
PRE-AND POST-PACKAGE PASTEURIZATION OF
 

READY-TO-EAT MEATS TO CONTROL
 

LISTERIA MONOCYTOGENES 

By
 

NANDITHA GANOE
 

Bachelor of Technology
 

Osmania University
 

Hyderbad, India
 

2001
 

Submitted to the faculty of the
 
Graduate college of
 

Oklahoma State University
 
in partial fulfillment of the
 

requirements for
 
the degree of
 

MASTER OF SCIENCE
 
December, 2003
 



PRE-AND POST-PACKAGE PASTEURIZATION OF
 

READY-TO-EAT MEATS TO CONTROL
 

LISTERIA MONOCYTOGENES 

Thesis Approved: 

Thesis Advisor 

~c:$; At ~1-:6' 4c:A~ 

V~~ 

~.I~
~h~ 

ll· 



PREFACE 

This research was conducted to provide support for the effectiveness of new 

approaches in microbial intervention for the control Listeria monocytogenes on 

ready-to-eat meats (roast beef, turkey bologna and ham). Specific objectives of 

this research were to a) apply radiant heat oven for pre-package surface 

pasteurization to reduce Listeria monocytogenes, and b) apply pre-package 

pasteurization in combination with post-package pasteurization (using 

submerged hot water bath) to control Listeria monocytogenes on ready-to-eat 

meats. 

I sincerely thank my major advisor Dr. Peter M. Muriana for the guidance and 

support in the completion of this project. 
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CHAPTER I 

INTRODUCTION 

1.1. Background-Listeria and L. monocvtogenes 

A small gram-positive bacillus causing monocytosis was isolated from the 

infected blood of a rabbit and the causative organism was named Bacterium 

monocytogenes (Murray et aI., 1926). Murray et al. (1926) are generally credited 

for their description of the causative agent of listeriosis. But reports suggesting 

the incidence of listeriosis like symptoms can be dated to as early as 1891. 

Sometime after the isolation of Bacterium monocytogenes by Murray et al. 

(1926), Pirie et al. (1940) isolated a bacterium from a gerbille (an African jumping 

mouse) in South Africa and named it after Lord Lister as Listerella hepatolytica. 

The name was changed to Listerella monocytogenes after it was discovered that 

the characteristics of Bacterium monocytogenes and Listerella hepatolytica were 

the same. In 1931 at the 3
rd 

International congress for microbiologists, it was 

reported that the name Listerella, refers to a group of slimy molds given by Jahn 

in 1906, so the name was changed to Listeria monocytogenes (Pirie et aI., 1940). 

1.2. Taxonomical classification: 

In 1985, eight different species were recognized under the genus Listeria. 

These include L. monocytogenes, L. ivanovii, L. innocua, L. welshimeri, L. 

seeligeri, L. denitrificans, L. murrayi and L. grayi (Jones and Seeliger, 1986). 

Based on DNA-DNA hybridization studies it was found that L. murrayi and L. 

grayi are not distinctly different from each other and so was included under a 

single species L. grayi. Also, the species L. denitrificans was found to be closely 
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related to the genera Comybacterium, Cellulomonas and therefore was moved to 

another new genus Jonesia as J. denitrificans. Due to the above controversial 

reports, these species are listed as species of uncertain affiliation/position in the 

Bergey's Manual of Systematic Bacteriology (Ryser et aI., 1991 a). 

1.3. General characteristics -Listeria spp. And Listeria monocvtogenes: 

The 6 species belonging to the genus Listeria are short rods that are 0.4­

0.5J.lm in diameter and 0.5-2 J.lm length with rounded ends and can occur either 

singly or as short chains. They are gram-positive, non-spore forming, 

facultatively anaerobic and not encapsulated. Motility is seen when grown in the 

temperature range of 20-25°C while the optimum temperature for growth is 30­

3rC. They also exhibit fermentative metabolism of glucose. They can survive 

temperatures below freezing to body temperatures and the pH range optimum for 

growth is 5-9.6 (Ryser et aI., 1991a). 

Of the 6 species, L. monocytogenes is the only one that causes severe 

human diseases. (Novak et aI., 2003). The characteristics which make it a 

formidable pathogen are its ability to grow at low temperatures (psychrotroph), 

ubiquitous nature, ability to form biofilms on food processing equipments, its heat 

tolerance is greater than other food borne pathogens, it can survive conditions 

like freezing and drying, is salt resistant (nitrite), causes listeriosis and has a high 

mortality rate (25-30%). Thus its ability to survive and grow in such diverse 

conditions is one of the many challenges posed by this organism. Excellent 

growth occurs after partial replacement of oxygen with carbon dioxide but it fails 
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to grow under strict anaerobic conditions. Therefore it is considered to be an 

aerobically growing and facultatively anaerobic organism (Ryser et aI., 1991a). 

1.4. Cultural characteristics: 

L. monocytogenes can grow in a temperature range of 1-45°C, but the 

optimum growth temperature is 30-3loC. The organism can grow on common 

bacteriological media like Tryptose Agar and can also be stored in the same 

media at 3°C. Typical colonies of L. monocytogenes observed after 24 hrs of 

incubation time are 0.3-1.5 mm in diameter, round, translucent and have slightly 

raised colonies with a finely textured surface. L. monocytogenes can also grow 

on blood agar and form a narrow zone of ~-hemolysis around the colonies after 

48 hrs of incubation at 3loC (Ryser et aI., 1991a). 

1.5. Biochemical profile: 

All Listeria spp. Are catalase positive, oxidase negative, urease negative, 

methyl red/voges-proskauer test positive. They ferment glucose and produce 

acid but not gas from glucose, esculin or maltose. An important characteristic of 

these species is their inability to hydrolyze gelatin, casein or milk. Rhamnose and 

xylose reactions are specific in differentiating different Listeria isolates. L. 

monocytogenes produces acid from rhamnose and so do some strains of L. 

innocua, L. we/shimeri. Species L. ivanovii, L. we/shimeri, L. see/igeri use xylose 

and produce acid without gas. Mannitol is only used by the species L. grayi 

(Doyle, 1989). 

