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Whether the classical solutions of two-dimensional incompressible ideal MHD equa-
tions or inviscid Boussinesq equations can develop a finite time singularity or globally
regular for all time from smooth initial data with finite energy is an outstanding open
problem in fluid dynamics. We study these equations to explore how far one can go
beyond these two cases and still can prove the global regularity.
First, the global regularity for the 2D MHD equations with horizontal dissipation
and horizontal diffusion is studied. We prove that the horizontal components of any
solution admit a global bound in any Lebesgue space L2r, 1 ≤ r <∞ and the bound
grows no faster than the order of

√
r log r as r increases. Furthermore, we prove that

any possible blow-up can be controlled by the L∞-norm of the horizontal compo-
nents. We establish the global regularity of slightly regularized 2D MHD equations
with horizontal dissipation and horizontal magnetic diffusion. The global regularity
issue of the MHD equation with horizontal dissipation and horizontal magnetic dif-
fusion is extremely hard. The classical energy method does not work. By using the
techniques from the Littlewood- Paley decomposition and logarithmic bound for the
horizontal components, we are able to resolve the global regularity issue of the 2D
MHD equations with horizontal dissipation and horizontal magnetic diffusion.
Second, the global well-posedness for the 2D Euler-Bousinesq equations with a sin-
gular velocity is investigated. We prove the global existence and uniqueness of the
solutions to the initial value problem of 2D Euler-Boussinesq equations when the ve-
locity field is double logarithmically more singular than the standard velocity field
given by the Biot-Savart law.
Third, the global existence, and uniqueness for the 2D Navier-Stokes-Boussinesq equa-
tion with more general dissipation is studied. We prove that the solution is globally
regular even the critical dissipation is logarithmically weaker.
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CHAPTER 1

Introduction

This dissertation focuses on the global regularity issue of two well-known nonlinear

partial differential equations. The first equation is the two-dimensional Magnetohy-

drodynamic equations and the second equation is the two-dimensional Boussinesq

equations.

1.1 Magnetohydrodynamic Equations

1.1.1 Introduction

Magnetohydrodynamics deals with the dynamics of an electrically conducting fluid

under the influence of magnetic field. The word magnetohydrodynamics is made up

of three terms magneto indicating magnetic field, hydro referring liquid, and dynamics

meaning movement. The magnetic field, which is present everywhere in the universe,

generates magnetic force and this force influences the dynamics of moving fluid, po-

tentially changing the geometry or strength of magnetic field itself. The study of

magnetohydrodynamics was first initiated by Swedish scientist Hannes Alfvén [4].

Because of his pioneer contribution in magnetohydrodynamics, he received Nobel

Prize in Physics in 1970. The Magnetohydrodynamic (MHD) equations govern the

dynamics of the velocity and the magnetic field in electrically-conducting fluids and

reflect the basic physics laws of conservation. These equations can be implemented

to study various problems in plasma, liquid metals, saltwater as well as astrophysics.

The MHD equations involve coupling between the Navier-Stokes equations governing

the fluid and the Maxwell’s equations governing the magnetic field. The standard
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form of the incompressible MHD equations is

ut + u · ∇u = −∇p+ ν∆u+ b · ∇b, x ∈ Rn, t > 0

bt + u · ∇b = η∆b+ b · ∇u, x ∈ Rn, t > 0

∇ · u = 0, ∇ · b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x)

(1.1)

where u is the velocity field, b the magnetic field , p the pressure, ν the kinematic

viscosity and η the magnetic diffusivity. The term ∆u represents dissipation and ∆b

magnetic diffusion. The MHD equations have been a center of attention to numerous

analytical, experimental, and numerical investigations. In [32], Duraut and Lions

constructed a class of global weak solution with finite energy and a class of local

strong solutions for the system (1.1) in the two dimensions (2D) and three dimen-

sions (3D). The smoothness and uniqueness of such weak solution was demonstrated

only in the two dimensional case but this is an outstanding open problem for three

dimensions. One of the most fundamental problems in fluid dynamics concerning

the 3D MHD equations is whether their classical solutions are globally regular for all

time or they develop finite time singularity. This problem is extremely difficult due

to the occurrence of nonlinear coupling between the Navier-Stokes equations with a

forcing induced by the magnetic field and the induction equation. When b = 0, the

system (1.1) reduces to the Navier-Stokes equations. Whether the 3D incompressible

Navier-Stokes equations can develop a finite time singularity or globally regular for

all time from smooth initial data with finite energy is one of the six one millennium

dollar prize problems announced by the Clay Mathematical Institute [35]. There are

numerous papers related to global regularity criteria published by Mathematicians,

Physicists and Engineers ([4, 8, 10, 12, 18, 22, 24, 32, 33, 34, 37, 38, 39, 47, 54, 56,

65, 72, 73, 74, 75, 76, 67, 69, 82, 83, 84, 85, 86]).

Now we will discuss some of the existing results and open problems related to the

MHD equations.
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1.1.2 Existing Results

The existence and uniqueness of global classical solution for two-dimensional MHD

equations with initial data in Hs, s ≥ 2 is well known ( [32], and [67]). However,

only the local existence and uniqueness of solution for the the three-dimensional MHD

equations (1.1) with initial data in Hs, s ≥ 3 is known. It is currently unknown that

whether solution to the three-dimensional MHD is global in time or it generates

finite time singularity. In order to gather some hints of this open problem, there

are numerous papers related to regularity criteria under which solution is regular for

all time. It would be worthy to mention some known results related to the three-

dimensional MHD equations. In [72], Wu proved that if the velocity and magnetic

field satisfy
∫ T

0
(‖∇u(., t)‖4

2 + ‖∇b(., t)‖4
2) < ∞ or

∫ T
0

(‖u(., t)‖2
∞ + ‖b(., t)‖2

∞) < ∞

then u and b remain smooth over [0, T ]. He and Xin realized that the velocity field

plays predominant role over the magnetic field for the global regularity [38],[39]. They

proved that if u satisfies
∫ T

0
‖∇u(., t)‖βα < ∞ with 3

α
+ 2

β
= 2 and 1 < β ≤ 2 then

the solution (u, b) is regular on [0, T ]. Later this assumption was weakened with Lα-

norm replaced by norms in Besov Space by Wu ([74]) and was further improved by

Chen et al ([24]). In [85], Zhou proved that for initial data in Hs, s ≥ 3 if the velocity

field satisfies ∇u ∈ Lα,γ, with 2
α

+ 3
γ
≤ 2, 3

2
< γ ≤ ∞, or ‖∇u‖L∞, 3

2
is sufficiently

small on [0,T], or u ∈ Lα,γ with 2
α

+ 3
γ
≤ 1, 3 < γ ≤ ∞, or ‖u‖L∞,3 is sufficiently

small on [0,T], then the solution remains smooth on [0, T ].

In [47], the authors proved the regularity criteria for the 3D MHD equations in terms

of partial derivatives of the velocity and the pressure. They proved that if uz ∈

Lβ(0, T ;Lα(R3)), with 2
β

+ 3
α
≤ 3(α+2)

4α
, α > 2 or ∇hp ∈ Lβ(0, T ;Lα(R3)), with

2
β

+ 3
α
< 3, α > 9

7
, β ≥ 1 then the weak solution (u, b) is regular. In [14], Cao and

Wu investigated regularity criteria in terms of the derivative of the velocity field in one

direction. More precisely, they proved that for initial data (u0, b0) ∈ H3, ∇ · u0 = 0

and ∇ · b0 = 0. If the velocity field u of the corresponding solution of (1.1) satisfies

3



∫ T
0
‖uz(., t)‖βα dt <∞ with α ≥ 3 and 3

α
+ 2

β
≤ 1, then (u, b) remains regular in [0, T ].

In the same paper, the authors excluded the possibility of finite time blow-up if there

is a suitable bound for the derivative of the pressure in a single direction. Their result

is for initial data (u0, b0) ∈ H1∩L4, ∇·u0 = 0 and ∇·b0 = 0, if the pressure p satisfies∫ T
0
‖pz(τ)‖βαdτ <∞ with α ≥ 12

7
and 3

α
+ 2

β
≤ 7

4
for some T > 0, then (u, b) remains

regular on [0, T ]. There are numerous papers related to the regularity criteria for 3D

MHD equations.

When there is no dissipation and magnetic diffusion, the mathematical analysis for the

MHD equations becomes more complicated. The equations for ideal MHD equations

can be obtained without the dissipation and diffusion, namely
ut + u · ∇u = −∇p+ b · ∇b,

bt + u · ∇b = b · ∇u,

∇ · u = 0, ∇ · b = 0.

(1.2)

Any classical solution of the two-dimensional incompressible Euler equation is global

in time [49]. However, it remains a remarkable open problem whether classical solu-

tions of the two-dimensional ideal MHD equation preserve their regularity for all time

or finite time blowup. Many attempts have been made but there is no any satisfactory

results concerning the regularity of the solution. In [8], Calflish, Klapper and Steele

extended the well-known result of Beal, Kato, and Majda [6] to the 3D ideal MHD

equations. More precisely, they showed that if the smooth solution (u, b) satisfies∫ T
0
‖ω‖L∞ + ‖j‖L∞dt < ∞ then the solution can be extended beyond t = T . Later

this assumption was weakened by norms in Besov space [83].

Since the difficulty arises in two-dimensional ideal MHD equations, many mathe-

maticians and physicists are attracted towards the anisotropic MHD equations. In

the case of anisotropic equations, the dissipation and the magnetic diffusion act differ-

ently in each direction. In nature, it is possible that the dissipation and the magnetic

diffusion coefficient have different roles in different directions. The anisotropic 2D
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incompressible MHD equations can be written as
ut + u · ∇u = −∇p+ ν1 uxx + ν2 uyy + b · ∇b,

bt + u · ∇b = η1 bxx + η2 byy + b · ∇u,

∇ · u = 0, ∇ · b = 0,

(1.3)

where (x, y) ∈ R2, t ≥ 0, u = (u1(x, y, t), u2(x, y, t)) denotes the 2D velocity field,

p = p(x, y, t) the pressure, b = (b1(x, y, t), b2(x, y, t)) the magnetic field, and ν1, ν2,

η1, and η2 are nonnegative real parameters. When ν1 = ν2 and η1 = η2, (1.3) reduces

to the standard incompressible MHD equations (1.1).

In [12], Cao and Wu studied the 2D MHD equations with mixed dissipation and

diffusion. They established the global regularity issue for the case ν1 > 0, ν2 = 0,

η1 = 0 and η2 > 0 or ν1 = 0, ν2 > 0, η1 > 0, and η2 = 0.

When the Reynolds number is very high, which occurs in the turbulent flow, the

viscosity of the fluid is very low. So the viscosity parameter is ignored. This leads to

the MHD equations with no dissipation but only the magnetic diffusion. The global

regularity issue in this case remains open. In [12], the authors established the global

existence of H1 weak solution for (1.3) when ν1 = ν2 = 0 and η1 = η2 = η > 0 but the

uniqueness of such weak solutions is open. They have also shown if the ∇u satisfies

supp≥2
1√
p

∫ T
0
‖∇u(t)‖Lpdt <∞, then the solution actually becomes regular.

In the case of extremely high conductive fluids that occurs frequently in the cosmical

and geophysical problems, the role of the diffusion phenomenon is insignificant. So

the magnetic diffusion is ignored ([22]), yielding the following equations.
ut + u · ∇u = −∇p+ ν1 uxx + ν2 uyy + b · ∇b,

bt + u · ∇b = b · ∇u,

∇ · u = 0, ∇ · b = 0.

(1.4)

The local existence and uniqueness of the classical solution of the system (1.4) has

been proved [65]. In [65], Quansen and Dongjuan proved the regularity condi-

tion for two-dimensional MHD equations (1.4) in terms of magnetic field, which

5



is b ∈ Lp(0, T ;W 2,p(R2)), with 2
p

+ 1
q
≤ 2, 1 ≤ p ≤ 3

4
, 2 < q ≤ ∞. Fan and

Ozawa proved a regularity criterion in the velocity field as ∇u ∈ L1(0, T ;L∞(R2))

[34]. In [84], the authors proved that the solution (u, b) of (1.4) is regular for ini-

tial data (u0, b0) ∈ H3(R2) if ∇b ∈ L1(0, T ;BMO(R2)). Lei, Masmoudi and Zhou

showed that the classical solution for the system (1.4) is globally regular as long as

b⊗ b ∈ L1(0, T ;BMO(R2)) [55]. However, whether the solution is globally regular or

not under the condition
∫ T

0
‖b(., t)‖2

BMOdt <∞ is still open.

The generalized MHD equation can be acquired by replacing the Laplacian in the

general MHD equations with a fractional power of (−∆)α. This type of dissipation

corresponding to a fractional power of ∆ arises from modeling real physical phenom-

ena. The generalized MHD equation is
ut + u · ∇u = −∇p+ νΛ2αu+ b · ∇b, x ∈ Rn, t > 0

bt + u · ∇b = ηΛ2βb+ b · ∇u, x ∈ Rn, t > 0

∇ · u = 0, ∇ · b = 0,

(1.5)

where Λ = (−∆)
1
2 and can be defined by the Fourier transform

Λ̂2αf(ξ) = |ξ|2αf̂(ξ)

According to the pioneer work of Wu [73] on generalized MHD equation, the best

result for n-dimensional MHD equations is, the system (1.5) does not develop finite

time singularity as long as

α ≥ 1

2
+
n

4
, β > 0, α + β ≥ 1 +

n

2
.

There are many regularity criteria in the same paper by Wu [73]. In ([74]), the author

considered the n-dimensional GMHD equations and proved regularity criterion in

Besov space. Very recently, Tran, Yu and Zhai studied the global regularity issue of

2D generalized magnetohydrodynamic equations [69]. They have demonstrated that

the generalized 2D MHD equations with initial data (u0, b0) ∈ Hk, k > 2 is globally

6



regular if α and β satisfy condition α ≥ 1
2
, β ≥ 1 or 0 ≤ α < 1

2
, 2α + β > 2 or

α ≥ 2, β = 0. In [82], Yamazaki and in [54] Lin & Du reduced the regularity criteria

for the 3D MHD equations which depend only upon two diagonal entries of ∇u.

1.1.3 Statement of the Problems

Despite the numerous work in the MHD equations, the global regularity issue for

the two-dimensional MHD equations with horizontal dissipation and horizontal mag-

netic diffusion or vertical dissipation and vertical magnetic diffusion still needs to be

answered. Thus, inspired by the work of Cao and Wu in [12], we study the global

regularity issue for 2D MHD equations with horizontal dissipation and horizontal

magnetic diffusion for R2. Our intention to study this type of system is to discover

how far one can explore beyond 2D ideal MHD equations.

The first problem of this dissertation is devoted to the global regularity issue in the

case when ν1 > 0, ν2 = 0, η1 > 0 and η2 = 0 for MHD equations, namely the

two-dimensional MHD equations with horizontal dissipation and horizontal magnetic

diffusion 

ut + u · ∇u = −∇p+ uxx + b · ∇b, x ∈ R2, t > 0

bt + u · ∇b = bxx + b · ∇u, x ∈ R2, t > 0

∇ · u = 0, ∇ · b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x).

(1.6)

For simplicity, the positive parameters are assumed to be equal to 1.

Now, a very general question arises: why the possible finite time singularity is ruled

out for the two-dimensional MHD equations with mixed dissipation and diffusion

( [12]) while the global regularity issue for the 2D MHD equations with horizontal

dissipation and horizontal magnetic diffusion (1.6) remains very difficult. We would

like to mention the difficulty we encounter when the energy method is applied to

7



answer the question. For any given sufficiently smooth data

u(x, 0) = u0(x), b(x, 0) = b0(x),

say, (u0, b0) ∈ H2(R2), the corresponding solution obviously obeys global L2-bound.

That is,

‖u(t)‖2
L2 + ‖b(t)‖2

L2 + 2

∫ t

0

‖ux(τ)‖2
L2dτ + 2

∫ t

0

‖bx(τ)‖2
L2dτ

= ‖u0‖2
L2 + ‖b0‖2

L2 . (1.7)

But the trouble arises when we try to achieve the global H1-bound. The vorticity

ω = ∇× u and the current density j = ∇× b satisfy ωt + u · ∇ω = ωxx + b · ∇j,

jt + u · ∇j = jxx + b · ∇ω + 2∂xb1(∂xu2 + ∂yu1)− 2∂xu1(∂xb2 + ∂yb1),
(1.8)

we then obtain

1

2

d

dt

(
‖ω‖2

L2 + ‖j‖2
L2

)
+ ‖ωx‖2

L2 + ‖jx‖2
L2

= 2

∫
j (∂xb1(∂xu2 + ∂yu1)− 2∂xu1(∂xb2 + ∂yb1)) dxdy. (1.9)

In order to obtain suitable bounds for the terms on the right, we need an anisotropic

Sobolev inequality stated in the following lemma ([12]).

Lemma 1.1 If f, g, h, gy, hx ∈ L2(R2), then∫∫
R2

|f g h| dxdy ≤ C ‖f‖2 ‖g‖
1
2
2 ‖gy‖

1
2
2 ‖h‖

1
2
2 ‖hx‖

1
2
2 . (1.10)

where C is a constant.

If we apply (1.10), two terms on the right of (1.9),
∫
j ∂xb1 ∂xu2 and

∫
j ∂xu1 ∂xb2 can

be bounded suitably. But if we try to bound remaining two terms, we need to bound

either
∫ t

0
‖∂yb‖2

2 or
∫ t

0
‖∂yu‖2

2. Because of the lack of dissipation and diffusion in the

vertical direction, we do not know how to bound these terms. As a consequence,

8



we cannot apply the Gronwall’s Lemma. This is the place where the direct energy

method breaks down and the problem becomes complicated.

Motivated by a recent work of Cao and Wu [13], in this dissertation we explore how

the Lebesgue-norm of the horizontal component (u1, b1) of a solution would affect

the global regularity. We are able to obtain a global a priori bound for the norm

‖(u1, b1)‖2r with 1 ≤ r < ∞, where ‖f‖q with 1 ≤ q ≤ ∞ denotes the norm of a

function f in the Lebesgue space Lq. The bound depends exponentially on r and we

are not sure whether or not ‖(u1, b1)‖∞ can be bounded for all time. If we do know

that
∫ T

0
‖(u1, b1)‖2

∞ dt <∞ then we can actually show that the solution is regular on

[0, T ]. Thus we substantiate that the L∞-norm of the horizontal components controls

any possible blowup of classical solution in finite time, which is a conditional global

regularity for (3.1). We also prove that the pressure associated with any classical

solution obeys the global bound, for any T > 0 and t < T ,

‖p(·, t)‖q ≤ C(T ),

∫ T

0

‖p(·, t)‖2
Hs dt < C(T ),

where 1 < q ≤ 3 and 0 < s < 1. These global bounds together with a decomposition

of the pressure into low and high frequency parts , we significantly improve the global

bound for ‖(u1, b1)‖2r. We are able to display that ‖(u1, b1)‖2r does not grow faster

than
√
r log r for large r <∞.

In addition, we study a slightly regularized version of (1.6), namely
ut + u · ∇u+ ε(−∆)δu = −∇p+ uxx + b · ∇b, x ∈ R2, t > 0

bt + u · ∇b+ ε(−∆)δb = bxx + b · ∇u, x ∈ R2, t > 0

∇ · u = 0, ∇ · b = 0

(1.11)

with ε > 0 and δ > 0.

We prove that the global regularity of classical solution for the system (1.11)) with

the initial data (u0, b0) ∈ H2. These results associated with two-dimensional MHD

equations will be available in chapter 3. In chapter 4, we are able to show the global
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regularity of the 2D MHD equations with the horizontal dissipation and horizontal

magnetic diffusion. The global regularity in this case is extremely difficult. We de-

compose the horizontal components into lower and higher frequency parts by using

Littlewood-Paley decomposition. The low frequency part can be bounded by the log-

arithmic bound for the horizontal components and the high frequency part can be

bounded by the horizontal dissipation and horizontal diffusion of the equations (1.6).

1.2 Boussinesq Equations

1.2.1 Introduction

The Boussinesq equations is a system of non-linear differential equations. These

equations have been used to study atmospheric and oceanic flow. Mathematically

the two-dimensional Boussinesq equations act as a lower dimensional model of the

three-dimensional hydrodynamic equations. The Boussinesq equations retain some

key features of the three-dimensional Navier-Stokes and the Euler equations such

as the vortex stretching term. The inviscid Boussinesq equations can be identified

with the three-dimensional Euler equations for axi-symmetric flow away from the

z-axis. One of the outstanding open problems in the fluid dynamics is whether clas-

sical solutions to the three dimensional Navier-Stokes equations can develop finite

time singularities or global regularity. The study of the two-dimensional Boussinesq

equations may support some indications to the regularity of the three-dimensional

Navier-Stokes equations. Thus these equations have fascinated considerable attention

of Mathematicians, Physicists as well as Engineers. The standard two-dimensional

10



Boussinesq equations can be written as
∂tu+ u · ∇u+∇p = ν∆u+ θe2 x ∈ R2, t > 0

∂tθ + u · ∇θ = κ∆θ x ∈ R2, t > 0

∇ · u = 0,

(1.12)

where u denotes velocity field, θ the temperature in the content of thermal convection

and the density in the modeling of geophysical fluids, ν the viscosity, κ the thermal

diffusivity, and e2 is the unit vector in the vertical direction.

Now we will be discussing some known pre-existing results and open problems related

to the two-dimensional Boussinesq equations.

1.2.2 Existing Results

Cannon and DiBenedett studied the two-dimensional Boussinesq equations (1.12)

with full dissipation and thermal diffusion, and achieved the global well-posedness [9].

The local existence and uniqueness of smooth solution of Boussinesq equations and

blow-up criterion for the inviscid case, ν = 0, η = 0, was proved by Chae and Nam [20].

Moreover, the solution remains smooth if
∫ T

0
‖∇θ(., t)‖∞ dt < ∞ or

∫ t
0
‖∇u‖∞ dt <

∞. Later in [17], Chae proved the global well-posedness for the partial viscosity or

partial thermal diffusion, namely ν > 0, κ = 0 or ν = 0, κ > 0, with initial data

(u0, θ0) ∈ Hm × Hm with m > 2. Hou and Lie [46] provided the similar results

for the case ν > 0, κ = 0. The results related to the Boussinesq system with zero

viscosity was extended in [42] by Hmidi and Keraani to initial data u0 ∈ B
2
p

+1

p,1 and

θ0 ∈ B
2
p
−1

p,1 ∩ Lr with r ∈ (2,∞). In [45], Hmidi and Zerguine considered the Euler-

Boussinesq system with a fractional dissipation. Further progress was made by Hmidi,

Keraani and Rousset [44] on the Euler-Boussinseq system with critical dissipation or

critical diffusion and obtained the global well-posedness. Hmidi considered the Euler-

Boussinesq system in which the critical dissipation is reduced by a logarithm of the
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Laplacian [40]. The system of such equations is given by

∂tu+ u · ∇u = −∇p+ θe2,

∂tθ + u · ∇θ + κLθ = 0,

∇ · u = 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x),

(1.13)

where L =
|D|

logα(e4 + |D|)
and |D| =

√
−∆, α ∈ [0, 1

2
]. The global well-posedness has

been successfully resolved.

Instead of reducing the dissipation by a logarithmic (1.13), Chae and Wu in [21]

considered the generalized Navier-Stokes-Boussinesq equations with a more singular

velocity field that was determined by the vorticity through the Biot-Savart law [58].

More precisely they considered the following initial value problem.

∂tω + u · ∇ω + Λω = ∂x1θ,

∂tθ + u · ∇θ = 0,

u = ∇⊥ψ, ∆ψ = Λσ logγ(I −∆)ω,

ω(x, 0) = ω0(x), θ(x, 0) = θ0(x),

(1.14)

where ω = ω(x, t), ψ = ψ(x, t) and θ = θ(x, t) are scalar functions of x = (x1, x2) ∈ R2

and t ≥ 0, u = u(x, t) : R2 → R2 is a vector field, σ ≥ 0 and γ ≥ 0 are real parameters.

The global well-posedness for (1.14) has been resolved [21].

In [31], Danchin and Paicu constructed global strong solution for the Boussinesq

system with only horizontal dissipation or horizontal thermal diffusion. Adhikari,

Cao and Wu studied the Boussinesq equations with vertical dissipation and vertical

diffusion [2, 3], and Cao & Wu proved the global well-posedness [13]. There are

many important results on the global well-posedness issue for the two-dimensional

Boussinesq equations for partial dissipation ([2, 3, 9, 13, 17, 21, 26, 29, 30, 31, 33, 40,

41, 42, 43, 44, 46, 53, 60, 61, 62]).
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1.2.3 Statement of the Problems

The inviscid Boussineq equations is reduced to the widely known two-dimensional

Euler equations when θ = 0. The global well-posedness is well-known for the two-

dimensional Euler equations, however the global well-posedness for inviscid Boussi-

nesq equations is an outstanding open problem. Many mathematicians are investi-

gating Euler-Boussinesq equations and Navier-Stokes Boussinesq equations to explore

how far one can go beyond the critical dissipation or diffusion and still be able to prove

the global regularity. Motivated by the recent work of Chae and Wu [21] and Chae,

Constantin and Wu [16] on the generalized 2D Euler equations, the second project of

this dissertation is to investigate the existence and uniqueness of the solution on the

initial-value problem for the generalized Euler-Boussinesq system of equations with a

singular velocity. 

∂tω + u · ∇ω = ∂x1θ,

u = ∇⊥ψ, ∆ψ = ΛσP (Λ)ω,

∂tθ + u · ∇θ + Λθ = 0,

ω(x, 0) = ω0(x), θ(x, 0) = θ0(x),

(1.15)

where u = u(x, t) is 2D vector field depending on x = (x1, x2) ∈ R2 and t ≥ 0,

p = p(x, t), θ = θ(x, t), and ω are scalar functions, e2 is the unit vector in the x2-

direction and σ ≥ 0 is a real parameter. The Zygmund operator Λ = (−∆)1/2, Λσ

and the Fourier multiplier operator P (Λ) are defined through the Fourier transform,

namely

Λ̂σf(ξ) = |ξ|σf̂(ξ) and P̂ (Λ)f(ξ) = P (|ξ|) f̂(ξ).

The system (1.15) involves a velocity field that is more singular than the standard

velocity which is determined by the vorticity through the Biot-Savart law. The veloc-

ity field in the standard case is given by ∇u = ∇∇⊥∆−1ω and ‖∇u‖Lp ≤ C‖ω‖Lp , p ∈
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(1,∞). Thus ω ∈ Lp implies ∇u ∈ Lp. However, this is not sufficient for (1.15). In

fact, ΛσP (Λ)ω ∈ Lp implies ∇u ∈ Lp. When P (λ) = I and σ = 0, the system (1.15)

is reduced into standard Boussinesq equations. In order to deal with more general

dissipation, we assume that P satisfy the following conditions.

Condition 1.1 The symbol P (|ξ|) is assumed to have the following properties:

1. P is continuous on R2 and P ∈ C∞(R2 \ {0});

2. P is radially symmetric;

3. P = P (|ξ|) is nondecreasing in |ξ|;

4. There exist two constants C and C0 such that

sup
2−1≤|η|≤2

∣∣(I −∆η)
n P (2j|η|)

∣∣ ≤ C P (C0 2j)

for any integer j and n = 1, 2.

The property (4) in Condition 1.1 is a very natural condition on symbols of Fourier

multiplier operators and is similar to the main condition in the Mihlin-Hörmander

Multiplier Theorem [68]. For notational convenience, we also assume that P ≥ 0.

Some special examples of P are

P (ξ) =
(
log(1 + |ξ|2)

)γ
with γ ≥ 0,

P (ξ) =
(
log(1 + log(1 + |ξ|2))

)γ
with γ ≥ 0,

P (ξ) = |ξ|β with β ≥ 0,

P (ξ) = (log(1 + |ξ|2))γ |ξ|β with γ ≥ 0 and β ≥ 0.

