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Title of Study: SENSOR BASED REAL-TIME PROCESS MONITORING FOR 
ULTRA-PRECISION MANUFACTURING PROCESSES WITH NON-
LINEARITY AND NON-STATIONARITY 

Major Field: INDUSTRIAL ENGINEERING AND MANAGEMENT 

Abstract: This research investigates methodologies for real-time process monitoring in 

ultra-precision manufacturing processes, specifically, chemical mechanical planarization 

(CMP) and ultra-precision machining (UPM), are investigated in this dissertation. 

The three main components of this research are as follows: (1) developing a predictive 

modeling approaches for early detection of process anomalies/change points, (2) devising 

approaches that can capture the non-Gaussian and non-stationary characteristics of CMP 

and UPM processes, and (3) integrating multiple sensor data to make more reliable 

process related decisions in real-time. 

In the first part, we establish a quantitative relationship between CMP process 

performance, such as material removal rate (MRR) and data acquired from wireless 

vibration sensors. Subsequently, a non-linear sequential Bayesian analysis is integrated 

with decision theoretic concepts for detection of CMP process end-point for blanket 

copper wafers. Using this approach, CMP polishing end-point was detected within a 5% 

error rate. 

Next, a non-parametric Bayesian analytical approach is utilized to capture the inherently 

complex, non-Gaussian, and non-stationary sensor signal patterns observed in CMP 

process. An evolutionary clustering analysis, called Recurrent Nested Dirichlet Process 

(RNDP) approach is developed for monitoring CMP process changes using MEMS 

vibration signals. Using this novel signal analysis approach, process drifts are detected 

within 20 milliseconds and is assessed to be 3-7 times faster than traditional SPC charts. 

This is very beneficial to the industry from an application standpoint, because, wafer 

yield losses will be mitigated to a great extent, if the onset of CMP process drifts can be 

detected timely and accurately. 

Lastly, a non-parametric Bayesian modeling approach, termed Dirichlet Process (DP) is 

combined with a multi-level hierarchical information fusion technique for monitoring of 

surface finish in UPM process. Using this approach, signal patterns from six different 

sensors (three axis vibration and force) are integrated based on information fusion theory. 

It was observed that using experimental UPM sensor data that process decisions based on 

the multiple sensor information fusion approach were 15%-30% more accurate than the 

decisions from individual sensors. This will enable more accurate and reliable estimation 

of process conditions in ultra-precision manufacturing applications.  
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CHAPTER I 

1 I�TRODUCTIO� 

This dissertation investigates methodologies for real-time process monitoring in 

ultra-precision manufacturing processes. Specifically, this study focuses on two 

nano-level precision manufacturing processes, namely, chemical mechanical 

planarization (CMP) and ultra precision machining (UPM) [1-2]. Nonetheless, the 

approaches developed in this dissertation are applicable to a broad spectrum of 

manufacturing processes. 

1.1 Research Motivation 

UPM products play an important part in both our daily life and in areas of 

national interest, such as cosmetics, textiles, biomedical, healthcare, electronics 

and computer, and space and defense industry, etc. [3-4]. In the near future 

National Science Foundation (NSF) foresees a $1 trillion dollar market for nano-

manufactured products [5]. 

In the early eighties, Taniguchi introduced a roadmap for manufacturing accuracy 

where he suggested that nano-level precision in manufacturing would be possible 

before the new millennium in [6]. This is illustrated with the so-called Taniguchi 

curve (Figure 1.1). 
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Figure 1.2 Illustration of Moore’s law [7] 
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Material removed in UPM is achieved by using a single crystal diamond cutting 
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Until recently, UPM process was primarily used in research oriented applications, 

such as X-ray telescope mirrors [8, 10-11]. However, newer consumer 

applications for UPM are beginning to emerge. While still a niche market, UPM 

hardware sales in 2003 were recorded ~$100 million and are still growing [12].  

CMP process uses chemical and mechanical effects to planarize surfaces with a 

polishing action. Nano-particulate abrasives, such as alumina (Al2O3) and silica 

(SiO2), are used to soften the material by chemical reactions, and, subsequently, 

material is removed by mechanical polishing [13-14].  

Semiconductor industry has recorded significant growth in recent years. In 2010, 

market revenues in semiconductor industry were estimated to be approximately 

$300 billion, which is 30% higher than the revenues of previous three years [15]. 

Advances in CMP yield rates are a key to this growth. 

1.2 Research Challenges and Objectives 

Bukkapatnam, et al. [16] summarized recommendations and challenges in nano-

manufacturing process which were outcomes from a workshop on nano-

technology organized by the National Science Foundation (NSF) in 2009. These 

recommendations suggest means to overcome vexing challenges in nano-

manufacturing research. 

Some of the challenges summarized in Ref. [16] are as follows: 

• accesibilty to signal source is challenging; 
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• in-situ sensing is almost impossible; 

• signals are short, evanescent and weak; 

• quantization of signals makes transduction difficult; and 

• signal-to-noise ratio is low  

To surmount the above challenges, this research develops innovative solutions for 

monitoring of nano-level manufacturing processes. The research objectives of this 

dissertation are as follows: 

(1) To develop a predictive modeling of dynamic process in high precision 

machining. 

(2) To estimate probability density information of sensor signal in high-

precision machining which is non-linear and non-stationary. 

(3) To integrate multi-sensor signals for coherent and reliable decisions. 

1.3 Major Contributions of the Dissertation 

This research develops methods for real-time monitoring in nano-manufacturing 

process by integrating multiple heterogeneous sensors such as, force, vibration 

and acoustic emission. The major contributions of this research are as follows:  

(1) Feature extraction for representation of sensor signals: In nano-level 

manufacturing processes, signal-to-noise ratio is low, which creates high 

uncertainty in data acquisition and modeling. In this research, various 

feature extraction methods are used for better representation of sensor 
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data. As an example, time and frequency features are extracted, and, 

subsequently, principal component analysis (PCA) is used for dimension 

reduction. Process performance can be estimated successfully by using 

these features as input (Chapter 4). However, the inherently non-linear 

dynamics of the process causes the statistical distribution of sensor signal 

to be non-Gaussian. This non-Gaussian distribution is estimated using 

mixture of Gaussian distributions. Parameters of such mixtures of 

Gaussian distributions can be used as test statistics for monitoring 

purposes. (Chapter 5). 

(2) Process state prediction of dynamic processes: In nano-level 

manufacturing applications, accurate and timely decisions for process 

monitoring and control are important from a quality assurance 

perspective. Due to its complex, non-linear and non-stationary nature, 

process state prediction is challenging. Linear and stationary models are 

not able to capture the non-linear and non-stationary nature of the 

process. In order to tackle this challenge we use sequential Monte Carlo 

method which is used for prediction of process state for early detection 

method (Chapter4). 

(3) Decision making for monitoring of nano-manufacturing process: 

Decision making techniques are devised for monitoring manufacturing 

process applications, such as detecting a change in surface variation in 

UPM process and end-point detection in CMP. We integrated utility 
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theory with the predictive modeling for early detection of end-point in 

CMP (Chapter 4). We used evolutionary clustering method to monitor 

process change in CMP process effectively by monitoring the evolution 

of the cluster parameters in real time (Chapter 5). 

(4) Sensor Fusion of heterogonous signals:  With the development of the 

sensor technology, more and more data can be acquired from complex 

processes. In the context of process monitoring, it is important to 

determine how to integrate multiple sensor data to achieve more accurate 

results. Evidence theory is combined with non-parametric Bayesian 

modeling for fault detection and fault classification in UPM process 

(Chapter 6).  

1.4 Organization of the Dissertation 

In this chapter, the research objectives, challenges, and the major contributions of 

this research are presented. The rest of the dissertation is organized as follows: 

Chapter 2 Literature Review and Background: This chapter presents a review 

of pertinent literature in sensor based process modeling of CMP and UPM 

processes in addition to techniques used in process monitoring methodologies. 

Chapter 3 Overall Research Methodology: This chapter outlines the overall 

methodology and research framework used in this dissertation.  
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Chapter 4 �on-Linear Sequential Bayesian Analysis-Based Decision Making 

for CMP process:  In this chapter, we integrated the nonlinear sequential 

Bayesian analysis with decision theory. We established a quantitative relationship 

connecting the statistical features (inputs) extracted from real-time sensor signals 

with the process performance. An application of end-point detection in CMP 

process is illustrated by using the proposed method. 

Chapter 5 Process Monitoring by Using Evolutionary Clustering Analysis for 

Chemical Mechanical Planarization (CMP): In this chapter a non-parametric 

Bayesian modeling is developed to model non-Gaussian and non-stationary 

sensor signal captured by various sensors. Evolutionary clustering analysis is used 

to monitor process changes in the process.  

Chapter 6 Multi-sensor Fusion Based Process Monitoring of Ultra Precision 

Machining (UPM): Sensor fusion techniques are investigated in order to monitor 

UPM process using signals collected from  heterogonous sources. We integrated 

non-parametric Bayesian analysis with sensor fusion techniques to monitor 

surface variations in UPM process.  

Chapter 7 Conclusions and Future Work: This chapter presents the research 

contributions, conclusions and future directions. 
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2 CHAPTER II 

 BACKGROU�D A�D LITERATURE REVIEW 

The methodologies adopted in this dissertation are closely related to the following 

research areas:  

• Sensor based process monitoring of Chemical Mechanical Planarization 

(CMP) and Ultra Precision Machining (UPM) processes [17-19] 

• Online state estimation of dynamic processes [20-24] 

• Decision making and sensor fusion in manufacturing processes [25]  

The related research in these areas is presented in the following sections. 

2.1 Sensor Based Process Monitoring of CMP 

Current research efforts in CMP process monitoring mainly focus on process 

endpoint detection (EPD) that enables us to make decision on when to stop 

process monitoring and defect detection. Some of the recent studies are presented 

in the following subsections. The use of optical, thermal, tribological, acoustic, 

capacitive, and inductive sensing principals has been reported in Refs. [17-19] 
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2.1.1 CMP end point detection 

An electrochemical approach for EPD in Cu-CMP is reported in Ref. [26] by 

monitoring the concentration of Cu-ion. The decrease in the Cu-ion, which is 

measured by using a capillary and ion-selective electrode, signals an End-Point. 

An AE-based in situ EPD technique using highly selective slurries for metal CMP 

is presented in Ref. [27]. The End-Point is detected by observing the change in the 

acoustic emission and coefficient of friction signals. The EPD approach reported 

in Ref. [28] leverages a highly selective slurry (HSS). The investigation shows 

that using HSS increases material removal rate of silicon-oxide and increases the 

oxide-to-nitride selectivity, which improves the detection of EPD. A vision-based 

method is developed for EPD [29]. 

Wavelet decomposition of acoustic emission and coefficient of friction signals is 

analyzed by using sequential probability ratio test to detect End Point online [30].  

In Ref. [31], particle filtering technique is integrated with neural network and 

decision making theory to predict EPD accurately. An electrochemical approach 

for EPD in Cu-CMP is reported in Ref. [32] by monitoring the concentration of 

Cu-ion. 

2.1.2 CMP process monitoring  

CMP process was optimized by analyzing the effect of the slurry feeding position 

and sample holder movement on the polishing performance, such as wafer 

uniformity and material removal rate in Ref. [33]. Both acoustic emission (AE) 
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and coefficient of friction (COF) signals were also recorded during the 

experiments. The authors reported that AE signal magnitude drops and COF 

increases while the wafer surfaces become more uniform. Acoustic emission 

signal was used for monitoring oxidation level during the CMP process [34]. This 

study showed that the magnitude of AE signal increases during the oxidization 

process.  A feed forward neural network controller was developed to monitor 

CMP performance such as material removal rate and wafer uniformity. The  input 

variables included polishing time, down force, and relative speed between the 

polishing pad and wafer [35]. Multiple sensors including piezoelectric force 

sensor, hall effect sensor and acoustic emission sensor were used to monitor the 

CMP process [36]. These experiments showed that force sensor and hall-effect 

sensor can clearly detect end-point if the friction characteristics are distinct 

between materials.  

The relation between vibration sensor data and material removal rate is 

investigated in Ref. [37]. In Ref. [38],  non-linear dynamics of the vibration 

sensor signal is correlated with the material removal rate and  the authors showed 

that non-linear dynamic features  improve the predicting material removal rate in 

CMP by 20% comparing to conventional statistical features. Particle Filtering 

technique is integrated with statistical regression to predict CMP process 

performance such as material removal rate in Ref. [39]. Non-linear dynamics of 

functional process variables (FPVs), such as pad temperature, and COF between 
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wafer and pad, as well as their interactions are used for detecting process changes 

in CMP [40]. 

2.1.3 Defect detection in CMP process 

Acoustic emission sensor signal and micro scratches correlation is investigated in 

Ref. [41]. Sharp peak value in acoustic emission signal was noted when scratches 

occur during CMP process. In Ref. [42] both COF and AE sensor data were 

collected to detect delamination defects in low-k Cu-CMP. Experiments show that 

COF signals are not sensitive to delamination effect while wavelet analysis of the 

AE sensor data can detect delamination defects in low-k Cu-CMP effectively. A 

physical scratch model is developed using pad response and slurry behavior [43] . 

This study showed that the scratch depth is increasing as the scratch frequency 

decreases. Optical methods are used for the detection of defects on a wafer 

surface [44]. 

Most of the previous efforts are mostly based on EPD detection and process 

monitoring. There are very few studies that have examined sensor based detection 

of evanescent changes in CMP process. Parametric methods which have been 

used in the literature are not effective for capturing these fast-changing mechanics 

by using sensor data. Therefore, a non-parametric data-driven model is needed to 

model non-stationarity caused by defects.  



13 

 

2.2 Sensor-based UPM Process Modeling 

Tool wear mechanism is investigated by using Coefficient of Friction (COF) 

sensor in Ref. [45]. The authors show that coating the diamond tool with 

Perfluoropolyether (PFPE) polymer causes reduction of COF signal. In Ref. [46] 

acoustic emission (AE) signal acquired from 1045 steel finishing experiments are 

related with tool wear and surface roughness. The authors monitored to increase 

of surface roughness caused by tool wear. They correlated the extracted features 

from AE signal such as, zero crossing rate, mean and standard deviation with the 

surface roughness hence the tool wear.  

In Ref. [47],  AE signal is used to investigate material anisotropy ahead of the tool 

in UPM process for both single and polycrystalline copper. AE and micro thermo 

sensors are used to monitor the machine status in UPM process [48]. Artificial 

neural network (ANN) is used to relate AE and force signal with surface 

roughness in surface finishing of Stavax (S136) die steel work pieces [49]. 

2.3 Online State Estimation of Dynamic Processes  

State-space model is widely used in data driven modeling area where the states 

and model are determined by using process operational data [50]. Accurate 

estimation of the state variables and model parameters are essential for capturing 

the characteristics of a dynamic process.  

The Kalman filter (KF) approach was proposed as an optimal solution to the state 

estimation problem when the state models are linear and the posterior density is 
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Gaussian [50]. However, if these assumptions are not satisfied, the KF method 

will be ineffective. As an alternative, the extended Kalman filter (EKF) has been 

used to estimate the state of non-linear dynamic processes [51-52]. A Gaussian 

posterior density is assumed to implement EKF and a first-order Taylor series 

expansion is applied to provide a local approximation of state estimation. 

Nevertheless, the EKF may cause a large estimation error if dynamic process is 

highly non-linear. Under this circumstance, the Gaussian assumption may not 

hold. One countermeasure, named “point-mass filters” or “probability-grid 

filters,” is utilized to approximate the posterior density by discretizing the 

continuous state variables into samples [53-54]. However, the computation of 

point-mass filters increases significantly with the increase in the state dimensions. 

So, they are too costly to apply in practice. This greatly limits their applications in 

process monitoring and control.  

Particle filters can be described as an extension of the point-mass filters [51]. The 

fundamental principal of particle filters is that a large number of samples 

(particles) are generated by using sequential Monte Carlo sampling methods to 

approximate the posterior probability of the states. Thus, the particles will have a 

tendency to be dense in the regions of high probability. Particle filter method has 

become the most effective way for state estimation of a nonlinear dynamic 

process with satisfactory computational efficiency and has recently been applied 

to many fields, such as robotics, multimedia, and surveillance [55]. 
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Gustafson et al. [56] applied particle filters approach to broad application areas, 

such as positioning, navigation, and target tracking. A significant number of 

studies have been done in robot localization area [20-24]. Particle filters have also 

been applied to other areas, such as acoustic source localization [57], variable 

resolution [58], and Eigen tracking in noisy targets [59]. From these broad 

application areas, it can be seen that particle filtering is a notably effective tool. 

2.4 Decision Making in Design and Manufacturing 

In this study in order to make decisions about the process two kind of techniques 

are preferred: (1) Utility theory and (2) clustering methods. Brief literature review 

in about these techniques are given in the following sections. 

2.4.1 Application of utility theory in decision making 

Decision and utility theory has been extensively used in engineering design [60-

61] for the determination of optimal design alternative. There are also some 

applications of decision making in the manufacturing field. An interactive 

decision support system is implemented for on-line process control in refinery 

production [25]. The structure and components of a distributed decision-making 

system are described in Ref. [62] for complex discrete systems and processes 

control. The application of a process decision program chart is discussed in Ref. 

[63] for total quality control in the area of process planning. A methodology in 

handling uncertainties in multi-period energy models is developed by modeling 

multistage decision processes [64]. Nevertheless, very little work has been 
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reported in applying decision/utility theory for online monitoring and control of 

manufacturing processes. 

2.4.2 Clustering methods for change point detection 

Change point detection can be considered as unsupervised clustering problem. 

Accurate clustering between normal state and defected state is essential to 

monitor the process quality. Distance based clustering methods such as k-means 

[65] and k-nearest neighbor [66] has been widely used to cluster data. Distance 

based methods are highly dependent on pre defined parameters such as number of 

clusters and neighbor size. Self organizing map is a distance based clustering 

technique [67] in which the number of cluster does not need to be know a priori. 

However the clusters are purely based on the distances, and no statistical 

distribution is formulated. This is not preferable for decision making applications. 

Dirichlet Process (DP) Mixture models are applied to broad application areas, 

such as bioinformatics, healthcare, document clustering and image processing 

[68-71]. Its self-growing clustering ability enables to model data without prior 

knowledge of number of clusters. However, DP assumes the data is fully 

exchangeable and thus cannot capture non-stationarity, this is not suitable for 

CMP monitoring applications since data comes in sequential way. Recurrent 

Dirichlet Process (RDP) is developed to overcome this challenge in Ref. [72]. 

