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PREFACE

Automatic recognition of frog vocalization is considered a valuable tool for a

variety of biological research and environmental monitoring applications. This thesis

proposes to develop an automatic, unattended monitoring system which can recognize the

vocalizations of four species of frogs in the State of Oklahoma and can identify different

individuals within the species of interest.

The proposed monitoring system deployed one directional microphone to record

the frog calls in the field continuously. Sound signals were stored in digital audiotape

first and then transmitted into a PC with WAVE file fonnat. Species identification was

perfonned first with the proposed filtering and grouping algorithm. Individual

identification, which can detect different individual frogs within the same species, was

perfonned in the second stage. Digital signal pre-processing, feature extraction, feature

vector dimension reduction and pattern classification were perfonned step by step in this

stage. Different feature extraction algorithms, induding the time domain method (Linear

Predictive Coding), the frequency domain method (Time-Dependent Fourier transform),

and time-scale domain method (Wavelet Packet Transfonn), and two different dimension

reduction algorithms are synergistically integrated to produce final feature vectors which

were to be fed into a neural network classifier. The simulation results show the promising

future of deploying an array of continuous, on-line environmental monitoring systems

based upon nonintrusive analysis of animal calls.
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CHAPTER I

INTRODUCTION

1.1 Frog Call Monitoring System Overview

Recently there is an increasing interest and expenditure in environmental

monitoring, both in North America and around the world. It is becoming essential to

predict and assess the environmental impact of human activities on plants and animals.

The populations of certain kinds of animals like birds and frogs are excellent indicators of

overall environmental health. As many of the animals in an area may be heard but not

seen, it is convenient to rely on their sounds as a means of identification. In many places

manual census is not available, if not completely impossible. As a result, automatic

recognition of animal sounds is then considered a valuable tool for biological re earch

and environmental monitoring applications. In the present thesis work, an automatic,

unattended, monitoring system is proposed to recognize the vocalization of different

species of frogs in the State of Oklahoma.

The monitoring system, which does not require an expert attendance, deploys a

directional microphone to capture frog calls continuously in the field, records sound

signals into digital audio tapes, and translates them into digital audio data files. Species

identification (including the use of different band pass filters and grouping algorithms)

and individual identification within some species (including data preprocessing, feature

selection and feature vector dimension reduction, and pattern classification) can be
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automatically carried out in this monitoring system. Useful information such as the

number of species identified and their approximate estimated population are then

transmitted via Mesonet for follow-up environmental decision-making.

The successful development of this automatic monitoring system will provide a

robust measurement to quantify environmental pollution. This system will greatly

facilitate research to monitor the amphibian population as an indicator for environmental

and water quality [1].

1.2 Problem Background

Frog is a small, tailless animal with a squat body and long, powerful hind legs

adapted for jumping. Most frogs have moist skin. They typically live both on land and in

water. Toads are very similar to frogs except that toads typically have rough and dry skin

and they often live in drier habitats. Frogs and toads are commonly acknowledged as the

major divisions in amphibians. Amphibians lead a double life, alternately on land and in

water. Typical amphibians include toads, newts, and salamanders as well as frogs. They

usually live in temporary or permanent wetland areas such as woodland ponds and

flooded fields.

Frogs are of great importance to humans. They are carnivores and consume large

quantities of insects, worms or other small creatures. In turn, they may be a food source

for other animals such as snakes. Frogs and toads are integral parts of the food chain.

Many researchers in different fields are interested in frogs and toads because they are
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considered to be bioindicators. The health of frog population is thought to reflect the

health of the whole ecosystem. Auditory recognition of frogs is one feasible way to

estimate frog population in the area of interest.

In the State of Oklahoma, different species of frogs and toads make calls starting

from January and February till September. Frogs, as well as birds and whales, have

developed the use of sound as the principal means of distant communication. Most

species of frogs can produce two types of calls, a distress call and an advertisement call.

Both males and females can make distress calls when they are in danger. Only males can

produce advertisement calls, which are used to convey such information as location and

breeding readiness to both sexes. Advertisement calls can be used to identify the species

of frogs and toads in the State of Oklahoma.

After some practice a person with a "good" ear can easily learn to distinguish the

calls of most species. For those with a less discriIllinating ear, an analytical graph of the

sound can be a useful teaching aid for learning calls and comparing them. A spectrogram

is a graphic image of sound that can be produced by digitizing sound in a computer and

then showing it on a monitor. The spectrogram represents a plot of frequency against

time; it depicts changes in frequency over the time duration of the call. Figure 1-1 shows

a spectrogram of Southern Leopard frog call (three calls within the frame).

Figure 1-1: Spectrogram of Southern Leopard Frog Call
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1.3 Motivation for the Research

Since early 1980, scientists have reported startling declines in the populations of

some species of frogs [27]. These declines have occurred globally. Although the reason

for frog population decline remains a mystery, there arise a variety of popular hypotheses

and possible justifications, such as fluctuations caused partly by climatological changes,

increased ultraviolet light due to anthropogenically caused ozone depletion, diseases and

introduction of exotic species (e.g., bullfrogs). All of them make frog population an

excellent indicator of environmental health, particularly in aquatic habitats because of

their biphasic (aquatic and terrestrial) life. Also, frogs are in general susceptible to

environmental toxicants due to their penneable skins. Understanding the effects of

pollutants on frogs may help us to learn more about maintaining other species in their

natural environments and about preserving these environments for human beings. Several

species of frogs found in the State of Oklahoma are considered to be endangered in the

foreseeable future (e.g., the leopard frog and the cricket frog).

Causes for frog population declines remain shrouded in mystery despite increased

worldwide research efforts. Because of the difficulty and expensiveness of the censusing

population of specific frog species, a conclusive analysis based on the estimation of frog

population is not yet available. Manual field tracing of frog calls in extremely hot and

high humidity wetlands for an extensive period of time is very difficult. And the activities

of most species are irregular, depending primarily on rainfall. As a result, short field trips

to these areas are not a reliable method to census the frog populations [1]. Therefore, an
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automatic monitoring system, which remotely monitors calling anurans in the harsh

environment, needs to be established with in-place Mesonet infrastructure.

1.4 Automatic Monitoring System Architecture

Basically, the automatic frog call monitoring system can be functionally divided

into two specific parts: species identification, followed by individual identification for

certain species. First we collect sound signals by microphone, store them into digital

audiotapes, and then transmit them in the form of digital WAVB files, which can then be

fully analyzed by a digital computer. In species identification, filtering and grouping

algorithm will be used. The individual identification includes three separate steps: signal

preprocessing, possible feature vector dimension reduction, and pattern classification.

Finally, useful information about frog species represented and the number of calls within

certain time interval will be transmitted through Mesonet. Figure 1-2 illustrates the

architecture of the system envisioned.

L
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Pond

Diret:tional
Microphone

r..·····..·············..·..············ ..··· ..·.. ·····.. ·· ·..· ·..·· ·..·..····.. ··.. ·······1
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Preprocessing Reduction Classification

lndi vidual Identification
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Figure 1-2: Automatic Frog Call Monitoring System Architecture
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By establishing such an automatic system, which may sustain the harsh

environment in the field, it has become possible to continuously monitor the number of

different species of frog calls within the State of Oklahoma and approximately estimate

the number of individual frogs within specific species of interest.

1.5 Thesis Outline

In this thesis, Chapter 2 provides a literature review for different existing animal

sound identification systems. Chapter 3 presents the proposed method of species

identification, which is proven to be efficient and different from those mentioned in

Chapter 2. Chapter 4 shows how individual identification works, which includes three

major parts: signal preprocessing, feature vector dimension reduction, and pattern

classification. Chapter 5 discusses the simulation results of species and individual

identifications based on the available data sets. Chapter 6 gives the conclusion of the

research and suggestions for future work.
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CHAPTER II

LITERATURE REVIEW

2.1 Overview of Animal Sound Recognition

Automatic recognition of animal vocalizations has been considered a valuable

tool for a variety of biological research and environmental monitoring applications.

Recently conducted researches have focused on the area of marine mammal population

estimation [5, 22, 30] like whales and dolphins and species identification of groups such

as birds [17, 18, 23, 35, 38] and frogs [39], which are frequently used as general

indicators of diversity or ecological changes. Most of these applications focused on

species identification, i.e., to identify different species of birds according to recorded

birdsongs. However, only a few research efforts have been dedicated to quantify the

repertoire of a single species and thus estimating population within the same species [5].

Manual censuses of animal vocalizations are often time-consuming, inaccurate,

expensive and prone to observer biases. In some areas there are very few or even no

suitably skilled observers. Automatic methods to identify and count animal vocalizations

would allow a more extensive, more consistent and cheaper population monitoring for

many species. It also can make intelligent deductions, which are not feasible with human

observers.

Based on different characteristics of various animal sounds, there are different

methods to perform automatic or manual recognition. Basically all recognition systems
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include two stages: digital signal pre-processing and pattern classification. These two

stages will be separately discussed as follows.

2.2 Methods of Digital Signal Pre-processing

The purpose of digital signal pre-processing is to extract a temporal measurement

which contains useful infonnation from the original data. As is known, these large

volumes of original data sets generally contain only sparse segments of useful calls.

These calls often have weak signal strength and possibly buried in interference, and

usually consist of somewhat similar noises fonn other animals and the environment.

Through the use of pre-processing we can extract only those useful signals critical for

pattern recognition usage.

As with human speech, animal sounds can be sensibly interpreted using a time­

frequency representation method. Thus tools designed for human speech analysis are

commonly used for animal sound classification purpose. Generally this includes time

domain methods such as linear predictive coding [17, 35], frequency domain methods

such as Fourier transform, time-frequency domain methods as time dependent Fourier

transfonns, spectrogram [38, 39], and time-scale domain methods such as wavelet

transfonns [12]. In addition, biologists have considered zero-crossing analysis,

autocorrelation functions, cepstral analysis, power spectral density (Welch method) and

Wigner-Ville transforms as tools for pre-processing of signals.

8
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In comparison with the human speech recognition problem, animal s~ are

usually simpler to recognize than speech utterances. Their recognition would be an easy

problem if it was conducted under similar conditions to that of most successfully

deployed speech recognition systems: a single cooperative individual close to the'

microphone in a quiet environment [3}.