Different species of Listeria can be differentiated according to the 

biochemical tests listed in Table 1. All the species produce hemolysis on blood 
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agar. The CAMP test (which was first discovered by Christie, Atkins and Munch­

Peterson in StreptococcI) is of particular importance in differentiating species of 

Listeria, Le. L. monocytogenes, L. seeligeri, L. ivanovii (Ryser et aI., 1991a). The 

method (Fig.1) involves streaking of Staphylococcus aureus and Rhodococcus 

equi vertically on a plate of sheep blood agar. Cultures of Listeria are then 

streaked at right angles to the above-mentioned cultures and incubated for 

48hours at 35°C. The zone of p-hemolysis by L. monocytogenes is enhanced in 

the presence of S. aureus while that of L. ivanovii is enhanced by R. equi. 

Enhanced hemolytic activity is also shown by L. seeligerii in the presence of S. 

aureus, but is weakly hemolytic when compared to L. monocytogenes. Other 

species like L .innocua remain non-hemolytic (Ryser et aI., 1991a). 
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Table 1. Biochemical characteristics of different species of Listeria (From
 
Ryser et aI., 1991a).
 

Listeria sp. 

Biochemial Monocytogenes Ivanovi Innocua Welshimeri Seeligeri Grayi Murrayi denitrificans
8 

test
 
dextrose+ +++ ++++
 
Esculin + +++ ++++
 
Maltose+ +++ ++++
 
Mannitol ------++
 

Vb Rhamnose + -V --V ­
Xylose -+ -+ +-V-
Hippurate 

+ +++ +--­ hydrolysis 
Voges­

+ +++ +++ ­ proskauer 
Methylred + + + + + ++ + 
Beta­

++ --V --­ hemolysis 
Urea 
hydrolysis 
Nitrate 

------++ reduction 
Catalase+ +++ ++++ 
H2S on 
TSI 
H2S by 
lead 

-----++ ­ acetate 
strip 
CAMPposi 
tive/S.aure + ---+--­
us 
CAMP 
positive/R.-+ -----­
eaui 

"Reclassified as Jonesia denitrificans
 
bV_Variable
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LISTERIA CAMP 'TEST 

Figure1. CAMP test to differentiate species of Listeria 

The white zone of p-hemolysis within the dark circle indicates 

positive reaction. A-L. monocytogenes (typical), B-L. monocytogenes 

(atypical), C-L. ivanovii, D-L. seeligeri, E-L. innocua (Ryser et aI., 

1991 a). 

1.6. Serology: 

Serological classification is a valuable tool for identifying different isolates 

of Listeria. Paterson (1940) described the serological types of Listeria based on 

both somatic (0) (from the German ohne Hauch) and flagellar (H) (from the 

German Hauch) antigens and divided them into 4serotypes. Serotypes 1, 3, 4 

were identified on the basis of O-antigens while serotype 2 was based on a 

unique H-antigen. Seeliger (1961) later splitted serotype 4 into 4a and 4b. L. 

monocytogenes isolated from pathological sources are most likely to be 1/2a, 

1/2b, 1/2c, 3a, 3b, 3c and 4d. (Doyle, 1989). Studies by Ryser et al. (1991a} 

showed that 0 and H antigens of Listeria are complex carbohydrate-containing 
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proteins with partially overlapping and specific fractions. It was found that 0­

antigens are heat stable while H-antigens are heat labile. 

The classification of Listeria spp. can also be based on their 0 and H 

antigenic structures. L. innocua, L. ivanovii, L. seeligeri exhibit one or more 

somatic antigenic structures similar to L. monocytogenes, whereas L. grayi and 

L. murrayi can be differentiated from the rest of Listeria species based on their H­

antigen. Thorough biochemical characterization in combination with serotyping is 

required to sufficiently differentiate L. monocyotgenes from other Listeria species. 

1.7. Nutritional requirements: 

L. monocytogenes is a non-fastidious organism and can grow in simple 

media. The ideal carbohydrate for growth is glucose and it cannot be replaced 

by other carbon sources like xylose, arabinose or ribose as a source of energy. 

Substances obtained from citric acid and pyruvate cycles are also not suitable for 

its growth (Ryser et aI., 1991 a). Media containing low amount of growth factors 

can support growth of L. monocytogenes when enriched with blood and serum 

although they are not required for growth. Different strains have different 

requirements for vitamin B while some require both pyridoxine and riboflavin. 

(Gray, 1966~ Media containing glucose, riboflavin and biotin together with the 

amino acids isoleucine, leucine, valine and cysteine support growth of L. 

monocytogenes. (Ryser et aI., 1991a). Iron, magnesium, calcium and potassium 

are required for the growth of L. monocytogenes. Increased levels of thiamine 

are required to obtain colonies of reasonable size. Riboflavin is required when 

iron is added as a supplement to enhance growth of L. monocytogenes. 

7
 



1.8. Modes of Transmission: 

Due to the ubiquitous nature of the organism, humans can come into 

contact with the pathogen through a variety of sources such as animals, raw milk, 

dairy products, sea foods, processing plants, air, water and dirt as shown in Fig.2 

(Ryser et aI., 1991 b). 

MUk ~ Dairy, Products
/~.. 

Feces 

/~	 

Plant 

So11	 -.. Anilllal • 

..	 I Dust 

I Air 

I Dirt 

Water ..... _ Human 

Fetus Newborn 

Infant 

Figure 2.	 Transmission of Listeria monocytogenes to humans (Ryser 
et al.,1991b). 

Among dairy products raw milk, pasteurized milk, cheese and butter has 

been examined intensively because of its known association with foodborne 

listeriosis. (Farber et aI., 1991). Because of the widespread and psychrotropic 

nature of the organism in meat processing and packaging environments, 

incidence of L. monocytogenes is of primary concern. The organism can be 

acquired by product during cutting, slicing, packaging or from cross­
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contamination from the carcass. The incidence of L. monocytogenes in meat 

varies and may be as high as 92% (Vignolo et aI., 1996). It is also present in 

processed and refrigerated RTE meat products like sausages and vacuum 

packaged meats. Presence of this pathogen in products that are usually 

consumed without reheating is of particular concern. Contamination of the RTE 

or fully cooked meat can occur when opened and handled further. The same 

method of contamination was observed in poultry processing environments. 