We prove in [50] that if the dissipative operator P (ξ) obeys the Condition 1.1 with

P (2k) ≤ C
√
k for a constant C and any large integer k > 0,

and ∫ ∞
1

1

r log(1 + r)P (r)
dr =∞.
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then the IVP (1.15) with σ = 0 is globally well-posed in the regularity class

ω ∈ C([0, T ];Bs
q,∞(R2)), θ ∈ C([0, T ];Bs

q,∞(R2) ∩ L1([0, T ];Bs+1
q,∞(R2)), for q > 2 and s > 2.

As an application, we prove the global well-posedness of classical solutions to (1.15)

with double logarithmically singular velocity. More precisely the global regularity of

the following system.

∂tω + u · ∇ω = ∂x1θ,

u = ∇⊥ψ, ∆ψ = log(1 + log(1−∆))γω, γ ∈ [0, 1]

∂tθ + u · ∇θ + Λθ = 0,

ω(x, 0) = ω0(x), θ(x, 0) = θ0(x),

(1.16)

As a consequence, when P (Λ) = I, we recover the classical result of global smooth

solutions for the 2D Boussinesq equations with a critical diffusion. On the other hand

as θ = 0, our result endorses a result of generalized Euler equations [16].

The global regularity in time can be achieved by showing local existence & uniqueness

together with the global bounds. The difficult part is to find appropriate a priori

global bounds for (ω, θ). The direct energy method cannot be applied due to the

presence of the vortex stretching term ∂x1θ. The vortex stretching term can be

concealed by combining ω and R by G = ω + Rθ, where R ≡ Λ−1∂x1 . Then G

satisfies

∂tG+ u · ∇G = −[R, u · ∇]θ, (1.17)

where the commutator [R, u · ∇]θ = R(u · ∇θ)− u · ∇(Rθ).

Although the vortex stretching term is hidden in the commutator, a compensation

of an appropriate estimate for the commutator is needed. First we estimate commu-

tator [R, u · ∇]θ in B0
p,r for p, r ∈ [1,∞]. Then the bounds for ‖ω‖L∞t Lq , ‖θ‖L1

tB
0,P
∞,2

and ‖ω‖L∞t L∞ are achieved by using equations for G and Rθ together with the com-

mutator estimates and the estimates of θ in Bε
∞,1. Finally the desired bounds for ω
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and θ in Bs
q,∞, for q > 2, s > 2 can be obtained in two steps. In the first step we

bound ω and θ in Bβ
q,∞ for 2

q
< β < 1 by using the regularity on G and a logarithmic

bound for ‖∇u‖L∞ in terms of ‖ω‖Lq∩L∞ . The second step is to bound ω and θ in

Bβ1
q,∞ for 1 < β1 ≤ 2− 2

q
by implementing the bound obtained in the first step. After

repetition of this process, we achieve the desired bound for ω and θ in Bs
q,∞ for s > 2

and q > 2.

In order to achieve uniqueness, we estimate the difference of two solutions in the

regularity class (1.16). It is easy to estimate directly because the solution is in the

high regularity class. The details will be provided later in the chapter 5.

Inspired by the work of Chae and Wu ([21]), and Hmidi ([40], the third problem

we study in this dissertation is the global regularity issue for the Boussinesq-Navier-

Stokes equations with Logarithmic supercritical dissipation.

∂tu+ u · ∇u+ Lu = −∇p+ θe2, x ∈ R2, t > 0

∂tθ + u · ∇θ = 0, x ∈ R2, t > 0

∇ · u = 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x),

(1.18)

where u is a vector field denoting the velocity, θ is a scalar function, e2 is the unit

vector in the x2 direction, and L is a nonlocal dissipation operator defined by

Lf(x) = p.v.

∫
R2

f(x)− f(y)

|x− y|2
m(|x− y|)dy (1.19)

and m : (0,∞)→ (0,∞) is a smooth, positive, and non-increasing function with the

following three properties.

(i) there exists C1 > 0 such that rm(r) ≤ C1 for all r ≤ 1;

(ii) there exists C2 > 0 such that r|m′(r)| ≤ C2m(r) for all r > 0;

(iii) there exists β > 0 such that rβm(r) is non-increasing.
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In [51], we prove the global well-posedness of the system (1.18). As an application, we

prove the global well-posedness of the 2D Boussinesq-Navier-Stokes equations with

logarithmically supercritical dissipation. More precisely, we have manifested that

when the initial data is in the following functional setting;

u0 ∈ H1(R2), ω0 ∈ Lq(R2) ∩B0
∞,1(R2) , θ0 ∈ L2(R2) ∩B0,a2

∞,1(R2),

where ω0 = ∇ × u0 is the initial vorticity. Then (1.18) has a unique global solution

(u, θ) satisfying, for all t > 0,

u ∈ L∞t H1, ω ∈ L∞t Lq ∩ L1
tB

0
∞,1 , θ ∈ L∞t L2 ∩ L∞t B

0,a2

∞,1 ∩ L1
tB

0,a
∞,1.

The local well-posedness for (1.18) is well-known. The global well-possedness can

be achieved by obtaining the global bound. The global bound for ‖ω‖L2 cannot be

obtained from the vorticity equation, ∂tω+u ·∇ω+Lω = ∂x1θ, because of the vortex

stretching term ∂x1θ unless L is very dissipative. In order to tackle such difficulty, we

combine two equations. The combined quantity G = ω −Raθ with Ra = L−1∂x1

satisfies

∂tG+ u · ∇G+ LG = [Ra, u · ∇]θ. (1.20)

By using the appropriate bound for commutator together with the lower bound for dis-

sipative operator, we prove the global a priori bound for ‖G‖Lq , q ∈ [2, 4). The global

bound for ‖G‖Lq and ‖ω‖Lq , q ≥ 4 is acquired by implementing bound of ‖G‖L̃rtBsq,1 and

‖G‖L1
tB

0,a
∞,1

. Finally, we establish the global bound for ‖ω‖L1
tB

0,a
∞,1

and for ‖θ‖
L1
tB

0,a2

∞,1

by using the algebraic bound of ‖θ‖L1
tB

0,a
∞,1

in terms of ‖∇u‖L1
tL
∞ . To complement

uniqueness for the system, we consider the difference of two solutions in the above

regularity class and show that the difference must vanish. Then, the uniqueness is

achieved by using two inequalities, the velocity difference u(2) − u(1) in B0
2,∞ and the

difference θ(2) − θ(1) in B−1,a
2,∞ . The details will be provided in the chapter 6.
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1.3 Organization of the Dissertation

This dissertation is organized as follows. The second chapter deals with some basic

notations, definitions, Littlewood-Paley theory and some basic lemmas. We present

our main work in the Chapter three, Chapter four and Chapter five.

In chapter three we account the two-dimensional MHD equations with horizontal dis-

sipation and horizontal magnetic diffusion. This chapter is further divided into five

sections. In section 3.1, we present the exponential global Lr, 2 ≤ r < ∞ bound

for the horizontal components of the velocity field and magnetic field. The global

bound for pressure is illustrated in section 3.2. The section 3.3 deals with the im-

proved global bound for the horizontal components. More precisely, we present the

Lr-norms of the horizontal components cannot grow faster than
√
r log r, for large r.

The conditional global regularity for the two-dimensional MHD equations with the

horizontal dissipation and horizontal magnetic diffusion is elucidated in section 3.4

which is followed by the global regularity for the slightly improved two-dimensional

MHD equations with horizontal dissipation and horizontal magnetic diffusion in sec-

tion 3.5.

The fourth chapter establishes the global regularity of the 2D MHD equations with

horizontal dissipation and horizontal magnetic diffusion. This chapter is divided into

two sections. The first section deals with the H1 bound and the second section deals

with the H2 bound.

The fifth chapter is devoted to the study of the 2D Euler-Boussinesq equations with

a more singular velocity. The chapter five is further divided into four sections. In

section 5.1 we put forward interpolation inequality and commutator estimate in the

Besov space which are essential to our study. In section 5.2, we discuss global a priori

bound for the vorticity ω and θ in the Lq and Besov space B0,P
∞,2 . The global bounds

for ω and θ are presented in section 5.3, which is followed by the proof of the main

theorem presented in section 5.4.
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The sixth chapter is dedicated to the study of Boussinesq-Navier stokes equations

with a logarithmically supercritical dissipation. This chapter is further divided into

six sections. Section 6.1 provides some preliminary estimates including commutator.

The global bounds for ‖ω‖
B0,a−1

2,2

, ‖G‖Lq for q ∈ (2, 4) are presented in sections 6.2

and 6.3. The sections 6.4 and 6.5 present global bound for ‖G‖L̃rtBsq,1 for q ∈ [2, 4),

‖ω‖L1
tB

0,a
∞,1

and ‖ω‖Lq for q ≥ 2. The last section deals with the the proof of main

theorem.
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CHAPTER 2

Preliminary

This chapter is devoted to some basic notations, definitions, and facts, which are rel-

evant to this dissertation. Harmonic analysis, specially Besov space techniques, have

been very effective tools to study the well-posedness of nonlinear partial differential

equations. We present Littlewood-Paley decomposition, Bony’s para-products and

properties of the Besov space followed by notations and some definitions.

Notation:

Throughout this dissertation, the following notations will be used.

• C is a harmless constant which may have different values in different steps.

• For every p ∈ [1,∞], ‖.‖Lp or ‖.‖p denotes the norm in the Lebesgue Space Lp.

• The norm in the space Lp([0, T ];Lq(R2) is denoted by ‖.‖LptLq or ‖.‖p,q.

• ‖(f, g)‖p = ‖(f, g)‖Lp = ‖f‖pLp + ‖g‖pLp .

• ∂2
xf = fxx = ∂2f

∂x2
.

• For any pair of operators P and Q , the commutator [P,Q] = PQ−QP .

Definition 2.1 (Lp space) For 1 ≤ p ≤ ∞, Lp(Rn) is the space of functions such

that

‖u‖Lp = ‖u‖p =


(∫

Rn |u(x, τ)|p dx
) 1
p , if 1 ≤ p <∞,

ess supx∈Rn |u(x, τ)|, if p =∞,

is finite.
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Definition 2.2 Lp,q = Lp([0, T ];Lq(Rd)) is the space of functions such that

‖u‖Lp,q = ‖u‖p,q =


(∫ t

0
‖u(., τ)‖pLqdτ

) 1
p
, if 1 ≤ p <∞,

ess sup0<τ<t ‖u(., τ)‖Lq , if p =∞,

is finite.

Definition 2.3 The space lp consists of sequence {xn}∞n=1 such that
∑∞

n=1 |xn|p <∞

Definition 2.4 (Convolution) The convolution of two functions f and g ∈ L1(Rd)

is defined as

(f ∗ g)(x) =

∫
Rd
f(y)g(x− y) dy

Definition 2.5 (Schwartz Space) The Schwartz space S(Rd) consists of smooth

function f ∈ C∞(Rd) such that for every k and m

sup
x∈Rd, |α|≤m

(1 + |x|)k|Dαf | <∞

Definition 2.6 (Riesz Transform) For 1 ≤ j ≤ d, the jth Riesz transform of f is

given by convolution

Rj(f) = Cd p.v

∫
Rd

xj − yj
|x− y|d+1

f(y) dy

for all f ∈ S(Rd)

In terms of Fourier multiplier

Rj(f)(x) = (−iξj
|ξ|
f̂(ξ))∨(x)

The Riesz transform satisfies
∑d

j=1R2
j = −I, where I is the identity operator.

Definition 2.7 (Sobolev Space) Let Ω ⊂ Rd be an open set, for integer k ≥ 0 and

1 ≤ p ≤ ∞. The Sobolev space W k,p(Ω) consists of the functions f ∈ Lp(Ω) that have

weak derivatives Dαf ∈ Lp(Ω) of all orders |α| ≤ k. The norm is defined as

‖f‖Wk,p(Ω) =


(∑

|α|≤k ‖Dαf‖pLp(Ω)

) 1
p
, if 1 ≤ p <∞,

max|α|≤k ‖Dαf‖L∞(Ω), if p =∞.
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When p = 2 we write W k,2 = Hk.

Definition 2.8 (Hk-norm) For any k ∈ R, the Hk-norm is equivalently defined as

‖f‖Hk =

∫
Rd

(1 + |ξ|2)k|f̂(ξ)|2 dξ

2.1 Besov Space

Let S be the Schwarz class and S ′ its dual, the space of tempered distributions. S0

denotes a subspace of S defined by

S0 =

{
φ ∈ S :

∫
Rd
φ(x)xγ dx = 0, |γ| = 0, 1, 2, · · ·

}
and S ′0 denotes its dual. S ′0 can be identified as

S ′0 = S ′/S⊥0 = S ′/P

where P denotes the space of multinomials.

To introduce the Littlewood-Paley decomposition we write for each j ∈ Z,

Aj =
{
ξ ∈ Rd : 2j−1 ≤ |ξ| < 2j+1

}
. (2.1)

The Littlewood-Paley decomposition asserts the existence of a sequence of functions

{Φj}j∈Z ∈ S such that

suppΦ̂j ⊂ Aj, Φ̂j(ξ) = Φ̂0(2−jξ) or Φj(x) = 2jdΦ0(2jx),

and
∞∑

j=−∞

Φ̂j(ξ) =

 1 , if ξ ∈ Rd \ {0},

0 , if ξ = 0.

Therefore, for a general function ψ ∈ S, we have

∞∑
j=−∞

Φ̂j(ξ)ψ̂(ξ) = ψ̂(ξ) for ξ ∈ Rd \ {0}.
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In addition, if ψ ∈ S0, then

∞∑
j=−∞

Φ̂j(ξ)ψ̂(ξ) = ψ̂(ξ) for any ξ ∈ Rd.

That is, for ψ ∈ S0,
∞∑

j=−∞

Φj ∗ ψ = ψ

and hence
∞∑

j=−∞

Φj ∗ f = f, f ∈ S ′0

in the sense of weak-∗ topology of S ′0. For notational convenience, we define

∆̊jf = Φj ∗ f, j ∈ Z. (2.2)

Definition 2.9 (Homogeneous Besov Space) For s ∈ R and 1 ≤ p, q ≤ ∞, the

homogeneous Besov space B̊s
p,q consists of f ∈ S ′0 satisfying

‖f‖B̊sp,q ≡ ‖2
js‖∆̊jf‖Lp‖lq <∞.

In order to define inhomogeneous Besove space, choose Ψ ∈ S such that

Ψ̂(ξ) = 1−
∞∑
j=0

Φ̂j(ξ), ξ ∈ Rd.

Then, for any ψ ∈ S,

Ψ ∗ ψ +
∞∑
j=0

Φj ∗ ψ = ψ

and hence

Ψ ∗ f +
∞∑
j=0

Φj ∗ f = f (2.3)

in S ′ for any f ∈ S ′. To define the inhomogeneous Besov space, we set

∆jf =


0, if j ≤ −2,

Ψ ∗ f, if j = −1,

Φj ∗ f, if j = 0, 1, 2, · · · .

(2.4)
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Definition 2.10 (Inhomogeneous Besov Space) The inhomogeneous Besov space

Bs
p,q with 1 ≤ p, q ≤ ∞ and s ∈ R consists of functions f ∈ S ′ satisfying

‖f‖Bsp,q ≡ ‖2
js‖∆jf‖Lp‖lq <∞.

More precisely the inhomogeneous Besov norm is

‖f‖Bsp,q =


‖∆−1f‖Lp +

(∑∞
j=0(2js‖∆jf‖Lp)q

) 1
q
, if q <∞,

‖∆−1f‖Lp + sup0≤j<∞ 2js‖∆jf‖Lp , if q =∞.

The Besov spaces B̊s
p,q and Bs

p,q with s ∈ (0, 1) and 1 ≤ p, q ≤ ∞ can be equiva-

lently defined by the norms

‖f‖B̊sp,q =

(∫
Rd

(‖f(x+ t)− f(x)‖Lp)q

|t|d+sq
dt

)1/q

,

‖f‖Bsp,q = ‖f‖Lp +

(∫
Rd

(‖f(x+ t)− f(x)‖Lp)q

|t|d+sq
dt

)1/q

.

When q =∞, the expressions are interpreted in the normal way.

Definition 2.11 (Littlewood-Paley Decomposition) We define non-homogeneous

Littlewood-Paley decomposition as

f =
∞∑

j=−1

∆jf

for any f ∈ S ′ and ∆j is called the the Fourier localization operators.

We also frequently use the notation for partial sum or low frequency cut-off Sj: for

an integer j,

Sj ≡
j−1∑
k=−1

∆k,

For any f ∈ S ′, the Fourier transform of Sjf is supported on the ball of radius 2j.

For notational convenience, we write ∆j for ∆̊j. We would like to mention some facts
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related to ∆j:

∆j∆k ≡ 0, if |j − k| ≥ 2

Sj ≡
j−1∑

k=−∞

∆k → I, as j →∞

∆k(Sj−1f∆jf) = 0, if |j − k| ≥ 4

We can define classical spaces, Lp, Hs and Hölder space by using the Littlewood-Paley

decomposition. The equivalent Lp norm in terms of Besov norm is

‖f‖Lp ' ‖S0f‖Lp + ‖

(
∞∑
j=0

(∆jf)2

) 1
2

‖Lp , if 1 ≤ p <∞.

The equivalent Hs for s ∈ R, ‖f‖Hs =
(∫

Rd(1 + |ξ|2)s|û(ξ)|2 dξ
) 1

2 , is equivalent to

‖f‖Hs ' ‖S0f‖L2 +

(
∞∑
j=0

22js‖∆jf‖2
L2

) 1
2

Thus Lp(Rd) = B0
2,2, for 1 ≤ p <∞ and Hs(Rd) = Bs

2,2(Rd)

2.2 Generalized Besov Space

We will use the following generalized Besov spaces to include an algebraic part of the

modes.

Definition 2.12 For s, γ ∈ R and p, q ∈ [1,∞], the generalized Besov spaces Bs,γ
p,q

are defined by

‖f‖Bs,γp,q ≡ ‖2
js(1 + |j|)γ‖∆jf‖Lp‖lq <∞.

Definition 2.13 Let a(x) = a(|x|) : (0,∞) → (0,∞) be a non-decreasing function

satisfying (6.6), namely

lim
|x|→∞

a(x)

|x|σ
= 0 , ∀σ > 0.
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For s ∈ R and 1 ≤ p, q ≤ ∞, the generalized Besov spaces B̊s,a
p,q and Bs,a

p,q are defined

through the norms

‖f‖B̊s,ap,q ≡ ‖2
jsa(2j) ‖∆̊jf‖Lp‖lq <∞,

‖f‖Bs,ap,q ≡ ‖2
jsa(2j) ‖∆jf‖Lp‖lq <∞. (2.5)

We have also used the space-time spaces defined below.

Definition 2.14 For t > 0, s ∈ R and 1 ≤ p, q, r ≤ ∞, the space-time spaces L̃rt B̊
s
p,q

and L̃rtB
s
p,q are defined through the norms

‖f‖L̃rt B̊sp,q ≡ ‖2
js‖∆̊jf‖LrtLp‖lq ,

‖f‖L̃rtBsp,q ≡ ‖2
js‖∆jf‖LrtLp‖lq .

L̃rt B̊
s,a
p,q and L̃rtB

s,a
p,q are similarly defined.

These spaces are related to the classical space-time spaces Lrt B̊
s
p,q, L

r
tB

s,γ
p,q , Lrt B̊

s,a
p,q and

LrtB
s,a
p,q via the Minkowski inequality.

Most frequently used function spaces and Besov spaces are related by the following

embedding relations.

Proposition 2.2.1 For any s ∈ R,

H̊s ∼ B̊s
2,2, Hs ∼ Bs

2,2.

For any s ∈ R and 1 < q <∞,

B̊s
q,min{q,2} ↪→ W̊ s

q ↪→ B̊s
q,max{q,2}.

In particular, B̊0
q,min{q,2} ↪→ Lq ↪→ B̊0

q,max{q,2}.

Bernstein’s inequalities are useful tools in dealing with Fourier localized functions

and these inequalities trade integrability for derivatives. Proposition (2.2.2) provides

Bernstein type inequalities for fractional derivatives.
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Proposition 2.2.2 Let α ≥ 0. Let 1 ≤ p ≤ q ≤ ∞.

1) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd : |ξ| ≤ K2j},

for some integer j and a constant K > 0, then

‖(−∆)αf‖Lq(Rd) ≤ C1 22αj+jd( 1
p
− 1
q

)‖f‖Lp(Rd).

2) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd : K12j ≤ |ξ| ≤ K22j}

for some integer j and constants 0 < K1 ≤ K2, then

C1 22αj‖f‖Lq(Rd) ≤ ‖(−∆)αf‖Lq(Rd) ≤ C2 22αj+jd( 1
p
− 1
q

)‖f‖Lp(Rd),

where C1 and C2 are constants depending on α, p and q only.

2.3 Bony’s Para-products

The main concept of para-product is the decomposition of a product of two functions

u and v into three parts. The first part is denoted by Tuv called para-product of v by

u. The second part is Tvu is para-product of u and v. The last part is the remainder

R(u, v). The para-product operator Tuv is defined as

Tuv =
∑
j

∆jvSj−1u =
∑
j

∑
k≤j−2

∆jv∆ku, where partial sum Sj =
∑
k≤j−1

∆k

The regularity of Tuv is mainly determined by v. The remainder R(u, v) is defined as

R(u, v) =
∑
|i−j|≤1

∆iu∆jv =
∑
i

∆iu∆̃jv, where ∆̃i = ∆i−1 + ∆i + ∆i+1

Since
∑

j ∆j = I, we can write

uv =
∑
j

∑
k

∆ju∆kv
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Definition 2.15 (Para-products) The Bony’s para-products of two tempered dis-

tribution u and u is defined as

uv = Tuv + Tvu+R(u, v).

2.4 Some Useful Lemmas and Inequalities

Lemma 2.1 (Hölder Inequality) For any Lebesgue measurable functions f and g

‖fg‖Lp ≤ ‖f‖q‖g‖r, where
1

p
=

1

q
+

1

r
.

Lemma 2.2 (Minkowski’s Inequality)(∫ ∣∣∣∣∫ f(x, y)dy

∣∣∣∣p dx) 1
p

≤
∫ (∫

|f(x, y)|p dx
) 1

p

dy.

Lemma 2.3 (Young’s Inequality)

1. (Product) If a and b are non-negative numbers then

ab ≤ ap

p
+
bq

q
, where

1

p
+

1

q
= 1

2. (Convolutions) If f ∈ Lp, g ∈ Lq, 1 ≤ p, q ≤ ∞ then f ∗ g ∈ Lr, where

1 + 1
r

= 1
p

+ 1
q
. More precisely,

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq .

Lemma 2.4 (Gagliardo-Nirenberg Inequality) For 1 ≤ q, r ≤ ∞ and α and β

are integer satisfying 0 ≤ α < β. Then for any smooth function f ,

‖Λαf‖Lp ≤ C‖Λβf‖aLq‖f‖1−a
Lr , where (

1

p
− α

d
) = a(

1

q
− β

d
) +

(1− a)

r

Lemma 2.5 (Grönwall Inequality) If f, g andh ≥ 0 are continuous on [0, t], h is

differential, and

g(t) ≤ h(t) +

∫ t

0

f(s)g(s)ds,

then

g(t) ≤ h(0) exp

(∫ t

0

f(s)ds

)
+

∫ t

0

h′(s)

[
exp

∫ t

s

f(τ) dτ

]
ds
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Lemma 2.6 (Osgood Inequality) Let α(t) > 0 be a locally integrable function.

Assume ω(t) ≥ 0 satisfies ∫ ∞
0

1

ω(r)
dr =∞.

Suppose that ρ(t) > 0 satisfies

ρ(t) ≤ a+

∫ t

t0

α(s)ω(ρ(s))ds

for some constant a ≥ 0. Then if a = 0, then ρ ≡ 0; if a > 0, then

−Ω(ρ(t)) + Ω(a) ≤
∫ t

t0

α(τ)dτ,

where

Ω(x) =

∫ 1

x

dr

ω(r)
.
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CHAPTER 3

The 2D Magnetohydrodynamic Equations with Horizontal Dissipation

and Horizontal Magnetic Diffusion

In this chapter, we consider the initial value problem for the 2D magnetohydrody-

namic equations with horizontal dissipation and horizontal magnetic diffusion.

ut + u · ∇u = −∇p+ uxx + b · ∇b, x ∈ R2, t > 0

bt + u · ∇b = bxx + b · ∇u, x ∈ R2, t > 0

∇ · u = 0, ∇ · b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x),

(3.1)

where u is the velocity field, b the magnetic field, and p the pressure.

First we prove that the horizontal component of any solution admits a global (in time)

bound in any Lebesgue space L2r with 1 ≤ r <∞ and the bound is exponential. Our

main efforts are devoted to improve the global bound for ‖(u1, b1)‖2r. We prove that

the pressure associated with any classical solution obeys the global bound, for any

T > 0 and t < T ,

‖p(·, t)‖q ≤ C(T ),

∫ T

0

‖p(·, t)‖2
Hs dt < C(T ),

where 1 < q ≤ 3 and 0 < s < 1. These global bounds together with a decomposition

of the pressure into low and high frequency parts , we significantly improve the global

bound for ‖(u1, b1)‖2r. We are able to show that ‖(u1, b1)‖2r does not grow faster

than
√
r log r for large r <∞.

In addition, we establish a conditional global regularity in terms of the L2
tL
∞
x -

norm of the horizontal components.
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Furthermore, we study the global regularity of a slightly regularized version of the

MHD equations, namely
ut + u · ∇u+ ε(−∆)δu = −∇p+ uxx + b · ∇b, x ∈ R2, t > 0

bt + u · ∇b+ ε(−∆)δb = bxx + b · ∇u, x ∈ R2, t > 0

∇ · u = 0, ∇ · b = 0,

(3.2)

with ε > 0 and δ > 0.

We establish the global well-posedness for the system (3.2) with initial data (u0, b0) ∈

Hs, s ≥ 2.

The proofs of our results take advantage of the symmetric structure of (3.1). That

is,

w± = u± b

satisfies 
∂tw

+ + (w− · ∇)w+ = −∇p+ ∂2
xw

+,

∂tw
− + (w+ · ∇)w− = −∇p+ ∂2

xw
−,

∇ · w+ = 0, ∇ · w− = 0.

(3.3)

We remark that this symmetric formulation is still more complex than the 2D Boussi-

nesq equations dealt with in [13]. (3.3) consists of a system of two vector equations

and the interaction between w+ and w− makes it mathematically more difficult.

In later section, we will need the following anisotropic triple product lemma (see [12]).

Lemma 3.1 If f, g, h, gy, hx ∈ L2(R2), then∫∫
R2

|f g h| dxdy ≤ C ‖f‖2 ‖g‖
1
2
2 ‖gy‖

1
2
2 ‖h‖

1
2
2 ‖hx‖

1
2
2 . (3.4)

Where C is a constant.

The vorticity formulation of (3.1) is very useful to study global well-posedness. The

vorticity ω = ∇× u and the current density j = ∇× b satisfy ωt + u · ∇ω = ωxx + b · ∇j,

jt + u · ∇j = jxx + b · ∇ω + 2∂xb1(∂xu2 + ∂yu1)− 2∂xu1(∂xb2 + ∂yb1),
(3.5)

31



We will present the theorems and their proofs in the later sections.

3.1 A Global Bound in the Lebesgue Spaces

Assume that (u, b) is a classical solution of (3.1). This section shows that its compo-

nent in the x−direction (u1, b1) admits a global (in time) bound in L2r(R2) for any

1 ≤ r < ∞. The bound obtained here depends exponentially on r. More precisely,

we develop the following theorem.

Theorem 3.1 Assume that (u0, b0) ∈ H2(R2) and let (u, b) be the corresponding

solution of (3.1). Then, for any 1 ≤ r <∞, (u1, b1) obeys the global bound

‖(u1, b1)‖2r ≤ C1e
C2 r3 , (3.6)

where C1 and C2 are constants depending on ‖(u0, b0)‖2r only.

In order to prove this theorem, we need the global L2-bound.

