A WWW INTERFACED DECISION SUPPORT SYSTEM
THAT INTEGRATES RDBMS AND GIS

WITH WWW SERVER

By
TAO ZHU
Bachelor of Science
Peking University
Beijing, P. R. China

1991

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May, 1997

A WWW INTERFACED DECISION SUPPORT SYSTEM
THAT INTEGRATES RDBMS AND GIS

WITH WWW SERVER

Thesis Approved:

Tbonae C. Collin,

Dean of the Graduate College

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my major advisor, Dr. Huizhu
Lu, for her intelligent supervision, constructive guidance, inspiration, encouragement, and
friendship.

Many thanks go to Dr. David Nofziger for providing me the opportunity to work
on the project, and the knowledgeable instructions throughout the whole process.

Sincere thanks also go to Dr. George Hedrick for providing precious advice and
instructions during my thesis work .

Special thanks go to the GIS specialist Mr. Mark Gregory at the Agronomy
Department of Oklahoma State University, for patiently guiding me in learning and using
GRASS.

Finally, T would like to express my special appreciation to my wife, Yan Gu, for

her love, encouragement, and understanding.

it

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION L e e 1
.. LITERATURE REVIEW . muunisiscssonssess s maaasov s ssss 4
2.1 SIMULATION MODEL ..ottt 4

2.7 WORLE WIDE WEB ..o gy s s s s i o iy b sy s sssysna 5

0 BTSRRI —
ZAGRASS . e 9

2.5 UNIX AND SHELL PROGRAMMING10

III. A DECISION SUPPORT SYSTEM...ccooitiiinierinienisssssasessssrensssssesssssnssssnsasssse 1
Bk CORE. DT <o smaammsnsicmsemstessos s A A SO R S oA 11

3.2 SIMULATION DATA L. 12

3.3 COMPUTATIONAL FORMULASt 15

IV. DESIGN AND IMPLEMENTATION..umsmnismiomasssissnssirssiisseasanssars 18
B BN 2 cormomsibes e o b b sy 1B
.11 Systens Rurmning BRVIFORBRENt . cummuiaiissismis sk o 8

4. 1.2 CREert/Server MOdEL..........covnssscaimimmmsvimssmsssivsmmsssssais ssna sais 19

4.1.3 User Interface DesSignc....cccoceivieiiiiiiiuiiiiimiiieii e 19

L O R O OIS s A e e O O Ao 27

BodA PUINC PHOBPOINE, vvvvmsvmsosmssoses s s ey o s B R TS k478 30

4.2 IMPLEMENTATIONcccocuvnnene. 3
4.2. 1 Getiiser mputs Fom COL..ccmsamnansainmmssossmasssissossesssmmes 31/

4.2.2 Interface with ORACLEc..oooiiiiiiieieicieiee e 32

42,3 ORACLE datahase mMana@emment ;. nsssswisioissmamisvamsnieiai 32

2. TRV A WTH GRASE cvcosvsvvvmmvmsini st s s a5 S Ty MG 35

+.2.5 Handling multi-users in (GRASS.......ccovrersssscssssonssrsssrorseyarasnsssmnsesrommmsisn 36

4.2.6 Map operations in GRASS.cccooiviiiimiiieiiiiee 37

4.2.7 Convert PPM file to GIF formatccccccccccoviniiniiiiiiiiieane, 38

1. 28 Credife Iederic picture fileusivaummvinnisnainmmmsiim st 39

4.2.9 Canirot the Iemporary fileso 39

4.2.10 SECUTTLY ISSULS........eeeeeiriee et e e enae e 39

V. CONCLUSIONS AND FURTURE WORKtieiceeeiracecictessssasenesssnnsssensaes 40
5.1 CONCLUSIONS.......c.ovviiiiiiiiiieciiie e, Ty 40

5.2 FOTUREWORK. 5uuessvovemsssstas e oy s s v resi sl e S s st o i covessaniies 42
BIBLIOGRAPHY iiciiniiisssinminioisisoriiusimssisiisioiamsiasiiasssisosiasimsiaiisaeass 43
APPENRDICES icivisaimssionsviosssssivsssoms dosio s s sy 45
APPENDIX A A BOURNE SHELL CGI PROGRAM.........................46
APPENDIX B A PRO*C PROGRAM.....cipiviviimavimmmniiiansisameaiisa s
APEENDIX C A STORED PROCEDURE :.icccooiasissiscivesissssmmspon ... 63
APPENDIX D A C PROGRAM FOR GIF GENERATION65
APPENDIXE ANOUTPUT SCREEN ... T, . |

Table

1. GISdatainthesystem.......................................

2. Oystem:Requirenisns.. ..oz soassasisinsi vt

3. Userinputs from Screen 1 | ...
B Llsor inputs ot Soresil Ll s s s s s s e s
9 EIBer inputs IYom SCreen 2. Lo inisisiite iisentin s fnimnssrssga s iaassss SR
6. CGIPrograms ...
T Pro®C PrOBREIIS o avormimssmsm s i i s i omsi s s ety

8 Stored procedures and functions..

9 Statistcs ol tHe PrOgrams.. . oswmmamsmyessmrs '

LIST OF TABLES

Vi

Page

-\

18

21
24
27

28

.30

.. 34

41

LIST OF FIGURES

Figure Page
1. Information flow through Common Gateway Interface.............................. 6
2. Client/Server Model of MAPS for WWW ... i mmiviamssieis 19
3 QUG O ThE SETORNE ..vuismsimmvssios s s s SSRGS R o 20
4: LayostofSereen I 1 cevmunssssunisassmss 21
5. Layout of SCreen 1.2 ..o 23
6. Layout 0F SEreen 2.1 . uincmnmmmmasimmsiass s s e s s s o s 26
7. Control Flow for mapsSWww.Ci.............oooooiiiiiii e 29

vl

CHAPTER 1

INTRODUCTION

CMLS (Chemical Movement in Layered Soils) is a simulation tool used in
managing agriculture chemicals. Many scientists and government agencies such as
Oklahoma Department of Agriculture interface CMLS with a Geographical Information
System (GIS) package to produce maps from the CMLS output. The maps generated can
be used to evaluate the risk of ground water contamination for specific soil-pesticide-
water management systems [19]

Fengxia Ma [19] created a shell program, go & draw, to provide a user interface
on UNIX system, and run CMLS to generate results, which can be used to generate maps
from GRASS (Geographic Resource Analysis Support System) GIS package But
running CMLS is very time consuming (e.g. doing the simulation for the entire Oklahoma
state on the mainframe in Oklahoma State University takes more than 100 CPU hours),
and space consuming (e.g. it needs approximately 100MB disk space for each county,
some counties even need 200MB) It is not feasible to run CMLS as an on-line
information system.

An alternative method is to run CMLS simulation in advance, and save the
simulation results in files in a certain format. J. S. Chen et al [23] saved the simulation

results in binary files, and created a user friendly DOS-based decision support system

called MAPS. MAPS can accept user’s inputs, generate the results of interest, and draw

maps on the PC screen. MAPS provides image drawing functionality itself by using the C

language, so it is very fast to render a map on the screen. The drawbacks of MAPS are:

(1) It is a single user DOS-based system;

(2) Users are involved in the installation on their PCs (with those large data files which
take a lot of disk space),

(3) If there are any improvements or modifications to the system, users must update
their system on their machines;

(4) The program provides very limited capabilities for data searching and data
operations for both simulation data and GIS data.

(5) It’s a large complex program to maintain.

The World Wide Web (WWW) technology allows users from anywhere at anytime
to access the information managed by the WWW server. The WWW server can also
access other systems through the Common Gateway Interface (CGI). ORACLE is a very
powerful Relational Database Management System (RDBMS), which provides full
capabilities of relational data storage, query, and operations GRASS is a powerful GIS
package which has a full range of functions for GIS data storage, calculations, and

operations. The project MAPS for WWW, which was proposed for the thesis, utilizes the

WWW Common Gateway Interface (CGI), calculates the results by accessing ORACLE

RDBMS; then uses GRASS to generate maps. [t can overcome the problems described
above.
The goal of the thesis is to design and implement a WWW version Client/Server

Decision Support System called MAPS for WWW, in which a GIS database system

(GRASS) and a relational database management system (ORACLE) work with WWW
server (NCSA httpd 1.3) to provide decision support information to WWW users. This
project can also serve as a framework to many other database related WWW applications.

Chapter II reviews the literature of the related components used in the system.
Chapter III describes the application background of the decision support system, including
GIS data, database schema and simulation. Details of design and implementation of the
system are given in Chapter IV. Finally, the conclusions and future work
recommendations are given in Chapter V

Several appendices are included for reference. Appendix A includes the major
CGI program of the system. Appendix B is the source code of a Pro*C program that
accesses ORACLE RDBMS to do the calculation for Travel Time according to user’s
inputs. The source code of a stored procedure used in the system to get the soil name
from a given soil index is given in Appendix C Appendix D is the C source code for
generating legend GIF picture for Travel Time simulation. A sample output screen of

Travel Time simulation is included in Appendix E.

CHAPTER 11

LITERATURE REVIEW

As described in Chapter I, MAPS for WWW is a WWW version Client/Server

decision support system, which integrates ORACLE RDBMS and GRASS GIS package
to work with the WWW server. All these systems run on the UNIX operating system.
Bourne Shell 1s the UNIX shell language used for CGI programming in the system. This
chapter reviews these software and systems used in the project, and also gives a brief

review of the simulation model.

2.1 Simulation Model

The simulation model used in this project was published by Dr. D. L Nofziger, et
al [23]. It can be used to assist farmers and researchers in managing pesticides to
minimize the risk of ground water quality degradation. Through the simulation model, a

user can calculate Travel Time, Amount Leached and Groundwater Hazard at different

probability levels, and POE (Probability Of Exceeding health advisory level). As described
in Chapter I, the simulation data used for the model was generated by running CMLS in
advance, and saved in files. More details about the simulation model, such as database

schema and computational formulas, will be described in chapter IIT.

2.2 World Wide Web

The World Wide Web (WWW) was first developed at a particle physics lab called
CERN (acronym from French: Conseil Europeen pour la Recherche Nucleaire) in Geneva,
Switzerland. Tim Berners-lee led the development work, beginning in 1989. From then
on, a lot of people around the Internet community started to develop their own browsers,
supporting additional platforms and developing new features. Currently, WWW servers
and WWW browsers support all computer architectures and operating systems [17].
From a user's perspective, the WWW 1is a collection of documents, or pages, which
contains text, images, and hypertext links to other pages. WWW merges the techniques of
information retrieval and hypertext to create a powerful global information system. By
simply pointing and clicking, the user has instant access to a big collection of information,
distributed around the globe. From an information provider’s point of view, the WWW is
an .easy and efficient way of distributing information to a very large audience [6].

Within the WWW, ASCII text documents are marked up with a tagging language
called HyperText Markup Language (HTML) HTML is a simple data format used to
create hypertext documents that are portable from one platform to another A WWW
browser is actually a browser of HTML documents. WWW browsers and WWW servers
communicate using HyperText Transport Protocol (HTTP). HTTP is an application level
protocol between a WWW client and a WWW server [17] When a WWW browser
requests an HTML document from a WWW server, a connection is opened. Then the

WWW server will grab the specified document and send it back to the WWW browser

After the document is transported, the connection is closed. Each request for a document
from a WWW browser to a WWW server is a new connection [17].

A WWW server not only can handle HTML documents, but also can access other
services through an interface called Common Gateway Interface (CGI). When a user
inputs data from a WWW browser and clicks on a button to send the request, the user
inputs are sent to the WWW server. The CGI program can read user’s inputs through
CGI interface from the WWW server, then access other information systems, and return
back the results in HTML form to the WWW server The output from the CGI program
then will be returned by the WWW server to the WWW browser through the Internet. So,
the user will see the results on the WWW browser. Figure 2-1 shows the information flow

through the WWW and CGIL.