Cross-contamination between raw and finished product is one of the major 

sources by which seafoods and fish get contaminated. Epidemiological studies 

indicate that a major source of contamination might be cross-contamination that 

occurs in processing plants (Thompkin, 2002). Niches in the working areas such 

as walls, floors, ceilings, condensate, processing waste, drains, wash areas, and 

other food contact surfaces may harbor the pathogen which can contaminate 

food products. Mechanical equipment contaminated with L. monocytogenes in 

abattoirs has also been identified as the source of contamination in a pig 

slaughterhouse in Finland (Autio et aI., 2000). Studies on the prevalence of L. 

monocytogenes showed that 16% of raw pork and 17% of raw poultry meats are 

contaminated (Chasseingnaux et aI., 2002). 

A surveillance program conducted by FDA indicated the association of L. 

monocytogenes with domestic and imported cheese, ice cream and other dairy 

products has also lead to numerous recalls. This can be due to the presence L. 

monocytogenes in raw milk. However effective pasteurization treatment can 

control this pathogen. (Kazak et aI., 1996). Vegetables like cabbage, celery, 
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tomatoes and lettuce can also serve as a vehicle for listeriosis as indicated by an 

outbreak linked to the consumption of coleslaw in 1981 in Canada (Ryser et aI., 

1991 b). Plant parts and vegetables used as salad vegetables play an important 

role in transferring the pathogen from the natural habitat to the human food 

supply. 

Formation of biofilms can also be a source of contamination. L. 

monocytogenes has been found to form biofilms on food contact surfaces like 

plastics, polypropylene, rubber, stainless steel and glass (Herald et aI., 1988). 

About 40% of food borne outbreaks occurred in France in 1996 were linked to 

contamination of processing equipment, thereby due to biofilm formation by the 

pathogen (Midelet et aI., 2002). Microorganisms developing biofilm can form a 

complex multicellular structure and surround themselves with an increased 

exopolysaccharide, which protects the organism against sanitizers. Thus they 

can escape and can attach to the surface of foods (Chae et aI., 2001). Surface 

water can also be a source of contamination (Doyle et aI., 1989). Though 

complete elimination of L. monocytogenes is nearly impossible, the likelihood of 

producing L. monocytogenes contaminated food products can be greatly reduced 

by following Good manufacturing practices (GMP). Regular cleaning and 

sanitizing of equipments during manufacturing and packaging of food products is 

required. 
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CHAPTER II 

LITERATURE REVIEW -L. MONOCYTOGENES 

2.1. Morphological Characteristics: 

The important morphological characteristics are 

Motility. L. monocytogenes is motile via flagella. It may be either monotrichous 

(single polar flagellum) or may pocess peritrichous flagella (flagella distributed 

over the entire cell). Motility is seen only at lower temperature (20°C) and at 

higher temperatures around 37°C a reversible damage of the flagella is seen. 

This leads either to the development of a single flagellum or immobility. 

Electronmicroscopic studies of the flagella by Leifson et al. (1955) showed 

peritrichous, spiral, coiled and straight forms. (Fig-3). The motion starts with 

rotations and wiggling movements to fast excentric rotations before the organism 

heads in a definite direction. Listeria also exhibits a characteristic tumbling 

movement, which aids in identification and can be seen in Tryptose Broth 

cultures incubated at 20°C. 
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A 

B 

C 

Figure 3. Flagellation of L. monocytogenes 

A-peritrichous flagella in spirals B-partly peritrichous, partly 
monotrichous straight flagella, C-short coiled flagella (Leifson, et aI., 
1955) 

Toxin Production. Liu et al. (1961) first published the production of toxin by L. 

monocytogenes in 1961. They succeeded in demonstrating toxin in sterile 

filtrates obtained from cultures grown in Trypticase Soy broth. This toxin was 

capable of producing hemorrhagic lesions within 3 hours after injecting 

intracutaneously into test rabbits. The lesions observed after 18 hours were 

necrotic and were similar in nature those produced by living cultures. This toxin 

can be inactivated when heated at lOoC for 30 min and was not precipitated with 

30% saturated ammonium sulfate. 

In general pathogenic Listeria spp. produce variety of endotoxins that can 

cause membrane damage and lysis. A toxic polysaccharide from L. 

monocytogenes grown on Typticase Soy agar was obtained by treating the cells 

with phenol and further fractionation with absolute alcohol, sodium acetate and 

acetic acid causing skin reactions in rabbits (Robinson et aI., 1964). Mcilwain et 
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al. (1964) isolated 3 proteinaceous fractions from disrupted L. monocytogenes 

cells that increased the respiration rate, body temperature, hyperglycemia 

followed by hypoglycemia and lead to the depletion of blood sugar level leading 

to death when injected into test animals. A significant increase in monocytes 

was observed within 48hrs of injection of these extracts. It was also observed 

that rabbits injected with toxic cellular protein fractions developed monocytosis 

much earlier than animals injected with viable L. monocytogenes. Ripo et al. 

(1995) identified the involvement of a sulphydryl-activated toxin in hemolysis and 

concluded that proteins responsible for hemolysis play an important role as 

virulent determinants. 

Monocyte Producing Properties. All L. monocyotgenes spp. possess the ability 

to produce monocytosis and can be seen irrespective of their serological and 

biochemical differences. It is this property of Listeria monocytogenes that was 

used in naming the species (Ryser et aI., 1991 a). Stanley (1949) discovered the 

monocyte-producing agent (MPA) in non-antigenic, non-toxic, chloroform-soluble 

lipid extracted from the bacterial cell. It was suggested that MPA might be similar 

to that of an exotoxin that is stimulated by the presence of the bacterial cell in the 

animal body. He finally concluded that although monocytes do not produce any 

antibodies, they play an important role in the transport of antibodies, which help 

in the defense mechanism of the animal against the organism. 

2.2. Pathogenesis. L. monocytogenes is a highly complex organism that has 

evolved a variety of tools and mechanisms to establish a successful infection 

after ingestion of the contaminated food. Infection starts with internalization of 
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2 

the bacterium via phagocytosis in the case of macrophages or induced 

phagocytosis in nonphagocytic cells such as epithelial, endothelial, or 

hepatocytic cells (Cossart et aI., 2001). The steps employed by the bacterium 

during its intracellular life cycle (Fig-4) are 

3' 

,, rJ ,~,~,

F""""', 

~, " 

~... ', Jl 
~.'. ,-:' .... 