Lemma 3.2 Let (u0, b0) ∈ H2(R2) and let (u, b) be the corresponding solution of

(3.1). Then, (u, b) obeys the following global L2-bound,

‖u(t)‖2
2 + ‖b(t)‖2

2 + 2

∫ t

0

‖∂xu(τ)‖2
2 dτ + 2

∫ t

0

‖∂xb(τ)‖2
2 dτ ≤ ‖u0‖2

2 + ‖b0‖2
2 (3.7)

for any t ≥ 0.

Proof. (Proof of Theorem 3.1) It is more convenient to use the symmetric form of

(3.1), namely (3.3). Multiplying the first component of the first equation of (3.3)

by w+
1 |w+

1 |2r−2 and integrating it with respect to space variable, we obtain, after

integration by parts,

1

2r

d

dt
‖w+

1 ‖2r
2r + (2r − 1)

∫
|∂xw+

1 |2|w+
1 |2r−2 = (2r − 1)

∫
p ∂xw

+
1 |w+

1 |2r−2. (3.8)

By Hölder’s and Sobolev’s inequalities,∫
p ∂xw

+
1 |w+

1 |2r−2 ≤ ‖p‖2r ‖∂xw+
1 |w+

1 |r−1‖2 ‖|w+
1 |r−1‖ 2r

r−1

≤ Cr‖∇p‖ 2r
r+1
‖∂xw+

1 |w+
1 |r−1‖2 ‖w+

1 ‖r−1
2r ,
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where C is a constant independent of r. Therefore, by Young’s inequality,

(2r − 1)

∫
p ∂xw

+
1 |w+

1 |2r−2 ≤ 2r − 1

4
‖∂xw+

1 |w+
1 |r−1‖2

2 + Cr3‖∇p‖2
2r
r+1
‖w+

1 ‖
2(r−1)
2r .

To bound the pressure, we take the divergence of (3.3) to get

−∆p = ∂x(w
−
1 ∂xw

+
1 + w+

1 ∂xw
−
1 ) + ∂y(w

+
1 ∂xw

−
2 + w−1 ∂xw

+
2 ). (3.9)

Due to the boundedness of Riesz transforms on Lq for any 1 < q <∞, we have

‖∇p‖ 2r
r+1

≤ ‖w−1 ∂xw+
1 ‖ 2r

r+1
+ ‖w+

1 ∂xw
−
1 ‖ 2r

r+1
+ ‖w+

1 ∂xw
−
2 ‖ 2r

r+1
+ ||w−1 ∂xw+

2 || 2r
r+1

≤ ‖w−1 ‖2r(‖∂xw+
1 ‖2 + ‖∂xw+

2 ‖2) + ‖w+
1 ‖2r(‖∂xw−1 ‖2 + ‖∂xw−2 ‖2).

Consequently,

Cr3‖∇p‖2
2r
r+1
‖w+

1 ‖
2(r−1)
2r

≤ Cr3(‖∂xw+
1 ‖2

2 + ‖∂xw+
2 ‖2

2 + ‖∂xw−1 ‖2
2 + ‖∂xw−2 ‖2

2)(‖w−1 ‖2r + ‖w+
1 ‖2r)

2‖w+
1 ‖

2(r−1)
2r

≤ Cr3(‖∂xw+
1 ‖2

2 + ‖∂xw+
2 ‖2

2 + ‖∂xw−1 ‖2
2 + ‖∂xw−2 ‖2

2)(‖w+
1 ‖2r

2r + ‖w−1 ‖2r
2r).

Combining the estimates above, we obtain

1

r

d

dt
‖w+

1 ‖2r
2r +

(2r − 1)

2

∫
|∂xw+

1 |2|w+
1 |2r−2

≤ Cr3(‖∂xw+
1 ‖2

2 + ‖∂xw+
2 ‖2

2 + ‖∂xw−1 ‖2
2 + ‖∂xw−2 ‖2

2)(‖w+
1 ‖2r

2r + ‖w−1 ‖2r
2r).

Similarly,

1

r

d

dt
‖w−1 ‖2r

2r +
(2r − 1)

2

∫
|∂xw−1 |2|w−1 |2r−2

≤ Cr3(‖∂xw+
1 ‖2

2 + ‖∂xw+
2 ‖2

2 + ‖∂xw−1 ‖2
2 + ‖∂xw−2 ‖2

2)(‖w+
1 ‖2r

2r + ‖w−1 ‖2r
2r).

Adding these two inequalities yields

1

r

d

dt

(
‖w+

1 ‖2r
2r + ‖w−1 ‖2r

2r

)
+

(2r − 1)

2

∫
(|∂xw+

1 |2|w+
1 |2r−2 + |∂xw−1 |2|w−1 |2r−2)

≤ Cr3
(
‖∂xw+

1 ‖2
2 + ‖∂xw+

2 ‖2
2 + ‖∂xw−1 ‖2

2 + ‖∂xw−2 ‖2
2

) (
‖w+

1 ‖2r
2r + ‖w−1 ‖2r

2r

)
.
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It then follows from Gronwall’s inequality that

‖w+
1 ‖2r

2r + ‖w−1 ‖2r
2r ≤

(
‖w+

1 (0)‖2r
2r + ‖w−1 (0)‖2r

2r

)
× exp

(
Cr4

∫ t

0

(
‖∂xw+

1 ‖2
2 + ‖∂xw+

2 ‖2
2 + ‖∂xw−1 ‖2

2 + ‖∂xw−2 ‖2
2

)
dτ

)
.

This inequality together with (6.14) yields (3.6).

3.2 Global Bounds for the Pressure

In this section we provide the L2r-bounds for the second components (u2, b2) when

r = 2 and 3. Then we establish two global bounds for the pressure: one for ‖p‖q with

1 < q ≤ 3 and the other for
∫ t

0
‖p(τ)‖2

Hsdτ with s ∈ [0, 1). The precise results can be

stated as follows.

Theorem 3.2 Assume that (u0, b0) ∈ H2(R2) and let (u, b) be the corresponding

solution of (3.1). Let p be the corresponding pressure. Let s ∈ (0, 1). Then, for any

T > 0 and t ≤ T ,

‖(u2, b2)(t)‖L2r ≤ C, r = 2, 3, (3.10)

and, for any 1 < q ≤ 3,

‖p(t)‖q ≤ C,

∫ T

0

‖p(τ)‖2
Hs dτ < C, (3.11)

where C is a constant depending on T and the initial data.

Proof. There seems to be no uniform approach to prove the bounds in (3.10) si-

multaneously for r = 2 and r = 3. We prove them separately and start with the

L4-bound. It is more convenient to use the symmetric form (3.3). Multiplying the

second component of the first equation of (3.3) by w+
2 |w+

2 |2 and integrating by parts

yield

1

4

d

dt
‖w+

2 ‖4
4 + 3

∫
|∂xw+

2 |2|w+
2 |2 = 3

∫
p ∂yw

+
2 |w+

2 |2.
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To bound the term on the right, we use ∇ · w+ = 0 and integrate by parts to get∫
p ∂yw

+
2 |w+

2 |2 = −
∫
p ∂xw

+
1 |w+

2 |2

=

∫
∂xpw

+
1 |w+

2 |2 + 2

∫
pw+

1 ∂xw
+
2 w

+
2

= J1 + 2J2. (3.12)

By Hölder’s and Sobolev’s inequalities,

|J2| ≤ ‖p‖4 ‖w+
1 ‖4 ‖w+

2 ∂xw
+
2 ‖2

≤ C ‖∇p‖ 4
3
‖w+

1 ‖4 ‖w+
2 ∂xw

+
2 ‖2.

According to (3.10),

‖∇p‖ 4
3
≤ ‖w−1 ‖4(‖∂xw+

1 ‖2 + ‖∂xw+
2 ‖2) + ‖w+

1 ‖4(‖∂xw−1 ‖2 + ‖∂xw−2 ‖2).

Therefore, by Young’s inequality,

|J2| ≤
1

16
‖w+

2 ∂xw
+
2 ‖2

2

+C (‖w−1 ‖4
4 + ‖w+

1 ‖4
4)(‖∂xw+

1 ‖2
2 + ‖∂xw+

2 ‖2
2 + ‖∂xw−1 ‖2

2 + ‖∂xw−2 ‖2
2).

To bound J1, we first apply Hölder’s inequality,

|J1| ≤ ‖px‖ 8
5
‖w+

1 ‖8 ‖(w+
2 )2‖4.

By Lemma 3.3 below and ∇ · w+ = 0,

‖(w+
2 )2‖4 ≤ C‖∂x(w+

2 )2‖
1
2
2 ‖∂y(w+

2 )2‖
1
2
1 ≤ C‖w+

2 ∂xw
+
2 ‖

1
2
2 ‖w+

2 ∂xw
+
1 ‖

1
2
1 .

According to (3.10),

‖∇p‖ 8
5
≤ C ‖w−1 ‖8(‖∂xw+

1 ‖2 + ‖∂xw+
2 ‖2) + ‖w+

1 ‖8(‖∂xw−1 ‖2 + ‖∂xw−2 ‖2)

≤ C (‖w−1 ‖8 + ‖w+
1 ‖8)(‖∂xw−‖2 + ‖∂xw+‖2).
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Therefore,

|J1| ≤ C‖w+
1 ‖8(‖w−1 ‖8 + ‖w+

1 ‖8)(‖∂xw−‖2 + ‖∂xw+‖2)‖w+
2 ∂xw

+
2 ‖

1
2
2 ‖w+

2 ∂xw
+
1 ‖

1
2
1

≤ 1

16
‖w+

2 ∂xw
+
2 ‖2

2

+C(‖∂xw−‖2
2 + ‖∂xw+‖2

2) + ‖w+
1 ‖4

8(‖w−1 ‖8 + ‖w+
1 ‖8)4‖w+

2 ‖2
2‖∂xw+

1 ‖2
2.

Inserting the estimates for J1 and J2 in (3.12) and recalling Theorem 3.1, we obtain

a global bound for ‖w+
2 ‖4. The bound for ‖w2

−‖4 < C can be similarly established.

To prove the L6−bound in (3.10), we obtain from (3.3) that

1

6

d

dt

(
‖w+

2 ‖6
6 + ‖w−2 ‖6

6

)
+ 5

∥∥|w+
2 |2 |∂xw+

2 |
∥∥2

2
+ 5

∥∥|w−2 |2 |∂xw−2 |∥∥2

2

= 5

∫
p(|w+

2 |4∂yw+
2 + |w−2 |4∂yw−2 )

= −5

∫
p(|w+

2 |4∂xw+
1 + |w−2 |4∂xw−1 )

= 5

∫
∂xp(|w+

2 |4w+
1 + |w−2 |4w−1 ) + 20

∫
p(|w+

2 |3 ∂xw+
2 w

+
1 + |w−2 |3 ∂xw−2 w−1 ).

Applying Hölder’s inequality, (3.9) and Lemma 3.3, we have∫
∂xp(|w+

2 |4w+
1 + |w−2 |4w−1 )

≤ ‖∂xp‖ 36
19

(‖|w+
2 |3‖

4/3
3 ‖w+

1 ‖36 + ‖|w−2 |3‖
4/3
3 ‖w−1 ‖36)

≤ C (‖w+
1 ‖36 + ‖w−1 ‖36)2(‖∂xw+‖2 + ‖∂xw−‖2)

×(‖∂y|w+
2 |3‖

4
9
1 ‖∂x|w+

2 |3‖
4
9
2 ‖|w+

2 |3‖
4
9
2 + ‖∂y|w−2 |3‖

4
9
1 ‖∂x|w−2 |3‖

4
9
2 ‖|w−2 |3‖

4
9
2 )

≤ C (‖w+
1 ‖36 + ‖w−1 ‖36)2 (‖∂xw+‖2 + ‖∂xw−‖2)

(
‖|w+

2 |3‖
4
9
2 + ‖|w−2 |3‖

4
9
2

)
×
(
‖w+

2 ‖
8
9
4 ‖∂yw+

2 ‖
4
9
2 + ‖w−2 ‖

8
9
4 ‖∂yw−2 ‖

4
9
2

)(
‖∂x|w+

2 |3‖
4
9
2 + ‖∂x|w−2 |3‖

4
9
2

)
.

Also, by Hölder’s inequality and (3.9),∫
p(|w+

2 |3 ∂xw+
2 w

+
1 + |w−2 |3 ∂xw−2 w−1 )

≤ ‖p‖6(‖w+
2 ‖6 ‖|w+

2 |2 ∂xw+
2 ‖2‖w+

1 ‖6 + ‖w−2 ‖6 ‖|w−2 |2 ∂xw−2 ‖2‖w−1 ‖6)

≤ C (‖w+
1 ‖6 + ‖w−1 ‖6)(‖∂xw+‖2 + ‖∂xw−‖2)

×(‖w+
1 ‖6‖|w+

2 |2 ∂xw+
2 ‖2‖w+

2 ‖6 + ‖w−1 ‖6‖|w−2 |2 ∂xw−2 ‖2‖w−2 ‖6).
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Therefore, by Young’s and Gronwall’s inequalities,

‖w+
2 ‖6

6 + ‖w−2 ‖6
6 +

∫ t

0

(∥∥|w+
2 |2 |∂xw+

2 |
∥∥2

2
+
∥∥|w−2 |2 |∂xw−2 |∥∥2

2

)
≤ C.

We now prove the first inequality in (3.11). Taking the divergence of the first two

equations in (3.3), we have

−∆p = ∇ · (w− · ∇w+).

By the boundedness of Riesz transforms on Lq,

‖p‖q ≤ C‖w−‖2q ‖w+‖2q.

For 1 < q ≤ 3, ‖w−‖2q and ‖w+‖2q are bounded according to Theorem 3.1 and (3.10)

and thus ‖p‖q < C.

Now we prove the second inequality in (3.11). Recall that Λs is defined through

its Fourier transform

Λ̂sf(ξ) = |ξ|sf̂(ξ).

Combining (3.9), the boundedness of Riesz transforms on L2 and the Hardy-Littlewood-

Sobolev inequality, we have

‖Λsp‖2 ≤ ‖Λs(−∆)−1∂x(w
−
1 ∂xw

+
1 + w+

1 ∂xw
−
1 )‖2 + ‖Λs(−∆)−1∂y(w

+
1 ∂xw

−
2 + w−1 ∂xw

+
2 )‖2

≤ ‖Λ−(1−s)(w−1 ∂xw
+
1 + w+

1 ∂xw
−
1 )‖2 + ‖Λ−(1−s)(w+

1 ∂xw
−
2 + w−1 ∂xw

+
2 )‖2

≤ C ‖w−1 ∂xw+
1 + w+

1 ∂xw
−
1 ‖q + ‖w+

1 ∂xw
−
2 + w−1 ∂xw

+
2 ‖q

≤ C
(
‖∂xw+‖2 + ‖∂xw−‖2

) (
‖w+

1 ‖ 2
1−s

+ ‖w−1 ‖ 2
1−s

)
,

where q satisfies 1
q

= 1
2

+ 1−s
2

and C is a constant independent of s. This completes

the proof of Theorem 3.2.

We have used the following two calculus inequalities in the proof of above theorem.
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Lemma 3.3 Assume that f ∈ L2(R2), ∂xf ∈ L1(R2) and ∂yf ∈ L2(R2). Then

‖f‖4 ≤
√

3 ‖∂xf‖
1
2
1 ‖∂yf‖

1
2
2 , (3.13)

‖f‖3 ≤ 3
√

2 ‖f‖
1
3
2 ‖∂xf‖

1
3
1 ‖∂yf‖

1
3
2 , (3.14)

Proof. Write

f 4(x, y) =

∫ y

−∞
∂z(f

3(x, z)) dz

∫ x

−∞
∂zf(z, y) dz

≤ 3

(∫ ∞
−∞

f 2(x, z)∂zf dz

)(∫ ∞
−∞

∂zf(z, y) dz

)
∫
R2

|f |4dxdy ≤ 3

(∫ ∞
−∞

∫ ∞
−∞
|f |2|∂zf(x, z)| dz dx

)(∫ ∞
−∞

∫ ∞
−∞
|∂zf(z, y)| dz dy

)
‖f‖4

4 ≤ 3

(∫
R2

|f |4
) 1

2
(∫

R2

|∂zf(x, z)|2
) 1

2

‖∂xf‖1

≤ 3‖f‖2
4 ‖∂yf‖2 ‖∂xf‖1.

This yields (3.13).

For (3.14) write

f 3 = f 2 f =

(∫ y

−∞
∂y(f

2) dy

)(∫ x

−∞
∂xf dx

)
.

then we obtain (3.14) by integrating and using Hölder inequality.

3.3 An Improved Global Lebesgue-bound

This section establishes the improved global bound for ‖(u1, b1)‖L2r , which states that

for r > 2, ‖(u1, b1)‖L2r does not grow faster than the order of
√
r log r. More precisely

we prove the following theorem.

Theorem 3.3 Assume that (u0, b0) ∈ H2(R2) and let (u, b) be the corresponding

solution of (3.1). Let 2 < r <∞. Then,

‖(u1, b1)(t)‖L2r(R2) ≤ B0(t)
√
r log r +B1, (3.15)

where B0 is a smooth function of t and B1 depends only on ‖(u0, b0)‖2r.
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In order to prove this theorem, we need several facts that we now state and prove.

Lemma 3.4 Let q ∈ [2,∞) and s ∈ (1
2
, 1]. Assume that f, g, ∂yg ∈ L2(R2), h ∈

L2(q−1)(R2) and Λs
xh ∈ L2(R2). Then,∣∣∣∣∫∫

R2

f g h dxdy

∣∣∣∣ ≤ C ‖f‖2 ‖g‖ρ2 ‖∂yg‖
1−ρ
2 ‖h‖ϑ2(q−1) ‖Λs

xh‖1−ϑ
2 . (3.16)

where ρ and ϑ are given by

ρ =
1

2
+

(2s− 1)(q − 2)

2(2s− 1)(q − 1) + 2
, ϑ =

(2s− 1)(q − 1)

(2s− 1)(q − 1) + 1
,

and Λs
x denotes a fractional derivative with respect to x and is defined by

Λs
xh(x) =

∫
eix·ξ|ξ1|sĥ(ξ) dξ.

Proof. To prove this inequality, we recall the one-dimensional Sobolev inequality

‖h‖L∞x (R) ≤ C ‖h‖ϑ
L
2(q−1)
x (R)

‖Λs
xh‖1−ϑ

L2
x(R), (3.17)

where we have used the sub-index x with the Lebesgue spaces to emphasize that the

norms are taken in one-dimensional Lebesgue spaces with respect to x. By Hölder’s

inequality and (3.17),∣∣∣∣∫∫ f g h dxdy

∣∣∣∣ ≤ C

∫
‖f‖L2

x
‖g‖L2

x
‖h‖ϑ

L
2(q−1)
x
‖Λs

xh‖
1−ϑ
L2
x
dy

≤ C

(∫
‖f‖2

L2
x
dy

) 1
2
(∫
‖g‖µL2

x
dy

) 1
µ

×
(∫
‖h‖2(q−1)

L
2(q−1)
x

dy

) ϑ
2(q−1)

(∫
‖Λs

xh‖2
L2
x
dy

) (1−ϑ)
2

= C ‖f‖2 ‖g‖L2
xL

µ
y
‖h‖ϑ2(q−1)‖Λs

xh‖1−ϑ
2 , (3.18)

where µ = 2(q − 1)/(ϑ(q − 2)). Clearly, µ ≥ 2. By Minkowski’s inequality followed

by a Sobolev inequality,

‖g‖L2
xL

µ
y
≤ ‖g‖LµyL2

x
≤ C ‖g‖ρ2 ‖∂yg‖

1−ρ
2 . (3.19)

Inserting (3.19) in (3.18) yields the desired inequality in (3.16).
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The following lemma allows us to bound the high frequency and low frequency parts

of a function in Hs (0 < s < 1) separately.

Lemma 3.5 Let f ∈ Hs(R2) with s ∈ (0, 1). Let R ∈ (0,∞). Denote by B(0, R)

the ball centered at zero with radius R and by χB(0,R) the characteristic function on

B(0, R). Write

f = f + f̃ with f = F−1(χB(0,R)Ff) and f̃ = F−1((1− χB(0,R))Ff), (3.20)

where F and F−1 denote the Fourier transform and the inverse fourier transform,

respectively. Then we have the following estimates for f and f̃ .

(1) For a pure constant C0 (independent of s),

‖f‖L∞(R2) ≤
C0√
1− s

R1−s ‖f‖Hs(R2), (3.21)

(2) For any 2 ≤ q <∞ satisfying 1− s− 2
q
< 0, there is a constant C1 independent

of s, q, R and f such that

‖f̃‖Lq(R2) ≤ C1 q R
1−s− 2

q ‖f‖Hs(R2). (3.22)

A similar type of lemma is proved in [13]. The lemma in [13] involves H1 functions

while this lemma 3.5 allows to deal with Hs-functions with s ∈ (0, 1). This lemma

can be similarly proven as Lemma 2.3 of [13].

Proof. For any f ∈ Hs(R2), 0 < s < 1, we can write

f = f + f̃ with f = F−1(χB(0,R)Ff) and f̃ = F−1((1− χB(0,R))Ff),

where

χ(0,R) =


1 if |ξ| ≤ R

0 if |ξ| > R.
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‖f‖∞ ≤
∫
|ξ|≤R

|f̂(ξ)| dξ

=

∫
|ξ|≤R

(1 + |ξ|)−s(1 + |ξ|)s |f̂(ξ)| dξ

≤ C‖f‖Hs(

∫ R

0

(1 + r)−2srdr)
1
2

≤ CR1−s‖f‖Hs

To prove (3.22), we use the embedding relation: for any 1 ≤ q <∞,

Ḃ0
q,min{q,2} ↪→ Lq ↪→ Ḃ0

q,max{q,2},

where Ḃ0
q,r denotes the homogeneous Besov space. So for 2 ≤ q <∞

‖f̃‖q ≤ Cq‖f̃‖Ḃ0
q,2

= Cq

[
∞∑

j=−∞

‖∆j f̃‖2
q

] 1
2

Since f̃(ξ) has support |ξ| > R so choose j ≤ j0 = [log2R] − 1 and use Bernsteins

inequality,

‖f̃‖q ≤ Cq

[
∞∑
j=j0

24j( 1
2
− 1
q

)‖∆j f̃‖2
2

] 1
2

= Cq

[
∞∑
j=j0

24j( 1
2
− 1
q
− s

2
)22js‖∆j f̃‖2

2

] 1
2

≤ Cq2j0(1−s− 2
q

)‖f̃‖Hs ≤ CqR1−s− 2
q ‖f‖Hs

This completes the proof of the lemma.

In [13], the authors had proved the following lemma.

Lemma 3.6 Let 1 < q <∞. Let f ∈ Lq(Rd) and let f̃ be defined as in (3.20). Then,

for a constant C depending on q only such that

‖f̃‖Lq(Rd) ≤ C ‖f‖Lq(Rd).

After collecting all lemmas we need, we are now ready to prove the main theorem of

this section.
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Proof. (Proof of Theorem 3.3) As in the proof of Theorem 3.1, we use the symmetric

form (3.3) and start with (3.8) with r > 2

1

2r

d

dt
‖w+

1 ‖2r
2r + (2r − 1)

∫
|∂xw+

1 |2|w+
1 |2r−2 = (2r − 1)

∫
p ∂xw

+
1 |w+

1 |2r−2. (3.23)

The term on the right will be treated differently. To start, we fix R > 0 (to be

specified later) and write

(2r − 1)

∫
p ∂xw

+
1 |w+

1 |2r−2 = J1 + J2,

where

J1 = (2r − 1)

∫
p ∂xw

+
1 |w+

1 |2r−2, J2 = (2r − 1)

∫
p̃ ∂xw

+
1 |w+

1 |2r−2

with p and p̃ as defined in (3.20). To estimate J1 and J2, we choose two parameters

s and q satisfying

√
5− 1

2
< s < 1, 2 < q ≤ 5

2
,

3

2
+

1

2(2s− 1)
< q < 1 +

1

1− s
. (3.24)

The technical constraints in (3.24) will become clear later. By Hölder’s and Young’s

inequalities, we find

|J1| ≤ (2r − 1)‖p‖∞‖(w+
1 )r−1‖2‖∂xw+

1 (w+
1 )r−1‖2

≤ (2r − 1)‖p‖2
∞‖(w+

1 )r−1‖2
2 +

2r − 1

4
‖∂xw+

1 (w+
1 )r−1‖2

2.

Assuming s and q satisfying (3.24) and applying Lemma 3.5, we have

‖p‖∞ ≤
C0√
1− s

R1−s ‖p‖Hs , (3.25)

where C0 is a constant independent of s. In the rest of the proof, we pay special

attention to whether a constant is bounded uniformly as s→ 1−. By (3.25) and the

interpolation inequality∫
(w+

1 )2r−2 ≤ ‖w+
1 ‖

2
r−1

2 ‖w+
1 ‖

2r2−4r
r−1

2r , (3.26)
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we have

|J1| ≤
2r − 1

4
‖∂xw+

1 (w+
1 )r−1‖2

2

+
C2

0

1− s
(2r − 1)R2(1−s) ‖p‖2

Hs‖w+
1 ‖

2
r−1

2 ‖w+
1 ‖

2r2−4r
r−1

2r , (3.27)

where C0 is independent of s. To bound J2, we first apply Lemma 3.4 to obtain

|J2| ≤ C(2r − 1) ‖∂xw+
1 |w+

1 |r−1‖2 ‖p̃‖ϑ2(q−1) ‖Λs
yp̃‖1−ϑ

2 ‖(w+
1 )r−1‖ρ2 ‖∂x(w+

1 )r−1‖1−ρ
2

where s and q satisfy (3.24), ϑ and ρ are given explicitly in terms of s and q,

ϑ =
(2s− 1)(q − 1)

(2s− 1)(q − 1) + 1
, ρ =

1

2
+

(2s− 1)(q − 2)

2[(2s− 1)(q − 1) + 1]
, (3.28)

and C is bounded uniformly as s→ 1−. According to (3.26), we have

‖(w+
1 )r−1‖ρ2 ≤ ‖w+

1 ‖
ρ
r−1

2 ‖w+
1 ‖

ρ(r2−2r)
(r−1)

2r .

By Hölder’s inequality,

‖∂x(w+
1 )r−1‖1−ρ

2 = (r − 1)1−ρ
(∫

(∂xw
+
1 )2(w+

1 )2(r−2)

) 1
2

(1−ρ)

= (r − 1)1−ρ
(∫

(∂xw
+
1 )

2
r−1 (∂xw

+
1 )

2(r−2)
r−1 (w+

1 )2(r−2)

) 1
2

(1−ρ)

= (r − 1)1−ρ‖∂xw+
1 ‖

1−ρ
r−1

2

(∫
(w+

1 )2(r−1)(∂xw
+
1 )2

) (r−2)(1−ρ)
2(r−1)

Therefore, by Young’s inequality,

|J2| ≤ C (2r − 1)(r − 1)1−ρ‖∂xw+
1 ‖

1−ρ
r−1

2 ‖w+
1 ‖

ρ
r−1

2 ‖w+
1 ‖

ρ(r2−2r)
r−1

2r

× ‖p̃‖ϑ2(q−1)‖Λsp̃‖1−ϑ
2

(∫
(∂xw

+
1 )2(w+

1 )2r−2

) 1
2

+
(r−2)(1−ρ)

2(r−1)

≤ 2r − 1

4

∫
(∂xw

+
1 )2(w+

1 )2r−2 + C(2r − 1)(r − 1)
2(1−ρ)(r−1)

σ ‖w+
1 ‖

2ρ
σ

2

×‖∂xw+
1 ‖

2(1−ρ)
σ

2 ‖w+
1 ‖

2ρ(r2−2r)
σ

2r ‖p̃‖
2ϑ(r−1)

σ

2(q−1) ‖Λ
sp̃‖

2(1−ϑ)(r−1)
σ

2 . (3.29)
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where C is again bounded uniformly as s→ 1−, and, for notational convenience, we

have written

σ = (r − 1)− (1− ρ)(r − 2) = 1 + ρr − 2ρ. (3.30)

To further estimate, we split ‖p̃‖2(q−1) into two parts and bound one of them via

Lemma 3.5. More precisely, we have, for any 0 ≤ β ≤ 1,

‖p̃‖2(q−1) = ‖p̃‖1−β
2(q−1) ‖p̃‖

β
2(q−1)

≤ C ‖p̃‖1−β
2(q−1) R

(1−s− 1
q−1

)β ‖p‖βHs

≤ C ‖p‖1−β
2(q−1) R

(1−s− 1
q−1

)β ‖p‖βHs . (3.31)

Where the last inequality follows from Lemma 3.6 and C is a constant independent

of s. Due to the conditions on s and q in (3.24), this bound allows us to generate

R(1−s− 1
q−1

)β with (1− s− 1
q−1

)β ≤ 0. Inserting (3.31) in (3.29) yields

|J2| ≤
2r − 1

4

∫
(∂xw

+
1 )2(w+

1 )2r−2

+ C(2r − 1)(r − 1)
2(1−ρ)(r−1)

σ R(1−s− 1
q−1

)β
2ϑ(r−1)

σ ‖w+
1 ‖

2ρ
σ

2

×‖∂xw+
1 ‖

2(1−ρ)
σ

2 ‖w+
1 ‖

2ρ(r2−2r)
σ

2r ‖p‖(1−β)
2ϑ(r−1)

σ

2(q−1) ‖p‖β
2ϑ(r−1)

σ
+

2(1−ϑ)(r−1)
σ

Hs ,

where, again, C is bounded uniformly as s → 1−. We choose β so that the sum of

the powers of ‖∂xw+
1 ‖2 and of ‖p‖Hs is equal to 2, namely

2(1− ρ)

σ
+ β

2ϑ(r − 1)

σ
+

2(1− ϑ)(r − 1)

σ
= 2.

