
A USER-ORIENTED ENTERPRISE PROCES

MODELING LANGUAGE

By

AMIT A. CHAUGULE

Bachelor of Engineering

Bombay University

Bombay, India

1995

Submitted to Graduate College of the
Oklahoma State University

in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

August, 2001

A USER-ORIENTED ENTERPRISE PROCESS

MODELING LANGUAGE

Thesis Approved:

Thesis Adviser

----D~-Ol-le-g-e---

11

PREFACE

Enterprise process modeling has been an emerging topic of interest since the early

nineties. The research in this area has been driven by the vision of process improvement.

There are two key steps in applying process modeling tools and techniques to support

process improvement initiatives. These are (i) the correct representation of the processes

in the fonn of a process model, and (ii) the analysis of the processes to identify

improvement opportunities.

Process modeling is representing processes and the relevant details usually in a graphical

language. These details are the inputs to and the outputs from a process, the description

of the resources used or consumed by a process, and the relationship of the subjects

involved in the process with respect to each other. The literature contains many process

modeling tools and techniques. A technique typically involves graphical symbols with

their semantics and syntax to capture process details. This thesis presents a brief review

of several enterprise process modeling languages that have been developed so far. The

strengths and the limitations of these languages are also presented. These fonn the basis

for the requirements ofa new enterprise process modeling language.

The proposed enterprise process modeling language exploits the strengths of existing

process modeling languages. The proposed language is user friendly, yet rigorous in the

definition of its constructs. It emphasizes control flow, which is an essential aspect of any

process model. Emphasis on control flow is useful for analyzing a process description by

using formal tools such as Petri nets. A comprehensive example is represented in the

existing languages and in the proposed language to illustrate the advantage~ of the

proposed language.

III

ACKNOWLEDGEMENTS

Success is a sequel to hard work, and hard work is a result of motivation. It was a

privilege to have been motivated to pursue an independent research and to discover an

immense capacity for learning, and to enjoy it. This would have been impossible, but for

the generous support and encouragement of my advisor Dr. Manjunath Kamath, who was

always there to guide me professionally and personally. I extend my sincere appreciation

to my committee members Drs. William J. Kolarik and Nikunj P. Dalal, whose guidance

and suggestions were invaluable to my work.

The preparation of this document was a time consuming task and I thank all the

committee members, particularly Dr. Kamath, who invested their time and offered their

critique. I am indebted to them for nominating me for the Graduate Research Excellence

Award for outstanding research contributions for a Master's thesis. Their constructive

guidance enabled me to win this award. This thesis was a part of a NSF funded project at

Oklahoma State University and it was worthwhile to work with the project team.

It was a pleasure to work with my colleagues in the Center for Computer

Integrated Manufacturing (CCIM), especially Eswar and Baskar. The work atmosphere

was a learning place with stimulating discussions on contemporary research and learning

avenues, and the exciting gossips are definitely worth mention. Many thanks to my friend

Srikant, and to Baskar whose timely help made me complete this document on time.

My sincere thanks to my parents and my sister for the support and encouragement

that I have been receiving for my endeavors.

I appreciate the support that I received from the School of Industrial Engineering

and Management at Oklahoma State University. The past two years of my graduate study

have been a rewarding experience and I hope that they hold promise for a bright future.

"] dedicate this thesis infand memory afmy beloved grandmother who would have

loved to see me excel. She was, and will continue to be a source ofmotivation for me. "

IV

Chapter

TABLE OF CONTENTS

Page

1. Introduction '. 1

1.1. Terminology 1

1.2. Available Aids for Enterprise Modeling 2

1.3. The Problem Description 3

1.4. A Solution 3

1.5. The Research Area 4

1.6. Outline of the Thesis 4

2. Research Statement and Methodolo,~ 6

2.1. Research Objectives 6

2.2. Scope of the Research 7

2.3. Research Methodology 7

3. Literamre Review 9

3.1. Tenninology 9

3.2. Data Flow Diagram (DFD) II

3.3. Integration Definition for Function Modeling (IDEFO) 13

3.4. IDEF3 - A Process Description Capture Method 15

3.5. SAP's Event-driven Process Chain (EPC) Method 17

3.6. CIMOSA - elM Open System Architecture 20

3.7. Integrated Enterprise Modeling (lEM) 22

3.8. The Purdue Enterprise Reference Architecture (PERA) 24

3.9. ORAI-OIM (ORAl Integrated Model) 26

3.10. TOronto Virtual Enterprise (TOVE) Method : 28

3.11. Baan's Dynamic Enterprise Modeling (DEM) Technique 30

v

3.12. Generalized Enterprise Reference Architecture and Methodology 31

3.13. Architecture for Integrated Information Systems 33

3.14. Unified Modeling Language 35

3.15. Summary 37

4. Characteristics of an Enterprise Process Modeling Language 38

4.1. Characteristics 38

4.2. Elements of a Process Model 41

5. Enterprise Process Modeling Language (EPML) 42

5.1. Activity 42

5.2. Control Flow 45

5.3. Data Flow 46

5.4. Electronic Data Flow 46

5.5. Material Flow 47

5.6. Connectors 47

5.7. Time Trigger 49

5.8. Logical Operators 49

5.9. Binary Decision 5S

5.10. Constraint, Rules, and Guidelines 56

5.11. Rules for Representing Control Flow to an Activity S6

5.12. Feedback Representation 57

5.13. Data Flows and Logical Constructs 58

5.14. EPML Implementation within a Software Environment.. 58

6. Comparison of EPML with Existing Process Modeling Techniques 61

6.1. The Scenario " 61

6.2. Modeling using IDEF Techniques 62

6.3. Modeling using CIMOSA 67

6.4. Modeling using IEM 67

6.5. Modeling using TOVE 71

6.6. Modeling using SAP's EPC 74

vi

6.7. Modeling using Data Flow Diagram 74

6.8. Modeling using BAAN's DEM 78

6.9. Modeling using EPML 81

6.10. Comparison Criteria 81

6.11. Summary 84

7. Conclusions and Future Work 87

7.1. Research Summary 87

7.2. Contributions 88

7.3. Future work 88

Bibliography 91

vii

LIST OF TABLES

Table Page

Table 1: Summary of the Comparison Study 86

Vlll

TABLE OF FIGURES

Figure Page

Figure 3.1: DFD for a Shipping Process 12

Figure 3.2 Basic Building Block ofIDEFO 14

Figure 3.3: Example of Functional Decomposition in IDEFO 14

Figure 3.4: IDEF3 Process Description Diagram 16

Figure 3.5: IDEF3 Object State Transition Diagram 16

Figure 3.6: Constructs for the EPC Method 19

Figure 3.7: Example of an Event-driven Process Chain 19

Figure 3.8: CIMOSA Business Modeling Constructs 21

Figure 3.9: CIMOSA Domains, Business Processes and Enterprise Activities 21

Figure 3.10: Basic Building Block ofIEM 23

Figure 3.11: IEM General Activity Model 23

Figure 3.12: PERA - Different Task Modules 26

Figure 3.13: GRAI-GIM Reference Model 27

Figure 3.14: GRAI-GIM 2-D Matrix 27

Figure 3.15: GIM Modeling Framework 27

Figure 3.16: TOVE Activity State Model.. 29

Figure 3.17: DEM Modeling Constructs 30

Figure 3.18: Manufacturing Example in DEM 31

Figure 3.19: GERAM Framework Components 32

Figure 3.20: Basic Building Blocks of an ARTS Process Model 34

IX

Figure 3.21: UML Activity Diagram Constructs 36

Figure 3.22: UML Activity Diagram Example 36

Figure 5.1: Activity block 43

Figure 5.2: Control Flow 45

Figure 5.3: External Trigger 45

Figure 5.4: Data Flow 46

Figure 5.5: Electronic Data Flow 47

Figure 5.6: Material Flow 47

Figure 5.7: Use of Connectors 48

Figure 5.8: Connector 48

Figure 5.9: Time Trigger 49

Figure 5.10: AND Operator - Parallel Split 50

Figure 5.11: AND Operator - Parallel Merge 51

Figure 5.12: XOR Operator - (One to one-out-of-many) 52

Figure 5.13: XOR Operator - (One-out-of-many to One) 53

Figure 5.14: lOR Operator- One to Many 53

Figure 5.15: lOR Operator - Many to One 54

Figure 5.16: An Example ofa Binary Decision 55

Figure 5.17: Constraint Construct ~ 56

Figure 5.18: Rules for Representing Control Flow 57

Figure 5.19: Feedback Representation 58

Figure 5.20: Software Implementation Details of EPML Constructs 60

Figure 6.1: IDEFO Representation of HAL's Ordering Process 63

Figure 6.2: IDEFO Representation of HAL's Ordering Process, - Sub process # 2.4 64

x

Figure 6.3: IDEF3 Representation of HAL's Ordering Process 65

Figure 6.4: IDEF3 Representation of HAL's Ordering Process - Sub process # 2.4 66

Figure 6.5: CIMOSA Representation of HAL's Ordering Process 68

Figure 6.6: IEM Function Chain for Hal's Ordering Process 69

Figure 6.7: IEM Partially Autonomous Unit 70

Figure 6.8: TOVE - Activity Abstraction Diagram - HAL's Ordering Process 72

Figure 6.9: TOVE - Activity Cluster Diagram 73

Figure 6.10: SAP's EPC Representation of HAL's Ordering Process 75

Figure 6.11: SAP's EPC Representation of HAL's Ordering Process, (contd.) 76

Figure 6.12: DFD Representation of HAL's Ordering Process 77

Figure 6.13: Baan's DEM Representation of HAL's Ordering Process 79

Figure 6.14: Baan's DEM Representation - Sub Process-HAL's Loan Payment System 80

Figure 6.15: EPML Representation of HAL's Ordering system 82

Xl

ARIS

CIM

CIMOSA

DEM

DFD

EPC

EPML

GERAM

GRAI-GIM

IDEF

IEM

PERA

TOVE

UML

ABBREVIATIONS

Architecture for Integrated Infonnation Systems

Computer Integrated Manufacturing

CIM Open System Architecture

Dynamic Enterprise Modeling

Data Flow Diagram

Event-driven Process Chain

Enterprise Process Modeling Language

Generalized Enterprise Reference Architecture

GRAI Integrated Methodology

Integration Definition for Function Modeling

Integrated Enterprise Modeling

Purdue Enterprise Reference Architecture

Toronto Virtual Enterprise

Unified Modeling Language

xu

1. Introduction

An enterprise is a group of organizations that have a common objective to offer products

and services. Enterprise modeling is the process of representing an enterprise, by

explicitly describing its operations. Enterprise models help us in understanding proposed

or existing business processes, in our quest to improve the effectiveness and efficiency of

the enterprise as a whole. The representation of an enterprise could be in the form of a

mathematical model, a symbolic representation, or a textual description. The purpose of a

model is to allow the modeler to gain a thorough understanding of the enterprise, analyze

its processes, and suggest changes to improve the processes.

An analogy to the product development process is immediate. While developing a new

product, or modifying the design of a product, the designer needs to know the exact

function of the product. Then the designer fonnulates a set of requirements for the

product and designs the product using scientific principles. The output is usually in the

form of a drawing, which is then translated to a physical product. In this process, well­

established techniques, tools and performance measures support the design process. For

example, the designer can categorize product requirements into mechanical design

requirements, expected fatigue life, thermal requirements, etc. These requirements are

then translated into design specifications using design tools such as IDEAS

(www.sdrc.com). which are readily available in the form of commercial software

packages. Specific perfonnance measures can help verify the design after product testing.

In the present context, the "product" is usually a process or a set of processes to achieve

certain objectives.

1.1. Terminology

Before proceeding further, it is necessary to clarify the meaning of some terms that are

frequently mentioned in the enterprise modeling literature (ISOfFDIS 15704, 1999).

Additional details are contained in Section 3.1.

1

Activity: A unit of functionality; it might be all or a part of functionality.

Business processes: A set of activities in an order designed to achieve the goals of an

enterprise.

Framework: A structural diagram that relates component parts of an entity to each other.

Architecture: A description of the basic arrangement and connectivity of the different

parts ofa system.

Methodology: A set of instructions, which serve as a step-by-step guide to the user.

Modeling Language: A set of constructs, and their syntax and semantics by which a

system can be modeled.

1.2. Available Aids for Enterprise Modeling

Enterprise modeling has been an active area of research for the last several years. The

efforts are evident in the various forms of modeling techniques, methodologies and

frameworks that exist. Examples are CIMOSA, PERA, IEM, GERAM, and GRAI-GIM.

These efforts have produced reference architectures to support the organizing of

enterprise knowledge, and to serve as a guide in enterprise integration programs. Each of

these compilations has been developed with a specific purpose in mind. CIMOSA

provides a framework to guide the users in modeling business requirements, aid

engineers in enterprise design and implementation, and support vendors in system

component development (Zelm et al. 1995; Kosanke 1995). PERA provides the

capability of modeling the human component as well as the manufacturing or customer

service component of any enterprise, in addition to the information and control system

components (Williams 1994). PERA describes a unique method for defining the place of

the human in a computer-integrated enterprise. IEM claims that its approach to model an

enterprise can provide a functional base to create a unified model from a user's point of

view (Mertins et al. 1992). GRAI-GIM supports an integrated manufacturing

environment and recommends different techniques to be used for different purposes, e.g.,

IDEFO for functional modeling and Entity Relationship Diagram for d~ta modeling (Chen

and Doumeingts 1996). A unique feature of GRAI-GIM is its decision control model.

GERAM defines a tool-kit of concepts for designing and maintaining enterprises for their

2

entire life cycle (GERAM 1999). Examples of modeling techniques mentioned in

GERAM are IDEFO for functional! modeling, IDEFIX for data modeling and data flow

diagrams for process modeling.

1.3. The Problem Description

Given the task of modeling an enterprise for analyzing and improving its performance,

the user has many choices as described in the previous section. But the success of this

effort depends to a great extent on the modeling language chosen, and its associated

methodology and framework, if any. For example, one might choose data flow diagrams

(Dao and Rodjak 1991) or the IDEFO technique (Colquhoun et al. 1993; Bravovo and

Yadav 1985) to start the modeling effort because the constructs are easy to understand

and use. However, these languages lack a theory base and are not capable of supporting

any formal performance analysis. They might be useful in capturing the enterprise

processes from the top to the bottom. But the user has to deal with a bewildering array of

diagrams that result, and could find that it is very difficult to analyze the processes

without additional support from the modeling technique.

On the other hand, suppose an "intelligent user" chooses a theory-based technique to

model an enterprise. Let us also assume that the user will be successful in de cribing the

enterprise as well as analyzing and improving its processes. However, a common u er

may find the model difficult to comprehend because of the complexity inherent in a

formal theory base supporting the model. So, we have an apparent conflict between an

easy to use or informal modeling language and a formal, theory-based language. Each has

its own advantages and disadvantages.

1.4. A Solution

An ongoing project in the School of Industrial Engineering and Management at the

Oklahoma State University, funded by the National Science Foundation through grant #

DMI-0075588, is focused on creating a user-oriented process and performance modeling

framework (Kamath et at. 2001). This effort is aimed at creating a user-oriented front-end

language with Petri net theory (Zurawski and Zhou 1994) as the underlying mathematical

engine. The idea is to create a graphical front end that would let the user model

3

enterprise processes graphically. The front-end description is linked to a Petri net-based

back-end tool, which will then be used to analyze the processes. The front-end and the

back-end will be integrated through a two-way mapping scheme such that any changes in

the front end will be reflected in the back end and vice versa.

1.5. The Research Area

The creation of a front-end graphical modeling language as described in the previous

section is the focus of this research. Not all of the enterprise modeling frameworks

described in Section 1.2 have a modeling language of their own. For example, GRAI­

GIM framework recommends IDEFO for process modeling (Chen and Doumeingts 1996).