Figure 4. Steps employed by the bacterium during intracellular life cycle 
(Vazquez-Boland et aI., 2001). 

1) entry into the host cell, 2) formation of phagocytic vacuole, 3) lysis and 

escape from the phagocytic vacuole, 4) liberation of the bacterium into the 

cytoplasm followed by multiplication, 5) actin-polymerisation that provides the 

propulsion for intracellular movement, 6) formation of pseudopods (Iisteriopods) 

that invaginate into the neighboring cell wall and thus initiate cell-to-cell spread, 

7) survival in the secondary phagosome 8) escape from the secondary 

phagosome, and reinitiating of the cycle (Vazquez-Boland et aI., 2001). Thus the 

bacterium disseminates in the host tissues by cell-cell spread and is 

simultaneously protected from host antibodies. The bacterium then disseminates 

from the epithelial cells (intestine) to the blood, inner organs, liver and eventually 

to the brain and foetoplacental barriers. Therefore, in order to produce infection, 
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the organism must survive conditions like acidity of the stomach, penetrate the 

intestinal lining and finally grow in the environment of the host cells. In order to 

accomplish these tasks, the organism exhibits several virulence genes. Many 

virulence factors responsible for the intracellular parasitic life-cycle have been 

identified. Vazquez-Boland et al. (2001) characterized these virulence factors to 

be associated with genes that are physically linked in a 9-kb chromosomal 

"virulence island". Cossart (2002) recently identified 'bsh' gene, a virulent gene in 

L. monocytogenes that confers resistance against bile salts in the intestine. 

Some of the important factors that contribute to the pathogenicity of the organism 

include formation of Listeriolysin 0 (LLO), expressions of various virulence 

genes, and stimulation of monocyte production (Cabanes et aI., 2002). 

2.2.1. Bacterium-induced phagocytosis: 

Entry of the bacterium into mammalian cells is mediated by a wide variety 

of components of the cell wall. The cell wall serves as a site of proteins that are 

beneficial for the organism and play an important role in bacterial adherence, 

invasion and interaction with the host immune system (Cabanes et aI., 2002). 

The bacterium is taken up directly by professional phagocytic cells (i.e. 

macrophages) or by induced phagocytosis by the activity of membrane proteins 

in the case of nonphagocytic cells. 

2.2.2. Bacteria-host interactions involved in entry: 

Two listeriaI surface proteins, Internalin A (InIA) and Internalin B (IniB), 

mediate entry of the bacterium into the host cells (Fig.5). Both of these proteins 

belong to a large group of surface-exposed leucine-rich repeat (LRR) proteins 
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identified in the genome at the amino (N)-terminal but differ in their carboxyl (C)­

termini (Schubert et at., 2002). Intemalin A is a signal peptide, has a C-terminal 

region containing LPXTG peptide (X- can be any amino acid). InlA functions as 

an invasion protein, mediating internalization of the bacterium by the human 

epithelial cells. Its target/cell receptor in the epithelial cells is E-Cadherin. 

Cadherins are glycoproteins and have 5 extracellular domains, a membrane-

spanning region, and a highly conserved cytoplasmic domain, which acts like a 

bridge between cadherin and the actin cytoskeleton (necessary for motility) via 

catenins (Brown et aI., 2000). Entry of L. monocytogenes into host cells 

mediated by internatin requires a proline residue at position 16 of E-Cadherin and 

is responsible for the host specificity of the virulent forms of Listeria. This binding 

of InIA-E-Cadherin is important for the entry of the bacterium (Carbanes et aI., 

2002). It is assumed that the concentration of Ca+2 in the intestinal compartment 

is around 2mM, which is sufficient to allow recognition and binding of InlA to E-

Cadherin followed by phagocytosis. 

InlB is also a surface protein similar to InlA with a signal peptide and LRR 

but does not possess an LPXTG motif. Brown et aI., (2000) stated that InlB 

binds Ca+2 in an unusually exposed manner and suggest that Ca+2 may act as a 

bridge between InlB and host cell surface receptors. Four other internalin like 

proteins, InlE, InlF, InlG and InlH were identified by Carbanes et al. (2002) and 
",,­

found not to be involved in invasion but were considered important for 

colonization of the host tissue. Thus the abundance of surface proteins and the 

variety of anchoring systems may be related to the ability of the organism to 
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survive under various environmental conditions and also interact with a large 

variety of cell types. 

InfAIn.18 

it Merrbrane
U 

Figure 5. Surface proteins InlA and InlB (Braun et aI., 2000). 

2.2.3. Lysis of the phagocytic vacuole: 

After internalization of the bacterium via phagocytosis. the bacterium 

mediates lysis of the vacuole· by a pore-forming bacterial toxin, Listeriolysin-O 

(LtO). after about 30 min. (Fig.6). LLO is optimally active at pH 5.5-6 and is less 

active at higher pH. The bacterium then multiplies in the cytoplasm with a 

doubling time of approximately 1hour (Cossart et aI., 2003). Puncture of the 

vacuolar membrane also reduces the concentration of Ca+2 to cytosolic levels 

and this reduces the affinity of InlA for E-Cadherin, thus helping the release of 

the bacterium from the vacuole to the cytoplasm. LLO also plays a role in the 

cell-to-cell spread of the bacterium (Braun et aI., 2000). 



Lysis of the 
IWO-membrane 

vacuole 
LLO, Pice 

~~--,......::­

Figure 6. Factors involved during various stages of entry of the pathogen into 
the host cell (Cossart et aI., 2003). 