Form or Query | CGI
NCSA Gateway Script
httpd 1.3 or Program
HTML HTML
’

Figure 2-1 Information flow through Common Gateway Interface (Source from [17])

6

HTML supports a certain level of user interface programming. It provides many
user interface controls like: radio box, check box, select list, text input and button. We
used these controls to design our screens for users to input data. The following are some

examples of these controls :

<!-- The following is a text input box -->

<INPUT TYPE="text” NAME="USERID” VALUE=“HELLC”>

<!=-- The following is a Radio Box =-->

<INPUT TYPE=“radio” NAME=“CHOICE” VALUE=“Yes” CHECKED> Radio Box

<!-- The following is a Check Box -->

<INPUT TYPE=“checkbox” NAME=“SIZE” VALUE=“Big”> Check Box

<!-- The following is a selection list -->
<SELECT NAME=“SELECTION">
<OPTION SELECTED>Optionl

<OPTION>Option2
</SELECT>
<!-- The following is a button used to submit request -->

<INPUT TYPE="SUBMIT” VALUE=“Run”>

2.3 ORACLE
ORACLE is a very powerful Relational Database Management System (RDBMS).
It fully supports ANSI SQL, and has its own extended SQL -- PL/SQL (Procedural
Language extension of SQL) [4]. It provides many ways for users to access the server,
such as SQL*Plus, SQL*Report, SQL*Forms etc It also provides libraries and

preprocessors to allow users to embed SQL into a host language, such as C, PASCAL,

ADA, FORTRAN etc. This makes it convenient for developers to write some standalone
programs to access the RDBMS. In this project, we used Pro*C (embed SQL into C
language) to write our CGI programs to access the ORACLE server. The following are

some of the ORACLE components used in this project :

o SQL*Plus: a utility program that provides developers and end users the ability to
interact directly with the database. [t has a command-line interpreter where users can

directly submit SQL commands, SQL*Plus commands and PL/SQL blocks.

e SQL*Loader: atool for loading external data files into one or more ORACLE tables.

[t can load data in a variety of data formats.

e Pro*C: ORACLE supports embedded SQL statements and PL/SOL blocks in a host
language, like C, PASCAL, ADA, FORTRAN etc. Pro*C is a preprocessor for

embedded C programs.

e PL/SQL and Stored Procedure SQL is a non-procedural language PL/SQL is
ORACLE's Procedural Language extension to SQL. Procedures or functions written
by PL/SQL can be stored in the database. Stored procedures can enhance the

performance of the database server.

2.4 GRASS

GRASS is a public domain, image processing, geographic information system
(GIS), written in the C language and running under the UNIX operating system. [t was
originally designed and developed by researchers and engineers in the U. S Army
Construction Engineering Research Laboratory (CERL). GRASS stands for “Geographic
Resources Analysis Support System” [10]. It is used extensively at government offices,
universities, and commercial organizations. The following are some of the commands we

use in the project:

¢ g.region -- program to manage the boundary definitions for the

geographic region.

* g.gisenv -- setup or output the current GRASS environment settings
* g.remove -- removes database element files from current mapset.

e p.select ppm -- select PPM as hardcopy output format

e p.map -- command language interface to color hardcopy and graphics

monitor output.

e r.reclass -- create a new map layer whose category values are
based upon the wuser’s reclassification of categories 1in an
existing raster map layer.

e r.colors -- creates/modifies the color table associated with a

raster map layer.

2.5 UNIX and Shell programming

UNIX is a well known multi-user time sharing operating system, which was first
developed by Ken Thompson in 1969 at AT&T Bell Laboratories in Murray Hill, New
Jersey. It is widely used in universities, government organizations and industry [26]. A
shell is not only a command interface to UNIX operating system, but also a very powerful
programming language. It supports many high-level language constructs, such as
variables, flow control structures, parameter passing, subroutine calls and interrupt
handling. There are three major UNIX shells: they are Bourne shell, C shell, and Korn

shell [26]. The Bourne Shell was used in this project to write CGI programs.

1n

CHAPTER I1I

A DECISION SUPPORT SYSTEM

This chapter describes the decision support system, including GIS data used,

database schema, and formulas for calculations.

3.1 GIS Data

The soils maps and land use maps of the counties in Oklahoma were collected by
the GIS experts from the Agronomy Department of Oklahoma State University. These
maps are stored in GRASS GIS database system on a Sun workstation. There are 5
different kinds of maps in our GRASS database for each county in Oklahoma They are
listed in the following table :

(NOTE $COUNTYNAME represents a name of a county, e.g. CADDO)

File Name Description

$COUNTYNAME soils Soils map of the county SCOUNTYNAME
$COUNTYNAME landuse Land use map of the county SCOUNTYNAME
SFCOUNTYNAME crop Cultivated area map of the county SCOUNTYNAME

SCOUNTYNAME .irrigated | Irrigated area map of the county SCOUNTYNAME
$SCOUNTYNAME boundary | Vector boundary map of the county SCOUNTYNAME

Table 3-1. GIS data in the system

Il

3.2 Simulation Data

As discussed in Chapter I, CMLS was run in advance. The results have been
stored in binary format, and also in Paradox format. In this project, these data were
moved to ORACLE RDBMS (about 100MB). Based on these simulation data, and the

formulas that we will introduce in the next section, users can view the Travel Time,

Amount Leached and Groundwater Hazard at different probability levels, and POE

(Probability of Exceeding health advisory level).

The following is the schema of the simulation database:

it */
/* Table Name : CHEMOD i
/* Description: This table contains the related parameter of */
i a certain active ingredient for a pesticide. */
/* ___ a/
CREATE TABLE CHEMQD
{

CommonName VARCHARZ (31) PRIMARY KEY,

Koc NUMBER NOT NULL,

HalfLife NUMBER NOT NULL,

HALEQ NUMBER NOT NULL
)i
{!* ___ a/
/* Table Name : COUNTY */
/* Description: This table maps county index to its name A
"(i_________________,__,_____,,_,_________,________,__________ _______-/

CREATE TABLE COUNTY

{
CountyIndex NUMBER (%) PRIMARY KEY,
CountyName VARCHAR2 (12) NOT NULL

/s\- __ o/
/* Table Name : TRAVEL ‘)
/* Description: This table contains the main simulation data*/
i generated from CMLS simulation tool. *;
/ir __ e
CREATE TABLE TRAVEL
{

CountyIndex NUMBER(6) ,

SoilIndex NUMBER (€],

CropName VARCHAR2 (8),

ApplDate VARCHARZ2 (9) ,

IrrigationType VARCHARZ(8),

Probability NUMBER(6) ,

12

Koc0 NUMBER(6) ,
Kocl NUMBER (6},
Koc2 NUMBER (69 ,
Kocd NUMBER (86},
Koc? NUMBER (6},
Kocl0 NUMBER(6),
Koc20 NUMBER(@G),
Koc40 NUMBER(6),
Koc70 NUMBER({6),
Kocl00 NUMBER (&),
Koc200 NUMBER (&),
Kocd 00 NUMBER (6},
Koc700 NUMBER (6},
Kocl000 NUMBER(6),
Koc2000 NUMBER(6) ,
Kocd4000 NUMBER (6) ,
Koc7000 NUMBER (6) ,
Kocl0000 NUMBER(6),
PRIMARY KEY (Countylndex,
SoillIndex,
CrcpName,
ApplDate,
IrrigationType,

Probability)

o o e e el S T e i)
/* Table Name : GRASSID *s
/* Description: This table is a bridge between the soil in */
/* the RDBMS to the soil in GRASS GIS package */
F e e e e e L e e e e L s i e, o e O e e tl‘
CREATE TABLE GRASSID
(

Muid VARCHARZ2 (7),

CountyIndex NUMBER (6],

SoilIndex NUMBER (6) ,

GrassIndex NUMBER (6)
)i
/w __ */
/* Table Name : SOILNAME +/
/* Description: This table maps soil index tc its name */
/1- __ t/
CREATE TABLE SOILNAME
{

CountyIndex NUMBER (6) ,

ScilIndex NUMBER (6] ,

Muid VARCHAR2 (7) ,

SoilName VARCHARZ2 (46),

Muname VARCHAR2 (90),

PRIMARY KEY (CountylIndex,

Soillndex)
17
/1: __ t/
13

/* Table Name : UNIT */
/* Description: Units and their conversion L
P e e S e e s S e e e e “/
CREATE TABLE UNIT
({

UnitType VARCHAR2 (1),

Oldunit VARCHAR2 (7},

stdUnit VARCHAR2 (7)),

Conversion NUMBER,

PRIMARY KEY (UnitType,

OlduUnit)

1:
/-&- __ w/
/* Table Name : TRADCOMM s
/* Description: Pesticides information and their ingredients*/
/-t __ ﬁ/
CREATE TABLE TRADCOMM
(

TradeName VAPCHARZ (486),

CommonName VARCHAR2 (31),

ProdUnit VARCHARZ (7},

AIlb ProdUnit NUMBER,

PRIMARY KEY (TradeName,

CommonName)
)
S e e e e e &/
/* View Name : CHEMICAL ./
/* Description : Joint view of TRADCOMM and CHEMOD i £
/i— __ i/

CREATE VIEW CHEMICAL AS
SELECT TradeName, a.CommonName, ProdUnit, AIlb ProdUnict,
Koz, HalflLife, HALEQ
FRCM TRADCOMM a, CHEMOD b
WHERE a.CommonName = b.CommonName;

'{* __ ﬁ/
/* View Name : TRAVELID “/
/* Description : Joint view of TRAVEL and GRASSID */
/t __ l-/

CREATE VIEW TRAVELID AS

SELECT a.*, GrassID
FROM Travel a, GrassID b

WHERE a.CountyIndex = b.CountyIndex
AND a.SoillIndex = b.Soillndex;

14

3.3 Computational Formulas

Computational formulas are provided as the following to calculate Travel Time,

Amount Leached, Groundwater Hazard, and POE :

Travel Time:
Calculate Travel Time f for the chemical of interest by interpolating between the travel
times of the interest neighbors using the following equation.

Lr—h

£ = (Ko Kae) ot
2 — 1

the K,.is the partition coefficient for the active ingredient of interest, K,.; and K, are the

nearest neighbors of K,. in the TRAVEL table where K,.; <= K,. < K,2, and ¢, and ¢; are

the corresponding travel times in the TRAVEL table.

Amount Leached :

Calculate Amount Leached by using the following equation -

T
AmtLeached = ApplAmt * 0.5

15

where ApplAnut s the amount of pesticide apphed (in Kg/ha). And T represents the

number of half-lifes which occur before the chemical reaches the critical depth. The

equation for T is:

where £}/, is the half life of the chemical The amount applizd can be obtained using the

following equation

ApplAmt = Al *ProddpplRate *1.12 % =
(8|

where A1 (or Allb_ProdUnit in TRADCOMM table) is the amount of active ingredient
present in each product unit (ProdUnit), ¢, is the number of standard units per product
unit, ProductApplRate is the amount of product applied per acre (user input), ¢z is the
number of standard units per ApplUnit, and I./2 is the number converting Ib/ac to Kg/ha.
The constant ¢; can be obtained from UNIT table with ProdUnit as OldUnit; ¢; is the

conversion factor in the database with ApplUnit as OldUnit.

Groundwater Hazard .

Calculate the Groundwater Hazard associated with a pesticide using the following

equation

16

R ST

N

7

8

Hazard = i G _ 100 Z": AmtLeached.
i 1 HALEQ: DepthMixing * Porosity HALEQ.

1=]

where n is the number of active ingredients in the pesticide. Depth Mixing and Porosity
are from the user inputs. HALEQ is from the CHEMICAL table associated with active

ingredient of the pesticide of interest.

POE :

POE stands for Probability of Exceeding HAL (Health Advisory Level). After calculating
the ground water hazard for all the given probabilities in the TRAVEL table, we will
decide at which probability level the value of ground water hazard exceeds 1 The given
probabilities in the TRAVEL table are: 2%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 98%.
Foi an example, if the ground water hazard exceeds 1 at the 5% probability level, but not

at the 2% level, then POE is in the range of (2% - 5%).

CHAPTER IV

DESIGN AND IMPLEMENTATION

This chapter describes the design and implementation of MAPS for WWW. In the

design part, it covers the system running environment, client/server model, user interface
design, and CGI programs. The implementation part describes the details of methods used

to develop the system.

4.1 DESIGN

4.1.1 System Running Environment

In the project MAPS for WWW, data storage, calculations, and operations are

handled at the server side. The facility requirements for a user’s system are quite limited
This makes the system more acceptable to users. The following table shows the system

running environment at the server side, and the system requirements at the client side.

Server Side Hardware Sun Workstation (128MB RAM)
Server Side Software SUNOS4.13

NCSAHTTPD 13

ORACLE 7.2

GRASS 4.1

Client Side requirements Any platform
Internet Connection
HTML 3.0 Compatible Browser

Table 4-1 System Requirements

4.1.2 Client/Server Model

In MAPS for WWW, three different systems are integrated -- WWW server,

ORACLE, and GRASS. Figure 4-1 shows the client/server working model and the

relationships among these three systems.

| Form or Query Cal CGI Scripts

| NCsA ;
: |:— httpd 1.3 Pro*C program
S HTML HTML GRASS commands

Figure 4-1 Client/Server Model of MAPS for WWW

4.1.3 User Interface Design

MAPS for WWW is screen oriented Users define inputs by means of a WWW

browser, and click on a button to go to the next screen (including the final output screen).