GERAM does not recommend any specific modeling language, but suggests that it

should be integrated with data modeling and other tools used to model the entire

enterprise (GERAM 1999). CIMOSA has its own set of constructs, which allow a

detailed and hierarchical description of the enterprise processes (Zelm et al. 1995).

However, it is not as strong in depicting control flow as the SAP-EPC model (Keller and

Detering 1993). Each language has its own strengths and limitations.

This research involves the development of a front-end graphical modeling language for

the NSF-funded research effort. The focus of this thesis was limited to developing a set of

constructs with clearly defined semantics and syntax, which will help a modeler to

capture details needed for process modeling in a clear and unambiguous manner. Any

associated framework, architecture and methodology were beyond the scope of this

thesis.

1.6. Outline of the Thesis

The remainder of this thesis is presented in six.. chapters. Chapter 2 presents the research

objectives, scope, and deliverables, and focuses on the steps that were taken during

development of the proposed language. Chapter 3 includes a review of the literature on

enterprise modeling languages. It also elucidates their strong and weak points. Chapter 4

describes the characteristics of a process modeling language. The constructs, semantics

and syntax for the language developed are described in Chapter 5. Chapter 6 presents a

comparative study and qualitative arguments on limitations of the existing process

4

modeling techniques based on a business process example. Chapter 7 concludes this

thesis, and identifies areas for future work.

5

2. Research Statement and Methodology

Existing enterprise process modeling languages have their own strengths and limitations.

There is a need to develop a graphical process modeling language that potentially

addresses the shortcomings of the existing languages while retaining their strengths. As

mentioned in Section 1.4, the research work underway at the Oklahoma State University

addresses the following limitations of the current enterprise modeling languages (Kamath

et ai. 2001).

• Need for a theory base

• Need for modeling and implementing distributed computing

• Need for integrating activity based management

• Need for linkages between business and engineering processes

This research was an integral part of a larger process modeling framework and partially

addresses the above limitations. Petri nets will serve as the theory base for the modeling

approach and will be the back-end representation. Petri net representation will be linked

to a graphical process modeling tool at the front end (Sivaraman 2001). Modem concepts

such as activity based management, linkages between the engineering and business

approaches, and the distributed computing concept of the Internet are incorporated into

the proposed framework.

2.1. Research Objectives

The purpose of this thesis was to develop enterprise process modeling constructs with

clearly defined semantics and syntax that take into account the limitations of the existing

process modeling languages. The objectives of the research were:

1. To conduct a thorough evaluation of existing enterprise process mQdeling techniques.

6

2. To identify constructs and theory from existing modeling techniques that can be

incorporated into a new enterprise process modeling language.

3. To design a new set of graphical constructs for enterprise process modeling with

clearly defined syntax and semantics.

4. To evaluate the enterprise process modeling language developed.

2.2. Scope of the Research

The purpose of this research was to develop a set of graphical constructs with well­

defined semantics and syntax, which will not only blend the advantages of the existing

process modeling techniques, but also allow the user to model processes as observed in

reality. The central idea was to provide flexibility and also avoid syntactic constraints and

semantic ambiguities while modeling a process. Henceforth, we will call the language

developed as enterprise process modeling language or EPML. The architecture, which

will support implementation of the proposed EPML, is a logical next stage in the

research. As mentioned in Section 1.4, mapping with the back-end representation (Petri

nets) was a parallel activity as a part of the NSF project. The EPML is structured in such

a way that the process description can be readily transfonned into a Petri net. Mapping

between EPML and Petri nets was a part of the NSF project, but not a part of this thesis

effort.

The NSF-funded project at Oklahoma State University also addressed the issue of

scalability and prescriptive ability with the modeling framework. Efforts to address the

issues of scalability and prescriptive ability were not a part of this thesis. Also, a Web­

based software implementation of EPML was a part of the NSF project, but not a part of

this thesis.

2.3. Research Methodology

In order to accomplish the objectives stated in Section 2.1, the effort was divided into six

distinct stages as outlined below.

Stage J: The existing modeling techniques were studied and explored in detail. The

purpose, strengths and limitations of these techniques were evaluated in the light of the

7

NSF project and its objectives. Constructs common to most of the process modeling

languages were identified.

Stage 2: A list of all the elements that could be captured In a process model was

developed (Section 4.2). This list was useful as a checklist for verifying that details

necessary to describe a process were being captured by the EPML constructs.

Stage 3: In this stage, concepts like distributed computing and linkages between business

and technical processes were studied in the context of defining constructs or features of

constructs in the proposed modeling language.

Stage 4: In this stage, the information gathered in the earlier stages was used to develop a

new set of constructs, and their syntax and semantics. Apart from designing a new set of

constructs for correctly and completely describing the processes in an enterprise, a

secondary objective was to facilitate Petri net representations.

Stage 5: The nature of this thesis is qualitative. Hence, verification and validation by

running computer simulations or experimentation was not possible in order to judge the

effectiveness of EPML. An ideal testing environment would involve modeling by a

chosen group of knowledgeable users in the industrial world. However, this task would

require substantial time and effort, and was clearly beyond the scope of this thesis.

Hence, for the fulfillment of the objectives of the thesis, an example business process was

modeled in EPML and in the existing process modeling languages. The comparison and

evaluation was done with qualitative arguments, and subsequently summarized in a

tabular form.

Stage 6: The final stage involved the identification of potential enhancements and

extensions to the EPML. Future work related to the use of EPML within a modeling

framework under development was also documented.

8

3. Literature Review

In this chapter, the terminology that is frequently used in the field of enterprise modeling

is described in some detail. This is followed by a description of various enterprise process

modeling languages and approaches. The strengths and limitations of each modeling

language are also elucidated.

3.1. Terminology

Before exploring the techniques and various enterprise modeling languages, one should

be well acquainted with the terms that are frequently used. The terms presented herein are

a collection from standards ISO 15704 (1999); ISO 14258 (1999); GERAM (1999); and

WFMC-TC-I011 (1994).

Enterprise: It is a group of organizations sharing a set of goals and objectives to offer

products and services (ISO 14258 1999).

Process: It is a formalized view of business operations, represented as a co-ordinated

(parallel and/or serial) set of activities that are connected in order to achieve a common

goal. It can also be considered as a network of activities (WFMC-TC-I0l1 1994).

Sub-Process: It is a process that is enacted or called from another (initiating) process (or

sub-process), and which forms part of the overall (initiating) process. There can be

multiple levels ofsub-process (WFMC-TC-I011 1994).

Activity: It can be considered as a unit of a sub-process or of a process. An activity could

be further broken down into tasks and sub-tasks. In this thesis, an activity means that a

unit of a process that uses some input to produce an output(s). A process also has inputs

and outputs, but at a higher level than an activity. Decomposition of an activity into tasks

and sub-tasks is not done in this thesis.

9

Event: It is a point in time, which indicates that an activity or a process has taken place.

It acts as a trigger to one or more activities/processes when it occurs (Keller and Detering

1996).

Enterprise Modeling: It is a process of representing what an enterprise intends to

accomplish and how it operates (GERAM 1999). The results of enterprise modeling are

the various designs, models prepared for analysis, executable models to support operation

and so on. Process modeling is only a part of enterprise modeling. All other customary

design and analysis activities that create descriptions or models of the enterprise in any

phase of the life cycle (such as engineering drawings, charts, etc.) fall under enterprise

modeling. The current emphasis on process modeling is because of the fact that it has not

received much attention in earlier efforts (GERAM 1999)

Process Modeling: It is the activity that results in various models of management!

control, and of service/production processes and their relationships to the resources,

organization, products, etc., of the enterprise. Process modeling allows the user to

represent the operation of enterprise entities in all their aspects: functional, behavior,

information, resources and organization (GERAM 1999)

Framework: A framework is a structural diagram that relates the component parts of a

conceptual entity to each other (ISO 15704 1999). The interpretation of this definition is

that a framework is an abstract idea at a higher level than architecture and methodology.

It is an abstract representation of all the components of an enterprise model, and guides

the user or the modeler as to what goes where.

Architecture: An architecture is a description of the basic arrangement and connectivity

of the different part~ of a system, including both physical and conceptual objects/entities

(ISO 15704 1999).

Methodology: A methodology is a set of instructions provided through text, computer

programs, tools, etc., that is a step-by-step aid to the user (ISO 15704 1999). A

methodology guides the user in the modeling process.

Tool: A tool is an aid with which the user can model a system or a process. Thus a data

flow diagram (Dao and Rodjak 1991) or an IDEFO diagram (Colquhoun et al. 1993;

10

Bravovo and Yadav 1985) is a tool to model a process. An entity relationship diagram

(Song and Froehlich 1994) is a tool to model data.

View: Due to the complexity and the size of an enterprise model t a model can be

presented to the user in different subsets of an integrated modeL This concept is

explained in GERAM (1999). "Views contain a subset of facts present in the integrated

model allowing the user to concentrate on the relevant questions that the respective

stakeholders may wish to consider during enterprise modeling." GERAM has identified

the following views:

•

•

Entity Model Contents Views: function, infonnation t resource t and organization.

Entity Purpose Views: customer service and productt management and controL

• Entity Implementation View: human implemented tasks and automated tasks.

• Entity Physical Manifestation Views: software and hardware.

Additional views could also be defined as per the user requirements.

3.2. Data Flow Diagram (DFD)

A data flow diagram (DFD) is a technique to model the processes in a system using a

simple set of graphical symbols (Dao and Rodjak 1991, Whitten and Bentley 1998). In a

DFD t a square box represents an external source or destination (sink) of data. A rounded

rectangle represents a process. A data store is represented by an open-ended rectangle

(open on its width on one side or on both sides in another notation). A context level

diagram shows the main components of the system under consideration. This diagram is

then decomposed until the level of detail required is reached. The general principle in

data flow diagramming is that a system can be ,decomposed into subsystems, which can

further be decomposed into lower level subsystems, and so on. Each subsystem

represents a process or activity in which data is processed. At the lowest level, processes

can no longer be decomposed. Each process in a DFD has the characteristics of a system.

Just as a system has input and output, a process has input and output. Data enters the

system from the environment; data flows between processes within the system; and data

is produced as output from the system. Directed arcs represent the flow of data from one

11

component of the model to the others. Arcs are labeled to indicate what flows across tb.e

system components. An example of an item shipping process is shown in Figure 3.1,

which is taken from (Burch 1992).

Invoice

/ "Purchase 1.1

Order Shipping
Shipping

Customer Order Instructions Dept.
Clerk: -
Order

• Entry
Customer "- ./ Inventory
Account + I II Account

Ii t• Update Update
,

I Customer Details Details I I Inventory

/' "1.2

Bill of Lading Shipping Shipping Order
Manager:
Generate
Shipping
Documents

./

Figure 3.1: DFD for a Shipping Process

Strengths: DFD is probably the simplest process modeling technique. A person who is

well acquainted with a given process/system can quickly begin to model the system with

the DFD technique. It is recommended that a process be broken down functionally as far

as possible. This will help an organization clearly understand the requirements of its

different functions as they are expressed graphically. One key benefit of DFDs is that

they promote awareness of infonnation sharing among different functions within an

organization (Burch 1992).

Limitations: A common misconception with a DFD is that the graphical language

implies a process sequence like a flow chart, which is not the case. The graphical

language lacks a formal theory base, and hence, analysis based on a DFD is very

subjective and constrained by the user's/modeler's understanding of the system. Time

12

and control flows cannot be represented in a DFD, and as a result, it is not possible to

capture the process dynamics. The many data stores, in today's world, can be repre ented

by a single information system or data warehouse. Hence, there is perhaps no need to

represent different data stores in the DFD and complicate'the diagram. This idea is also

expressed in (Millet 1999).

3.3. Integration Definition for Function Modeling (lDEFO)

IDEFO is a language which evolved from Structured Analysis and Design Teclmique

(SADT) developed by Douglass Ross and Soffech Inc. (Colquhoun et al. 1993). The

United States Air Force commissioned the developers of SADT to develop a functional

modeling method for analyzing and communicating the functional perspective of a

system. This lead to the development ofIDEFO.

IDEFO is a graphical modeling language which can be used to define the requirements of

a system, specify its functions, and design implementations. The basic components of an

IDEFO model are

• an activity box; and

• data or object interfaces represented by arrows.

A box provides information about an activity that takes place in the system. To represent

a complete process, these boxes can be linked with each other. The basic unit of an

IDEFO model is as shown in Figure 3.2. The arrow connecting the box from the left

represents the input to the activity and the arrow coming out from the box from the right

represents the output from the activity. The arrow connecting to the box from the top

represents the control or the constraint for the activity. The arrow connecting to the box

from the bottom represents the resources Qr the mechanisms hy which the activity is

performed.

The result of applying DEFO to a system is a model that consists of a hierarchical series

of diagrams (e.g., see Figure 3.3), text and glossary cross referenced to each other

(Colquhoun et al. 1993; Bravovo and Yadav 1985). The exposition of details is gradual

and controlled as IDEFO allows only a maximum of six lower-level activity blocks when

expanding a higher-level activity.

13

.l;

Control

Input - Activity description Output

Mechanism

Figure 3.2 Basic Building Block of IDEFO

-- ----------~

----~-------

AO

--------- A-ol
""""""""""""";

"";

"";
;

;

";

""" I

Figure 3.3: Example of Functional Decomposition in IDEFO

Strengths: An activity can be broken down to its lowest sub activities using a structured

approach. IDEFO, therefore, supports structured analysis. The associated methodology is

well defined, and an average user can construct an IDEFO model with limited training in

the use of IDEFO diagrams. The graphical language has a well-defined syntax. For

example, IDEFO has an excellent numbering scheme to link parent and child diagrams in

a hierarchical set. It became the Federal Government standard for infonnation processing

in the early nineties.

14

-

Limitations: The most common misinterpretation about IDEFO is that 'it is a sequence of

activities/diagrams'. It is important to note that IDEFO assumes sequence independence,

although the activity blocks can be arranged in such a way (from right to left ­

sequentially) that it could represent a workflow. However, it is left to the discretion of the

user to model a sequence or not. The notion of time is not included in IDEFO. It can

become difficult to identify and distinguish between inputs and controls (triggers) for a

given activity. Decision logic is not represented in IDEFO. This technique does not

support prescriptive analysis. This is because oflack of a formal supportive theory.

3.4. IDEF3 - A Process Description Capture Method

IDEF3 is a process description language and not a self-contained modeling tool

(www.idef.com). It was developed to capture details of a process as described by a

person actually involved in the process. It is a structured method for capturing details of

a process and has two distinct representations of the process within the boundary of the

process. This boundary is termed as a scenario. A process can be represented by a

sequence of activities using a "process description diagram," (see Figure 3.4) in which

each activity is represented by a rectangle termed as a ''unit of behavior (VOB)." The

process sequence is represented by a number of VOBs connected together by directed

arcs to represent control flow. The precedence, causality, and logical relationships within

a scenario are captured in this process description diagram. The second representation in

IDEF3 is termed as Object State Transition Network (OSTN) diagram (Figure 3.5). The

OSTN diagram describes what happens to an object as it passes through a sequence of

activities. This representation focuses on objects involved in the process and their state

change behavior in a single or multiple scenarios. Object states are represented by circles,

and state transition links are represented by d,irected arcs.

Strengths: IDEF3 has a clearly defined methodology for describing the details of a

process. By separating the process description into a process description diagram .and an

object centric diagram, one can construct multiple views of the same process. This is

beneficial when users with different backgrounds want to have a description of the same

process. Precedence, causality, and logical relationships are represented in IDEF3

diagrams. IDEF3 has a clearly defined syntax

15

=

---... ..-",*,

8 I

~[E]-

0I0p00II ""'*- --.....,.
4 ---ordor"'''~ f- l-

s [I. I--- ~o -{E}-..--..v - "",*--
~

I 2 I
UpdoIo- -

(ordor)

4 I

I
~

000kI0 _'" poy

~
P8y~

7 I a I

Figure 3.4: IDEF3 Process Description Diagram

2

Prepare a purchase
order

3

Dispatch purchase
order to the supplier

4

Update databases
Receive Invoice from

the supplier

5

Figure 3.5: IDEF3 Object State Transition Diagram

16

•

Limitations: The goal of IDEF3 is to describe in detail the logic of process executions.