RDP technique can utilize the previous time epochs information to formulate 

CMP data in current time epoch effectively. Higher level clustering technique is 
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needed to detect the change point between two epochs, in other words a detection 

method is need to capture the change between Gaussian mixture distributions. 

Nested Dirichlet Process (NDP) is developed for clustering for Gaussian mixture 

distributions [73].  

DP method is used to model non-Gaussian distribution but cannot capture non-

stationarity. RDP is an effective technique to capture non-stationarity and uses 

previous time epochs information. However RDP is unable to detect process 

changes between two consecutive time epochs. NDP can be utilized detect 

changes between Gaussian mixture distributions but it yet assumes the data is 

fully exchangeable. In this research we combine RDP and NDP to utilize a novel 

non parametric Recurrent Nested Dirichlet Process to monitor CMP process. 

2.5 Sensor Fusion in Manufacturing Process 

There are 3 levels of fusion techniques which are summarized below [74] 

• Signal level fusion: Same type of signals from different sensors are 

collected and fused to create a new signal with improved signal to noise 

ratio [75-77]. 

• Feature level fusion: In feature based fusion features in time domain and 

frequency domain are extracted from various sensor signals. Similar 

features extracted from sensors are fused to make decision [78-82]. 
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• Decision level fusion: Sensor signals are processed and analyzed 

individually. The information obtained from individual analysis are 

combined to apply decision rule for final decision [83-84]. 

Principal component analysis (PCA) transformation has been widely used to 

convert correlated sensor signals into uncorrelated components. Subsequently, the 

first principal component which explains the largest variability in sensor data is 

used as fused sensor to make decision [75-76].  Sparce PCA method has been 

used to process decomposition and decorrelation for sparse data then maximum 

entropy technique is used for decision fusion for fault detection [80]. 

Estimation techniques such as Kalman filtering has been widely used for fusion 

mechanism. Dynamic systems are monitored by using multiple sensors. 

Kalman/particle filtering is used to estimate pdf of process state for each sensor 

measurement. Correlated decisions fused to make more accurate decisions [83]. 

Kalman Filtering is used for fusion mechanism. Spectral norm of the normalized 

innovation matrix is used as test statistics to monitor the process [78]. Extended 

kalman filtering is used for both centralized and decentralized sensor fusion to 

detect faults in simulation continuous stirred tank reactor benchmark problem 

[85]. 

Machine learning tools are used to for signal and feature level fusion. Fuzzy 

clustering method is used as fusion mechanism in feature level which are 

monitored using artificial immune system for change detection [81]. Two staged 
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fuzzy-logic model is used to as a sensor fusion mechanism for monitoring tool 

wear condition. In the first stage feature level fusion mechanism is used where, 

features are extracted from sensor signals acquired from force, sound and 

vibrations signals. The outputs of the first stage are used for the second stage for 

decision level-fusion [79]. Support vector machines are used to fused sensor 

signals to monitor motor faults [77]. Bayesian machine learning technique is used 

to select minimum number of sensors and the best features of sensor data to 

predict process condition [82]. Artificial neural network is used as fusion 

mechanism for features extracted from heterogeneous sensor signals, such as 

force, vibration and sound for tool wear monitoring on CMC turning process [86].  

Most of the decision fusion techniques are developed based on Bayesian theory. 

The most widely used technique is to calculate posterior probability with Bayes 

formula in which prior and conditional probabilities determined in advance [87-

90]. As an extension to Bayesian theory evidence theory is used to fuse decisions 

which is based on  quantifying and evaluating evidence [84]. Neural network is 

used to model sensor data from drilling experiments. The outputs of neural 

network are used for construction of mass function. Dampster-Shafer evidence 

theory is used for decision-level fusion [91]. From these broad applications it can 

be seen that sensor fusion is a notably effective tool for process monitoring by 

using heterogonous sensors.  
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CHAPTER III 

3 OVERALL RESEARCH METHODOLOGY 

This dissertation proposes new solutions for monitoring of ultra-precision 

manufacturing process. These solutions have mainly four parts (1) feature 

extraction, (2) process state prediction, (3) decision making, (4) sensor fusion, 

which are mentioned in the introduction chapter. Methodologies for these four 

modules are proposed throughout this dissertation for an effective monitoring 

methodology of UPM process.  Figure 3.1 shows modules used for each chapter. 

3.1 �onlinear Sequential Bayesian Analysis-Based Decision Making 

for Chemical Mechanical Planarization Process (Chapter 4) 

In CMP process end-point facilitates decision on when to stop the planarization 

process. In this study we use vibration sensor data to monitor CMP process for 

detecting end-point. 

Challenges in process monitoring CMP include as: (1) the CMP process is 

complex, non-linear, and non-stationary [92-95], which brings significant 

difficulties for the process monitoring and control, and (2) the signal to noise 

(S/N) ratios in CMP tend to be low with conventional sensors, which causes 
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inherent uncertainty in the data collection and modeling [64]. In order to 

overcome these challenges we integrated sequential Monte Carlo analysis with 

decision theory. Overall methodology is summarized in Figure 3.2. 

Figure 3.1 Modules and techniques used in this dissertation 

Based on the sensor data captured by vibration sensor in CMP experiments, a 

nonlinear regression method is applied to relate sensor information with material 

removal rate (MRR). A non-linear sequential Bayesian analysis is used to predict 

process state. With integration of sequential Bayesian analysis and non-linear 

regression model we can predict MRR for the next step.  The amount of material 

Data Collection from Multiple Sensors 

Feature Extraction 

Time& Frequency Features (Chapter 4) 
Distribution parameters (Chapter 5) 

Process State Prediction 

Particle Filtering (Chapter 4) 

Decision Making 

Utility Theory (Chapter 4) 
Recurrent Nested Dirichlet Process 

(Chapter 5) 

Sensor Fusion  

Evidence Theory (Chapter 6) 
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removed can be calculated with MRR and decision theory can be applied to detect 

end-point. 

 

Figure 3.2 Overall research methodology for CMP end-point detection  

3.2 Process Monitoring by Using Evolutionary Clustering Analysis 

for Chemical Mechanical Planarization (CMP) (Chapter 5) 

This research is based on Cu-CMP experiments by using MEMS vibration sensors 

for process monitoring.  The non-linear dynamics of the CMP process state causes 

the sensor signal collected from MEMS vibration sensors distributed as non-

Gaussian. This non-Gaussian distribution can be modeled as mixture of Gaussian 

distributions. The overall framework of this study is demonstrated in Figure 3.3. 
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Sensor data is collected from MEMS vibration sensor and sliding windows is used 

for sensor data analysis.  Dirichlet Process [96] is used to model sensor data for 

the initial window. Recurrent Dirichlet Process [72] is applied within each sliding 

window to formulate the non-Gaussian distribution of the sensor signal using a 

mixture of Gaussian distributions. Finally, the change in constructed mixture 

models for each sliding window will be detected by developing a novel Recurrent 

Nested Dirichlet process. 

 

Figure 3.3 Overall methodology for CMP monitoring by R�DP 

3.3 Multi-sensor Fusion Based Process Monitoring of Ultra Precision 

Machining (Chapter 6) 

Several research efforts have been made to monitor the UPM process by using 

sensors. Vibration [97], acoustic emission (AE) [98], temperature [99] sensors 
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have been used for monitoring the UPM process. While these methods are, to 

various extends, effective to detect anomalies in the process, combination of 

sensor information may be able to further improve the accuracy of detection. 

However, this type of work has not been reported in the literature of UPM 

process. In this study we combine sensor signals from heterogonous sensors in 

order to get more precise and reliable decisions. Overall framework for this 

research is summarized in Figure 3.4 

 

Figure 3.4 Proposed overall methodology for sensor fusion for UPM process 

monitoring 

Sensor data are captured by heterogonous sensors such as, vibration and force, 

from UPM experiments with different depth of cut settings. A non-parametric 

Bayesian modeling is used to classify each condition for each sensor. A decision 

is made by each sensor signal for the testing data point. Information fusion 

technique is used to fuse these decision in order to detect and classify any change 

during the process.  
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CHAPTER IV 

4 �O�LI�EAR SEQUE�TIAL BAYESIA� 

A�ALYSIS-BASED DECISIO� MAKI�G FOR 

HIGH PRECISIO� MACHI�I�G 

Chemical Mechanical Planarization (CMP) process has been widely used in the 

semiconductor manufacturing industry for realizing highly polished (surface 

roughness Ra ~ 1 nm) and planar (WIWNU ~ 1%, thickness variation standard 

deviation (SD) ~ 3 nm) surfaces of an in-process wafer. In CMP, accurate and 

timely decisions for endpoint detection (EPD) are extremely important to enable 

the process to effectively respond to demand variations and disruptions. In this 

paper, we apply nonlinear sequential Bayesian analysis and decision theory to 

establish a quantitative relationship that connects the measured sensor signal 

features (inputs) with the process performance measure such as material removal 

(outputs) for end-point detection (EPD) of the CMP process. A case study with 

actual CMP data is provided to demonstrate the effectiveness of the present 

approach. 

4.1 Introduction 

In the semiconductor industry, the relentless competition and customer driven 
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demand for functionality and versatility have led to significantly increased circuit 

density [100]. One of the key enablers for this incredible development is the

 chemical mechanical planarization (CMP) process which is one of the most 

critical and widely used operations in the semiconductor industry for realizing 

highly polished (surface roughness Ra ~ 1 nm) and planar (WIWNU ~ 1%, 

thickness variation standard deviation ~ 3 nm) surfaces of inter-level dielectrics 

and metal stud levels of wafers in the fabrication of integrated circuits (IC) [101].  

In the CMP process, accurate and timely decisions for process monitoring and 

control, such as end-point detection (EPD) that facilitates decisions on when to 

stop the polishing process, and adjustment of process parameters for optimal 

performance are extremely critical to enable the process to effectively respond to 

demand variations and disruptions, and to ensure the quality and productivity 

requirements of the wafer yields [92, 100]. Recognizing this need, the 

semiconductor manufacturing enterprises have been investing in various sensor 

technologies used for process monitoring and control. However, accurate 

prediction and consistent realization of quality parts are still major challenges in 

industry. The reasons for this gap include: (1) the CMP process is complex, 

nonlinear, and nonstationary [92-95], which brings significant difficulties for the 

process monitoring and control, and (2) the signal to noise (S/N) ratios in CMP 

tend to be low with conventional sensors, which causes inherent uncertainty in the 

data collection and modeling [64]. Due to these obstacles, most of the current 
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approaches used are based on linear, largely deterministic and stationary models 

while the actual processes are far from that. Therefore, it is imperative to develop 

a methodology that is capable of tackling the nonlinearity and uncertainty of the 

CMP process to facilitate accurate and timely process monitoring and control, 

such as the EPD. 

4.2 Research Methodology for End-point Detection 

This investigation is based on sensor-based Cu-CMP experiments. In the 

experimental study, material removal rate (MRR) is measured offline. With the 

sensor-based CMP experiment setup, the instantaneous pad-wafer deflections are 

considered as process state variables which are captured by the wired and wireless 

vibration sensor signals during the CMP process. Features in both time and 

frequency domains of the recorded time series of vibration signals are extracted 

and further compressed using the principal component analysis (PCA). The 

resulting features are used to quantify the state variables in this study. 

The proposed nonlinear sequential Bayesian-based decision-making approach is 

summarized in Figure 4.1. Based on sensor data captured in the Cu-CMP 

experiments, a nonlinear Bayesian analysis is proposed to sequentially predict 

(one step ahead) the process state, and a nonlinear regression method, such as 

neural network (NN) analysis is applied to relate the process state variables with 

process performance measures, such as material removal rate (MRR). Thereafter, 

by integration of the above sequential Bayesian analysis and nonlinear regression, 
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the MRR can also be predicted sequentially. With the predicted MRR, the amount 

of material that would have to be removed (MR) can be predicted conveniently. 

Thus, by applying the decision making theoretic approach to compare the 

predicted MR with the specified threshold value of MR, the endpoint of the CMP 

process can be properly detected. In Section 4.2.1 we present the nonlinear 

sequential Bayesian method for process state and performance prediction, based 

on which we apply decision making approach for CMP endpoint detection in 

Section 4.2.2. 

 

Figure 4.1 Proposed overall research methodology 
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4.2.1 Online predictive modeling for process state  

The process state �� (the instantaneous pad-wafer deflection in CMP process) at 

time � is captured using online vibration sensor data ��. The underlying 

relationship between the dynamic state �� and measurement �� is captured using 

the observation equations of the form,                         

�� = ��(���	, �� , ���	)        (4.1) 

�� = ℎ�(��, ��)    (4.2) 

where ��  is the state transition function, ��  is the control input (can be treated as a 

decision or an action), ���	 is white noise, ℎ�   is the observation function, and 

��is the observation noise. The Bayesian approach is used to dynamically 

estimate and predict the state. The purpose of state estimation is to determine the 

distribution of state vector (��) given a sequence of observations at various times, 

�	, ��, up to ��, i.e., to estimate �(��|�	:�). State prediction is to estimate the 

distribution of process state one step ahead, i.e., to estimate �(���	|�	:�).  Based 

on the Bayesian theory, the conditional probability density function (PDF) of the 

state can be estimated from the observation as, 

�(��|�	:�) = 	 �(��|��)�(��|��:���) �(��|�	:��	)      (4.3) 

Once �(��|�	:�) is estimated, the function of the future state ���	 conditional on 

measurements �	:� can be predicted as: 
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�(���	|�	:�) = � �(���	|��)�(��|�	:�)���   (4.4) 

In these formulations, Eq. (4.3) is the update function which provides posterior 

probability in Eq. (4.4), i.e., the prediction function, which in turn will provide 

prior probability for the update function. This is a recursive process that evolves 

over time. 

The recursive process represented by Eqs. (4.3) and (4.4) forms the basis for the 

optimal Bayesian solution [51]. However, Eqs. (4.3) and (4.4) only illustrate a 

conceptual solution, which cannot be solved analytically, if the state transition 

function ��  is nonlinear. This is because the nonlinear function ��  will cause the 

posterior distribution of state ��  to be non-Gaussian. It is very difficult to draw 

samples from a non-Gaussian posterior distribution. Thus, the integral operation 

in Eq. (4.4) cannot be solved analytically. 

 

Figure 4.2 Representation of multimodal distribution using samples 

In order to tackle the challenge related to the non-analytical solution for Eqs. (4.3) 

and (4.4), a sequential Bayesian analysis based on Monte Carlo method (also 

called particle filter) [51] is used in this study to recursively compute Eqs. (4.3) 

and (4.4). The basic concept behind particle filter method is that any probability 
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density function (PDF) can be approximately represented by a set of particles 

(samples) as shown in Figure 4.2. Although it is challenging to analytically 

formulate an arbitrary probability density distribution, an effective approximation 

for the discrete distributions is possible, such as, 

�(�) ≈ ∑ �( )!(� − �( ))#$%	   (4.5a) 

�( ) ∝ �('())('() (4.5b) 

where x(i) is the ith sample that  approximates the distribution; set xi ~ q(x), i = 

1,…, � be samples that can be easily drawn from another distribution q(.) called 

importance density; and δ is the Dirac delta  function; the ratio between the 

posterior PDF and the selected importance density function is the associated 

weight �( ) with the sample x(i) as shown in Eq. (4.5b). 

Eq. (4.1) is actually a Markov process. In this study, in order to model the CMP 

process more accurately, a more general scenario, namely, a higher order Markov 

process is considered,  

�� = ��(���	, … , ����, ��, ���	)      (4.6) 

where p is the time lag. Based on Eq. (4.6), we can choose an important density 

that can be factorized as, 

+(�,:�|�,:�) = +(��|����:��	, �,:�)+(�,:��	|�,:��	) (4.7) 
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Once the process measurement �,:� is available, it can be used to update the 

process state �,:�. Thus, the posterior distribution of the process state can be 

formulated as follows, 

�(�,:�|�,:�) = �(��|�,:�)�(�,:�|�,:��	)�(��|�,:��	) 	
= �(-�|'.:�)�('�|'.:���,-.:���)�('.:���|-.:���)�(-�|-.:���)  (4.8) 

In Eq. (4.8), based on Eq. (4.2), we used �(��|�,:�) = �(��|�,:�, �,:��	). Based 

on Eqs. (4.2) and (4.6), Eq. (4.8) can be further formulated as,  

�(�,:�|�,:�) = �(��|��)�/��0����:��	1�(�,:��	|�,:��	)�(��|�,:��	) 	
∝ �(��|��)�/��0����:��	1�(�,:��	|�,:��	) (4.9) 

Thus, the weights can be formulated as based on Eqs. (4.5b) and (4.7), 

�� ∝ �(��|��)�/��0����:��	1�(�,:��	|�,:��	)+/��0����:��	1+(�,:��	|�,:��	) 	
= ���	 �(-�|'�)�/'�0'��2:���1)/'�0'��2:���1  (4.10) 

In this study, we choose the important density as the prior distribution that is 

already available, namely,  +/��0����:��	1 = �/��0����:��	1. Thus, Eq. (4.10) 

becomes,  

�� ∝ ���	�(��|��) (4.11) 
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where �(��|��) is the likelihood of measurement ��which can be estimated by 

the measurement  noise vk in Eq. (4.2).  

In summary, using Eq. (4.6), the process state can be predicted one step ahead; 

and then using Eq. (4.11) the weights of the particles of the process state can be 

updated by using the measurement data. Therefore, by using this sequential 

Monte Carlo sampling method, Eqs. (4.3) and (4.4) can be sequentially and 

recursively solved to estimate and predict the state vector. The pseudo-code of the 

particle filter method is provided in Table 4.1. 

Table 4.1 Pseudo code of the particle filter method with multiple time lags (� 

is number of particles, k is the time index, p is the time lag) 

Since the state-space model (Eq. (4.1)) may not be available upfront for the CMP 

process, the model structure and parameters need to be determined and estimated. 

Because of the complex nature of the CMP process, a simple polynomial state-

space model may not be able to capture the non-linearity. Logistic model is 

applied in this study to formulate the nonlinear state-space model, which is an 

effective technique to handle non-linearity due to its complex model structure 

[102]. Its mathematical expression is  

[(��$ , ��$ )$%	# ]=PF[(���	:���$ , ���	$ )$%	# ,��] 

For i = 1: � 

Generate a particle ��$ ~+/��0���	:���1 

Assign the particle with a weight ��$ , according to Eq. (4.11)  

End 
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��% 5�	�6�7�8��� + 5:	�6�7:8��: + ⋯ + 52	�6�728��2 + <        (4.12) 

where �� represents the process state at time k, p is the time lag, and α, θ, and β 

represent model parameters. With the model structure (Eq. (4.12)) determined, the 

problem of estimating the model parameters (α, θ, and β) can be handled by 

simultaneously estimating the state variables and state model parameters. 