2.2.4. Actin-based motility and cell-cell spread: 

Once the bacterium enters the cytoplasm, apart from multiplying the 

bacterium also gets associated with actin filaments. It may take about 2 hours 

for the filaments to get rearranged at one pole of the bacterium into "tails", which 

propel, the bacterium in the cytosol by extension of the actin filaments. When 

Listeria reaches the plasma membrane, it induces the formation of a protrusion 

containing the bacterium. This protrusion invaginates into the neighboring cell 

and induces a second membrane around the ce'll. This membrane is further 

lysed and the bacterium is released thereby infecting the cytoplasm of the 

second cell (Fig.6) (Braun et aI., 2000). ActA is a cell-surface protein that helps 

to induce actin-based motility. It can be divided into 3 regions, a highly charged 

amino terminus (ActA-N), a central domain consisting of proline-rich repeats 
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(PRR) and a carboxyl terminus, which upon deletion doesn't affect the motility of 

the organism (Cossart et aI., 2001). ActA through its central domain recruit 

VASP (vasodilator-stimulated phosphoprotein) protein that is found in sites of 

active actin-polymerization. ActA-N is essential for the movement of bacterium 

and together with a complex of polypepetides, along with Arp2 and Arp3 can 

nucleate actin and generate a network of actin filaments. (Fig.?). 

2a-actlnln ~ Actin rilament ......... ActA 

Capping 
protein 

\ 

Arp2/3 corrpIe. 

Colilin 

• 

~ 

VASP 

Prorllln 

Figure ? Actin assembly induced by ActA (Cossart et aI., 2001). 

2.2.5. Virulence gene cluster: 

The virulence locus consists of 3 transcriptional units (Fig. 8). The central 

position being occupied by hly monocistron encodes for the synthesis of the 

pore-forming hemolysin, listeriolysin (LLO). The L. monocytogenes hemolysin 
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has been designated as ei,ther LLO oy Hly in the literature. LLO is a cholesterol 

binding, thiol-activated hemolysin and is required for disruption of the phagocytic 

vacuole and release of the bacterium into thecytosol. Absence of the virulence 

factor Hly leads to avi,rulent nature of the organism (Ermolaeva, 2001). 

Downstream to hly is a 5.7kb operon comprising mpl, actA and pclB. The actA 

gene encodes for ActA protein which is required for motility and cell-cell spread 

of the bacterium. The gene pclB, encodes a zinc-dependent phospholipase C 

(PlcB), which cooperates with Hly in the lysis of the phagosome and the export of 

the bacterium into the cytoplasm. But the principal function of PleB is to mediate 

dissolution of the double-membrane secondary phagosmes formed after cell-cell 

spread. InlA and InlB genes encode for InlA and InlB that are essential for the 

induction of phagocytosis. Upstream and divergent from hly lies plcA-prfA 

operon. The first gene encodes for the synthesis of PicA, a phosphatidyllinositol­

specific phospholipase C that also helps in the lysis of phagosome and escape of 

the bacterium. The second gene encodes for PrfA protein. PrfA is required for 

the transcriptional activation of all the genes of the cluster including prfA. It is the 

only virulence regulator identified in Listeria. 
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Figure 8. Gene Cluster of L. monocytogenes 

Squares denote PrfA binding sites, transcriptions dependent on PrfA are 
denoted by arrows in the squares and those independent are denoted by 
arrows not connected to the squares. (Errnolaeva, 2001). 

A number of environmental and growth phase dependent signals control 

the expression of virulence genes via PrfA. The pIca gene and genes of the mpl­

acta operon are entirely controlled by PrfA regulatory protein. Hly and InlAB are 

only partially prfA-dependent and can be transcribed from the prfA-independent 

promoters (Ermolaeva, 2001; Hanawa et aI., 2002). 

2.3. Resistance to L. monocvtogenes infection: 

After the consumption of food contaminated with L. monocytogenes, the 

organism may pass through the walls of the digestive tract, and then possibly the 

liver, circulatory system and finally the central nervous system. Listeriosis is of 

primary concern to the population including pregnant women, newborns and 

immuno-compromised adults. Ryser et al. (1991 c) analyzed the early stages of 

infection by injecting mice with a sublethal dose of L. monocytogenes. This study 

showed that within a period of 10 min after injection the organisms were captured 

by the liver and the spleen and subjected to antibacterial actiVity. Macrophages 

also known as kupper cells killed 90% of the injected organisms while cells that 
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escaped from macrophages grew exponentially and reached a maximum 

population within 2-3 days. The resistance against infection can be either due to 

T-cells, T-cell independent mechanisms, or by acquired immunity (Harty et aI., 

1996). Unanue (1997) identified involvement of cytokines such as interleukin 

(IL)-12 and tumor necrosis factor (TNF)-a, which are produced by L. 

monocytogenes-infected macrophages. These cytokines in turn stimulate 

production of interferon (INF) V and natural kiUer (NK) cells. These are further 

responsible for cytocidal activity and curbing the growth of organism (Goldfine et 

al.,2002). 

T-lymphocytes that lead to acquired immunity are activated when the cells 

are infected with the organ ism. A 2-stage response involving the priming of 

prekiller T-cells and the generation of listeria antigen-specific helper T-cells :is 

then activated. As a result, a soluble substance (IL-2) converts pre-killer T-cells 

into L. monocytogenes-dependent cytotoxin and a T-Iymphocyte is generated. 

This rapidly destroys the organism (Ryser et aI., 1991c). Cytotoxin TNF-a plays 

an important role in the activation of macrophages and also increases the 

expression of adhesion molecules required for the action of neutrophils. 

Neutrophils curb the spread of the organism in the liver and thus control the 

spread of the infection (Unanue, 1997). The neutrophills also surround the 

hepatocytes, which are infected during the ear'ly stages of infection and act on 

the organism when released due to the apoptosis program of hepatocytes. Thus 

a synergistic interaction of T-cell independent and dependent processes is 

required for resistance against listeria infection. 
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2.4. Listeriosis: 

Listeriosis is a sporadic disease caused by L. monocytogenes and is seen 

throughout the year althOugh the incidence is higher during warmer climates and 

has a worldwide prevalence. Listeriosis is clinically defined when the organism is 

obtained from blood, cerebrospinal fluid or the placenta. Isolation of the 

organism from pregnant women or from her offspring within the first 31 days of 

delivery constitutes a perinatal case (Tappero et aI., 1995). W!ide ranges of food 

products like milk, soft cheese, ready-to-eat meats (bologna, turkey, sausage, 

luncheon meats, roast beef, ham salad, chicken salad, chicken turkey franks) 

and vegetables are implicated with listeriosis (Morritt et aI., 2002). Clinical 

manifestations of Listeriosis were first published during the 1920's (Schlech, 

2000). The global distribution of listeriosis among animals is analogous to the 

cases of listeriosis in humans all over the world. There is no particular sex 

preference with the exception that pregnant women are more susceptible. Also 

there is no strict relation of the occurrence with age except some clinical 

manifestations that show certain differences related to age. Due to the relative 

immaturity of the newborn and juvenile body, they are subjected to many 

bacterial infections like listeriosis. In contrast an adult body has protection 

against infection for the first few days because of the specific immunity 

stimulated by the defense mechanisms. But the case fatality is high among 

adults. 