Unfortunately these animal sounds are usually recorded in a much noisy

environment. which means that we must recognize simpler vocalizations under much

more difficult conditions. That is the main difference between human speech recognition

and animal sound recognition. Work in the fanner case focuses on the utterances, while

the latter focuses on robustly handling the recording conditions.

The noisy nature of animal sound identification lead to one conclusion: aU those

signal processing methods mentioned above provide only the necessary tools for !be

process of signal pre-processing. There is still much work to be done to extract the useful

messages (or features) from raw signals. Three examples will be used to illustrate the

works involved.

2.2.1 Pre-processing Case I

The use of a time-frequency space such as spectrogram as input to a detection

algorithm is proven to be effective, at least in part because the hearing physiology of

many animals is constructed to produce time-varying spectral estimates [28]. Taylor [38]

used spectrogram as the basic approach to process different species of birdcall signals.

9
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Figure 2-1 shows examples of call spectrograms of 4 different species. As shown in

Figure 2-1, automatic identification would not be difficult if the calls were recorded in a

controlled environment. Unfortunately this is not the case.

Cape May Warbler #2 Northern Waterthrush #14 American Redstart #15 Blackpoll Warbler #1

Figure 2-1: Clear Call Spectrograms of 4 Species [38]

In practice, birdcalls are recorded by specially designed microphones mounted on

the roofs of buildings. Figure 2-2 displays examples of calls for the same 4 species as

those in Figure 2-1 but demonstrating difficulties arising from the recording environment.

Cape May Warbler #2 Northern Waterthrush #14 American Redstart #15 Blackpoll Warbler #1

Figure 2-2: Unclear Call Spectrograms of 4 Species [38]
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Each call in Figure 2-2 indicates a different problem. For example, the first one is

very faint probably because it is far away from the microphone; the second caB has a

fainter call from an Ovenbird overlapping in time and close to it in frequency.

All these problems make the choice of representation very crucial. How to extract

useful information from the huge amount of data points produced by one simple

spectrogram is a challenging problem.

The narrow bandwidth of the calls prompted to simplify the representation by

tracking the dominant frequency of the call. This reduces the two-dimensional call

spectrogram to a one-dimensional track of the dominant frequency. Figure 2-3 gives an

example of such a frequency track [38].

OmH 160mH

Blac.kpoU Warbler #12

Figure 2-3: Frequency Track of a Call

Call frequency tracks are found by searching for sequences of local peaks in the

spectrogram. Sequences, in which length or frequency changes out of the limits

appropriate for calls, are rejected. Low energy peaks forming a spurious suffix or prefix

11
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to a frequency track are detected by comparing the average energy of the peaks of the

track. This is done by using an ad-hoc process [38].

In speech analysis, one method is to extract attributes from a fixed-sized window

stepped through the signal. This method combined with machine learning has been

applied very successfully to speaker recognition [36].

In this thesis, after some trial-and-error, a windowed approach to classify birdcalls

is developed. A spectrogram is produced using a 64-point Discrete Fourier Transform

(DFT) with a window size of lOms, an increment of 3ms and a Hanning window.

A window of 11 peaks (totally 33ms) long slides along the frequency track. It is

moved forward 1 peak at each step. According to the length of the call, 10 to 30

overlapping windows are produced. Figure 2-4 gives an example of such a window,

which was extracted from the Blackpoll Warbler call in Figure 2-3.

7.3 Irh..-...-----------,

5.7 khz'-,---..:.....::..-------i
90JIlll

Figure 2-4 A Sub Window Extracted from Figure 2-3

Thirteen attributes were extracted from each window:

• The frequency of the peak at the center of the track.

• The frequencies of the other 10 peaks in the window.

12



• The energy of the spectrogram bins one and two increments above the

central peak of the window, relative to the energy of the peak.

By this feature extraction method we obtained the final decision vector, which

could be fed to the next stage: pattern recognition. With some modifications it finally

correctly classified 79% of the 138 calls. Some other papers also used this method ­

spectrogram combined with local peak selection to extract feature vectors from original

signal [39,23].

2.2.2 Pre-processing Case II

One of the most powerlul speech analysis techniques, Linear Predictive Coding

(LPC), which has been used successfully in speaker identification, in speech recognition

and in speech compression, now is frequently used in birdcalls identification applications

[17,35].

Analysis of speech often begins with study of the vocal tract that created it. It is

noticed that both bird vocalizations and human speech are generated by similar processes.

If one assumes that vocalizations of both birds and humans can be modeled by source­

filter interactions, one may then characterize these vocalizations by extracting filter

coefficients from the time domain waveforms. LPC fits the impulse response of an all­

pole filter to such a waveform. This suggests that LPC coefficients extracted from

birdsong samples should retain enough information to permit identification of species.

13
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One paper [17], which used LPC as pre-processing method to identify different bird

species, will be focused in this section.

Comparing with spectrogram techniques used in previous example, the LPC

method is much simpler and demands less computation. However, the identification

system is not fully automatic. Data segments, which contain useful birdsong information,

were left justified and picked out by hand first, then data were fed into the automatic pre­

processing software package. The pre-processing stage includes several steps:

1. Framing - a non-overlapping Hamming Window, 256 samples (approx. 23.2ms)

wide was applied. Frame widths for speech recognition are normally in the order

of lOms 113].

2. LPC - 15 time domain coefficients for a 15th order LPC filter were generated for

each frame.

3. FFT - a fast Fourier transform of the 16 LPC coefficients was produced with 9

unique spectral magnitudes.

This procedure was repeated with a 1024 sample window for all songs. Initial

investigation revealed that the overall length of a bird's song was an important cue in

species identification. Therefore, a variable is introduced to represent the length of a

song. The value of this variable was the same for each record within a given song.

Spectral and time variables were normalized to a mean of zero and a standard deviation

of one. Variables were squashed using a logistic function with a gain of unity.

Combined with pattern recognition method (which is a neural network in this

case), the overall performance of attempting to identify 6 species ranged from 80% to

14
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85% of correct identification. Except for some cases, mean performance increased a the

original input data was changed progressively from 256 to 1024 and to combined data

sets. This does not mean that the overall perfonnance achieved with the 256 sample

window was not good, however, increasing the window size and combining two

resolutions of spectral data substantially improved the perfonnance of the neural

classifier, which means the second stage - pattern recognition in this kind of

applications may playa more important role than pre-processing. Pattern recognition will

be discussed in the next section.

2.2.3 Pre-processing Case III

Very little research has been carried out in the field of frog call identification.

Taylor [39] reported the development of a software system, which can recognize the

vocalizations of 22 species of frogs that occur in an area of northern Australia. The

system is based upon the classification of local peaks in the spectrogram of the audio

signal using Quinlan's machine learning system, C4.5 [31]. Basically, the pre-processing

method is similar to case I in Subsection 2.2.1.

The vocalizations of 22 frog species range in length from less than 20ms to over a

second. Some species repeat their calls incessantly; other species usually make only

occasional isolated calls. Many species tend to call in choruses with hundreds of

individuals from a number of species present. The background noise includes that made

by insects and rains. Some species' calls can be noise for others because of their

15
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Figure 2-5: Spectrogram of a Frog Chorus
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similarity. An example of the spectrogram of a frog chorus recorded can be seen in

4 khz

8khz......--------=-----:::-.,....,..,.....,....-,..,..,....,.-~:-=-="='"""",....,...---------------.

Figure 2-5.

Figure 2-5, which is only a one second spectrogram, shows at least 11 individuals

of 6 species of frogs and at least 3 species of insects, which can be considered as noise.

Most of the frog calls function as an advertisement to other members of the same

species and hence have evolved to be species- specific. Experiments on other frog species

have shown a variety of properties, which can be used by frog species to recognize their

own species [6]. These include call rate, call duration, amplitude-time envelope,

wavefonn periodicity, pulse-repetition rate, frequency modulation, frequency, and

spectral patterns.

Because frog calls were collected in a noisy environment, the system makes no

attempt to segment or isolate individual vocalizations. It works entirely from the

spectrogram of the incoming audio signals. By means of the similar pre-processing

method as discussed in Subsection 2.2.1, the system can pick out those local peaks

appeared in the spectrogram. Figure 2-6 contains a call with the local peaks marked.

16
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4 khz

3 khz
Oms 0.05 9E!oond

Figure 2-6: Local Peaks of a Litroia Inennis Call

0.1 Aeonnd

The system examines each of the 40 local peaks in Figure 2-6 individually and

classifies it as a particular species. Information from the spectrogram surrounding the

peak is used to construct arrtibutes for classification. These infonnation include the

frequency of the peak, the relative frequency of nearby peaks in preceding and

succeeding time slices, and etc. There exist a significant number of ways that attributes

constructed from this infonnation. A set of approximately 70 possible arrtibutes wa

constructed and a greedy search similar to the tenn forward selection [8] was used to

choose a subset of 15 of the attributes that can be used for the system.

2.3 Methods of Pattern Classification

Pattern classification fOnTIS a fundamental solution to different problems in real

world applications. The function of pattern classification is to categorize an unknown

pattern into a distinct class based on a suitable similarity measure. Thus similar patterns

17
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are assigned to the same classes while dissimilar patterns are classified into different

classes.

Engineers and scientists have developed many methodologies to deal with

classification problems. In animal sound identification systems, several methods have

been used. The most popular methods are neural network classifier [17, 18], decision-tree

classifier [39], Bayesian Classifier [35] and statistical pattern classifier [18]. Some

researchers combined more than one method together in their applications. In the

following, statistical pattern classifier, neural network classifier, and decision-tree

classifier will be briefly discussed.

2.3.1 Case I: Statistical Pattern Classification

As a traditional technique for classification problems, statistical pattern

classification has been applied to numerous sound call recognition applications. This

classical classification technique makes use of statistical decision theory to classify

patterns.

In one research, a total of 133 birdsong records of 6 different species need to be

classified [18]. After the pre-processing period, 23 variables were extracted from each

birdsong signal. Then the number of variables was reduced from 23 to 8 using statistical

analysis.

Preliminary examination of the correlation structure of the data indicated complex

intercorrelation of variables. This in tum suggested that a smaller subset of variables

18
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should be expected to contain enough infonnation to pennit discrimination. A stepwise

discriminant analysis was performed. In this paper, separate ANOVA's (analysis of

variance) and Scheffe's multiple comparison test [25] were calculated for each variable.