Bayesian theory provides the rule of the joint distribution, 

�(��, =�|�	:�) = �(��|��, =�)�(��|=� , �	:��	)�(=�|�	:��	)   (4.13) 

where kθ  is the vector of the state-space model parameters (α, θ, and β). By 

augmenting the state vector kx  with the parameter vector kθ , the combined state 

and parameter estimation can be performed. In this investigation, we utilized the 

Kernel smooth approach proposed in Ref. [103] to estimate model parameter 

which follows the joint distribution of Eq. (4.13). For the details of the 

implementation Ref. [103] may be referred. 

For another important state-space model parameter in Eq. (4.12), namely, the time 

lag p, we determined its value in prior using the CMP experimental sensor data. 

The mutual information is applied to determine its optimal value (Eq. (4.1) is in 

fact a special case with p = 1). The mutual information of two random variables X 

and Y is a quantity that measures the mutual dependence of two random variables 

[104],  
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>(?; A) = ∑ ∑ �(�, �)BCD E �(',-)�(')�(-)F'∈H-∈I  (4.14) 

where p(x, y) is the joint probability density function of random variables X and Y, 

and p(x) and p(y) are the marginal probability density functions of X and Y, 

respectively. For random time serious (xk, xk-1,…, xk-p, xk-p-1,…, x0), if we let X = 

(xk, xk-1, xk-2, xk-3,…) and Y = (xk-p, xk-p-1, xk-p-2, xk-p-3,…), the best time lag p in Eq. 

(4.12) is chosen as the smallest p value that results the minimal value of the 

mutual information measured by Eq. (4.14) 

4.2.2 Performance measure (MRR) prediction based on predicted process 

state 

The determination of endpoint followed by a decision on whether to stop the 

process at the current time index k can be made based on comparing the amount 

of material to be removed against a specified threshold value. At any time k, the 

decision to stop polishing (uk=0) is made if the threshold is to be reached. 

Otherwise, new sensor signals (yk+1) are collected and used for further state 

estimation and prediction, and then a new decision will be made. 

Our studies on CMP process [37] have indicated that instantaneous pad-wafer 

deflection of the CMP process, namely, the process state xk is significantly related 

to MRR zk. Thus, MRR can quantitatively be related to the state variables using 

nonlinear regression analysis (e.g., Neural Network). In Section 3.1, the online 

process dynamics model is generated based on the processed vibration sensor 

signals using nonlinear Bayesian analysis, which is an effective approach for 
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process state estimation and further prediction. The final step is to combine this 

online dynamics model and the nonlinear regression model to develop the MRR 

prediction model. Once MRR is predicted, the estimated total material removed at 

a specified time k is given by, 

J� = ∑ KLΔNL�L%,       (4.15) 

where jt∆  denotes a time interval between two successive predictions of MRR 

(zj).  

4.2.3 Decision making approach for CMP endpoint detection 

Assume that in the CMP process, there are a list of d1, d2, …, and dm of decisions 

(such as stop or continue the polishing), and 1φ , 2φ , …, and nφ  of events (such as 

the endpoint is reached or not reached) with the uncertainty that is the probability 

p( jφ ) of event jφ  
(j=1,…n). The optimal decision among the possible ones (d1, 

d2,…, and dm) should be chosen to determine the actions (control input uk in Eq. 

(4.1)) to adjust the CMP process. This can be achieved using maximal expected 

utility theory [105]. 

As shown in  

Table 4.2, the utility (preference) of the consequence corresponding to decision i 

on event j, cij, is determined by a utility function. For endpoint (EP) detection of 

CMP, there are two decisions, namely, d1: continue polishing and d2:  stop 

polishing, and two events, 1φ  : under-polish and 2φ : over-polish. The two correct 
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decisions, i.e. to stop polishing if it is over-polish, and to continue if under-polish, 

have significant utility (c1), while the two incorrect decisions have less utility (c2 

and c3), as shown in Figure 4.3.  

In order to compute the expected utilities for different decisions [105], the 

probabilities for each event, p( jφ ) shall be determined. They can be initially 

estimated based on historical data. Thereafter, once the in situ sensor data y is 

available, p( jφ ) will be updated as �( jφ |�). Thus, the optimal decision (di) will 

be chosen based on maximal expected utility [105], namely, 

                     ∑
=

�

j

jij
i

ypc
1

)|(max φ                                 (4.16) 

Table 4.2 Decision Table for 

preferences

 

p( jφ | y) in Eq. (4.16) can be estimated using the sequential Monte Carlo method 

presented in Section 3.1. It can be seen from Figure 4.2 that the predicted process 

state has a form of empirical probability density function (PDF) approximated by 

the particles. Thus, we are able to compute the empirical distribution of material 

removed (MR) using Eq. (4.15). Figure 4.4 depicts an example of the empirical 

distribution of material removed at time k.  

 φ 1 φ 2 … φ n 

d1 c11 c12 … c1n 
d2 c21 c22 … c2n 

… … … … … 
dm cn1 cn2 … cmn 

Prob. )( 1φp  )( 2φp  … )( np φ  
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Figure 4.3 Utility function for EPD of CMP 

 

Figure 4.4 Empirical distribution of material removed and estimation for 

probability of events 1φ  (under-polish) and 2φ  (over-polish) 

Since the specified amount of material that should be removed to reach the 

endpoint can be accurately calculated in advance (marked as “Endpoint” in Figure 

4.4), based on the thickness of the copper layer of the wafer, p( jφ | y) can be 

estimated accordingly, based on the empirical distribution of the MR. Assume the 

total number of samples used in the particle filtering method is �, and at time k 

the number of samples, whose value smaller than “Endpoint” (Figure 4.4) is m, 
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then the probability of event 1φ  (under-polish) and 2φ  (over-polish) can be easily 

estimated as follows, 

p( 1φ ) = m/� (4.17) 

p( 2φ ) = 1- m/� (4.18)  

Based on Eqs. (4.16) to (4.18), we can choose the decision di that will result in the 

maximal utility during the CMP process. This decision making process based on 

the particle filter method is carried out at every time k. Once the decision of action 

is switched from “continue polishing” to “stop polishing,” then the endpoint of 

the CMP is detected. 

4.3 Case Studies 

In order to track the variations of various slurry chemistry parameters of Cu-CMP 

and predict the performance (MRR) of the CMP process, polishing experiments 

were carried out on a LapMaster 12 bench top lapping machine. For the 

experiments, the selection of proper sensors is carefully investigated. Wired and 

wireless sensors have their advantages and disadvantages for CMP experiments. 

Wired sensors have higher sampling rate. However, the existence of wires makes 

it difficult for sensor installation, especially, if one wants to put the sensor close to 

the site to be analyzed. For wireless sensors, although their sampling rate is lower, 

the installation could be much easier since no wires are involved. Thus, an in-situ 

sensor can be implemented with wireless sensors, which enables more accurate 
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data acquisition (for lower frequency signal). By considering the aforementioned 

factors, we use both wired and wireless sensors due to their complementary 

features. Two vibration sensors were mounted on the polishing machine, namely, 

one wired accelerometer (KISTLER) sampling at 5kHz, and one wireless 

accelerometer (MOTEiv) sampling at 500Hz. These two sensors are used to 

capture the instantaneous pad-wafer deflection during the CMP operation. The 

CMP setup is shown in Figure 4.5 Experimental setup using a LapMaster L 12 

Bench-top lapping machine. 

 

Figure 4.5 Experimental setup using a LapMaster L 12 Bench-top lapping 

machine. 

4.3.1 Offline regression analysis connecting process state with process 

performance 

In the experiment, a Taguchi L12 array was used as the design matrix. The 

machine settings, namely, pH of polishing slurry, flow rate of the slurry, amount 

of complexing agent, and amount of BTA were set at two levels, high or low. 
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During the CMP experiment, the MRR data is obtained using the following 

method,   

OPP = ∆R∆S = R(�RTST�S(  (4.19) 

where Wi is the initial wafer weight before polishing and Wf  is the final wafer 

weight after  polishing.  is the duration of a polishing cycle. The instantaneous 

pad-wafer deflection that determines the process state variables are collected 

using wired and wireless vibration sensors. 

In the experiment, the wired vibration sensor data is captured at a frequency of 5k 

Hz, and wireless sensor data at 500 Hz. The time series sensor signals are 

extracted to the following eight features in time and frequency domains, i.e., 

peak-to-peak value (PTP), first two dominant frequencies and amplitudes, 

standard deviation, skewness, and kurtosis values. For wireless sensor signal, six 

features are extracted which are  basically the same as  the features extracted from 

wired sensors data except that only one dominant frequency and amplitude is 

extracted. 

After the features are extracted from the original time series data, in order to 

reduce the impact of the noise in the data, a moving average with a range of ten is 

applied to smooth the features. Afterwards, the principal component analysis 

(PCA) is conducted to compress these features.  A threshold value of 95% is used 

to determine the number of eigenvalue /eigenvector to be remained. Finally, five 

t∆
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out of the eight features from wired sensor data and four out of the six from 

wireless sensor data, i.e., a total of nine features are considered and treated as 

state variables for process-state prediction and further regression analysis. 

In order to relate the nine features extracted from wired and wireless sensor data 

with material removal rate (MRR), a multilayer perceptron (MLP) neural network 

(NN) is used for regression analysis, with 2 layers, and 9 hidden neurons, as 

shown in Figure 4.6. 200 training points and 122 testing points are chosen for 

analysis. The resulting R-square value for testing data points is very satisfactory 

(90.14%). 

 

Figure 4.6 The multilayer perceptron neural network for regression analysis 

between sensor signals and MRR 

Regarding the online state estimation and prediction, the algorithm of the particle 

filter (Table 4.1) using state space model of logistic function was implemented 

using MablabTM. In this case study, the particle filter method was implemented 

with 500 samples (particles). The logistic model (Eq. (4.12)) was utilized to 

formulate the state space model (Eq. (4.1)). The method of mutual information 

analysis (Eq. (4.14)) presented in Section 3.1 is applied first to determine the 
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value of time lag p in Eq. (4.12). As shown in Figure 4.7, the lag value is chosen 

as seven. 

4.3.2 Predictive model for process state variables 

In Section 4.3.1, nine features (state variables) are extracted from sensor signals 

to represent the process state, and predicted sequentially. In order to demonstrate 

the effectiveness of the predictive method presented in Section 4.2.1, the expected 

value of feature 1 based on the empirical distribution is computed at every second 

and plotted in Figure 4.8, in which the actually sensor data is the solid curve and 

the predicted data dashed. The nine features should be predicted in order to 

predict the MRR. The remaining eight plots for features 2 to 9 are not shown here 

due to limitation in space, but all of them show a close consistency between the 

predicted and the actual sensor data. 

In order to demonstrate the advantage of the logistic function based particle 

filtering method over the other widely used predictive methods, such as particle 

filter method using polynomial function, time series (ARMA(3,3)), Kalman 

filtering (KF) and extended Kalman filtering (EKF), by using the same data set, 

the aforementioned methods are also applied to predict the sensor data. The mean 

square errors (MSE) between the prediction and actual sensor data are given in 

Table 4.3 for all nine states. Figure 4.9 shows a comparison of MSE of predicted 

sensor signals using various prediction methods. The superiority of the particle 
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Figure 4.7 Mutual information analysis for determining time lag 

 

Figure 4.8 Predicted result for feature 1 using particle filter with logistic 

function 
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filtering method can be seen from the following results: among the predictions for 

all the 9 states, particle filtering has the smallest MSE in 6 features, EKF 3, 

ARMA(3,3) 0, and KF 0. 

Table 4.3 Comparison of MSE of predicted feature using different methods 

 PF 

(logistic) 
PF 

(polynomial) 
ARMA 

(3,3) 
EKF KF 

Feature1 0.32 0.39 0.54 0.50 0.52 

Feature2 0.11 0.14 0.27 0.27 0.29 

Feature3 0.11 0.13 0.17 0.16 0.19 

Feature4 0.06 0.08 0.34 0.28 0.31 

Feature5 0.10 0.13 0.12 0.13 0.15 

Feature6 0.51 0.53 0.57 0.49 0.53 

Feature7 0.35 0.55 0.43 0.45 0.55 

Feature8 0.25 0.36 0.24 0.22 0.26 

Feature9 0.25 0.26 0.28 0.20 0.23 
 

 

Figure 4.9 Comparison MSE of predicted feature using various methods, i.e., 

PF(logistic), PF(polynomial), ARMA(3,3), EKF, and KF 
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4.3.3 Predictive model for MRR 

Once the process state represented by the nine sensor features are predicted, the 

neural network model presented in Section 4.3.1 is used to predict the 

corresponding MRR. In a similar vein, as the sensor features are predicted, the 

expected value for MRR is computed for every second. Figure 4.10 depicts the 

measured MRR versus predicted MRR. For comparison purpose, besides the 

MRR prediction using the particle filtering method with logistic function, the 

MRRs predicted by other methods, i.e., particle filter with polynomial function, 

ARMA(3,3), KF and EKF also are also obtained. The resulting R-square values 

using these methods for MRR prediction are illustrated in Figure 4.11, which 

shows that the particle filtering method with logistic function achieves more 

satisfactory results than other predictive methods.  

For example, Figure 4.12 shows the empirical PDF of MR at the 275th second. 

Thus, by using Eqs. (4.17) and (4.18), at every second, the probability of the 

events (under-polishing and over polishing) can be estimated accordingly. 
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Figure 4.10 Predicted MRR vs. measured MRR 

 

Figure 4.11 Predicted MRR using various methods 
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Figure 4.12 Empirical distribution of material removed at the 275
th

 second 

4.3.4 Decision making for CMP endpoint detection 

In this case study, we assume that the threshold value of endpoint is 450 mg, i.e., 

the polishing should be stopped when material with weight of 450 mg is removed.  

Table 4.4 Decision table for CMP endpoint detection 

 
1φ : Under-polish 2φ : Over-polish 

d1: Continue polishing c11: 1 c12: -1 

d2: Stop polishing c21: -0.8 c22: 1 

Probability p( 1φ ) p( 2φ ) 

 

Table 4.4 gives the utility values used in this CMP endpoint detection.It may be 

noted that c12 < c21 because over-polishing is less desirable than under-polishing. 

Eq. (4.16) is applied to calculate the expected utility for both decisions d1 

(continue polishing) and d2 (stop polishing) at every second. Figure 4.13 shows 
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the two expected utility curves for d1 and d2 with a threshold value of 450 mg 

(material removal) for endpoint. Based on the maximal expected utility criteria, 

we should take the decision with larger utility value between d1 and d2. Thus, the 

endpoint, namely, when to stop polishing can be identified by the intersection 

between the two utility curves in Figure 4.13. 

 

Figure 4.13 Expected utility for “continue polishing” and “stop polishing” 

with endpoint threshold of 450 mg material removal (MR) (On the x-axis the 

numbers 1-11 corresponds to 254.5 to 255.5 seconds) 

Figure 4.14 shows the relationship between the time of endpoint and the material 

to be removed at the endpoint. The blue dashed curve was generated based on the 

actual measured MRR and the red sold curve was generated based on the 

predicted MRR. The consistency between these two curves demonstrates the 

effectiveness of the proposed method. 
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Figure 4.14 Relationship between the time of endpoint and material to be 

removed at endpoint 

4.4 Summary 

The main purpose of the methodology proposed in this investigation is to 

integrate nonlinear Bayesian method and decision theory to establish an online 

prediction model for accurate endpoint detection of the CMP process. The 

sequential Monte Carlo method was utilized for state prediction of a nonlinear 

dynamic process. During the CMP process, the raw vibration signals captured by 

the sensors are processed and a number of features are extracted. Thereafter, the 

neural network model that relates MRR with sensor signals is created with a 

satisfactory R-square value (90.14%) which indicates the high accuracy of the 

model. Based on the state prediction model and neural network nonlinear 

regression model developed, the MRR can be predicted accordingly. Thus, the 
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material removed at any time during the CMP process can be estimated and 

predicted as well. By combining maximum expected utility decision theory, the 

endpoint of the CMP process can be accurately detected. 
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CHAPTER V 

5 PROCESS MO�ITORI�G BY USI�G 

EVOLUTIO�ARY CLUSTERI�G A�ALYSIS FOR 

CHEMICAL MECHA�ICAL PLA�ARIZATIO� 

(CMP) 

Conventional parametric methods are predominantly used for process monitoring 

in Chemical Mechanical Planarization (CMP) process. These linear-Gaussian 

statistical methods are reticent, and do not adequately capture evanescent CMP 

nano-defects owing to the inherent nonlinear and nonstationary nature of the 

process. We present a non-parametric Recurrent Nested Dirichlet Process (RNDP) 

approach which invokes data gathered from real-time in-situ MEMS wireless 

sensors. The MEMS vibration signal patterns are approximated using mixtures of 

Gaussian distributions. The resulting multi-modal distribution can capture the 

underlying complex spatio-temporal dynamics of the CMP process. We monitor 

these Gaussian mixture distributions to detect incipient process deviations 

characterized by the fast changing nature of mixture components. The ability of 

the RNDP-generated mixture of Gaussian distributions to detect fast-changing 

process deviations is demonstrated using several case studies. Simulated 
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and experimental case studies were conducted to illustrate the effectiveness of the 

proposed method by comparing with the widely used process monitoring 

techniques. 

5.1 Introduction 

Semiconductor wafer characteristics, such as local and global planarity, 

roughness, defects, etc., have a significant effect on the functional integrity of 

semiconductor devices and are therefore tightly controlled during manufacture 

[106]. Chemical Mechanical Planarization technique is used in semiconductor 

industry to achieve these necessary local and global scale wafer properties [14, 

107].  

Since CMP is often the final step before wafer test and packaging stages, wafer 

anomalies and defects resulting from CMP can lead to high revenue and yield 

losses [108]. The industry has identified CMP-induced wafer defects among to be 

the top five reasons inhibiting device yield.  It is, therefore, desirable to detect the 

onset of CMP process anomalies at an early stage so that prompt corrective action 

can be taken.  

In the last decade, semiconductor wafer sizes have increased from 200 mm (ca. 