Although food is considered to be the primary source of infection, it is not 

the only mode of transmission. A study by McLauchlin (1996) showed that 
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Listeriosis can be transmitted as cutaneous lesions when the farmer or a 

veterinarian comes in contact with the infected animal. Transmission can also 

occur as cross-infection between newborn infants. This was seen when the 

infants born with congenital Listeriosis are delivered or nursed in the same or 

adjacent room along with other infants. 

2.4.1. Characteristics and risk groups of Listeriosis: 

In the U.S. an estimated 2500 cases of L. monocytogenes and as many 

as 500 deaths per year has been reported by the Center for Disease Control and 

Prevention (CDC, 2001). It occurs in several well-defined populations particularly 

pregnant women, newborn, persons with weak immune systems, persons with 

cancer, diabetes, kidney diseases. and persons on medications, elderly and 

people suffering from AIDS. Persons who are suffering from AIDS are 300 times 

more likely to encounter listeriosis than normal adults (CDC, 2001). Active 

surveillance of sepsis and meningitis by CDC (2000) shows that attack rates of 

listeriosis are 0.7 cases 1100,000 population, 10 cases noo,ooo in infants and 

1.4 cases 1100,000 in elderly persons. The probability and risk of developing the 

disease depends on the host susceptibility, degree, amount of bacteria ingested 

and the virulence of the strain. 

The signs of an acute infection are superficial and accelerated respiration. slight 

cyanosis, lethargy, fever and anorexia. Convulsions, muscular twitching, sudden 

stop of respiration accompanied with severe cyanosis, increased irritability, 

tension, meningismus indicate infection of the central nervous system (CNS). 
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Listeric infection can be grouped based on the most prominent clinical symptoms 

as: 

a) Septicaemic form, in which symptoms seen are an increase in the number of 

monocytes. sore throat and meningitis. Listeria affects the meninges, brain and 

the medulla with symptoms like purulent meningitis, encephalitis, and brain 

abscission. During meningitis the person experiences neck rigidity, nausea, 

vomiting and photophobia. The symptoms of neurolisteriosis adults are 

disturbances in language (caused by 'nhalation of infected dust particles), 

walking, loss of memory and some distinct Parkinson's disease (Seeliger,1961). 

b} Ocula-glandular form, in this Listeria acts as a secondary invader and 

complicates latent tuberculosis of the cervical lymph nodes. Conjunctivitis is 

seen with symptoms like enlargement of parotid, fever and lymphocytosis «Ryser 

et aI., 1991c). 

2.4.2. Listeriosis in pregnant women and newborn: 

Hormonal changes during pregnancy have an effect on the mother's 

immune system. Pregnant women are 20 times more susceptible than normal 

healthy adults and they account for 1/3rd of cases due to listeriosis. Mothers 

carrying listeria can contaminate the skin and respiratory tract of their babies 

during birth. The newborn develop symptoms after 2-3 weeks of exposure. 

(USDA, 2001). Infection of the fetus during pregnancy can be fatal and lead to 

either abortion or death of the newborn. Some of the symptoms during the 

weeks before abortion are acute fever, chills, headaches, diarrhea and 

backaches. This occurs when women become carriers of L. monocytogenes for 
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a considerable period of time. The organism is contained in the reproductive 

organs and this endangers the fetus. After recovery the mother can still serve as 

a carrier for a considerable period and lead to recurring problems during later 

pregnancies. (Seeliger, 1961). If the pregnant women are tested for Ilisteriosis 

much before delivery, then there are chances for treatment in utero but if left 

untreated the infant remains critically ill (Schlech,. 2000}. 

In the case of newborns, infection can be via transplacental route or by the 

aspiration of amniotic fluid containing Listeria. If the infection of the fetus occurs 

during or before 4-5 months of pregnancy, then abortion of the fetus is commonly 

seen. This is called as 'early-onset' Listeriosis and results in abortion, stillbirth, 

or premature delivery of a severely affected infant. Mortality during this stage is 

-20% while the chances of abortion and stillbirth iincreases mortality rate to 

>50%. If the infection occurs during later stages of gestation, the infant is born 

healthy and shows disease symptoms after 7-20 days of delivery. The newborn 

shows physical signs of meningeal irritation. This is called as 'late-onset' 

listeriosis and the mortality rate is -10% (Schlech,. 2000). 

2.4.3. Treatment for Listeriosis: 

The time required for treatment may vary from 2 weeks for cases involving 

uncomplicated sepsis to 4-6 weeks for severe conditions like endocarditis in 

adults. Antibiotic therapy is reqUired to prevent disabilities and death. Antibiotics 

like penicillin, ampicillin, tetracycline, erythromycin. rifampin, chloramphenicol 

and cephalothin are used since L. monocytogenes is sensitive to them. 

Tetracycline was not recommended due to side effects like staining of teeth and 
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altering of bone development in children. Use of chloramphenicol or 

streptomycin is also limited because of their toxic nature to neonates (Ryser et 

aI., 1991c). Studies conducted by Schlech (2000) showed that listeriosis could be 

treated effectively using a combination of ampicillin and an aminoglycoside like 

gentamicin. Vancomycin in combination with an aminoglycoside was also 

successful in treating the infection for people who are allergic to penicillin. In 

general the minimum concentration of these antibiotics needed to kiH 

(bactericidal action) the organism is many times higher than the levels needed to 

prevent the growth of the organism. Persons suffering w,ith listeriosis are 

generally given a dose that is enough to prevent growth rather than to eliminate 

the organism. Adults suffering with septicemic forms of listeria generally receive 

6-12 gm of ampicillin (Lv.) daily in 3-4 doses, newborns are given 200-400 mgtkg 

body weight! day and pregnant women are given 3-6 gmt day for 2-3 weeks. 