An IDEF3 description can be used to support simulation of alternative process

implementations. However, an IDEF3 description should be supplemented by an IDEFO

representation to capture complete details of a process.

3.5. SAP's Event-driven Process Chain (EPC) Method

SAP is a leading provider of inter and intra-enterprise software solutions that integrate

the processes within and among enterprises and business communities (www.sap.com).

SAP's R/3 software package provides solutions to almost all business applications such

as Sales and Distribution, Human Resources, Finance, and Production. SAP has

developed the R/3 reference model (a business process model), which is supported by the

R/3 software. The SAP R/3 reference model is primarily intended for identifying

possibilities for optimizing the routines and procedures in a company. It focuses on three

basic design principles that are always relevant when a company is analyzed for

reengineering, and they are:

• A task or a function which describes what is to be done.

• An organization which describes who should be doing the task.

• An information object which describes what information is needed to process the

job.

The most important aspect of the R/3 model is "when something should be done", that is,

the control logic. This is of prime importance in today's world where time is money.

SAP's R/3 model has two main goals: customer orientation and model orientation.

Customer Orientation: The description of processes is captured in a group of symbols,

which are clear and have a meaningful 'syntax. The symbols are in a particular

arrangement so that a person can understand and grasp the process structure quickly.

This method ofarranging the symbols is known as the Event Driven Process Chain (EPC)

method.

Model Orientation: In order to avoid an information overload when the size of the

model gets too large, the R/3 model describes the business processes that are commonly

17

•

needed in practice along with their variants.

Event Driven Process Chain: EPCs are made up of active components that do things

(functions) and passive components that only come into play in response to certain

business situations (Keller and Detering 1996). The events, which are represented by

hexagons, act as triggers for the functions. It is not easy to identify events in a process,

but once they are identified, the resulting EPC acts as a powerful control flow logic for

the organization. The constructs and their meaning are shown in Figure 3.6. The example

in Figure 3.7, taken from Keller and Detering (1996), illustrates the use of the constructs

to create a process model that clearly captures the control logic. The process described by

the constructs is the flow of goods in a company.

Navigation between individual process models is done with the aid of initial and final

events. In order to analyze business processes and their variants, a "Lean EPC" diagram

can be constructed with only functions, events and the logical operators. To handle

organizational questions, an "EPC Assignment diagram" can be constructed with the

organizational units and the infonnation units along with their inputs and outputs. Thus,

the EPC can be broken down into two diagrams for business process flow analysis and

organizational/infonnation flow analysis.

A striking feature of the RJ3 architecture is the process selection matrix which comprises

standard business processes. The columns represent the business processes and the rows

represent the scenarios or the variants of the business processes. The first step in

modeling is to arrange the elements of the matrix as per the business process. The process

selection matrix allows R/3 users to get into the process models of R/3 and answer

questions about the characteristics of each business process and its logical time sequence

inside of the defmed scenario (Keller and Detering 1996).

Strengths: By connecting events with the functions using logical operators, and by

fonning a sequence of events and functions, a complex business process can be defined

quite accurately. The focus of the R/3 reference model is complete chains of processes in

response to business events. This is done to a very limited extent in IDEFO. This could

play a vital role when we deal with enterprise structures such as supply chains. Apart

from describing the control flow, an EPC diagram captures the information/data

18

-

necessary towards the development of an information system. It also describ which

department is involved in the process. The process selection matrix assists the user in the

modeling process with standard business processes and scenarios.