The rest was checked for nonnality using the Shapiro-Wilk statistic W calculated and

homoscedasticity with Bartlett's test [4] using a statistical SAS program (SAS is a kind of

software used for statistical analysis.) [4].

Another way to explore the structure of data is to use ordination methods [29].

The amount of overlap among the songs of the 6 bird species was examined by reducing

the eight variable data set to a two-dimensional (2-D) space using principal components

analysis (PCA) and canonical discriminant analysis (CDA). The correlation option was

used for PCA so that each variable was given equal weight in the analysis regardless of

its scale. CDA was then applied to the reduced data set, with prior probabilities assumed

to be equal. Preliminary tests indicated that quadratic discrimination functions were

necessary since covariance matrices for different classes were too dissimilar to allow

these classes gathering together. The results for quadratic discrimination analysis (QDA)

were excellent. Overall accuracy was 93.3%, a bit better than the results using neural

network method (neural network classifier was also used in pattern classification.).

2.3.2 Case II: Neural Network CI.assification

Automatic pattern classification has been seriously considered by scientists and

engineers from different fields. Many researchers have paid attention to neural network

classifiers because of its capability of model-free and trainable systems, parallel

19



computation, and nOIse tolerance of neural networks. Basically, two properties of

artificial neural network (ANN) inspire researchers to study neural network applications

to deal with different pattern classification problems. They are:

1. The equivalent weighting matrix of ANN is detennined by training, thus it can

converge to a more optimal solution.

2. ANN is a kind of nonlinear estimator, which can embody more sophisticated

responses.

In one study [18], by using LPC in pre-processing stage, each record composed of

10 variables derived from either the 512-sample window (9 variables) or from the 2048­

sample window (9 variables) and the song length (l variable). In this study,

backpropagation was employed as the learning model [19]. Experiments with cross

validation showed an ANN with 10 inputs, 12 hidden neurons and 6 outputs (10-12-6)

can obtain the best result. The learning rate was set to 0.2. Target values of 0.0 and 1.0

were changed to 0.2 and 0.8 separately to accelerate learning [7]. Songs were divided into

test and training sets in random order.

The six output values were analyzed for each of the test set records, and errors

were computed. In this research, any output value greater than 0.6 for one of the six

species was counted for that record. This was designed to yield consistency and

somewhat conservative results.

The results from this ANN classifier were good. The overall performance ranged

from 91 % to 93% correct identification. But the drawback of this method was that it

required considerable computation. Due to the dimensionality and the number of input
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records generated during pre-processing, it takes several hours on a high-performance

workstation to train the network. When larger sample sizes and more species are added, it

may take even more time. For these reasons the statistical method is added as another

classifier, which was mentioned in Subsection 2.3.1.

2.3.3 Case III: Decision Tree Classification

Until now, very few researchers have studied frog call identification. As

mentioned above [39], by extracting about 70 possible attributes from the spectrogram,

one feature selection algorithm similar to that in [8] was used and a subset of 15 of the

attributes was obtained for the identification system.

Quinlan's machine learning system, C4.5 [31], was used to construct the

classifier. C4.5 is a supervised learning system. It used a set of classified cases and a

number of attributes for each case as training data and produced decision tree to classify

further cases. The training data for C4.5 was extracted from calls of each 22 species.

These calls were the recordings of single individuals with high quality. A number of them

were manually chosen from each recording for training. This ensured that only calls from

those required species were present in each piece of training data.

The decision tree produced by C4.5 has roughly 5,000 nodes. A small portion of

the tree is shown as follows.

vert2 <= 18:
1 freq-4 <= -8: Uperoleia lithomoda
I freq-4 > -8:
I I verta+vertb-vert <= 7: Litoria bicolor
I I verta+vertb-vert > 7:
I I timef+4 <= 0: Uperoleia lithomoda
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I I tirnef+4 > 0: Litoria caerulea
vert2 > 18
I horiz <= -50: Litoria tornieri
I horiz > -50: Uperoleia inundata

One C program developed in this research was used to implement this decision

tree structure for identification purpose.

The identification of those local peaks is not very reliable. The error rate

approaches 50%. Obviously this is unacceptable. Here, following this decision tree

classifier the author developed one hierarchical structure of time segments based upon the

typical temporal patterns of each frog species to carry on further identification. In the

following, an example from [39] is cited for the completeness of the presentation.

"For example, a species might have a vocalization typically lasting 300ms

containing a number of 30ms "notes" and it might usually produce 4 or more

vocalizations in 3 seconds. Our system models this with 3 levels of segments. The level 0

segments will be 30ms long. If a threshold number of local peaks occur in that time

period then the species is regarded as present in that level 0 segment, in other words we

assume we have recognized a single "note" belonging to the species.

The level 1 segment will be 300ms long. If a threshold number of level 0

segments are identified as containing the species within that time period then the species

is regarded as present in that level 1 segment, in other words we assume we have

recognized a single vocalization of the species.

Similarly the level 2 segment will be 3s long and a threshold number of level 1

segments will be required to regard the species as present in the level 2 segment and

hence reliably identified."
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Only a few species were required to use three level hierarchies. Most species only

needed a one or two level hierarchy.

The perfonnance of this system was good. Yet there were several mismatches of

one species and one mismatch of a second species. Attempts to remedy this by modifying

the temporal segments used for identifying these species were tried in this work. And for

some species the system can only identify only one third of the total number of caBs. This

is partly because the system is following the rule that it would rather fail to recognize a

call (a false negative) than to incorrectly indicate the presence of one species (a false

positive). To further improve the prediction accuracy, there still remains appreciable

works to be exerted.
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CHAPTER III

FROG SPECIES IDENTIFICATION

3.1 Data Acquisition of Frog Call Signals

The frog call monitoring system is based upon in-field acquisition of natural

sound signals. One directional microphone, Telinga Pro V Mono Parabolic microphone

was used to collect audio signals. It has frequency response: 40-18,000Hz: +/- 3dB. The

microphone was connected with a SONY PCM-M1 digital audio recorder. Audio signals

were stored in digital audiotape (DAT). Each DAT has capacity of 120 minutes. The

Turtle Beach System, which includes Turtle Beach Montego II sound card mounted on

PC, Turtle Beach AudioStation, Turtle Beach AudioView and additional supporting

software, was utilized to transfonn signals stored in DAT into computer with digitized

WAVB fonnat. Each WAVE file has PCM (Pulse Code Modulation) format with

8,000Hz sampling frequency, 16-bit accuracy and monotony. Because no integrated

hardware is available, all identification and classification were perfonned in lab rather

than in field.

The capacity of each WAVE file is 16K.Byte per second. Considering about the

computational complexity and the characteristics of frog calls, each WAVE file was

chosen to be approximately lO-second long. To analyze data in real-time, the computer

system should carry on species identification and the corresponding individual

identification within 10 seconds. Later a Pentium III 500 PC was used for simulation
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purpose. It was found that all numerical computations could be done within one or two

seconds. That is well below 10 seconds. Hence a length of lO-second file segment is

practically reasonable. After developing the whole hardware system, sound signals can be

separated into lO-second long intervals automatically and be analyzed one by one in real-

time.

3.2 Spectrogram Analysis

All frog calls acquisition works were perfonned in Stillwater, Oklahoma. Frog

calls of four different species have been collected from January to May 2000. The names

of each species are listed in Table 3-1. In the following the abbreviations of frogs of

interest are being used for simplicity.

Table 3-1: Latin Names, Roman Names and Abbreviation of Four Species of Frogs

Subject Code Latin Name Roman Name Abbreviation

01 Rana utricularia Southern Leopard Frog RAUT

02 Bufo americanus American Toad BUAM

03 Psevdacris streckeri Streckeris Chorus Frog PSST

04 Psevdacris clarkii Spotted Chorus Frog PSCL

Most of the frog calls function as an advertisement to other members of the same

species and hence have evolved to be species-specific. Early there were experiments on
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some species of frogs in other areas. These experiments have shown the fact that a variety

of properties of frog calls can be used by one frog species to recognize the vocalizations

of their own species [6]. To identify different species of frogs, some useful tools are used

to explore properties of different frog calls. Spectrogram, which is frequently used in

speech analysis, provides a three-dimensional representation of the sound intensity in

different frequency bands over times and thus can be served as a powerful tool for the

analysis purpose.

Spectrogram, essentially a type of time-dependent Fourier transforms, has two

general classes: wideband spectrogram and narrowband spectrogram. A wideband

spectrogram representation results from a window that is relatively short in time. It has

poor resolution in frequency domain and good resolution in time domain. While a

narrowband spectrogram uses a longer window to provide higher frequency resolution

and with a corresponding decrease in time resolution [26]. In this research, single pitches

of each frog calls need to be separated for identification and analysis purpose. These

single pitches usually have very short durations (lO-50ms). As a result, the wideband

spectrogram, which has relatively better resolution in time domain, was used in the

conducted research.

Figure 3-1 shows typical spectrograms of four different species being studied in

this thesis. All unique call patterns are within those rectangle areas. One noticeable thing

is that different noise sources seem to occupy nearly the entire frequency band.

Obviously each species has unique properties to distinguish themselves from each

other. These include the call rate, the call duration, the amplitude-time envelope, the

waveform periodicity, the pulse-repetition rate, the frequency modulation, the frequency,
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and spectral patterns [6]. Since all frog call signals occupy frequency band well below

4KHz, according to sampling theory. the sampling rate (Fs) of 8KHz is a reasonable

choice. By using this sampling rate while not other higher sampling rate such as

11.5KHz, the system demands smaller memory and needs less computation time.

j

RAUT

PSST

BUAM

DJ U 01 01 1 I' I' '1 '1 )-
PSCL

)

Figure 3-1: Spectrograms of 4 Different Species

These four species calls are all within certain frequency bands. According to call

patterns they can be divided into three types. Type I includes RAUT and PSCL. Usually

one frog of these types makes one to severa] calls at one time. Each caB is composed of

several pitches (pulses) with similar repetition rate. PSST can be seen as type II. Each

calJ of PSST is only composed of one single pitch. Type II can be considered as the
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simpler case of type I. Type ill contains BUAM. This call uSllally lasts minutes, which

can be regarded as continuous calls. Each call of this type is composed of many single

pitches with similar repetition rate. Table 3.2 describes some typical features of these

four different calls.