Figure 4-2 shows the hierarchy of the screens in the system.

Root Screen
Introduces the system, and
asks the user to select
“Pesticide Leaching Maps” or
"Soils or Land Use Maps”

Pesticide Leaching Maps Soils or Land Use Maps

Screen 1.1 Screen 2.1
Asks the user to input Asks the user lo input parameters
Crop of Interest, Pesticide of interest for maps generation
Screen 1.2 Screen 2.2
Asks the user to input Qutput screen according to
other parameters the user's selection
Screen 1.3
Output screen

Figure 4-2 Outline of the screens

Root Screen :

This is the first screen of MAPS for WWW It shows some welcome words, a

brief description of the project, names of the developers, and the usage of the system.
There are two buttons after the description part: “Soil or Land Use Maps”, and “Pesticide
Leaching Maps” If the user selects the “Soil or Land Use Maps™ button, it leads them
to Screen 2.1, which enables the user to generate the Soils or Land Use maps of interest.
If the user selects the “Pesticide Leaching Maps” button, it leads them to Screen 1 1,

which will enable the user to define the soil-chemical system of interest. Then the system

20

will do the calculation according to the inputs and the computational formulas, and

generate the maps and tables.

Screen 1.1 :

Figure 3.1 shows the user interface of Screen 1.1.

Peanut

ATRAZINE 4L

Figure 4-3 Layout of Screen 1.1

The following are the descriptions of the user inputs from Screen 1.1 :

Title Variable Name Help Description
Crop of Interest MAPS_CROP Select a crop from the list provided. This selection will
determine the counties available for viewing,
application dates for the pesticide, and the type and
period of irrigation used.

Pesticide of Interest | MAPS_TRADENAME |Select the tradename of the pesticide from the list
provided. The system will find active ingredients in
that pesticide along with their propertics. The propertics
can be examined and modified in the next screen if you
have more appropriate values.

Note: To be meaningful, the pesticide you select should
be labeled for the crop vou selected. However, you may
sclect any pesticide from the list.

Table 4-2 User inputs from Screen 1.1

CRLANHIAA 87475

There are 2 buttons: “Next Screen”, and “Reset the values”. The file containing
the form described above also contains on-line help for users. If the user clicks on the
“Reset the values” button, the inputs will be restored to their original settings. If the user

clicks on the “Next Screen” button, the system will lead the user to the Screen 1.2 for

more inputs.

Screen 1.2 :

Screen 1.2 is used to define the remaining parameters for the system of interest.
Figure 4-4 shows the user interface of Screen 1.2.

There are 2 buttons: “Get result”, and “Reset the values”. The file containing the
form described above also contains on-line help for users. If the user clicks on the “Reset
the values” button, the inputs will be turned back to their original settings. If the user
clicks on the “Get result” button, the system will lead the user to the Screen 1.3, which is

the output screen for the simulation results.

22

NIVERSITY

UBRLAMHIINEAE ST AT 7

Figure 4-4 Layout of Screen 1.2

The following is a table of all the user inputs from Screen 1.2 :

Title

Variable Name

Help Description

County

MAPS_COUNTY

Select the county for which the map is to be drawn from
the list of available counties.

Application Date

MAPS_APPLDATE

Select the month of application from the list provided.
This is significant since the water entering and moving
through the soil is not uniform throughout the year.

Irrigation Type

MAPS_IRRTYPE

Select the type of irrigation used in the area. If no
irrigation is used, select "None".

Application Rate
Application Unit

MAPS_PRODRATE
MAPS_APPLUNIT

The amount of pesticide available (o leach to ground
water depends upon the application rate. Enter the

Unit of Area MAPS_AREAUNIT |amount of product applied to a unit arca of land and
select the appropriale units.
Mixing Depth MAPS_DEPTHMIX |To estimate the concentration of chemical in the ground

Aquifer Porosity

MAPS_POROSITY

water, we used a simulation model to determine the
amount entering the ground water and assumed that the
chemical mixed uniformly to some depth in an aquifer
of known porosity. Here you specify the mixing depth
(in meters) and porosity (as a percent of the total soil
volume).

Probability Level

MAPS_PROB

Pesticides move primarily with water in a soil. Water
movement depends upon weather. Since we do not know
the future weather at the site of interest, we have
simulated the pesticide movement for different years of
weather. We can then determine the probability
associated with a particular question.

Map Type

MAPS_TYPE

Select the type of map desired.

Travel Time: This map shows the time required for the
chemical to pass a depth of 1 meter at the probability
level selected.

Amount Leached: This map shows the estimated
amount of chemical passing a depth of 1 meter. Note:
All of the chemical passing this depth 1s assumed Lo
enter the ground water at the probability level selected.

Groundwater Hazard: This map shows the calculated
ground water hazard associated with this pesticide at the
probability level selected. This is the ratio of the
estimated pesticide concentration and the HAL or MCL
value for that chemical. Values in excess of 100%
indicate the concentration of pesticide in the ground

24

|

i F

7 3a Pl

FWTL PRV TAN

LA i

A

UnDLALIMiA

water exceeds the HAL or MCL value for that chemical.

Probability of Exceeding the HAL or MCL: This map
shows the probability of the estimated pesticide

concentration in ground water exceeding the HAL or
MCL for that material. That is, if the product is used
many times with weather characteristic of this site, this
map shows what percent of the applications will result
in ground water concentrations in excess of the HAL or
MCL.

Display

DISPLAY_FOR

Select the area of interest.

Entire Area: The selected map will be displayed for all
of the areas in the county containing soils in
classes | - 4.

Culuvated Area; The selected map will be displayed for
only areas of the county with land uses of cultivated land
or irrigated land.

[rrigated Area: The sclected map will be displayved only
for areas of the county with land usc category of
irrigated land.

Output

MAPS_OUTMAP
MAPS_OUTLIST

The software is capable of producing maps and tables.
Select the output desired.

Map Size

GIF_SIZE

Select the map size desired. This will likely depend
upon the resolution of the graphics system you are
using. There are 3 options available . 200x200,
400x400, 800x800.

Note: Smaller maps are created somewhat faster than
large maps.

Table 4-3 User inputs from Screen 1.2

25

S{ALte LNV e idSiT ¥

T

URNLAHIMA

Screen 1.3 :

This is the simulation output screen. The user inputs from the previous screens
determine the output contents of this screen. If the user selects “Maps” output, the image
will be generated and shown along with a legend picture to show the meaning of different
colors in the map. If the user selects “List” output, the calculation resuits for Travel Time,

or Amount [eached, or Groundwater Hazard, or POE will be shown. A sample output

screen for Travel Time is given in Appendix E.

Screen 2.1 :

Figure 4-5 shows the user interface for Screen 2.1.

Figure 4-5 Layout of Screen 2 |

26

ADIR S LA 44, LUNIN i NITY

~

(¥

The following is a table of all the user inputs from Screen 2.1 :

Title Variable Name Help Description
Map Type MAP_TYPE Select which kind of maps vou want o sce.
County COUNTY Select a county
Display For DISPLAY_FOR |Display for the Entirc area OR

only cultivated arca OR
only Irrigated arca

Map Size GIF_SIZE Select map size (200x200. 100x400, 800x800)

Table 4-4 User inputs for Screen 2.1

There are also 2 buttons in Screen 2.1. “Show Maps”, and “Reset the values”. If

the user clicks on the “Reset the values” button, the values of the user inputs will be

restored to their original settings. If the user clicks on the “Show Maps” button, the

system will generate the map according to the user’s inputs, and show it in Screen 2.2 .

Screen 2.2 :

This screen shows the image map of a certain county according to the user’s

selection from Screen 2.1.

4.1.3 CGI Programs
Except for the Root Screen, all the other screens in the system are generated by
CGI programs. When the user clicks on a button to go from one screen to another, a CGI

program will be called by the WWW server to handle it. The following is a list of CGI

programs used in the system .

27

IR N AT Y

¥ L

S ALl

VB LALI{ 0T

From To CGI Program

Screen Screen Cailed
Root Screen Screen 1.1 | maps_11.cgi
Screen 1.1 Screen 1.2 | maps_12.cgi
Screen 1.2 Screen 1.3 | mapswww.cgl

Root Screen | Screen 2.1 | maps_21.cgi

Screen 2.1 Screen 2.2 | mapsonly.cgi

Table 4-5 CGI Programs

Among these CGI programs, the most complicated and comprehensive one is
mapswww.cgi. It is the CGI program that is used to generate the final simulation output
screen -- Screen 1.3. It covers all the implementation techniques used in the system.

When a user gives all the inputs needed from Screen 1.2, and clicks on the “Get
result” button, the request is sent to the WWW server. The WWW server will call the
CGI program -- mapswww cgi Then, the CGI program will (1) get the user’s inputs; (2)
check if there is anything wrong in the inputs; (3) run a corresponding Pro*C program to

access ORACLE database and calculate the Travel Time or Amount [eached or

Groundwater Hazard or POE; (4) run GRASS commands to access the corresponding

map stored in GRASS database and reclass the map according to the results from the
previous calculation; (5) convert the map from PPM (Portable PixMap) format to GIF
format and generate a legend GIF file for it; (6) return the maps and results back in HTML
format to WWW server through CGl. The WWW server then returns the results to the

user. The control flow chart of mapswwww.cgi is given below as Figure 4-6

NTETA AT

L5

VO TR

Receives user inputs from CGI

Check input. OK?

Error message

| Run Pre*C program for calculation.
| Store resuits into temporary files.

l

Yes

-

Free mapset
in GRASS ?

Wait for 5 seonds.

Run GRASS commands
to generate corresponding maps.

Convert PPM file to GIF format.

Create legend file.

More maps ?

Return results and maps to user.

End

LA 4L (LNt Vo aLSIid F

Figure 4-6 Control Flow for mapswww .cgi

VAL I s id

4.1.4 Pro*C programs
ORACLE allows programmers to embed SQL statements into C language In this
project, all the database query and calculations are done by Pro*C programs. The

following is a list of the Pro*C programs developed in the project :

Pro*C | CGI Program Description
Program that runs it

mapsim.pc maps_11.cgi Generate pesticide list for Screen 1.1

calc.pc maps_12.cgi Generate certain inputs (County, Application Date,
[rrigation Type, Product Rate and Unit, Area Unit)
for Screen 1.2, according to user’s inputs in Screen
1.1

travel.pc mapswww.cgl | Calculate Travel Time according to user’s inputs,
and generates results into temporary files.

amtleach.pc mapswww.cgi | Calculate Amount Leached according to user’s
inputs, and generates results into temporary files

gwhazard.pc | mapswww.cgi | Calculate Groundwater Hazard according to user’s
inputs, and generates results into
temporary files.

poe.pc mapswww cgi | Calculate POE according to user’s inputs, and
generates results into temporary files.

Table 4-6 Pro*C Programs

30

I d v LIL3:d 5

- hrdd2d A A

WAL id5 s

4.2 IMPLEMENTATION

This project integrates a WWW server, an ORACLE RDBMS, and the GRASS

GIS package on the UNIX operating system. In the implementation of MAPS for WWW,

many technical problems must be solved. The following are the implementation details of
the methods used to solve these problems. They are the keys to implement MAPS for

WWWwW.

4.2.1 Get user inputs from CGI

There are two ways for a WWW server to transfer user data to CGI programs.
They are the GET method and the POST method. The GET method uses an environment
variable QUERY_STRING to hold all the user inputs separated by an ‘&’ mark. The
PCST method sends the user inputs to STDIN separated by an ‘&’ mark, so a CGI
program can read from STDIN to get the data. The environment variable
CONTENT_LENGTH holds the length of the user input data. The GET method 1s good
for small amounts of input, while the POST method is preferred for large amounts of data.
Some people even suggest using only the POST method [17]. We used the POST method
in the system.

A C program was developed to receive a user’s data from the CGI interface and
save them into a temporary file. The C program reads from STDIN, separates data by ‘&’
mark; and writes into a temporary file ($TMP_PATH/posted.$$) in the following format-

eg.

COUNTY = beaver
MAP TYPE = landuse

¥l W ARG 4 5

Vil tacs s I iiiiim SinA

Then in the Bourne shell CGI program, the COUNTY value was read by the

following piece of code:

=

COUNTY="grep "COUNTY =" STMP_PATH/posted.$$ | sed 's/COUNTY = //'°
4.2.2 Interface with ORACLE

Two environment variables are needed to enable a Pro*C program to access an

ORACLE database. They are ORACLE_HOME and ORACLE SID. ORACLE_HOME

specifies the home directory of the ORACLE package ORACLE_SID specifies the

ORACLE System ID (or instance ID). In order to run a Pro*C program from a Bourne

Shell script, we need to add the following lines before calling the Pro*C program .