2000) to the current 300 mm (ca. 2010), with 450 mm wafer size production 

projected in 2017 – 2019 [1, 2].  Concurrently, device feature sizes have reduced 

from 130 nm (Intel Pentium III Tualatin, ca. 2000 – 2001) to 22 nm (Intel Ivy 

Bridge, ca. 2012) [3]. In addition, copper (Cu) has recently emerged as a viable 
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interconnect alternative to tungsten (W) and aluminum (Al) owing to the low 

specific electrical resistance of Cu [109-110], enabling faster processor speeds 

due to reduction in RC delay and crosstalk [109-110].  

However, CMP of copper interconnects is challenging due to the relative softness 

of Cu and the low selectivity of Cu with Tantalum-Tantalum Nitride (Ta/TaN) 

barrier layers [110]. Therefore, in contrast to SiO2 semiconductor wafers, Cu 

wafers are more liable to CMP induced defects and yield losses.  

Conventional statistical process control (SPC) techniques are widely used for 

CMP process monitoring. SPC techniques based on Gaussian parametric statistics 

are of limited utility for the detection of incipient process anomalies and are 

typically found to be reticent in capturing subtle inherent process drifts (i.e., high 

Type II, failing to detect errors), such as gradual pad wear, slurry coagulation, 

slurry contamination, etc., from process noise. Also, SPC-based process 

monitoring entails offline inspection using preconditioned test wafers leading to 

as much as 35% reduction in yield [111]. Accordingly, SPC approaches do not 

afford real-time monitoring of CMP process anomalies. 

Additionally, most of the existing sensor-based monitoring applications in CMP 

have been relegated to the objective of end-point detection as opposed to 

monitoring of process anomalies [18]. Efforts are seldom made to extend sensor-

based monitoring in CMP to defect detection. Typically, in endpoint detection, the 

transition between inter-metallic to dielectric is readily apparent when using high 
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resolution AE sensors [47, 112-114]. In contrast, defects in CMP are mainly 

caused by evanescent physio-chemical phenomena at the nano-scale [115-116]. 

Therefore, while parametric methods may suffice for endpoint detection, the 

sensor signals arising from temporal fast-changing mechanics are 

characteristically nonstationary and nonlinear, and may not be readily detected by 

using statistical parametric models.  

We present an approach that invokes Bayesian Dirichlet Process (DP) mixture 

models in order to detect incipient CMP process anomalies from vibration signal 

patterns acquired from close proximity MEMS sensor arrays. The main 

contribution of this work stems from the application of Bayesian DP models to 

represent sensor signal patterns and, consequently, detect subtle variations in 

signal patterns. Such an application of DP models for the analysis of sensor signal 

patterns in order to capture process anomalies has not been explored thus far. We 

demonstrate using experimentally acquired signal patterns that this novel DP-

based monitoring approach can be valuable from a quality assurance perspective 

in CMP, as it can detect various CMP process anomalies, such as slurry depletion, 

gradual pad wear, and change in polishing load. The rest of this chapter is 

structured as follows: Section 5.2 presents the research methodology. Section 5.3 

demonstrates the results of the case studies. Section 5.4 summarizes the results of 

this research methodology. 



 

5.2 Proposed Research 

We have conducted experimental investigations of Cu

wireless vibration sensor data were during these studies.

in CMP process (such as dishing, erosion and defect occurring)

vibration between the wafer and pad may change as well. It is possible that this 

change of dynamics can be captured by the MEMS vibration sensor employed in 

CMP experiment. Thus, the pr

hypothesis as follows: the process changes in the CMP polishing will be reflected 

in the change of vibration sensor signals; therefore, by capturing the change of 

sensor signals, the process changes

overall framework of the proposed methodology is summarized in

Figure 5.1 Overall Methodology for CMP monitoring by using R�DP
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Proposed Research Methodology for Change Point Detection

We have conducted experimental investigations of Cu-CMP process; MEMS 

wireless vibration sensor data were during these studies. As the process changes 

ocess (such as dishing, erosion and defect occurring), the dynamics of 

vibration between the wafer and pad may change as well. It is possible that this 

change of dynamics can be captured by the MEMS vibration sensor employed in 

Thus, the proposed methodology in this research is based on a 

hypothesis as follows: the process changes in the CMP polishing will be reflected 

in the change of vibration sensor signals; therefore, by capturing the change of 

sensor signals, the process changes in CMP can be identified consequently.

overall framework of the proposed methodology is summarized in Figure 

Overall Methodology for CMP monitoring by using R�DP

for Change Point Detection 

CMP process; MEMS 

process changes 

the dynamics of 

vibration between the wafer and pad may change as well. It is possible that this 

change of dynamics can be captured by the MEMS vibration sensor employed in 

is based on a 

hypothesis as follows: the process changes in the CMP polishing will be reflected 

in the change of vibration sensor signals; therefore, by capturing the change of 

can be identified consequently. The 

Figure 5.1.  

 

Overall Methodology for CMP monitoring by using R�DP 



 

First, wireless MEMS vibration sensor 

technique is used for all subsequent analyses 

process (RDP) model is 

non-Gaussian distribution of the sensor signal using a mixture of Gaussian 

distributions (Sec 5.2.2). Finally, the change in constructed mixture models for 

each sliding window will be detected by using Recurrent Nested

(Sec. 5.2.3). 

5.2.1 Experimental setup

A Buehler Automet 250 

experiments. A tri-axis MEMS vibration sensor

Anolog Devices Inc. is mounted on the apparatus to collect sensor data. The 

sensor signals are sampled at 700 Hz and transmitted wirelessly to desktop 

computer using a wireless transmitter unit

network is shown in Figure 

Figure 5.2 Buehler Automet

wireless Xbee Vibration Sensor
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First, wireless MEMS vibration sensor data acquired and a sliding window 

technique is used for all subsequent analyses (Sec. 5.2.1). A recurrent Dirichlet 

rocess (RDP) model is constructed within each sliding window to estimate

Gaussian distribution of the sensor signal using a mixture of Gaussian 

.2). Finally, the change in constructed mixture models for 

each sliding window will be detected by using Recurrent Nested Dirichlet Process 

etup 

Buehler Automet 250 bench top CMP apparatus is used for planarization 

axis MEMS vibration sensor (ADXL 335) manufactured by 

is mounted on the apparatus to collect sensor data. The 

sensor signals are sampled at 700 Hz and transmitted wirelessly to desktop 

a wireless transmitter unit. The CMP setup and Xbee sensor 

Figure 5.2. 

Buehler Automet
®

 250 experimental CMP polishing setup 

wireless Xbee Vibration Sensor 

sliding window 

ecurrent Dirichlet 

estimate the 

Gaussian distribution of the sensor signal using a mixture of Gaussian 

.2). Finally, the change in constructed mixture models for 

Dirichlet Process 

apparatus is used for planarization 

manufactured by 

is mounted on the apparatus to collect sensor data. The 

sensor signals are sampled at 700 Hz and transmitted wirelessly to desktop 

. The CMP setup and Xbee sensor 

 

250 experimental CMP polishing setup and 



 

Blanket copper wafer disks 

based alkaline colloidal silica slurry

20ml/min. Near-optical (Ra~ 5nm)

are obtained on polishing with 

wafers (Figure 5.3). 

Figure 5.3 Polished 

5.2.2 Dirichlet process (DP) based modeling of CMP vibration sensor 

signals 

Any non-Gaussian distribution can be modeled by using mixture of Gaussian 

distributions as in Eq. 5.1.

 

where �$ is the data point collected by wireless vibration sensor from CMP 

process  as shown in Figure

with weight UL and parameters 
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Blanket copper wafer disks of Φ1.625 inch (40.625 mm) are polished in KOH

based alkaline colloidal silica slurry medium, which has a constant flow rate of 

(Ra~ 5nm) quality surface finish blanket copper wafers 

are obtained on polishing with a priori identified optimal processing conditions 

Polished blanket copper wafers after 12 min of CMP

Dirichlet process (DP) based modeling of CMP vibration sensor 

Gaussian distribution can be modeled by using mixture of Gaussian 

1. 

�(�$) = 	V ULW(�$|=L)X
L%	  

is the data point collected by wireless vibration sensor from CMP 

ure 5.4. A linear combination of Y Gaussian distribution

and parameters =L  (mean ZL and variance	[L�) is used to 

ed in KOH-

flow rate of 

blanket copper wafers 

optimal processing conditions 

 

afers after 12 min of CMP 

Dirichlet process (DP) based modeling of CMP vibration sensor 

Gaussian distribution can be modeled by using mixture of Gaussian 

(5.1) 

is the data point collected by wireless vibration sensor from CMP 

Gaussian distributions 

is used to 



 

approximate non-Gaussian distribution. If the number of mixture components 

known a priori, the expectation maximization (EM) algorithm 

to estimate UL and =L  but in practice 

[118] can be utilized to approximate non

knowledge of Y. In Figure

mixture Gaussian components by using Dirichlet Process

where the number of mixture components is obtained 

technique. 

Figure 5.4 Time 

Given a set of observation

distribution of parameters

given parameters with the prior distribution of the parameters using

representation: 

(b) Time Series
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Gaussian distribution. If the number of mixture components 

the expectation maximization (EM) algorithm [117] can be used 

but in practice Y is usually unknown. Dirichlet Process

can be utilized to approximate non-Gaussian distribution without prior 

ure 5.4; non-Gaussian CMP data is approximate

components by using Dirichlet Process in an adaptive way, 

where the number of mixture components is obtained using a data driven

Time series and histogram of vibration sensor data

Given a set of observation	� = (�	, �	, … , �#), we can estimate the posterior 

distribution of parameters by combining the likelihood of the set of observations 

given parameters with the prior distribution of the parameters using a 

Time Series (a) Histogram 

Gaussian distribution. If the number of mixture components Y is 

can be used 

is usually unknown. Dirichlet Process 

Gaussian distribution without prior 

Gaussian CMP data is approximated by two 

in an adaptive way, 

data driven 

 

ata 

, we can estimate the posterior 

by combining the likelihood of the set of observations 

 Bayesian 
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 �(\, ]|�) ∝ �(\, ])�(�|\,]) (5.1)  

A Gaussian distribution with hyper parameters ^ and	_: �/ZL|^, _1~W(^, _�	) 

is chosen as the prior for the mixture means. The posterior distribution of ZL 	is 

computed by multiplication of prior and the likelihood function, which results in 

the following Gaussian distribution: 

 �/ZL0�, `, aL , ^, _1~W b�̅LdLaL + ^_dLaL + _ , 1dLaL + _f (5.1)  

where, �̅L is the sample mean of data points of mixture component j, dL  is the 

number of data points belonging to component j, and ` is the indicator vector for 

class labels.  

The gamma distribution is selected as prior for component precision (inverse of 

variance) with hyper parameters < and �: �/aL|<, �	1~gh(<	, �	�	). 

Subsequently, on multiplying the likelihood function �(�|aL) with the prior for 

the component precision �/aL|<, �	1	we obtain the following posterior 

distribution for component precision which is a gamma distribution:  

 �/aL0�, `, ZL , <, �	1~gh i< + dL , j�< + ∑ (�$ − ZL)�$:k(%$dLaL + _ l�	m (5.2) 

A Dirichlet distribution with a parameter of	n �⁄ , is chosen as the prior for mixing 

weights of the components as follows: 
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 �(U	, … , U�|n)~p q(n �⁄ , … , n �⁄ ) (5.3)  

where, n is the concentration parameter and k  is the number of mixture 

components. Given this Dirichlet prior for mixing weights, the prior for the 

number of data points for each component dL  becomes a multinomial distribution; 

subsequently the joint distribution of indicator vector is expressed as follows: 

 �(r	, … , r#|U	, … , U�) = s ULtu�
L%	  (5.4)  

where � is the number of data points. 

Using the property of Dirichlet integral, we can integrate out the mixing weights 

and get the prior for joint distribution of indicator vector only dependent on 

concentration parameter	n: 

 �(r	, … , r#|n) = 	 Γ(n)
Γ(n + W) s Γ(dL + n/�)

Γ(n/�)�
L%	  (5.5)  

where, Γ(. ) is the Gamma function. As a result, the conditional prior for the 

single indicator of data point i can be written as: 

 �(r$ = x|r�$, n) = d�$,L + n/�W − 1 + n  (5.6)  
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where, −  indicates the all indices except  . The posterior distribution for the 

single indicator r$ can be calculated by multiplying the prior for indicator 

�(r$ = x|r�$, n)	with the likelihood function �(�$|ZL, aL) as given by: 

 �/r$ = x|r�$, ZL , aL , n1 ∝ dL�(�$|ZL , aL) (5.7)  

Consequently, the finite Gaussian mixture model can be represented 

hierarchically using the following form: 

 

�$~W/=L1	
=L~g,	

U	, … , U�|n~p q(n �⁄ , … , n �⁄ )	
r|U	, … , U�~p arqyNy(U	, … , U�) 

(5.8)  

where, �z is sampled from Gaussian distribution with parameters \{ which is 

sampled from prior distribution |}. Mixture weights ]{ is sampled from Dirichlet 

distribution, whereas indicators ` are proportional to mixture weights. 

Infinite Gaussian mixture model with Dirichlet process 

So far, our discussion has focused on for finite number of components under the 

assumption that the number of mixture components is known a priori. When we 

assume that the limit for number of clusters k goes to infinity, the resulting is 

Dirichlet process [119].  
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The Chinese restaurant process  is metaphorically used to explain this idea [120-

121]. Assuming that a Chinese restaurant has infinite numbers of tables and each 

table can be seated by infinite number of customers. The process begins when the 

first customer sits on any available table. Thereafter, the second customer either 

sits on the table where the first customer is sitting or on an unoccupied table. 

Continuing with this reasoning, the ith customer can sit at an already occupied 

table with a probability proportional to the number of customers at that particular 

table. Alternatively, the same customer can sit at an unoccupied table with 

probability proportional to concentration parameter α. Accordingly, the prior 

distribution for the component indicators is formulated as follows: 

 �(r$ = �|r�$, n) ∝ ~ d�$,�W − 1 + n 							 �	�	 a	hrN �ynW − 1 + n 	 �	�	 a	dCN	hrN �y� 
(5.9) 

This result signifies a Dirichlet process mixture (DPM) which can be used to 

model a set of observations	(�	, ��, … , �t), with latent variables of (=	, =�, … ,
=t) as follows: 

 

G~	DP(α, G,)	
θ�	~	G	

x�	~	F(. |θ�) 

(5.10) 

In the above equation, consider that data points �$ (e.g., features from sensor data) 

are drawn from a distribution F with parameters		=$. Additionally, each  =$ is 

drawn from unknown distribution G. We note, because the distribution G is 
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discrete, the same values can be assigned to multiple	=$. Data points �$ which 

have the same =$ value belongs to the same component [118, 122-123]. 

Furthermore, on integrating out G, the following conditional distribution for =t is 

obtained [124]:  

 θ�|θ��	, … , θ	, G,, α~ α

α + n − 1 G, + V 1
α + n − 1��	

�%	 δ�� (5.11) 

where, !�� is the Dirac function peaked on =�. Subsequently, combining the 

likelihood function (Eq. (5.1)) with the prior distribution for single indicator of 

data i, results in the following posterior distribution for an indicator: 

 �(r$ = �|r�$, �)~ ~ d�$,�W − 1 + n 	�(�$|=�),														 �	�	 a	hrN �ynW − 1 + n	� �(�$|=)�g,(=) ,  �	�	 a	dCN	hrN �y� 
(5.12) 

Table 5.1 Pseudo code for DP clustering 

� Construct DP mixture with no data items to get priors 
� Initialize DP mixture with data  
� Gibbs Sampling 

For #iteration 
For each data element 

• remove data item i from cluster j and its sufficient 
statistics 

• check if the cluster is empty, if so delete it 

• compute conditional probabilities of data item i for each 
clusters  

• choose cluster for data item i  

• create new cluster if needed 

• add data item and its statistics to cluster 
end 

end 
end 

 



 

5.2.3 Recurrent Dirichlet process 

The DPM assumes data points 

in many cases, such as process monitoring applications

sequentially. During the 

(Figure 5.5 (c)), die (Fig

change overtime (Figure 

track the parameters of mixture 

accurate decisions. We posit

by utilizing the information from prior

Figure

Initially, the incoming sensor 

epoch 1 consists of data points 

points (��, ��, … , �t) with the latent variables 
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Recurrent Dirichlet process (RDP) model 

DPM assumes data points (�	, ��, … , �t) are fully exchangeable, although 

process monitoring applications, data points are 

 physical process, new mixture components may emerge

Figure 5.5(d)) or parameters of mixture components

 5.5 (b)). Therefore, to monitor the process, we need to 

mixture components for making physically tenable and 

We posit that accurate mixture model updates can be obtained 

by utilizing the information from prior cluster estimates.  

ure 5.5 Possible cluster evolutions 

Initially, the incoming sensor data is divided into sliding windows. For instance

of data points (�	, ��, … , �t�	), and epoch 2 consists

) with the latent variables (=	, =�, … , =t�	) and (=

are fully exchangeable, although 

data points are acquired 

may emerge 

mixture components may 

we need to 

making physically tenable and 

updates can be obtained 

 

instance, if 

and epoch 2 consists of data 

(=�, =�, … ,
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=t), respectively; the conditional distribution of the latent variable  =t at time 

epoch N can be formulated by using previous time epoch’s information as follows 

[72]: 

θ�,�|θ��	,�, θ�,	:��	, G,, α~ 1N��	 + i + α − 1 � V /n�,��	 + n�,�1�∈����∪	�� δ/θ�,�1 + αG,� (5.13) 

where, N� denotes the number of data points in the t�� epoch,  n�,� denotes the 

number of data points associated with mixture component k at time t, and I� 
denotes the mixture of Gaussian distributions at  time t. 

Once again, the Chinese restaurant process metaphor can be used to illustrate this 

situation; the conditions are articulated as follows:  

• Suppose that the owner of the restaurant keeps an accurate log of the 

dishes served on each table, also the number of people who share that 

particular dish 

• Additionally, the owner assumes that a particularly popular dish remains 

popular the next day, so that he can buy the required ingredients. 

• Lastly, the information about the previous day’s consumption is displayed 

on all tables, so that customers can make a choice based on popularity of 

various dishes 

Accordingly with these conditions, on a given day t, a customer can choose a 

table (labeled as k) proportional to the number of customers who occupied table k 



67 

 

on the previous day, plus the number of customers that are sitting at this table 

(table k) at the particular instant this customer enters the restaurant.  Using Eq. 