Table 3-2: Call Patterns of Different Species

Species Main frequency Number of pitches Pitches repetition rate Duration ofone

band (Hz) within one call within one call (s) single pitch (s)

RAUT 800-2,200 3~9 0.07~0.09 0.02~0.03

BUAM 1,600-2,000 Hundreds 0.04~0.05 0.03~.04

PSST 2,000-2,500 1 N/A 0.04~0.05

PSCL 2,300-3,100 7~14 0.02-0.03 0.01-0.015

Generally speaking, one single pitch is the basic element of all different frog calls.

Although each pitch may have one peak frequency value, basically the sOllOd energy is

evenly distributed within the whole frequency band. Also different individuals within the

same species may have slightly different peak frequency value.

According to different caB patterns shown in Figure 3-1, two general methods can

be used to carry on species identification. One for Type I and II and the other for type m.

Since RAUT and PSCL are similar and PSST is simpler than these two, methods

proposed for detecting RAUT will be explained in detail as an example in the following

section and method for identifying BUAM will also be illustrated.
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3.3 The Proposed Filtering and Grouping Algorithm

Before any identification work can be carried out, characteristics of frog calls

must be carefully studied first. Then certain suitable properties may be extracted to

implement the identification. Figure 3-2 showed some details about spectrogram of two

RAUT calls. By looking at this figure, some useful information may be concluded.

tl

Tl

t2 t3

T2

..
)

'.
~3

Figure 3-2: Spectrogram of RAUT Call

This spectrogram uses a window of length 128 and a FFT of length 256. Two

calls made by the same frog are shown in the shaded area. The frequency ranges from

800Hz to 2,400Hz. Those outside the shaded area are all different background noises. In

this case the noise level is high. Each call is composed of several pitches, which are seen
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as vertical striations in shaded area. The lengths of these two calls are Tl and T2

respectively. The pitch repetition rates within one call are rOughly the same. That is, tl =

t2 = t3.

After carefully studying all available RAUT call signals, the following

conclusions were make.

1. All RAUT calls have mostly energy within 1,000-2,000Hz.

2. All RAUT caJls are composed of several pitches.

3. The pitch repetition rate within one call is approximately 0.07-0.09s.

4. Single pitch length usually ranges from 0.02s to 0.03s.

Based on these observations, we can use one simple but efficient algorithm to

identify RAUT calls from the whole data set. Below we use one period (roughly 3.5s) of

original sound signals Y(t) as an example.

o.e.---~-~-~-~-~--,

-o.eL..-_~_~_~_~_~_~

o 05 1.6 25

.10

Figure 3-3: One Period of Original Sound Signals yet)

Two calls can be roughly seen in this period, but they are not clear. Since RAUT

calls are within certain frequency band, one bandpass filter (BPF) is introduced to filter

other irrelevant signals out thus to give a more clear view.
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Basically there are two kinds of digital filters, finite impulse response (FIR) filters

and infinite impulse response (IIR) filters. Compare to FIR filters fiR filters have the

advantage that a variety of frequency-selective filters can be designed using the closed-

form design formulas [26]. Once the problem has been specified with a given

approximation method (e.g., Butterworth, Chebyshev, or elliptic), the order of the filter

that will meet the specifications can be computed and the coefficients of the discrete-time

filters can be obtained by straightforward substitution into a set of design equations. For

the problem of interest, only magnitude response needs to be evaluated. There is no need

to consider the frequency response. On the other hand, although the FIR filters have exact

linear phase, there is no way to use any closed-form design equations. Also if we put

aside phase considerations, it is generally true that a given magnitude response

specification can be met most efficiently with an fiR filter. For these justifications fiR

BPF is chosen in this case to filter out those irrelevant noises outside the specified

frequency range.

There are mainly three kinds of fiR filters: Butterworth, Chebyshev and elliptIc.

The choice of the specific filter depends on the requirement of the filtered signal. Here

we want to filter irrelevant signals out while keeping the magnitude of those signals

within the passband unchanged. Since Chebyshev type II filters are monotonic in the

passband and equiripple in the stopband, they can largely sustain the magnitude of signal

components within the passband and attenuate unwanted signal components to the same

level, no matter they are in high frequency band or low frequency band. For these reasons

the Chebyshev type II filter was chosen as the desired BPF.
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The desired passband is set from 1,000Hz to 2,000Hz. Listed below are

parameters designed specially for this BPF [32]:

1. Passband comer frequency Wp : [1,050Hz 1,950Hz]/(Fs/2) =[0.26250.4875].

2. Stopband comer frequency Ws : [950Hz 2,050Hz]/(Fs/2) =[0.23750.5125].

3. Passband ripple R p (the maximum permissible passband loss in decibels): IdB.

4. Stopband attenuation Rs (the number of decibels the stopband is down from the

passband): 50dB.

When choosing these parameters, the passband ripple R p and stopband

attenuation Rs are set to be IdB and 50dB correspondingly. These are commonly used

numbers that allow the system passes passband frequency components and mostly rejects

all others. For digital filter design, the transition width (Ws - Wp ) is an important

parameter. For large transition width value, the performance of this BPF may become

worse. For small transition width value, the performance of BPF will be relatively good

but as a result, the system may have impulse responses infinitely long. There exists one

tradeoff when designing this parameter. Here the transition width is set to be 100Hz

(0.025). In simulation process the BPF performs well while the order of this BPF is not

very high.

Based on these parameters, the possible lowest order of Chebyshev type IT filter is

12 and the Chebyshev type IT cutoff frequency, Wn , that allows it to achieve the given

specifications is [0.24720.5089].

The system equation of this Chebyshev type IT BPF is
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H (Z) = B(z) = b(l) + b(2) Z -1 + + ben + 1) Z -11

A(z) 1+ a(2) Z-I + + a(n + 1) Z-n
(3.1)

B = [b(l) b(2) .. . b(25)]

A =[1 a(2) ... a(25)]

(3.2)

(3.3)

Through calculation, we derive the following filter coefficients:

B =[0.0080 -0.0468 0.1482 -0.3385 0.6258 -0.9787 1.3242

-1.5853 1.7154 -1.7072 1.6081 -1.5044 1.4630 -1.5044

1.6081 -1.7072 1.7154 -1.5853 1.3242 -0.9787 0.6258

-0.3385 0.1482 -0.0468 0.0080] (3.4)

A = 1e+3 x [0.0010 -0.0071 0.0284 -0.0814 0.1843

-0.3456 0.5537 -0.7721 0.9499 -1.0401

1.0197 -0.8986 0.7132 -o.510l 0.3284

-0.1898 0.0980 -0.0449 0.0181 -0.0063

0.0019 -0.0005 0.0001 -0.0000 0.0000] (3.5) i'

The frequency response of this filter is shown in Figure 3-4. Magnitude response

..
is shown on top and phase response is shown on bottom.
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Figure 3-4: Frequency Response of the Designed Chebyshev Type IT BPF
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The filtered signal after this BPF is denoted by ~p (t). Then Y
bp

(t) is squared to

get Ysqr (t). That is Ysqr (t), equals Yb~ (t). Using the threshold those small values of

Ysqr (t) are zeroed out. The signal denoted by Y,hr..s (t) represents the signals after

thresholding. These three steps of signal conditioning are shown in Figure 3-5.

,-

Figure 3-5: Ybp(t), Ysqr(t) and Y;hres(t) (from left to right)
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The threshold, M, is set to be one positive number multiplying the mean value of

signals Ysqr (t), which is proportional to the average power of Ybp (t) [9]. In this case, M

islOxmean(YSqr(t)).In Y,hre (t), signals below this threshold (small spikes) are set to zero

value thus to further reduce possible noise. From Figure 3-5, we can see that the filtered

signals YbP (t) show two frog calls which are much more clear than the original signals.

After thresholding, small noises are thrown away. Till now the first step has been done.

Several sharp spikes can be seen in Y,ltres(t). But no judgment can be made that whether

these spikes belong to true frog calls or not. Below one method called grouping algorithm

is performed to obtain real RAUT frog call intervals and discard those false periods.

Single pitch of RAUT calls usually lasts 0.02s to 0.03s long and pitch repetition

rate within one call ranges from 0.07s to 0.09s. The grouping algorithm is trying to
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identify those spikes that tend to belong to one single call and group them together. Thus

the time intervals of one single call can be detected. First by gathering those signals very

close to each other together, the time intervals of those possible isolated spikes (pitches)

are detected. Then by checking the duration of each short time interval, those with too

short or too long intervals that obviously are not single pitches are thrown away. The

second step of grouping is to group those pitches tend to belong to one call together by

checking the intervals between adjacent pitches. Thus possible time intervals of single

frog calls are acquired. Pitches too far away cannot be clustered together since they tend

to belong to different calls. Finally the lengths of possible single calls are checked. Since

one RAUT call is often composed of at least three strong isolated pitches, those intervals,

which are not long enough, are discarded. After these three steps real RAUT call intervals

are finally been detected and isolated. Figure 3-6 shows the result of two calls as well as

several single pitches separated by the proposed grouping algorithm. The first call

contains eight pitches. It starts from point t = 4,861 and ends at point t = 9,261. So the

duration of this caJI is 0.55s ((9261-4861)/8000 = 0.55). The second one contains six

pitches. It starts from t = 10,686 and ends at t = 14,013. The duration of this call is

0.416s. The intervals of these single pitches are also been stored for possible further

analysis like individual identification. The darker the shaded area, the stronger the single

pitch is.
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Figure 3-6: Two Intervals Detected by Grouping Algorithm

Compared to other species identification methods introduced in Chapter II; here

we propose a simpler algorithm which requires less computation. For the incoming N-

point data set, if the order of the proposed BPF is P, then 4PN real multiplications and

4PN real additions were required in filtering process; N real multiplications was required

in squaring process; N real additions was required to calculate the mean value of Ysqr (t) ;

and approximately N comparisons was required in grouping algorithm. Thus the

computational complexity of the proposed filtering and grouping algorithm is O(PN). The

computational complexity of spectrogram and Faster Fourier transform are both

O(Nlog2N) [26]. In this case P is 12 and N is 80,000. So lOg2N is 16.3. The computation

complexity of the proposed filtering and grouping algorithm and spectrogramJFourier

transform are in the same level. But all methods mentioned in Chapter II requires further

processing of data with some pattern classification techniques, which require additional

computation and time. The method proposed here doesn't need this step at all. So totally

the proposed method needs less computation. The LPC method mentioned in Subsection
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2.2.2 only processes those 256-point sample vectors. Compare to filtering and grouping

algorithm that works on the whole data set (for 10 second that will be 80,000 point

totally), that LPC method needs less computation. But this method depends on manually

selecting candidate signals in the first stage, while the method proposed in this thesis is

automatic. And the LPC method also requires further computation for pattern

classification, which requires additional computation time.