ORACLE HOME=/hcme/oracle
ORACLE _SID=sidl

export ORACLE HOME
export ORACLE SID

Run the Pro*C program

4.2.3 ORACLE database management
Database management is always a big issue in a database system. The following
are descriptions of the methods used in this project to manage the ORACLE database for

the simulation data.

e Create a separate tablespace for the project.

CREATE TABLESPACE MAPS
DATAFILE '/home/oracle/orahome/dbs/mapsidl.dbf' SIZE 150M ONLINE;

FH T T

2bdi'c AlALI LA AT

lldarss

e Special user accounts for management and user
MAPMGR account is responsible for the database management of the project, such as

maintenance of TABLEs, VIEWs, PROCEDURES, and loading data.

CREATE USER MAPMGR IDENTIFIED BY XXXXXXXX
DEFAULT TABLESPACE "MAPS" TEMPORARY TABLESPACE "MAPS"
PROFILE "DEFAULT";

GRANT CONNECT, RE3CURCE TO MAPMGR WITH ADMIN CPTION;

/* give MAPMGR the power to create and drop user */
GRANT CREATE USER TO MAPMGR;
GRANT DROP USER TO MAPMGR;

MAPUSR account is needed for Pro*C programs to login to ORACLE database and

query the tables for calculation.

/* Create the MAPUSR by MAPMGR */

CREATE USER MAPUSR IDENTIFIED BY XHXXXXKXXX

DEFAULT TABLESPACE "MAPS'" TEMPORARY TABLESPACE "MAPS"
PROFILE "DEFAULT";

/* Allow MAPUSR to connect to the Oracle server */
GRANT CONNECT TOC MAPUSR:

/* Only allow mapusr to select on tables */
GRANT SELECT ON CHEMOD TO MAPUSR;
GRANT SELECT ON COUNTY TO MAPUSR;
GRANT SELECT ON CROPS TO MAPUSR;
GRANT SELECT ON TRAVEL TO MAPUSR;
GRANT SELECT ON GRASSID TC MAPUSR;
GRANT SELECT ON SOILNAME TO MAPUSR;
GRANT SELECT ON UNIT TO MAPUSR;
GRANT SELECT ON TRADCOMM TO MAPUSR;
GRANT SELECT ON CHEMICAL TO MPAUSR;
GRANT SELECT ON TRAVELID TO MAPUSR;

/*Allow MAPUSR to execute some stored procedures & functions */
GRANT EXECUTE ON GETCQUNTYINDEX TO MAPUSR;

GRANT EXECUTE ON GETCONVERSION TO MAPUSR;

GRANT EXECUTE ON GETCOUNTYNAME TO MAPUSR;

GRANT EXECUTE ON GETSTDUNIT TO MAPUSR;

GRANT EXECUTE ON PGETMUID TO MAPUSR;

sidic WS AdR LAy wsiNAVLULSE§ 5

AL il ks d s

Stored procedures and functions to improve the performance

Several stored procedures and functions are implemented and stored in the ORACLE
RDBMS Because stored procedures and functions are already compiled, they do not
need to be compiled again_ when a user calls them from a Pro*C program. This can
make the database query and operation faster than submitting PL/SQL block directly
from the Pro*C program. Another advantage of stored procedures or functions is that
the Pro*C source programs do not need to be modified or recompiled if we make
some modifications to the procedures or functions, because the Pro*C programs just
send requests for running the procedures or functions and do not care about what they

really do.

The following table shows the stored procedures and functions developed in this

project

Procedure/Function Name | Description
GetCountylndex - Function | Get Countylndex from COUNTY table, according to CountyName

GetConversion - Function Get conversion from UNIT table, according to the unit given.

GetStdUnit - Function Get the stdunit from UNIT table, according to the unit given

pGetMuid - Procedure Given CountylIndex. Soillndex. rcturns the Muid, and Muname.

Table 4-7 Stored procedures and functions

34

YAV LOULSd 4 &

gt = W T 3

4.2.4 Interface with GRASS
To run GRASS commands from a Bourne Shell script, several environment
vanables must be set up. The following is the piece of code that creates these

environment variables for GRASS:

GISBASE=/home/grass4.1l
export GISBASE

GISDBASE=/usr/DISK3/grassd4.l.data
export GISDEBASE

LOCATION NAME=albers
export LOCATION NAME
GISRC=$gisrc
export GISRC

GIS_LOCK=$$
export GIS_LOCK

LOCATION=S$location
export LOCATION

MAPSET=S$mapset
export MAPSET

PAINTER=ppm
export PAINTER

MAPLP=$maplp
export MAPLP

PATH=/home/grassd.l/bin:/home/grassd.l/scripts:/home/grassd.l/gard
en/bin:/home/grass4.l/tools:/home/grassd.l/etc:$PATH
export PATH

PROJ_LIB=/home/grass4.l/etc
export PROJ_LIB

B set up env

g.gisenv GISDBASE=$GISDBASE

g.gisenv LOCATION NAME=$LOCATION NAME
g.gisenv LOCATION=$LOCATION

g.gisenv MAPSET=$MAPSET

g.gisenv PAINTER=ppm

g.gisenv MAPLP=$MAPLP

eval “g.gisenv’

wFadmb sl e

4.2.5 Handling multi-users in GRASS
This is a very important issue, because there can be multiple WWW users running
the system at the same time. Although GRASS is a multi-user GIS database system, each
user must occupy a mapset completely and other users can not use it at the same time.
This problem was solved by setting up several mapsets in GRASS solely for the WWW

users. In the implementation of MAPS for WWW, there are 5 mapsets (wwwusrl,

wwwusr2, wwwusr3, wwwusrd, wwwusr3) setup for WWW users A dummy file named
UNLOCK is also created in each mapset directory to show it is a free mapset, otherwise
the file name should be LOCK to show it is being used by someone. The following

Bourne Shell code is used to determine if there are any free mapsets available.

locnumber=1
location=$GISDBASE/$LOCATION NAME/wwwusr
while test $locnumber -1t 10
do
if mv -f SlocationSlocnumber/UNLOCK $location$locnumber/LOCK
then
touch SleccaticnS$locnumber/LOCK
mapset=wwwusr$locnumber
location=$GISDBASE/$LOCATION_NAME/$map5et
gisrc=$TMP_PATH/.grassrc$locnumber
maplp=$TMP_PATH/wwwusr$locnumber.ppm
break
else
locnumber="expr $locnumber + 1

if [$locnumber = 6]
then
sleep 5
locnumber=1
Ei
fi
done

36

iV L dlud44d »

4.2.6 Map operations in GRASS.
Control the map size in GRASS.
The simplest way to control map size is to set up 2 environment variables which define

the width and the height.

e.g.

WIDTH=400
HEIGHT=400
export WIDTH
export HEIGHT

Then, when GRASS generates a map, the map size will be 400 x 400. And the
smaller the map size is, the faster GRASS can create it. E.g. in a test to generate
the soils map for CADDO county, it takes 6 seconds for 200 x 200 map size, 10

seconds for 400 x 400 map size, and 25 seconds for 800 x 800 map size.

Reclass and change map colors in GRASS

In MAPS for WWW, the maps stored in GRASS are reclassed according to the

calculated results generated by the Pro*C programs. The Pro*C programs create a

reclass rule file. The reclass rule file contains the pairs of soil ID and category value.

eg.

1 =25
3 =1
4 = 2

The CGI program uses the rule file and r.reclass command to reclass the map in

GRASS. It then uses the r.colors command to define the color of each map category

i

P Aided e 4

eg.
#—— ... Pro*C program generates the Srulefile ... ---
#-- The rulsfile is a list of (soil --> category) map

#-- reclass the soils map --
r.reclass input=$MAPS BASE out=reclassl < $rulesfile

#-- change the color of the reclassed map --

cat SPROG PATH/rules.color | r.colors map=reclassl color=rules >
/dev/null 2>&1

4.2.7 Convert PPM file to GIF format
In the project, we used GRASS to generate maps in PPM (Portable PixMap)
format. Then we used a program called “ppmtogif ” to convert the PPM file to GIF
format. The “ppmtogif ” can be downloaded from the World Wide Web

e.g.

PPMFILE=maps .ppm
GIFFILE=maps.gif

ppmtogif < $PPMFILE > S$SGIFFILE

4.2.8 Create legend picture file
Legend pictures are designed to show users the meaning of colors associated with
the maps. Several C programs were developed to create the legend pictures (in GIF
format). They use a simple GIF library to draw a picture in memory and then output it to
a file. The C source code for generating a legend GIF file for Travel Time maps is given

in Appendix D

38

4 P didi A 4

4.2.9 Control the temporary files

MAPS for WWW generates many temporary files during its execution. To prevent

these temporary files from using too much disk space, we should delete them when they

are no longer needed. A program was developed to delete the temporary files more than

60 minutes old.

thesis. But WWW application developers should be very careful when they write the CGI

4.2.10 Security issues

The security issues of the INTERNET or WWW are beyond the scope of this

programs. There are several rules for writing UNIX Shell CGI programs:]

(e8]

Always put CGI programs in the “cgi-bin” directory which is only accessible by WWW
developers and system administrators.

Be careful when using the wildcard characters (e.g. *, ?, $3, $* etc.) in UNIX Shell
CGI programs

Always check the user’s inputs. Because the users or hackers may input things
unexpected, which may either make your program die or leak important information of
your system.

Do not use the user’s input as a command in a CGI program. Otherwise, the outside
users are given the privilege to operate on your machine, which can be dangerous to

your system.

CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

MAPS for WWW makes it possible for users to access pesticide transport data and

get useful decision support information from anywhere at anytime through the Internet.
The only requirement for the user is an HTML 3.0 compatible WWW browser running on
any platform with an Internet connection. Users are free of the headaches of worrying
about anything like system installation, management, and enhancement. nORACLE
RDBMS on the server provides powerful data storage, data query, and calculation
capabilities to manage data. GRASS provides full featured GIS data storage and

operations that are efficient and convenient to use. MAPS for WWW utilizes the power

of both ORACLE and GRASS to handle data storage and operations, and integrates them
with a WWW server to run on the UNIX operating system.

To implement the system, the knowledge of UNIX, Shell, C, ORACLE, GRASS,
SQL, WWW, HTML was needed as well as the ability to integrate these heterogeneous
systems into one efficiently working system This system extends the application of World
Wide Web The work also provides valuable experience to other WWW developers

MAPS for WWW can be reached at http://www agr okstate.edu/MAPS.

40

Many programs have been developed for MAPS for WWW. The following table

shows some statistical information of these programs. Some of the HTML codes are

output directly from the CGI programs, and are not included in the following table.

Code Lines

C and Pro*C 4581
Bourne Shell 1144
SQL and PL/SQL 326
[mport Control Files 105
HTML Files 416
Make File 331
Total 6903

Table 5-1 Statistics of the programs

41

1.

=2

5.2 Future work

More features and functionality can be added to the system in the future. For an

example, the capability for users to input Koc, Half-life, and HALEQ values in Screen

1.2 has been discussed and is listed for future development.

The information provided by MAPS for WWW is for public use. WWW users are not
restricted from accessing the system in the future. However, some Internet hackers
like to destroy other’s systems. Although the security issue is not the topic of the
thesis, it is good for the system administrator to setup a firewall to protect their local

area network.

It will be interesting to explore the possibility and feasibility of using Java to

implement MAPS for WWW. This will require the users to have a Java enabled

WWW browser. Also the developers must have a Java development environment.

10.

14.

