-(SHL(w1,"1011"))-(SHL(w1,"1001"))-(SHL(w1,"101"))-(SHL(w1,"1
0"));

 w6840:=
(SHL(w1,"1101"))-(SHL(w1,"1010"))-(SHL(w1,"1000"))-(SHL(w1,"110"))-(SHL(w1,"1
1"))+(SHL(w1,"0"));

 w3969m:=(SHL(w1,"111"))-(SHL(w1,"1100"))-(SHL(w1,"0"));
 w2726:=

(SHL(w1,"1011"))+(SHL(w1,"1001"))+(SHL(w1,"111"))+(SHL(w1,"101"))+(SHL(w1,"
11"))-(SHL(w1,"0"));

 w1120m:=(SHL(w1,"101"))-(SHL(w1,"1010"))-(SHL(w1,"111"));

 Y :=(0=>w262144,2=>w344064,12=>w49215,14=>w56441m,38=>w33016,72=>w13787,

110=>w6840,150=>w3969m,182=>w2726,198=>w1120m,others=>o40);
 return Y;
 END multi_block;

begin
 PROCESS(clk)

 variable x : std_logic_vector(19 downto 0);
 variable ym:vec1;
 variable v:vect1;
 begin

130

 if reset='1' then
 x:=o20;
 ym:=(others=>o40);
 v:=(others=>o40);
 yt<=o40;
 elsif clk'event and clk='1' then
 x:=xt;
 ym:=multi_block(x);
 yt<=v(0)+ym(0);
 for k in 0 to L-2 loop
 v(k):=v(k+1)+ym(k+1);
 end loop;
 v(L-1):=ym(L);
 end if;
 end process;
end Behavioral;

3. VHDL code that generate the Hcub design in Table 2.5

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity run8_Hcub_18 is
port(xt : in std_logic_vector(19 downto 0);
 yt : out std_logic_vector(39 downto 0);
 clk,reset: in std_logic);
end run8_Hcub_18;

architecture Behavioral of run8_Hcub_18 is
 constant L:integer:=198;
 constant o20:std_logic_vector(19 downto 0):="00000000000000000000";
 constant o40:std_logic_vector(39 downto

0):="00";
 type vec is array (0 to L) of std_logic_vector(19 downto 0);
 type vec1 is array (0 to L) of std_logic_vector(39 downto 0);
 type vect1 is array (0 to L-1) of std_logic_vector(39 downto 0);

 function multi_block(data_in: std_logic_vector(19 downto 0))
 return vec1 is
 VARIABLE Y: vec1;
 VARIABLE

w1,w4,w5,w16,w21,w40,w35,w1024,w1023,w168,w855,w4092,w4127,w128,w127,w50
8,

131

 w1363,w4096,w3969,w20,w107,w13680,w13787,w320,w193,w49408,w49215,
w49601,w6840,w56441,

 w262144,w344064,w56441m,w33016,w3969m,w2726,w1120,w1120m:std_logi
c_vector(39 downto 0);

 begin
 w1:= SXT(data_in,40);
 w4:= SHL(w1,"10");
 w5:= w1 + w4;
 w16:= SHL(w1,"100");
 w21:= w5 + w16;
 w40:= SHL(w5,"11");
 w35:= w40 - w5;
 w1024:= SHL(w1,"1010");
 w1023:=w1024 - w1;
 w168:= SHL(w21,"11");
 w855:= w1023 - w168;
 w4092 := SHL(w1023,"10");

w4127 := w35 + w4092;
 w128 := SHL(w1,"111");
 w127 := w128 - w1;
 w508 := SHL(w127,"10");
 w1363 := w855 + w508;
 w4096 := SHL(w1,"1100");
 w3969 := w4096 - w127;
 w20 := SHL(w5,"10");
 w107 := w127 - w20;
 w13680 :=SHL(w855,"100");
 w13787 := w107 + w13680;
 w320 :=SHL(w5,"110");
 w193 := w320 - w127;
 w49408 :=SHL(w193,"1000");
 w49215 := w49408 - w193;
 w49601 := w193 + w49408;
 w6840 := SHL(w855,"11");
 w56441 := w49601 + w6840;
 w262144 :=SHL(w1,"10010");
 w344064 := SHL(w21,"1110");
 w56441m := o40- w56441;
 w33016 :=SHL(w4127,"11");
 w3969m := o40- w3969;
 w2726 := SHL(w1363,"1");
 w1120 :=SHL(w35,"101");
 w1120m :=o40- w1120;

 Y :=(0=>w262144,2=>w344064,12=>w49215,14=>w56441m,38=>w33016,72=>w13787,

110=>w6840,150=>w3969m,182=>w2726,198=>w1120m,others=>o40);
 return Y;
 END multi_block;

132

begin
 PROCESS(clk)

 variable x : std_logic_vector(19 downto 0);
 variable ym:vec1;
 variable v:vect1;
 begin
 if reset='1' then
 x:=o20;
 ym:=(others=>o40);
 v:=(others=>o40);
 yt<=o40;
 elsif clk'event and clk='1' then
 x:=xt;
 ym:=multi_block(x);
 yt<=v(0)+ym(0);
 for k in 0 to L-2 loop
 v(k):=v(k+1)+ym(k+1);
 end loop;
 v(L-1):=ym(L);
 end if;
 end process;
end Behavioral;