As mentioned in Section 3.2, calls of type IT (PSST) is the simple form of that of

type I. So just by changing some parameters this filtering and grouping algorithm may

also been used to identify type IT frog calls.

Since many species of frogs tend to make sounds in a similar pitch/pulse

repetition mode, it is convenient to use this filtering algorithm to identify these species. In

doing this parameters such as passband of BPF and some criteria about pitch duration and

call length need to be changed accordingly. Figure 3-7 shows some sample spectrograms

of different species with similar call patterns.

..
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~,,
•,

Grey Treefrog Northern Leopard Frog

Figure 3-7: Spectrograms of Two Typical Species [16]
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There is no need to use the BPF and grouping algorithm to identify species with

continuous calls like BUAM. Faster Fourier Transfonns (FFT) is enough to accomplish

this task. Main frequency band of BUAM calls is [1,600Hz 2,000Hz]. Usually peak

frequencies of BUAM calls are within range [1,650Hz 1,850Hz]. Pitch repetition rate is

roughly 0.04 - 0.05s, that is 320 - 400 points and the duration of one single pitch is

usually 0.03 - 0.04s, that is 240 - 320 points. So a 512-point time interval at anytime

within a call is sufficient to cover most parts of one single pitch. Specifically, a 512-point

data set was extracted every 2 seconds along the data file. For one data file approximately

10 seconds long, totally four or five data sets can be extracted. FFT was performed on

each data set. Then peak frequency values within [1,OOOHz 2,OOOHz] of each result were

checked to see whether they are still within [1 ,650Hz 1,850Hz]. If so, there must be

BUAM calling in this period.

Shown below is one example. For a given sound signal, totally four 512-point

data sets were extracted and four oi fferent FFf have been calculated. The peak

frequencies within [1,OOOHz 2,000Hz] are 1,781Hz, 1,813Hz, 1,781Hz and 1,750Hz

separately. All are within [1,650Hz 1,850Hz], which means there is BUAM calling in this

period. The results of four FFf (here only first 257 points) are shown in Figure 3-8. In

Figure 3-8, from Jeft to right are results of FFT analysis of data segments extracted from

original signal at Is, 3s, 5s, 7s, respectively.
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Figure 3-8: Results of Continuous Calculation of 512-point FFf Within One Data File

Ideally, this method is reliable at detecting continuous caJls that have peak

frequency values within a narrow frequency band. But if there is some kind of continuous

noise, which happens to have peak frequency value in the same frequency range, a

mismatch is unavoidable.
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CHAPTER IV

IDENTIFICATION OF FROG INDIVIDUALS

4.1 Individual Identification Overview

Here individual identification refers to identifying individual frogs within the

same species and estimate the number of the identified frogs. Not aJ I species of frogs are

available for this task. The underlying assumption of automatic individual identification

is that human experts may distinguish different individuals within the same species. If so,

their knowledge can be used for analysis purposes and make the automatic identification

possible. If human experts cannot tell the difference of one call from another, it is

unlikely for machine to tell the difference. The reason is that in this case no prior

knowledge is available. For example, one BUAM frog usually makes call continuou Iy

for several tens of seconds or even minutes. There mayor may not be other individual

calls at the same time. Experts cannot tell the difference. In this case without any specific

sample or prior knowledge, no baseline can be established.

Within four species of interest only RAUT can be identified hy human ear

individually, which is proven by experts in zoology, so our research will focus on

individual identification within this species only.

Before individual identification can be examined, typical samples of individual

calls must be collected first. In the species identification stage, individual RAUT calls

with several pitches have been extracted as seen in Figure 3-6. Since one pitch is the
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basic element of each RAUT call, we may choose one typical pitch as the sample for one

RAUT call. The duration of one single pitch ranges from 0.02s to 0.03s, that is 160 -

240-point data segment. A finite duration window w[n] is applied to original signal Y[n]

prior to any signal analysis. This produces the finite length sequence v[n] =w[n]Y[n].

There are many kinds of windows in digital signal processing such as Bartlett, Hamming,

Hanning, Blackman, Kaiser, and rectangular window. Here we choose one non-

overlapping 512-point Hamming window. The center point of Hamming window was

chosen to be at the maximum filtered value (Ybp (t)) within one call. Thus the strongest

pitch within one call has been extracted and serves as the sample vector for this frog call.

Figure 4-1 illustrates this process. The shaded area contains that strongest pitch. •
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Figure 4-1: Filtered Signals (left) and Extracted Single Pitch (right)

For each RAUT call we can extract one 512-point data segment as its sample

vector. All future works are based on analysis of this data segment.
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4.2 Feature Extraction Algorithms

Feature extraction involves preliminary processing of signals to obtain suitable

parameters that reveal distinguishable nature of the specific kind of signal. The aim of

feature extraction is to devise a transformation that extracts the signal features hidden in

the original domain. Corresponding to different characteristics of signals, different

transformations should be properly selected to extract those most typical features from

the original signal domain, thus to make the following step of signal analysis, which, in

this case, the pattern classification, much easier. Three different algorithms used to

extract typical features from those individual pitches will be discussed next. They are:

time domain based method - Linear Predictive Coding (LPC); frequency domain based

method - Time-Dependent Fourier Transform (TDFT) and time-scale domain based

method - Wavelet Packet Transform (WPT).

4.2.1 Linear Predictive Coding Method

LPC is one of the most powerful speech analysis techniques. The theory of LPC,

as applied to speech, has been well understood for many years [15]. The basic idea

behind linear predictive analysis is that a new sample of the function under analysis can

be estimated or predicted as a linear combination of a past number of samples of that

function. By minimizing the sum of the squared error between the actual samples and the

predicted ones over a finite interval of the function under test, a unique set of prediction

42



coefficients can be found. These coefficients used in the linear combination are the

prediction coefficients. A linear predictor with prediction coefficients ak, is defined as

follows:

Zen) = f,akZ(n-k)+u(n)
k=1

(4.1)

where Z(n) is the nth predicted sample, urn) is the noise signal with zero mean and nonnal

distribution, and p is the number of coefficients.

Speech is produced by excitation of an acoustic tube, the vocal tract, which is

terminated on one end by the lips and on the other end by the glottis. There are three

basic classes of speech sounds [26]:

• Voiced sounds - produced by exciting the vocal tract with quasi-periodic pulses

of airflow caused by the opening and closing of the glottis.

• Fricative sounds - produced by forming a constriction somewhere in the vocal

tract and forcing air through the constriction so that turbulence is created, thereby

producing a noiselike excitation.

• Plosive sounds - produced by completely closing off the vocal tract, building up

pressure behind the closure, and then abruptly releasing the pressure.

It is assumed that long-tenn non-stationary and time variant sound signals can be

treated stationary and time-invariant over a short time interval on the order of 30 or 40ms.

With a constant vocal tract shape, speech can be modeled as the response of a linear time-

invariant system (the vocal tract) to a quasi-periodic pulse train for voiced sounds or

wideband noise for unvoiced sounds. In voiced speech, the vocal tract, mouth and nose

act as a filter that shapes the periodic excitation fonn the vocal cords (11]; this is the
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source-filter model of speech production. LPC provides a good model of the speech

signal. This is especially true for the quasisteady state voiced regions of speech in which

the all-pole model of LPC provides a good approximation to the vocal tract spectral

envelope [33]. The mechanism that frogs use to make advertisement calls are similar to

human beings [6]. Also the length of 512-point sample is 64ms, similar to those voiced

signals used for linear predictive analysis. Thus in our case we can use LPC for frog call

analysis purpose.

There are different ways of computing LPC coefficients, such as the covariance

method, the autocorrelation fonnulation, the lattice method, the inverse filter fonnulation,

the lease square method, the spectral estimation fonnulation, the maximum likelihood

formulation, the inner product fonnulation, and the neural network method [33]. Here we

use the least square (LS) method which is widely used in estimation theory [21].

To use the LS method, p, the number of LPC coefficient, should be determined

first. Generally p should not be too large while ensuring low mean square error of the

predicted and actual signal value. Also since later we need to calculate FFT of the LPC

coefficients, p is usually chosen to be a power of 2.

After p has been determined, LS estimate first determines N+l time domain LPC

filter coefficients by LS estimation:

Z(p +1)

Z(p + 2)

ZeN)

=

Z(p)

Z(p + 1)

ZeN -1)

Z(2) Z(l)

Z(2)

ZeN - p) a p

u(p + 1)

u(p + 2)
+

u(N)

(4.2)

Equation (4.2) corresponding to:

Z = Ha+V
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-

where

Z(p + 1) Z(p) Z(2) Z(I) a l u(p + 1)

Z(p + 2) Z(p + 1) Z(2) a2
I u(p + 2)

Z= H= a= v=
I (4.4)

ZeN) ZeN -1) ZeN - p) a p u(N)

The solution based on LS estimate is:

(4.5)

After the LPC coefficients have been obtained, we need to calculate the FFT of

the p-point LPC coefficients and get (P/2) + 1 unique spectral magnitudes as final feature

vectors. When p equals to 16, the dimension of final feature vectors of one frog call will

be 9.

4.2.2 Time-Dependent Fourier Transform Method

Perhaps the most well-known signal analysis tool is Fourier analysis, which

breaks down a signal into constituent sinusoids of different frequencies. In other words, it

transforms signal from time domain to frequency domain. Basic Fourier based methods

like DFT (discrete Fourier transform) is widely used in analyzing the frequency content

of continuous-time sinusoidal signals. But since time information is lost during

transfonnation, it may cause serious problems when dealing with nonstationary signals.

The need for multiplication of signal x[n] by one window w[n] is a consequence

of the finite-length requirement of the DFT. For nonstationary signals such as speech
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signals, the signal properties (amplitudes, frequencies, and phased) will vary with time. A

single DFf estimate is not sufficient to describe such signals. As a result, the time-

dependent Fourier transform (TDFf), also referred to as the short time Fourier transform

(STFf), is usually used to analyze this kind of signals.