o
o
D

=Event

= Function

= Data Element

----+

=Organization unit

=Data flow

= Control Flow

= Link

Figure 3.6: Constructs for the EPC Method

Purchase
Order

Delivery
Note

~
~

I
I
I
I

Check
Goods

Inspection
Result

I
I
I

r---------~ -----------r
I V I

: I :
I I I

666
~~~

I I
I
I
I
I
I
I

(~. ]
Figure 3.7: Example of an Event-driven Process Chain

19



-
Limitations: Unlike other approaches, the SAP .RJ3 model does not provide a

methodology that would serve as a guide to the modeler. The RJ3 model was not

developed with a view to the creation of an information system, but to clarify the

business solutions of the R/3 systems in simple model screens. Although the process

selection matrix can serve as a guide to the user, the company specific processes require

iterative prototyping by choosing the appropriate elements of the matrix. This process has

to be done carefully so that the company specific process can be modeled correctly.

3.6. CIMOSA - CIM Open System Architecture

CIMOSA is the outcome of the efforts undertaken at the European Strategic Program for

Research and Development in Information Technology (ESPRIT) Consortium AMICE

(Zelm et al. 1995). CIMOSA includes an enterprise modeling language, which supports

model-driven enterprise in all the life-cycle phases of an enterprise. The modeling

language is supported by a well-defined framework, architecture and methodology.

The framework has three dimensions - (i) model life cycle, (ii) views and (iii) instances

of the model. The modeling process starts with a requirements definition model followed

by the design specification model and finally the implementation model. There are four

different views - Resource view, Function view, Information view and Organization

view. There are three instances of a model, generic, partial and particular, which

represent the levels of abstraction. A generic model is applicable for a broad domain

whereas the particular model is for a specific set of business processes or in a specific

enterprise. CIMOSA provides a set of constructs to build a particular enterprise model.

Figure 3.8, taken from Kosanke (1995) shows the basic building blocks of the CIMOSA

business modeling process. The Domain process (DP) is at the highest level. Processes,

events and enterprise activities are the object classes that describe functionality and

behavior (dynamics) of the enterprise operation. Inputs and outputs of enterprise

activities define the information (enterprise object) and the resources needed.

Organizational aspects are defined in terms of responsibilities and authorization

(organization elements) for functionalities, information, resources, and organization.

They are structured in organizational units or cells. CIMOSA employs the object-oriented

20



-
concepts of inheritance, structuring its constructs into a hierarchy of object classes

(Kosanke 1995).

Structur1ng
cone.pta

CIMOSA Object Class
(Generic Bulldlng Block)

(Building Block Type)

~
~

IE~ntl

Figure 3.8: CIMOSA Business Modeling Constructs

DIol- EnerprIoo~
Dill. - rlOI><:t.IOSA~
OM2 & 0M3 • C-..osA Doman OP2.'

D_
na.._.
_b

Figure 3.9: CIMOSA Domains, Business Processes and Enterprise Activities

The CIMOSA constructs are shown in Figure 3.9. The CIMOSA business modeling

process starts with the identification of CIMOSA and non-CIMOSA domains. These

domains are connected by events and results. The CIMOSA domain is then broken down

into Domain Processes (DP) and Business Processes (BP) at the next level, which are

21



-

further broken down into Enterprise Activities (EA). The EAs are linked by a set of

behavioral rules (BRS) that represent control flow.

Strengths: CIMOSA supports the life cycle of an enterprise from the requirements

definition stage to its implementation. It has a well-defined framework which provides a

clear idea as to at what level (instance) the user desires to model. The results of a study

conducted (Didic 1994), demonstrated that CIMOSA offers valuable concepts for

integration of information technology in manufacturing environments, from model

creation to model execution. eIMOSA gives useful guidelines in structuring a system.

The link between process modeling and model execution provides flexibility to respond

to changes in the enterprise processes.

Limitations: The results of the study conducted on CIMOSA model creation and

execution for a casting process and manufacturing cell also concluded that CIMOSA

architecture is neither complete nor consistent (Didic 1994). CIMOSA concentrated more

on the architectural framework. Effort on system detail is necessary for a successful

creation and execution of a CIMOSA system. Methodology for the transition from a

general to a partial and then to a particular model of an enterprise is not defined. The

functional view shows a generic workflow control, but not to the extent of the EPe in the

R/3 reference model. The behavioral rule set has to be correctly defined to initiate the

correct business processes or enterprise activities. The RJ3 representation provides a more

natural way of specifying the events. The decomposition of a domain into domain

processes and business processes at the next level, which are further broken down into

enterprise activities, can create confusion for the user when classifying processes and

activities.

3.7. Integrated Enterprise Modeling (lEM)

IEM was developed to support computer integrated manufacturing; however the concepts

can be extended to non-manufacturing enterprises. The concept of IEM is that the

representation of the different aspects of manufacturing enterprises as views of one

unique model (Mertins et al. 1992 and 1997). IEM uses the object-oriented modeling

approach, and applies its three main features - encapsulation (the close relation between

functions and data of an object), inheritance and the class concept. The kernel or meta

22



-

model of rEM comprises two main views, a generic activity block, and three operands or

objects of a manufacturing enterprise. The two main views are the function view and the

information view. The concept of encapsulation in the object-oriented approach links the

two views. The three objects of a manufacturing enterprise are: product, order and

resource. This classification in IEM is derived from the three main questions within a

manufacturing enterprise, what to order - product, how and how many - order, and what

is required to manufacture the product - resources. These objects, viewed with different

perspectives, link both views - function and infonnation with each other. The basic

building block of IEM is similar to that of the IDEFO technique and is shown in Figure

3.10. The generic activity model (GAM) of IEM is shown in Figure 3.11.

Order

[ o~~~ JObject Order J1
I Object Product =J ~ Object ProductAction

I-v

Object Resource I Object Resource

Resource

Figure 3.10: Basic Building Block of IEM

Action

--.~I Action

Function

-----i.~1 Action

Complete Activity

Figure 3.11: IEM General Activity Model

23



-

First, the action is described in the rectangular block. The input and the output objects

are identified in the next step, which results in the function block. The trigger (ord r) and

the resources when added to the function block result in a complete activity model.

The functions can be linked together to form networks of functions in an enterprise. The

complete activity blocks can be linked together to yield a particular model for an

enterprise. There can be a standard or common set of particular models which the user

can manipulate to suit specific processes in any enterprise. The objects, which were

identified during the functional modeling, can be studied for the data which they

contribute. This data can be represented or structured in three models, product, order and

resource in a single database of the infonnation system.

Strengths: The kernel of IEM tries to accommodate all entities m an enterprise as

subclasses of the three main classes - product, order and resources. Using the object­

oriented concepts, we can relate and link all objects with their relations. In an object­

oriented approach it is customary to define class libraries, which contain standard or

commonly used objects or sub classes. IBM has a class library with three broad views,

namely production processes, technical views and non-technical views.

Limitations: The IEM approach assumes that users are familiar with the object-oriented

concepts, which might not be the case. Without the knowledge of object-oriented

concepts it becomes difficult to apply the IEM method. The classification of objects

under the three main classes would itself be difficult. IBM assumes that views cannot be

predefined, but can be defmed as the model is being developed depending on the

perspective required. Hence, instant creation of views is difficult. Moreover, if the

modeling constructs do not support the required views then the usefulness of the model

will be limited. Taking into account all of all these drawbacks, it is difficult to say that

IEM integrates all views into one consistent model, although it aims at doing so. IBM

does not provide a clear modeling methodology.

3.8. The Purdue Enterprise Reference Architecture (PERA)

The uniqueness of PERA lies in the definition of the human tasks and functions in

enterprise modeling (Williams 1994). PERA categorizes enterprise requirements into

24

I-

I:
I

II
"



infonnation and physical manufacturing tasks. A group of connected tasks comprises a

function. PERA covers the entire life cycle of an enterpriset right from the mission

definition to the obsolescence of the enterprise. The PERA architecture has two views ­

functional and implementation. The implementation view covers definition, designt

construction, and installation and operation phase. Each phase has its own definition of

the three architectures - Information, Human, and Manufacturing. Within PERAt

"automatability line" defines the maximum extent to which a task can be automated

beyond which human intervention is required. The "humanizability line" defines the

maximum extent to which a human can perform a task and beyond which a task needs to

be automated. The actual extent of automation depends on the economic, social and

technical limitations.

PERA uses a bottom-up modeling approach. The basic construct of PERA reflects the

IDEFO building block without the representation of a resource. The resource aspect is

partially captured by having three variations of the task module (Figure 3.12). The

algorithm in the information architecture can be mathematical, computer based or even a

descriptive flow chart or sequence of statements. A network of these tasks forms

functions.

Strengths: Explicit definition of human roles is not found in any other framework or

architecture. PERA methodology covers the entire life cycle of an enterprise.

Limitations: PERA deals with a development of a master plan like in an ISO 9001 or a

QS 10000 quality manual. It does not focus on how to model an enterprise, but focuses

on the action plans that are a set of actions to be followed in an enterprise. Due to the

lack of a meta model like in the CIMOSA Framework or the process selection matrix in

the SAP R/3 reference architecture, it seems that PERA does not support a model-driven

enterprise. It tries to model an enterprise using the bottom-up approach. It would be

difficult to integrate all these tasks to form a complete enterprise model. The basic

modeling construct is similar to that of IDEFO, and could include the hierarchical

representation for integrating tasks into higher level processes.

25

"I,
0,

"::
t,....
"II
!;



a) 1rtamfu1Talk MxUe

Figure 3.12: PERA - Different Task Modules

3.9. GRAI-GIM (!iRAI !,ntegrated Model)

The purpose of GRAI-GIM is to support the designer of a computer integrated

manufacturing system in describing the CIM system and deriving its definition (Chen and

Doumeingts 1996). There are three aspects to the model, GRAI conceptual reference

model, the fonnalisms and the structured approach. In the reference model, as shown in

Figure 3.13, the manufacturing system is divided into the physical model (people,

machines, etc.) and the control system, which controls the physical system. The control

system is further decomposed into the decision model and the infonnation model.

The decision model operates at various levels of the enterprise and the three broad

categories of decision-making levels are strategic, tactical, and operational. The decisions

are taken on the functional entities namely, product, resource, and planning. Note that

this classification corresponds exactly to the IEM classes. The decision-making levels

and the functional decomposition leads to a two-dimensional matrix which is shown in

Figure 3.14. The physical hierarchy is related to the decision hierarchy. Each decision

level controls a specific physical process (level). The infonnation required for a decision

is provided by the infonnation system at any level, but the information is filtered and

26



only relevant infonnation for the level is provided. A specific decision level is called a

decision center.

Manufacturing
Enterprise

Figure 3.13: GRAI-GIM Reference Model

Functional Decomposition
(View)

Product Mgt Planning Resource Mgt

Strategic

Tactical

Operational

Figure 3.14: GRAI-GIM 2-D Matrix

View

,,,

....

,.
'"i:,.
I"

:c..
,(-
...

•
Information I Decision I Physical I Functional

Conceptual
Modeling Framework: User Oriented

Structural
Modeling Framework: Technically Oriented

Realizatlonal I I I

Figure 3.15: GIM Modeling Framework

27



The approach in the ORAl-OIM methodology is to build a user-oriented model first and

then the technical model. In the matrix in Figure 3.14, a functional view is added and the

modeling framework is shown in Figure 3.15.

The user-oriented model and the technically-oriented model have to be tightly coupled.

The constructs used for modeling any element of the grid are: entity relationship diagram

(Song and Froehlich 1994) for conceptual and structural modeling of information, and the

ORAl grid and network for the conceptual and structural decision model. The flow can

be represented by IDEFO diagrams. Imposing data coherence does validation of the

complete model. The structured approach focuses on three phases, initialization, analysis

and design. Implementation is not a focus in OIM.

Strengths: The separation of the control system into decision and information is a unique

feature of GIM. This can help in proper structuring of the decision/control hierarchy and

also help in the structuring of the information system.

Limitations: GRAI-GIM is only concerned with the analysis and design phase of an

enterprise. The design specification can only serve as a guide to the implementation

phase. The purpose of separating the user oriented model and the technically oriented

model is to help the users capture the processes independent of the technology. The

developments in technology will change the technically-oriented model. However, a

strong link has to exist between the technically-oriented model and the user-oriented

model, both must be current with respect to each other. The prescriptive ability of the

model lies in the choice of the modeling tool for the implementation phase.

3.10. TOronto Virtual Enterprise (TOVE) Method

TOVE is an enterprise modeling language with a deductive capability. It defines a shared

terminology for modeling the enterprise activities and implements semantics in "a set of

axioms" (Fox et al. 1993). TOVE is implemented in Prolog. In addition to describing

enterprise activities, TOVE can also provide answers to simple questions because.of its

deductive capability.

Unlike CIMOSA or other frameworks/architectures that decompose functions into lower

level blocks, TOVE uses a single construct called "Activity." An activity can be

28

...

...

.....

..
i
...
~S
I­
,~

I ..

Ie....'..
III

(

(.
#'..



perfonned when something enables it. When an activity is perfonned, something is

caused. The basic activity block is shown in Figure 3.16.

Enabling state

Enables <.;auses

Caused state

Figure 3.16: TOVE Activity State Model

An activity along with its enabling and caused states is called an actIvIty cluster.

Different types of states are defined; they are broadly classified into tenninal and non­

teoninal states. "Consume" and "Release" are two examples of a tenninal state. Non­

tenninal states include Boolean combinations like AND, exclusive OR, and inclusive OR.

Time is represented by a temporal relation between the terminal state and the activity,

which is specified by the user. The relationship between a non-terminal state and an

activity can be automatically deduced using a logical set of temporal relations. Resources

(material, equipment, etc.) are assumed to be temporally or physically divisible. The

tenninology about activity, states, time and resources are clearly defined and then

represented in the fonn of first order logic in Prolog. The concept of an activity and its

enabled and caused states is similar to the concept of Petri nets, that have been widely

used for modeling and analyzing systems.

Strengths: Compared to other languages, TOVE is an exception because of its

underlying theory base. The combination of deductive and descriptive abilities is not

found in any of the other enterprise modeling languages.

,Limitations: The user interface is limited to an activity cluster diagram that relates

activities with each other. The graphical symbology does not extend beyond the activity

and its states. This reflects poorly on user friendliness. TOVE lacks a reference

architecture or framework and the modeling methodology is unclear. The concept of

views and life cycle is not defined in TOVE. Although the underlying fonnalism is

appealing, it might be hard to implement.

29

~.,

....,........,...,.....
5:....~•.,
:u....
='1"..\0,,,
..."

!!:
,II
.,

.."



3.11. Baan's Dynamic Enterprise Modeling (OEM) Technique

Baan's Dynamic Enterprise Modeling tool is essentially a Petri net representation of a

process (van der Rijst 1997). A Petri net comprises sets of places, transitions, and input

and output arcs. Places are connected to transitions and transitions to places by directed

arcs (Sribari et ai. 1990; van dec Aaslt and van Hee 1995). The constructs used in OEM

modeling are shown in Figure 3.17.

o
D

Places contain job tokens which
are processed by activities.

Logical activities. They
represent logical junctions like

split and join.

Main activity or process
which is perfonned.

Sub process. The shadow
indicates that underneath
the process step, a sub-

process has been defined.

.."

...).:..,...•.,
;I:l....
5i~

Figure 3.17: OEM Modeling Constructs

The logical activity can be an AND, inclusive OR, or an exclusive OR. The type of the

logical connection has to be mentioned on the graphical representation. OEM

methodology provides guidelines to the user for modeling a business process. OEM has

conventions for representing a process in the Petri net form. OEM has structured

processes at two levels, namely the main prpcesses and the detail processes. The main

processes cover more than one business function, whereas the detailed processes contain

the detailed activities. DEM is implemented in Haan's ERP suites. Figure 3.18 shows a

manufacturing example in DEM.

Strengths: Petri net possesses powerful process analysis capabilities (Zurawski and Zhou

1994). Hence representation of a process in a Petri net form provides scope for analysis in

30

a.,



addition to a theory base for the modeling language. The modeling approach is event­

based with emphasis on control flows. The graphical language uses only a few symbols,

and is easy to understand.

Raw materials
received

Inspect raw
materials

Raw
materials
passed

Process raw
materials

Raw materials
inspected

XOR split

Raw
materials
rejected

load raw
materials on a
lruck and send
backlDvendor

.'!:......
s:..

Figure 3.18: Manufacturing Example in DEM

Raw
materials

processed

Raw materials
sent back

...............
til

c:
.'
c:.',...,

Limitations: The DEM graphical representation does not show data flow. Since control

activities or logical operators are represented by the same construct, the type of the

operator, that is AND, OR, or an XOR, has to he captured using a label. As each activity

block is preceded and succeeded by a place the description of a process could become

lengthy.

3.12. Generalized Enterprise Reference Architecture and Methodology

GERAM was developed by evaluating several existing modeling languages, and the

result is a generalized reference architecture for enterprise modeling, GERAM claims that

it is not another architecture; instead it serves to organize the existing architectures

31

1!
,1

.,



(GERAM 1999). However, it combines the concepts from most of the architectures

described earlier in this chapter, and has its own framework and methodology. OERAM

categorizes modeling levels that are shown in Figure 3.19.

Strengths: GERAM has generic concepts covering wide areas related to enterprise

modeling in the form of a reference architecture.

Limitations: GERAM does not have an enterprise modeling language of its own. It

suggests the use of any suitable modeling language to model specific portions of the

enterprise, and then suggests integration of the models. According to GERAM,

requirements of the modeling constructs should include human roles, activity based

management, etc. However, no details of implementation are given in GERAM. It