Persons suffering with oculoglandular or cutaneous forms of listeriosis should be 

given 3-6 gm of ampicillin daily until the symptoms disappear (Ryser et aI., 

1991 c). Therefore even though the risk of listeriosis is relatively low in healthy 

adults, effective methods in the production, processing, handling and storage of 

foods is required to prevent devastating consequences. 

2.5. Foodborne outbreaks due to L. monocvtogenes: 

The first documented foodborne outbreak occurred in Halle, East 

Germany between 1949-1957 and was attributed to the consumption of raw, 

unpasteurized milk (Ryser et al., 1991 c). Out of 50 published investigations by 

FDA in 2000, 28.9% of outbreaks occurred in the U.S. while the rest occurred 
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outside the U.S. Out of the outbreaks occurred, food was identified as a vehicle 

in 13.3% of outbreaks and 59.5% of the outbreaks in the U.S. and outside the 

U.S., respectively (FDA, 2001). 

2.5.1. Outbreaks in the U.S. and Canada: 

The first foodborne outbreak of listeriosis was observed in 1979, where at 

least 23 patients were hospitalized in Boston, MA. Epidemiological studies linked 

hospital food as the vehicle of contamination. The food consumed contained 

lettuce, carrots and radish (Donnelly, 2001). In 1981 in Nova Scotia, Canada an 

outbreak occurred involving 41 cases, resulting in 17 de,aths due to the 

consumption of contaminated coleslaw. Coleslaw obtained from the refrigerator 

of a patient indicated that it was prepared with cabbage and carrots and was 

purchased from a local market. Investigation of the source of cabbage indicated 

that it was obtained from a farmer who raised cabbage along with a flock of 

sheep infected with L. monocytogenes. Use of manure from infected sheep 

followed by cold storage of the cabbage was suspected as the factors causing 

the outbreak (Beuchat, 1995). The next outbreak occurred in Boston in 1983 

involving 43 cases in which post-process milk was incriminated.. This was 

followed by an outbreak involving 142 cases and 40 deaths in 1985 due to the 

consumption of Mexican-style cheese in California. 

Surveillance by the FDA have resulted in numerous recalls of products like 

cheese, ice cream, and other dairy products (Kozak et aL, 1996). A review of the 

records of the plant showed a 10% more delivery of milk than the pasteurizer 

could pasteurize, and thus leaving a portion of milk unpasteurized (Hird, 1987). tn 
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1994 an outbreak linked to consumption of chocolate milk involving 45 cases 

occurred in Illinois. Post-processing contamination of the milk was implicated as 

the vehicle (Donnelly, 2001). 

During August 1998 to March 1999, 101 cases of listeriosis, including 

21 deaths was reported due to the consumption of hot dogs manufactured in 

Michigan. The hypothesis for the outbreak was cross-contamination of the 

product from food contact surfaces contaminated with L monocytogenes 

(Mazzotta et aI., 2001). Another reported outbreak due to acute febrile 

gastroenteritis occurred in LosAngeles due to the consumption of L. 

monocytogenes contaminated delicatessen meat effecting 44 people (Frye et aI., 

2002). Finally, a multistate outbreak e,ffecting 52 people occurred in 2002 due to 

the consumption of contaminated sliced turkey (MMWR, 2002). 

2.5.2. Efforts to control L monocyfogenes: 

Numerous outbreaks and product recalls due to contamination of RTE 

meats with L. monocytogenes occurred during 1980's and 1990's. The latest 

figures from the Centers for Disease Control and Prevention (CDC) indicate that 

there have been as many as 2500 cases and 500 deaths per year due to 

listeriosis (CDC. 2002). As a result, U.S. Federal regulatory agencies and the 

food industry embarked on a number of initiatives to control this deadly 

pathogen. In response, the FDA developed the Dairy Safety Initiatives Program 

in 1986, and the USDA monitoring program for L. monocytogenes in meat 

products was developed in 1987. According to the USDA any RTE food that 

contained L. monocytogenes can be considered as adultered and is subjected to 
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a Class I recall (FSIS, 2002). Alarmingly the RTE meat sampling program by the 

USDA-FSIS from 1998-2001 showed the incidence rate of L. monocytogenes as 

5.7% in sliced ham/luncheon meat, 4.4% in hotdogs, 3.1% in cooked roast beef 

and 2.4% in cooked poultry. Since the organism has the ability to grow under 

refrigerated conditions, the presence of even a low inoculum in foods during 

manufacturing can be harmful to consumers. Because of the potential hazards to 

consumers, the USDA has issued a zero-tolerance policy for this organism in 

RTE foods (Fredet aI., 1996). 

The Canadian policies direct all inspection and compliance actions 

towards products that can support growth of L. monocytogenes. In contrast to 

the U.S. approach, the Canadian regulatory agencies divide RTE foods divided 

into 3 risk groups (Table 2.). 

Table 2. Canadian compliance criteria for L. monocytogenes in RTE 

foods. 

Category Action level for GMP status Immediate Follow-up 
L. monocytogenes action action 

I. RTE foods casually >0 CFU/50gC N/Au Class I recall 
linked to listeriosis. This to retail level. 
list presently includes: Consideration 
soft cheese, liver pate, of public alert. 
coleslaw mix with shelf- Appropriate 
life>10days, jelled pork follow-up at 

a !tongue . the plant 
I 

level. 
II. All other RTE foods >0 CFUl50gC N/A Class " recall I 

supporting growth of to retail level. 
L.monocytogenes with Consideration 
refrigerated shelf-life of public alert. 
>10days. Appropriate 

follow-up at 
the plant 
level. 
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III. RTE foods supporting <100 CFU/50g Adequate Allow sale Appropriate 
growth of GMP follow-up at 
L.monocytogenes with plant level. 
refrigerated shelf-life <10 
days and all RTE foods <100 cfu/SOgd Inadequate or Consideration Appropriate 
not supporting growthb no GMP' of class II follow-up at 

recall or stop plant level. 
sale. 

>100 CFU/gd N/A Appropriate 
Class II recall follow-up at 
or stop sale. plant level. 