13,

BIBLIOGRAPHY

Abbey, Michael. Oracle, a beginner’s guide, Osborne McGraw-Hill, 1995

Arthur, Lowell Jay. UNIX Shell Programming, John Wiley & Sons, Inc., 1994

Ault, Michael R. Oracle 7.0 administration & management, John Wiley & Sons, Inc.
1994

Bobrowski, S. M. Mastering Oracle7 & Client/Server Computing, SYBEX Inc. 1994
Cornell, Gary Core Java, SunSoft Press, | 996

December, John. The World Wide Web unleashed, SAMS Publishing, 1994

Eckel, George, Building a UNIX Internet Server, NewRiders Publishing, 1995

Feuerstein, Steven. Oracle PL/SQL Programming, O'Reilly & Associates, 1995

GRASS 4.0 Programmer’s Manual, U. S. Army Engineers Construction Engineering
Research Laboratory (Unpub.), August, 1992

GRASS 4.0 User’s Manual, U. S. Army Engineers Construction Engineering
Research Laboratory (Unpub.), July, 1991

. Greene, Joseph B. Oracle DBA Survival Guide, SAMS Publishing, 1995

Harlow, England. HTML 3 : electronic publishing on the World Wide Web, New
York : Addison-Wesley, 1996

Hatfield, Thomas H. Environmental health database on the World Widw Web,
Journal of Environmental Health (ISSN:0022-0892) v 57 p 30-2 June ‘95

Kernighan B W and Mashey J. R. The UNIX Programming Environment, IEEE
Computer, April 1981, pp. 12-24

Koch, G., Muller, R. and Loney, K. Oracle: The complete Reference, 3/e, McGraw-
Hill, Inc. 1995

Kwan, Thomas T., McGrath, Robert E. and Reed, Daniel A. NCSA’s World Wide
Web server: design and performance, Computer (ISSN:0018-9162) v 28 p 68-74
November ‘95

43

17.

18.

20.

21,

22,

24.

217.

Liu, C., Peek, J and Jones, R. Managing INTERNET Information Services, O’Reily
& Associates, Inc. 1994

Loney, Kevin. Oracle DBA handbook, Osborne McGraw-Hill, 1994

Ma, Fengxia. Using the UNIX shell to integrate a management model with GIS,
MS Thests, Oklahoma State University, Computer Science Department, Stillwater,
Oklahoma, 1993

McClanahan, David. Oracle Developer’s Guide, 1996

Nofziger, D L. and Hornsby, A. G. A microcomputer-based management tool for
chemical mcvement in soil, Applied Agric, 1'50-5¢6, 1986

Nofziger, D. L. and Hornsby, A. G. Chemical Movement in Layered Soils: User’s
Manual, Circular 780, Florida Cooperation Extension Service, Institute of Food and
Gainesville. FL. 1992, pp 44.

Nofziger, D. L, Chen, J. S. and Haan, C. T Evaluating the Chemical Movement in
Layered Soil Model as a Tool for Assessing Risk of Pesticide Leaching to
Groundwater, Journal of Environmental Science And Health, p1133-p1155, 1994

Pennell, K. D. , Hornsby, A. G, Jessup, R. E., and Rao, P. S. C. Evaluation of five
simulation models for predicting aldicard and bromide behavior under field
conditions, Water Resources Res., 26:2679-2693, 1990

Sturner, Gunter Oracle 7 _a user’s and developer’s guide, including version 7 1,
[nternational Thomson Publishing, 1994

Sobell, M. G. UNIX SYSTEM V . A Practical Guide, Third Edition, The
Benjamin/Cummings PublishingCompany, Inc. 1995

Vetter, Ronald J., Spell, Chris, and Ward, Charles. Mosaic and the World-Wide Web,
Computer (ISSN:0018-9162) v 27 p49-57 October ‘94

4

APPENDICES

43

APPENDIX A

A BOURNE SHELL CGI PROGRAM

46

#!/bin/sh
'___....-________...._________________
¥ Author : Tao Zhu

¥ Email : ztaoRa.cs.okstate.edu

¥ Project: MAPS For WwWW

o i e o

crap '/bin/mv -f SLOCATION/LOCK SLOCATICN/UNLOCK' O 1 I 3 5 91
l ______________

Setup several important env var

! mmmscos oo ——===-—--o=o--=—=—o====

PROG_PATH=/usr/local/etc/httpd_1.3/cgi-bin/MAPS
TMP_PATH=/usr/DISK5/htdocs/MAPS/ tmp
DOC_PATH=/usr/DISK5/htdocs/MAPS
HTTP_PATH=/usr/local/etc/httpd 1.3/cgi-bin/MAPS
GISBASE=/usr/DISK3/grass4.l.data
PSH_PATH=$PROG*PHTH
GIF_PATH=/usr/DISKS/htdocs/MAPS/aif

export PROG_PATH

export HTTP_PATH

export TME PATH

export GISBASE

export PBM_PATH

export GIE_PATH

export DOC_PATH

#-- HTML header --

echo 'Content-type: text/htmil’

echo

echo '<HTML>'

echo '<HEAD>'

echo '<TITLE>MAPS for WWW -- Output</TITLE-'
echo '</HEAD>'

echo

echo '"<BODY BGCOLOR="§COCOCOM:!

create parameter file

| T T T e e e
SPROG_PATH/postquery-MAPS 5* > STMP_PATH/posted.3S
parmfile=STMP_PATH/posted.33

#car Sparmfile

== mEEEsS=SsoET

Get all the user data

MAPS TYPE= grep "MAPS TYPE =" Sparmfile | sed 's/MAPS TYPE = //'

MAPS COUNTY='grep "MAPS COUNTY =" Sparmtile | sed 's/MAPS_TOUNTY = //°
MAPS_CROP= grep "MAPS CROP =" jparmfile | sed 's/MAPS_CROP = //'
MAPS_APPLDATE= grep "MAPS APPLDATE =" Sparmfile | sad '5/MAPS_APPLDATE = //'
MAPS_IRRTYPE= grep "MAPS_TRRTYPE =" Sparmfile ' s=3 's/MAPS_IRRTYPE = /¢'

MAPS PROB= grep "MAPS PROB =" Sparmfile | sed 's/MAPS PROB = //'
MAPS_TRADENAME= grep "MAPS TRADENAME =" Sparmfile | sed '5/MAPS TRADENAME = «/!
MAPS_PRODRATE= grep "MAPS_PRODKATE =" 3pazmfile | sed 's/MAPS_PRUDKATE = /r'
MARS APPLUNIT= grep "MAPS APPLUNIT =" Sparmfile | sed 's/MAPS_ABPLUNIT = //°'
MAPS DEPTHMIX= grep "MAPS_DEPTHMIX =" Sparmfile | sed 's/MAPS_DEPTHMIX = //'
MAPS POROSITY= grep "MAPS_POROSITY =" Sparmfile | sed 's/MAPS_POROSITY = /1!
MAPS_OUTMAP= qrep "OUTPUT_HAP =" Sparmfile | sed 'd/UUTPUT_MR? = f/°
MAPS_OUTLIST= grep "OUTPUT_LIST =" Sparmf:ile | sed *s/OUTPUT_LIST = //'
MAPS_AREAUNIT= grep "MAPS AREAUNIT =" $parmfile | sed 's/MAPS_AREAUNIT = //!
MAPS_PID=35

export MAPS TYPE
export MAPS CCUNTY
export MAPS CROP
export MAPS_APPLDATE
export MAPS_IRRTYPE
export MAPS PROB
export MAPS PID
export MAPS_TRADENAME
export MAPS_PRODRATE
export MAPS_APPLUNIT
export MAPS_DEPTHMIX
export MAPS_POROSITY
export MAPS_AREAUNIT

47

#echo MAPS_COUNTY = SMAPS COUNTY

fecho MAPS_CROP = $MAPS_CROP

Fecho MAPS_APPLDATE = $MAPS_APPLDATE
fecho MAPS_IRRTYPE = SMAPS_TRRTYPE
fecho MAPS_PROB = SMAPS PROB

#echo MAPS TRADENAME = SMAPS_TRACENAME
#echo MAPS_PRODRATE = SMAPS_FRODRATE
#echo MAPS_APPLUNIT = SMAPS_APPLUNIT

B Check user input --—=--—mmmmcmmmmmmmmem e
#-- For Travel Time, wec don't nead to check anything T
i-- For AmtLeached , we need to check ProdRate v

f#-— For GWH and POE, we also need to check DepthMix, Porcsity Aquifer --

echo '<CENTER><H2>Maps For WWW -- Output</HI></CENTER><E>!
case "SMAPS_TYPE" in
T} echo '<CENTER>'
echo '<H3> Travel Time (Probability = '$MAPS PROB'%)</H3>'
echo '</CENTER>'
A) echo '<CENTER>'
echo '<H3>Amount Leached (Probability = 'SMAPS_PROB'%)</H3>'
echo '</CENTER>'
$PROG_PATH/check
echo '<CENTER>®
echo '<H3>Groundwater Hazard (Probability = 'SMABS _PROUB'% |- /H3!
echo '</CENTER>'
$PROG_PATH/check GWH
*) echo '<CENTER>'
echo '<H3>Probability of Exceeding HAL cr MCL</H3>'
acho '"</CENTER>'
$PROG_PATH/check POE

.

@

esac
#-- check the return value --
#echo '<PRE>'
if | $2 1= 0)
then

echo '</PRE->'

echo '</BODY>'

echo '</HTML>'

exit =1

LL

== Check if MAP and LIST are borh unchecked --
#echo MAP -- SMAPS_OUTMAP

¥echo LIST -- $MAPS_OUTLIST

if | "SMAPS_CUTMAP" != "M" |

then
if ["SMAPS OUTLIST" != "L" |
then
echo '<PRE><CENTER>'
echo 'You must select at least 1 of the OQutpur field.'
echo '</CENTER></PRE>'
echo '</BODY></HTML>"
exit -1
f1
£i
. ---

#-- Following 2 environment variables are rieeded for Oracle --

ORACLE_HOME=/home/oracle
ORACLE_SID=sidl

export ORACLE HOME
export ORACLE _SID

case "SMAPS TYPE" in
T) $PROG_PATH/travel

48

mapsnum=3$2
TYPE=0

A) SPROG_PATH/amtleach
mapsnum=37?
TYPE=0

G) SPROG_PATH/gwhazard
mapsnum=572
TYPE=1

*) $PROG_PATH/poe
mapsnum=52
TYPE=1

esac

#-- Check if there is anything wrong during the calculation --
if [$Smapsnum = 255 |
then
echo 'Something wrong!'
echo '</PRE>'
echo '</BODY> </HTML>'
exit -1
fi
f-- For Groundwater Hazard and POE there should be only 1 map --
if [$TYPE = 1 |
then
mapsnum=1
£1

echo '</PRE>'

if ["SMAPS_OUTMAP" = "M" |
then

GISBASE=/home/grassd.l
export GISBASE

GISDBASE=/usc/DISK3/grassd.l.data
export GISDBASE

LOCATION NAME=albers
export. LOCATION NAME

locnumber=1
location=SGISDBASE/SLOCATION MAME/wwwusrc
while test Slocnumber =1t 10
do
if mv -f SlocationSlocnumber/UNLOCK Slocationflocnumber/ LOCK
then
touch Slocation$locnumber/LOCK
mapset=wwwusr3locnumber
location=$GISDBASE/SLOCATION NAME/Smapset
gisrc=$TMP_PATH/.grassrcSlocnumber
maplp=3TMP_PATH/wwwusrc3locnumber.ppm
break
else
locnumber= expr 5locnumber + |

if [Slocnumber = &]
then
sleep 5
locnumber=1
fi
fi
done

49

GISRC=$gisrc
export GISRC

GIS_LOCK=$%
export GIS_LOCK

LOCATION=Slocation
export LOCATION

MAPSET=%$mapset
export MAPSET

PAINTER=ppm
export PAINTER

MAPLP=Smaplp
export MAPLP

PATH=/home/grassd.l/bin:/homesgrassd.l/scripts:/home/grassd.l/garden/bin: /home/grassd.1/to
ols:/home/grass4.1l/enc:3FATH
export PATH

PROJ_LIB=/home/grassdq.l/at=
export PROJ_LIB

9.gisenv GISDBASE=SGISDEASE

3.g9isenv LOCATION NAME=$LOCATION NAME
g.gisenv LOCATION=3SLOCAT!ON

g.gisenv MAPSET=SMAPSET

g.gisenv PAINTER=ppm

g.qgisenv MAFLP=3MAPLP

eval g.gisenv

county= grep "SMAPS_COUNTY =" $PROG_PATH/county.lst
COUNTY="SPROG_PATH/getcounty 3county

#echo TOUNTY = SCOUNTY

MAPS BASE=S$COUNTY.scils

VECT=S$COUNTY.boundary

#echo SMAPS_BASE

g.region rast=3MAPS BASE

#-- set MASK ta overlay --
o e R R Gk S i
AREA="Entire Area"
OVERLAY= grep "DISPLAY FOR =" Sparmfile | sed 's/DISPLAY _FOR = /¢!
Fecho OVERLAY = SOVERLAY
if ["SOVERLAY" !'= "E"
then
1f ["SOVERLAY" = "Tv |
then
maskfile=SCOUNTY . rop
AREA="Culrivated Area"
else
maskfile=SCOUNTY.irrigated
ARER="Irrigated Area"

fi

F-- copy 1T to MASK --
J.copy rast=5Smaskfile,MASK > /dev/null 23551

fi

¥-- For MAPS OUTMAP == M --

£i

s s i S 1 e e
B=s=======c=c-c-cac oo oo sm=s
#=-- Loop to show all the maps =--
ff====ss=m==zs=scssm=sm===ccm—aa=a
loopnum=0