Recalling (3.28) and (3.30), we find that

β =
(2s− 1)(2q − 3)− 1

(2q − 2)(2s− 1)
. (3.32)

The condition in (3.24) guarantees that 0 < β ≤ 1. Then

‖∂xw+
1 ‖

2(1−ρ)
σ

2 ‖p‖β
2ϑ(r−1)

σ
+

2(1−ϑ)(r−1)
σ

Hs ≤ C
(
‖∂xw+

1 ‖2
2 + ‖p‖2

Hs

)
.
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Therefore, for β given by (3.32), we have

|J2| ≤
2r − 1

4

∫
(∂xw

+
1 )2(w+

1 )2r−2

+ C(2r − 1)(r − 1)
2(1−ρ)(r−1)

σ R(1−s− 1
q−1

)β
2ϑ(r−1)

σ ‖w+
1 ‖

2ρ
σ

2

×‖p‖(1−β)
2ϑ(r−1)

σ

2(q−1)

(
‖∂xw+

1 ‖2
2 + ‖p‖2

Hs

)
‖w+

1 ‖
2ρ(r2−2r)

σ
2r . (3.33)

Combining (3.23), (6.27) and (6.28), we obtain

1

2r

d

dt
‖w+

1 ‖2r
2r +

2r − 1

4

∫
|∂xw+

1 |2|w+
1 |2r−2

≤ C2
0

1− s
(2r − 1)R2(1−s) ‖p‖2

Hs‖w+
1 ‖

2
r−1

2 ‖w+
1 ‖

2r2−4r
r−1

2r

+C(2r − 1)(r − 1)
2(1−ρ)(r−1)

σ R(1−s− 1
q−1

)β
2ϑ(r−1)

σ ‖w+
1 ‖

2ρ
σ

2

×‖p‖(1−β)
2ϑ(r−1)

σ

2(q−1)

(
‖∂xw+

1 ‖2
2 + ‖p‖2

Hs

)
‖w+

1 ‖
2ρ(r2−2r)

σ
2r (3.34)

where C0 is independent of s and C is bounded uniformly as s→ 1−. We now choose

R such that

R2(1−s) = (r − 1)
2(1−ρ)(r−1)

σ R(1−s− 1
q−1

)β
2ϑ(r−1)

σ .

Solving this equation for R, we find

R2(1−s) = (r − 1)

2(1−s)(1−ρ)(r−1)

(1−s)σ+βϑ(s−1+ 1
q−1)(r−1) .

We then use (3.28),(3.30) and (3.32) to simplify this index and obtain

2(1− s)(1− ρ)(r − 1)

(1− s)σ + βϑ
(
s− 1 + 1

q−1

)
(r − 1)

=
2(1− s)(q − 1)

q − 2 + (r − 1)−1(1− s)(q − 1)
.

We denote this index by δ,

δ ≡ 2(1− s)(q − 1)

q − 2 + (r − 1)−1(1− s)(q − 1)
(3.35)

and therefore R2(1−s) = (r − 1)δ. Clearly, δ → 0 as s→ 1, and

1

1− s
=
q − 1

q − 2

(
2− δ

r − 1

)
1

δ
≤ 2q − 2

q − 2

1

δ
.
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In addition, we notice that

2r2 − 4r

r − 1
≤ 2r − 2,

2ρ(r2 − 2r)

σ
≤ 2r − 2.

Without loss of generality, we assume ‖w+
1 ‖2r ≥ 1. It then follows from (3.34) that

d

dt
‖w+

1 ‖2
2r ≤

C

δ
B(t) (2r − 1) (r − 1)δ, (3.36)

where C is bounded uniformly as δ → 0+, and

B(t) = ‖p‖2
Hs‖w+

1 ‖
2
r−1

2 + ‖w+
1 ‖

2ρ
σ

2 ‖p‖
(1−β)

2ϑ(r−1)
σ

2(q−1)

(
‖∂xw+

1 ‖2
2 + ‖p‖2

Hs

)
.

Since (6.10) holds for any δ > 0, we set

δ =
1

log(r − 1)

to obtain the optimal upper bound

d

dt
‖w+

1 ‖2
2r ≤ C B(t) (2r − 1) log(r − 1) (3.37)

After δ is selected, we choose s and q satisfying (??) to fulfill (3.35) Since we have

chosen 2 < q ≤ 5
2
, 2 < 2(q − 1) ≤ 3. According to Theorem 3.2, B(t) is integrable on

any time interval. We obtain (3.15) after integrating (3.37) in time. This completes

the proof of Theorem 3.3.

3.4 Conditional Global Regularity

This section establishes the global bounds for ‖(u, b)‖H2 in terms of the norms of the

horizontal components u1 and b1 in L2
tL
∞
x . We prove that any possible blowup of

the classical solution to the system (3.1) can be controlled by the L∞-norm of the

horizontal components of the velocity field and the magnetic field. More precisely, we

have the following theorem.
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Theorem 3.4 Assume (u0, b0) ∈ H2(R2) and let (u, b) be the corresponding solution

of (3.1). If ∫ T

0

‖(u1, b1)(t)‖2
∞ dt <∞

for some T > 0, then ‖(u, b)‖H2 is finite on [0, T ].

The proof of this theorem is divided into two major parts. The first part bounds

the H1-norm while the second bounds the H2-norm.

3.4.1 H1 Bound in terms of ‖(u1, b1)‖L2
tL
∞
x

This subsection proves the following proposition.

Proposition 3.4.1 Assume (u0, b0) ∈ H2(R2) and let (u, b) be the corresponding

solution of (3.1). Then, for any T > 0 and t ≤ T ,

‖(u, b)(t)‖H1 ≤ C1 e
C2

∫ t
0(‖u1(τ)‖2∞+‖b1(τ)‖2∞)dτ , (3.38)

where C1 depends on T and the initial data only, and C2 is a pure constant.

Proof. Taking the inner product of the first equation of (3.3) with ∆w+ and integrat-

ing by parts, we obtain

1

2

d

dt
‖∇w+‖2

2 + ‖∂x∇w+‖2
2 = I1 + I2 + I3 + I4 + I5 + I6,

where

I1 =

∫
∂xw

−
1 ∂xw

+
2 ∂xw

+
2 , I2 =

∫
∂xw

−
2 ∂yw

+
1 ∂xw

+
1 , I3 =

∫
∂xw

−
2 ∂yw

+
2 ∂xw

+
2 ,

I4 =

∫
∂yw

−
1 ∂xw

+
1 ∂yw

+
1 , I5 =

∫
∂yw

−
1 ∂xw

+
2 ∂yw

+
2 , I6 =

∫
∂yw

−
2 ∂yw

+
1 ∂yw

+
1 .

The terms can be bounded as follows. By Lemma 3.1,

|I1| ≤ ‖∂xw−1 ‖2 ‖∂xw+
2 ‖

1
2
2 ‖∂2

xw2‖
1
2
2 ‖∂xw+

2 ‖
1
2
2 ‖∂2

xyw
+
2 ‖

1
2
2

≤ ‖∂xw−1 ‖2 ‖∂xw+
2 ‖2 ‖∇∂xw+

2 ‖2

≤ 1

16
‖∇∂xw+

2 ‖2
2 + C‖∂xw−1 ‖2

2 ‖∇w+
2 ‖2

2.
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Similarly,

|I2| ≤
1

16
‖∇∂xw+

1 ‖2
2 + C‖∂xw−2 ‖2

2 ‖∇w+
1 ‖2

2.

|I3| ≤
1

16
‖∇∂xw+

2 ‖2
2 + C‖∂xw−2 ‖2

2 ‖∇w+
2 ‖2

2.

Integrating by parts, we have

I4 = −
∫
∂2
xyw

−
1 w

+
1 ∂yw

+
1 −

∫
∂yw

−
1 w

+
1 ∂

2
xyw

+
1 .

By Hölder’s inequality,

I4 ≤ 2‖w+
1 ‖∞ ‖∇∂xw−1 ‖2 ‖∇w−1 ‖2

≤ 1

16
‖∇∂xw−1 ‖2

2 + C‖w+
1 ‖2
∞ ‖∇w−1 ‖2

2.

I5 and I6 admit similar bounds as I4,

|I5| ≤
1

16
‖∇w+

x ‖2
2 + C‖w−1 ‖2

∞‖∇w+
2 ‖2

2.

|I6| ≤
1

16
‖∇∂xw+

1 ‖2 + C‖w−1 ‖2
∞‖∇w+

1 ‖2
2.

Similar estimates can be obtained for ∇w−. Their combination yields

d

dt

(
‖∇w+‖2

2 + ‖∇w−‖2
2

)
+
(
‖∂x∇w+‖2

2 + ‖∂x∇w−‖2
2

)
≤
(
‖∂xw+‖2

2 + ‖∂xw−‖2
2 + ‖w−1 ‖2

∞ + ||w+
1 ‖2
∞
) (
‖∇w+||2 + ||∇w−‖2

)
.

Gronwall’s lemma then yields the desired L2-bound for (∇u,∇b). Combining with

the global L2-bound in Lemma 1.7 leads to (3.38).

3.4.2 H2 Bound in terms of ‖(u1, b1)‖L2
tL
∞
x

This subsection is dedicated to prove the theorem 3.4.

48



Proof. Taking the inner product of the first equation in (3.3) with ∆2w+ and inte-

grating by parts, we find

1

2

d

dt
‖∆w+‖2

2 + ‖∂x∆w+‖2
2 = −

∫
∆(w− · ∇w+) · ∆w+. (3.39)

In order to make use of the anisotropic dissipation, we need to decompose the non-

linear term into different parts which show explicit dependence on the horizontal and

vertical derivatives. We write∫
∆(w− · ∇w+) · ∆w+ = J1 + J2 + J3,

where

J1 =

∫
(∆w− · ∇w+) · ∆w+, J2 = 2

∫
(∂xw

− · ∇∂xw+) · ∆w+,

J3 = 2

∫
(∂yw

− · ∇∂yw+) · ∆w+.

We further decompose J1 into four terms, J1 = J11 + J12 + J13 + J14, where

J11 =

∫
(∆w−1 ∂xw

+
1 ) ∆w+

1 , J12 =

∫
(∆w−1 ∂xw

+
2 ) ∆w+

2 ,

J13 =

∫
(∆w−2 ∂yw

+
1 ) ∆w+

1 , J14 =

∫
(∆w−2 ∂yw

+
2 ) ∆w+

2 .

It is clear that, after integration by parts and applying Hölder’s inequality,

|J11| ≤
1

16

(
‖∆∂xw+

1 ‖2
2 + ‖∆∂xw−1 ‖2

2

)
+ 4‖w+

1 ‖2
∞
(
‖∆w+

1 ‖2
2 + ‖∆w−1 ‖2

2

)
.

Similarly, after invoking ∂xw
+
1 + ∂yw

+
2 = 0,

|J14| ≤
1

16

(
‖∆∂xw+

2 ‖2
2 + ‖∆∂xw−2 ‖2

2

)
+ 4‖w+

1 ‖2
∞
(
‖∆w+

2 ‖2
2 + ‖∆w−2 ‖2

2

)
.

To bound J12, we apply Lemma 3.1 to obtain

|J12| ≤ ‖∂xw+
2 ‖2 ‖∆w−1 ‖

1
2
2 ‖∆∂xw−1 ‖

1
2
2 ‖∆w+

2 ‖
1
2
2 ‖∆∂yw+

2 ‖
1
2
2

= ‖∂xw+
2 ‖2 ‖∆w−1 ‖

1
2
2 ‖∆∂xw−1 ‖

1
2
2 ‖∆w+

2 ‖
1
2
2 ‖∆∂xw+

1 ‖
1
2
2

≤ 1

16

(
‖∆∂xw+

1 ‖2
2 + ‖∆∂xw−1 ‖2

2

)
+ 4‖∂xw+

2 ‖2
2

(
‖∆w+

2 ‖2
2 + ‖∆w−1 ‖2

2

)
.
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To bound J13, we need the H1-bound from Proposition 3.4.1. By Lemma 3.1,

|J13| ≤ ‖∆w+
1 ‖2 ‖∆w−2 ‖

1
2
2 ‖∆∂yw−2 ‖

1
2
2 ‖∂yw+

1 ‖
1
2
2 ‖∂x∂yw+

1 ‖
1
2
2

≤ ‖∆w+
1 ‖2 ‖∆w−2 ‖

1
2
2 ‖∆∂xw−1 ‖

1
2
2 ‖∇w+

1 ‖
1
2
2 ‖∇∂xw+

1 ‖
1
2
2

≤ 1

16
‖∆∂xw−1 ‖2

2 + C‖∇w+
1 ‖2‖∆w+

1 ‖2
2 + C‖∂x∇w+

1 ‖2
2‖∆w−2 ‖2

2.

Collecting the estimates for J1, we have found that four terms

|J1| ≤
1

4

(
‖∆∂xw+‖2

2 + ‖∆∂xw−‖2
2

)
+
(
‖w+

1 ‖2
∞ + ‖∂xw+‖2

2 + ‖∇w+
1 ‖2 + ‖∂x∇w+

1 ‖2
2

) (
‖∆w+‖2

2 + ‖∆w−‖2
2

)
.

J2 and J3 can be estimated in a similar fashion and we omit further details. Combining

the estimates for all of them and applying Gronwall’s inequality yields the desired

global result. This completes the proof of the theorem 3.4.

3.5 Global Regularity for a Slightly Regularized System

This section establishes that (3.2) possesses global regular solutions if the initial data

are sufficiently smooth. More precisely, we have the following theorem.

Theorem 3.5 Let ε > 0 and δ > 0 be real parameters. Consider (3.2) with an initial

data (u0, b0) ∈ H2(R2). Then the corresponding solution (u, b) obeys the following

global a priori bounds, for any T > 0 and t ≤ T ,

‖(u, b)‖2
H2 +

∫ t

0

(
‖(∂xu, ∂xb)‖2

H2 + ε‖(Λδu,Λδb)‖2
H2

)
dτ ≤ C,

where C is a constant depending on T and ‖(u0, b0)‖H2 only.

Proof. We show that (u, b) admits a global H2 bound. Clearly,

‖(u, b)(t)‖2
2 + 2

∫ t

0

(
‖∂xu(τ)‖2

2 + ‖∂xb(τ)‖2
2

)
dτ

+2ε

∫ t

0

(
‖Λδu(τ)‖2

2 + ‖Λδb(τ)‖2
2

)
dτ = ‖(u0, b0)‖2

2.
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To obtain the global bound for the H1-norm, we take advantage of the vorticity

formulation. Taking the curl of (3.2), we find that ω = ∇× u and j = ∇× b satisfy
ωt + u · ∇ω + ε(−∆)δω = b · ∇j + ωxx,

jt + u · ∇j + ε(−∆)δj = b · ∇ω + jxx

+ 2∂xb1(∂yu1 + ∂xu2)− 2∂xu1(∂yb1 + ∂xb2).

(3.40)

Taking the inner product of (3.40) with (ω, j) and integrating by parts, we obtain

1

2

d

dt

(
‖ω‖2

2 + ‖j‖2
2

)
+ ‖∂xω‖2

2 + ‖∂xj‖2
2 + ε‖Λδω‖2

2 + ε‖Λδj‖2
2

= J1 + J2 + J3 + J4, (3.41)

where

J1 = 2

∫
∂xb1 ∂yu1 j dxdy, J2 = 2

∫
∂xb1 ∂xu2 j dxdy,

J3 = 2

∫
∂xu1 ∂yb1 j dxdy, J4 = 2

∫
∂xu1 ∂xb2 j dxdy.

The terms above can be bounded as follows. Integrating by parts, we have

J1 = −2

∫
b1 ∂xyu1 j − 2

∫
b1 ∂yu1 ∂xj.

Choose q large enough such that qδ > 2. By Hölder’s inequality,

|J1| ≤ 2‖b1‖q ‖∂xyu1‖2 ‖j‖ 2q
q−2

+ 2 ‖b1‖q ‖∂xj‖2 ‖∂yu1‖ 2q
q−2
. (3.42)

By the boundedness of singular integral operators,

‖∂xyu1‖2 ≤ C ‖∂xω‖2, ‖∂yu1‖ 2q
q−2
≤ C ‖ω‖ 2q

q−2
.

Applying the Sobolev inequality, for q > 2 and qδ > 2

‖f‖ 2q
q−2
≤ C ‖f‖

1− 2
qδ

2 ‖Λδf‖
2
qδ

2 ,

and Young’s inequality, we obtain

|J1| ≤
1

8
‖∂xω‖2

2 +
ε

4
‖Λδj‖2

2 + C ‖b1‖
2qδ
qδ−2
q ‖j‖2

2

+
1

8
‖∂xj‖2

2 +
ε

4
‖Λδω‖2

2 + C ‖b1‖
2qδ
qδ−2
q ‖ω‖2

2.
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J2 can be bounded through Lemma 3.1,

|J2| ≤ C ‖∂xb1‖2 ‖∂xu2‖
1
2
2 ‖∂xyu2‖

1
2
2 ‖j‖

1
2
2 ‖∂xj‖

1
2
2

≤ 1

8
‖∂xω‖2

2 +
1

8
‖∂xj‖2

2 + C ‖∂xb1‖2
2

(
‖ω‖2

2 + ‖j‖2
2

)
.

To bound J3, we first integrate by parts to obtain

J3 = −2

∫
u1 ∂xyb1 j − 2

∫
u1 ∂yb1 ∂xj.

The terms on the right can then be estimated in a similar fashion as in (3.42) and

the bound is

|J3| ≤
1

8
‖∂xω‖2

2 +
1

8
‖∂xj‖2

2 +
ε

4
‖Λδj‖2

2 + C ‖u1‖
2qδ
qδ−2
q ‖j‖2

2.

J4 can be bounded in a a similar fashion as J2 and

|J4| ≤
1

8
‖∂xj‖2

2 + C ‖∂xu1‖2
2 ‖j‖2

2.

Inserting the estimates for J1, J2, J3 and J4 in (3.41) yields the desired global H1-

bound.

To establish the global H2-bound, we take the inner product of (3.40) with

(∆ω,∆j) to obtain, after integration by parts,

1

2

d

dt
(‖∇ω‖2

2 + ‖∇j‖2
2) + ‖∇∂xω‖2

2 + ‖∇∂xj‖2
2 + ε‖Λδ+1ω‖2

2 + ε‖Λδ+1j‖2
2

= L1 + L2 + L3 + L4 + L5, (3.43)

where

L1 = −
∫
∇ω · ∇u · ∇ω dxdy,

L2 = −
∫
∇j · ∇u · ∇j dxdy,

L3 =

∫
∇ω · (∇b+ (∇b)t) · ∇j dxdy,

L4 = 2

∫
∇[∂xb1(∂xu2 + ∂yu1)] · ∇j dxdy,

L5 = −2

∫
∇[∂xu1(∂xb2 + ∂yb1)] · ∇j dxdy.
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To estimate L1, we write the integrand explicitly

L1 =

∫
(∂xu1(∂xω)2 + (∂xu2 + ∂yu1)∂xω∂yω + ∂yu2(∂yω)2) dxdy.

Each one of them can be bounded by Lemma 3.1 and then by Young’s inequality. For

example, ∫
∂xu1(∂xω)2 dxdy ≤ C‖∂xu1‖2‖∂xω‖

1
2
2 ‖∂2

xω‖
1
2
2 ‖∂xω‖

1
2
2 ‖∂2

xyω‖
1
2
2

≤ 1

32
‖∇∂xω‖2

2 + C‖ω‖2
2‖∇ω‖2

2

Since the estimates for other terms are similar, we obtain

|L1| ≤
1

8
‖∇∂xω‖2

2 + C ‖ω‖2
2‖∇ω‖2

2 + C ‖∇ω‖2
2‖ω‖

2
3
2 ‖∂xω‖

2
3
2 .

Similarly, L2, L3, L4 and L5 are bounded by

|L2| ≤
1

8
‖∇∂xj‖2

2 + C
(
‖ω‖2

2 + ‖ω‖
2
3
2 ‖∂xω‖

2
3
2

)
‖∇j‖2

2,

|L3| ≤
1

8
‖∇∂xω‖2

2 +
1

8
‖∇∂xj‖2

2

+C ‖j‖2
2(‖∇ω‖2

2 + ‖∇j‖2
2) + C ‖∂xj‖2

2‖∇j‖2
2,

|L4| ≤
1

8
‖∇∂xω‖2

2 +
1

8
‖∇∂xj‖2

2

+C
(
‖j‖2

2 + ‖ω‖2
2 + ‖∂xj‖2

2 + ‖ω‖
2
3
2 ‖∂xω‖

2
3
2

)
(‖∇ω‖2

2 + ‖∇j‖2
2),

|L5| ≤
1

8
‖∇∂xω‖2

2 +
1

8
‖∇∂xj‖2

2

+C
(
‖j‖2

2 + ‖ω‖2
2 + ‖∂xj‖2

2 + ‖∂xω‖2
2

)
(‖∇ω‖2

2 + ‖∇j‖2
2).

Inserting these estimates in (3.43), applying Gronwall’s inequality and invoking the

global H1-bound, we achieved the desired global H2-bound for the solution. This

concludes the proof of Theorem 3.5.
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CHAPTER 4

Global Regularity for the 2D Magnetohydrodynamic Equations with

Horizontal Dissipation and Horizontal Magnetic Diffusion

In this chapter, we consider 2D anisotropic MHD equations.

∂tu+ u · ∇u = −∇p+ ∂2
xu+ b · ∇b, (x, y) ∈ R2, t > 0,

∂tb+ u · ∇b = ∂2
xb+ b · ∇u, (x, y) ∈ R2, t > 0,

∇ · u = 0, ∇ · b = 0, (x, y) ∈ R2, t > 0,

u(x, y, 0) = u0(x, y), b(x, y, 0) = b0(x, y), (x, y) ∈ R2.

(4.1)

We establish the global regularity issue of the system (4.1).

The local well-posedness of (4.1) can be obtained by the standard classical method.

The difficult part is the global bounds for the velocity and magnetic field. The global

regularity issue of (4.1) is reduced to finding the global H1 and H2-bound for the

velocity and magnetic field. More precisely, we prove the following theorem in this

chapter.

Theorem 4.1 Assume that (u0, b0) ∈ H2(R2), ∇·u0 = 0 and ∇·b0 = 0. Then, (4.1)

has a unique global solution (u, b) satisfying, for any T > 0 and t ≤ T ,

u, b, ∂xu, ∂xb ∈ L∞([0, T ];H2(R2)).

The global regularity issue on the MHD equations with this type of partial dissipa-

tion is extremely difficult. The direct energy method fails because of the dissipation

and diffusion in only one direction.

In the chapter 3 we realized that that the time square integrability of the L∞-

norm of (u1, b1) controls the regularity. However, it is extremely difficult to achieve
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the global bound for ‖(u1, b1)‖L∞ . Because of this difficulty we would like to use the

bound for Lq, q > 2 for the global regularity. We proved the following bound in the

previous chapter.

‖(u1, b1)‖Lq ≤ C
√
q log q for any q ∈ (2,∞).

This bound is very helpful to bound the lower part of the horizontal components.

In order to achieve the global H2 bound for the velocity field u and the magnetic

field b, we first decompose the horizontal components u1 and b1 into lower and higher

frequency part by using Littlewood-Paley decomposition. The low frequency part of

(u1, b1) can be bounded by the logarithmic bound of the horizontal components and

the higher frequency part of (u1, b1) can be bounded by anisotropic dissipation and

diffusion.

4.1 H1 Bound for u and b

The global H2-bound for u and b can be obtained by using the global L2 and H1-

bound. The global L2-bound for u and b is obvious. In this section we establish the

global H1-bound. More precisely, we prove the following proposition.

Proposition 4.1.1 Assume that (u0, b0) ∈ H2(R2), ∇ · u0 = 0 and ∇ · b0 = 0. Let

(u, b) be the corresponding solution of (4.1). Then, for any T > 0 and t ≤ T ,

‖(u(t), b(t))‖H1 ≤ C(T, u0, b0).

In order to prove this theorem, first we prove the following lemma [77].

Lemma 4.1 Let α > 1
2
. Then, there exists a constant C = C(α) such that

‖f‖L∞(R2) ≤ C ‖f‖
1
4

L2(R2) ‖∂yf‖
1
4

L2(R2) ‖∂xf‖
1
2
− 1

4α

L2(R2) ‖Λ
α
y∂xf‖

1
4α

L2(R2), (4.2)

where the one-dimensional fractional operator Λα
y is defined as a Fourier multiplier

operator, namely

Λα
y f(x, y) =

∫
R2

|ξ2|αei(xξ1+yξ2)f̂(ξ1, ξ2) dξ1dξ2.
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Proof. (Proof of Lemma 4.1) We have one-dimensional Sobolev inequalities;

‖f‖L∞x ≤ C ‖f‖
1
2

L2
x
‖∂xf‖

1
2

L2
x
, ‖f‖L∞y ≤ C(α) ‖f‖1− 1

2α

L2
y
‖Λα

y f‖
1
2α

L2
y
.

Therefore, by Minkowski’s inequality,

‖f‖L∞(R2) = ‖‖f‖L∞x ‖L∞y

≤ C ‖‖f‖L∞y ‖
1
2

L2
x
‖‖∂xf‖L∞y ‖

1
2

L2
x

≤ C ‖
(
‖f‖

1
2

L2
y
‖∂yf‖

1
2

L2
y

)
‖

1
2

L2
x
‖
(
‖∂xf‖

1− 1
2α

L2
x
‖Λα

y∂xf‖
1
2α

L2
x

)
‖

1
2

L2
x

(4.2) then follows from Young’s inequality. This completes the proof of Lemma 4.1.

Proof. (Proof of Proposition 4.1.1) Multiplying the vorticity equation by ω and cur-

rent density equation by j, integrating with respect to space variable, we have

1

2

d

dt

(
‖ω‖2

L2 + ‖j‖2
L2

)
+ ‖∂xω‖2

L2 + ‖∂xj‖2
L2

= 2

∫
∂xb1(∂xu2 + ∂yu1) j dxdy − 2

∫
∂xu1(∂xb2 + ∂yb1) j dxdy. (4.3)

For notational convenience, we will omit dxdy from the spatial integral and set

Y (t) = ‖ω(·, t)‖2
L2 + ‖j(·, t)‖2

L2 .