5.13 and letting Y → 	∞, the cluster assignment is mathematically represented as 

follows: 

 �(r$ = �|r�$) = ~ d�,S�	 + d�$,�,SWS�	 +  − 1 + n ,								 �	�	 a	hrN �ynWS�	 +  − 1 + n ,					 �	�	 a	 dhrN �y� 
(5.14) 

As a physical analogy to the Chinese restaurant metaphor, wireless MEMS 

vibration sensor signals obtained from the CMP process can be divided into 

epochs.  Subsequently, the cluster parameters of particular epoch can be estimated 

invoking the RDP model. However, in the case of CMP data we note that the 

parameters for the mixture components are sampled in a Markovian fashion using 

the information from previous time epochs: 

 =S~�(. |=S�	) 
(5.15) 

Inference for component assignments by using Gibbs sampling algorithm will be 

as follows: 

�/r$,S = �0r�$,S)~ � 
¡ d�,S�	 + d�$,�,SWS�	 + WS�	 + n 	�(�$|=�),																					 �	�	 a	hrN �ynWS�	 + WS�	 + n	� �(�$|=)�g,(=) ,  �	�	 a	 dhrN �y� 

(5.16)  
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5.2.4 Recurrent nested Dirichlet process (R�DP) model  

Although we have estimated the parameters for the clusters at each time epoch in 

a sequential manner, we have not yet considered the clusters between time epochs 

in order to detect incipient changes in the process. In this context the nested 

Dirichlet process is useful when there are multiple groups of data, and 

additionally within each group there are also multiple clusters [73]. Therefore, in 

order to detect changes between two consecutive time epochs we propose a novel 

approach which integrates recurrent Dirichlet process (RDP, Section 5.2.3) with 

nested Dirichlet process (NDP, Section 5.2.4) and consequently term the resulting 

approach as Recurrent �ested Dirichlet Process (RNDP), which is formulated as 

follows: 

 

gS|n, _, g,	~	p�(n, _, g,)	
=S$|gS	~	gS	�S$|=S$	~	��¢( 

(5.17) 

where, �S$ is the  S£ data point in sliding window N, g, is the prior distribution 

over groups, ��u(  is the distribution over the data points, gL is the distribution over 

the parameters within clusters, g, is the distribution over the clusters within 

groups.  

On combining the NDP and RDP cluster labels for data points and time epochs as 

shown in Eqs (5.16) and (5.17), respectively, we obtained the following 
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probability distribution functions for both the higher level (Eq. (5.18)), as well as, 

lower level (Eq. (5.19)) indicators: 

�/KL,S = �0. )~ ¤ (^�,S�	 + ^�$,�,S)_	�/�L$0=1,						,  �	�	 a	hrN �y_ � �/�L$0=1�g,(=),																											 ,  �	�	 a	 dhrN �y� 
(5.18) 

�/rL$ = B0. )~ j (dL,¥,S�	 + d�$,L,¥,S)n	�/�L$0=¥1		,  �	�	 a	hrN �yn�/�L$0rL$ = Bt6¦1																										,  �	�	 a	 dhrN �y� 
(5.19) 

where KL is the cluster label for time epoch N, and rL$ 	 is the cluster label for sensor 

data point   at time epoch x. 
By tracking the evolution of mixture Gaussians parameters at consecutive epochs, 

the incipient changes in the CMP process can be monitored. Consequently, 

knowing the distribution of mixture Gaussian parameters a priori, control charts 

can be set up so that CMP process drifts can be detected at an early stage in an 

SPC setting. In the forthcoming section, we delineate how the RNDP method can 

be tractably extended to a SPC setting.  

5.2.5 Formulation of R�DP-based control charts for process monitoring 

applications 

The formulation of RNDP-based control charts entails two key aspects:  

(a) Setting up the control limits for the RNDP-based control chart  
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(b) Comparison of RNDP control charts with conventional SPC charts, such 

as EWMA and CUSUM with respect to Type II error in terms of the 

average run length (ARL1) statistic.  

In this section, the first of the above two aspects will be elucidated. 

Concomitantly, for purposes of juxtaposition we will also state the well-known 

control limits for popular SPC charts, such as EWMA and CUSUM. 

Control limits for EWMA: Exponentially weighted moving average (EWMA) 

charts are frequently used to monitor the small  shifts in the first moment (mean) 

of a process [125]. The EWMA chart assumes each observation/data point is 

normally distributed, i.e.,	�$~W(Z, [�) with the following test statistics	K$: 
  K$ = §�$ + (1 − §)K$�	 (5.20) 

where, K, = 0, and the parameter § is a heuristically determined. We note a 

higher § value implies a greater degree of importance has been assigned to current 

data point, as opposed to previous data points.  

CUSUM: Cumulative Sum (CUSUM) control chart is a sequential technique for 

monitoring drifts in both the first and second moments (mean, standard deviation, 

respectively) [126]. The CUSUM assumes each observation/data point is 

normally distributed, i.e.,	�$~W(Z, [�) with the following test statistics for mean 

and standard deviation (	K$ and �$ 	): 
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K$ = |�$ − Z|[ 	
�$ = (©K$ − 0.822)0.349  

(5.21) 

For positive (¯�) and negative (¯�) change in mean two separate CUSUM test 

statistics can be constructed as  shown in Eq. 5.22. 

 
$̄� = max²0, K$ − Y + $̄�	� ]	

$̄� = max	²0, −K$ − Y + $̄�	� ] (5.22) 

where, initial values for $̄� and $̄� are 0. In order to monitor the change in 

standard deviation �$ is used instead of statistics	K$. 
R�DP: First, the time series data are segregated into sliding windows and 

subsequently, the RNDP methodology is applied for each window. Detail steps 

are as follows: 

(a) Time series data is mapped into phase space which provides information 

about the dynamics of the system [127]. In order to reconstruct the time 

series in phase space, the appropriate embedding dimensions (delay and 

neighborhood dimension) are estimated. For this purpose, the auto mutual 

information (AMI) function and false nearest neighborhood (FNN) 

algorithm is used, from which the optimal delay (³) and embedding 

dimension (�´) are respectively obtained [127]. 



 

(b) Subsequently, the RNDP process applied to the time series reconstructed 

in phase space. Pearson

every iteration of 

Figure 5.7 illustrates how the estimated distribution converges to 

distribution as the number of iteration

GoF test is applied 

5.8).  

 

Figure 5.6 Phase space plot (b) constructed from time series (a) by using 

mutual Information (c) and 

72 

Subsequently, the RNDP process applied to the time series reconstructed 

Pearson’s Chi-square goodness of fit (GoF) test is used for 

iteration of Gibbs sampling to determine the optimal stopping point.

illustrates how the estimated distribution converges to 

distribution as the number of iterations increases. Pearson’s chi square 

is applied at each iteration with type I error set at 5% (See 

Phase space plot (b) constructed from time series (a) by using 

utual Information (c) and false nearest neighbor (d) 

Subsequently, the RNDP process applied to the time series reconstructed 

test is used for 

the optimal stopping point. 

illustrates how the estimated distribution converges to the true 

chi square 

See Figure 

 

Phase space plot (b) constructed from time series (a) by using 
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Evaluation of estimated distribution vs. true distribution at 

different number of iterations 
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Gibbs sampling iterations are stopped once the GoF test statistics drops below a 

set p-value (5%). 

Finally, the ARL1 performances (smaller is better) of EWMA, CUSUM, and 

RNDP-based control charts are compared. To ensure equitable comparisons, all 

these charts are set up with control limits, such that, type I probability in terms of 

the ARL0 is maintained at approximately 370 data points. Consequently, the 

reference value K is set at 0.5 for the CUSUM control chart, the § value for the 

EWMA chart set at 0.2, and the scale parameter α for the RNDP-based control 

chart set at 1.  

5.3 Validation of the Proposed Method 

Multiple case studies are reported in order to illustrate the effectiveness of the 

proposed RNDP approach over conventional SPC methods. For this purpose, both 

numerical (computer generated time series) and experimental (wirelessly acquired 

MEMS vibration sensor signals from CMP process) data sets are tested.  

For simulation based studies, the following two kinds of scenarios are 

investigated: 

(a) An auto regressive moving average (ARMA) model is used to generate 

signals with six kinds of fault types (Table 5.2, Figure 5.9). 

(b) A sinusoidal signal with a intermittent extra frequency, essentially 

indicating the change in the autocorrelation function. 
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In the simulation studies we will specifically concentrate on being able to detect 

changes in the signal. Pertinently, we desire a low detection delay given that a 

change in the signal characteristics has occurred. A smaller detection delay 

implies that the method is sensitive to subtle process drifts.   

Finally, vibration sensor signal patterns from CMP tests conducted under 

conditions where certain process parameters have been deliberately changed are 

tested to illustrate the effectiveness of the RNDP approach. In these tests it was 

consistently observed that the RNDP method not only captures the change at an 

earlier stage, but also is capable of identifying the type/nature of changes. This is 

valuable from an engineering perspective, because by knowing both when a 

change has occurred and also type of the change, an operator can make 

expeditious adjustment to the process, which can be helpful for preventing scrap 

and rework. 

5.3.1 Change point detection with simulated time series data 

A time series indicative of normal process conditions is generated from an 

ARMA(m,n) process as follows [128]: 

 µ(+)�S = p(+)hS (5.23) 

where, µ(+)  and p(+) are defined as: 
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A(q) = 1 − Vφ�q��¹
�%	 	

D(q) = 1 − V θºq���
º%	 	

q�	x� =	x��	 

(5.24) 

where, �S is the process state variable at time N, and hS~	W(0, [»�) is the process 

noise at time N. State space model is constructed with measurement noise 

¼S~W(0, [½�) at time	N in the following manner: 

 
x� = V φ�x���

¹
�%	 − Vθºa��º + a�

�
º%	 	

y� = x� + ε� 
(5.25) 

where,  �S is the measurement data. 

Specifically, the following ARMA (2, 1) models are used in this study: 

Model 1: �S = 0.99�S�	 − 0.49�S�� + 0.7hS�	 + hS (5.26) 

Model 2: �S = 0.1�S�	 − 0.8�S�� + 0.7hS�	 + hS (5.27) 

The state space model of Eq. 5.25 is considered to represent the normal process 

condition (in control process). Various faults (process drifts) as summarized in 

Table 5.2, and illustrated in Figure 5.9 are induced.  As a physical analogy, these 

faults may be considered as anomalies that cause the process to drift out of 

control.  
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Table 5.2 Summary of fault types 

Fault Types Cause of Faults 

Fault 1  at ∼ �(0, δ
2
σ

2
a ) (process variance change) 

Fault 2  
 

et ∼ �(0, δ
2
σ

2
e ) (measurement errors 

variance change) 

Fault 3  at ∼ �(δ, σ
2

a ) (process mean shift) 

Fault 4  at ∼ �(δ, δ
2
 σ

2
a ) (mean and variance fault) 

Fault 5  at ∼ (�(0, δ
2
σ

2
a ) U �(δ, σ

2
a )) (non-Gaussian fault) 

Fault 6  
1. at ∼ �(0, δ

2
σ

2
a ) 

2. at ∼ �(δ, σ
2

a )  
(different faults) 

Comparison for different fault types  

The normal condition assumes that the measurement noise is in accordance with 

the following null hypothesis:  

H0: ¼S~W(0, 0.5�)  hS~	W(0, 1�) 

In the above  ¼S is the measurement noise, while hS is the process noise. In a 

physical sense, ¼S is evocative of errors due to sensing, whereas, hS is 

representative of environmental noise (e.g., vibration from nearby machinery, 

temperature fluctuations, etc.). Note also, ¼S is significantly less volatile in 

comparison to hS. The alternative hypothesis consists of a variety of changes in ¼S 

and/or	hS. Also, for the first three fault conditions, the result from a contemporary 

wavelet based cumulative sum (WCUSUM) control chart reported in Ref. [129] is 

used for comparison.  



 

Figure 5.
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.9 Illustration of changes in the process 
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In these six case studies the following standard procedure is maintained: 

i. Initially, for both models 1 and 2 (Eq. 5.26 and Eq. 5.27, respectively) a 

2000 data point long time series is generated. This time series is 

considered to be representative of normal process conditions (in control).  

ii. From the normal condition data sets the upper and lower control limits for 

CUSUM, WCUSUM, and RNDP-based control charts are estimated using 

Monte Carlo simulation. These control limits are adjusted such that the 

Type I probability is identical for all control charts. This is achieved by 

maintaining the ARL0 value at approximately 370 data points. This step is 

important for a fair comparison of different approaches. 

In other words, by maintaining the ARL0 is identical we ensure that no one 

approach is overly susceptible to Type I error.  

iii. Once the ARL0 limits have been determined, we simulate a 2000 data 

point long time series with different types of fault infused into both model 

1 and 2. Based on the predetermined control limits (from step ii) we can 

estimate the ARL1 values for each of the control charts. The approach with 

smallest ARL1 is considered more sensitive for detecting changes. Each 

case is replicated for 30 instances and the averaged ARL1 values are 

reported.  

We summarize the different simulated (see Table 5.2 and Figure 5.9) fault types 

herewith: 
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• Fault 1: Illustrates a situation where the process noise variance changes. 

Model 1 and 2 are investigated under the alternative hypothesis of H1: 

hS~	W(0, !�1�). The results are shown in Figure 5.11, from which we 

notice that the RNDP approach outperforms the CUSUM and WCUSUM. 

For instance, for a process noise variation of 1.5σ the ARL1 (noting that 

the result is the average of 30 replications) is approximately 25-30 data 

points and is almost ~ 30% less than WCUSUM.  

• Fault 2: Demonstrates the change of variance in measurement noise with 

an alternative hypothesis H1:	¼S~W(0	!�0.5�). The results are illustrated 

in Figure 5.12, from where it is evident that RNDP approach is 

comparable to WCUSUM for model 1, while significantly outperforming 

(ARL1 is approximately 50% less for all levels of ¼S) WCUSUM for model 

2.  

• Fault 3: In this case, the drifts in process mean are investigated with 

alternative hypothesis set as H1: hS~	W(!, 1�). The results are presented in 

Figure 5.13 illustrates that WCUSUM is not sensitive to drifts in the 

process mean, whereas RNDP successfully detects the changes within 75 

data points for ! = 1 (the WCUSUM, CUSUM ARL1 values were 

approximately 370, 125 data points, respectively). 

• Fault 4: We test the scenario where there is a change in both mean and 

variance of the process noise as represented with the alternative hypothesis 
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H1: 	hS~W(!, !�0.5�). For both models the RNDP ARL1 values were 

almost 50%-75% smaller compared to the CUSUM chart. 

• Fault 5: In complex physical processes like CMP, the process noise may 

have a non-Gaussian characteristic. Under such situations, traditional 

methods which explicitly assume process noise follows a Gaussian 

distribution may fail to capture subtle changes in the process or even prone 

to Type I error. We demonstrate the potency of the RNDP method for 

cases that have non-Gaussian noise by sampling from a multimodal 

distribution shown in Figure 5.10. Formally, the alternative hypothesis for 

this case is stated as H1: (hS~	W(!, 1�)	Ã	hS~	W(0, !�1�)).   

The results from this scenario are shown in Figure 5.15; once again it is 

observed that the RNDP approach detects process deviations 

approximately 30%-40% earlier than CUSUM. 

 
Figure 5.10 �on-Gaussian process noise added for fault 5 
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• Fault 6: It is often observed that, several types of changes may 

concurrently occur in a real life scenario. For example, during CMP 

process, due to changes in the down-force (polishing load) the pad life 

also changes. Conventional SPC charts often fail to consider the effect of 

multiple faults simultaneously. However, owing to its self-evolving 

ability, RNDP can detect different kinds of changes simultaneously. We 

demonstrate such a case in which multiple faults occur consecutively. 

Accordingly, for this case the alternative hypotheses are, 

H1:	hS~	W(0, !�1�) and H2:	hS~	W(!, 1�). Classification errors for 

detecting various kinds of changes are shown in Table 5.3. The normal 

condition is denoted by C1 whereas, two fault conditions are symbolically 

represented as C2 and C3, these correspond to H1 and H2, respectively. 

For almost all noise levels tested, the RNDP approach classification 

accuracy is > 75%. 



 

Fig
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Figure 5.11 ARL1 results for fault type 1  
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Figure 5.12 ARL1 results for fault type 2  
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Figure 5.13 ARL1 results for fault type 3  
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Figure 5.14 ARL1 results for fault type 4  
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Figure 5.15 ARL1 results for fault type 5  
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Table 5.3 Classification accuracy matrix for fault type 6  

 
Classification Accuracy Matrix 

Mean and Variance Shift 
(Multiplication of σ)  

C1 C2 C3 

1 

C1 98.78% - 18.54% 

C2 - - - 

C3 1.22% - 81.46% 

1.25 

C1 79.96% 38.60% 6.48% 

C2 20.04% 60.28% 10.47% 

C3 0% 1.12% 83.05% 

1.5 

C1 93.53% 30.00% 2.50% 

C2 6.47% 69.55% 12.55% 

C3 0% 0.45% 84.95% 

1.75  

C1  99.42%  24.45%  2.15%  

C2  0.58%  75.08%  12.10%  

C3  0%  0.47%  85.75%  

2  

C1  99.89%  21.35%  1.62%  

C2  0.11%  77.72%  12.30%  

C3  0%  0.93%  86.08%  

2.25  

C1  99.91%  21.90%  0.77%  

C2  0.09%  77.17%  12.73%  

C3  0%  0.93%  86.50%  

2.5  

C1  100.00%  21.80%  1.57%  

C2  0%  77.70%  11.72%  

C3  0%  0.50%  86.72%  

2.75  

C1  100.00%  20.40%  0.73%  

C2  0%  78.57%  12.95%  

C3  0%  1.03%  86.32%  

3  

C1  100.00%  19.13%  0.75%  

C2  0%  80.12%  11.08%  

C3  0%  0.75%  88.17%  
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Effect of additional frequency 

We now validate the RNDP approach using a sinusoidal signal with multiple 

frequencies. The normal condition for the signal is composed of 4 frequencies; 

one more frequency has been added to create a change in the signal. The 

amplitudes of the signal for both change and normal case have been attenuated to 

make signal energies the same for both cases, which creates a very subtle change 

as illustrated in Figure 5.16. The frequency comparison for normal and change 

case is depicted in Figure 5.17. 