50

while [Slecopnum -1t Smapsnum |
do
loopnum="expr $loopnum + 1~
fecho loopnum = Slcopnum

1f ["SMAPS_CUTMAP" = "M"

then
rulesfile=STMP_PATH/rules.SMAPS_PID.Sloopnum
maxminfile=3TMP_PATH/maxmin.3SMAPS_PID.Sloopnum

§-- reclass the soils map --
r.reclass input=$MAPS_BASE out=reclassl < $rulesfile

#-- change the color of the reclassed map --
cat SPROG_PATHfrules.color | r.colors map=reclassl color=rules > /dev/null 2>61

#-- Generate ppm file, and convert it into gif file -=

e o R S S T e B SR e e e S B SR
GIF=maps.$$.3loopnum.gif

GRASTER=reclassl

GVECTOR=SVECT

G3ITES=none

VCOLOR=none

SCOLOR=none

GIF _SIZE='grep "GIF_SIZE =" STMP_PATH/posted.33 | sed 'S/GIF_S1LZE = s/ '
SPROG_PATH/raStEQLE SGIF SGRASTER SGVETTOR SITES 3VCOLOR 33TOLOR SGZ?_SIZE

#-- remove the reclass map from mapset --
g.remove rast=reclassl > /dev/null 2>41
i ——— st
#-- Remove the MASK --
P R Lt T s
if ["SOVERLAY"™ != "E" |
then
g.remove rast=MASK > /dev/null 2>&l
£i
e o i o e S
4 Generate legend gif file --
PR o iy L S e P e R 3

TTGIF=TT-3MAPS PID.3loopnum.31f
trq1f=$GIF_PATHIBTTGEF
case "3MAPS TYPE" in

T)
maxval='qrep "MAX =" Smaxminfile | sed 's/MAX = //'
minval="grep "MIN =" Smaxminfile sed 'g/MiM = o/
SPROG_PATH/tt-gif Sttngii Sminval Smasva
TTGIF=qif/STTGIF

A)

maxval= grep "MAX =" Smaxminfile s
minval="grep "MIN =" Smaxminfile se
SPROG_PATH/al-gif Strgif Sminval Smax
TTGIF=gi £/STTGIF

G) TTGIF=qwnh.gLf

*) TTGIF=poe.3if

echo '<CENTER>'
echo '<TABLE BORDER=3>'

echo '<!-- table headepr =-->'

echo '<tr valign=middle>'

echo ' <th align=middle> .B>' SMAPS_COUNTY -- 3ZAREA' </B» </nh>'
echo '</te>"

headerfile=STMP PATH/head.3MAPS_PIC.5lzaprnum

echo '<!-- User input info =-=->'
echo '<tr valign=middle>'

echo ' <td align=left><pre>'
cat Sheaderfile

echo '</pre></td>?

echo '<tr><td align=middle>"

echo '
'
echo ' </td>!

echo '</tr>*

echo '<tr><td align=middle>’

echo '
'
echo ' </td>"

echo '</TABLE>!

echo '</CENTER>*

echo '
'

fsEn e =5 250 ES

fi

‘__ —— e me m= -

H _____________________________________
For GWH and POE, show detail info

‘ _____________________________________

detailfile=$THP_PATH/deta11‘SMAPS_PID
1f | "SMAPS TYPE™ = "G" |
then -

echo '<CENTER><PRE>'

cat Sdetailfile

echo '</PRE></CENTER>"'

f£i
if [“SMAPS_TYPE" = "pP"
then

echo "<CENTER><PRE>'

cat $detailfile

echo '</PRE></CENTER>"'
£i
l ___________________________
¥-—- Show List Information --
. ___________________________
if ["SMAPS_OUTLIST" = "L"
then

echo '<CENTER>'

echo '<TABLE BORDER=0 WIDTH=50%:-"'
echo '<tr wvalign=middle>'

echo ' <td align=lefr>'

prob= expr l00 - SMAPS PROB

case "SMAPS TYPE" in

T)
ingfile=3$TMP_PATH/ilngredient.SMAPS_PID.51loopnum
MAPS ING= grep "INGREDIENT =" 3ingfile | sed 's/INGREDIENT = //'

echo 'Travel time for <U>' SMAP5_ING '</U> to reach a depth of 1 meter’®

echo 'for different soils in <U>'3MAPS_COUNTY'</U> county. '

echo 'Computing the travel time for applications in many different years indicates'
echo 'that the times shown below were exceeded for <U>'SMAPS_PROB'%</U> of the
applications;"'

echo 'travel =imes for <U>'Sprob'%</U> of the applications were less than the
values'

echo ' shown.'

echo '
<BR:>'

A

Al

ingfile=3$TMP PATH/ingredient.SMAPS PID.S3lzopnum

MAPS_ING= grep "INGREDIENT =" 5ingfile | sed 's/INGRECIENT = +/°

echo 'Amount of <U>' 3MAPS5_ING '</U> leached beyaona <f 1 meter !

echo 'for different scils in <U>' SMAPS_COUNTY '</U- county.'

echo 'Computing the amount leached for applications in many different years indicates'
echo 'that the amounts shown below were exceeded for (U}éE}'SH&PS_PROE'%4!B><fU) of the *
echo 'applications: amounts for <U>'Sprob'$</U> of the applications were less than'

52

‘the values shown.!'
'

'

‘Groundwater hazard for <U>' SMAPS_TRADENAME '</U> for different soils’

'in <U>' SMAPS COUNTY '</U> county. '

'Computing the groundwarter hazard for many different applications '

‘indicates that the hazards shown below were exceeded for <U>'SMAPS_PROB'R#</U>

‘the applications; groundwater hazards for <U>'Sprob'$</U> of the applications

'‘were less than the values shown.'
'

"*

'Probability of <U>' SMAPS TRADENAME '</U> exceeding the health '
'advisory level or maximum contaminant level for different soils *

'in <U>"' SI"U"\FS_COUNTY '</U> county. !

'Values shown below represent the fraction of the applications '

'which result in pesticide concentrations greater than the health
‘advisory level or the maximum contaminant level of the pesticide.'
'"

"'

tefndst

§¥-- show the soil list --
listfile=3TMP_PATH/1list.3MAPS_PID.Slacpnum
cat Slistfile

echo
fi

'</TRBLE>"'

H-- seperate between multiple maps --

echo

'<HR>'

#/bin/mv -f SLOCATION/LOCK SLOCATION/UNLOCK

acho
echo

'</BODY>"
'</HTML>"

== End ==

33

APPENDIX B

A PRO*C PROGRAM

54

f--obvttittfruttttitt...s---.-----vt-vtvvtvv-vtv---vott--t-/

/* File Name : travel.pc
/* Author : Tao Zhu

/* Created : 07-05-1996
/* Description:

/* Calculate the travel time for Maps For WWW.

lﬁlbtittibbtiititbﬁﬁrﬁtt‘tqtgvtt-.qt-cvttvtvtt-tv-—--tﬁrv--,

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*-- Define constants for VARCHAR lengths. --+/
fidefine UNAME_LEN 20
fdefine PWD_LEN 40
fdefine ARRAY LENGTH 10
fdefine MAX_REC 100

/*-- Declare variables. No declare section
char *username = "MAPUSR";
char *password = "xXXXXXX";

/*-- Define a host structure for the output °

struct

{
VARCHAR s_CommonName|[31];
VARCHAR s _Produnit[7];

double s_Allb_ProdUnit;
double s_Koc:
double s _HalfLife;

double s_HALEQ:
] *g9_TradeCommRec, gTradeCommRec;

struct

{
short s_CountyIndex:
short s_Soillndex;

VARCHAR s _CropName(8];
VARCHAR s _ApplDate[9);
VARCHAR s_IrrigationType(8]);

short s_Probability;
short s_Koc0;

short s_Kocl;

short s_KocZ:

short s_Kocd;

short 5_Koc7;

short s_KoclO;
short s_Koc20;
short 5 _Koc40;
short s_Koc?0;
short s_KoclQO;
short s_Koc200;
short s_Koc400;
short s_Koc700;
short s_Kocl000;
short s_Koc2000;
short s_Koc4000;
short s_Koc7000;
short s_Kocl0000;
short s_GrasslIndex;

} *g_TravelRec, gTravelRec;

/* Include the SQL Communications Area.

Yfou can use Minclude or EXEC SQL INCLUDE.

/* WHinclude <sglca.h> */
EXEC SQL INCLUDE sglca.h;

/* Declare error handling function. */
void sql_errorc();

‘p“l ____________________________________ r‘,r
/* global variables for the test data */
f’r ____________________________________ “f

is needed

55

i f MODE=ORACLE.

= |

v/
y
./
</
*/

SELECT statement

—-——w/

-——f

EXEC SQL BEGIN DECLARE SECTION;
short var_CountylIndex;

short var_Soillndex;
VARCHAR wvar Muid[8];

VARCHAR wvar_SoilName([91];

EXEC SQL END DECLARE SECTION;

VARCHAR wvar_CountyName[12];
VARCHAR wvar_CropName([8];
VARCHAR var_ApplDate[9):
VARCHAR wvar_IrrigationType[9];

short var_Probability;

short Koe, Korcl, Koc2, tl, t2;
double tt, mintt, maxtt, dif:
int i, 3:

int ingno = 0;

int pid;

struct

short s_GrasslIndex;
double s_TravelTime:;

} gGrassIndex| MAX_REC |;

I{—ri—-ﬂtt'tt*‘t'tt'ﬁ'fitﬁl’f

/t

main() starts here */

/tvtt.qtttt.t"ﬂfﬁttt“f

main{ argc, argv)

int

argc;

char *argv(];

(

char temp_char(50);

char temp_string[50];
char rulesfile _name[100];
char listfile name[100];
char maxminfile name[100];
char header name(100];

" char tmp_path[50];

int segment=0;
int sl1,s52,s83,84;
double delta;

FILE *fp_rules;
FILE *fp_list;

FILE =fp_maxmin;
FILE *fp_header;

3_TradeCommRec = &gTradeCommRec;

R T -/
/* Register sql_ercor(} as the erroc handler. */
[¥ e m e e e mmm——— e ————— /!

EXEC SQL WHENEVER SQLERROR DO sql ercar ("ORACLE errar--an"j;

fﬁ __ -!‘
/* Connect to ORACLE. Program will call sql_ercor() =/
/* if an error occurs when ccnnecting to the default database.*/
P — */

e ./

/* setup parameters from env vy

/t _____________________________ -/

strepy{ (char *)var CountyName.arr, getenv("MAPS TOUNTY")):
var CountyName.len = strlen((char ")var_CountyName.arr)
strcpy((char *|var_CropName.arc, getenv("MAPS_CROE")):
var_CropName.len = strlen((char *)var_CropName.arr):

strcpy((chacr *)var_ApplDate.arrc, getenv("MAPS_APPLDATE");:
var ApplDate.len = strlen((char *)var_ApplDate.arc);

56

strcpyl (char *)var_IrrigationType.arr, getenv("MAPS IRRTYPE"));
var_IrrigationType.len = strlen((char *)var_IrrigationType.arrc);
var_IrrigationType.arr([8] = '\O';

strepylichar *)var TradeName.arr, getenv("MAPS_TRADENAME"));
var_TradeName.len = strlen(ichar *)var_TradeName.arr);

var_Probability = atoi(getenv("MAPS_PROB")]:

pid = atoil getenv("MAPS_PID"));

strcpy(tmp_path, getenv("TMP_PATH") }:
/t ___ t,
/*-- Call stored function to get Countylndex --+/
/l ___ t/
EXEC SQL EXECUTE
BEGIN
:var_Countylndex := MAPMGR.GETCOUNTYINDEX({ :var_ CountyName |);
END;
END-EXEC;
/l‘ _______________________________)
/* Declare cursor for cur_Travel =/
/i _______________________________ .,
EXEC SQL DECLARE cur_Travel CURSOR FOR
SELECT *
FROM MAPMGR.TravellID
WHERE CountyIndex = :var_Countylndex

AND CropName = :var_ CropName

AND ApplDate = :var ApplDate

AND IrcigationType = :var_IrrigationType

And Probability = :var_Probability;
/o ______________________________ rf
/* Declare cursor cur_TradeComm */
T ——— */