The first term can be bounded by Lemma 3.1

J1 ≡
∣∣∣∣2∫ ∂xb1 ∂xu2 j

∣∣∣∣ ≤ C ‖∂xu2‖L2 ‖∂xb1‖
1
2

L2 ‖∂x∂yb1‖
1
2

L2 ‖j‖
1
2

L2 ‖∂xj‖
1
2

L2 .

Applying Young’s inequality and the fact that

‖∂xb1‖L2 ≤ ‖j‖L2 , ‖∂x∂yb1‖L2 ≤ ‖∂xj‖L2 ,

we have

J1 ≤
1

8
‖∂xj‖2

L2 + C ‖∂xu2‖2
L2 ‖j‖2

L2 .
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Similarly,

J3 ≡
∣∣∣∣2 ∫ ∂xu1 ∂xb2 j

∣∣∣∣ ≤ 1

8
‖∂xj‖2

L2 + C ‖∂xu1‖2
L2 ‖j‖2

L2 .

The second term on the right of (4.3) has to be handled differently. By integration

by parts,

J2 ≡ 2

∫
∂xb1 ∂yu1 j = −2

∫
b1∂x∂yu1 j − 2

∫
b1∂yu1 ∂xj ≡ J21 + J22. (4.4)

By the Littlewood-Paley decomposition, for a positive integer N to be specified later,

J21 = −2

∫
b1∂x∂yu1 j = J211 + J212, (4.5)

where

J211 = −2

∫
SNb1 ∂x∂yu1 j,

J212 = −2

∫ ∑
k≥N

∆kb1 ∂x∂yu1 j.

By Hölder’s inequality and then Bernstein’s inequality, for any q ∈ [2,∞),

J211 ≤ 2‖SNb1‖L∞ ‖∂x∂yu1‖L2 ‖j‖L2

≤ C 2N
2
q ‖SNb1‖Lq ‖∂x∂yu1‖L2 ‖j‖L2

≤ C 2N
2
q

√
q log(q) sup

q∈[2,∞)

‖b1‖Lq√
q log(q)

‖∂x∂yu1‖L2 ‖j‖L2 .

By taking q = N and applying Young’s inequality, we have

J211 ≤
1

8
‖∂x∂yu1‖2

L2 + C N log(N)

[
sup

q∈[2,∞)

‖b1‖Lq√
q log(q)

]2

‖j‖2
L2 . (4.6)

By Young’s inequality,

J212 ≤
1

8
‖∂x∂yu1‖2

L2 + C

[∑
k≥N

‖∆kb1‖L∞
]2

‖j‖2
L2 . (4.7)

To bound
∑

k≥N ‖∆kb1‖L∞ , we apply Lemma 4.1 with α ∈ (1
2
, 1] to obtain

‖∆kb1‖L∞ ≤ C ‖∆kb1‖
1
4

L2(R2) ‖∂y∆kb1‖
1
4

L2(R2) ‖∂x∆kb1‖
1
2
− 1

4α

L2(R2) ‖Λ
α
y∂x∆kb1‖

1
4α

L2(R2).
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Therefore, invoking the simple fact that

‖∂y∆kb1‖L2 ≤ ‖∆kj‖L2 , ‖∂x∆kb1‖L2 ≤ ‖∆kj‖L2 ,

and applying Hölder’s inequality for series, we have

∑
k≥N

‖∆kb1‖L∞ ≤ C ‖b1‖
1
4

L2 ‖j‖
3
4
− 1

4α

L2

[∑
k≥N

‖∆kΛ
α
y∂xb1‖

1
α+1

L2

] 1
4

+ 1
4α

.

By Bernstein’s inequality and Young’s inequality,

∑
k≥N

‖∆kb1‖L∞ ≤ C ‖b1‖
1
4

L2 ‖j‖
3
4
− 1

4α

L2

[∑
k≥N

2−k
1−α
α+1‖∆k∂y∂xb1‖

1
α+1

L2

] 1
4

+ 1
4α

≤ C 2−N
1−α
4α ‖b1‖

1
4

L2 ‖j‖
3
4
− 1

4α

L2 ‖∂xj‖
1
4α

L2

≤ C ‖b1‖L2 + 2−N
(1−α)
3α (‖j‖L2 + ‖∂xj‖L2) .

Inserting this inequality in (4.7) leads to

J212 ≤
1

8
‖∂x∂yu1‖2

L2 + C ‖b1‖2
L2 ‖j‖2

L2 + 2−N
2(1−α)

3α

(
‖j‖2

L2 + ‖∂xj‖2
L2

)
‖j‖2

L2

Now we take N to be the smallest integer such that

2−N
2(1−α)

3α (‖j‖L2 + ‖ω‖L2) ≤ 1

8

Then

J212 ≤
1

8
‖∂x∂yu1‖2

L2 + C (1 + ‖b1‖2
L2) ‖j‖2

L2 +
1

8
‖∂xj‖2

L2 . (4.8)

Combining (4.6) and (4.8) into (4.5), we have

J21 ≤
1

4
‖∂x∂yu1‖2

L2 +
1

8
‖∂xj‖2

L2 + C (1 + ‖b1‖2
L2)Y (t)

+C

[
sup

q∈[2,∞)

‖b1‖Lq√
q log(q)

]2

Y (t) log(e+ Y (t)) log(e+ log(e+ Y (t))).

The term J22 in (4.4) can be estimated in a similar fashion and we have

J22 ≤
1

8
‖∂xω‖2

L2 +
1

4
‖∂xj‖2

L2 + C (1 + ‖b1‖2
L2)Y (t)

+C

[
sup

q∈[2,∞)

‖b1‖Lq√
q log(q)

]2

Y (t) log(e+ Y (t)) log(e+ log(e+ Y (t))).
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This settles the estimate for J2. The estimate for the last term

J4 = −2

∫
∂xu1 ∂yb1 j

is very similar to that for J2 and the bound is

J4 ≤
1

4
‖∂xω‖2

L2 +
1

4
‖∂xj‖2

L2 + C (1 + ‖u1‖2
L2)Y (t)

+C

[
sup

q∈[2,∞)

‖u1‖Lq√
q log(q)

]2

Y (t) log(e+ Y (t)) log(e+ log(e+ Y (t))).

Inserting the bounds for J1, J2, J3 and J4 in (4.3), we have

d

dt
Y (t) +

1

2
(‖∂xω‖2

L2 + ‖∂xj‖2
L2)

≤ C (1 + ‖(u1, b1)‖2
L2 + ‖∂xu‖2

L2 + ‖∂xb‖2
L2)Y (t)

+C

[
sup

q∈[2,∞)

‖(u1, b1)‖Lq√
q log(q)

]2

Y (t) log(e+ Y (t)) log(e+ log(e+ Y (t))).

By the Osgood inequality, we obtain, for any T > 0 and t ≤ T

Y (t) = ‖ω(·, t)‖2
L2 + ‖j(·, t)‖2

L2 ≤ C(T, u0, b0).

This completes the proof for Proposition 4.1.1.

4.2 Global H2 Bound

The section provides a global bound for the H2-norm of (u, b). More precisely, we

prove the following proposition.

Proposition 4.2.1 Assume that (u0, b0) ∈ H2(R2), ∇ · u0 = 0 and ∇ · b0 = 0. Let

(u, b) be the corresponding solution of (??). Then, for any T > 0 and t ≤ T ,

‖(u(t), b(t))‖H2 ≤ C(T, u0, b0).

Proof. It follows from the equations of (ω, j) in (3.5) that

Z(t) ≡ ‖∇ω(·, t)‖2
L2 + ‖∇j(·, t)‖2

L2

59



obeys

d

dt
Z + ‖∇∂xω‖2

L2 + ‖∇∂xj‖2
L2 = K1 + · · ·+K6,

where

K1 = −
∫
∇ω · ∇u · ∇ω,

K2 =

∫
∇ω · ∇b · ∇j,

K3 = −
∫
∇j · ∇u · ∇j,

K4 =

∫
∇j · ∇b · ∇ω,

K5 = 2

∫
∇(∂xb1(∂xu2 + ∂yu1)) · ∇j,

K6 = −2

∫
∇(∂xu1(∂xb2 + ∂yb1)) · ∇j.

To bound K1, we further write K1 into four terms

K1 = K11 +K12 +K13 +K14,

where

K11 = −
∫
∂xu1 (∂xω)2,

K12 = −
∫
∂xu2 ∂xω ∂yω,

K13 = −
∫
∂yu1 ∂xω ∂yω,

K14 = −
∫
∂yu2 (∂yω)2.

By Lemma 3.1,

|K11| ≤ C ‖∂xu1‖L2 ‖∂xω‖L2 ‖∂x∂yω‖
1
2

L2 ‖∂2
xω‖

1
2

L2

≤ 1

64
‖∇∂xω‖2

L2 + C ‖∂xu1‖2
L2 ‖∂xω‖2

L2 .

Similarly,

|K12| ≤
1

64
‖∇∂xω‖2

L2 + C ‖∂xu2‖2
L2 ‖∂xω‖L2 ‖∂yω‖L2 .
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Realizing that ω = ∂xu2 − ∂yu1, we have

|K13| ≤
∫
|ω ∂xω ∂yω|+ |K12|

≤ C ‖∂xω‖L2 ‖ω‖
1
2

L2 ‖∂yω‖L2 ‖∂x∂yω‖
1
2

L2 + |K12|

≤ 1

32
‖∇∂xω‖2

L2 + C ‖∂xu2‖2
L2 ‖∂xω‖L2 ‖∂yω‖L2

+C (‖ω‖2
L2 + ‖∂xω‖2

L2) ‖∇ω‖2
L2 .

By the divergence-free condition and integration by parts,

K14 = 2

∫
u1 ∂yω ∂x∂yω.

K14 can be further estimated as in J21 in the previous subsection. That is, we de-

compose u1 into two parts,

u1 = SNu1 +
∑
k≥N

∆ku1

and then bound each corresponding part separately as in the previous subsection to

obtain the following bound

|K14| ≤
1

64
‖∇∂xω‖2

L2 + C (1 + ‖u1‖2
L2)Z(t)

+C

[
sup

q∈[2,∞)

‖u1‖Lq√
q log(q)

]2

Z(t) log(e+ Z(t)) log(e+ log(e+ Z(t))).

Therefore, K1 is bounded by

|K1| ≤
1

16
‖∇∂xω‖2

L2 + C (1 + ‖u1‖2
L2 + ‖ω‖2

L2 + ‖∂xω‖2
L2)Z(t)

+C

[
sup

q∈[2,∞)

‖u1‖Lq√
q log(q)

]2

Z(t) log(e+ Z(t)) log(e+ log(e+ Z(t))).

K2, K3 and K4 can be estimates similarly and obeys the bound, for i = 2, 3, 4,

|Ki| ≤
1

16
‖∇∂xω‖2

L2 +
1

16
‖∇∂xj‖2

L2

+C (1 + ‖(u1, b1)‖2
L2 + ‖(ω, j)‖2

L2 + ‖∂x(ω, j)‖2
L2)Z(t)

+C

[
sup

q∈[2,∞)

‖(u1, b1)‖Lq√
q log(q)

]2

Z(t) log(e+ Z(t)) log(e+ log(e+ Z(t))).
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It can be checked that K5 and K6 also admit the same bound. For example, K5 can

be written as

K5 = 2

∫
(∂xu2 + ∂yu1)∂x∇b1 · ∇j + 2

∫
∂x∇b1(∂x∇u2 · ∇j + ∂y∇u1 · ∇j)

and all the terms can be bounded as in the first four terms. We omit the details for

the sake of conciseness. Putting all the estimates together, we find

d

dt
Z + ‖∇∂xω‖2

L2 + ‖∇∂xj‖2
L2

≤ C (1 + ‖(u1, b1)‖2
L2 + ‖(ω, j)‖2

L2 + ‖∂x(ω, j)‖2
L2)Z(t)

+C

[
sup

q∈[2,∞)

‖(u1, b1)‖Lq√
q log(q)

]2

Z(t) log(e+ Z(t)) log(e+ log(e+ Z(t))).

Osgood’s inequality then yields the desired bound. This completes the proof of Propo-

sition 4.2.1.
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CHAPTER 5

The 2D Euler-Boussinesq Equations with a Singular Velocity

In this chapter, we consider the initial-value problem for the 2D Euler-Boussinesq

equations with a singular velocity

∂tω + u · ∇ω = ∂x1θ,

∂tθ + u · ∇θ + Λθ = 0,

u = ∇⊥ψ, ∆ψ = ΛσP (Λ)ω,

ω(x, 0) = ω0(x), θ(x, 0) = θ0(x),

(5.1)

where u = u(x, t) is 2D vector field depending on x = (x1, x2) ∈ R2 and t ≥ 0,

p = p(x, t), θ = θ(x, t) ω = ω(x, t), and ψ = ψ(x, t) are scalar functions of x =

(x1, x2) ∈ R2 and t ≥ 0, e2 is the unit vector in the x2-direction and σ ≥ 0 is a real

parameter. Here the Zygmund operator Λ = (−∆)1/2, Λσ and the Fourier multiplier

operator P (Λ) are defined through the Fourier transform, namely

Λ̂σf(ξ) = |ξ|σf̂(ξ) and P̂ (Λ)f(ξ) = P (|ξ|) f̂(ξ).

The objective of this chapter is to establish the global (in time) existence and unique-

ness of solutions to (5.1) when the initial data is in a suitable functional setting.

The Euler-Boussinesq system in (5.1) is a generalization of the 2D Boussinesq

equations. The standard velocity formulation of the 2D Boussinesq equations with
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fractional dissipation and fractional thermal diffusion is given by
∂tu+ u · ∇u+ ν(−∆)αu = −∇p+ θe2,

∇ · u = 0,

∂tθ + u · ∇θ + κ(−∆)βθ = 0

(5.2)

with the corresponding vorticity ω = ∇× u satisfying
∂tω + u · ∇ω + ν(−∆)αω = ∂x1θ,

∂tθ + u · ∇θ + κ(−∆)βθ = 0,

u = ∇⊥ψ, ∆ψ = ω,

(5.3)

where ν ≥ 0, κ ≥ 0, α ∈ (0, 1] and β ∈ (0, 1] are real parameters, and e2 is the

unit vector in the x2-direction. When σ = 0 and P (Λ) = I then the equations (5.1)

converted to (5.3) with ν = 0 and β = 1
2
. It is worth mentioning here that the

vorticity in our model (5.1) is more singular than the vorticity in (5.3). In addition,

(5.1) can be reformulated in terms of the quasi-velocity v given by ω = ∇× v,
∂tv + u · ∇v −

∑2
j=1 uj∇vj = −∇p+ θe2,

u = ΛσP (Λ)v, ∇ · v = 0,

∂tθ + u · ∇θ + Λθ = 0.

(5.4)

When P (Λ) = I, σ = 0 then u = v and the system () reduces to standard Boussinesq

equations with the pressure p− 1
2
|u|2.

In order to work with more general operator, P is assumed to satisfy the following

condition.

Condition 5.1 The symbol P (|ξ|) assumes the following properties:

1. P is continuous on R2 and P ∈ C∞(R2 \ {0});
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2. P is radially symmetric;

3. P = P (|ξ|) is nondecreasing in |ξ|;

4. There exist two constants C and C0 such that

sup
2−1≤|η|≤2

∣∣(I −∆η)
n P (2j|η|)

∣∣ ≤ C P (C0 2j)

for any integer j and n = 1, 2.

The last assumption in Condition 5.1 is a very natural condition on symbols of Fourier

multiplier operators and is similar to the main condition in the Mihlin-Hörmander

Multiplier Theorem ([68]). For notational convenience, we also assume that P ≥ 0.

This type of symbols P (|ξ|) for the operator P (Λ) is already used to study generalized

2D Euler equations in the work of Chae, Constantin and Wu [19]. Some special

examples of P are

P (ξ) =
(
log(1 + |ξ|2)

)γ
with γ ≥ 0,

P (ξ) =
(
log(1 + log(1 + |ξ|2))

)γ
with γ ≥ 0,

P (ξ) = |ξ|β with β ≥ 0,

P (ξ) = (log(1 + |ξ|2))γ |ξ|β with γ ≥ 0 and β ≥ 0.

The main theorem of this chapter is the following.

Theorem 5.2 Let σ = 0. Assume the symbol P (|ξ|) obeys Condition 5.1 and

P (2k) ≤ C
√
k for a constant C and any large integer k > 0, (5.5)∫ ∞

1

1

r log(1 + r)P (r)
dr =∞. (5.6)

Let q > 2 and s > 2. Consider the IVP (5.1) with ω0 ∈ Bs
q,∞(R2) and θ0 ∈ Bs

q,∞(R2).

Then the IVP (5.1) has a unique global solution (ω, θ) satisfying, for any T > 0 and

t ≤ T ,

ω ∈ C([0, T ];Bs
q,∞(R2)), θ ∈ C([0, T ];Bs

q,∞(R2) ∩ L1([0, T ];Bs+1
q,∞(R2)). (5.7)
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As an application of this theorem, we prove the global regularity of generalized

Euler-Boussinesq equations (5.1) with the double logarithmically supercritical ve-

locity. More precisely we have the following.

Corollary 5.1 Let q > 2 and s > 2 and σ = 0. Consider

∂tω + u · ∇ω = ∂x1θ,

u = ∇⊥ψ, ∆ψ = Λσ(log(1 + log(1−∆)))γω, γ ∈ [0, 1]

∂tθ + u · ∇θ + Λθ = 0,

ω(x, 0) = ω0(x), θ(x, 0) = θ0(x).

(5.8)

Let ω0 ∈ Bs
q,∞(R2) and θ0 ∈ Bs

q,∞(R2). Then the IVP (5.8) has a unique global

solution.

When θ ≡ 0, the result in Corollary 5.1 includes to Theorem 1.3 for the generalized

2D Euler in [19]. On the other hand if P is the identity operator, we reproduce the

global well-posedness for one of the critical Boussinesq equations ([44]). It is worth

to mention that the Theorem 5.2 does not allow logarithmically supercritical velocity

in equations (5.1).

The global a priori bound for ω and θ cannot be achieved through the direct energy

estimates due to the vortex stretching term ∂x1θ. We combine the equation for Riesz

transform R ≡ Λ−1∂x1 for θ and ω. Applying the Riesz transform R ≡ Λ−1∂x1 to the

θ equations, we have

∂tRθ + u · ∇Rθ + ΛRθ = −[R, u · ∇]θ

Then the combined quantity G = ω +Rθ satisfies

∂tG+ u · ∇G = −[R, u · ∇]θ, (5.9)

where the commutator [R, u · ∇]θ = R(u · ∇θ) − u · ∇(Rθ). Although the vor-

tex stretching term is hidden in the commutator, a compensation of an appropriate

estimate for the commutator is needed.
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This chapter is further divided into four sections. The second section provides

logarithmically interpolation inequality of ‖∇u‖L∞ and estimates the commutator

[R, u · ∇]θ in the Besov spaces B0
p,r. The third section establishes global a priori

bounds for ‖ω‖Lq and ‖θ‖B0,P
∞,2

and ‖ω‖L∞ . The global a priori bounds for ω and θ in

Bs
q,∞ will be provided in the fourth section.

5.1 Preliminary Estimates

This section is mainly dedicated to two types of estimates. The first estimate provides

the interpolation inequality to bound ‖∇u‖L∞ in terms of ‖ω‖Lq∩L∞ . The second

estimate deals with the commutator [R, u·∇]θ in the Besov space B0
p,r and B0

∞,r. Some

facts regarding ‖∆j∇u‖Lp and ‖SN∇u‖Lp are needed for the commutator estimates.

The velocity field u in (5.1) is determined by the vorticity ω through a Fourier

multiplier operator, namely

u = ∇⊥∆−1P (Λ)ω.

In order to estimate the solutions of (5.1) in Besov type spaces, we often need to bound

∇u in terms of ω and the basic ingredients involved are ‖∆j∇u‖Lp and ‖SN∇u‖Lp . In

[19], Chae, Constantin and Wu proved the following lemma for a very general Fourier

multiplier operator Q(Λ).

Lemma 5.1 Assume that the symbol Q satisfies Condition 5.1 and that u and ω are

related through

u = ∇⊥∆−1Q(Λ)ω.

Then, for any integer j ≥ 0 and N ≥ 0,

‖SN∇u‖Lp ≤ CpQ(C02N) ‖SNω‖Lp , 1 < p <∞,

‖∆j∇u‖Lq ≤ C Q(C02j) ‖∆jω‖Lq , 1 ≤ q ≤ ∞,

where Cp is a constant depending on p only, C0 and C are pure constants.
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The L∞-norm of ∇u in general is not bounded by ‖ω‖L∞ . In fact, we need a small

correction, which is given by the following logarithmic type interpolation inequality.

Proposition 5.1.1 Assume that the symbol Q satisfies Condition 5.1 and (5.5). Let

u and ω be related through

u = ∇⊥∆−1Q(Λ)ω.

Then, for any 1 ≤ q ≤ ∞, β > 2/q, and 1 < p <∞,

‖∇u‖L∞ ≤ C (1 + ‖ω‖Lp) + C ‖ω‖L∞ log(1 + ‖ω‖Bβq,∞)Q

(
‖ω‖

2q
qβ−2

Bβq,∞

)
,

where C’s are constants that depend on p, q and β only.

Proof. (Proof of Proposition 5.1.1) For any integer N ≥ 0, we have

‖∇u‖L∞ ≤ ‖∆−1∇u‖L∞ +
N−1∑
k=0

‖∆k∇u‖L∞ +
∞∑
k=N

‖∆k∇u‖L∞ .

By Bernstein’s inequality and Lemma 5.1, we have

‖∇u‖L∞ ≤ C ‖ω‖Lp + C N Q(2N) ‖ω‖L∞ + C
∞∑
k=N

(2k)
2
q ‖∇∆ku‖Lq .

By Lemma 5.1,

‖∇u‖L∞ ≤ C ‖ω‖Lp + C N Q(2N) ‖ω‖L∞ + Cd

∞∑
k=N

(2k)
2
q Q(2k)‖∆kω‖Lq .

By the definition of Besov space Bβ
q,∞,

‖∆kω‖Lq ≤ 2−β k‖ω‖Bβq,∞ .

Therefore,

‖∇u‖L∞ ≤ C ‖ω‖Lp + C N Q(2N) ‖ω‖L∞ + C ‖ω‖Bβq,∞
∞∑
k=N

(2k)( 2
q
−β) Q(2k).

Due to 2
q
− β < 0 and (5.5), we can choose ε > 0 such that

ε+
2

q
− β < 0 and Q(2N) ≤ 2εN .
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Especially, we take ε = 1
2
(β − 2

q
) to get

‖∇u‖L∞ ≤ C ‖ω‖Lp + C N Q(2N) ‖ω‖L∞ + C ‖ω‖Bβq,∞ (2N)( 1
q
−β

2
).

If we choose N to be the largest integer satisfying

N ≤ 1
β
2
− 1

q

log2

(
1 + ‖ω‖Bβq,∞

)
,

we then obtain the desired result in Proposition 5.1.1.

The following lemma will be used when we present the commutator [R, u · ∇]θ

estimates in this chapter as well as in chapter 5.

Lemma 5.2 Consider two different cases: δ ∈ (0, 1) and δ = 1.

1. Let δ ∈ (0, 1) and q ∈ [1,∞]. If |x|δh ∈ L1, f ∈ B̊δ
q,∞ and g ∈ L∞, then

‖h ∗ (fg)− f(h ∗ g)‖Lq ≤ C ‖|x|δh‖L1 ‖f‖B̊δq,∞‖g‖L∞ , (5.10)

where C is a constant independent of f, g and h.

2. Let δ = 1. Let q ∈ [1,∞]. Let r1 ∈ [1, q] and r2 ∈ [1,∞] satisfying 1
r1

+ 1
r2

= 1.

Then

‖h ∗ (fg)− f(h ∗ g)‖Lq ≤ C ‖|x|h‖Lr1 ‖∇f‖Lq ‖g‖Lr2 , (5.11)

Where B̊δ
q,∞ denotes a homogeneous Besov space. The proof of (5.10) is in [21] while

(5.11) is in [43].

Proposition 5.1.2 (Commutator Estimates) Let R = Λ−1∂x1 denote the Riesz

transform. Assume that the symbol P satisfies Condition 5.1 and

for any ε > 0, lim
|ξ|→∞

P (|ξ|)
|ξ|ε

= 0. (5.12)

Assume that u and ω are related by

u = ∇⊥∆−1ΛσP (Λ)ω
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with σ ∈ [0, 1). Then, for any p ∈ (1,∞) and r ∈ [1,∞],

‖[R, u · ∇]θ‖B0
p,r
≤ C‖ω‖Lp‖θ‖Bσ,P∞,r + C ‖ω‖Lp ‖θ‖Lp (5.13)

and, for any r ∈ [1,∞], q ∈ (1,∞) and any ε > 0,

‖[R, u · ∇]θ‖B0
∞,r ≤ C(‖ω‖Lq + ‖ω‖L∞)‖θ‖Bσ+ε∞,r

+ C ‖ω‖Lq ‖θ‖Lq (5.14)

for some constant C, where the generalized Besov space Bσ,P
∞,r with P being the symbol

of the operator P , and Bσ+ε
∞,r is a standard Besov space.

Proof. (Proof of Proposition 6.6) By the definition of B0
p,r,

‖[R, u · ∇]θ‖B0
p,r

=

[
∞∑

j=−1

‖∆j[R, u · ∇]θ‖rLp

] 1
r

.

Using the notion of paraproducts, we decompose ∆j[R, u · ∇]θ into three parts,

∆j[R, u · ∇]θ = J1 + J2 + J3,

where

J1 =
∑
|k−j|≤2

∆j(R(Sk−1u · ∇∆kθ)− Sk−1u · ∇R∆kθ),

J2 =
∑
|k−j|≤2

∆j(R(∆ku · ∇Sk−1θ)−∆ku · ∇RSk−1θ),

J3 =
∑
k≥j−1

∆j(R(∆ku · ∇∆̃kθ)−∆ku · ∇R∆̃kθ)

with ∆̃k = ∆k−1 + ∆k + ∆k+1. The Fourier transform of Sk−1u · ∇∆kθ is supported

in the annulus 2kA, where A denotes a fixed annulus. R acting on this term can be

represented as a convolution with the kernel hk(x) = 2dkh(2kx) with d = 2, where h

is a smooth function with compact support. That is,

R(Sk−1u · ∇∆kθ)− Sk−1u · ∇R∆kθ

= hk ∗ (Sk−1u · ∇∆kθ)− Sk−1u · ∇(hk ∗∆kθ).
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Therefore, according to Lemma 5.2,

‖J1‖Lp ≤ C ‖|x|hj‖L1 ‖∇Sj−1u‖Lp ‖∇∆jθ‖L∞ . (5.15)

Applying Lemma 5.1, Bernstein’s inequality and the equality

‖|x|hj‖L1 = 2−j ‖|x|h(x)‖L1 = C 2−j,

we have

‖J1‖Lp ≤ C 2σj P (2j)‖Sj−1ω‖Lp ‖∆jθ‖L∞

≤ C 2σj P (2j) ‖ω‖Lp ‖∆jθ‖L∞ .

Similarly,

‖J2‖Lp ≤ C 2−j 2σj P (2j)‖∆jω‖Lp ‖∇Sj−1θ‖L∞

≤ C 2−(1−σ)j P (2j) ‖∆jω‖Lp
∑

m≤j−1

2m‖∆mθ‖L∞

≤ C ‖∆jω‖Lp
∑

m≤j−1

2(1−σ)mP (2j)

2(1−σ)jP (2m)
2σmP (2m) ‖∆mθ‖L∞ .