emphasizes model portability and interoperability in the information world with model­

driven operational support by providing real-time access to the enterprise environment.

GERAM also hints at including the economic aspects into consideration while modeling.

GERAM defines in a broad sense, what an ideal enterprise modeling architecture or

framework should be capable of doing, but does not provide all the details.

...

."III

.. :-.,...
'0'

.01-..

II:'.,
II,
I

" ,

mplement

mented

build

GERAM EEM Enterprise EMLs Enterprise
Architecture Engineering Modeling

Methodology
utilize

Languages

I • I I •
employs Imple

In

GEMCs General
Enterprise Modeling EET Enterprise

PEMs Partial
Concepts Engln ering

Enterprise I Tools

Models
support

used to

,
EMs Ent9rprise
Models

EMOs
Enterprise used to i

Modules

EOS Enterprise
Operational

Systems

Figure 3.19: GERAM Framework Components

32



3.13. Architecture for Integrated Information Systems

Architecture for Integrated Information Systems (ARIS) (Scheer 1992), defines an

architecture for a complete, enterprise-wide information system. ARIS defines three

views, namely, the functional view, information view and organization view. These

views are defined in all life cycle phases of the information system, namely, requirements

definition, design specification, and implementation description. All three views are

treated in isolation, and the relationships between the three views are represented by a

control view. ARIS architecture is derived on the basis of a structured process chain

which is event - based. Figure 3.20 shows an example of a process chain for a general

production process.

The "production process" is triggered by the event "production order" and the resultant

event after the execution of the process is a "finished production order." During the

process, many components that are related to the process are either consumed,

transformed or used. For example raw material is transformed into finished part. The

resources required for the transformation of material are the machining center and

employees (workers) from one or many organizational departments. The activity results

in some information flow; namely, information pertaining to inventory levels of raw

materials and the number of parts would be updated in the relevant databases. The term

"enviromnental conditions" is used for the information system and similar or supporting

media to absorb all components of the information system and is represented by a circle.

The data view comprises the start and end events, and the enviromnental conditions. The

organization view comprises the organizational unit and users/employees. The resource

view comprises information technology equipment, machines, etc. The process or the

function view comprises the processes.

Information systems are classified into 3 levels of abstraction, from general to specific

objects in a manner similar to object-oriented concept of classes and objects. For

example, a set of similar elements like events or processes can be grouped under one

class, and the relationships between the elements of each class can be established with the

object-oriented concepts ofpolymorphism, hierarchy, etc.(pascoe 1986).

33

..,
iii.. ~

•••..•
::l
I:',.,
j;;
~,j.. '

...,..
'1:',...

.. ,



PrOCBsscr

Production process

Machining
center

" .
Figure 3.20: Basic Building Blocks of an ARIS Process Model

Using the process chain as a starting step, the ARIS architecture supports the

development of the complete, integrated information model for an enterprise. The main

building block in the development of the information model is constructing the process

chain. Process improvement can be done after analyzing the process chain using

decision-support tools. The changes/improvements in the processes can directly change

the relevant information in the repository, since the process view is connected with all the

other views (data, function, etc) by the ERM.

There are striking similarities between the event-driven process chain in SAP's R/3

reference model and the process model in ARIS. Both stress on an event-driven approach

to process modeling.

Strengths: ARIS information architecture is derived on the basis of an event-driven

process chain. Most of the relevant subjects pertaining to process modeling are captured

using graphical constructs. When the process model is transformed into an infonnation

model, the result is an integrated enterprise model.

Limitations: Methodology related to the development of a process model is not clear.

Process modeling is not elaborately described within ARIS.

34

...
II'.. ~
I,.',.:::
::~

'"
ji~

•• i'.... ,

:1,
"" ,

" ,
:. t
:::
.:
:'1
' ..
:; 4...
"
'I ~'..
,I t.
I

'..



3.14. Unified Modeling Language

Unified Modeling Language (UML) was developed as a standard by 'the Object

Management Group (OMG), a consortium of over 800 software vendors and customers.

"UML provides system architects working on object analysis and design with one

consistent language for specifying, visualizing, constructing, and documenting the

artifacts of software systems, as well as for business modeling (OMO UML specification

1999). One of the main objectives of UML is to provide a visual tool that has platform

independence. UML is structured architecturally and organized by packages. Each

package has the definition of the abstract syntax, rules and semantics. UML defines

following set of diagrams based on views of a system:

• Use case diagram

• Class diagram

• Behaviour diagrams

• State chart diagram

• Activity diagram

• Interaction diagrams

• Sequence diagram

• Collaboration diagram

• Implementation diagrams

• Component diagram

• Deployment diagram

A detailed explanation of these diagrams is given in OMO UML specification (1999).

These diagrams provide multiple perspectives of the software system under development.

Activity diagram is the tool used for process modeling. Within the activity diagram, the

constructs shown in Figure 3.21 are used for process modeling. An example of activity

modeling in UML is shown in Figure 3.22, adapted from Marshall (1 999}.

An approach based on UML which uses activity diagrams to represent business

processes, is documented in Schader and Kortahus (1998).

35

......
I'..
6. :..

:. :
" .....:
:"..
.. ,..

..



Strengths: UML is emerging as a widely accepted modeling standard, particularly in the

software industry. It provides different perspectives of the system under consideration.

UML standard is a convergence ofbest practices in the object-technology industry.

Limitations: UML standard does not prescribe a specific process modeling approach.

Activity diagram is a tool that can be used for process modeling. There are many sets of

diagrams within UML, all ofwhich may not be relevant for process modeling.

• Slate at start of process

• State at end of prooess

( ) ActJvity

• Dependence~
activities

Synctvonlzation bar

<> Decision actJvity

Swinlane mar1<ers
between roles

Figure 3.21: UML Activity Diagram Constructs

.' .,

.' .'1'= J'.)
" ...
:: ;
;: ~

.'.
j;\
.' ;1...
.~ ~:
,'I
" ,
:~ I

,: II

.~ ]1
" ,
:~ c:
."11I,

.' I

In need

Customer

Inquire

Supplier

Prepare

I t: ~'

: ,I ~:
.:
I:
"

Evaluate
Quote

Order
Perform

Invoice
Satisfied .1)+------+--------'

Figure 3.22: UML Activity Diagram Example

36

6



3.15. Summary

In this chapter, we reviewed thirteen enterprise modeling efforts with a focus on their

process modeling capabilities. A thorough review of existing enterprise process modeling

languages reveals that no single language has all required characteristics for a complete

graphical representation of a process. These characteristics are summarized in the

following chapter.

37

" 4

" .
"••.. ... .
:: ;
" =.. ~

" .
Ii ~ •

.• 4f

., .
~

:: 41
" .
" .
I' •, ... .
,I ~

'I



4. Characteristics of an Enterprise Process Modeling Language

As described in the introduction, one of the basic problems in creating a model-driven

enterprise is the lack of a single modeling framework. Such a framework would serve the

dual purpose of describing the business processes in an enterprise, and then performing

analysis in order to help formulate alternatives for improvement. The scope of this thesis

is limited to developing the modeling language that can provide descriptive ability within

a modeling framework. Addition of the prescriptive ability will be another part of a NSF

funded project underway at Oklahoma State University.

4.1. Characteristics

The conclusion from the literature survey is that no single modeling language possesses

all the desirable characteristics. These characteristics are presented next along with a

discussion of related issues.

Descriptive ability

Some languages or techniques like data flow diagrams and IDEFO are strong in capturing

and describing process details. But once the process description is captured, they do not

support any further analysis. The primary purpose is to capture the process details for

documentation and communication. The models may support further analysis or

implementation, but do so only in an ad-hoc manner.

Prescriptive ability

One of the purposes of modeling is to deduce ways of improving processes without

actually experimenting on them in the real world. If present, logical and mathematical

capability of a modeling language could serve this purpose by analyzing possibilities of

improvement and suggesting alternatives. The capabilities to describe and prescribe could

create conflicts. This is because prescriptive ability requires that the process be described

in a format that a mathematical or logical technique can un~erstand, whereas the

38

:~..'.
I ~ II

. ,'.!~.
'f

'I



descriptive ability lies in describing a process to the extent that all details are captured in

a format that is clearly and easily understood by the user.

Hierarchy ofconstructs

Consider an example where a financial analyst would likely require analyzing an

enterprise from the perspective of the cost of operations. A CEO of an enterprise would

likely require only the major variables that would reflect on the cost. The CEO should be

given the option of viewing the "economic view of the enterprise model" at a higher

level. A financial analyst would require the finer details of the economic view and the

cost information at the lower most level. For an economic view to exist, the modeling

architecture should incorporate views or perspectives for different types of users. For a

CEO and a financial analyst to work on the same view, the concept of data hiding and

data encapsulation from the object-oriented principles could be applied. In other words, a

CEO should be supplied filtered information as compared to an analyst who would

require the finer details. This means that the model should be structured in a hierarchical

set of constructs. Will this require a different set of constructs at the higher level than at

the lower level~ or can the same constructs be used for modeling and analyzing at all

levels?

Control flow

As described in Keller and Detering (1996), control flow has become a key factor in

defining the success of an organization. The language must provide constructs for

modeling control flow. A process model should clearly describe when an activity can

start, what other activities will the completion of this activity trigger and so on.

Dynamics representation - behavior

As per ISO 14258, enterprise models sho\}ld be capable of representing sequentiality,

events, actions, conditions, states, state changes, start states, end states, sequen.cing

relationship between actions, and descriptions of transformation functions. Enterprise

models should also be capable of representing time duration, dynamic perfonnance of

processes, and sequential phenomena after specific units of time. Dynamics can be

captured in a process modeling language that is mostly event-driven or state-based.

39

..

~.



Performance measures

The improvements suggested as a result of the analysis process should be quantifiable in

the form of performance measures. Modeling or capturing performance metrics has not

been a issue in many of the techniques reviewed in Chapter 3. Thi may become more

important as we move towards model-driven enterprises.

Feedback

Some activities might require information or feedback from other activities that are

performed at a different hierarchical level, or from activities which are in a different sub

process. None of the process modeling approaches mentioned in chapter 3 address this

issue. If there is a separate construct or syntax for feedback, the iterative processes in an

enterprise can be represented.

User friendliness

A descriptive modeling language usually has the greatest scope for providing user

friendliness. However, when prescriptive ability is added, user friendliness should not be

compromised. For example, in TOVE the underlying logic formalism makes the language

less user friendly as compared to a data flow diagram or an IDEFO representation.

Clarity ofsemantics and syntax

This requirement is very obvious. A modeling language should have a well-defined

meaning for its constructs, and should clearly specify the rules for putting the constructs

together to describe a process along with other details like resource requirements,

information requirements, trigger for the process, etc. There should be no ambiguity in

the meaning of constructs.

Implications ofthe Internet

Nowadays, most businesses are linked to the Internet. The Internet has lead to new

concepts such as business-to-business and business-to-consumer commerce. Proces es

might require data from any location in the world, and the Internet is the desired mode of

data. The data required by processes can be separated into physical data and electronic

data, and this aspect should be clearly represented in a model.

40

'",

• Ii: .

-..
: ..

·-·.-.
• •



Integration with analysis

The graphical modeling language developed in this thesis will be linked to a back-end

tool, which is Petri net-based. Analysis would then be performed using the Petri net­

based representation. This would require that the front-end map into the back-end tool for

ease of conversion of process data. The constructs and the model should be easily

transformable into a Petri net. However, the development of the mapping of the front-end

with the back-end representation is beyond the scope of this thesis.

4.2. Elements of a Process Model

The following is a list of elements of a process that could be captured in a process model.

• Activity, which is the description of a single unit of the process.

• Control flow, which captures the order in which activities are performed. Logical

constructs like "AND, XOR, OR" are a part of control flow representation.

• Inputs to, and outputs from activities. These may be physical or electronic.

• Resources or the mechanism or medium to perform an activity. Resources can be

broadly classified as human, machine and computer.

• Conditions or event triggers, which are the pre and the post-signals accompanying an

activity.

• Constraints or rules, which include the procedures, guideline, standard,

requirements, policies that govern or guide an activity.

• Stores, containers, or buffers, which could be a computer database or a physical store

• Sources and sinks, which are entities external to the process under consideration.

• Activity duration, which specifies a standard time for the activity to complete.

• Link to an organizational unit.

• Feedback.

• Functional relationships between output and input.

41

~. ,
I

III



5. Enterprise Process Modeling Language (EPML)

This chapter describes the constructs, their semantics and syntax that together define the

new enterprise process modeling language (EPML). Each construct is explained with its

semantics and notation. Ifnecessary, an example is described to bring out the meaning of

the construct.

5.1. Activity

Semantics

It would be worthwhile to refer to the definitions of process, sub process, and activity in

Section 3.1 at this point. Usually, a process can be broken into a number of activities. The

words task, activity and process have been used interchangeably in the literature. In some

cases, as in PERA, tasks are grouped to form a function. For the purpose of this thesis, a

process comprises many activities. It is left to the user to decide what can be classified as

a process and what as an activity. An activity can comprise many (sub) activities.

However, the formal classification of sub-activities or decomposition into tasks and sub

tasks is not done in this thesis.

An activity takes place when inputs are transformed into outputs, with the help of

enablers or resources that might aid the transformation. An activity takes a finite amount

of time for the conversion of inputs into outputs. Since resources in some fonn or the

other are consumed when the transformation takes place, execution of an activity "costs"

an enterprise.

In this thesis, only one construct - "activity," is used to represent the transfonnation of

input to an output at all levels of abstraction. The numbering scheme for the activity

construct, which is explained in detail in the notation that follows, provides the capability

to trace an activity at any hierarchical level in the process. If different constructs were

used for representing the input-output transformation at different hierarchical levels, the

user would be faced with the difficult task of classifying activities based on constructs.

42



Also, as new activities are added, it would be difficult to decide at what I vel of

abstraction they should be added. CIMOSA has classified activities at different

hierarchical levels (Section 3.6), and this can be a limitation from a modeling perspective.

The purpose of having only one construct to represent the input-output transformation is

to avoid this modeling difficulty, and provide flexibility to easily represent the

transformation at any level of abstraction.

Notation

An activity is represented by a rounded rectangle as shown in the Figure 5.1. This

notation is common in most of the enterprise modeling languages.

Activity description

activity #

Figure 5.1: Activity block

The activity description is written in the center of the rectangle. The activity description

should start with a verb, for example, 'assemble components', and 'process request'.

Only when the activity is performed by an entity that is external to the domain being

modeled, the description should begin with the name of the entity that performs the

activity, for example, 'customer fills request' and 'bank pays loan.' This is necessary to

clarify that an entity external to the domain being modeled, performs the activity.

However, in a decomposition of the activity to a lower level of abstraction, it is not

necessary to repeat the name of the external entity for the sub activities. The alphabets H,

M or C at the top left corner of the activity block denote that the activity is performed by

a human, machine or computer. This concept is taken from PERA (Williams 1994). All

three entities may be required to perform an activity. In such a case, the three alphabets

are separated by commas. Some processes are automated and do not require human

intervention. Such activities are represented by only 'C' in the top left hand comer

indicating that the activity is executed by a computer. The alphabets H, M, and C,

provide quick visual feedback to the user in the sense that when a "H" appears in an

43

"·.
I
I

'I
: 'I
: 'I
·'I' ,
: I ~

",
, '.·, '., .
, '.·'.
, '.
, '.
, '.

", .
, I

·'.···'.·



activity construct, the user can quickly identify manual activities that are potential

candidates for computerization/automa.tion in a re-engineering effort.

The three entities, namely, H, M and C are treated as the three main resource sets under

which all resources can be classified. The users could define sub classes as per their

requirements. An activity might require many resources and specifying all of them in the

activity block or around it would clutter the diagram. Hence, a separate table of

resources and their quantity required could be maintained for each activity. In the

software implementation, a user could specify the resources in the fields provided after

clicking on the sets H, M and/or C.

Cost associated with the activity and the activity duration, are modeled as separate

attributes of activity. There would be separate fields for cost and activity duration in the

software implementation of the model. The activity number is specified at the bottom

right hand comer of the activity block. Decimal points are used to separate the activity

numbers at different levels in the hierarchy. An example of the numbering system is

3.12.17.21

This number indicates that the current activity is a fourth level activity because the

activity number has 3 decimal points included in it. The activity is the 21 st activity in the

decomposition of the activity number 3.12.17. Likewise, activity 3.12.17 is the 17th

activity in the decomposition of activity number 3.12. Likewise, activity 3.12 is the 12th

activity in the decomposition of the activity number 3 in the decomposition of the root

process. The purpose of the numbering system for activities is to link an activity at any

level of hierarchy to its parent and child activities. However, a point to be noted is that if

a new activity is to be added between two activities, at a later stage, the new activity will