EXEC SQL DECLARE cur TradeComm CURSOR FOR
’ SELECT CommonName, ProdUnit, AIlb ProdUnit, Koc, HalfLife, HALEQ
FROM MAPMGR.CHEMICAL
WHERE TradeName = :var TradeName
AND Koc IS NOT NULL
AND Koc <= 10000
AND HalfLife IS NOT HNULL
AND HALEQ > 0
AND AILB ProdUnit IS NOT NULL
AND ProdUnit IS NOT NULL;

oo i e o e -/
s SR S PR o L S e R PR S S BEELT ./
/* START THE QUERY AND CALCULATION */
J)‘t- _________________________________ t/
F T o

EXEC SQL OPEN cur_TradeComm;
EXEC SQL WHENEVER NOT FOUND DO break;

fori::)
{
EXEC SQL FETCH cur_TradeComm INTO :9_TradeCommRec;

qTradeCommRec.s_CommonName.arr|[gTradeCommies, s TommonName.len) = '\D';
gTradeCommRec.s ProdUnit.arr(gTradeCommRec.s ProduUnit.len| = Ot

ingno++;

EXEC SQL OPEN cur_ Travel:;
EXEC SQL WHENEVER NOT FOUND DO break;

e i L
f*-- Print out the header description part for the map --*/
f¥mm mm mm e mm s mm e == mm mm = == == == —= — = -

sprintf(header name, "%s/head.%d.%d", tmp_path, pid, ingno i;
fp_header = fopen| header_ name, "w+* };

57

fprintf(fp_header,
" COUNTY §-12s
var_CountyName.arr,
var_IrrigationType.arr);
Eptintftfpﬁheader.
" APPL.DATE :
var_ApplDate.arr,
var_CropName.arr);
fprintf(fp_header,
" PESTICIDE %-40s
var TradeName.arr);
fprintf(fp_header,
" ACTIVE INGREDIENT: %-33s \n",
gTradeCommRec.s_CommonName.arrc);

IRRIGATION TYPE
i-l4s

CROP

\n",

EB8s \n",

%8s \n",

sprintf(temp_char, "%.1f ml/gOC", gTradeCommRec.s_Koc):

fprintf(fp_header,
" Koc $-16s
temp_char);

fclose{ fp_header });

f¥=———— e e e 5 ./
/* Cutput the active ingredients to a file */
e pee s /

sprintf(listfile_name, "%s/ingredient.#d.%d”, tmp_path, pid,

fp_list = fopen(listfile name, "w+" |;

\n",

ingno);

fprintf(fp list, "INGREDIENT = %s\n", gTradeCommRec.s CommonName.arr);

fclose(fpzlist):

fi _______________________________ i‘f
/*-- print out the output list --+/
S S e e e e e */
i=0;
sprintf(listfile name, "%s/lisc.id.&d", tmp_path, pid, ingno);
fp_list = fopen{ listfile name, "w+");
/*=-- print out the header =--+/
fprintf(fp list, "<tr><td align=middle>\n"];
Eprintf(fp list, "<PRE>\n");
fprintfifp_list,
"B eessssscsss s ssan s s sasTesaEssnanesaassssa=e=s Bo\n") ;

fprintf(fp_list,
"COUNTY : 8-12s
var_CountyName.arr,
var IrrigationType.arr];
fprintf(fp_list,
"APPL.DATE ¥-14s
var ApplDate.arc,
var CropName.arr):
fprintf(fp list,
"PESTICIDE $-40s \n",
var_TradeName.arr);
fprintf(fp list,
"ACTIVE INGREDIENT: %-33s \n",
jTradeCommRec.s_CommonName.arr);
fprintf(fp list,
"Koc %-1l€s
temp_char);
fprintf(fp list,

IRRIGATION TYPE

CROP

fprintf(fp list,
"

fprintf(fp_list,
" Muid

/*-- Loop for the current ingrediant --*/
fort::)
[

EXEC SQL FETCH cur Travel INTO

:3TravelRec)

$8s\n",

2as\n",

\n",

----------- \n");
Travel Time\n");

(days)\n"):

gTravelRec.s_CropName.arr([gTravelRec.s_CropName.len] = *\O';

gTravelRec.s_ApplDate.arr(gTravelRec.s_ApplDate.len] =

58

"\O1;

gTravelRec.s_IrrigationType.arr[gTravelRec.s IrrigationType
Koc = gTradeCommRec.s_Koc;

if | Koc <=1)

{
Koel = 0; Koc2 = 1;
tl = gTravelRec.s_KocO;
t2 = gTravelRec.s_Kocl;

}

if { Koc > 1 &6 Koc <= 2)
{

Kocl = 1; Koc2 = 2;
tl = gTravelRec.s_Kocl;
t2 = gTravelRec.s_Koec2;

if | Koc > 2 & Koc <= 4)

Kocl = 27 Koc2 = 4;
= gTravelRec.s Koc2;
t2 = gTravelRec.s_Kocd:

if { Koc > 4 && Koc <= 7)

Kocl = 4; Koc2 = 7;
tl = gTravelRec.s Koc4;
t2 = gTravelRec.s Koc7;

if [Koc > 7 &€& Koc <= 10 }
{
Koel = 7; Koc2 = 10;
tl = gTravelRec.s_Koc?;
©2 = gTravelRec.s_KoclO;

if { Koc > 10 && Koc <= 20)
Koel = 10; Koc2 = 20;
tl = gTravelRec.s_Kocl0O;
t2 = gTravelRec.s_Kocl0;

f | Koc > 20 && Koc <= 40)
Kocl = 20; Koc2 = 40;
tl = gTravelRec.s_Koc20;
t2 = gTravelRec.s_Koc40;

if { Koc > 40 &6 Koc <= 70)

Kocl = 40; Koc2 = 70;
tl = gTravelRec.s_Kocd0;
t2 = gTravelRec.s_Koc70;
if | Koc > 70 && Koc <= 100)
Koel = 70; KocZ = 100;
tl = gTravelRec.s_Koc70;
t2 = gTravelRec.s_Kocl00;
1f | Koo > 100 && Koc <= 200)
Kacl = 100; Koc2 = 200;

tl = gTravelRec.s_Kocl00;
t2 = gTravelRec.s_Koc200;

if [Koc > 200 && Koc <= 400)

59

.len)

"NO'

—

Koecl = 200; Koc2 = 400;
tl = gTravelRec.s_Koc200;
t2 = gTravelRec.s_Koc400;

)

=L

-/

/

{Koc2

if | Koc > 400 && Koc <= 700)
[
Kocl = 400; Koc2 = 700;
tl = gTravelRec.s_Kocd400;
t2 = gTravelRec.s_Koc700;
l
if (Koc > 700 && Koc <= 1000)
l
Kacl = 700; Koc2 = 1000;
tl = gTravelRec.s_Koc700;
t2 = gTravelRec.s_Koclu00;
}
if (Koc > 1000 && Koc <= 2000)
{
Kocl = 1000; Koc2 = 2000;
tl = gTravelRec.s_Kocl000;
t2 = gTravelRec.s_Kocl000;
I
if | Koc > 2000 && Koc <= 4000)
1
Kocl = 2000; Koc2 = 4000;
tl = gTravelRec.s_Koc2000;
t2 = gTravelRec.s_Kocd4000;
|
1f (Koc > 4000 && Hoc <= 7000
{
Kocl = 4000; Koc2 = 7000:
tl = gTravelRec.s_Kocd000;
t2 = gTravelRec.s Koc7000;
I
if (Koc > 7000 && Koc <= 10000
{
Kocl = 7000; Koc2 = 10000;
tl = gTravelRec.s Koc7000;
t2 = gTravelRec.s_Kocl0000;
I
’!l' ___________________________ .‘f
/* calculate the travel time */
i . T '/
tt = (double) (Koc = Kocl) * (t2
_Il' _________________________________
/* save the value Into grass array */
"k _________________________________
gGrassIndex(i).s_Grasslndex = gTravelRec,
gGrassIndex(i].s_TravelTime = tr;
f e /
/* decide max/min value */
,i‘ ______________________ -i-,
if (1==01)
maxtt = miptt = tt;
if | tt > maxtt)
maxtt = tt;
if (tt < mintt)
mintt = tt;
o PR S A "y
/* increment 1 */
’J't _____________ ‘lvl||r
L+

60

- Kocl)

5 _Grasslndez;

=2 U

/* Get the Muid and Name for the soil +/
var_Soillndex = gTravelRec.s_Soillndex;
EXEC SQL EXECUTE

BEGIN

MAPMGR. PGETMUID(:var_Countylndex, :var_Soillndex,
ivar_Muid, :var_SoilName);

END;

END-EXEC;

var_Muid.arr[var_Muid.len | = "\0';
var_Muid.arcr[7] = '\0%;

var_ScilName.arr| var_ScilName.len | = '\0';
var_ScilName.arr[35] = '\0';

/* print out for the current record */
fprintf(fp_list,

"%-7s %-35s ¥7d\n",

var Muld.arr,

var SoilName.arr,

linT)tt);

if { ++segment == 5)

|
/* print an empty line */
fprintf(fp_ list,"\n");
segment = 0;

)

/*-- print out the last line --+/

fprintf(fp_lisc,
MeBRY=====msssss=sssssss=ssssssmszzsssssscs=ssssssss======\n"};

forintf(fp_list, "</PRE>\n");

fprintf(fp_list, "</td>\n");

fclose(fp_list):

EXEC SQL CLOSE cur_Travel;

s i iy S R ./
/* Write min/max information */
P e L A i e e ./

sprintf(maxminfile name, "%s/maxmin.%d.%d", tmp path, pid, ingno };
fp_maxmin = fopen(maxminfile name, "w+" };

fprintf(fp_maxmin, "MAX = %d\n", (int)maxtt);
fprintfl fp_maxmin, "MIN 8d\n", {intimintt);

n

fclose| fp maxmin |;

’.‘t __________________________________ I'.!

"t ___________________________________ o/

/* reclass soil by their travel time */

/i ___________________________________ -/

/i- ___________________________________ t/

j = Q;

sprintf(rulesfile name, "%s/rules.3%d.%d", tmp_path, pid, ingnol;
fp_rules = fopen(rulesfile name, "w+");

delta = (maxtt - mintt} / 5.0;

sl = (int) (mintt+delta+0.5];
52 = (int) (mintt+2*delta+0.5);
53 = (int) (mintc+3rdelta+0.5);
4 = (int) (mintt+d*delta+0.5);
while{] < 1
{
dif = gGrassindex[])].s_TravelTime;
if { dif <= sl)
{
fprintfrfpw:ules. "%d = %d\n", gGrassindex[]jj.s_GrasslIndex, 1);
JH+:

61

continue;

}i

i€ (dif <= 52)

{
fprinef{fp_rules,
J++:
continue;

bi

if (dif <= 53)

{
fprintfi(fp_rules,
SRat:
continue;

1:

if (dif <= s4)

{
fprintf(fp_rules,
j++;

continue;

}:

/* else, i1t is 1in the
fprinctf{fp rules, "&d
j+v;

continue;

I

/* category 99 is the borde
fprintf(fp_rules, "99 = 99\

fclose(fp_rules):

EXEC SQL CLOSE cur_TradeComm;

T T -/
/* Disconnect Erom ORACLE. =/
R e ¥

’.‘t _________________________ .’f
/* Return No of ingredients */
TR SRy S KRy g S -y
exit{ ingno);

}

J i i i e ./

/* sql_error() v/

/% Display oracle error messages */
_______________________________ -/
void
sql_errorimsqg]
char *msqg;
{

char err_msg[l128];

int buf_len, msg_len;

"#d = ¥d\n", gGrassindex|[]].s_Grasslndex, 2);
“8d = 8d\n", gGrassindex([]j].s_Grasslndex, 3);
"$d = &d\n", gGrassindex[]).s_Grasslndex, 4);
5th section */

1 5 .
= =3

#ad\n", gGrassindex|j]|.s_Grasslndex,

= v

n"l:

EAEC SQL WHENEVER SQLERROR CONTINUE;

printf{"\n%s\n", msg);
buf_len = sizeof (erc_msg):

sglglml{erc _msg, &buf_len, &msg_

leni;

printf("%.*s\n", msg_len, ecr_msgl:

EAEC SQL ROLLBACK RELEASE:
exit(-1);