But the estimate of ‖J3‖Lp is different. We need to distinguish between low frequency

and high frequency terms. For the high frequency terms, the commutator structure

is not essential. For j = 0, 1, the terms in J3 with k = −1, 0, 1 have Fourier trans-

forms containing the origin in their support and the lower bound part of Bernstein’s

inequality does not apply. To deal with these low frequency terms, we take advantage

of the commutator structure and bound them by Lemma 5.2. More precisely, for

j = 0, 1 and k = −1, 0, 1,

‖∆j(R(∆ku · ∇∆̃kθ)−∆ku · ∇R∆̃kθ)‖Lp

≤ C ‖∇∆ku‖Lp ‖∆kθ‖Lp ≤ C ‖ω‖Lp ‖θ‖Lp .
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For higher frequency terms, we first apply Bernstein’s inequality to obtain

‖J3‖Lp ≤ C
∑
k≥j−1

2j‖R(∆ku · ∆̃kθ)‖Lp + C
∑
k≥j−1

2j‖∆ku · R∆̃kθ‖Lp

≤ C
∑
k≥j−1

2j−k ‖∇∆ku‖Lp ‖∆kθ‖L∞

≤ C
∑
k≥j−1

2j−k ‖∆kω‖Lp2σkP (2k)‖∆kθ‖L∞ .

Since σ ∈ [0, 1) and the assumption on P in (5.12), we obtain, by Young’s inequality

for series convolution,

‖[R, u · ∇]θ‖B0
p,r

= C

[
∞∑

j=−1

‖J1‖rLp + ‖J2‖rLp + ‖J3‖rLp

] 1
r

= C ‖ω‖Lp‖θ‖Bσ,P∞,r + C ‖ω‖Lp ‖θ‖Lp .

This completes the proof of (5.13). In order to prove (5.14), only the inequality we

estimate differently is J1.

‖J1‖L∞ ≤ C ‖|x|hj‖L1 ‖∇Sj−1u‖L∞ ‖∇∆jθ‖L∞ .

But we bound ‖∇Sj−1u‖L∞ here in a different way. By Lemma 5.2 and the assumption

in (5.12), we obtain, for σ ∈ [0, 1) and for any ε > 0,

‖∇Sj−1u‖L∞ ≤ ‖∇∆−1u‖L∞ +
∑

0≤m≤j−2

‖∆m∇u‖L∞

≤ C‖w‖Lq +
∑

0≤m≤j−2

2σm P (2m) ‖∆mω‖L∞

≤ C‖w‖Lq + C 2(σ+ε)j‖ω‖L∞ .

Therefore,

‖J1‖L∞ ≤ C (‖w‖Lq + ‖ω‖L∞)2(σ+ε)j‖∆jθ‖L∞ .

The bounds for J2 and J3 can be obtained by simply setting p =∞ in the correspond-

ing bounds for ‖J2‖Lp and ‖J3‖Lp above. This completes the proof of Proposition

6.6.
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5.2 Global Bounds for ‖ω‖L∞t Lq , ‖θ‖L1
tB

0,P
∞,2

and ‖ω‖L∞t L∞

This section establishes global a priori bounds for ‖ω‖L∞t Lq and ‖θ‖L1
tB

0,P
∞,2

simultane-

ously when σ = 0.

Proposition 5.2.1 Let σ = 0 and q > 2. Assume the symbol P satisfies Condition

5.1 and (5.5). Let (ω, θ) be a smooth solution of (5.1) with ω0 ∈ Bs
q,∞ and θ0 ∈ Bs

q,∞.

Then, for any T > 0 and 0 < t ≤ T ,

‖ω(t)‖Lq ≤ C(T ), ‖θ‖L1
tB

0,P
∞,2
≤ C(T ), ‖ω(t)‖L∞ ≤ C(T )

for some constant C depending T and the initial norms of ω0 and θ0.

Note that (5.5) implies (5.12). In order to prove this proposition, first we prove the

following two lemmas.

Lemma 5.3 Let σ ∈ [0, 1). Assume that the symbol P satisfies Condition 5.1 and

(5.12). Let (ω, θ) be a smooth solution of (5.1). Then, for any q ∈ [2,∞) and for

any t > 0,

‖ω(t)‖Lq ≤ C (‖ω0‖Lq + ‖θ0‖Lq) eC t‖θ0‖Lq e
C

∫ t
0 ‖θ(τ)‖

B
σ,P
∞,2

dτ

, (5.16)

where C’s are pure constants.

Proof. We start with the equations satisfied by G and Rθ,

∂tG+ u · ∇G = −[R, u · ∇]θ,

∂tRθ + u · ∇Rθ + ΛRθ = −[R, u · ∇]θ. (5.17)

By the embedding B0
q,2 ↪→ Lq for q ≥ 2 and Lemma 6.6,

‖ω(t)‖Lq ≤ ‖G0‖Lq + ‖Rθ0‖Lq + 2

∫ t

0

‖[R, u · ∇]θ‖Lqdτ

≤ ‖G0‖Lq + ‖Rθ0‖Lq + 2

∫ t

0

‖[R, u · ∇]θ‖B0
q,2
dτ

≤ ‖G0‖Lq + ‖θ0‖Lq + C

∫ t

0

[
‖ω(τ)‖Lq(‖θ(τ)‖Bσ,P∞,2 + ‖θ0‖Lq)

]
dτ,

which implies (5.16), by Gronwall’s inequality.
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The second lemma makes use of the dissipation in the θ-equation,
∂tθ + u · ∇θ + Λθ = 0,

u = ∇⊥ψ, ∆ψ = ΛσP (Λ)ω,

θ(x, 0) = θ0(x).

(5.18)

Lemma 5.4 Let σ ∈ [0, 1). Assume that the symbol P satisfies Condition 5.1 and

(5.12). Let q ∈ (1,∞). Then, any smooth solution (ω, θ) solving (5.18) satisfies, for

each integer j ≥ 0,

2j(1−σ)‖∆jθ‖L1
tL

q ≤ 2−jσ‖∆jθ0‖Lq + C P (2j) ‖θ0‖L∞
∫ t

0

‖ω(τ)‖Lqdτ, (5.19)

where C is a pure constant.

Proof. Letting j ≥ 0 and applying ∆j to (5.18), multiplying by ∆jθ|∆jθ|q−2 and

integrating over R2, we obtain, after integrating by parts,

1

q

d

dt
‖∆jθ‖qLq +

∫
∆jθ|∆jθ|q−2Λ∆jθ dx = −

∫
∆jθ|∆jθ|q−2∆j(u · ∇θ) dx.

Due to the lower bound ( [24, 76])∫
∆jθ|∆jθ|q−2Λ∆jθ dx ≥ C2j‖∆jθ‖qLq

and the decomposition of [∆j, u · ∇]θ into five parts,

∆j(u · ∇θ) = J1 + J2 + J3 + J4 + J5

with

J1 =
∑
|j−k|≤2

[∆j, Sk−1u · ∇]∆kθ,

J2 =
∑
|j−k|≤2

(Sk−1u− Sju) · ∇∆j∆kθ,

J3 = Sju · ∇∆jθ,

J4 =
∑
|j−k|≤2

∆j(∆ku · ∇Sk−1θ),

J5 =
∑
k≥j−1

∆j(∆ku · ∇∆̃kθ),
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we obtain, by Hölder’s inequality,

1

q

d

dt
‖∆jθ‖qLq + C2j‖∆jθ‖qLq ≤ ‖∆jθ‖q−1

Lq (‖J1‖Lq + ‖J2‖Lq + ‖J4‖Lq + ‖J5‖Lq) .

The integral involving J3 becomes zero due to the divergence-free condition ∇·Sju =

0. The terms on the right can be bounded as follows. To bound ‖J1‖Lq , we write

[∆j, Sk−1u · ∇]∆kθ as an integral,

[∆j, Sk−1u · ∇]∆kθ =

∫
Φj(x− y)(Sk−1u(y)− Sk−1u(x)) · ∇∆kθ(y)dy,

where Φj is the kernel associated with the operator ∆j. By Lemma 5.2 and the

inequality

‖Φj(x)|x|1−σ‖L1 ≤ 2−j(1−σ) ‖Φ0(x)|x|1−σ‖L1 ≤ C 2−j(1−σ),

we have

‖J1‖Lq ≤
∑
|j−k|≤2

‖Φj(x)|x|1−σ‖L1 ‖Sk−1u‖B1−σ
q,∞
‖∇∆kθ‖L∞

≤ C
∑
|j−k|≤2

2−j(1−σ) ‖Sk−1u‖B̊1−σ
q,∞

2k‖∆kθ‖L∞ .

Recalling that Λ1−σu = ∇⊥∆−1ΛP (Λ)ω and applying Lemma 5.1, we obtain

‖Sk−1u‖B̊1−σ
q,∞
≤ C ‖Λ1−σSk−1u‖Lq ≤ C P (2j) ‖Sk−1ω‖Lq ≤ C P (2j) ‖ω‖Lq .

Therefore,

‖J1‖Lq ≤ C2jσ P (2j) ‖ω‖Lq‖∆jθ‖L∞ .

By Bernstein’s inequality,

‖J2‖Lq ≤
∑
|j−k|≤2

‖Sju− Sk−1u‖Lq ‖∇∆jθ‖L∞ ≤ C‖∆ju‖Lq2j‖∆jθ‖L∞

≤ C ‖∇∆ju‖Lq‖∆jθ‖L∞

≤ C2jσ P (2j) ‖∆jω‖Lq‖∆jθ‖L∞ .
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We have applied the lower bound part of Bernstein’s inequality in the second inequal-

ity above, which is valid for j ≥ 0. Similarly,

‖J4‖Lq ≤ C ‖∆ju‖Lq‖∇Sj−1θ‖L∞ ≤ C ‖∆ju‖Lq2j‖Sjθ‖L∞

≤ C ‖∇∆ju‖Lq‖θ‖L∞ ≤ C 2jσ P (2j) ‖∆jω‖Lq‖θ‖L∞ .

Since σ ∈ [0, 1) and the condition on P in (5.12),

‖J5‖Lq ≤ C
∑
k≥j−1

2j‖∆ku‖Lq‖∆̃kθ‖L∞

≤ C
∑
k≥j−1

2j−k‖∇∆ku‖Lq ‖∆kθ‖L∞

≤ 2jσ
∑
k≥j−1

2(j−k)(1−σ) P (2k) ‖∆kω‖Lq‖∆kθ‖L∞

≤ C2jσ P (2j) ‖ω‖Lq‖θ‖L∞ .

Collecting the estimates above, we obtain

d

dt
‖∆jθ‖Lq + C 2j‖∆jθ‖Lq ≤ C2jσ P (2j) ‖ω‖Lq‖θ0‖L∞ .

Integrating with respect to time yields

‖∆jθ(t)‖Lq ≤ e−C2jt ‖∆jθ0‖Lq + C2jσ P (2j) ‖θ0‖L∞
∫ t

0

e−C2j(t−τ) ‖ω(τ)‖Lq dτ.

Hence

2j‖∆jθ‖L1
tL

q ≤ ‖∆jθ0‖Lq + C2jσ P (2j) ‖θ0‖L∞
∫ t

0

‖ω(τ)‖Lqdτ,

This completes the proof of Lemma 5.4.

Now we are ready to prove main proposition of this section.

Proof. (Proof of Proposition 5.2.1) Using the definition of B0,P
∞,2 and the embedding

B0,P
∞,1 ↪→ B0,P

∞,2,

‖θ‖L1
tB

0,P
∞,2

≤
∫ t

0

[
N−1∑
j=−1

(P (2j))2‖∆jθ‖2
L∞

] 1
2

dτ +

∫ t

0

∞∑
j=N

P (2j)‖∆jθ‖L∞ dτ.
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Applying the condition on P in (5.5),

‖θ‖L1
tB

0,P
∞,2

≤ t‖θ0‖L∞N +
∑
j≥N

P (2j)‖∆jθ‖L1
tL
∞ . (5.20)

Since q ∈ (2,∞) and P satisfies (5.5), we choose ε > 0 such that

−1 + ε+
2

q
< 0, (P (2j))2 2−jε ≤ 1.

By Bernstein’s inequality and Lemma 5.4 with σ = 0,

∑
j≥N

P (2j) ‖∆jθ‖L1
tL
∞ ≤

∑
j≥N

P (2j) 2j
2
q ‖∆jθ‖L1

tL
q

≤ C
∑
j≥N

(P (2j))2 2j(
2
q
−1)(‖θ0‖Lq + ‖θ0‖L∞‖ω‖L1

tL
q)

≤ C
∑
j≥N

2j(
2
q

+ε−1)(‖θ0‖Lq + ‖θ0‖L∞‖ω‖L1
tL

q)

≤ C ‖θ0‖Lq + C 2N(−1+ε+ 2
q

)‖θ0‖L∞‖ω‖L1
tL

q .

Inserting the estimates above in (5.20) and choosing N to be the largest integer

satisfying

N ≤
log(1 + ‖ω‖L1

tL
q)

(1− ε− 2
q
)

+ 1

yields

‖θ‖L1
tB

0,P
∞,2
≤ C ‖θ0‖L∞∩Lq + C ‖θ0‖L∞t log

(
1 +

∫ t

0

‖ω(τ)‖Lq dτ
)
.

Applying (5.16) with σ = 0 yields

‖θ‖L1
tB

0,P
∞,2
≤ C t log(1 + C t) + C t‖θ‖L1

tB
0,P
∞,2
, (5.21)

where C’s are constants depending on ‖θ0‖Lq and ‖θ0‖L∞ . This inequality allows us

to conclude that, for any T > 0 and t ≤ T ,

‖θ‖L1
tB

0,P
∞,2
≤ C(T, ‖ω0‖Lq , ‖θ0‖Lq∩L∞). (5.22)

In fact, (5.22) is first obtained on a finite-time interval and the global bound is then

obtained through an iterative process. Finally we prove the global bound for ‖ω‖L∞ .
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By (5.19) with σ = 0 and (5.5), we have, for any integer j ≥ 0 and any ε > 0,

2j(1−ε)‖∆jθ‖L1
tL

q ≤ ‖θ0‖Lq + C‖θ0‖L∞
∫ t

0

‖ω(τ)‖Lqdτ ≤ C(T ). (5.23)

Since q ∈ (2,∞), we can choose ε > 0 such that

2ε+
2

q
− 1 < 0.

By Bernstein’s inequality,

‖θ‖Bε∞,1 ≤
∑
j≥−1

2(2ε+ 2
q
−1)j2(1−ε)j‖∆jθ‖Lq ≤ C sup

j≥−1
2j(1−ε)‖∆jθ‖Lq .

It then follows from (5.23) that, for any t ≤ T ,

‖θ‖L1
tB

ε
∞,1
≤ C(T ). (5.24)

Starting with the equations of G and Rθ, namely (5.17), and applying Lemma 5.1.2,

we have, for any ε > 0, From the equations of G and Rθ

‖G‖L∞ + ‖Rθ‖L∞ ≤ ‖G0‖L∞ + ‖Rθ0‖L∞ + 2

∫ t

0

||[R, u · ∇]θ‖B0
∞,1
dτ

≤ ‖G0‖L∞ + ‖Rθ0‖L∞

+

∫ t

0

((‖ω‖Lq + ‖ω‖L∞)‖θ‖Bε∞,1 + ‖ω‖Lq‖θ‖Lq)dτ

≤ ‖G0‖L∞ + ‖Rθ0‖L∞ +

∫ t

0

(‖G‖L∞ + ‖Rθ‖L∞)‖θ‖Bε∞,1dτ

+

∫ t

0

(‖ω‖Lq‖θ‖Bε∞,1 + ‖ω‖Lq‖θ‖Lq) dτ.

By Gronwall’s inequality, (5.24) and the global bound for ‖ω‖Lq , we have

‖ω‖L∞ ≤ ‖G‖L∞ + ‖Rθ‖L∞ ≤ C(T ).

This completes the proof of Proposition 5.2.1.
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5.3 Global Bound for ‖ω‖Bsq,∞ and ‖θ‖Bsq,∞

This section is dedicated to obtain a global bound for ‖ω‖Bsq,∞ and ‖θ‖Bsq,∞ . This can

be done in two main steps. The first step provides bounds for ‖ω‖Bβq,∞ and ‖θ‖|Bβq,∞
for β in the range 2

q
< β < 1 while the second step proves the global bounds for

‖ω‖
B
β1
q,∞

and ‖θ‖|
B
β1
q,∞

for 1 ≤ β1 < 2− 2
q
. The desired bounds in Bs

q,∞ with s > 2 can

be obtained by a repetition of the second step. The detail is provided below.

Proposition 5.3.1 Assume that σ = 0 and the symbol P (|ξ|) obeys Condition 5.1,

(5.5) and (5.6). Let q > 2 and let s > 2. Consider the IVP (5.1) and (??) with

ω0 ∈ Bs
q,∞(R2) and θ0 ∈ Bs

q,∞(R2). Let (ω, θ) be a smooth solution of (5.1). Then

(ω, θ) admits a global a priori bound. More precisely, for any T > 0 and t ≤ T ,

‖(ω(t), θ(t))‖Bsq,∞ ≤ C(s, q, T, ‖(ω0, θ0)‖Bsq,∞),

where C is a constant depending on s, q, T and the initial norm.

Proof. Let j ≥ −1 be an integer. Applying ∆j to the equation of G & multiplying

by ∆jG|∆jG|q−2 and integrating over R2, we obtain, after integrating by parts,

1

q

d

dt
‖∆jG‖qLq = −

∫
∆jG|∆jG|q−2∆j(u · ∇G) dx

−
∫

∆j[R, u · ∇]θ∆jG|∆jG|q−2 dx.

Following the notion of paraproducts, we decompose ∆j(u · ∇G) into five parts,

∆j(u · ∇G) = J1 + J2 + J3 + J4 + J5
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with

J1 =
∑
|j−k|≤2

[∆j, Sk−1u · ∇]∆kG,

J2 =
∑
|j−k|≤2

(Sk−1u− Sju) · ∇∆j∆kG,

J3 = Sju · ∇∆jG,

J4 =
∑
|j−k|≤2

∆j(∆ku · ∇Sk−1G),

J5 =
∑
k≥j−1

∆j(∆ku · ∇∆̃kG).

By Hölder’s inequality,

1

q

d

dt
‖∆jG‖qLq ≤ ‖∆jG‖q−1

Lq (‖J1‖Lq + ‖J2‖Lq + ‖J4‖Lq + ‖J5‖Lq + ‖J6‖Lq) ,

where J6 = ∆j[R, u · ∇]θ. The integral involving J3 becomes zero due to the

divergence-free condition ∇ · Sju = 0. The terms on the right can be bounded

as follows. To bound ‖J1‖Lq , we write [∆j, Sk−1u · ∇]∆kG as an integral,

[∆j, Sk−1u · ∇]∆kG =

∫
Φj(x− y)(Sk−1u(y)− Sk−1u(x)) · ∇∆kG(y)dy,

where Φj is the kernel associated with the operator ∆j. By a standard commutator

estimate ([?], [76]),

‖J1‖Lq ≤ C
∑
|j−k|≤2

‖∇Sk−1u‖L∞‖∆kG‖Lq .

By Hölder’s and Bernstein’s inequalities,

‖J2‖Lq ≤ C ‖∇∆̃ju‖L∞ ‖∆jG‖Lq .

We have especially applied the lower bound part in Bernstein’s inequalities, which is

given in Proposition 2.2.2. The purpose is to shift the derivative ∇ from G to u. It

is worth pointing out that the lower bound does not apply when j = −1. In the case

when j = −1, J2 involves only low modes and there is no need to shift the derivative

from G to u. J2 is bounded differently. When j = −1, J2 becomes

J2 = −S0(u) · ∇∆1∆−1G = −∆−1u · ∇∆1∆−1G,
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whose Lq-norm can be bounded by

‖J2‖Lq ≤ C‖∆−1u‖L∞ ‖∆−1G‖Lq ≤ C‖ω‖Lq ‖G‖Lq .

For J4 and J5, we have, by Bernstein’s inequality,

‖J4‖Lq ≤ C
∑
|j−k|≤2

‖∆ku‖L∞ ‖∇Sk−1G‖Lq

≤ C
∑
|j−k|≤2

‖∇∆ku‖L∞
∑

m≤k−1

2m−k‖∆mG‖Lq ,

‖J5‖Lq ≤ C
∑
k≥j−1

2j ‖∆ku‖L∞‖∆̃kG‖Lq

≤ C
∑
k≥j−1

2j−k ‖∇∆ku‖L∞ ‖∆̃kG‖Lq .

Furthermore, for any β ∈ R,

‖J1‖Lq ≤ C
∑
|j−k|≤2

‖∇u‖L∞2−β(k+1) 2β(k+1)‖∆kG‖Lq (5.25)

≤ C 2−β(j+1) ‖G‖Bβq,∞ ‖∇u‖L∞
∑
|j−k|≤2

2β(j−k) (5.26)

≤ C 2−β(j+1) ‖G‖Bβq,∞ ‖∇u‖L∞ , (5.27)

where C is a constant depending on β only. It is clear that ‖J2‖Lq admits the same

bound. For any β < 1, we have

‖J4‖Lq ≤ C ‖∇u‖L∞
∑
|j−k|≤2

∑
m<k−1

2m−k 2−β(m+1) 2β(m+1) ‖∆mG‖Lq

≤ C ‖∇u‖L∞ ‖G‖Bβq,∞
∑
|j−k|≤2

∑
m<k−1

2m−k 2−β(m+1)

= C 2−β(j+1) ‖G‖Bβq,∞ ‖∇u‖L∞
∑
|j−k|≤2

2β(j−k)
∑

m<k−1

2(m−k)(1−β)

≤ C 2−β(j+1) ‖G‖Bβq,∞ ‖∇u‖L∞ .

where C is a constant depending on β only and the condition β < 1 is used to

guarantee that (m− k)(1− β) < 0. For any β > −1,

‖J5‖Lq ≤ C ‖∇u‖L∞ 2−β(j+1)
∑
k≥j−1

2(β+1)(j−k) 2β(k+1) ‖∆̃kG‖Lq

≤ C 2−β(j+1) ‖G‖Bβq,∞ ‖∇u‖L∞ .
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‖J6‖Lq = ‖∆j[R, u · ∇]θ‖Lq can be estimated as in the proof of Proposition 6.6,

‖J6‖Lq ≤ C (‖ω‖Lq + ‖ω‖L∞)2εj‖∆jθ‖Lq

for any fixed ε > 0, where C is a constant depending on ε. For the purpose to be

specified later, we choose

ε > 0, β + ε < 1.

Collecting these estimates and invoking the global bounds for ‖ω‖Lq∩L∞ , we obtain,

for any −1 < β < 1,

d

dt
‖∆jG‖Lq ≤ C 2−β(j+1) ‖G‖Bβq,∞ ‖∇u‖L∞ + C 2εj‖∆jθ‖Lq + C.

Let β̃ = β + ε < 1. By applying the process above to the equation for θ and making

use of the fact that ∫
∆jθ|∆jθ|q−2Λ∆jθ dx ≥ 0,

we obtain

d

dt
‖∆jθ‖Lq ≤ C 2−β̃(j+1) ‖θ‖

Bβ̃q,∞
‖∇u‖L∞ .

Integrating the inequalities in time and adding them up, we obtain

X(t) ≤ C +X(0) + C

∫ t

0

(1 + ‖∇u(τ)‖L∞)X(τ) dτ, (5.28)

where

X(t) ≡ ‖G(t)‖Bβq,∞ + ‖θ(t)‖
Bβ̃q,∞

.

By Proposition 5.1.1, for any 2
q
< β,

‖∇u‖L∞ ≤ C (1 + ‖ω‖Lp) + C ‖ω‖L∞ P
(
‖ω‖

2q
qβ−2

Bβq,∞

)
log(1 + ‖ω‖Bβq,∞)

≤ C (1 + ‖ω‖Lp) + C ‖ω‖L∞ P (X(t)
2q

qβ−2 ) log(1 +X(t)) .

Inserting this inequality in (5.28) and applying Osgood’s inequality, we obtain desired

bound, for t ≤ T ,

‖ω(t)‖Bβq,∞ ≤ ‖G(t)‖Bβq,∞ + ‖θ(t)‖
Bβ̃q,∞

= X(t) ≤ C(T ).
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We now proceed to show that, for any t ≤ T ,

‖ω(t)‖
B
β1
q,∞
≤ C(T ) for any β1 satisfying 1 < β1 < 2− 2

q
.

The idea is first to get the global bound for ‖θ(t)‖
B
β1
q,∞

from the equation for θ and

then get the global bound for ‖G‖
B
β1
q,∞

. As we have seen from the previous part, J4

is the only term that requires β < 1. In the process of estimating ‖θ(t)‖
B
β1
q,∞

, the

corresponding terms J̃1, J̃2, J̃5 can be bounded the same way as before, namely

‖J̃1‖Lq , ‖J̃2‖Lq , ‖J̃5‖Lq ≤ C 2−β1(j+1) ‖θ‖
B
β1
q,∞
‖∇u‖L∞ . (5.29)

‖J̃4‖Lq is estimated differently. We start with the basic bound

‖J̃4‖Lq ≤ C
∑
|j−k|≤2

‖∇∆ku‖L∞
∑

m<k−1

2m−k‖∆mθ‖Lq .

Since β1 + 2
q
< 2, we can choose 2

q
< β < 1 and ε > 0 such that

β1 +
2

q
+ ε < 2β. (5.30)

By Berntsein’s inequality and Lemma 5.1,

‖∇∆ku‖L∞ ≤ C 2
2k
q ‖∇∆ku‖Lq ≤ C 2

2k
q P (2k)‖∆kω‖Lq

≤ C 2k( 2
q

+ε)‖∆kω‖Lq ≤ C 2k( 2
q

+ε−β) ‖ω‖Bβq,∞ .

Clearly, for any β < 1,∑
m<k−1

2m−k ‖∆mθ‖Lq = 2−βk
∑

m<k−1

2(m−k)(1−β)2βm ‖∆mθ‖Lq

≤ C 2−βk‖θ‖Bβq,∞ .

Therefore, according to (5.30) and the global bound in the first step,

‖J̃4‖Lq ≤ C 2−β1(j+1) ‖ω‖Bβq,∞ ‖θ‖Bβq,∞ 2(β1+ 2
q

+ε−2β)j ≤ C 2−β1(j+1). (5.31)

Collecting the estimates in (5.29) and (5.31), we have

d

dt
‖∆jθ‖Lq ≤ C 2−β1(j+1) ‖θ‖

B
β1
q,∞
‖∇u‖L∞ + C 2−β1(j+1).
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Bounding ‖∇u‖L∞ by the interpolation inequality in Proposition 5.1.1 and apply-

ing Osgood inequality lead to the desired global bound for ‖θ‖
B
β1
q,∞

. With this bound

at our disposal, we then obtain a global bound for ‖G‖
B
β1
q,∞

by going through a similar

process on the equation of G. Therefore, for any t ≤ T ,

‖ω‖
B
β1
q,∞
≤ ‖θ‖

B
β1
q,∞

+ ‖G‖
B
β1
q,∞
≤ C(T ).

If necessary, we can repeat the second step a few times to achieve the global bound

for ω and θ in Bs
q,∞ for any s > 2. This completes the proof of Proposition 5.3.1.

5.4 Proof of the Main Theorem

This section establishes the existence and uniqueness of the global (in time) solution.

The uniqueness part will be followed directly due to the high regularity in the class

(5.7) of solutions. We will be focused on the existence part. Once we have local

existence and uniqueness, the global bounds in previous sections allow us to extend

the solution for all time.

Proof. (Proof of Theorem 5.2) To show existence, wet start with the construction of a

local solution through the method of successive approximation. That is, we consider

a successive approximation sequence {(ω(n), θ(n))} solving

ω(1) = S2ω0, θ(1) = S2θ0,

u(n) = ∇⊥∆−1P (Λ)ω(n),

∂tω
(n+1) + u(n) · ∇ω(n+1) = ∂x1θ

(n+1),

∂tθ
(n+1) + u(n) · ∇θ(n+1) + Λθ(n+1) = 0,

ω(n+1)(x, 0) = Sn+2ω0(x), θ(n+1)(x, 0) = Sn+2θ0(x).

(5.32)

In order to show that {(ω(n), θ(n))} converges to a solution of (5.1), it suffices to prove

that {(ω(n), θ(n))} obeys the following properties:
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(1) There exists a time interval [0, T1] over which {(ω(n), θ(n))} are bounded uni-

formly in terms of n. More precisely, we show that

‖(ω(n), θ(n))‖Bsq,∞ ≤ C(T1, ‖(ω0, θ0)‖Bsq,∞),

for a constant depending on T1 and the initial norm only.