have to be given the last number at that hierarchical level. This can create confusion if

one tries to associate activity numbers with the sequence of activities. An alternative way

to keep track of the activities while drilling down the hierarchical levels is by providing a

hyperlink between the activities in the software implementation. The choice between the

numbering scheme and hyperlinks is an implementation decision.

44

II

'1
'I
.1

I

:1
.'.'



5.2. Control Flow

Semantics

A process can be viewed as a chain of activities that follow each other in a sequence or

take place in parallel or in some combination of both. When an activity is executed, it

usually signals the start of another activity, possibly the next one in sequence. When an

activity triggers the start of a succeeding activity, we say that control flow has occurred.

Capturing control flow in a process is of prime importance and the SAP's event-driven

process chain (Keller and Detering 1996) is based on the concept of an event triggering

one or many activities.

Notation

A directed dashed line as shown in Figure 5.2, is used to represent a control flow.

._----- ....

Figure 5.2: Control Flow

When the directed dashed line as shown in Figure 5.2 connects two activity blocks, it

implies that when the preceding activity is completed, it triggers the beginning of the next

activity in the sequence. This line does not represent data flow in any fonn. The

succeeding activity can start only when all other conditions, such as other activity

completions, if any, are satisfied.

Sometimes an activity may require a signal from the environment, which is external to

the domain being modeled. This is viewed as a control flow from an external entity.

The symbol for an external trigger is shown in Figure 5.3.

extemal trigger descriptlon- - - - ....

Figure 5.3: External Trigger

The symbol for an external trigger is same as the one used to represent control flow.

However, the directed arc for a control flow is not labeled. An external trigger comes

from a different domain, and hence, requires a label. The label should end with a verb,

45

'.
:i
I
'I
I

"
"

"'.
"



for example, "Invoice arrived," or "Material received," or "Data entered." This 1S

different from an input because an input is an entity and not an event.

5.3. Data Flow

Semantics

Data could be the input to or output from an activity. Classical process modeling

techniques like DFD, focused more on data flow because the flow of paper files and

fonns containing data controlled the execution of activities to a great extent.

Data flow can take place in two fonns, physical and electronic. Presently, most of the

data is available electronically. However, there might be instances where data might not

be available in a computerized database because of technological reasons. Hence,

separate constructs are provided for physical and electronic data flows.

Notation

A directed solid line with an embedded box as shown in Figure 5.4 represents physical

data flow.

---40 ~

Figure 5.4: Data Flow

This line can be labeled at either end. If the flow is an input to an activity, the label is at

the tail of the are, and if the flow is an output from an activity, the label is at the arrow

end of the arc. Data flow is shown only as an input or an output to an activity. It cannot

be used to connect two activities with each other like a control flow. The label for an

input and an output must be a noun or a noun phrase. A verb indicates that an event has

taken place, whereas a noun represents an entity, and hence the convention of a

noun/noun phrase for describing the inputs and outputs.

5.4. Electronic Data Flow

Semantics

New computer technologies have considerably eased the tasks o~ data storage and

handling. Many activities require data, which is typically stored in a database.

46



Notation

The construct shown in Figure 5.5 represents an electronic data flow u ually via the

Internet or Intranets.

Figure 5.5: Electronic Data Flow

The intetpretation is the same as in the case of physical data flow arc shown in Figure

5.4. The only difference is that instead of being a physical data flow, this is an electronic

data flow. It can be the input to, or the output of an activity, and cannot connect two

activities. It has the same naming conventions as that of the data flow arc.

5.5. Material Flow

Semantic

An activity, in many cases (e.g. manufacturing) requires raw material(s) as input to

produce finished component as an output. This flow of material is represented by the

construct shown in Figure 5.6.

Figure 5.6: Material Flow

Notation

The construct shown in Figure 5.6 represents a material flow. The roles for connection to

activity construct and the naming conventions are identical to that of the data flow

construct.

5.6. Connectors

Semantics

A process model is a graphical representation of a process, and hence, comprises a series

or a sequence of activity blocks and other constructs. There is a start and an end to a

process and also to a sub process, when it is considered at its level in the hierarchy. When

a process model is completed, the first and the last activity in each sub process will have

47



no link. to its previous and next activity, respectively. The purpose of a connector is to

specify the link. between the activities in such cases. In Figure 5.7 process number 3 is

broken into its constituent sub processes 3.1 and 3.2. The connector before Activity 3.1

implies that the control flow to Activity 3.] comes from Activity 2.1. Similarly, the

connector after Activity 3.2 implies that after Activity 3.2 is executed, it transfers control

to Activity 4.1 in sub process 4. Similarly, when an activity in a process is triggered by

an activity from a different process, a connector could be used to model the flow of

control.

8--- Description

3.1

Description

3.2

--.c0

Figure 5.7: Use of Connectors

Notation

A circle with an activity number written in the center, as shown in Figure 5.8, represents

a connector.

Figure 5.8: Connector

Control flow arcs are connected to the connector depending on whether it is on the input

side or the output side of the activity block. However, only one control flow arc can be

connected to a connector, to model either the incoming or the outgoing control flow. A

connector with a "start" in the center instead of an activity number connected to an

activity in a process model denotes the first activity of the process being modeled.

Similarly, a connector with a "end" in the center instead of an activity number, connected

to an activity in a process model, denotes the last activity of the process.

48

t.
)

!:
·•
t'o·I:
I:·
"".'I,

"'0

It



paz

5.7. Time Trigger

Semantics

Sometimes, an activity can start only at a scheduled time or has to be repeatedly executed

after a specific time interval. The timing requirement in such cases is represented by a

time trigger as shown in Figure 5.9.

Notation

Time trigger is represented by the construct shown in Figure 5.9. The dashed arrow part

of the construct indicates that the time trigger is a form of a control flow.

TI----'

Figure 5.9: Time Trigger

When a time trigger is specified for an activity, it means that the activity cannot take

place before the specified time instant. Even if all the preconditions for an activity are

satisfied, the activity will not be executed until triggered by the time trigger. If the time

trigger has already signaled the start of an activity and if the precondition(s) is/are not

satisfied, the execution of the activity will be delayed until the precondition(s) is/are

satisfied. This would indicate error in planning or delay in execution of certain activities,

which could then be traced. In a software implementation, the time interval for the

periodic start of the activity could be entered in a separate field upon clicking the time

clock symbol.

5.8. Logical Operators

AND operator (one-to-many split)

Semantics

An activity can simultaneously trigger many activities. In this case, the signal is passed to

all the triggered activities at the same time. For example, when an aircraft lands on an

airport runway, many activities follow the landing. The baggage is unloaded, customers

leave the aircraft and the aircraft is refueled for the next flight. This scenario is shown in

Figure 5.10 to illustrate the use of the AND operator.

49

........
I...,,
~.
~,

r-
":a....
'I,..,.

.'''.

."..".........

.,\



...

Notation

The activity ''taxi aircraft to the gate" in Figure 5.10 triggers all the activities that follow

it. The control flow goes to an AND operator. The AND operator splits the control flow,

and signals the start ofall of the activities indicated.

.....v
~.

Taxi aircraft to the gate

activity #

r----

._-~---.

I
I
I
I
I
I
I
I
I
I
I
1-----

Passengers leave

activity #

Unload baggage

activity #

Refuel aircraft

........

...

.'
I'

activity #

Figu.re 5.10: AND Operator - Parallel Split

AND operator (many-to-one merge)

Semantics

Many activities may have to be completed before an activity can be executed. For

example, an aircraft can take off only when all the passengers have boarded the aircraft,

the baggage has been loaded, and the aircraft is cleared for takeoff. This process is

represented in Figure 5.11.

Notation

In Figure 5.11, the control flow goes from the three activities - board the aircraft, load

baggage and clear aircraft for takeoff, to an AND operator. The AND operator acts like a

union, and passes the control flow to the next activity only when the signal is received

from all of the previous activities.

50

.......
~i

..............

.,\.



Board the aircraft

activity #

Load baggage

activity #

~.(j
y...

Clear aircraft for take off

activity #

-------..,
I
I
I
I
I
I
I
I
I
I

-----~--
I
I
I
I
I
II
I
I
I
I--------,

~.(j
,?-.

axl aircraft to departure
runway

....
Figure S.lI: AND Operator - ParaDel Merge

Exclusive OR operator (XOR) (from one to one-out-of-many)

Semantics

Consider an example of a component that is inspected after a manufacturing process.

There can be three possibilities after inspection, the part is accepted for further

processing, the part is rejected and scrapped, or the part is reworked and sent for further

processing. Thus, one activity can lead to only one of many possible activities.

Notation

Refer to the example shown In Figure 5.12. The control flow arc from the activity

"inspect part" leads to an XOR operator. The control flow splits into three arcs leading to

the three activities "accept part and process further," "reject part and scrap," and "rework

part and process further." However, the control flow from the activity "inspect part" can

trigger only one out of the three possible, succeeding activities.

51

....
'...

.a,...
II,..
II
.....

'....
..............
'\..
.~



Inspect part

activity #

r----
I
I
I
I
I
I
I
I
I
I
I
I

._-~--+

I
I
I
I
I
I
I
I,
IL _

Accept part
and process further

activity #

Reject part and scrap

actlvity #

+.~

Rewori< part and process
further

Figure 5.12: XOR Operator - (One to one-out-of-many)

Exclusive OR operator (XOR) (from one-out-of-many to one)

Semantics

Consider an example of a component which is to be processed to obtain a mirror finish

and then checked for. the value of the surface finish. A mirror finish can be obtained by

either grinding the part or by buffing it. Thus out of the many possibilities (two in this

case), only one can trigger the start of the next activity.

Notation

Refer to the example shown in Figure 5.13. The control flow arcs from two activities

"grind part" and ''buff part," converge at the XOR operator and then only one control

flow arc connects to the activity "check surface finish." The XOR operator implies that

out of the two activities - grind part and buff part, only one passes the control flow to the

activity "check surface finish."

52



po

Grind part

actIVity #

-----,
h,
I

$---. ":....W"'~ ",.h

Buff part

activity #

I
1
1
1____ ...I

ac!lvlly#

Figure 5.13: XOR Operator - (One-out-of-many to One)

Inclusive OR (lOR) (one to many)

Semantics

Consider a supplier payment process. When goods are received from the supplier, the

buyer could pay the supplier by cheque, by cash, or part by cheque and part by cash. Thus

one activity can lead to any combination ofseveral activities.

Notation

Refer to Figure 5.14. The control flow arc from the activity "receive goods" leads to an

lOR operator. The control flow splits into two arcs leading to the two activities - "pay by

cash" and "pay by cheque." The control flow from the activity "receive goods" can

trigger either both succeeding activities or only one of them.

.~...
'"...

~.
'"
I...
I

..
•.

Receive goods

activity #

1-+
I
1
1
I
I
I

----€)--i
1
I
I
I
I
I1_.

Pay by cash

activity /I

Pay by cheque

activity /I

Figure 5.14: lOR Operator - One to Many

53



Inclusive OR (lOR) (many to one)

Semantics

Consider a manufacturing example. Machining operation 2 can he done on a component

only after machining operation 1. For operation 1, there are two possibilities, it can be

done in-house or it can be done by a subcontracter. When components which have

completed operation 1 are available, operation 2 can be done on the components. It is

possible that in a batCh of 100 components which are ready for operation 2, 50

components might have completed operation 1 at the subcontractor, and the remaining 50

might have finished operation 1 in-bouse. It is also possible that all 100 components

completed operation 1 at the subcontractor only or in house only. Thus, out of the many

possible activities, there can be any combination of activities that can trigger the next

activity.

Notation

Refer to Figure 5.15. The control flow arcs from the two activities "Subcontract operation

1" and "Do operation 1 in-house" converge at the lOR operator, and then only one

control flow arc connects to the activity "Do operation 2." The lOR operator implies that

out of the many possible preceding activities, any combination of the preceding activities

can trigger the start ofthe next activity.

Subcontract operation 1 - - - - - - f
I
I

"--- ac_tJv_ily_#___ :

&--
I

~~ I
I

Do operation 1 in - house :

actlvlly #

Do operation 2

activity #

Figure 5.15: lOR Operator - Many to One

54



5.9. Binary Decision

Semantics

In process or data modeling, there are situations where a binary (yes/no) decision has to

be made to determine the subsequent flow of control. Such cases could be modeled by

using an XOR logical operator. An XOR logical operator gives the impression that the

control flow can be optional, that is anyone of the succeeding activities could be

triggered. However, when a binary decision construct is used, it is clear that the resulting

control flow is a result of a simple yes/no decision. For example, in Figure 5.16, after

perfonning operationl, there are two possibilities, that is, the second operation can be

done on either the preferred machine or the alternate machine. However, the selection is

based on the outcome of a simple yes/no decision. If an XOR construct had been used

instead, we would have shown two choices, but would not have been able to show that

choice is determined by the outcome ofa logical decision.

Notation

h....

The construct for the binary decision is shown in Figure 5.16. It is represented by a

diamond with the question written inside the diamond. There can be only one input

control flow to the binary decision construct, and exactly two output flows.

Perfonn
Operation 1

activity "

r------
I
I
I
I
I

I
J _

~t
Perfonn OperBtlon 2
on preferred machine

activtty "

~t
Perform OperBtlon 2
on alternate machine

Figure 5.16: An Example of a Binary Decision

55



5.10. Constraint, Rules, and Guidelines

Semantics

Sometimes it might be necessary that execution of an activity conform to a set of rules,

guidelines, or constraints. For example, an assembly operation is constrained by the

product structure specified in the bill of material. Figure 5.17 demonstrates the use of the

constraint construct for capturing the constraints, rules or guidelines for an activity.

BOM

i
I

Assemble
components

Figure 5.17: Constraint Construct

Notation

The constraint construct is represented by a rectangle with horizontal lines in it as shown

in Figure 5.17. It is connected to the activity construct with a control flow arc. A

constraint serves like a rule or information necessary for the activity to be executed. A

constraint is not transformed like the input-output transformation after the execution of

the activity. Hence, a control flow arc is used to connect the constraint construct to an

activity construct. The implication of the constraint construct is that the activity's

execution must adhere to the rules or guidelines specified.

5.11. Rules for Representing Control Flow to an. Activity

In EPML, only one control flow arc can be directly connected to an activity construct.

The following two cases which use variants of the control flow are not affected by this

rule. They are (i) when an activity requires a time trigger, which is represented by the

construct shown in Figure 5.9, and (ii) when the execution of an activity has to take place

with respect to guidelines or constraints, which is represented by the construct shown in

Figure 5.17.

56



Consider the example shown in Figure 5.18.

From activity A __

From activity B - - -

From activity C - - -

Activity 0 - .....

(a): Incorrect Representation

From activity A

I
I

From ""'Y.--~
I
I

From activity C

Activity 0

It

- ....

(b): Correct Representation

Figure 5.18: Rules for Representing Control Flow

Suppose that activity D in Figure 5.18 can be executed only after activities A, B, and C,

have occurred. Figure 5.18 (a) shows an incorrect representation of the scenario. It is not

clear from the representation whether all of the activities A, B, and C have to take place,

or a combination of the activities has to take place to trigger activity D. This ambiguity is

avoided by correctly representing the scenario as in Figure 5.18 (b), by using the logical

construct "AND" and connecting the resultant control flow to activity D.

5.12. Feedback Representation

In this section, the use of EPML constructs for capturing feedback will be demonstrated.

This is a unique feature of EPML. Consider an example of new product development

process. There are four main sub processes, namely, 1) product design, 2) prototype

building, 3) testing, and 4) manufacturing. Each sub process can be decomposed into

many activities. Consider the situation where a design activity needs (eedback from a

testing activity. Note that feedback is required from an activity in sub process 3, that is

57



testing, to an activity in sub process 1, that is design. Let us arbitrarily number the

concerned activity in sub process 1 as activity 1.4.5, and the c{)ncemed activity in sub

process 3 as activity 3.2.6. The three stages - design, prototyping, and testing are

iterative. However, when the initial design is in progress, feedback cannot take place

because the prototype is not yet developed and is yet to be tested. Figure 5.19 shows how

feedback can be represented in this case.

Design
component X

1.4.4

---.~---

I
I
I

e

~(;
-?-'

DeslgnIRe-design __ ----..
component Y -...

1.4.5

Figure 5.19: Feedback Representation

Activity 1.4.5 can be triggered by the completion of activity 1.4.4, in the case of a new

design, or by activity 3.2.6, in the case of an existing design.

5.13. Dats Flows and Logical Constructs

Logical junctions for data flows can be represented in a manner similar to that of control

flows. However, it could clutter the graphical representation and hurt readability. It is left

to the user whether to model junctions for data flow or not, because the focus of EPML is

on modeling control flows. Furthermore, such details could be easily captured in a

software implementation.

5.14. EPML Implementation within a Software Environment

As mentioned earlier in Section 1.4, this research is a part of a NSF funded effort focused

on creating a user-oriented framework for process modeling. A preliminary design of a

graphical front-end implementation that would let the user enter detailed information is

shown in Figure 5.20. Capturing process details that supplement EPML constructs is

simplified by providing various user interface constructs. Thus, when EPML is

implemented in software, the language constructs along with the user interface constructs

58



will enable a user to capture most of the details of a process. The data provided by the

user will most likely be stored in an XML representation to provide interoperability and

platfonn independence in a Web-based environment (Kamath et a/200l). In Figure 5.20,

resource details can be captured in a tabular fonn that will pop up when the user clicks on

a particular resource set. Similarly, after clicking on "input data," the user will be

prompted to enter data description and the activity number (if applicable) from where the

data originated. Clicking on "output data" will prompt the user for the description of

output data and (if applicable) the activity number to which the output data will serve as

an input. Thus, origins of data flows can be captured using the graphical interface. Time

and cost associated with the activity can be entered in a similar manner as part of the

activity description. Binary decision constructs will be associated with an algorithm or

logic to choose the resultant control flow. When the user clicks on a binary decision

construct he/she will be prompted to provide link to an algorithm or scripting code.