The detection delay results are illustrated in Figure 5.18 for the generated 

sinusoidal signal. Figure 5.18 shows the box-plot of detection delay results for 

various methods. The box-plot results are obtained by realizing 30 replications for 

each method. As shown in Figure 5.18 traditional SPC methods such as CUSUM 

and EWMA are not sensitive enough to detect such subtle changes in signal. 

Detection change for RNDP is almost twenty times faster than CUSUM and 

EWMA.  
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5.3.2 Application of RD�P method for detection of CMP process anomalies 

As described earlier in Section 5.2.1, MEMS wireless vibration sensor data was 

acquired during CMP processing of blanket copper wafers. The sensor data is 

gathered at a sampling rate of approximately 700 Hz. As seen in Figure 5.19, the 

raw signal time series depicts complex non-linear behavior with several interlaced 

frequency components. For instance, the signal in Figure 5.19 shows prominent 

low frequency behavior, while on closer examination short-time high frequency 

components can also be discerned.   

In the frequency domain (Figure 5.20), at least four prominent regions are 

evident. Our experimental investigations [130-131] have shown that the 

prominent 110 – 120 Hz frequency region of the fast Fourier transform (FFT) 

shown in Figure 5.20 is sensitive to changes in process state. However, these 

changes in the frequency domain are subtle and cannot be tractably quantified 

using traditional statistical methods. One of the main obstacles for process 

monitoring stems from the broadband nature of the frequency spectrum. 

Therefore, traditional SPC based approaches may not lend towards detection of 

CMP process anomalies.  

 



 

Figure 5.19 Typical v

Figure 5.20 Frequency 
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Typical vibration sensor data from CMP process

 

Frequency spectrum of vibration signal data 

In this section, we apply the RNDP approach for detection of different types of in 

process CMP anomalies. These anomalies take the following forms:   

Changes in polishing load or down-force. 

Sudden depletion of polishing slurry. 

Gradual wear of the polishing pad. 
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In this section, we apply the RNDP approach for detection of different types of in 
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Changes in polishing load or down-force 

In this experiment various polishing loads are applied and vibration sensor data is 

acquired. For instance, in Figure 5.21, a low load (5 lb) is active for the first half 

(2000 of data points, ~ 3 sec. of polishing) of the time series. The second half of 

the data (2000 data points onwards) belongs to an experiment conducted under 

high load (8 lb) conditions. All other factors, namely, head speed and base speed 

are maintained constant at 60 RPM and 150 RPM, respectively. 

 

Figure 5.21  Representative vibration signal patterns obtained under 

changing load conditions. 

RNDP, CUSUM and EWMA control charts are applied to this time series data in 

order to compare detection delay. As in the simulated cases, the control limits are 

adjusted a priori in order to maintain identical Type I error probabilities. The first 

out of control point is noted as the detection time, consequently, the results are 

presented in Figure 5.22 for 10 unique realizations, i.e., the analyses is repeated 

with 10 different data sets. As evident from Figure 5.22, the RNDP method is at 
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least 5 times faster compared to CUSUM and EWMA control charts. The RNDP 

method detects the change in polishing load within ~ 21 milliseconds (ms), 

whereas CUSUM and EWMA require over > 120 ms. 

This is pertinent from an engineering perspective, because the polishing load is 

considered as one of the most significant factors in CMP and determines not only 

physical aspects, such as the nature of tribological contact, but also key process 

output variables, namely, material removal rate, within wafer non-uniformity, 

surface quality, etc [14]. 

 

Figure 5.22 Detection delay results for changing load conditions. 

Sudden depletion of polishing slurry 

In this experiment, the contact load, base speed, and head speed maintained 

constant at 8 lb, 150 RPM, and 60 RPM, respectively. However, after 2000 data 
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can be discerned. We also observe that when the slurry supply is insufficient, the 

surface finish significantly deteriorates, although the rest of the parameters are 

maintained at close to optimal settings. In this particular experiment, since slurry 

supply was completely stopped (albeit, for a few seconds), the resulting surface 

was replete with scratches.  

 

Figure 5.23 Representative vibration signal patterns obtained for slurry 

depletion experiments 

The comparison of RNDP, CUSUM, and EWMA vis-à-vis to detection delay is 

presented in Figure 5.24, from which we note that the change in the vibration 

signal patterns as a result of slurry depletion can be detected within 50 ms using 

the RNDP method. In contrast, the traditional CUSUM and EWMA control charts 

are 2-3 times more reticent and require over 100 ms to detect the change. 

In CMP operations, wafer defects, such as scratches, pitting, corrosion, etc., can 

cause significant revenue losses [14]. Indeed, CMP related wafer defects are 

considered to be among the top five reasons inhibiting semiconductor yield rates 
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[132].  Therefore, early detection of such anomalies can be beneficial for 

mitigating yield losses and rework rates in semiconductor manufacturing. 

 

Figure 5.24 Detection delay results for slurry depletion experiments. 

Gradual wear of the polishing pad  

In these experiments, we deliberately degraded the performance of the polishing 

pad, by allowing the slurry to dry and coagulate1. As a result, the polishing pad is 

glazed [130-131], i.e., the fibers of the polishing pad become entangled and lose 

the ability to retain slurry abrasives. Also, some portions of the polishing pad may 

be sheared away during polishing, thus exposing the underlying layer.  

Figure 5.25 depicts the vibration time series data gathered under the following 

CMP conditions: 8 lb contact load, 150 rpm base speed and 60 rpm head speed. 

The first half of the data (2000 data points, ~ 3 sec) is obtained from an 

                                                 

1 For our experiments we use the Buehler Microcloth polishing pad, which is a soft synthetic polishing cloth having a 
fibrous structure and is preferred for gentle material removal for non-ferrous materials.  
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experiment where a new pad was used, while the second half of the data is 

gathered from an experiment conducted with a glazed pad. We can discern from 

Figure 5.25 that not only does the mean of the vibration signal change, but also 

the variance of the signal slightly increases. This is similar to the simulated case 

study with fault type 4. 

 

Figure 5.25 Representative vibration signal patterns obtained for pad wear 

experiments 

The results are presented in Figure 5.26. Evidently, from Figure 5.26 the RNDP 

method is approximately 3 times faster compared to CUSUM and EWMA control 

charts. The RNDP method detects the change in pad wear within ~ 71 ms, 

whereas CUSUM and EWMA require over > 200 ms on average over 10 

replications. 
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Figure 5.26 Detection delay results for pad wear 

Effect of Multiple Faults  

In this study, during CPM process, two different kinds of CMP process drifts 

were induced concurrently. The normal condition is assumed to occur under the 

following experimental settings: 5lb polishing load, 150 RPM base speed, and 60 

RPM head speed. After 2000 data points, the polishing load was increased to 8 lb 

(the other settings were maintained at constant). Next, the slurry feed was cut off 

after 4000 data points while the polishing load was maintained at 8 lb. Vibration 

signal patterns acquired for this experiment is presented in Figure 5.27. 

In order to assess the performance of the RNDP method for such multiple faults 

case, we not only detect the change, but also attempt to classify the type of drift.  

In essence, this study is analogous to simulated case study with different types 

faults (fault type 6). 
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This is important from an application stand point; because in addition to warning 

the operator that the process has drifted out of control, the technique can be used 

indentify the underlying root cause of the drift. This can enable accurate fault 

diagnosis, so that timely corrective action can be taken. Comparison between 

RNDP method with mean shift (a frequently  used unsupervised clustering 

method [133]), is illustrated in Table 5.4.  

The results indicate that the RNDP approach, apart from being able to detect the 

onset of process anomalies at an early stage, can also classify the type of fault 

with > 80% accuracy, which is significantly better than the mean shift approach. 

More pertinently, the Type II error probability is much lower (~ 15%) for RNDP 

method compare to the mean shift approach (~ 25%). This implies that, the RNDP 

method affords both lower Type I as well as Type II error rates. 

 

Figure 5.27 Vibration data time series for multiple fault experiment 
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Table 5.4 Classification accuracy for multiple faults experiment 

RNDP  

Fault Detection Accuracy  94.2%  

Fault  Classification  C2 C3 

C2  87.1% 12.9% 

C3  16.3% 83.7% 

Mean Shift 

Fault Detection Accuracy  85.2%  

Fault  Classification  C2 C3 

C2  75.4% 24.6% 

C3  31.4% 68.6% 

 

5.4 Summary 

In this chapter, we devised a non-parametric Bayesian modeling to establish an 

online process monitoring for change point detection in CMP process. During the 

CMP process, vibration signal data captured by the MEMs sensor and divided 

into sliding windows are modeled by using RDP in a markovian fashion. Based 

on the mixture models, resulting RDP for each sliding window RNDP technique 

is utilized to detect any change between sliding windows, hence the change in the 

CMP process. We showed by simulation and experimental case studies that the 

RNDP technique outperforms the traditional SPC methods such as CUSUM and 

EWMA.
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CHAPTER VI 

6 MULTI-SE�SOR FUSIO� BASED PROCESS 

MO�ITORI�G OF ULTRA PRECISIO� 

MACHI�I�G  

Consistent surface finish is vital for industrial ultra-precision machining (UPM) 

processes. Therefore, monitoring the UPM process is critical to maintain 

dimensional and surface integrity of UPM substrates. A non-parametric Bayesian 

analysis approach is utilized to model non-stationary and non-linear sensor signal 

acquired from multiple heterogonous sensors.  Evidence theory is used to 

combine the each decision obtained from individual sensors for more reliable and 

coherent results. Several experimental case studies are carried out to validate the 

proposed method.  

6.1 Introduction 

Surface morphology is a critical determinant of functional performance for 

components which are critical to optical, semiconductor, aerospace, and defense 

industries [1, 9]. Ultra-precision machining (UPM) is a single point turning 

process which is used to achieve specular surface finish (surface roughness (Ra) 

in the nanometer range). In UPM a single crystal diamond tool is used to remove  
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material at the depth of cut in micrometer range (1-50 µm) on a very precise and 

rigid lathe, which is specially built to minimize the effect of vibrations and 

extraneous noise. Since minute instabilities and process drifts can cause 

significant surface variations in UPM process, monitoring of UPM process is vital 

for achieving satisfactory surface quality. 

In the past two decades, considerable research has been conducted for UPM 

process monitoring using various sensors, such as piezoelectric vibration [97], 

acoustic emission (AE) [98], and temperature [99] sensors were. While these 

methods are effective to some extend in detecting process anomalies, particularly 

in post-hoc scenarios, these methods suffer from two key lacunae: 

i. They do not utilize information from multiple sensors. 

ii. They are mostly offline and not designed for real-time monitoring of UPM 

process conditions.  

From the perspective of multi-sensor based process monitoring two vital concerns 

need to be addressed; (1) how to use signals acquired from sensors to make 

decisions on the process change, and (2) how to integrate these decisions from 

each individual sensor to reach more coherent and reliable decisions.  

In UPM process monitoring applications, the first research question is to 

investigate the relationship between the measured signal and process performance 

or process changes. Sensor based tool wear monitoring using acoustic emission 
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signals [134-135] and cutting force signals [136-138] have been reported. 

Acoustic emission (AE) [139] and vibration  sensors [140] used for monitoring 

surface profile in UPM process. However, most of these sensor-based process 

monitoring techniques are based on linear and deterministic models, while it is 

known that the UPM process is non-linear and non-stationary [16]. In order to 

accurately represent the non-linear and non-stationary nature of the process, it is 

crucial to develop a non-parametric data-driven model. 

Due to the development of different type of sensor technology, more and more 

data can be acquired from sensors. The second question is how to combine the 

data gathered from different sensors to obtain more accurate and reliable 

information from the complex processes such as UPM. Extensive work has been 

done in information fusion which includes signal-level fusion, feature-level fusion 

and decision-level fusion [74]. Principal component analysis [75-76, 80] and 

dynamic system estimation methods, such as Kalman filtering [78, 83], have been 

used for signal fusion. Machine learning tools [77, 81-82] have been used to fuse 

information in feature level. Bayes theory is reported as one of the most 

commonly used decision-level fusion technique [87-90]. 

In this research, three piezoelectric vibration sensors, a three-axis force sensor, 

and an acoustic emission sensor are used to collect data from the UPM process. It 

is possible that the outcomes of these different sensors lead to conflicting 
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decisions. Therefore, it is vital to fuse information from different sources into a 

coherent decision.  

This research involves integrating the non-parametric Bayesian modeling with 

information fusion technique. Complex non-linear and non-Gaussian patterns are 

modeled by using a non-parametric Bayesian model, namely, Dirichlet Process 

[96] for each sensor. The decisions from each sensor are fused by using 

information fusion techniques [84].  

The rest of the chapter is organized as follows. The research methodology for 

multi-sensor based process monitoring is presented in Section 6.2. The proposed 

method is demonstrated with case studies in Section 6.3. Summary and the 

discussion of this research are provided in Section 6.4. 

6.2 Research Approach for Multi-sensor Based Process Monitoring 

This research is based on a single diamond tool surface cutting experiments with 

nano-metric surface finish (Ra~ 5 to 100 nm). The experimental setup consists of 

an aerostatic spindle bearing (model Block-Head® 4R) and air-slide tool carriage 

manufactured by Professional Instruments Inc. (Figure 6.1). Cylindrical (φ 16.25 

cm × 3.75 cm) aluminum alloy (Al 6061) work-pieces are used for surface cutting 

on the UPM setup (Figure 6.1). Three piezoelectric vibration and a three-axis 

force sensors are mounted on the setup.  



 

Figure 
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(a) Front view 

 
(b) Side view 

Figure 6.1 UPM experimental apparatus 
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As seen in Figure 6.1, vibrations sensors (10 KHz) are located on the orthogonal 

directions of the tool holder and three-axis force sensors (10 KHz) are located 

underside of toll holder to measure force signals. In addition, an AE sensor (1 

MHz) is mounted on the top of the tool holder. Details of the sensor system are 

summarized in Table 6.2.  

Full factorial design of experiments are done by setting parameters of spindle 

speed (500, 1000, 2000 RPM), feed rate (1.5, 3, 6 mm/min), and depth of cut (5, 

10, 20, 25 µm) as shown in Table 6.1. 

Table 6.1 Design of experiment parameters 

Depth Of Cut Feed Rate Rotating speed 

5  µm 1.5 mm 500 rpm 

10  µm 3.0 mm 1000 rpm 

20  µm 
6.0 mm 2000 rpm 

25  µm 

 

Table 6.2 Details of the sensing system mounted on the UPM setup 

Signal 

Type 
Sensor Orientation Symbol 

Sampling 

Rate 

Sensor 

Type 

V
ib

ra
ti

o
n

 

Along the feed direction VX 

10 KHz 
Kistler 

8728A500 
Across the feed in the XY plane  VY 

Vertical VZ 

F
o

rc
e
 Along the feed direction FX 

10 KHz 
Kistler 
9251A 

Across the feed in the XY plane  FY 

Vertical  FZ 

A
E

 

Vertical AE 1 MHz 
Physical 

Acoustics 
R80 

 



 

The overall methodology for sensor fusion is summarized in 

proposed research mainly consists of two stages of fusion mechanism. The first 

stage is feature-level fusion, where the features, such as statistical features are 

extracted from heterogeneous sensor signals and fused using Dirichlet process 

(DP). In the second stage, 

decision-level fusion mechanism. 

Figure 6.2 Proposed

The detailed overall methodology is illustrated in 

features such as mean, standard deviation, skewness, kurtosis, etc, are extracted 

from force, vibration and acoustic emission sensor signals and modeled by using 

Dirichlet process by estimati

Likelihood value is calculated and probability mass function 
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The overall methodology for sensor fusion is summarized in Figure 

proposed research mainly consists of two stages of fusion mechanism. The first 

level fusion, where the features, such as statistical features are 

extracted from heterogeneous sensor signals and fused using Dirichlet process 

(DP). In the second stage, Depmster–Shafer  evidence theory [141] is 

level fusion mechanism.  

Proposed Information Fusion Mechanism 

The detailed overall methodology is illustrated in Figure 6.3. In the first stage

features such as mean, standard deviation, skewness, kurtosis, etc, are extracted 

from force, vibration and acoustic emission sensor signals and modeled by using 

t process by estimating their probability density function for each sensor. 

Likelihood value is calculated and probability mass function from is constructed 

Figure 6.2. The 

proposed research mainly consists of two stages of fusion mechanism. The first 

level fusion, where the features, such as statistical features are 

extracted from heterogeneous sensor signals and fused using Dirichlet process 

 used as a 

 

. In the first stage, 

features such as mean, standard deviation, skewness, kurtosis, etc, are extracted 

from force, vibration and acoustic emission sensor signals and modeled by using 

their probability density function for each sensor. 

is constructed 



 

for each sensor. Using evidence theory

sensors are fused and final decision is made by choosing 

maximum likelihood value.

Figure 6.3 Proposed overall 

6.2.1 Feature level fusion

In feature-level fusion structure

time domain features are extracted from

extracted from each sensor and combined to 

will provide more information about the process.

modeled which will perform as a feature

series features (mean, standard deviation, skewness, kurtosis, range and root mean 

square) which are used for
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for each sensor. Using evidence theory, probability mass functions from

and final decision is made by choosing the configuration 

maximum likelihood value. 

Proposed overall methodology for sensor fusion for UPM process 

monitoring 

usion by using Dirichlet process 

structure, features, such as such as frequency domain and 

time domain features are extracted from multiple sensor data. Features are 

extracted from each sensor and combined to obtain higher dimensional da

will provide more information about the process. High dimensional data will be 

modeled which will perform as a feature-level fusion mechanism. Extracted time 

(mean, standard deviation, skewness, kurtosis, range and root mean 

which are used for feature-level fusion summarized in Table 6.3. 

functions from multiple 

the configuration the 

 

for sensor fusion for UPM process 

features, such as such as frequency domain and 

Features are 

obtain higher dimensional data which 

High dimensional data will be 

level fusion mechanism. Extracted time 

(mean, standard deviation, skewness, kurtosis, range and root mean 

.  
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Table 6.3 Summary of extracted features 

Features Equation 

Mean �̅ = ∑ �L#L%	W  

Standard deviation Ä∑ (�L − �̅)�#L%	W − 1  

Skewness 

1W ∑ (�L − �̅)�#L%	E1W ∑ (�L − �̅)�#L%	 F�/� 

Kurtosis 

1W ∑ (�L − �̅)Å#L%	E1W ∑ (�L − �̅)�#L%	 F� − 3 

Range max/�L1 − min/�L1 ,						x = 1, … , W 

Root mean square Æ1W V �L�#
L%	  

 

Probability density information of extracted features are estimated with mixture of 

Gaussian distributions as in Eq. (6.1): 

 �(�$) = 	V ULW(�$|=L)X
L%	  (6.1) 

where �$ is the feature vector  extracted from sensor data in UPM process . Linear 

combination of Y Gaussian distribution with weights UL and parameters =L  (mean 

ZL and variance	[L�) is used to approximate non-Gaussian distribution. If the 

number of mixture components Y is known a priori the expectation maximization 

(EM) algorithm [117] can be used to estimate UL and =L  but in practice Y is 

usually unknown. Dirichlet Process can be utilized to approximate non-Gaussian 
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distribution without prior knowledge of	Y. For more detailed information about 

the procedure refer to the Section 5.2.2. 