(2) There exists T2 > 0 such that ω(n+1)−ω(n) and θ(n+1)−θ(n) are Cauchy in Bs−1
q,∞,

namely

‖ω(n+1) − ω(n)‖Bs−1
q,∞
≤ C(T2) 2−n, ‖θ(n+1) − θ(n)‖Bs−1

q,∞
≤ C(T2) 2−n

for any t ∈ [0, T2], where C(T2) is independent of n.

If the properties stated in (1) and (2) hold, then there exists (ω, θ) satisfying, for

T = min{T1, T2},

ω(·, t) ∈ Bs
q,∞, θ(·, t) ∈ Bs

q,∞ for 0 ≤ t ≤ T,

ω(n)(·, t)→ ω(·, t) in Bs−1
q,∞, θ(n)(·, t)→ θ(·, t) in Bs−1

q,∞.

It is then easy to show that (ω, θ) solves (5.1) and we thus obtain a local solution and

the global bounds in Sections 5.2 and 5.3 allow us to extend it into a global solution.

It then remains to verify the properties stated in (1) and (2). Property (1) can be

shown as in Sections 5.2 and 5.3. To verify Property (2), we consider the equations

for the differences ω(n+1) − ω(n) and θ(n+1) − θ(n) and prove Property (2) inductively

in n. The bounds can be achieved in a similar fashion in Sections 5.2 and 5.3. This

completes the proof of Theorem 5.2.
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CHAPTER 6

The 2D Boussinesq-Navier-Stokes Equations with Logarithmically

Supercritical Dissipation

This chapter is dedicated to the global well-posedness of the following Cauchy problem

for the Boussinseq-Navier-Stokes equations with dissipation given by a general integral

operator. 

∂tu+ u · ∇u+ Lu = −∇p+ θe2,

∂tθ + u · ∇θ = 0,

∇ · u = 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x),

(6.1)

where u is a velocity vector field, θ is a scalar function, and e2 =

0

1

. A nonlocal

operator L is defined by

Lf(x) = p.v.

∫
R2

f(x)− f(y)

|x− y|2
m(|x− y|)dy (6.2)

and m : (0,∞) → (0,∞) is a smooth, positive, non-increasing function with the

following three properties.

(i) there exists C1 > 0 such that rm(r) ≤ C1 for all r ≤ 1.

(ii) there exists C2 > 0 such that r|m′(r)| ≤ C2m(r) for all r > 0.

(iii) there exists β > 0 such that rβm(r) is non-increasing.
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In [28], Dabkowski, Kiselev, Silvestre and Vicol introduced this type of dissipative

operator to study the well-posedness of slightly supercritical active scalar equations.

Some special examples examples of m(r) are

1. m(r) =
1

rα
for r > 0 and α ∈ (0, 1], which gives L = Λα;

2. m(r) =
1

r logγ(e+ 1/r)
for r > 0, γ ≥ 0;

3. m(r) =
1

r log log(e2 + 1/r)
for r > 0.

The first example represents the supercritical dissipation Lu, the second example

yields the logarithmically supercritical dissipation Lu and the third includes the log-

log supercritical dissipation. Thus, the dissipative operator mention above is a more

general operator.

This dissipative operator L can be equivalently defined by Fourier multiplier [28].

L̂f(ξ) = P (|ξ|)f̂(ξ) (6.3)

for P (|ξ|) = m( 1
|ξ|) and P (ξ) satisfies the following four conditions.

1. (The doubling condition): For any ξ ∈ R2, P (2|ξ|) ≤ cDP (|ξ|), with constant

cD ≥ 1.

2. (The Hörmander-Mikhlin condition [68]): for any ξ ∈ R2, |ξ||k| |∂kξP (|ξ|)| ≤

cHP (|ξ|) for some constant cH ≥ 1, and for all multi-indices k ∈ Zd with

|k| ≤ N , with N only depending on cD.

3. (Sub-quadratic growth at ∞):
∫ 1

0
P (|ξ|−1)|ξ|d|ξ| <∞.

4. (−∆)2P (|ξ|) ≥ c−1
H P (ξ)|ξ|−4 for all sufficiently large |ξ|.

We assume that L satisfies both (6.2) and (6.3) with P (|ξ|) = m( 1
|ξ|) satisfying the

aforementioned properties. Taking the curl in the u equation and Rα ≡ L−1∂x1 to θ
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equation in (6.1), we obtain
∂tω + u · ∇ω + Lω = ∂x1θ,

∂tRαθ + u · ∇Rαθ = −[Rα, u · ∇]θ

u = ∇⊥ψ, ∆ψ = ω,

(6.4)

where ∇⊥ = (−∂x2 , ∂x1) and ψ denotes the stream function. In order to show global

regularity, we need to show existence, uniqueness and global bounds of solutions. The

most difficult part is to find appropriate global bounds. The global regularity can be

achieved by getting appropriate bounds from the vorticity equations. However due

to the vortex stretching term, the direct energy method does not work. The vortex

stretching term can be concealed by combining ω equations and Rαθ equations by

G = ω −Rαθ. Then G satisfies

∂tG+ u · ∇G+ LG = [Ra, u · ∇]θ. (6.5)

Now the vortex stretching term is hiding in the commutator, however a compen-

sation of an appropriate estimate for the commutator is needed.

Our main result is a global well-posedness theorem for the IVP (6.1) or (6.4) when

L is slightly supercritical. More precisely, we prove the following theorem.

Statement of the main theorem

Theorem 6.1 Consider the IVP (6.1) and assume that L satisfies (6.2) and (6.3)

with P (|ξ|) = m( 1
|ξ|) obeying the aforementioned conditions. We further assume that

a(ξ) = a(|ξ|) ≡ |ξ|/P (|ξ|) is positive, non-decreasing and satisfies

lim
|ξ|→∞

a(|ξ|)
|ξ|σ

= 0 , ∀σ > 0. (6.6)

Let q > 2 and let the initial data (u0, θ0) be in the class

u0 ∈ H1(R2), ω0 ∈ Lq(R2) ∩B0
∞,1(R2) , θ0 ∈ L2(R2) ∩B0,a2

∞,1(R2),
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where ω0 = ∇ × u0 is the initial vorticity. Then (6.1) has a unique global solution

(u, θ) satisfying, for all t > 0,

u ∈ L∞t H1, ω ∈ L∞t Lq ∩ L1
tB

0
∞,1 , θ ∈ L∞t L2 ∩ L∞t B

0,a2

∞,1 ∩ L1
tB

0,a
∞,1.

Here B0
∞,1 denotes an inhomogeneous Besov space and Bs,a

q,r with a ≥ 0 being a

non-decreasing function is defined through the norm

‖f‖Bs,aq,r = ‖2jsa(2j)‖∆jf‖Lq‖lr <∞, (6.7)

where ∆j denotes the Fourier localization operator. A special consequence of The-

orem 6.1 is the global existence and uniqueness of classical solutions of (6.1) with

logarithmically supercritical dissipation,

L̂u(ξ) = P (|ξ|)û(ξ) ≡ |ξ|
logγ(e+ |ξ|)

û(ξ) for any γ ≥ 0. (6.8)

More precisely, we have the following.

Corollary 6.1 Consider the IVP

∂tu+ u · ∇u+ Λ
logγ(e+|Λ|)u = −∇p+ θe2,

∂tθ + u · ∇θ = 0,

∇ · u = 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x).

(6.9)

Assume that (u0, θ0) ∈ Hs+1(R2)×Hs(R2) with s > 1. Then IVP (6.9) has a unique

global solution (u, θ) ∈ L∞([0, T ];Hs+1(R2)×Hs(R2)) for any T > 0.

6.1 Preliminary Estimates

This section is dedicated to provide some useful estimates for our purpose.

It is worth here to recall that L denotes the operator defined by both (6.2) and

(6.3), and a(|ξ|) ≡ |ξ|
P (|ξ|) , Ra = L−1∂x1 .
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The following two lemmas provide the lower bound for the dissipative operator L.

These bounds are very useful when we estimate the Lp-norms of the solution. Similar

type of estimate can be found in [27].

Lemma 6.1 Let L be the operator defined by (6.2). Then, for p > 1,

|f(x)|p−2f(x)(Lf(x)) ≥ 1

p
L(|f |p).

Proof.

Lf(x) = p.v.

∫
f(x)− f(y)

|x− y|d
m(|x− y|)dy

|f(x)|p−2f(x)Lf(x) = p.v.

∫
|f(x)|p − |f(x)|p−2f(x)f(y)

|x− y|d
m(|x− y|)dy.

By Young’s inequality,

|f(x)|p−2f(x)f(y) ≤ |f(x)|p−1|f(y)| ≤ p− 1

p
|f(x)|p +

1

p
|f(y)|p

Therefore,

|f(x)|p−2f(x)Lf(x)

≥ 1

p
p.v.

∫
p|f(x)|p − (p− 1)|f(x)|p − |f(y)|p

|x− y|d
m(|x− y|)dy

≥ 1

p
L(|f |p).

This completes the proof of Lemma 6.1.

Lemma 6.2 Let L be the operator defined by (6.2). Then, for p ≥ 2,∫
|f |p−2f(Lf) dx ≥ 2

p

∫ ∣∣∣L 1
2 (|f |

p
2 )
∣∣∣2 dx.

Proof. The p = 2 case is trivial. For p > 2, let β = p
2
− 2. By Lemma 6.1,∫

|f |p−2f(Lf)dx =

∫
|f |

p
2 |f |βf(Lf)dx

≥
∫
|f |

p
2

2

p
(L(|f |

p
2 )dx

=
2

p

∫ ∣∣∣L 1
2 (|f |

p
2 )
∣∣∣2 dx.

This completes the proof of Lemma 6.2.
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We also need the generalized version of the Bernstein type inequality for the

dissipative operator.

Lemma 6.3 Let j ≥ 0 be an integer and p ∈ [2,∞). Let L be defined by (6.2) and

(6.3). Then, for any f ∈ S(Rd),

P (2j)‖∆jf‖pLp(Rd)
≤ C

∫
Rd
|∆jf |p−2∆jfL∆jf dx, (6.10)

where C is a constant depending on p and d only.

In order to prove this lemma, let us recall two Lemmas from [?].

Lemma 6.4 Let 2 < p <∞. Then there exist two positive constants cp and Cp such

that for every f ∈ S ′ and every j ∈ Z, we have

cp2
2j
p ‖∆jf‖Lp ≤ ‖∇(|∆jf |

p
2 )‖

2
p

L2 ≤ Cp2
2j
p ‖∆jf‖Lp .

Lemma 6.5 Let p ∈ [1,∞), s ∈ [0, p). Suppose that l, r,m satisfying 1 < l ≤ r <∞,

1 < m <∞, 1
l

= 1
r

+ p−1
m

.

Then for f(u) = |u|p, the following estimate holds

‖f(z)‖Ḃsl,2 ≤ Cp‖z‖p−1

Ḃ0
m,2

‖z‖Ḃsr,2 .

Proof. (Proof of Lemma 6.3)

When p = 2 the above inequality follows Plancherel’s theorem. For p > 2, we

modify the proof from [24, 40]. Let N > 0 be an integer to be specified later. After

applying triangle inequality,

‖Λ(|∆jf |
p
2 )‖L2 ≤ ‖SNΛ(|∆jf |

p
2 )‖L2 + ‖(Id− SN)Λ(|∆jf |

p
2 )‖L2 ≡ I1 + I2.

By the standard Bernstein inequality, for s > 0,

I2 ≤ C2−Ns‖|∆jf |
p
2‖B1+s

2,2
.
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Applying Lemma 6.5 for s ∈ (0,min(p
2
− 1, 2)),

‖|∆jf |
p
2‖B1+s

2,2
≤ C‖∆jf‖

p
2
−1

B0
p,2
‖∆jf‖B1+s

p,2
≤ C2j(1+s)‖∆jf‖

p
2
Lp .

Therefore,

I2 ≤ C2−Ns2j(1+s)‖∆jf‖
p
2
Lp .

By Lemma 5.1,

I1 = ‖SNΛL−
1
2L

1
2 (|∆jf |

p
2 )‖L2 ≤ C 2N (P (2N))−

1
2 ‖L

1
2 (|∆jf |

p
2 )‖L2 .

Combining the estimates leads to

‖Λ(|∆jf |
p
2 )‖L2 ≤ C2−Ns2j(1+s)‖∆jf‖

p
2
Lp + C 2N(P (2N))−

1
2‖L

1
2 (|∆jf |

p
2 )‖L2 .

Applying lemma 6.4 for Λ.

2j‖∆jf‖
p
2
Lp ≤ C ‖Λ(|∆jf |

p
2 )‖L2 .

Therefore,

2j‖∆jf‖
p
2
Lp ≤ C2−Ns2j(1+s)‖∆jf‖

p
2
Lp + C 2N(P (2N))−

1
2‖L

1
2 (|∆jf |

p
2 )‖L2 . (6.11)

We now choose j < N ≤ j +N0 with N0 independent of j such that

C 2−(N−j)s ≤ 1

2
.

From (6.11), we can write

(P (2N))
1
2 2j‖∆jf‖

p
2
Lp ≤ C2N‖L

1
2 (|∆jf |

p
2 )‖L2 (6.12)

(6.10) then follows from (6.12). This completes the proof of Lemma 6.3.

The following lemma provides the commutator estimates.

Lemma 6.6 Let a and Ra be defined as in (6.1). Assume

p ∈ [2,∞), q ∈ [1,∞], 0 < s < δ.
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Let [Ra, u]F = Ra(uF )− uRaF be a standard commutator. Then

‖[Ra, u]F‖Bs,ap,q ≤ C (‖u‖B̊δp,∞‖F‖Bs−δ, a2∞,q
+ ‖u‖L2 ‖F‖L2),

where C denotes a constant independent of a and Ra.

Proof. (Proof of Proposition 6.6) Let j ≥ −1 be an integer. Decompose ∆j[Ra, u]F

into three parts,

∆j[Ra, u]F = I1 + I2 + I3,

where

I1 =
∑
|k−j|≤2

∆j(Ra(Sk−1u ·∆kF )− Sk−1u · Ra∆kF ),

I2 =
∑
|k−j|≤2

∆j(Ra(∆ku · Sk−1F )−∆ku · RaSk−1F ),

I3 =
∑
k≥j−1

∆j(Ra(∆ku · ∆̃kF )−∆kuRa · ∆̃kF ).

When the operator Ra acts on a function whose Fourier transform is supported on an

annulus, it can be represented as a convolution kernel. Since the Fourier transform

of Sk−1u ·∆kF is supported on an annulus around the radius of 2k, we can write

hk ? (Sk−1u ·∆kF )− Sk−1u · (hk ?∆kF ),

where hk is given by the inverse Fourier transform of iξ1P
−1(|ξ|) Φ̃k(ξ), namely

hk(x) =
(
iξ1P

−1(|ξ|) Φ̃k(ξ)
)∨

(x).

Here Φ̃k(ξ) ∈ C∞0 (R2), Φ̃k(ξ) is also supported on an annulus around the radius of

2k and is identically equal to 1 on the support of Sk−1u · ∆kF . Therefore, recalling

(6.1), we can write

iξ1P
−1(|ξ|) Φ̃k(ξ) = i

ξ1

|ξ|
Φ̃0(2−kξ) a(|ξ|).
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Therefore,

hk(x) = 22k h0(2kx) ∗ a∨(x), h0(x) =

(
ξ1

|ξ|
Φ̃0(ξ)

)∨
.

By Lemma 5.2,

‖I1‖Lp ≤ C ‖|x|δhj‖L1‖Sj−1u‖B̊δp,∞ ‖∆jF‖L∞

≤ C 2−δj a(2j) ‖Sj−1u‖B̊δp,∞ ‖∆jF‖L∞ .

I2 in Lp can be estimated as follows.

‖I2‖Lp ≤ C 2−δj a(2j) ‖Sj−1F‖L∞‖∆ju‖B̊δp,∞

≤ C 2−δj a(2j)
∑

m≤j−1

‖∆mF‖L∞ ‖∆ju‖B̊δp,∞

= C 2−sja−1(2j)
∑

m≤j−1

2(s−δ)(j−m) a
2(2j)

a2(2m)
2(s−δ)ma2(2m) ‖∆mF‖L∞‖∆ju‖B̊δp,∞ .

On the other hand, we estimate ‖I3‖Lp differently. We need to distinguish between

low frequency and high frequency terms. For j = 0, 1, the terms in I3 with k = −1, 0, 1

have Fourier transforms containing the origin in their support and the lower bound

part of Bernstein’s inequality does not apply. To deal with these low frequency terms,

we take advantage of the commutator structure and bound them by Lemma 5.2. The

kernel h corresponding to Ra still satisfies, for any r1 ∈ (1,∞),

‖|x|h‖Lr1 ≤ C.

Therefore, by Lemma 5.2 and Bernstein’s inequality, for j = 0, 1 and k = −1, 0, 1,

‖∆j(Ra(∆ku · ∆̃kF )−∆ku · Ra∆̃kF )‖Lp ≤ C ‖|x|h‖Lr1 ‖∇∆ku‖Lp ‖∆kF‖Lr2

≤ C ‖u‖L2 ‖F‖L2 .

where 1
r1

+ 1
r2

= 1. For the high frequency terms, we do not need the commutator
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structure. By Lemma 5.1 and Hölder’s inequality,

‖I31‖Lp ≡

∥∥∥∥∥ ∑
k≥j−1

∆j(Ra(∆ku · ∆̃kF ))

∥∥∥∥∥
Lp

≤
∑
k≥j−1

C a(2j) ‖∆ku‖Lp ‖∆kF‖L∞

≤ C a(2j)
∑
k≥j−1

2−δk 2δk‖∆ku‖Lp ‖∆kF‖L∞

≤ C 2−sj a−1(2j) ‖u‖B̊δp,∞
∑
k≥j−1

2s(j−k) a
2(2j)

a2(2k)
2(s−δ)ka2(2k) ‖∆kF‖L∞ .

I32 ≡
∑

k≥j−1 ∆ku · Ra∆̃kF admits the same bound. By the definition

‖[Ra, u]F‖Bs,ap,q ≤

[∑
j≥−1

2qsjaq(2j)‖I1‖qLp

] 1
q

+

[∑
j≥−1

2qsjaq(2j)‖I2‖qLp

] 1
q

+

[∑
j≥−1

2qsjaq(2j)(‖I31‖qLp + ‖I32‖qLp)

] 1
q

+ C ‖u‖L2 ‖F‖L2 .

The first term on the right is clearly bounded by

C ‖u‖B̊δp,∞

[∑
j≥−1

2q(s−δ)ja2q(2j)‖∆jF‖qL∞

] 1
q

= C ‖u‖B̊δp,∞ ‖F‖Bs−δ, a2∞,q
.

Since s < δ, (6.6) and a convolution inequality for series,[∑
j≥−1

2qsjaq(2j)‖I2‖qLp

] 1
q

≤ C ‖u‖B̊δp,∞ ‖F‖Bs−δ, a2∞,q
.

Since 0 < s, (6.6) and a convolution inequality for series,[∑
j≥−1

2qsjaq(2j)‖I31‖qLp

] 1
q

≤ C ‖u‖B̊δp,∞ ‖F‖Bs−δ, a2∞,q
.

This completes the proof of Proposition 6.6.

6.2 Global Bound for ω in B0,a−1

2,2

In this section we discuss a global a priori estimates for ‖G‖L2 and ‖ω‖
B0,a−1

2,2

.

Lemma 6.7 Assume that the initial data (u0, θ0) satisfies the conditions in Theorem

6.1. Let (u, θ) be the corresponding solution and let ω = ∇× u be the vorticity. Let

G = ω −Raθ, Ra = L−1∂x1 . (6.13)
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Then, for any t ≥ 0,

‖G‖2
L2 +

∫ t

0

‖L
1
2G(τ)‖2

L2 dτ ≤ B(t)

and consequently

‖ω(t)‖
B0, a−1

2,2

≤ B(t),

where B(t) is integrable on any finite-time interval [0, T ].

Proof. Trivially u and θ obey the following global a priori bounds

‖θ(t)‖L2∩L∞ ≤ ‖θ0‖L2∩L∞ , ‖u(t)‖L2 ≤ ‖u0‖L2 + t‖θ0‖L2 . (6.14)

It is easy to check that G satisfies

∂tG+ u · ∇G+ LG = [Ra, u · ∇]θ. (6.15)

Taking the inner product with G leads to

1

2

d

dt
‖G‖2

L2 +

∫
GLGdx =

∫
G∇ · [Ra, u]θ dx. (6.16)

By the Hölder inequality and the boundedness of Riesz transforms on L2,∣∣∣∣∫ G∇ · [Ra, u]θdx

∣∣∣∣ ≤ ‖L 1
2G‖L2 ‖L−

1
2 Λ[Ra, u]θ‖L2 .

Inserting this estimate in (6.16) and applying Young’s inequality, we obtain

d

dt
‖G‖2

L2 + ‖L
1
2G‖2

L2 ≤ ‖L−
1
2 Λ[Ra, u]θ‖2

L2 . (6.17)

By the definition of the norm, ‖L− 1
2 Λf‖2 ≤ ‖f‖

B
1
2 ,
a
2

2,2

. Applying Proposition 6.6 with

δ > 1
2

and p = q = 2, we obtain

‖[Ra, u]θ‖
B

1
2 ,
a
2

2,2

≤ C‖u‖Bδ2,∞ ‖θ‖
B

1
2−δ,

a2
4

∞,2

+ C ‖u‖L2 ‖θ‖L2 .

Since u = ∇⊥∆−1ω,

‖u‖Bδ2,∞ = sup
j≥−1

2δj ‖∆ju‖L2 ≤ ‖∆−1u‖L2 + sup
j≥0

2δj ‖∆j∇⊥∆−1ω‖L2

≤ ‖u‖L2 + sup
j≥0

2(δ−1)j‖∆jω‖L2 ≤ ‖u‖L2 + ‖ω‖
B0,a−1

2,2

.
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For δ > 1
2
, ‖θ‖

B
1
2−δ,

a2
4

∞,2

≤ ‖θ‖L∞ . Therefore,

‖L−
1
2 Λ[Ra, u]θ‖L2 ≤ ‖[Ra, u]θ‖

B
1
2 ,
a
2

2,2

≤ C ‖u‖L2 ‖θ‖L2∩L∞ + ‖ω‖
B0,a−1

2,2

‖θ‖L∞ . (6.18)

We can bound the ‖ω‖
B0,a−1

2,2

by

‖ω‖
B0,a−1

2,2

≤ ‖G‖
B0,a−1

2,2

+ ‖Raθ‖B0,a−1

2,2

≤ ‖G‖2 + ‖θ‖2. (6.19)

Since ‖u‖L2 and ‖θ‖L2∩L∞ are bounded by (6.14), we combine (6.17), (6.18) and (6.19)

to achieve the desired result.

6.3 Global Bound for G in Lq with q ∈ (2, 4)

This section establishes a global a priori bounds for ‖ω‖Lq with q ∈ (2, 4).

Proposition 6.3.1 Assume that the initial data (u0, θ0) satisfies the conditions stated

in Theorem 6.1. Let (u, θ) be the corresponding solution and G be defined as in (6.13).

Then, for any q ∈ (2, 4), G obeys the global bound, for any T > 0 and t ≤ T ,

‖G(t)‖qLq + C

∫ t

0

∫ ∣∣∣L 1
2 (|G|

q
2 )
∣∣∣2 dxdt+ C

∫ t

0

‖G‖q
L

2q
1+ε

dτ ≤ B(t), (6.20)

where C is a constant depending on q only and B(t) is integrable on any finite time

interval. A special consequence is that, for any small ε > 0,

‖ω(t)‖B−εq,∞ ≤ B(t). (6.21)

Proof. Multiplying (6.15) by G|G|q−2 and integrating with respect to x, we get

1

q

d

dt
‖G‖qLq +

∫
G|G|q−2LGdx = −

∫
G|G|q−2∇ · [Ra, u]θ dx.

By Lemma 6.2, ∫
G|G|q−2LGdx ≥ C

∫
|L

1
2 (|G|

q
2 )|2 dx.

Set ε > 0 to be small, say, for q ∈ (2, 4),

(1 + ε)

(
1− 2

q

)
<

1

2
.
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Applying the condition (6.6) and by a Sobolev embedding,

‖L
1
2 (|G|

q
2 )‖2

L2 =
∑
j≥−1

‖∆jL
1
2 (|G|

q
2 )‖2

L2

=
∑
j≥−1

2ja−1(2j)‖∆j(|G|
q
2 )‖2

L2

≥ C
∑
j≥−1

2(1−ε)j‖∆j(|G|
q
2 )‖2

L2

= C ‖Λ
1
2
− ε

2 (|G|
q
2 )‖2

L2

≥ C ‖G‖q
L

2q
1+ε

.

For q ∈ (2, 4), we choose s > 0 such that

s > ε, s+ (1 + ε)

(
1− 2

q

)
=

1

2
− ε.

By Hölder’s inequality,∣∣∣∣∫ G|G|q−2∇ · [Ra, u]θ

∣∣∣∣ ≤ ‖G|G|q−2‖H̊s‖[Ra, u]θ‖H̊1−s .

By Lemma 6.8 below,

‖G|G|q−2‖H̊s ≤ C ‖G‖q−2

L
2q
1+ε

‖G‖
H̊
s+(1+ε)(1− 2

q )
= C ‖G‖q−2

L
2q
1+ε

‖G‖
H̊

1
2−ε
.

In addition, due to the condition in (6.6),

‖G‖2

H̊
1
2−ε

=
∑
j≥−1

2j−2εj‖∆jG‖2
L2 ≤

∑
j≥−1

2ja−2(2j)‖∆jG‖2
L2 ≤ ‖L

1
2 (G)‖2

L2 .

By Proposition 6.6, recalling s > ε and u = ∇⊥∆−1ω,

‖[Ra, u]θ‖H̊1−s ≤ C ‖u‖B̊1−s+ε
2,∞

‖θ‖B−ε,1∞,2
+ C ‖u‖L2 ‖θ‖L2

≤ C ‖ω‖
B

0, 1a
2,2

‖θ‖L∞ + C ‖u‖L2‖θ‖L2 .

Putting the estimates together, we get

1

q

d

dt
‖G‖qLq + C

∫
|L

1
2 (|G|

q
2 )|2 dx+ C ‖G‖q

L
2q
1+ε

≤ C ‖G‖q−2

L
2q
1+ε

‖L
1
2 (G)‖L2

(
‖ω‖

B
0, 1a
2,2

‖θ‖L∞ + C ‖u‖L2‖θ‖L2

)
.
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Applying Young’s inequality to the right-hand side, noticing that q ∈ (2, 4) and

resorting to the bounds in Proposition 6.7, we obtain (6.20) and (6.21) follows from

the inequality

‖ω‖B−εq,∞ ≤ ‖G‖B−εq,∞ + ‖Raθ‖B−εq,∞ ≤ ‖G‖Lq + ‖θ‖Lq .

This completes the proof of Proposition 6.3.1.

We have applied the following lemma in the proof of Proposition 6.3.1.

Lemma 6.8 Let q ∈ (2,∞), s ∈ (0, 1), 0 < ε(q−2) ≤ 2 and f ∈ L
2q
1+ε ∩H̊s+(1− 2

q
)(1+ε).

Then

‖|f |q−2 f‖H̊s ≤ C ‖f‖q−2

L
2q
1+ε

‖f‖B̊s 2q
2−ε(q−2)

,2

≤ C ‖f‖q−2

L
2q
1+ε

‖f‖
H̊
s+(1− 2

q )(1+ε)
. (6.22)

Proof. This proof modifies the proof given by [43]. Identifying H̊s with B̊s
2,2 and by

the definition of B̊s
2,2, we have

‖|f |q−2 f‖2
H̊s =

∫ ‖|f |q−2 f(x+ y)− |f |q−2 f(x)‖2
L2

|y|2+2s
dy.