59



...... lndicat a click
ev nt of the mous

-------+

•
OUtput deta

Input deta

Raw
Material

y-----------

A

R

n



6. Comparison of EPML with Existing Process Modeling Techniques

In order to compare EPML with the current process modeling techniques, an example

scenario is modeled using EPML and several existing techniques. For each technique, the

limitations encountered while modeling are explained from a user's point of view. A

summary in the fonn of a comparison table highlights the advantages of EPML when

compared to existing techniques. The constructs, semantics and the syntax used for

modeling the scenario under consideration, are based on information available in the

literature and Web sources. When specific information was not available, reasonable

assumptions were made to complete the modeling exercise. However, such cases were

rare, and are clearly identified in the ensuing sections.

6.1. The Scenario

The scenario that is modeled for a qualitative evaluation of EPML is an on-line ordering

system using the Internet. HAL Computer Corporation is a fictitious company whose

main processes are: computer selection by the customer, order processing, computer

manufacturing, followed by shipping of the product. The order processing process is an

ideal case for studying the usability, strengths and limitations of different modeling

techniques.

The computer ordering process starts after the product is checked out by the customer via

the Internet. The customer enters personal details in the forms provided on the browser

interface. The customer data is stored on the HAL database server. Programs to calculate

the price of a given configuration of a computer are run using the data submitted by the

customer. The customer can see the price details by using the browser interface. The

customer has three options while selecting the mode of payment, namely, by cheque, by

credit card or by loan. The customer can choose only one option out of these three. If the

customer chooses to pay by cheque or by credit card, the cheque or the credit card details

are entered in a browser fonn, and the payment takes place via Internet. Once HAL

61



receives the payment, an internal production order is sent to the manufacturing

department. If the customer opts for a loan, then some additional steps have to be

completed before the order can be placed. The customer has to complete a loan

application on the Internet and submit it to HAL. HAL then processes the loan request. If

the customer is a past customer, then HAL checks for their installment history and credit

balance. If HAL is satisfied with the customer records, and the customer has enough

credit balance, the loan request is accepted, and HAL places an internal production order.

If the customer records are not "satisfactory," it is left to the bank to decide whether to

accept the loan request or not. Similarly, if the loan request is made by a new customer,

the bank makes the final decision. If the loan is accepted, HAL receives the loan payment

from the bank and places an internal production order. If the loan is rejected, the bank

informs HAL. Then the customer has the choice to pay either by credit card or by cheque,

or not to buy the computer.

6.2. Modeling using IDEF Techniques

Figures 6.1 to 6.4, show the ordering process using IDEF process modeling techniques.

IDEF has a family of languages, namely IDEFO, IDEFIX, IDEF2, IDEF3, etc. IDEFO is a

functional modeling language and IDEF3 is a process description capture method.

IDEFO and IDEF3 complement each other in the sense that IDEFO captures input output

data, resource data, and constraint data, whereas IDEF3 captures the control flow. Thus,

in order to capture the process details, two different techniques have to be used, which is

a drawback of the IDEF approach. If an IDEFO diagram is treated in isolation, logical

flows like conjunction and disjunction cannot be shown. In Figure 6.1, the output "cost

details on customer's browser" from activity 2.2, leads to three activities - "process

cheque", "process loan" and "process credit card," and it is not clear that only one

activity can take place. In IDEFO, a page can contain .only a maximum of 6 activities.

Hence, if a process contains more than 6 activities, some of the activities have to be

grouped together as a sub-process. For example in Figure 6.1, the activity "process loan"

is broken down into sub activities and represented in Figure 6.2. In IDEFO, an output

from the previous activity seems to trigger the next activity. However, in case of an event

62



Figure 6.1: IDEFO Representation of HAL's Ordering Process

Customer details from

I~'-

r CustCll'lW enters
Infolmlltion

2.1 PIlce details on

-4-uct
out
est Pnlvlde price..

details to customer

22 Finance

~ / 1\ ( "\
Process cheque

Cheque detalls

~
2.3 Loan

~Mall from 2.4.5 f 1\Process 10811

~t 2.4 Credit

~V Process CI'8dit card
Credit cerd

details

~
2.5

Prlyment

4~
~

Mail from 2.4.5
HAL pieces 1nI1lNl

onler

2.8

AdMIy /I 2: Process tile onler I

Prod
ched<
requ



Processed
loan

~
~~

Process loan
request

2.4.1 Customer

~1'1
uesl

Check if aJStomer
is e past QJstomer

2.4.2 In~lImenl

1iCheck pssl /-'"~ f "'\ f IL

~
installment history

2.4.3 Available

~
Customer

installment recon:t
..-...

Check <;redil

~
balance

2.4.4 Mail

~
Credit records

V --Make Lending f \
decision

2,4.5

~ 1
~Approval

Pay loan
amoun1

2.4.6

Activity # 2.4 Process Loan

Loa
req

Figure 6.2: IDEFO Representation of HAL's Ordering Process, - Sub process # 2.4



HAL places Intemal
order

2.6

Process loan

Process cheque

Process credit card

2.4

Provide price details to
customer

2.2

Customer enters
information

2.1

2.5

Figure 6.3: IDEFJ Representation of HAL's Ordering Process



Process loan~t

.4.1

Ched< ~ customer
is • past customer

C!leck past
inslallmenl hialO/y

R8jecl1oan & Infonn
customer

Figure 6.4: IDEF3 Represent.ation ofRAL's Ordering Process - Sub process # 2.4



like "customer decides to buy or not" which would be modeled using a binary decision

construct in EPML, we cannot show the yes/no split in an unambiguous manner from an

activity in the IDEFO diagram. Morever, in the scenario considered, if we were able to

model this event in IDEFO, it would be in a separate figure and at the next hierarchical

level. It is interesting to note that IDEF3 could have modeled the backward control flow

after the decision to buy the computer or not is taken by the customer in the event of a

loan rejection. However, because of the limitation of the number of activities in a single

IDEFO diagram, the process had to be broken down into two levels. Thus, syntactic

limitations limit the "naturality" in modeling. Although tunneled arrows can model data

flows between hierarchical levels of processes, the semantics of tunneling are difficult to

understand (www.idef.com).

6.3. Modeling using CIMOSA

The first step in CIMOSA is to decide the level at which the process is to be modeled.

That is, whether it is a domain process, or a business process, or an enterprise activity, or

a functional operation (Kosanke 1995). The scenario under consideration is best modeled

at the level of enterprise activities. Referring to Figure 6.5, it is seen that CIMOSA does

model control flow, but not as clearly as in EPML, IDEF3 ,or SAP's EPC method. There

are no logical operators and hence, directed arcs lead to all possible activities even if only

one can take place. This leads to many intersecting arcs on the diagram. Additional

infonnation has to be presented in a textual fonnat with clear logic like in an algorithm at

points where control flows split or merge. Each activity should be clearly defined in the

textual representation with its inputs, outputs, resources, etc. Each logical split has to be

clearly explained with if-then, and/or statements. Without the textual representation, the

model would be incomplete. The focus of the CIMOSA modeling language is to obtain a

clear algorithmic description of the process, rather tharr a graphical description.

6.4. Modeling using IEM

The IBM model of HAL shown in Figures 6.6 and 6.7 is based on the infonnation

available in Mertins et al. 1992. The IEM graphical model has three levels ofdescription,

67



El

"
EA1 EA2

.A EA3Enter customer -y Provide price details 10 Pay by cheque~ infOl1118tion customer f-- EA7
~~

Check past installment

~
EA5 .A

Pay by credit card -y

EA8 ---c:;>---- Check credIt balance

EA12 ---e>- l..c}- EA4 .A EA6
~

Decide 10 buy Request for loan -v Process loan request -v

EAll
---c:;>---Raject loan and infoml

customer

- EA13
DecIde not 10 buy

EAl0
E2

EA9 "B8r* peys loan HAl..~ iltemaI
~rr= order

El :ProcU:t c::tlecbd 0lA
E2: IrnmaI order placed

Figure 6.5: CIMOSA Representation of HAL's Ordering Process



!

Check past Installment -history

r--+O )-
Pay by cheque f---

Check credit balance f--

Enter customer ProYide price details K F". loan request Process loan rgquest
Infoonalion

1
L." Pay by crediI card f--- 1

Bank pal'S loan to HAl Rejeclioan and infoIm
customer

1
0 ExclusJye OR

0 AND ParlIIeI Spit
HAl places Internal

0
order

ANO~Jain

Figure 6.6: IEM Function Chain for Hal's Ordering Process



~
ORDER Customer delais and

Not aPll!lcable oomputer configlratlon
requhld

ORDER
Provide price delals ~ORDER Enlllr custorner Customer detaas Pr1ce delals onBlank customer information on HAL's to customer

customer's browserdelaY form
server

RESOURCE RESOURCE
CusIIlmBr's CIOfl1lUler HAL Sefver

Figure 6.7: IEM Partially Autonomous Unit



namely the partial model which represents the sequence of tasks, the functional partial

model which includes inputs and outputs along with the sequence of activities, and the

partially autonomous unit which also describes the resources and the control triggers for

all activities in addition to the description in the functional partial modeL Each input,

output, resource, or constraint, is classified under three classes, namely order, product

and resource. Figure 6.6 shows the function chain of HAL's ordering process and Figure

6.7 shows the complete activity model for only two sample activities. The Figure 6.7

indicates that modeling HAL's complete ordering process would result in several pages

ofdiagrams. Hence, modeling is not compact in IEM as compared to EPML.

The symbols for logical operators are not clearly defined in Mertins et al. (1992), and

hence, in the example shown, their assumed meanings are stated. Each element of

modeling needs to be classified as objects or as sub-classes of the three main super

classes. This requires a clear grasp of the object-oriented concepts on the user's part.

6.5. Modeling using TOVE

The graphical model of HAL's ordering process using TOVE modeling constructs and

concepts is shown in Figure 6.8 and 6.9. Figure 6.8 represents the activity abstraction

diagram and Figure 6.9 represents the activity state cluster for only the first two activities.

The purpose of the former diagram is to model all activities and show the control flow.

For a complete view of the process, the activity-state cluster diagram in Figure 6.9 has to

be referred. It is possible to represent all elements of the process in one diagram, that is,

the activity-state cluster diagram. However, the graphical representation required for the

representation of the complete information, like resources, etc. is extensive. In EPML, the

activity block has three elements, H, M and C, which represent human, machine and

computer resources, respectively. The details of the resources are not represented

graphically in EPML; however, in TOVE the resources are represented graphically, but at

the expense of the extensive graphical representation. The information on resource states

in TOVE can be extended to EPML, but instead of cluttering the process model diagram,

it would be better to model the resource state concepts as attributes.

TOVE treats all objects, namely the inputs, outputs, constraints, etc. as. resources. The

activity abstraction diagram (Figure 6.8) does not have symbols for logical operators to

71



Provide prlce lIelails

r-----"~::::-=-..---_....

Pay by c:llllque AI up loan req"""t Pay by credft C8td

Checlt InaUIment history CIlecJ< credft balance

Ac<:ept loan Rejlld loan end Imotm
cuslomer

Pay loan amounllo HAl

Release order

-----Customer decldeo noIlo
buy

-------
eu.tomer decid.. tll buy

Figure 6.8: TOVE - Activity Abstraction Diagram - HAL's Ordering Process

72



ENABLE
CAUSEEntering customer Enter Customer Customer information

information information

~ ------- 1
USE USE RELEASE RELEASE PRODUCE

Customer Computer Computer Customer Information

ENABLE Provide price details
CAUSE

Provide price details Price details

1 ~~
USE RELEASE PRODUCE

HAL server HAL server Price information

Figure 6.9: TOVE - Activity Cluster Diagram



model the logical control flow. Referring to Figure 6.8, directed arcs lead from ''process

loan request," to three activities, namely "check installment history," "check credit

balance" and "decide status of loan." It is not clear whether all activities take place or

only one of them takes place after processing the loan request. Tills also leads to many

intersecting arcs on the diagram. TOVE has logical or Boolean representation for the

resource states, but not for the control flow. A set of axioms has to be developed in first

order logic to define the control flow. Within EPML, a binary de.cision construct can

conveniently represent a decision like "loan approval" as in Figure 6.15. In TOVE, an

additional activity "decide status ofloan" has to be defined for clarity.

6.6. Modeling using SAP's EPC

SAP's event driven process chain (EPC) model of HAL's ordering process is shown in

Figures 6.10 and 6.11. There is no differentiation between physical data and electronic

data. The description tends to be in a vertical format which limits flexibility in modeling.

Each activity block is preceded and succeeded by an event block which acts as a trigger.

In EPML, the control flow arcs represent a trigger, and pass control on to the succeeding

activities. SAP's description of the HAL example requires almost twice the amount of

space than that required by an equivalent EPML description because of the representation

of events by a separate construct. Thus, EPML has a more compact representation for the

same amount ofinfonnation as compared to SAP's EPC method.

6.7. Modeling using Data Flow Diagram

Data flow diagram (DFD) tends to separate departments/entities as shown in Figure 6.12.

The customer and the bank are modeled as external entities. The customer is an integral

part of the modeling process. Process 2.1 cannot be modeled unless some external entity

initiates it, as per syntactic rules in DFD. Hence, customer is modeled as an external

entity. There is a symbol for representing a database, but there cannot be any direct

interaction between a database and an external entity in a DFD. All such interactions

have to take place through a process. If the loan is rejected, the customer has to decide if

he wants to buy the computer by credit card, or a cheque or not to buy. This decision

process cannot be shown in Figure 6.12 because no data flow takes place in the decision

74



Blank fonn for
customer

Information

Enter customer
information

Customer details
on HAL's seNer

Customer details
on HAL's server

Provide price details to
customer

Prlce details on
customer's

browser

e
I

--+---

Credit card
payment receiVed

Process I'can request

Figure 6.10: SAP's EPC Representation of HAL's Ordering Process

75

----------------



HAl places Internal
order

®
---------~--------
i ¢

.---- .1-----S
I

Gt , ~

L , ¢
t:5---------J

__GL
--- ------ ----

Figure 6.11: SAP's EPC Representation of HAL's Ordering Process, (contd.)

76

---------------



Cl8dlt
balance­req.-Credt

bIIance

Ctlaaedit
blllance

2.8

Request
crlldit

Information

Ctlapast
Insl8Ilment hlstay

2.11

Instillment
Processacl """""'

f'"'l~ !.---_report__----1,l,Io-.----:~~recli~t____l

f----

request

Instillment
hlstavdal8

2.6

Request _I. en past
cuslllmer

I
InstMlment

1.----"""h~IsIDry~---,
,---I,-------'-------l.-

Formalled

2.1
CUS1llmer

2.2information Ootareq.-

Execute browser
Ex...... _

Data
_1_

m....puIatlon klglc

Cilent PC PrIce_is DIIab8se seMI'

2.3
PrIce_I. In

Custom..- presentable form

Information Cheque
Poy by ct1eque

~ =C_

Pay Ioen alTlCU1l fD
HAL

CrecIt c:arU- IlllI

,_---'=2-5"--_i------.l~~~eatd!._ _I_---------_,jA~.-n
y

2-10

HAL

Figure 6.12: DFD Representation of HAL's Ordering Process



process, and also because the customer is an external entity. In OFO modeling there has

to be an input and an output from each process. Control flow and data flow tend to get

mixed with each other as in IDEFO. There are symbols for logical operators, for "parallel

split and join" and an "exclusive OR". However there is no symbol for an 'inclusive OR.'

When many data flows connect to one process block, it means that any number of them

can serve as inputs or outputs to the process, which is the manner in which an inclusive

OR situation is modeled. This clutters the graphical representation. DFO modeling seems

to have a focus on data flow rather than on control flow.

6.8. Modeling using BAAN's DEM

Dynamic Enterprise Modeling (OEM) Method is similar to a Petri net representation of a

process. OEM models are shown in Figures 6.13 and 6.14. A Petri net is an excellent tool

for process analysis, however it is not very user friendly. Every activity in the OEM is

preceded by states or places as in a Petri net. This is similar to an event in SAP's R/3

reference model, or the directed arc in EPML. The representation of states lengthens the

diagram like the SAP's EPC model. Morever, there are no separate constructs for the

different types of logical operators. Each logical junction is represented by a square with

its description on the side. Control flow is depicted in the model, however other details

such as the inputs, outputs, resources, etc. are not represented in the graphical model.

OEM's guidelines mention that it is better to structure a model in such a way that process

flow is limited to only 5 to 10 activities (van der Rijst 1997). If more steps are required a

sub process should be constructed. This leads to the same modeling limitations as in

IOEFO. For example in Figure 6.13, the activity "pay loan amount" is broken into sub

activities and represented in Figure 6.14. If the loan is rejected, the customer has to

decide whether to buy the computer or not. If the customer decides to pay for the

computer by either credit card or by cheque, the flow of control cannot be shown because

paying by credit card and paying by cheque are shown at the higher level in the

hierarchy, in Figure 6.13.

78



Checkout done

Customer
information provlded

Provide price details to
customer

Cheque ready

Price details
provlded

XORspiit

Bank loan
available Credit card t8ady

Pay by cheque Pay loan amount Pay by Ct8dit card

XORJoln

Payment received by
HAL

Loan payment
done Ct8d/l card p yment doneCheque payment

done

HAL places internal
order

Internal order
placed

Figure 6.13: Baan's DEM Representation of HAL's Ordering Process

79



Loan requesl processed

Completed loan request available

Dedde to buy

New customer records
processed

Cuslome,
Informed

OR split

Loan rejected

Inform customftr

Blank loan requesl fonn a fable

ORspUt

Deddenol
to buy

Loan amounl
received

Internal order placed

Found past
customer records

Sub prooess: pay loan amount

Figure 6.14: Baan's DEM Representation - Sub Process-HAL's Loan Payment

System

80



6.9. Modeling using EPML

HAL's ordering process is represented using EPML in Figure 6.15. EPML has constructs

with well defined semantics and syntax which help the modeler describe the process as

seen in reality. There is a strong control flow represented by modeling activities as they

occur in sequence. A dashed directed arc signifies that the event associated with the

completion of the preceding activity has occurred. There is no need to represent an event

by using a separate event construct as in SAP's EPC diagram, or like a place in the OEM.

This makes the EPML representation very compact. The modeling of a binary decision

by a separate construct enhances the representation by making it clear and closer to

reality. A decision is based on some activities done earlier and the result is either of the

two paths that follow this construct. For example in Figure 6.15, after processing the loan

request, the control flow depends on whether the customer is a new customer or a past

customer. With the exception of a flow chart, other process modeling languages cannot

depict this situation as clearly as EPML.

Input and output data flows can be either physical or electronic. Nowadays, most

processes reqUire some sort of electronic data in addition to physical data. Both,

electronic and physical data flows can be compactly and conveniently represented by the

two different types of directed arcs in EPML.

6.10. Comparison Criteria

It is worthwhile to mention again that enterprise modeling covers both process modeling

and data modeling. An architecture serves as a guideline for the modeler. An architecture

mayor may not include a process modeling technique. The purpose of the comparison

exercise is to evaluate different process modeling techniques in the context of graphical

process modeling. Hence, the criteria for comparison are related to the modeling