6.2.2 Decision level fusion with evidence theory 

In decision-level fusion structure, sensor signals are first processed and analyzed 

individually. Then, the decisions obtained from individual analysis are combined 

for final decision. In the proposed methodology, detection and classification 

techniques are applied, and a decision is obtained for each individual sensor. 

These individual decisions are fused to get more accurate results in decision level 

fusion. The features from multiple sensors are extracted and Dirichlet Process 

technique is used for classification. Dirichlet Process is used for estimating the 

density function for each class, and then likelihood value is calculated by using 

density function to construct mass function for each test data point after 

normalizing as follows: 

 � = Ç�		 �	���	 ��� ⋯ �	È⋯ ��È⋮ ⋮�X	 �X� ⋱ ⋮… �XÈ
Ë (6.2)  

where, K is the number of sensors and M is the number of conditions. Each row 

�� = ²��		��� …	��È] is the probability mass function assigned by the kth
 sensor 

assigned to the set of M classes. All combinations of sensors are analyzed and the 

best combination is selected according to classification accuracy results. The set 

of n-sensor combinations are represented as	EYdF, where it defined as n-way 
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(d = 1,2, … , Y) combinations of K sensors. The probability mass function for 

fused decision can be expressed as follows: 

 ^ = �	 ⊕ �� ⊕ … �X (6.3)  

where ⊕ represents the operator for combination of probability mass function. If 

the types of faults are assumed independent, probability mass function for fault j 

can be computed as follows [142]: 

 L̂ = s ��L
X

�%	 Í1 − V s ��L
X

�%	
È

L%	 ÎÏ  (6.4)  

where L̂ represents the fused probability mass function. The term	∑ ∏ ��LX�%	ÈL%	 , 

is the basic probability mass associated with conflicts among the sources. The 

denominator /1 − ∑ ∏ ��LX�%	ÈL%	 1 is the normalization factor. Lower the value 

of		∑ ∏ ��LX�%	ÈL%	 , means less conflicts between the sources. After getting the 

probability mass function for j
th fault highest belief measure will be chosen for 

fused decision. 

6.3 Validation of proposed method 

The proposed sensor fusion methodology for UPM in this study has two stages, 

i.e., feature-level fusion and decision-level fusion. Several case studies will be 

carried out to validate the proposed fusion methods in both stages. 



 

6.3.1 �umerical case s

Two random sensor signals are 

normal distributions with

6.4. Three different conditions are created by choosing different means and 

variances for each condition. The time series data for two different signals are 

shown in Figure 6.4. 

Table 6.4 Distribution parameters used for generated data

 Condition 1

Signal 1 Z =
Signal 2 Z

Figure 6.4  Simulated data generated from non

(a) Simulated sensor signal 1

112 

studies for feature-level fusion 

signals are simulated each of which is generated from 

with different mean and standard deviations shown in 

different conditions are created by choosing different means and 

variances for each condition. The time series data for two different signals are 

Distribution parameters used for generated data 

Condition 1 Condition 2 Condition 3

= 1, [ = 1.2 Z = 1.5, [ = 0.5 Z = −1,
= 1, [ = 1 Z = −3, [ = 0.5 Z = 0,

Simulated data generated from non-Gausssian distribution for 

three condition 

Simulated sensor signal 1 (b) Simulated sensor signal 2

from three 

different mean and standard deviations shown in Table 

different conditions are created by choosing different means and 

variances for each condition. The time series data for two different signals are 

 

Condition 3 

, [ = 0.8 

, [ = 2 

 

Gausssian distribution for 

Simulated sensor signal 2 
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Dirichlet process is applied to generated signals individually, and the 

classification accuracy results for each signal are shown in first and second 

column of the Table 6.5. In addition, Dirichlet process is used as fusion method 

by modeling with mixture of multivariate normal distributions to combined 

signal. The results of classification accuracies and comparisons with other 

classification methods for fused signal are presented in the last column of Table 

6.5. Table 6.5 shows the mean values and standard deviation values (in 

parenthesis) after realization of 10-fold cross validation. Fused data in 2D is 

illustrated in Figure 6.5 with the comparisons of various fusion algorithms. Both 

Table 6.5 and Figure 6.5 confirm that Dirichlet process is more accurate and 

robust.  

Table 6.5 Classification results for different classification methods 

Classifier 
Accuracy 

Signal 1 Signal 2 Fused Signal 

Linear Discrimant 0.65 (0.012) 0.58(0.010) 0.75(0.016) 

�aïve Bayes 0.71(0.024) 0.62(0.018) 0.83(0.021) 

�eural �etwork 0.73(0.029) 0.64(0.026) 0.88(0.027) 

Support Vector 

Machine 
0.75(0.021) 0.69(0.024) 0.89(0.022) 

Dirichlet Process 0.76(0.031) 0.71(0.022) 0.92(0.027) 

 

 



 

Figure 6.5 Comparison of feature
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Comparison of feature-level fusion algorithms along with the 

training data on top left. 

 

level fusion algorithms along with the 
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Figure 6.6 Spindle speed experiments
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Figure 6.7 Feed rate experiments
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Figure 6.8 Depth of cut experiments

 



118 

 

6.3.2 UPM Case Studies 

Ultra Precision Machining (UPM) data is analyzed to classify UPM data with 

three conditions using three signals. Vibration and force signal with 3 channels 

(X-axis, Y-axis and Z-axis) are collected from experiments with different depth of 

cut (5 µm, 10 µm, 20 µm and 25 µm), spindle speed (500 rpm, 1000 rpm and 

1500 rpm) and feed rate (1.5 mm/sec, 3 mm/sec and 6mm/sec). 

Dirichlet Process is applied to estimated density information for each condition 

within each signal data. Probability mass function for each test data point can be 

constructed in Eq. (6.8) by computing the likelihood value. Then as in Eq. (6.10), 

probability mass functions for each sensor are combined to get fused decision 

according to the highest likelihood value. 

In Spindle speed experiments depth of cut and feed rate values are kept at 

constant values of 5 µm and 1.5 mm/sec. Investigation of  change in the spindle 

speed values (500, 1000, 2000 rpm) is done and results are shown in Table 6.6 

(individual sensors) and Table 6.7 (fused sensors). 

The Second experiments are investigating the effect of the feed rate. Constant 

values are used for spindle speed (500 rpm) and depth of cut (5 µm) while feed 

rate takes values of 1.5 mm/sec, 3 mm/sec and 6 mm/sec, respectively. The results 

are illustrated in Table 6.8 and Table 6.9. 

Spindle speed and feed rate values are kept constant at 500 rpm and 1.5 mm/sec, 

while depth of cut has taken values of 5 µm, 10 µm, 20 µm and 25 µm in the final 
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experiments. Classification errors for individual and fused sensors are 

summarized in Table 6.10 and Table 6.11, consecutively. From Table 6.10 and 

Table 6.11, it is evident that fused decision has higher classification accuracy than 

individual sensors. Best individual sensor Fy has an accuracy rate of 60%, while 

the combination of sensors Vz, Fx, and Fz has an accuracy rate of 89%. 

Table 6.6 Accuracy of individual sensors for spindle speed experiments 

 Vx Vy Vz Fx Fy Fz 

Accuracy 0.50 
(0.07) 

0.41 
(0.04) 

0.58 
(0.06) 

0.68 
(0.04) 

0.74 
(0.05) 

0.64 
(0.04) 

 

Table 6.7 Accuracy of fused sensors for spindle speed experiments 

 VxVy
VzFy 

VyVzFy VyVzFx
Fy 

VzFy VxVyVzFy
Fz 

VyVzFy
Fz 

Accuracy 0.88 
(0.07) 

0.87 
(0.04) 

0.87 
(0.08) 

0.86 
(0.09) 

0.86(0.02) 0.86 
(0.02) 

 

Table 6.8 Accuracy of individual sensors for feed rate experiments 

 Vx Vy Vz Fx Fy Fz 

Accuracy 0.50 
(0.07) 

0.41 
(0.04) 

0.58 
(0.06) 

0.68 
(0.04) 

0.74 
(0.05) 

0.64 
(0.04) 

 

Table 6.9 Accuracy of fused sensors for feed rate experiments 

 VxVy
VzFy 

VyVzFy VyVzFx
Fy 

VzFy VxVyVzF
yFz 

VyVzFy
Fz 

Accuracy 0.88 
(0.07) 

0.87 
(0.04) 

0.87 
(0.08) 

0.86 
(0.09) 

0.86(0.02) 0.86 
(0.02) 
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Table 6.10 Accuracy of individual sensors for depth of cut experiments 

 Vx Vy Vz Fx Fy Fz 

Accuracy 0.43 
(0.02) 

0.31 
(0.04) 

0.44 
(0.05) 

0.57 
(0.03) 

0.60 
(0.08) 

0.58 
(0.05) 

 

Table 6.11 Accuracy of fused sensors for depth of cut experiments 

 VzFx
Fz 

VxVzFx
Fz 

VzFxFy VxVzFx VxVzFx
Fy 

VzFx 

Accuracy 0.89 
(0.04) 

0.84 
(0.05) 

0.83 
(0.04) 

0.83 
(0.06) 

0.83 
(0.04) 

0.83 
(0.07) 

 

The results depicted in above tables indicate that certain sensor combination gives 

the best result. While the common sense dictates that adding more information 

should increase the classification accuracy, UPM case studies shows that it is not 

always the case. In the following we will carry out simulated case studies to 

investigate how correlation between sensor signals and noise level in sensor 

signals effect the performance of sensor fusion.  
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Figure 6.9 Correlation analysis 

Figure 6.9 shows the how the correlation between two signals effect the 

classification accuracy. As a continuation of the case study in Section 6.3.1 we 

added one more signal which is correlated with the second signal. Correlation 

levels are shown in the x-axis and the corresponding classification results are 

plotted solid line for fusion of signal 1 and signal 2 while fusion of all signals are 

depicted with the dashed line. We can conclude from the graph that adding highly 

correlated signals does not increase the accuracy. 

6.4 Summary 

In this research, a two stage fusion mechanism is developed. In the first stage, 

features from heterogeneous sensor signals are extracted and principal component 

analysis is applied for further compression. Dirichlet Process modeling (DPM) is 

used to formulate density information for each sensor. It is shown that DPM 
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provides higher accuracy and more robust modeling compared to the other widely 

used classification methods. In the second stage, of the fusion mechanism, 

evidence theory is applied for decision level fusion. In UPM case studies we have 

shown that fusing information from different sensors increases the accuracy by 

15% to 30% over each individual sensor. 
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CHAPTER VII 

7 CO�CLUSIO�S A�D FUTURE WORK 

Real-time monitoring approaches in nano-level manufacturing processes, such as 

ultra-precision machining (UPM) and chemical mechanical planarization (CMP), 

are invesitgated in this study. Detailed conclusions to achieve specific research 

objectives are listed as follows: 

(1) To establish how process state relates to sensor features: 

a. In CMP process statistical features are extracted from wired and 

wireless sensors. Subsequently, principal component analysis 

(PCA) is applied for further compression of data. Compressed 

features are related with material removal rate by utilizing artificial 

neural network (ANN) with high R-square value (~90%), whereas 

linear regression can only achieve (~47%) R-square value. 

b.  In the literature, it is shown that sensor signal acquired form CMP 

process is non-linear and non-stationary [92-95]. Sensor signal is 

distributed non-Gaussian due to non-linearity. Recurrent Dirichlet
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process (RDP) is applied to model sensor data which captures non-

Gaussian and the non-stationary nature of the process efficiently. 

c. Various depths of cut parameters are used to simulate different 

surface variations. Statistical features are extracted from sensor 

data which are acquired from heterogonous sources. A 

probabilistic non-parametric Bayesian modeling is used to model 

successfully different surface variations represented by statistical 

features.  

(2) To monitor process state from measured signals in real time:  

a. A real-time monitoring approach for end-point detection is 

developed. For early detection of end-point, a sequential Bayesian 

analysis, namely, particle filtering (PF), is used for the prediction 

of process state represented by sensor signal features (1a). We 

showed that, the PF method outperforms convential online 

estimation techniques, such as ARMA, Kalmana filtering and 

extended Kalman filtering. 

b. Change point detection in CMP process is investigated. Recurrent 

nested Dirichlet process (RNDP) is developed to monitor sensor 

signal which is modeled by RDP (1b) to monitor any change in the 

process. Experimental studies show that RNDP technique detects 

changes in the process ~10 times faster than traditional statistical 

control charts, such as EWMA and CUSUM. 
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c. Non-parametric Bayesian modeling (1c) is used to model surface 

variations for each sensor. According to Bayesian modeling, 

individual decisions are made for each sensor. Decision outputs 

from each sensor are fused by using evidence theory to achieve a 

more coherent global decision. Initial studies show that fused 

decisions are ~20% more accurate than individual decisions. 

(3) To validate the theoretical contributions in research objectives (1) and 

(2):  

a. A LapMaster 12 bench-top lapping machine is equipped with 

wired and wireless sensors. Copper wafers of 4-in diameter and 

16-gauge thickness were polished to test end-point detection 

method (1a-2a). 

b. A Buehler (Automet 250) polishing machine is used for polishing 

blanket copper work pieces. The CMP setup is mounted with 

MEMS accelerometer (Analog Devices ADXL 335).Various 

experimental studies are used to validate change monitoring 

methodology (1b-2b). 

c. UPM setup is used for surface finishing of aluminum alloy (AL 

6061) work pieces. Sensor signals were acquired from 

heterogeneous sources, such as, acoustic emission, 3-axis vibration 

and force sensors for surface variation experiment (1c-2c).  
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Future work directions 

The methodologies developed in this dissertation can be applied to a wide variety 

of areas. One future direction of this research would be applying techniques 

developed in this dissertation in different areas, such as, sensor based 

manufacturing, robotics, biostatistics, etc.  

Some future directions of this research can be suggested as follows 

• In this dissertation, investigations have been made on change point 

detection in CMP and a special application, i.e., end point detection 

(EPD). Although the developed methodology effectively detects the 

change such as end-point, it is not suitable for classifying multiple 

changes. During CMP process, the quality of wafers may suffer from 

different kind of defects, such as scratches, dishes, and erosion. In order to 

improve the quality of the process, these anomalies should be detected 

timely and classified accurately.  

• In UPM process, we showed that with combination of heterogonous 

sensors, the surface variation prediction created by various experimental 

conditions can be improved. In this research, the physical interpretation of 

the results has not been investigated yet. Why such combination of sensors 

gives us better results can be a good motivation for digging deeper in this 

direction. 
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8 APPE�DIX 

Matlab Codes 

Matlab® Codes for each chapter are presented in the followings 

�onlinear Sequential Bayesian Analysis-Based Decision Making for 

Chemical Mechanical Planarization Process  

Main function for particle filtering 

function [x_hatarr 
pararr]=pfmain1(data,N,state_space_model,order,h) 
% x_hatarr is the predicted state 
% pararr is the parameters updated for each time step  
  
if nargin<5 , h=0.01; end %learning rate for parameter update 
if nargin<4 , order=3; end % for logistic state space it is 
number of lags and for polynomial state space it is order of the 
polynomial 
if nargin<3 , state_space_model='poly'; end %state space model 
if nargin<2 , N=100; end %number of particles 
R=0.01; %measurement noise 
switch lower(state_space_model) 
    case('poly') 
        [x_hatarr pararr]=poly1(data,order,N,h,R); 
    case('logistic') 
        [x_hatarr pararr]=logistic(data,order,N,h,R); 
end 

  

Particle filtering with polynomial state space function 

function [x_hatarr pararr]=poly1(data,order,N,h,R) 
  
%this program runs particle filter with polynomial state space 
%represantation 
  
order=order+1; 
h=0.05; 
L=length(data); 
x_hat=ones(N,1)*randn*sqrt(R); 
x_hatarr=zeros(L,1); 
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par=randn(N,order); 
pararr=zeros(L,order); 
X=zeros(N,order); 
for k=1:L-1 
   for i=1:order  
   X(:,i)=x_hat.^(i-1);  
   end 
   xpartmin=(sum((X.*par),2)); 
   ypart=xpartmin+sqrt(R)*randn(N,1); 
   vhat=ones(N,1)*data(k)-ypart; 
   q = (1 / sqrt(R) / sqrt(2*pi)) * exp(-vhat.^2 / 2 / R); 
   %weight update 
   qsum = sum(q); 
   for i = 1 : N 
        q(i) = q(i) / qsum; 
   end 
   %parameter update 
   m=zeros(order,N); 
  
   for i=1:order 
   m(i,:)=sqrt(1-h^2)*par(:,i)+(1-sqrt(1-h^2))*sum(par(:,i).*q); 
   end 
    
   for i=1:N 
    for j=1:order 
        par(i,j)=randn(1)*h^2*var(par(:,j).*q*N)+m(j,i); 
    end 
   end 
       % Resample. 
    for i = 1 : N 
        u = rand; % uniform random number between 0 and 1 
        qtempsum = 0; 
        for j = 1 : N 
            qtempsum = qtempsum + q(j); 
            if qtempsum >= u 
                x_hat(i) = xpartmin(j); 
                break; 
            end 
        end 
    end 
    %update  
    x_hatarr(k+1)=mean(x_hat); 
    for i=1:order 
        pararr(k+1,i)=mean(par(:,i)); 
    end 
end    

  