62

APPENDIX C

A STORED PROCEDURE

63

/* Procedure Name : pGetMuid #yf
/* Parameters : */
/* pCountyIndex IN INTEGER, *7
1% pSoilIndex IN INTEGER, */
/* pMuid OUT SOILNAME.MUID%TYPE, */
J* pSoilName OUT SOILNAME.MUNAMESTYPE */
/* Description : w/
= Get MUID and MUNAME for a soil according to */
ik CountyIndex, and Soillndex given. v/
f* ___ */

CREATE OR REPLACE
PROCEDURE pGetMuid (pCountyIndex IN INTEGER,
pSoilIndex IN INTEGER,
pMuid OUT SOILNAME.MUIDSTYPE,
pSoilName OUT SOILNAME.MUNAMEXTYPE)
IS5
BEGIN
SELECT Muid, Muname
INTO pMuid , pScilName
FROM SoilName
WHERE CountyIndex = pCountyIndex
AND SoilIndex = pScillIndex;

EXCEPTION
WHEN NO_DATA FOUND THEN
pMuid := 'N/A';
pSoilName := 'N/A‘';
END ;

64

APPENDIX D

A C PRORGAM FOR GIF GENERATION

65

,.*frttr.t'.rtt'ti.t"'iﬂ‘itt.'t'w.btttt"iti*fflffbfiblt'f

/* Filename : tt-gif.c e d
/* RButhor : Tac Zhu o' s
/* Created : Aug-07-1996 ./
/* Compile : cc tt-gif.c gd.o -o tt=-gif L84
/* description: !
7% Draw graphic legend for MAPS Web version Ll 4
/0 ___ t;
/* Update History : v/

/vttvfﬁtrittvvtiittttrtct..ctttt-tte'tiqoct+ftﬁttt--'vtv.tf

#include <stdio.h>
#include <stdlib.h>

finclude "gd.h"

{0 _____________________ i’

/* constant definition */

/* _____________________ t/

fdefine LM 5 /* Left Margin </
fdefine TM 5 /* Top Margin */
fdefine SM 5 /* Space Margin */
fdefine GIF_HEIGHT TM*2+16*2+5+16+5
fdefine GLF_WIDTH LM*2+8*8+5*6*B+4*8

e e e e o St L e B ol

/* global variables for colorc */

r‘i ____________________________ t/

int white;
int blue;
int red;

int cyan;
int yellow;
int green;
int black;
int brown;
int purple;
int magenta;

int colors([5];

int minval, maxwval;

"'* ________________ t’.‘

/* Draw rectangle */

s e R S L */

void DrawRectangle(im, =1, vyl, =2, yI, color)
gdImagePtr im;

int xl;:

int yl;

int x2;

int y2;

int color;

{
gdImageLine{ im, x1, yl, =2, yl, color)
gdImageLine(im, =2, yl, x2, y2, color):
gdImagelLine| im, x2, y2, xl1, y2, color);
gdImageline(im, x1, y2, x1, yl, coleor):

‘(ﬁ _______________________ ‘{
/* Draw the bar .y
W e s e e e e /

void DrawBac! 1im |
gdImagePtc im:
|

int Y, X;

Y =TM + 16 + B8 + SM;

X = LM + B*B;

DrawRectangle(im, X, Y, ¥+6*8, ¥Y+10, colors[0]);
gdImageFillToBorder(im, X+2, Y+2, colars(0), celors[Q]):

XA =X + 6%B;
DrawRectangle(im, X, Y, X+6~8, Y+10, colors[l] };

66

gdImageFillToBorder| im, X+2, Y+2, colors(l],

X=X+ 6%8;

DrawRectangle| im, X, Y, X+6*8, Y+10, colors[2]
gdImageFillToBorder(im, X+2, Y+2, colors|[2],

X=X+ 6*8;

DrawRectangle{ im, X, Y, X+6*8, Y+10, colors(3]
gdImageFillToBorder| im, X+2, Y+2, colors(3],

X=X + 6%8;

DrawRectangle(im, X, Y, X+6*B, Y+10, colors(4]
gdImageFillToBorder(im, X+2, Y+2, colors|4],

/* Draw the title +/

gdImageString(im, LM, TM, "Travel", black);
gdImageString(im, LM, TM+16+SM, " Time", black);
gdImageString(im, LM, TM+2*{16+SM), "(days)",

void DrawRange(im)
gdImagePtr im;
{
char t1[10], t2[10);
int X, Y, len;
float delta;

len = 5; /* one char is 8 pixel wide */

¥ =TM + 3 + B;
X = 1M + 7=8B;
delta = |(maxval - minval) / 5.0;

/* Range -- 1 */
sprintf(tl, "%-5d", minval):
gdImageString(! im, X, ¥, tl, black }:

/* Range == 2 */
X=X+ 6*8;

sprintf{ tl, "%-5d", (int)(minval+delta+0.5)

gdImageString(im, X, Y, tl, black };
/* Range -- 2 */

¥ = X + 6*8;

sprintf(tl, "%-5d", lint)(minval+2*delra+0.5]

gdImageString(im, X, Y, tl, black);:

/* Range == 4 */
X=X+ 6*8;

sprintf(tl, "$-5d", f(int)(minval+3*delra+0.

gdImageScring(im, X, ¥, tl, black };

/* Range -- 5 */
X=X+ 6*8;

sprintf(tl, "3-5d", (int)(minval+d*delta+0.

gdImageString(im, X, Y, tl, black).

/* Range -- 6 */

X=X+ 6%8;

sprincf({ tl, "%-5d", maxval):
gdImageStcing(im, X, Y, tl, black }:

’fw ________________________ o;’
/* main() starts here .t
[e e w)

int main{ argec, arcgv
int arge;

67

colors|l]

1
colors[2]

i
colors|3)

1:
colors|4)

black);

char *argvl|];

{

FILE *out;
gdImagePtrc im;

int ch, X, ¥y, %X;
char buf[91];

FILE *fp:

int lines, Y;

char gif file[101];

if { arge !'= 4)

{
printf("Needs 3 arguments!\n");
exit(-1);
|
{i _____________________________________ -)\'
/* argv|l] holds gif file name =y
/* argv|2]) holds the min value it
/* argv([3] holds the max value +/
/e A R .t

strepy! gif_file, argv([l] }:
minval = atoi(argv(Z]),
maxval = atoi(argv([3] };

if | minval < 0)
minval = 0;

if { maxwval <= minval)

{
princf ("Max value <= min value !\n");
exit(=-1);

|

/* create the image in memory */
im = gdImageCreate(GIE_WIDTH, GIF_HEIGHT }:

/* define the colors ~/
white = gdImageColorAllocate(im, 255, 255,

" red = gdImageColorAllocate(im, 255, 0, 0):

blue = gdImageColorAllocate(im, 0, 0, 255);

cyan = gdImageColorAllocate(im, 0, 255, 255 };
green = gdImageColorAllocate(im, 0, 255, 0);

yellow = gdImageColorAllocate! im, 255, 255,
black = gdImageCoclorAllocatel im, G, 0, 0);
brown = gdImageColorAllocate| im, 128, 84,
magenta = gdImageColorAllocatef(im, 255, 0,
purple = gdImageColorAllocate(im, O, 0O, 128

/~ define the color table */

colors[Q] = yellow;
eolors([1l] = eyan;
colors|[2] = blue;
colors|[3] = magenta:

colors(d] = brown;

/* draw rthe frame */

DrawRectangle{ im, 0, 0, GIF_WIDTH-1, GIF_HEIGHT-1, blue |;

/* draw the color bars */
DrawBar(im }:

/* draw cange texts */
CrawRange(im);

/* dump the image to gif file =/
out = fopen{ gif file, "w+");
gdImageGifl im, our);

fclosel out);

/* clean up memorcy */
gdImageDestroy(im };

return 0;

68

APPENDIX E

AN OUTPUT SCREEN

69

Maps for WWW — Output

Travel Time (Probability = 10%)

Travel time for ATRAZINE to reach a depth of | meter for different
soils in CADDO county Computing the travel time for applications in
many different years indicates that the times shown below were
exceeded for 10% of the applications; travel times for 90% of the
applications were less than the values shown.

70

COUNTY : CADDO IRRIGATION TYPE : Periodic
APPL.DATE : January CROP : Peanut
PESTICIDE : ATRAZINE 4L

ACTIVE INGREDIENT: ATRAZINE

Koc : 100.0 ml/gOoC

Muid Scil Name (days)

015AgD ACME-GYPSUM OUTCROP COMPLEX, 2 TC 8 1634
015CoB COBB FINE SANDY LOAM, 1 TO 3% SLOPE 545
01l5CoC COBB FINE SANDY LOAM, 3 TO 5% SLOPE 545
015¢Cs CYRIL FINE SANDY LOAM 910
015Cy CYRIL FINE SANDY LOAM, NONCALCAREOU 917
015DnD DARNELL-NOBLE ASSOCIATION, ROLLING 827
015DoB DOUGHERTY LOAMY FINE SAND, 1 TO 3% 573
015DuD DOUGHERTY AND EUFAULA LOAMY FINE SA 576
015FoA FOARD SILT LOAM, 0 TO 1% SLOPES 948
015Gm GRACEMONT SOILS 545
015GrB GRANT LOAM, 1 TO 3% SLOPES 925
015GrC GRANT LOAM, 3 TO 5% SLOPES 924
015GrC2 GRANT LOAM, 3 TO 6% SLCPES, ERODED 910
015GrD GRANT LOAM, 5 TO 8% SLOPES 924
015GwC GRANT-WING COMPLEX, 1 TO 5% SLOPES a04
015HoA HOLLISTER SILT LOAM, 0O TO 1% SLOPES 945
015KoC2 KONAWA LOAMY FINE SAND, 1 TC 5% SLO 531
015Mc MCLAIN SILTY CLAY LOAM 966
015Me MILLER SILTY CLAY LOAM 947
015MoD MINCO VERY FINE SANDY LOAM, 3 TO B% 1628
015MsC MINCO SILT LOAM, 3 TO 5% SLOPES 1644
015NoB NOBLE FINE SANDY LCAM, 1 TO 3% SLOP 894
015NoD NOBLE FINE SANDY LOAM, 3 TO 8% SLOP 894
015NCB NORGE SILT LOAM, 1 TO 3% SLOPES 9214
015NcC NORGE SILT LOAM, 3 TO 5% SLOPES 919
015PcA POND CREEK FINE SANDY LOAM, 0 TO 13 938
015PcB POND CREEK FINE SANDY LOAM, 1 TO 3% 938
015PkA POND CREEK SILT LOAM, 0 TO 1% SLOPE 952
015PkB POND CREEK SILT LCAM, 1 TO 3% SLOPE 953
015PkB2 POND CREEK SILT LOAM, 1 TO 3% SLOPE 938
015Po PORT SILT LOAM 1261
015Pu PULASKI SOILS 538
015ReA REINACH SILT LOAM, UPLAND, 0 TO 1% 1627
015ReB REINACH SILT LOAM, UPLAND, 1 TO 3% 1626
015RhA REINACH SILT LOAM, 0 TO 1% SLOPES 1778
0155hB SHELLABARGER FINE SANDY LOAM, 1 TO 682
015ShcC SHELLABARGER FINE SANDY LOAM, 3 TO 673
015T1B TILLMAN SILTY CLAY LOAM, 1 TO 3% SL 939
015TI1C TILLMAN SILTY CLAY LOAM, 3 TO 5% SL 939
015T1C2 TILLMAN SILTY CLAY LOAM, 2 TO 5% SL 918
015WuC WOCDWARD-QUINLAN COMPLEX, 3 TO 5% S 1236

015Ya YAHOLA SOILS 540

VITA
TAO ZHU
Candidate for the Degree of

Master of Science

Thesis : A WWW INTERFACED DECISION SUPPORT SYSTEM THAT
INTEGRATES RDBMS AND GIS WITH WWW SERVER

Major Field : Computer Science:
Biographical :

Personal Data: Bom in Liyang, Jiangsu, People’s Republic of China, January 31,
1969, the son of Limin Zhu and Xiuying Zhao.

Education : Graduated from Tianjin No. 3 middle school, Tianjin, P. R. China, in
August 1987, received Bachelor of Science Degree in Computer Science from
Peking University, Beijing, P. R. China in July, 1991, completed requirements for
the Master of Science degree at Oklahoma State University in December, 1996.

Professional Experience : Programmer, Department of Agronomy, Oklahoma State
University, August, 1995 to November, 1996, Software Engineer, VLSystems
Inc., Irvine, CA, February, 1995 to July, 1995 ; Programmer, Project Director,
Fourth Shift Asia, Tianjin, P. R. China, May, 1993 to February, 1995; Software
Engineer, Tianjin Navigation Instruments Institute, Tianjin, P. R. China,
September, 1991 to May, 1993.