The TDFf of a signal x[n] is defined as

-
X[n,A-) = L,x[n + m]w[m] e-jJJ11

m=-:lO

(4.6)

where wEn] is a window sequence. In the TDFf representation, the one-dimensional

sequence x[n] is converted into a two-dimensional function of the time variable n, which

is discrete, and the frequency variable A- is continuous.

In this thesis, a fixed window length was used in Fourier analysis. Calculate N

point FFf of the windowed data set and we can get totally N/2 +1 point unique future

vectors.

The primary purpose of the windowing in TDFf is to limit the extent of the

sequence to be transformed so that the spectral characteristics are reasonably stationary

over the duration of the window. The more rapidly the signal characteristics change, the

shorter the window should be. A long analysis window is not suitable in analyzing short

duration bursts, while a short analysis window is not appropriate for long duration

component. Thus the choice of proper window length experiences typical trade-offs

between the frequency resolution and the time resolution quality. Once you choose a

particular size for the time window, that window is the same for all frequencies. This

deficiency of TDFf naturally leads to the Wavelet analysis, which is more efficient than

Fourier based analysis for nonstationary signals.
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4.2.3 Wavelet Packet Transform Method

Many signals require a more flexible approach - one where we can vary the

window size to detennine features of these signals more accurately either in time or

frequency. Obviously TDFf cannot satisfy this requirement. The Wavelet analysis

represents the next logical step: a windowing technique with variable-sized regions.

Wavelet analysis allows the use of long time intervals where we want more precise low

frequency information and short regions where we want high frequency information.

Figure 4-2 shows what this looks like in contrast with the time-based, frequency-

based. and TDFf views of a signal [24]:

J~

~...

J.

F

...

Amplitude requency

Time Amplitude

Time Domain (Shannon) Frequency Domain (Fourier)

•

~...

J~

...

Frequency Scale

Time Time

TDFf (Gabor) Wavelet Analysis

Figure 4-2: Wavelet Analysis Versus Time Domain, Frequency Domain and TDFf

Analysis
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Wavelet analysis does not use a time-frequency region, but rather a time-scale

region. It is capable of revealing aSPeCts of data that other signal analysis techniques

miss, aspects such as trends, breakdown points, discontinuities in higher derivatives, and

self-similarity [24]. Though wavelets have a brief history, they have already proven

themselves to be an indispensable addition to the analyst's collection of tools. Wavelets

provide better time-frequency resolution. They are more efficient than Fourier based

methods for non-stationary signal analysis.

A wavelet is a wavefonn of effectively limited duration that has an average value

of zero. Different from Sinusoids, wavelets are irregular and asymmetric. Wavelet

analysis breaks up a signal into shined and scaled versions of the original wavelet

(mother wavelet). One typical wavelet, the 8th Daubechies (db8) is shown in Figure 4-3.

Figure 4-3: db8 Wavelet

The Continuous Wavelet Transfonn (CWT) is defined as the sum over all time of

the signalj{t) multiplied by scaled, shifted versions of the wavelet function If':

~

C(scale, position) = ff (t) If'(scale, position, t )dt
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The results of the CWT are many wavelet coefficients C, which are a function of

scale and position. Multiplying each coefficient by the appropriately scaled and shifted

wavelet yields the constituent wavelets of the original signal.

If we choose scales and positions based on powers of two - so called dyadic

scales and positions - then our analysis will be expected to be more efficient and

accurate. An efficient way to implement this scheme using filters was developed in 1988

by MaHat [14]. The Mallat algorithm is known in the signal processing community as a

two-channel subband coder [37]. This very practical filtering algorithm yields a fast

wavelet transform (FWT). The filtering process, at its most basic level, looks like Figure

4-4.

Discrete Time Signal S

cD High Frequency
DWT coefficient

cA Low Frequency
DWT coefficient

Figure 4-4: IJIustration of DWT of Signals

The original signal first passes through two complementary filters (one high pass

filter and one low pass filter), then after downsampling (downsampJed by 2), produces

DWT coefficients. Here cD means detail part form high frequency content of signal and

cA means approximation part from low frequency content of signal.

Wavelet decomposition process can be iterated so that one signal is broken down

into many lower resolution components. This is called the wavelet decomposition tree. In
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level 1 the original signal is decomposed into an approximation and detail. The

approximation itself is then split into a second level approximation and detail, and the

process is repeated.

The Wavelet Packet Transform (WPT) is a generalization of wavelet

decomposition that offers a richer range of possibilities for signal analysis. Not only the

details by the approximations can be split as well. Figure 4-5 shows one wavelet packet

decomposition (WPD) tree.

Figure 4-5: Three Level Wavelet Packet Decomposition Tree

Whereas the DWT only decomposes low frequency components of signal, WPT

decomposes both the low frequency and high frequency components. This rich abundant

information with arbitrary time frequency resolution can allow extraction of features that

combine both stationary and nonstationary characteristic. However, one deficiency that

wavelet bases inherently possess is the lack of translation invariant property. A signal

with a time shift does not result in the time shifted wavelet packet coefficient. Direct
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assessment from all wavelet packet coefficients often turns out to be tedious or leads to

inaccurate results. Here we introduce the idea of wavelet packet node energy [40]. Image

representation as shown in Figure 4-6 was used to represent the WPD tree shown in

Figure 4-5 for interpretation purpose. Each cell wei, j) refers to one node in the

decomposition tree, here i is the scaling parameter and j is the oscillation parameter. We

call each (i, j) as a wavelet packet node. Each (i, j) has K coefficients, Wi, j, k. For one

signal of length 2N
, the maximum value of i is N, for each i, the maximum value of j is i-

1 and the maximum value of k is 2N
.
i
.

w(D,D)

w(I,O) w(l,l)

w(2,O) w(2,l) w(2,2) w(2,31

w(3,O) I w(3,1) w(3,2) I w(3,3) w(3,4) I w(3,5) w(3,6) I w(3,7)

Figure 4-6: Node Representation of WPD Tree

The wavelet packet node energy is defined as:

L 2
e.· = W..

I.j I.j,k

K

(4.8)

which measures the signal energy contained in some specific frequency band indexed by

parameters i and j. In our case each wavelet packet node energy value was defined as an

individual feature component and was used as a robust rudimentary exploration of the

specific signal features. For an r level decomposition, we can get totally 2' + 22 + ... + 2'

= 2'+1 _ 2 sets of node energy coefficients. These coefficients are final results extracted

from each frog call signal by using wavelet method.
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4.3 Dimension DeductionIFeature Selection Algorithm

In Section 4.2 three feature extraction algorithms were introduced. It can be

noticed that using TDFf and WPT may produce high dimension feature vectors for each

individual frog call signal. For example, if a window of length 512 was used, then one

TDFr feature vectors will contain totally 257 coefficients and the dimension of one WPT

feature vectors with full decomposition will reach 510. Direct manipulation on whole

data set is not feasible because of high dimensionality of data and the existence of

undesired components that make the classification unnecessarily difficult. Thus it is

desirable to use lower dimensional feature vectors as input for the pattern classifier.

To reduce dimension of feature vectors, one idea is to find a linear transfonnation

that maps high dimensional data onto lower dimensional space, the other is to select those

feature components that contain most discriminant infonnation and discard those provide

little infonnation which is useful for classification purpose [10]. Here the second method

is chosen for dimension reduction purpose.

Specifically, the feature component {fk Ik=1, 2 ... n} is ranked:

(4.9)

where J(.) is a criterion function for measuring the discriminant power of a specific

feature component, k Feature subset can be chosen from those features having larger

criterion function values.

The concept of probabilistic structure of classes was introduced to begin the

discussion. Given two probability density function (PDF) of class c1 and c2, for one

specific feature variable x, if p(xlc1) is zero for all x such that p(xlc2) is not zero as shown
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in Figure 4-7(a), then we say these two classes are fully separable. Or if p(xlcl) equals to

p(xlc2) everywhere, we say these two classes are not separable. Intuitively, a criterion

function could be set as measurement of overlapping between p(xlcl) and p(xlc2). More

overlapping of these two functions means lower value of this criterion function

(discriminant power).

p.dJ.(x)

P(xlc1) P(x\c2)

p.d.f.(x)

P(xlcl) P(xlc2)

(a)

x

(b)

x

Figure 4-7: PDF of (a) Two Well-separated Classes and (b) Two Overlapping Classes

Generally speaking, a criterion function that measures the overlap between two

classes has the following properties [10]:

• The measure is minimum when the conditional PDP for class cl and c2 are

identical, i.e. J(-) = 0, ifp(xlcl) = p(xlc2).

• The measure is non-negative. J(-)~ o.

• The measure attains a maximum when the classes are disjoint, i.e. J(-) = max, if

p(xlcl) =°wherever p(xlc2) :t= 0, '\Ix.

Properties ahove only give an intuitive justification of their suitability for feature

selection. Some criteria that provide a direct indication of the amount of the overlap of

the class probability densities are listed below [10]:

Chernoff distance:
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J(.)=-ln fp'(xlc1)· pl-,(X Ic2)dx,SE [0,1]

where s is a parameter between 0 and 1.

Matusita distance:

J(.) =~ [Pex Ic1)1I2 - p(x IC2)1f2rdx}'2

(4.10)

(4.11)

In this study, another simple while efficient criterion function known as Fisher's

criterion [41] was adopted. For a two classes problem it is given by:

(4.12)

where f..I-i,ft and f..I- M. are the mean values of kth feature, /k, for class i and j; 15th and 8:'1.

are the variance of the kth feature, fh for class i and j correspondingly. For multiple class

(class number equals to L) case, the general approach is to take summation of the

pairwise combinations of J J. (i, j):

(4.13)

as an estimation of discriminant power for the specific feature A Eq. (4.12) provides a

measure to evaluate the effectiveness of the "global" feature that is simultaneously

suitable to differentiate all classes of signals. For small classes case, this approach may be

sufficient. When the number of classes increases, this equation becomes more

ambiguous. A large value of J It may be due to the accumulations of many relatively

small values (an unfavorable case) or to a few significant terms with negligible majority

(a favorable case). Also a feature with large J It (i, j) value to class i and j may have very
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small discrimination power for other classes, thus makes J f~ also very small. To avoid

these problems, two methods are established as possible alternatives.