Applying the inequality∣∣|f |q−2 f(x+ y)− |f |q−2 f(x)
∣∣ ≤ C

(
|f |q−2(x+ y) + |f |q−2(x)

)
|f(x+ y)− f(x)|,

we have, by Hölder’s inequality

‖|f |q−2 f(x+ y)− |f |q−2 f(x)‖2
L2 ≤ C ‖f‖2(q−2)

L
2q
1+ε

‖f(x+ y)− f(x)‖2
Lρ ,

where

ρ =
2q

2− ε(q − 2)
.

Therefore,

‖|f |q−2 f‖2
H̊s ≤ C ‖f‖2(q−2)

L
2q
1+ε

‖f‖2
B̊sρ,2

.

Further applying the Besov embedding inequality

‖f‖B̊sρ,2 ≤ C ‖f‖
H̊
s+1− 2

ρ
,

we achieve (6.22) and this accomplishes the proof of Lemma 6.8.
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6.4 Global Bound for ‖G‖L̃rtBsq,1 with q ∈ [2, 4)

This section establishes a global a priori bound for ‖G‖L̃rtBsq,1 with q ∈ (2, 4). By

using this bound, we will show the global bound ‖ω‖Lq with general q ∈ [2,∞).

Proposition 6.4.1 Assume that the initial data (u0, θ0) satisfies the conditions stated

in Theorem 6.1. Let

r ∈ [1,∞], s ∈ [0, 1), q ∈ (2, 4).

Then, for any t > 0, G obeys the following global bound

‖G‖L̃rtBsq,1 ≤ B(t), (6.23)

where B is integrable on any finite-time interval.

Proof. Let j ≥ −1 be an integer. Applying ∆j to (6.15) yields

∂t∆jG+ L∆jG = −∆j(u · ∇G)−∆j[Ra, u · ∇]θ.

Taking the inner product with ∆jG|∆jG|q−2, we have

1

q

d

dt
‖∆jG‖qLq +

∫
∆jG|∆jG|q−2L∆jG = J1 + J2, (6.24)

where

J1 = −
∫

∆j(u · ∇G) ∆jG|∆jG|q−2, (6.25)

J2 = −
∫

∆j[Ra, u · ∇]θ ∆jG|∆jG|q−2.

According to Lemma 6.3, for j ≥ 0, the dissipation part can be bounded below by∫
∆jG|∆jG|q−2L∆jG ≥ CP (2j)‖∆jG‖qLq . (6.26)

By Lemma 6.9 below, J1 can be bounded by

‖J1‖Lq ≤ C 2j(ε+
2
q

) ‖ω‖B̊−εq,∞
[
‖∆jG‖Lq +

∑
m≤j−2

2(m−j) 2
q ‖∆mG‖Lq

+
∑
k≥j−1

2(j−k)(1− 2
q

) ‖∆kG‖Lq
]
‖∆jG‖q−1

Lq , (6.27)
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where we have taken ε to be small positive number, especially

s− 1 + 3ε < 0.

To bound J2, we first apply Hölder’s inequality and then employ similar estimates as

in the proof of Proposition 6.6 to obtain

|J2| ≤ ‖∆j[Ra, u · ∇]θ‖Lq‖∆jG‖q−1
Lq

≤ C
(

2jεa(2j)‖ω‖B̊−εq,∞‖θ‖L∞ + ‖u‖L2‖θ‖L2

)
‖∆jG‖q−1

Lq . (6.28)

Inserting (6.26), (6.27) and (6.28) in (6.24) and writing the bound for ‖ω(t)‖B−εq,∞ by

B(t), we obtain

d

dt
‖∆jG‖Lq + C2j a−1(2j) ‖∆jG‖Lq ≤ C2εj a(2j)B(t)

+C2j(ε+
2
q

)B(t)
[
‖∆jG‖Lq +

∑
m≤j−2

2(m−j) 2
q ‖∆mG‖Lq

+
∑
k≥j−1

2(j−k)(1− 2
q

) ‖∆kG‖Lq
]
.

Due to (6.6), a(2j) ≤ 2εj. Integrating in time yields

‖∆jG(t)‖Lq ≤ e−C 2(1−ε)jt‖∆jG(0)‖Lq + C 2−j(1−3ε) B(t)

+C 2j(ε+
2
q

)B(t)

∫ t

0

e−C 2(1−ε)j(t−τ)L(τ) dτ,

where, for notational convenience, we have written

L(t) =
[
‖∆jG‖Lq +

∑
m≤j−2

2(m−j) 2
q ‖∆mG‖Lq +

∑
k≥j−1

2(j−k)(1− 2
q

) ‖∆kG‖Lq
]
.

Taking the Lr norm in time and applying Young’s inequality for convolution lead to

‖∆jG‖LrtLq ≤ C 2−
1
r

(1−ε)j ‖∆jG(0)‖Lq + C 2−j(1−3ε) B̃(t)

+C 2j(−1+2ε+ 2
q

)B̃(t) ‖L‖Lr .

Multiplying by 2js, summing over j ≥ −1 and noticing s− 1 + 3ε < 0, we obtain

‖G‖L̃rtBsq,1 ≤ C ‖G(0)‖
B
s−1/r(1−ε)
q,1

+ C B̃(t) +K1 +K2 +K3, (6.29)
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where

K1 = C
∑
j≥−1

2j(−1+2ε+ 2
q

) B̃(t) 2js‖∆jG‖LrtLq ,

K2 = C
∑
j≥−1

2j(−1+2ε+ 2
q

) B̃(t) 2js
∑

m≤j−2

2(m−j) 2
q ‖∆mG‖LrtLq ,

K3 = C
∑
j≥−1

2j(−1+2ε+ 2
q

) B̃(t) 2js
∑
k≥j−1

2(j−k)(1− 2
q

) ‖∆kG‖LrtLq .

Since −1 + 2ε+ 2
q
< 0, we can choose an integer N > 0 such that

C 2N(−1+2ε+ 2
q

)B̃(t) ≤ 1

8
.

The sums in K1, K2 and K3 can then be split into two parts: j ≤ N and j > N .

Since ‖G‖Lq is bounded, the sum for the first part is bounded by C B̃(t)2sN . The

second part of the sum over j > N is bounded by 1
8
‖G‖L̃rtBsq,1 . Therefore,

K1, K2, K3 ≤ C B̃(t)2sN +
3

8
‖G‖L̃rtBsq,1 .

Combining these bounds with (6.29) yields the desired estimates. This completes the

proof of Proposition 6.4.1.

We now provide the details leading to (6.27). They bear some similarities as those

in [21], but they are provided here for the sake of completeness.

Lemma 6.9 Let J1 be defined as in (6.25). Then we have the following bound

‖J1‖Lq ≤ C 2j(ε+
2
q

) ‖ω‖B̊−εq,∞
[
‖∆jG‖Lq +

∑
m≤j−2

2(m−j) 2
q ‖∆mG‖Lq

+
∑
k≥j−1

2(j−k)(1− 2
q

) ‖∆kG‖Lq
]
‖∆jG‖q−1

Lq .

Proof. Using the notion of paraproducts, we write

∆j(u · ∇G) = J11 + J12 + J13 + J14 + J15,
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where

J11 =
∑
|j−k|≤2

[∆j, Sk−1u · ∇]∆kG,

J12 =
∑
|j−k|≤2

(Sk−1u− Sju) · ∇∆j∆kG,

J13 = Sju · ∇∆jG,

J14 =
∑
|j−k|≤2

∆j(∆ku · ∇Sk−1G),

J15 =
∑
k≥j−1

∆j(∆ku · ∇∆̃kG).

Since ∇ · u = 0, we have ∫
J13|∆jG|q−2∆jGdx = 0.

By Hölder’s inequality,∣∣∣∣∫ J11|∆jG|q−2∆jG

∣∣∣∣ ≤ ‖J11‖Lq‖∆jG‖q−1
Lq .

We write the commutator in terms of the integral,

J11 =

∫
Φj(x− y) (Sk−1u(y)− Sk−1u(x)) · ∇∆kG(y) dy,

where Φj is the kernel of the operator ∆j. As in the proof of Lemma 3.3, we have,

for any 0 < ε < 1,

‖J11‖Lq ≤ ‖|x|1−εΨj(x)‖L1 ‖Sj−1u‖B̊1−ε
q,∞
‖∇∆jG‖L∞ .

By the definition of Φj and Bernstein’s inequality, we have

‖J11‖Lq ≤ C 2j(ε+
2
q

) ‖|x|1−εΨ0(x)‖L1 ‖Sj−1ω‖B̊−εq,∞‖∆jG‖L∞

≤ C 2j(ε+
2
q

)‖ω‖B̊−εq,∞ ‖∆jG‖Lq .

Again, by Bernstein’s inequality,

‖J12‖Lq ≤ C‖∆ju‖Lq‖∇∆jG‖L∞

≤ C2j(ε+
2
q

) ‖ω‖B̊−εq,∞ ‖∆jG‖Lq ;
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‖J14‖Lq ≤ C‖∆ju‖Lq‖∇Sj−1G‖L∞

≤ C2j(ε+
2
q

) ‖ω‖B̊−εq,∞
∑

m≤j−2

2(m−j) 2
q ‖∆mG‖Lq ;

‖J15‖Lq ≤ C2j(ε+
2
q

)
∑
k≥j−1

2(j−k)(1− 2
q

) ‖Λ1−ε∆ku‖Lq‖∆kG‖Lq

≤ C2j(ε+
2
q

) ‖ω‖B̊−εq,∞
∑
k≥j−1

2(j−k)(1− 2
q

) ‖∆kG‖Lq .

Combining the estimates above yields

‖J1‖Lq ≤ C 2j(ε+
2
q

) ‖ω‖B̊−εq,∞
[
‖∆jG‖Lq +

∑
m≤j−2

2(m−j) 2
q ‖∆mG‖Lq

+
∑
k≥j−1

2(j−k)(1− 2
q

) ‖∆kG‖Lq
]
‖∆jG‖q−1

Lq .

This completes the proof of Lemma 6.9.

6.5 Global Bounds for ‖ω‖L1
tB

0,a
∞,1

and ‖ω‖Lq for any q ≥ 2

In this section we prove that ω0 is in Lq, then the solution ω is also a priori in Lq at

any time.

Proposition 6.5.1 Assume that the initial data (u0, θ0) satisfies the conditions as

stated in Theorem 6.1. Then we have the following global a priori bounds. For any

T > 0 and t ≤ T ,

‖ω(t)‖L1
tB

0,a
∞,1
≤ C(T ), ‖θ(t)‖

B0,a2

∞,1
≤ C(T ), ‖ω(t)‖Lq ≤ C(T ),

where C(T ) are constants depending on T and the initial norms only.

In order to prove this proposition, we need the following fact.

Lemma 6.10 Let T > 0 and let u be a divergence-free smooth vector field satisfying∫ T

0

‖∇u‖L∞ dt <∞.
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Assume that θ solves

∂tθ + u · ∇θ = f.

Let a : (0,∞)→ (0,∞) be an nondecreasing and radially symmetric function satisfy-

ing (6.6). Let ρ ∈ [1,∞]. For any t > 0,

‖θ‖B0,a
ρ,1
≤ (‖θ0‖B0,a

ρ,1
+ ‖f‖L1

tB
0,a
ρ,1

)

(
1 +

∫ t

0

‖∇u‖L∞dt
)
.

This lemma can be proven in a similar fashion as that of Lemma 4.5 in [21]. A

crucial assumption is that a satisfies (6.6).

Proof. (Proof of Proposition 6.5.1) We first explains that (6.23) in Proposition 6.4.1

implies that, for t ≤ T ,

‖G‖L1
tB

0,a
∞,1
≤ C(T ).

In fact, if we choose s ∈ [0, 1) satisfying s > 2
q

for q ∈ (2, 4) and set ε > 0 satisfying

ε+ 2
q
− s < 0, then

‖G‖B0,a
∞,1

≡
∑
j≥−1

a(2j)‖∆jG‖L∞ ≤
∑
j≥−1

a(2j)2
2
q
j ‖∆jG‖Lq

≤
∑
j≥−1

a(2j)2−εj 2j(ε+
2
q
−s)2js‖∆jG‖Lq ≤ C ‖G‖Bsq,1 ,

where we have used the fact that a(2j)2−εj ≤ C for C independent of j. Furthermore,

‖ω‖L1
tB

0,a
∞,1
≤ ‖G‖L1

tB
0,a
∞,1

+ ‖Raθ‖L1
tB

0,a
∞,1
.

By the definition of the norm in B0,a
∞,1 and recalling that Raθ is defined by the mul-

tiplier a(|ξ|) iξ1|ξ| , we have

‖Raθ‖B0,a
∞,1

= a(2−1) ‖∆−1Raθ‖L∞ +
∑
j≥0

a(2j) ‖∆jRaθ‖L∞

≤ C ‖θ0‖L2 +
∑
j≥0

a2(2j) ‖∆jθ‖L∞

≤ C ‖θ0‖L2 + ‖θ‖
B0,a2

∞,1
.
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By Lemma 6.10,

‖θ‖
B0,a2

∞,1
≤ C ‖θ0‖B0,a2

∞,1

(
1 +

∫ t

0

‖∇u‖L∞dt
)

≤ C ‖θ0‖B0,a2

∞,1

(
1 + ‖u‖L1

tL
2 + ‖ω‖L1

tB
0
∞,1

)
≤ C ‖θ0‖B0,a2

∞,1

(
1 + ‖u‖L1

tL
2 + ‖ω‖L1

tB
0,a
∞,1

)
. (6.30)

Therefore,

‖ω‖L1
tB

0,a
∞,1

≤ ‖G‖L1
tB

0,a
∞,1

+ C

(
‖θ0‖L2 + ‖θ0‖B0,a2

∞,1

)
t

+C ‖θ0‖B0,a2

∞,1

∫ t

0

‖u‖L1
τL

2 dτ + C ‖θ0‖B0,a2

∞,1

∫ t

0

‖ω‖L1
τB

0,a
∞,1

dτ.

By Gronwall’s inequality, ‖ω‖L1
tB

0,a
∞,1
≤ C(T ), which, in turn, implies that, by (6.30),

‖θ(t)‖
B0,a2

∞,1
≤ C(T ).

Now we prove the bound for ‖ω‖Lq . From the equations of G and Raθ,

‖ω‖Lq ≤ ‖G‖Lq + ‖Raθ‖Lq

≤ ‖G0‖Lq + ‖Raθ0‖Lq + 2

∫ t

0

‖[Ra, u · ∇]θ‖Lq dτ

≤ ‖G0‖Lq + ‖Raθ0‖Lq + 2

∫ t

0

‖[Ra, u · ∇]θ‖B0
q,1
dτ.

Following the steps as in the proof of Proposition 6.6, we can show that

‖[Ra, u · ∇]θ‖B0
q,1
≤ C‖ω‖Lq ‖θ‖B0,a

∞,1
+ C ‖θ0‖L2 ‖u‖L2 .

Gronwall’s inequality and the bound ‖θ‖L1
tB

0,a
∞,1
≤ C(T ) then imply the bound for

‖ω‖Lq . This completes the proof of Proposition 6.5.1.

6.6 Uniqueness and Proof of Theorem 6.1

This section proves the existence, uniqueness of the global solution. First we prove

uniqueness and then we prove local existence. The local existence, uniqueness to-

gether with global bounds allow us to extend solution for all time.
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Theorem 6.2 (Uniqueness) Assume that the initial data (u0, θ0) satisfies the con-

ditions stated in Theorem 6.1. Then, the solutions (u, θ) in the class

u ∈ L∞([0, T ];H1), ω ∈ L∞([0, T ];Lq) ∩ L1
TB

0,a
∞,1, θ ∈ L∞([0, T ], L2 ∩B0,a

∞,1)(6.31)

must be unique.

Proof. Assume that (u(1), θ(1)) and (u(2), θ(2)) are two solutions in the class (6.31).

Let p(1) and p(2) be the associated pressure. The differences

u = u(2) − u(1), p = p(2) − p(1), θ = θ(2) − θ(1)

satisfy 
∂tu+ u(1) · ∇u+ u · ∇u(2) + Lu = −∇p+ θe2,

∂tθ + u(1) · ∇θ + u · ∇θ(2) = 0.

By Lemmas 6.11 and 6.12 below, we have the following estimates

‖u(t)‖B0
2,∞
≤ ‖u(0)‖B0

2,∞
+ C ‖θ‖L∞t B−1,a

2,∞

+C

∫ t

0

‖u(τ)‖L2 (‖u(1)‖L2 + ‖ω(1)‖B0
∞,1

+ ‖u(2)‖L2 + ‖ω(2)‖B0
∞,1

) dτ

and

‖θ(t)‖B−1,a
2,∞

≤ ‖θ(0)‖B−1,a
2,∞

+ C

∫ t

0

‖θ(τ)‖B−1,a
2,∞

(‖u(1)‖L2 + ‖ω(1)‖B0
∞,1

) dτ

+C

∫ t

0

‖u(τ)‖L2‖θ(2)‖B0,a
∞,1

dτ.

In addition, we bound ‖u‖L2 by the following interpolation inequality

‖u‖L2 ≤ C ‖u‖B0
2,∞

log

(
1 +

‖u‖H1

‖u‖B0
2,∞

)

together with ‖u‖H1 ≤ ‖u(1)‖H1 + ‖u(2)‖H1 . These inequalities allow us to conclude

that

Y (t) ≡ ‖u(t)‖B0
2,∞

+ ‖θ(t)‖B−1,a
2,∞
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obeys

Y (t) ≤ 2Y (0) + C

∫ t

0

D1(τ)Y (τ) log (1 +D2(τ)/Y (τ)) dτ, (6.32)

where

D1 = ‖θ(2)‖B0,a
∞,1

+ ‖u(1)‖L2 + ‖ω(1)‖B0
∞,1

+ ‖u(2)‖L2 + ‖ω(2)‖B0
∞,1
,

D2 = ‖u(1)‖H1 + ‖u(2)‖H1 .

Applying Osgood’s inequality to (6.32) and noticing that Y (0) = 0, we conclude that

Y (t) = 0. This completes the proof of Theorem 6.2.

We now state and prove two estimates used in the proof of Theorem 6.2.

Lemma 6.11 Assume that u(1), u(2), u, p and θ are defined as in the proof of Theo-

rem 6.2 and satisfy

∂tu+ u(1) · ∇u+ u · ∇u(2) + Lu = −∇p+ θe2. (6.33)

Then we have the a priori bound

‖u(t)‖B0
2,∞
≤ ‖u(0)‖B0

2,∞
+ C ‖θ‖L∞t B−1,a

2,∞

+C

∫ t

0

‖u(τ)‖L2 (‖u(1)‖L2 + ‖ω(1)‖B0
∞,1

+ ‖u(2)‖L2 + ‖ω(2)‖B0
∞,1

) dτ.(6.34)

Proof. (Proof of Lemma 6.11) Let j ≥ −1 be an integer. Applying ∆j to (6.33) and

taking the inner product with ∆ju, we obtain, after integration by parts,

1

2

d

dt
‖∆ju‖2

L2 + ‖L
1
2 ∆ju‖2

L2 = J1 + J2 + J3, (6.35)

where

J1 = −
∫

∆ju∆j(u
(1) · ∇u) dx,

J2 = −
∫

∆ju∆j(u · ∇u(2)) dx,

J3 =

∫
∆ju∆j(θe2) dx.
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By Plancherel’s theorem,

‖L
1
2 ∆ju‖2

L2 ≥ C 2ja−1(2j) ‖∆ju‖2
L2 ,

where C = 0 in the case of j = −1 and C > 0 for j ≥ 0. The estimate for J3 is easy

and we have, by Hölder’s inequality,

|J3| ≤ ‖∆ju‖L2 ‖∆jθ‖L2 ≤ 2ja−1(2j) ‖∆ju‖L2 ‖θ‖B−1,a
2,∞

.

To estimate J1, we need to use a commutator structure to shift one derivative to u(1).

For this purpose, we write

∆j(u
(1) · ∇u) = J11 + J12 + J13 + J14 + J15, (6.36)

where

J11 =
∑
|j−k|≤2

[∆j, Sk−1u
(1) · ∇]∆ku,

J12 =
∑
|j−k|≤2

(Sk−1u
(1) − Sju(1)) · ∇∆j∆ku,

J13 = Sju
(1) · ∇∆ju,

J14 =
∑
|j−k|≤2

∆j(∆ku
(1) · ∇Sk−1u),

J15 =
∑
k≥j−1

∆j(∆ku
(1) · ∇∆̃ku).

Since ∇ · u(1) = 0, we have ∫
J13 ∆ju dx = 0.

J11, J12, J14 and J15 can be bounded in a similar fashion as in the proof of Lemma

6.9 and we have

‖J11‖L2 , ‖J12‖L2 ≤ C (‖u(1)‖L2 + ‖ω(1)‖B0
∞,1

)‖∆ju‖L2 ,

‖J14‖L2 ≤ C (‖u(1)‖L2 + ‖ω(1)‖B0
∞,1

)
∑

m≤j−1

2m−j‖∆mu‖L2 ,

‖J15‖L2 ≤ C (‖u(1)‖L2 + ‖ω(1)‖B0
∞,1

)
∑
k≥j−1

2j−k‖∆ku‖L2 .
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To estimate J2, we write

∆j(u · ∇u(2)) = J21 + J22 + J23, (6.37)

where

J21 =
∑
|j−k|≤2

∆j(Sk−1u · ∇∆ku
(2)),

J22 =
∑
|j−k|≤2

∆j(∆ku · ∇Sk−1u
(2)),

J23 =
∑
k≥j−1

∆j(∆ku · ∇∆̃ku
(2)).

Therefore, by Hölder’s inequality,

‖J21‖L2 ≤ C ‖u‖L2 ‖∇∆ju
(2)‖L∞ ,

‖J22‖L2 ≤ C ‖∆ju‖L2(‖u(2)‖L2 + ‖ω(2)‖B0
∞,1

),

‖J23‖L2 ≤ C (‖u(2)‖L2 + ‖ω(2)‖B0
∞,1

)
∑
k≥j−1

2j−k‖∆ku‖L2 .

Inserting the estimates above in (6.35), we obtain

1

2

d

dt
‖∆ju‖L2 + C 2ja−1(2j) ‖∆ju‖L2 ≤ C 2ja−1(2j) ‖θ‖B−1,a

2,∞
+K(t), (6.38)

where

K(t) = C (‖u(1)‖L2 + ‖ω(1)‖B0
∞,1

+ ‖u(2)‖L2 + ‖ω(2)‖B0
∞,1

)‖∆ju‖L2

+C ‖u‖L2 ‖∇∆ju
(2)‖L∞ + (‖u(1)‖L2 + ‖ω(1)‖B0

∞,1
)
∑

m≤j−1

2m−j‖∆mu‖L2

+C (‖u(1)‖L2 + ‖ω(1)‖B0
∞,1

+ ‖u(2)‖L2 + ‖ω(2)‖B0
∞,1

)
∑
k≥j−1

2j−k‖∆ku‖L2 .

Integrating (6.38) in time and taking supj≥−1, we obtain (6.34). This completes the

proof of Lemma 6.11.

Lemma 6.12 Assume that θ, u(1), u and θ(2) are defined as in the proof of Theorem

6.2 and satisfy

∂tθ + u(1) · ∇θ + u · ∇θ(2) = 0. (6.39)
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Then we have the a priori bound

‖θ(t)‖B−1,a
2,∞

≤ ‖θ(0)‖B−1,a
2,∞

+ C

∫ t

0

‖θ(τ)‖B−1,a
2,∞

(‖u(1)‖L2 + ‖ω(1)‖B0
∞,1

) dτ

+C

∫ t

0

‖u(τ)‖L2‖θ(2)‖B0,a
∞,1

dτ. (6.40)

Proof. (Proof of Lemma 6.12) Let j ≥ −1 be an integer. Applying ∆j to (6.39) and

taking the inner product with ∆jθ, we obtain

1

2

d

dt
‖∆jθ‖2

L2 = K1 +K2, (6.41)

where

K1 = −
∫

∆jθ∆j(u
(1) · ∇θ) dx,

K2 = −
∫

∆jθ∆j(u · ∇θ(2)) dx.

To estimate K1, we decompose ∆j(u
(1) ·∇θ) as in (6.36) and estimate each component

in a similar fashion to obtain

|K1| ≤ C ‖∆jθ‖2
L2 (‖u(1)‖L2 + ‖ω(1)‖B0

∞,1
)

+C ‖∆jθ‖L2 2ja−1(2j) ‖θ‖B−1,a
2,∞

(‖u(1)‖L2 + ‖ω(1)‖B0
∞,1

).

To estimate K2, we decompose ∆j(u · ∇θ(2)) as in (6.37) and bound the components

in a similar fashion to have

|K2| ≤ C ‖∆jθ‖L2 ‖u‖L22ja−1(2j) ‖θ(2)‖B0,a
∞,1
.

Combining these estimates, we find

d

dt
‖∆jθ‖L2 ≤ C 2ja−1(2j) ‖θ‖B−1,a

2,∞
(‖u(1)‖L2 + ‖ω(1)‖B0

∞,1
)

+C ‖u‖L22ja−1(2j) ‖θ(2)‖B0,a
∞,1
.

Integrating in time, multiplying by 2−ja(2j) and taking supj≥−1, we obtain (6.40).

This completes the proof of Lemma 6.12.
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Proof of the main theorem

Proof. (Proof of Theorem 6.1) Uniqueness is already shown in 6.2, it suffices to es-

tablish the existence of solutions. The first step is to obtain a local (in time) solution

and then extend it into a global solution through the global a priori bounds obtained

in the previous section. The local solution can be constructed through the method of

successive approximation. That is, we consider a successive approximation sequence

{(ω(n), θ(n))} solving

ω(1) = S2ω0, θ(1) = S2θ0,

∂tω
(n+1) + u(n) · ∇ω(n+1) + Lω(n+1) = ∂x1θ

(n+1),

∂tθ
(n+1) + u(n) · ∇θ(n+1) = 0,

ω(n+1)(x, 0) = Sn+2ω0(x), θ(n+1)(x, 0) = Sn+2θ0(x).

(6.42)

To show that {(ω(n), θ(n))} converges to a solution of (6.4), it suffices to prove that

{(ω(n), θ(n))} obeys the following properties:

(1) There exists a time interval [0, T1] over which {(ω(n), θ(n))} are bounded uni-

formly in terms of n. More precisely, we show that

‖ω(n)‖L∞t (L2∩Lq)∩L1
tB

0,a
∞,1
≤ C(T1), ‖θ(n)‖

L∞t (L2∩B0,a2

∞,1 )∩L1
tB

0,a
∞,1
≤ C(T1),

where C(T1) is a constant independent of n.

(2) There exists T2 > 0 such that ω(n+1) − ω(n) is a Cauchy sequence in L∞t B
−1
∞,1

and θ(n+1) − θ(n) is Cauchy in L1
tB
−1,a
∞,1 , namely

‖ω(n+1) − ω(n)‖L∞t B−1
∞,1
≤ C(T2) 2−n, ‖θ(n+1) − θ(n)‖L1

tB
−1,a
∞,1
≤ C(T2) 2−n

for any t ∈ [0, T2], where C(T2) is independent of n.

If the properties stated in (1) and (2) hold, then there exists (ω, θ) satisfying

ω ∈ L∞t (L2 ∩ Lq) ∩ L1
tB

0,a
∞,1, θ ∈ L∞t (L2 ∩B0,a2

∞,1) ∩ L1
tB

0,a
∞,1,

112



ω(n) → ω in L∞t B
−1
∞,1, θ(n) → θ in L1

tB
−1,a
∞,1

for any t ≤ min{T1, T2}. It is then easy to show that (ω, θ) solves (6.4) and we thus

obtain a local solution and the global bounds in the previous sections allow us to

extend it into a global solution. It then remains to verify the properties stated in (1)

and (2). Property (1) can be shown as in the previous sections (Section 6.2 through

Section 6.5) while Property (2) can be checked as in the proof of Theorem 6.2. We

thus omit further details. This completes the proof of the main Theorem.
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