Particle filtering with logistic state space function 

function [x_hatarr pararr]=logistic(data,order,N,h,R) 
%this program runs particle filter with logistic regression state 
space 
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%represantation 
order=order+1; 
L=length(data); 
x_hat=ones(N,order-1)*randn*sqrt(R); 
x_hatarr=zeros(L,1); 
par=randn(N,order); 
pararr=zeros(L,order); 
X=zeros(N,order); 
for k=1:L-1 
   for i=1:order-1 
       X(:,i)=[1./(1+exp(-x_hat(:,i)))]; 
   end 
   X(:,order)=ones(N,1); 
   xpartmin=(sum((X.*par),2)); 
   ypart=xpartmin+sqrt(R)*randn(N,1); 
   vhat=ones(N,1)*data(k)-ypart; 
   q = (1 / sqrt(R) / sqrt(2*pi)) * exp(-vhat.^2 / 2 / R); 
   %weight update 
   qsum = sum(q); 
   for i = 1 : N 
        q(i) = q(i) / qsum; 
   end 
   %parameter update 
   m=zeros(order,N); 
  
   for i=1:order 
   m(i,:)=sqrt(1-h^2)*par(:,i)+(1-sqrt(1-h^2))*sum(par(:,i).*q); 
   end 
    
   for i=1:N 
    for j=1:order 
        par(i,j)=randn(1)*h^2*var(par(:,j).*q*N)+m(j,i); 
    end 
   end 
   if order-1>1 
        for i=1:order-1 
            x_hat(:,i+1)=x_hat(:,i); 
        end 
   end 
    
       % Resample. 
    for i = 1 : N 
        u = rand; % uniform random number between 0 and 1 
        qtempsum = 0; 
        for j = 1 : N 
            qtempsum = qtempsum + q(j); 
            if qtempsum >= u 
                x_hat(i,1) = xpartmin(j); 
                break; 
            end 
        end 
    end 
    %update  
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    x_hatarr(k+1)=mean(x_hat(:,1)); 
    for i=1:order 
        pararr(k+1,i)=mean(par(:,i)); 
    end 
    k 
end    

Chemical Mechanical Planarization (CMP) process monitoring by 

using evolutionary clustering analysis  

Recurrent nested Dirichlet process modeling demo for 1D 

% demo for cluster change 
clear all 
clc  
close all 
  
initpath        %initializing the file path 
%constructing training data 
training_data = [randn(1,150) 3+randn(1,150)]; 
ii=randperm(length(training_data)); 
training_data=training_data(ii); 
  
%constructing testing data 
testing_data = [randn(1,100) 3+randn(1,100) -3+randn(1,100)]; 
ii=randperm(length(testing_data)); 
testing_data=testing_data(ii); 
  
%parameters 
dat=[training_data testing_data]; 
dd=1;                   %dimension of data set 
width=100;              %length of sliding windows 
overlap=10;             %length of sliding data set 
  
number_of_windows_training=length(1:overlap:length(training_data)
-width+1); 
  
%extracting features by RDP 
[features dpmcell]=dpm_rdp(dat,dd,width,overlap); 
  
%Applying RNDP 
dpm=dpm_mixture(features(:,1:number_of_windows_training),size(fea
tures,1),1); 
  
%Calculating Likelihood function for monitoring 
ml=zeros(size(features,2),1); 
mpi=dirrnd(dpm.nn); 
for i=1:dpm.KK 
    [mu sigma] = map(dpm.qq{i}  
);  
    ml=ml+mpi(i)* mvnpdf(features',mu',sigma); 
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end 
     
plot(ml,'LineWidth',3) 
hold on 
plot([number_of_windows_training number_of_windows_training],[0 
1.5*max(ml)],'r','LineWidth',3) 
grid on 
xlabel('time epoch') 
ylabel('likelihood value') 
%% 
% enter time epoch to draw mixture of gaussian 
t = 30; 
DPM=dpmcell{t}; 
  
mpi= dirrnd(DPM.nn); 
tt=min(DPM.xx)-1:0.05:max(DPM.xx)+1; 
pp=zeros(length(tt),1); 
figure; 
hold on 
for i=1:DPM.KK 
    [mu sigma] = map(DPM.qq{i}); 
    pc=mpi(i)*mvnpdf(tt',mu,sigma); 
    pp=pp+pc; 
    plot(tt,pc,'k','LineWidth',2) 
end 
  
plot(tt,pp,'r','LineWidth',3) 
plot(DPM.xx,zeros(width,1),'o','MarkerSize',12) 

 

Recurrent nested Dirichlet process demo for 2D 

% demo for cluster change 
clear all 
clc 
close all 
%constructing training data 
initpath        %initializing the file path 
  
training_data = [randn(2,150) 3+randn(2,150)]; 
ii=randperm(length(training_data)); 
training_data=training_data(:,ii); 
  
%constructing testing data 
testing_data = [randn(2,100) 3+randn(2,100) -3+randn(2,100)]; 
ii=randperm(length(testing_data)); 
testing_data=testing_data(:,ii); 
  
%parameters 
dat=[training_data testing_data]; 
dd=2; 
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width=100; 
overlap=10; 
  
number_of_windows_training=length(1:overlap:length(training_data)
-width+1); 
  
%extracting features by RDP 
[features dpmcell]=dpm_rdp(dat,dd,width,overlap); 
  
%Applying RNDP 
dpm=dpm_mixture(features(:,1:number_of_windows_training),size(fea
tures,1),1); 
  
%Calculating Likelihood function for monitoring 
ml=zeros(size(features,2),1); 
mpi=dirrnd(dpm.nn); 
for i=1:dpm.KK 
    [mu sigma] = map(dpm.qq{i});  
    ml=ml+mpi(i)* mvnpdf(features',mu',sigma); 
end 
     
plot(ml,'LineWidth',3) 
hold on 
  
plot([number_of_windows_training number_of_windows_training],[0 
1.5*max(ml)],'r','LineWidth',3) 
grid on 
xlabel('time epoch') 
ylabel('likelihood value') 
%% 
% enter time epoch to draw mixture of gaussian 
t = 30; 
DPM=dpmcell{t}; 
  
figure; 
hold on 
C={'b','r','g','k','m','c','y'}; 
for i=1:width 
    plot(DPM.xx(1,i),DPM.xx(2,i),'*','Color',C{DPM.zz(i)}) 
end 

  

Recurrent Dirichlet Process 

function [ss, dpmcell]=dpm_rdp(dat,dd,width,overlap) 
% Dividing data into sliding windows and applying RDP for each 
sliding 
% window 
% inputs: 
% dat : data set of row vectors 
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% dd  : dimension of data set 
% width : window length 
% overlap : length of sliding data points  
% outputs: 
% ss: feature set 
  
%sliding windows 
t=1:overlap:length(dat)-width+1; 
  
%number of sliding windows 
number_of_windows=length(t); 
  
%initial window for DP 
data=dat(:,1:width); 
  
% initiliaze DP mixture 
dpm=dpm_mixture(data,dd,1); 
  
%clearing empty clusters 
dpm=clearempty(dpm); 
  
%clearing small clusters 
dpm=mclean(dpm,data); 
  
%parameters will be kept in this cell 
MM=cell(number_of_windows,1); 
dpmcell=cell(number_of_windows,1); 
%extracting parameters (mean and variance) 
mm=[]; 
for k=1:length(dpm.nn) 
    [mu,sigma] = map(dpm.qq{k}); 
    sigma=uptri(sigma); 
    mm=[mm;mu;sigma]; 
end 
MM{1}=mm; 
  
for i=1:number_of_windows 
    data=dat(:,overlap*(i-1)+1:overlap*(i-1)+width); 
     
    %keeping cluster label information for overlapped data 
    dpm.zz(1:end-overlap)=dpm.zz(overlap+1:end); 
     
    %randomly assigning new data points to existing clusters 
    dpm.zz(end-overlap+1:end) = 
ceil(length(dpm.nn)*rand(1,overlap)); 
    dpm.nn=zeros(1,length(dpm.nn)); 
     
    dpm.xx=data; 
     
    %updating cluster information 
    for j=1:width 
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        kk=dpm.zz(j); 
        dpm.qq{kk} = additem(dpm.qq{kk},data(:,j)); % add 
sufficient stats of data item 
        dpm.nn(1,kk)=dpm.nn(1,kk)+1; 
    end 
  
    %gibbs sampling for rdp 
    for iter=1:10 
        dpm=dpm_gibbs2(dpm,1,data); 
         
        %clearing empty clusters 
        dpm=clearempty(dpm); 
    end 
    %clearing small clusters 
    dpm=mclean(dpm,data); 
     
    dpmcell{i}=dpm; 
     
    mm=[]; 
    for tt=1:length(dpm.nn) 
        [mu,sigma] = map(dpm.qq{tt}); 
        sigma=uptri(sigma); 
        mm=[mm;mu;sigma]; 
    end 
    %matching the similar clusters 
    mm=similarity(mm,MM{1},dd); 
  
    MM{i}=mm; 
    fprintf('%d/%d segments has 
completed\n',i,number_of_windows); 
end 
  
% finding the length of features for each sliding window 
len=zeros(length(MM),1); 
for i=1:length(MM) 
    len(i)=length(MM{i}); 
end 
  
% length of feature for each cluster 
l=dd+(dd*(dd+1)/2); 
% max number of cluster 
cnum=max(len)/l; 
  
% initializing feature set with mean 0 and std 1 
mix=zeros(l,1); 
mix(dd+1:dd+dd)=1; 
  
% assigning feature set 
ss=repmat(mix,cnum,length(MM)); 
for i=1:length(MM) 
    ss(1:length(MM{i}),i)=MM{i}; 
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end 

 Dirichlet Process 

function dpm=dpm_mixture(data,dd,aa) 
% demo of DP mixture model 
% inputs: 
% data: row vector of data set to cluster 
% dd: dimension of data set 
% aa: concentration parameter 
  
KK = 1; 
[MM NN] = size(data); 
  
s0 = 3; 
ss = 1; 
numiter = 50; 
  
hh.dd = dd; 
hh.ss = s0^2/ss^2; 
hh.vv = 30; 
hh.VV = ss^2*eye(dd); 
hh.uu = zeros(dd,1); 
  
  
  
yy=data; 
  
xx = num2cell(yy,1); 
  
% initialize component assignment 
zz = ceil(rand(1,NN)*KK); 
  
% initialize DP mixture 
dpm = dpm_init(KK,aa,Gaussian(hh),xx,zz); 
  
% initialize records 
record.KK = zeros(1,numiter); 
  
%gibbs sampling for inference 
for iter = 1:numiter 
  
    dpm = dpm_gibbs(dpm,1); 
%     fprintf('iter number %d\n',iter); 
end 

 
 

Initializing DP mixture 

function dpm = dpm_init(KK,aa,q0,xx,zz); 
% initialize DP mixture model, with  
% KK active mixture components, 
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% aa concentration parameter, 
% q0 empty component with hh prior, 
% xx data, x_i=xx{i} 
% zz initial cluster assignments (between 1 and KK). 
  
dpm.KK = KK; 
dpm.NN = length(xx); 
dpm.aa = aa; 
dpm.qq = cell(1,KK+1); 
dpm.xx = xx; 
dpm.zz = zz; 
dpm.nn = zeros(1,KK); 
  
% initialize mixture components 
% component KK+1 takes care of all inactive components 
for kk = 1:KK+1, 
  dpm.qq{kk} = q0; 
end 
  
% add data items into mixture components 
for ii = 1:dpm.NN 
  kk = zz(ii); 
  dpm.qq{kk} = additem(dpm.qq{kk},xx{ii}); 
  dpm.nn(kk) = dpm.nn(kk) + 1; 
end 
 

Gibbs sampling for estimating parameters of DP mixture 

 

function dpm = dpm_gibbs(dpm,numiter); 
% run numiter number of iterations of gibbs sampling in the DP 
mixture 
  
KK = dpm.KK; % number of active clusters 
NN = dpm.NN; % number of data items 
aa = dpm.aa; % alpha parameter 
qq = dpm.qq; % row cell vector of mixture components 
xx = dpm.xx; % row cell vector of data items 
zz = dpm.zz; % row vector of cluster indicator variables 
nn = dpm.nn; % row vector of number of data items per cluster 
  
  
  
for iter = 1:numiter 
  % in each iteration, remove each data item from model, then add 
it back in 
  % according to the conditional probabilities. 
  
  for ii = 1:NN % iterate over data items ii 
  
    % remove data item xx{ii} from component qq{kk} 
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    kk = zz(ii); % kk is current component that data item ii 
belongs to 
    nn(kk) = nn(kk) - 1; % subtract from number of data items in 
component kk 
    qq{kk} = delitem(qq{kk},xx{ii}); % subtract data item 
sufficient statistics 
  
    % delete active component if it has become empty 
    if nn(kk) == 0,  
      %fprintf(1,'del component %3d. K=%3d\n',find(nn==0),KK-
sum(nn==0)); 
      KK = KK - 1; 
      qq(kk) = []; 
      nn(kk) = []; 
      idx = find(zz>kk); 
      zz(idx) = zz(idx) - 1; 
    end 
  
    % compute conditional probabilities pp(kk) of data item ii 
    % belonging to each component kk 
    % compute probabilities in log domain, then exponential 
    pp = log([nn aa]); 
    for kk = 1:KK+1 
      pp(kk) = pp(kk) + logpredictive(qq{kk},xx{ii}); 
    end 
    pp = exp(pp - max(pp)); % -max(p) for numerical stability 
    pp = pp / sum(pp); 
  
    % choose component kk by sampling from conditional 
probabitilies 
    uu = rand; 
    kk = 1+sum(uu>cumsum(pp)); 
  
    % instantiates a new active component if needed 
    if kk == KK+1 
      %fprintf(1,'add component %3d. K=%3d\n',kk,KK+1); 
      KK = KK + 1; 
      nn(kk) = 0; 
      qq(kk+1) = qq(kk); 
    end 
  
    % add data item xx{ii} back into model (component qq{kk}) 
    zz(1,ii) = kk;  
    nn(1,kk) = nn(1,kk) + 1; % increment number of data items in 
component kk 
    qq{1,kk} = additem(qq{1,kk},xx{ii}); % add sufficient stats 
of data item 
  
  end 
end 
  
% save variables into dpm struct 
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dpm.qq = qq; 
dpm.zz = zz; 
dpm.nn = nn; 
dpm.KK = KK; 

Process Monitoring of Ultra Precision Machining (UPM) based on 

Sensor Fusion  

Sensor fusion for UPM experiments 

close all 
clear all 
clc 
initpath 
 
load upm_all_conditions 
  
num_class=36; 
sensor_id=[1:6]; 
sensor_name={'Vx','Vy','Vz','Fx','Fy','Fz'}; 
num_sensor=length(sensor_id); 
[comb n_comb] = combnts(num_sensor); 
  
  
for i=1:num_class 
    data{i}=data{i}(:,sensor_id); 
end 
  
features=cell(num_class,num_sensor); 
ar_dim=3; 
dim=4+ar_dim; 
w=100; 
t=1:w:length(data{1}); 
  
N=length(t); 
  
for j=1:num_class 
    for k=1:num_sensor 
        features{j,k}=zeros(N,dim); 
        temp_data=data{j}(:,k); 
        for i=1:N 
            ar=arburg(temp_data((i-1)*w+1:i*w,1),ar_dim); 
            features{j,k}(i,:)=[mean(temp_data((i-1)*w+1:i*w,1)) 
std(temp_data((i-1)*w+1:i*w,1)) skewness(temp_data((i-
1)*w+1:i*w,1)) kurtosis(temp_data((i-1)*w+1:i*w,1)) ar(2:end)]; 
        end 
    end 
end 
%% 
acc_mat=zeros(n_comb,10); 
group=[]; 
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temp_data=zeros(num_class*N,6*dim); 
for j=1:num_class 
    temp_data((j-1)*N+1:j*N,:)=[features{j,1} features{j,2} 
features{j,3} features{j,4} features{j,5} features{j,6}]; 
end 
  
stdr = std(temp_data); 
sr = temp_data./repmat(stdr,length(temp_data),1); 
[coefs,scores,variances,t2] = princomp(sr); 
  
num_sensor=5; 
dim=1; 
[comb n_comb] = combnts(num_sensor); 
  
y = linspace(1,num_class*N,11); 
y=ceil(y); 
  
for iter=1:1 
    for i=1:num_class 
        group=[group;i*ones(N,1)]; 
    end 
    ii=randperm(num_class*N); 
    group=group(ii); 
     
     
%     tes= y(iter) 
    tra=ceil(num_class*N*0.7); 
    tes=num_class*N-tra; 
  
    training_group = group(1:tra,:); 
    testing_group = group(tra+1:end,:); 
  
    class=zeros(tes,num_sensor); 
    p=cell(num_sensor,1); 
    acc=zeros(num_sensor,1); 
    for i=1:num_sensor 
        temp_data=scores(:,i); 
        temp_data=temp_data(ii,:); 
        training_data = temp_data(1:tra,:); 
        testing_data = temp_data(tra+1:end,:); 
        [class(:,i), 
p{i}]=dir_class(training_data,testing_data,dim,num_class,training
_group); 
    end 
  
  
    for i=1:num_sensor 
        p{i}=p{i}./repmat(sum(p{i},2),1,num_class); 
    end 
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    accu=zeros(n_comb,1); 
    names=cell(n_comb,1); 
    count=1; 
  
    for i=1:num_sensor 
        for j=1:size(comb{i},1) 
            pp=1; 
            for k=1:i 
                pp=pp.*p{comb{i}(j,k)}; 
                
names{count}=horzcat(names{count},sensor_name{comb{i}(j,k)}); 
            end 
            [C, classf] = max(pp,[],2); 
            accu(count)=sum((classf-testing_group)==0)/tes; 
            count=count+1; 
  
        end 
    end 
    acc_mat(:,iter)=accu; 
    iter 
end 
  
[C ii]=sort(accu,'descend'); 
for i=1:5 
fprintf('%-10s\t%.2f\n',names{ii(i)},accu(ii(i))) 
end 

 Dirichlet process modeling for classification 

function [class, 
p]=dir_class(training_data,testing_data,dim,num_class,group) 
%{ 
class : class assignment 
training_data  :  Training data for classification (row vector) 
testing_data  :  Testing data for validation (row vector) 
dim  :  Dimension of data 
num_class  :  Number of classes 
%} 
  
dpm_cell=cell(num_class,1); 
  
for i=1:num_class 
    ii=find(group==i); 
    data=training_data(ii,:); 
    dpm_cell{i} = dpm_mixture(data',dim,1); 
end 
  
p=zeros(length(testing_data),num_class); 
  
for i=1:num_class 
    dpm=dpm_cell{i}; 
    mpi= dirrnd(dpm.nn); 
    for j=1:dpm.KK 
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        [mu sigma]=map(dpm.qq{j}); 
        p(:,i)=p(:,i)+mpi(j)*mvnpdf(testing_data,mu',sigma); 
    end 
end 
  
[C class] = max(p,[],2); 
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