Method I:

Instead of trying to select features, which are effective for the entire multi-class

problem globally as measured by Equation (4.12), a feature subset based on Equation

(4.11) was selected for each possible pair of classes [40). Then the union of feature

components selected from each pair of classes was taken to form the final feature vector.

Specifically, given a L-class problem with n feature components, the process is detailed

in the following steps:

1. For each possible class pair {(i, j) I i =1, 2... L-l, j = i+1, i+2." L}, calculate the

discriminant power measure for each feature component,ik. using Equation (4.12).

2. For each class pair, sort J it (i, j) such that:

J (..) > J (..) > > J (. .) > > J (. .)il t,j - h l,j -"'- fd l,j -".- i" l, J (4.14)

Determine the feature subset Fij for each class pair by selecting d feature

components that have maximum J f. (i, j) value:

Fl.} ={fk Ik = 1,2....d},i =1,2,... , L-l; j = i +1,i + 2, .. .L.

3. Form the final feature set by taking the union of each feature subset.

~UL-UL }F = F
finlll i=1 j=i+1 I,}
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Method II:

This method is based on similar idea of method I. Compare to method I, method

II may choose different number of feature components from each class pair, thus more

reasonable feature components are expected with this method.

The first step is the same as that of method I. In the second step, after J It (i, j)

were sorted in descending order, the whole data set was normalized. That is:

n

J =LJlt (i,))
k=1

J~l (i,))= J It (i,))/ J;k =1,2,... ,n

(4.17)

(4.18)

Set one threshold value HE (0, I]. Detennine the feature subset FiJ for each class pair by

selecting D feature components that have maximum J It (i,)) value. D must satisfy:

o
LJ~t (i,j)~ H
k=1
0-1

LJ~t (i,j)-< H
k=1

F;.i = {fk Ik = 1,2, .. .D},i = 1,2,00.,L -I; j = i + I,i + 2, .. .L.

(4.19)

(4.20)

The third step is the same as that of method I. By using method II, different number of

feature components may be extracted from each class pair. If two classes are well

separable, there must exist a few feature components that contain much larger J fA (i, j)

value than most other feature components. If two classes are not well separable, then

most feature components tend to have similar relatively small J fA (i, j) values. By setting

this threshold, we may choose fewer feature components from well separable class pairs

and more feature components from those classes that were difficult to separate. Thus we
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may get feature subsets with relatively low dimension while still contain high

discriminant power.

4.4 Pattern Classification Algorithm

Once after suitable feature components have been extracted from original feature

set, it is then necessary to detennine individual frogs based upon these features. Artificial

neural networks (ANN) and a variety of multivariate statistical methods have been used

for pattern recognition/classification problems similar to that of this research [2]. In this

study, a static network (Multilayer Perceptron, MLP) was used for classification purpose.

Neural network classifiers are widely used in pattern recognition problems

because they are universal function approximators and because of their nonlinear nature,

they have the ability to capture the underlying non-linearity from the incoming data.

However, for MLP, existing pattern must be used to train the network and the

classifier can only detect those already existing classes. That is, in our case, we already

know how many individuals of RAUT in one area and our classifier can only detect calls

of these identified frogs. If one new RAUT frog makes a call and its call features are fed

into the classifier, the MLP classifier may not identify it as a new one and possibly will

classify it into one already existing RAUT frog class.

To overcome this problem, one method was introduced here. The fuzzy neural

network based classifier is caned Incremental Learning Fuzzy Neuron Network (ILFN)

[20]. It uses incremental learning algorithm and can detect new classes of patterns and
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update its parameters while in an operating mode. It has an on-line (real-time) and fast

learning algorithm without knowing a priori information. In addition, it has the capability

to make soft (fuzzy) and hard (crisp) decisions, and it is able to classify both linear

separable and nonlinear separable problems. By using ll..FN, new individual frogs can be

detected in real time and there is no need to re-train the network with known features.
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CHAPTER V

TEST RESULTS

In this chapter, natural frog calls collected via Telinga Pro V Mono Parabolic

microphone mounted at various lakesides in Stillwater, Oklahoma were used to validate

the feasibility of the proposed species and individual identification methods. SONY

PCM-M1 digital audio recorder was used to store original audio signal into digital

audiotape (DAT). The Voyetra Turtle Beach system, inclUding Montego n sound card

and Turtle Beach AudioStation 32 software, was used to transfer audio signals stored in

DAT into personal computer (PC) with a digitized WAVB format. All test programs were

written to run under MATLAB version 5.3 or higher. A Pentium ill 500 PC hosted all the

programs.

5.1 Results for Species Identification

For species identification, one DAT with total length of 50 minutes wa chosen as

sample. It contains frog calls of all four species obtained from several lakesides within

the State of Oklahoma. Each species contains several different individuals. The entire

DAT data were manually saved into PC with WAVE format. Each file segment was

approximately 10 seconds long. Each data set was fed into four different programs that

identify one species correspondingly. The goal is that each program may be able to
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identify all clear calls of that species and does not count other signals (e.g., calls made by

other species).

It is much more desirable for our system to fail to recognize a call (a false

negative) than to incorrectly indicate the can of a particular species is present (a false

positive). It is crucial then to choose parameters such that false positives are minimal

[39]. For example. to identify RAUT and PSCL frogs, according to call properties

generalized in Chapter ill, we narrow down the ranges of pitch duration thus to avoid

mismatch with other short duration spikes. Also, in clustering algorithm, to choose

possible call signals and discard the false impulses we do thresholding on the squared

signal Ysqr (t) . If the threshold value is too big, more irrelevant signals will be discarded

but some portion of true frog call signals (those pitches in the beginning or in the end of

one call) will also be thrown away due to little energy they have. There exists a trade-off

between recognizing more false negative and less false positive.

In practice, hy carefully adjusting various parameter values, the result for species

identification is quite promising. Within this sample period there are hundreds of calls

belonging to four different species. Except for some weak calls and some calls obscured

by environmental noise, most clear calls can be detected and identified as belonging to

correct class with nearly 100% accuracy. For frog species of BUAM and PSST, the

results are found to be perfect.

Yet, there do exist a few mismatches when identifying species RAUT and PSCL.

The noise causes part of the problem. In most natural situations background noise is

extremely high and its temporal and spectral structure are complex and variable. In this

DAT tape, there always exist three types of noise:
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1. Noises made by other living creatures: Including caIJs made by other frog species

and some insects like crickets. Occasionally there exist some dog barks and

human speech if the pond is close to human community.

2. Noises made by natural phenomena: Including wind noise and rain noise.

3. Noises made by vehicles: Including noises made by automobiles.

Among these three types of noises, 1 and 2 occur more frequently. If the

frequency band of these noises is different from that of the specific frog species, they can

be removed in the stage of filtering. Or if the spectrogram of these noises didn't appear to

be a steady pulse repetition mode just like those of RAUT and PSCL, they can also be

eliminated in the stage of clustering. But if the main frequency band and pulse shape of

that kind of noise are quite similar to those of frog species, a mismatch is inevitable by

using the proposed identification method. That is, the occurrence of one that kind of noise

signal may be mistakenly detennined to be one certain kind of frog call.

For the third type of noise, although it happens occasionally, if the noise level is

high, frog calls may be occluded and sometimes mismatch may also occur.

5.2 Results for Individual Identification

Here individual identification was focused on species RAUT, because this was the

only species human experts can distinguish different individuals according to their

sounds. Only with this prior knowledge, the proposed individual identification method

can function properly.
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5.2.1 Data Segmentation

Individual identification is based on the results of species identification. After one

call of RAUT species has been identified, its calling period has also been determined

simultaneously. Then a non-overlapping 512-point Hamming window was used to extract

512-point time series data segment from one RAUT call as its sample vector. The length

of window guarantees to contain at least one pitch (the strongest one) within this sample

vector. For the same species, it is reasonable to assume that call patterns of different

individuals can be fully explored by analyzing one single pitch.

Before this data segment can be used for further analysis, the mean value of this

segment is calculated first and subtracted from the whole data set. Because signals with

non-zero mean may produce incorrect spectrum estimate especially in low frequency

band, subtracting mean value from the signal often leads to a better estimate at

neighboring frequencies [26].

5.2.2 Generation of Training / Testin2 Data Set

Because frogs are sensitive to sudden changes of environment, their calls are

difficult to collect. Also human experts usually have limited capability to identify

different individuals. For these reasons there are totany 66 data sets been identified,

which correspond to four different individual RAUT frogs. For these 66 data sets each

time 44 data sets were randomly chosen as training data while the remaining 22 data sets
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were used in testing. The distribution of training and testing data sets are shown in Table

5-1.

Table 5-1: Number of Individual Samples and the Distribution of Training / Testing Sets

RAUT Total number of # of data sets # of data sets

Individual data sets for training for testing

Frog I 16 11 5

Frog 2 20 13 7

Frog 3 17 11 6

Frog 4 13 9 4

5.2.3 System Description

After 66 numbers of 512-point feature vectors are extracted, Linear Predictive

Coding (LPC), Time-Dependent Fourier Transform (TDFT), and Wavelet Packet

Transform (WPT) are used for feature extraction. For TDFT and WPT, two different

dimension reduction algorithms are used to derive the final feature vector, which will be

fed into a neural network classifier. The steps provided for each method are summarized

below.

LPC:

1. Determine number ofLPC coefficient, p, cording to mean square error (MSE).
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Figure 5.1: The Relationship Between LPC Coefficient Number p and MSE

If we detennine p first and use Equation (4.5) to compute the LPC coefficients,

we can detennine the filtered output of LPC filter. Then compute the mean square error,

which indicates the difference between filtered value and actual value. In this way we

establish the relationship between LPC filter of order p and the corresponding MSE.

Figure 5.1 is based upon the calculation made on one data set. In fact all data sets show

similar relationship between p and MSE. Based on this figure, p was chosen to be 16. In

this design p is not too big but ensures low MSE.

2. For each sample vector, determine 16 time domain LPC filter coefficients by

using Equation (4.5).

3. Calculate FFf of 16-point LPC coefficients and obtain 9 unique spectral

magnitudes.

4. Normalize these 9 spectral magnitudes to get final feature vector.

TDFf:

1. Calculate 512-point FFf for each windowed data set and obtain 257-point

spectral magnitude vector.
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2. Use feature extraction method I and II, set parameters d (defined in method I) and

H (defined in method II) and derive the corresponding feature subsets (expect to

contain feature components with most discriminant power).