techniques and are not framed to compare architectures. Each criterion is defined clearly

so that the comparison of the techniques is on the same ground. The criteria were

developed based on (i) study of various enterprise modeling approaches in the course of

the thesis, (ii) the insights gained by modeling the HAL ordering example using different

process modeling techniques. (iii) criteria available in literature, particularly in

81



~
I
I

r--------------------------; QJ~
: r------------l : II
: : : : ~
I I 1 I "'{.

: r--~--' : :
I --v- I I

r----,

I ~:KV~lz~
I' \

v+ l :
'----~-' : :

I I
I I
I I
I I
I I
I I

r--- J :

I
I

I I

'~ I
I I
L_ ~ J

I
I
I
I
I
.... _---,

I
I
I
I
I
I

Q'] Q']
I I
I I
I I

L--(:}--------0---------~--j
I I I.... ----------. .... _~ .... r------i :

I I
I I
I I

llt--:::::::0--------
~

j jl rl
1i

"..
I
I

CD
82



CENT TC310 WGI (1994) and iv) viewing process modeling from a user's perspectiv .

The criteria are as follows:

I) Ease of modeling: The ease with which a modeler can model the process using the

given constructs and their semantics and syntax..

2) Control flow representation: How well is the control flow in the process represented

in the model?

3) Accuracy of modeling: How accurately does the process model represent the real­

world process?

4) Differentiation between physical and electronic data: Are the physical and

electronic data flows differentiated in the model?

5) Clarity of semantics: Is the meaning of the construct clear? Will the modeler use the

construct for representing what is actually intended to be modeled by the construct?

6) Clarity of syntax: This is important particularly in modeling conjunctions and

disjunctions in a flow. Is it clear as to how constructs are to be linked in a process

representation so that the model accurately represents the situation.

7) Is the technique self-contained?: How well does the technique capture all relevant

process details in a single representation? Does it require additional supporting

techniques or a textual description?

8) Separation of data and control flows: Are there separate constructs for modeling

data and control flows?

9) Support for hierarchical modeling: Can the technique model sub-processes and is

there a traceability of sub process in both directions within the hierarchical structure?

10) Ability to support formal analysis: A graphical model alone cannot lead to a formal

analysis of a process. However, graphical techniques can be used to collect

information required for a formal analysis tool. What degree of informational support

can the graphical technique provide to a fonnal analysis tool (CENT TC310 WG1

1994)?

83



11) Sufficiency of constructs for representing relevant subjects of a process: How

comprehensive is the technique in providing constructs for modeling function, data,

decision, time, space, organizational units, IT components, manufacturing

components, material, product, human resources, etc.?

12) Are the building blocks object-oriented?: Do the constructs support object-oriented

concepts of classes and objects?

The ratings for the comparative study were: low, medium and high (L, M and H). In a

pilot exercise, a five-point scale was considered. Because of the limited scope of the

comparison study, a three-point scale was finally chosen. A yes/no response is

appropriate for certain criteria. If a criterion does not apply to a technique, then 'N.A.' is

used to represent 'not applicable'. Ratings were decided on the basis of the insights

developed by perfonning a thorough review of the existing process modeling techniques;

by evaluating their strengths and limitations; by modeling a real-world example using

various techniques; and by the author's participation in the NSF project on the

development of a new process and perfOImance modeling framework. It would be wise to

mention that on the basis of further research, perhaps a better rating mechanism can be

evolved. However, the criteria and the ratings presented in this thesis will certainly serve

as a stepping-stone for future research.

Because of the lack of a process-modeling tool PERA, GRAI-GIM, and GERAM, were

not included in the comparison study. UML is an emerging standard, and has not yet

gained widespread acceptance as a business process modeling language (Schader and

Korthaus, 1998). Also the relationships among the various diagrams within UML makes

it difficult to use the activity diagram as a stand alone tool. Because of these reasons,

UML was not included in the comparison study.

6.11. Summary

From Table 1, we can see that EPML has high ratings on most of the criteria. Of the

existing techniques, SAP's EPe has high ratings on several criteria. EPML is user­

friendly and provides flexibility to the user to represent a real world process. accurately. It

has a strict syntax, without sacrificing modeling flexibility. EPML retains the power and

84



appeal of existing language constructs while adding some new ones to address the needs

oftoday's enterprises. Data is divided into two types, namely physical and electronic, and

a construct is provided to model the flow of each type. Presently, data is stored and

manipulated electronically, and usually in a distributed computing environment. The

EPML constructs allow the user to quickly identify physical data flows and manual (H)

activities, which are usually prime candidates for improvement in a reengineering effort.

There is one common construct for activities at different abstraction levels, and activities

in different sub processes or abstraction levels can be linked by the numbering scheme.

With the use of connectors we can easily model feedback at various abstraction levels.

The preliminary design of a front end tool using EPML, which is shown in Figure 5.19,

demonstrates the descriptive ability of EPML by representing only the most useful and

necessary information graphically and capturing finer details such as time and cost

parameters using user interface constructs. There is a clear separation of data flow and

control flow in EPML. A graphical representation in EPML can be easily transformed

into a Petri net representation for performing formal qualitative and quantitative analyses

(Sivaraman 2001).

85



Table 1: Summary of the Comparison Study

Property DFD IDEFO IDEF3 CIMOSA SAP's TOVE IEM Baan's EPML

EPC DEM

Ease of modeling M M M L H L L M H

Controlflowrepr~en~tion M L H M H M H H H

Accuracy of modeling M M M L H L L H H

Differentiation between physical and No No N.A. N.A. No No No N.A. Yes

electronic data flow

Clarity of semantics H M H L H H L H H

Clarity of syntax M H H M H L L H H

Is the graphical technique self-contdined? H L L L H L L M H

Separation ofdata & control flows No No N.A. N.A. Yes N.A. Yes N.A. Yes

Supports hierarchical modeling? Yes Y~ Yes Yes Yes Yes Yes Yes Yes

Constructs for relevant subjects of process M L L L H M L L H

Are building blocks object oriented? No No No Yes No No y~ No No

Ability to support formal analysis L L M L M M L H H

Compactn~s ofrepresentation M L L L M L L L H



7. Conclusions and Future Work

This chapter is divided into three sections. The first section summarizes the research

done. The second section lists the contributions of this thesis to the existing body of

knowledge. The third chapter outlines areas for future work.

7.1. Research Summary

Focus of Research: An enterprise process model is a representation of a real world

enterprise's structure and operations, typically using graphical modeling tools and

techniques. The existing process modeling techniques have semantic and syntactic

limitations, and as a result, the representation of the process may not always reflect

reality. The primary objective of this research was to develop an enterprise process

modeling language, EPML, which would provide a rich set of constructs to the modeler,

and allow himlher to focus on the correct representation of processes instead of worrying

about the semantic and syntactic limitations of the modeling language. EPML takes into

account the shift to on-line and distributed execution of business processes since the

advent of the Internet.

One of the main purposes of a process model is to support perfonnance analysis of the

enterprise. A unique feature of the EPML is that the representation emphasizes control

flow within the process, thereby facilitating easy transfonnation of the graphical model

into a fonnal representation such as the one using Petri nets, for performing qualitative

and quantitative analysis.

Methodology Employed: The first step in this research was to conduct a thorough

investigation of the existing process modeling languages to identify their purpose,

strengths and weaknesses. The next step was to identify modeling constructs, theory, etc.

of the available modeling languages that could be adapted for use within EPML. This

was followed by the design of a new set of modeling constructs includ!ng a complete

definition and detailed explanation of their semantics and syntax. The superiority of the

87



proposed EPML over the existing modeling techniques was demonstrated u lUg a

comprehensive example and qualitative arguments.

Results: The outcome of this thesis is EPML, a graphical enterprise process modeling

language that provides a rich set of constructs to the modeler to represent a real world

process without distortion in the representation. Each graphical construct in the EPML

has clearly defined semantics and syntax, which serves as an excellent guide to the

modeler. EPML also supports hierarchical modeling. A process can be expanded to show

its activities, and activities can be aggregated into a single parent process. The flexibility

in the use of constructs provides the modeler the ability to accurately represent a real life

process in a compact graphical representation.

7.2. Contributions

The main contribution is an enterprise process modeling language - EPML. EPML is an

integral part of a new process and performance-modeling framework that is under

development as part of an on-going NSF project. In the process of developing the EPML,

extensive study was done on the existing process modeling languages. For the purpose of

evaluating EPML, an example scenario was modeled using the existing languages and

EPML. Hence, this thesis will help fellow researchers gain insight into the salient

features of existing process modeling languages and EPML, and hopefully stimulate new

research in the development of process modeling languages.

7.3. Future work

In the course of this research, many characteristics of existing process modeling

techniques were studied. EPML blends the strengths of the existing techniques, and

presents a user-friendly process modeling language. However, not all aspects of an ideal

language could be included in EPML. Some directions for future research in this area are

presented.

1. The representation of resources and their consumption is best represented in TOVE.

TOVE has the starting and the ending resource states in the 'graphical language to

depict resource consumption. The concepts of a resource being used, consumed,

released, or produced, along with the temporal dependence of resources, can help the

88



user probe into resource utilization and in resource planning. Further work needs to

be done on resource modeling within EPML.

2. A software environment based on EPML is another area for future work. Preliminary

work along this direction was done as a part of the NSF project. With the help of

latest technologies, most of the process details that are not represented graphically,

can be captured as attributes. Examples of these are cost, time taken for completing

an activity, and performance metrics.

3. Introducing the tool to select groups of users in industry, and then soliciting their

feedback could establish the usability, strengths and limitations of EPML. The user

feedback could lead to enhancement and extensions of the EPML constructs. This

should be done in two steps.

(i) The graphical process modeling technique should be introduced to users

who are aware of existing techniques and who use them to model real-world

examples. Their feedback can be valuable in improving the semantic and the

syntactic details of EPML.

(ii) A test version of the software tool with EPML as the front end and Petri nets

as the underlying analytical engine, should be introduced to select users who

may not be aware of existing process modeling techniques, but who use a

software package for process modeling. Their feedback will provide

enhancements to the modeling framework as a whole.

Publishing articles in conference proceedings and journals would be an avenue for

obtaining feedback from the academic community.

4. One of the main goals of process modeling is process improvement. To identify

improvement opportunities or to evaluate proposed alternatives, it becomes

necessary to perform quantitative or qualitative analysis using the process model.

Integrating EPML with formal process analysis techniques such as simulation,

queuing, and Petri nets would be another potential research topic.

5. Development of a process modeling methodology that would support EPML, and

guide the user in the creation of a process model would be a future research topic.

89



The modeling methodology should be developed within the framework of the NSF

project and should consider the technology that will be used in the development of a

Web-based process-modeling tool.

90



Bibliography

Bemus, P., Nemes, L., and Morris, R., 1996, ''The Meaning of an Enterprise Model," in

Modeling and Methodologiesfor Enterprise Integration, Bemus, P. and Nemes, L.

(eds.), Chapman & Hall, UK, 183-200.

Brandimarte, P. and Cantamessa, M., 1995, "Methodologies for designing CIM systems:

A critique," Computers in Industry, 25, 281-293.

Bravoco, R.R. and Yadav, S.8., 1985, "Requirement Definition Architecture - An

Overview," Computers in Industry, 6, 237 - 251

Burch, J.G., (1992), Systems Analysis, Design, and Implementation, Boyd and Fraser,

Boston, MA.

CEN TC31 0 WG1, 1994, "An Evaluation ofCIM Modeling Constructs - Evaluation

Report of Constructs for Views According to ENV 40 003," Computers in Industry,

24, 159-236.

Chen, D. and Doumeingts, G., 1996, "The GRAI-GIM Reference Model, Architecture

and Methodology," in Architectures for Enterprise Integration, Bemus, P., Nemes,

L., and Williams, T.J., (eds.), Chapman & Hall, 102-126.

Colquhoun, G.J., Baines, R.W., and Crossley, R., 1993, "A State of the Art Review of

lDEFO," International Journal ofComputer Integrated Manufacturing, 6, 252 - 264.

Dao, K.L. and Rodjak, D., 1991, "CIM Flows from Data Flow Diagrams,"

Manufacturing Systems, 67-72.

Didic, M., 1994, "CIMOSA Model Creation and Execution for a Casting Process and a

Manufacturing Cell," Computers in Industry, 24,237-247.

Fox, M.S., Chionglo, J.F., and Fadel, F.G., 1993, "A Common-Sense Model ofthe

Enterprise," Proceedings ofthe 2"d Industrial Engineering Research Conference,

Norcross GA, 425-429.

91



GERAM, 1999, Generalized Enterprise Reference Architecture and Methodology

Version 1.6.2, Annex to ISO WDI5704, IFIP-IFAC Task Force..

Harhalakis, G., Lin, C.P., Hillion, H., and Moy, K.Y., 1990, "Development ofa Factory

Level CIM Model," Journal ofManufacturing Systems, 9, 2, 116-128.

ISO 14258, 1999, Industrial Automation Systems-Concepts and Rules for Enterprise

Models, World Wide Web version WG1.

ISOIFDrs 15704,1999, Industrial Automation Systems, Requirements for Enterprise­

Reference Architectures and Methodologies.

Kamath, M., Dalal, N. P., Kolarik, W. J., Chaugule, A.A, Sivaraman, E., and Lau, A.H.,

2001, "Process Modeling Techniques for Enterprise Analysis and Design - A

Comparative Evaluation", Proceedings ofthe lrf' Annual Industrial Engineering

Research Conference.

Karni, R., Mo1cho, G., and Kasif, L., 1999, "Blueprint for Research into Knowledge

Process Modeling," Baan Brothers Foundation r d Roundtable Proceedings, Utrecht,

The Netherlands, 77-85.

Keller, G. and Detering, S., 1996, "Process-Oriented Modeling and Analysis of Business

Processes Using the R/3 Reference Model," in Modelling and Methodologies for

Enterprise Integration, Bemus, P. and Nemes, L. (eds.), Chapman & Hall, 69-87.

Knowles, G., 1999, ''Next Generation Enterprise Modeling: A Step Beyond Baan

Application Modeling," Baan Brothers Foundation 2nd Roundtable Proceedings,

Utrecht, The Netherlands, 95-115.

Kosanke, K., 1995, "CrMOSA - Overview and Status," Computers in Industry, 27, 101 ­

]09.

Kosanke, K., 1996, "Process Oriented Presentation of Modelling Methodologies," in

Modelling and Methodologies for Enterprise Integration, Bemus, P. and Nemes, L.

(eds.), Chapman & Hall, 45-55.

Marshall, C., 1999, Enterprise Modeling with UML, Designing Successful Software

Through Business Analysis, Addison Wesley, Boston, MA.

92



Mertins, K., Jochem, R., and Jakel, F.-W., 1997, "A Tool for Object-oriented Modeling

and Analysis of Business Processes," Computers in Industry, 33, 345-356.

Mertins, T., Susseguth, W. and Jochem, R., 1992, "An Object Oriented Method for

Integrated Enterprise Modeling as a Basis for Enterprise Co-ordination," Enterprise

Integration Modeling: Proceedings ofthe First International Conference, MIT Press,

MA,249-258.

Millet, I., 1999, "A Proposal to Simplify Data Flow Diagrams," IBM Systems Journal,

38, I, 118-121.

Pascoe, G.A., 1986, "Elements ofObject-Oriented Programming," BYTE Magazine,

McGraw-Hill Inc., New York.

Savolainen, T., Beeckmann, D., Groumpos, P., and Jagdev, H., 1995, "Positioning of

modelling approaches, methods and tools," Computers in Industry, 25, 255-262.

Schader, M. and Korthaus, A., 1998, "Modeling business processes as part of the Booster

approach to business object-oriented system development based on UML," IEEE

Proceedings ofthe Second International Workshop on Enterprise Distributed Object

Computing Workshop, 56-67.

Scheer, A.-W., 1992, "Architecture ofIntegrated Information Systems: Foundations of

Enterprise Modelling," Springer-Verlag, Berlin.

Sivaraman, E. 2001, "On the Use of Petri Nets for Business Process Modeling," Working

Paper, Center for Computer Integrated Manufacturing, Oklahoma State University.

Song, 1.-Y. and Froehlich, K., 1994, "Entity-Relationship Modeling," IEEE Potentials,

13, 5, 29-34.

Srihari K., Emerson, R.C., and Cecil, J .A., 1990 "Modeling Manufacturing with Petri

Nets," Journal ofCIMManagement, 6, 3, 15-21.

van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, 8., and Barros, A.P., 2000,

"Workflow Patterns," BETA Working Paper Series, WP 47, Eindhoven University of

Technology, Eindhoven, Netherlands.

93



van der Aalst, W .M.P. and van Hee, K.M., 1995, "Framework for Business Process

Redesign," IEEE Proceedings on the Fourth Workshop on Enabling Technologies:

Infrastructurefor Collaborative Enterprises, 36-45.

van der Rijst, N., 1997, "Dynamic Enterprise Modeling Development Method:

Guidelines and Conventions," User Manual, Baan Business Innovation, The

Netherlands.

Vemadat, F.B., 1996, "ClM Business Process and Enterprise Activity Modeling," in

Modeling and Methodologies for Enterprise Integration, Bemus, P. and Nemes, L.

(oos.), Chapman & Hall, UK, 170-182.

WFMC-TC-1011, 3.0, 1994, "Workflow Management Coalition Terminology &

Glossary," Workflow Management Coalition, Hampshire, U.K., 1-65.

Whitten, J.L. and Bentley, L.D., 1998, Systems Analysis and Design Methods,

Irwin/McGraw-Hill, Boston, MA.

Williams, TJ., 1994, "The Purdue Enterprise Reference Architecture," Computers in

Industry, 24, 141 - 158.

Zelm, M., Vemadat, F.B., and Kosanke, K., 1995, ''The CIMOSA Business Modeling

Process," Computers in Industry, 27, 123 - 142.

Zurawski, R. and Zhou, M.C., 1994, "Petri Nets and Industrial Applications: A Tutorial,"

IEEE Transactions on Industrial Electronics, 41, 6,567-583.

94



VlT~

AMIT A. CHAUGULE

Candidate for the Degree of

Master ofScience

Thesis: A USER-ORIENTED ENTERPRISE PROCESS MODELING LANGUAGE

Major Field: Industrial Engineering and Management

Biographical:

Personal Data: Born in Mumbai, India, on January 20, 1974, the son of Avinash and
Archana Chaugule.

Education: Received the Bachelor of Engineering Degree in Automobile Engineering
from M.H. Saboo Siddik College of Engineering, Mumbai, India, in May
1995; graduated with first class honours. Completed the requirements for the
Master of Science degree in Industrial Engineering and Management at
Oklahoma State University in August 2001; received the OSU Graduate
Research Excellence Award for outstanding accomplishments in M.S. thesis
research.

Experience: Worked as a Product Engineer with India's leading tractor manufacturing
company, from July )995 to Ju)y 1999. Gained experience in solving
product and process problems. Hands-on experience in vendor development,
value engineering, and documentation of processes and quality procedures
for ISO 900) quality standards. Worked as a graduate research assistant in
the School of Industrial Engineering and Management at Oklahoma State
University from August 2000 to August 200), on a NSF funded project on
the development of a user-oriented process and performance modeling
framework for enterprise systems. Participated in preparing research
proposals. Lead student researcher for the development of a process
modeling language and associated modeling constructs. Worked for OSU
Extension Services as a summer intern, from May 2000 to August 2000 and
from May 2001 to June 2001, on solving industrial problems.

Professional Memberships: Alpha Pi Mu (National Honor Society for Industrial
Engineers).