3. Normalize these two feature subsets and acquire the final feature vectors.

WPT:

1. Perform eight-level wavelet packet decomposition for each 512-point data set by

using Daubechies 8-point wavelet function.

Calculate wavelet packet node energy according to Equation (4.8) and get one

510-point feature vector.

3. Use feature extraction method I and II to derive the corresponding feature subsets.

4. Normalize these two feature subsets and obtain the final feature vectors.

In the last step of TDFf and WPT methods, feature vectors were normalized

before they are fed into a neural network classifier. The reason of normalization is to

mantain the similar distances between feature vectors. The normalization was achieved

by the following operation,

~ x-J.1
x=--

<5 '
(5.1)

where .x is the normalized version of vector x, J.1 is the mean value and d is the

corresponding variance. J.1 and Ii are estimated from the feature subset. [n this way, the

resulting vector set will have zero mean and unity variance.
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5.2.4 Test Results

After training data were obtained by three feature extraction algorithms, LPC,

TDFf and WPT methods, as well as two dimension reduction/feature selection

algorithms, method I and method IT, they were fed into a neural network classifier. By

checking the final results of the classifier to those testing data sets, some conclusions may

be drawn pertaining to which method is better and which one is not.

For dimension reduction methods I and IT, parameter d and H should be carefully

chosen so that feature vectors with same or similar dimension may be generated.

There are totally 66 data sets available. In each test 44 of them were randomly

chosen as training sets while the remaining 22 were used as testing sets. This process is

repeated 1,000 times. The number of training sets and testing sets within one class (calls

produced by the same frog) are fixed, as seen in Table 5.1. The mean value of these 1,000

simulations was calculated as indicator for test performance. The variance i also

computed. If all variances are not high and in the same level, then the performance of the

whole system can be regarded as stable.

The neural network used here is MLP. The network architectures are N-N-4 (with

N neurons in the only hidden layer) and N-1O-1O-4 (with 10 neurons in the first hidden

layer and 10 neurons in the second hidden layer), where N is the dimension of the final

feature vector. In the learning phase, the network is trained until the mean square error is

below 0.001, or the maximum epochs (set to 1,000) is reached. The resilient

backpropagation algorithm (RPROP) (34] is used to train the network. In training we can

make the desired output of MLP to be a perfect decision, i.e. one 1 and three as. But the
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classifier will not produce such perfect decision in testing process. Usually each output

will be between 0 and 1. Here we use the maximum output value as the most likely

individual frog. In all cases a clear winner can always be identified. The classification

results are shown in Table 5.2 - 5.4. Mean is referred to mean accuracy. It has range from

oto 1. Var. is referred to as variance of the 1,000 runs. The training accuracy is always

100% in all cases and the corresponding variance is O. So these tables only show test

results for different methods.

Table 5-2: Test Results for LPC Method

N-N-4

LPC Mean 0.5068

N=9 VaT. 0.0104

Table 5-3: Test Results for TDFf Method

TDFf N N-N-4 N-1O-1O-4

Method I 17 Mean 0.6082 0.6089

d=4 VaT. 0.0075 0.0099

Method II 18 Mean 0.6218 0.6188

H= 0.1 VaT. 0.0115 0.0089

Method I 33 Mean 0.6471 0.6505

d=8 VaT. 0.0093 0.0098

Method II 33 Mean 0.6330 0.6377

H=0.16 VaT. 0.0094 0.0093
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Table 5-4: Test Results for WPT Method

WPT N N-N-4 N-1O-10-4

Methodl 19 Mean 0.6827 0.6809

d=5 Var. 0.0097 0.0105

Method II 18 Mean 0.7118 0.7164

H = 0.06 Var. 0.0068 0.0100

Method I 31 Mean 0.6609 0.6891

d=8 VaT. 0.0095 0.0102

Method II 33 Mean 0.7218 0.6955

H=0.1 Var. 0.0076 0.0150

First examine the results of LPC method. The classifier can only correctly classify

roughly half of the test samples, which is not good and much lower than the results of

TDFT and WPT methods. In Chapter II, some papers using LPC method to perfonn

species identification were reviewed. Often they can reach 70% - 80% accuracy, which

is much higher than what was realized here for individual identification. Also it can be

noticed that these samples contain a large amount of noise. A rough estimate to some data

files shows an average SNR (signal to noise ratio) of -3dB. The noise significantly

deteriorates the perfonnance of LPC filter and finally leads to poor perfonnance of the

neural network classifier.

To compare the perfonnance of TDFf and WPT method, the following conditions

have been set.

1. The dimensions of final feature vectors should be the same (i.e. 18 Vs. 18) or

quite similar (i.e. 31 Vs. 33).

2. The feature selection methods should be the same (i.e. method I Vs. method I).

68



3. The network structures should be the same (i.e. N-N-4 Vs. N-N-4).

4. The variances should be similar and not too high (i.e. 0.0076 Vs. 0.0094).

Based on these conditions, the perfonnance of TDFT and WPT methods was

compared one by one. On the average, neural network classifiers based on WPT method

acquires the accuracy of classification 8% higher than those based on TDFT method. This

shows the conclusion mentioned in Chapter IV that Wavelet based method (in this thesis,

identified as WPT) provide a better time-frequency resolution and they are more efficient

than Fourier based methods for non-stationary signal analysis (in this case, frog call

signals are surely non-stationary signals).

To compare the performance of these two feature selection methods I and II,

similar to the way TDFT and WPT methods are compared, some conditions have been

set. Only these two methods with the same (or similar) conditions are compared.

Basically, when the dimension of final feature vectors are the same or quite similar, using

method n may extract feature components with more discriminant power thus to make

the performance of neural network classifier better. This is especially true in WPT case,

in which by using method II the accuracy of classifier is on the average 3% higher than

that of using method I. This also substantiates our assumption that we may choose fewer

feature components to distinguish those easily separable classes and choose more feature

components to distinguish those relatively not so easily separable classes. By this way

more feature components that contains most discriminant power may be included with

limited feature vector dimension.
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It is observed that WPT method exerts a large amount of computation load

compared to TDFf method. If WPT method is to be used, it is preferred to use low

dimensional feature vector and use simple neural network structure. Among all these

combinations one good solution can be found. That is, use WPT and feature selection

method II (set H =0.06), get l8-point feature vectors, then use 18-18-4 MLP as classifier.

Thus a considerable amount of computation is avoided, keeping the accuracy for

classification remains high.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions of the Research

This thesis has investigated the feasibility of building an automatic frog call

monitoring system based on in-field acquisition of sound signals. The frog species

identification has been realized in the first stage. Different algorithms including filtering

and grouping are developed to identify different species. The individual frog

identification of species RAUT has been performed in the second stage. Since most of the

research in the field of animal sound recognition are focused on species identification, the

individual identification approach proposed in this thesis is novel. Three feature

extraction algorithms including LPC, TDFf, and WPT, two dimensionality reduction

algorithms (method I and II), and the neural network (MLP) classifier have been

synergistically integrated together to facilitate the estimation of the population within the

species of interest.

In Chapter II, some of the existing literature in the field of animal sound

recognition were reviewed. Most are focused on species identification. Three digital

signal pre-processing approaches and three pattern classification approaches are

discussed in this chapter.

In Chapter ill, the proposed species identification algorithm was discussed. For

four different classes of frogs in the State of Oklahoma, three different methods have
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been developed. For species with the most sophisticated call patterns, the bandpass filter

was used first to get rid of most irrelevant noises and to lower the noise level. Then,

according to the characteristics found in the spectrogram of the proposed frog call,

grouping algorithm was employed to isolate periods of single pitches first and then to

group the time interval of that frog call. By this way not only the desired class can be

identified but its call interval can also be acquired. This method requires less computation

compared to other approaches reported in the literature.

In Chapter IV, individual identification of RAUT frog was implemented step by

step. After windowing the entire calling interval of one call acquired in species

identification period, a 512-point data set was extracted as a sample vector. Three

different feature extraction methods, LPC, TDFT. and WPT were used to extract feature

vectors first. Since the dimensions of feature vectors derived from TDFT and WPT

approaches are huge, two different dimensionality reduction/feature selection algorithms

were proposed to obtain the feature subsets, which contains feature components with

most discriminant power. Finally MLP. the neural network classifier, was used for

classification and identification purposes.

In Chapter V, species identification algorithms discussed in Chapter ill were used

to test one 50 minute-long data set collected in field. Except for a few expected

mismatches, the results were found to be nearly perfect. Then, combinations of different

methods illustrated in Chapter IV were used to totally test 66 sample frog calls. By

comparison, we found WPT was the best feature extraction method and the performance

of dimensionality reduction method II was far better than method 1.
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6.2 Suggestions for Future Work

Although simulation results for species identification were reasonably satisfactory

in this study, there still exist a few mismatches. Avoidance of these mismatches is not a

trivial problem. Simply tuning the values of some parameters in the algorithm is not

enough. A combination of a new algorithm with those already exist such as knowledge­

based system is one possible solution. Considering the requirement for speed, the method

used should be carefully selected.

Due to limited samples available in individual identification test examples, though

we employed statistical measures to remedy this problem, we still cannot guarantee

which method is better than others. Therefore, the very next step is to collect more

individual calling samples and validate the system thoroughly.

The MLP classifier used can only classify those already known classes and

demands a long training time before testing. In the near future, the proposed frog call

monitoring system is required to be placed in field for real time monitoring. It will not

have any prior knowledge about any individual frog call pattern and neither will it know

how many individuals are calling during the recording period. In this case the classifier

must be built in with on-line learning ability that can learn new patterns in real-time and

continuously grow the number of identified individual numbers without re-training. MLP

is clearly defeated by this specification. The Incremental Learning Fuzzy Neural Network

(ll..FN) [20] can address this deficiency. It uscs an incremental learning algorithm and

can detect new classes of patterns and update its parameters whi Ie in an operating mode.

And it has an on-line (real-time) and fast learning algorithm without knowing a-priori
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information. Later, after enough data had been acquired, this classifier may be explored

further. It may detect new indi vidual frogs in real time and there is no need to train the

network with known features.

High-level environmental noise may unnecessarily complicate the identification

process than the simulations conducted in laboratory environments. How to realize noise

cancellation or noise reduction, especially for those noises with similar frequency range

as frog calls, remains a challenging issue.
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