(Farber et al.,1996). 

aAt present,this product is not commonly found in the Canadian marketplace. 
bRTE foods not supporting growth of L. monocytogenes includes the following: 

- pH 5.0-5.5 and 8w <0.95. 
- pH <5.0 regardless of aw . 

- aw <0.92 regardless of pH. 
- Frozen foods. 

cEnumeration by enrichment only
 
dEnumeration done by direct plating onto selective agar.
 
eN/A not applicable
 
'No information on GMP is considered as no GMP. Burden of proof remains with the legal agent.
 

2.6. Recalls of RTE products due to L. monocvtogenes in the U.S: 

A large number of product recalls has resulted due to contamination of 

RTE foods with L. monocytogenes detected during the microbiological sampling 

program by FSIS. Some of them are listed in Table 3. 

Table 3. Class I recalls of different meat products due to contamination with L. 
monocytogenes provided by FSIS. 

Product Date Origin Quantity Company Reference 
(Ibs) 

Fresh & 11/20/2002 New Jersey 4.2 million Jack FSIS,2002a 
frozen turkey, lambersky 
chicken breast poultry 

company Inc. 
Fresh & 
frozen turkey 

10/12/2002 Franconia, 
Pennsylvania 

27.4million 
, 

Wampler 
foods, 

FSIS,2002b 

and chicken , 
, Piligrim's 

, i Pride Corp. 
Franks & 4/25/2002 Ohio 140,000 , John Morrell & FSIS,2002c 
hotdoQS Co. 
Fully cooked 3/15/2002 Minnesota 23,000 West Central FSIS,2002d 
turkey Turkeys Inc. 
luncheon 10/31/2001 Alabama 189,000 ' R.L. ZeiQler FSIS,2001a 
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meat Co. 
Luncheon 4/12/2001 Oklahoma 14.5million Bar-S foods FSIS,2001b 
meats, hams, 
sausages, 
hotdoQS 
Poultry 12/14/2000 Waco. Texas 18million Cargill foods FSIS.2000. 
products 
luncheon 
meats 
Hotdogs & 1/28/1999 Zeeland, 35million Bil Mar FSIS.1999a 
luncheon Mi'chigan 
meats 
Frankfurter & 1/22/1999 Arkansas ! 30million Thron Apple FSIS, 1999b 
luncheon Valley 
meats I 

Lunch meat 11/4/1998 Florida 192,553 Dixie Packers FSIS, 1998 
products Inc. 

2.7. Incidence of L. monocytogenes on food processing equipment: 

Listeriosis can be prevented by controlling the incidence of the organism 

in the food-processing environment and by proper attention to the type of food 

material and its method of preparation. Due to the ubiquitous nature of the 

organism, it is readily introduced into the abattoirs and the meat processing 

environment. This along with its unique properties makes the organism difficult to 

eliminate completely. Meticulous attention to principles of industria hygiene like 

HACCP can reduce the incidence of the pathogen (Schlech, 2000). Accordingly 

the USDA, FSIS and FDA provides guidelines to people of all risk groups, these 

include avoiding of hot dogs, luncheon meats or deli meat unless they are 

reheated, avoiding soft cheeses like feta, brie camembert, blue-veined and 

Mexican-style cheese (USDA, 2001). 

2.7.1. Sources of entry: 

Recontamination of RTE products was the primary source of L. 

monocytogenes in many processing environments. The source of the pathogen 
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was limited to certain specific sites of harborage including slicers (in sliced lunch 

meats), bagging tables (large cooked products), brine chill tunnel {hams}, chilling 

and cutting rooms (pork) and between freezer and packaging machine (cooked 

meat patties) (Tompkin, 2002). Contamination during peeling just prior to 

packaging was the major source of entry of pathogen in the preparation of turkey 

franks (Wenger et aL, 1990). Chasseignaux et al. (2002) showed that a surface 

made with resin or plastic that is uneven with organic residues, neutra'i pH, low 

temperature and high hygrometry was associated with contamination by L. 

monocytogenes. The organism is also detected on the floors, walls, hand 

basins, splitting saws, and chopping blocks in the meat processing environment 

(Borch et aL, 2002). Studies on the prevalenoe of L. monocytogenes show that 

16% of raw pork meat and 17% of poultry meats are contaminated with L. 

monocytogenes. 

About 80/0 of samples in poultry slaughterhouses, 26% of samples in raw 

poultry meat plants, and 68% of samples in raw pork and meat plants were 

contaminated with L. monocytogenes (Chasseignaux et aL, 2002). Despite best 

efforts, complete elimination of L. monocytogenes may be nearly impossible. 

However, by maintaining clean, dry floors and by paying diligent attention to 

GMP, which include plans for rigorous cleaning and sanitizing programs for 

equipment, incidence of L. monocytogenes can be controlled (Tompkin, 2002). 

Careful attention to the movement of traffic from raw product locations to final 

product areas is required to prevent contamination (Kozak et aI., 1996). 
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2.7.2. Control measures: 

Commercial sanitizers and cleaning compounds are used to control the 

spread of L. monocytogenes in processing facilities. These include the use of 

compounds like quaternary ammonium compounds (QAC, 800-1000 ppm), 

sodium hypochlorite, iodophors, and acid sanitizers. All of these compounds 

exhibit bactericidal activity and reduce the bacterial population by 4-5 10910 during 

first 30 sec. The possible mode of action being, diffusing into the cell, formation 

of toxic compounds which inturn inhibit key enzymatic reactions and alter cell 

membrane permeability (Ryser et aI., 1991d). Studies conducted by Mustapha et 

al. (1988) showed that 200 ppm and 400 ppm of sodium hypochlorite applied for 

2 min was efficient for the destruction of L. monocytogenes on smooth and 

porous surfaces, respectively. They also concluded that 50 ppm of QAC applied 

for 2min was sufficient to obtain >4 10910 reduction in cell numbers. 

Lee et al. (1991) studied the effect of sodium hypochlorite on L. 

monocytogenes attached to stainless steel surfaces. The results indicated that 

using 50 ppm chlorine followed by a 30 sec heat treatment at 65°C reduced the 

cell numbers to undetectable levels and concluded that a 5 min exposure to 200 

ppm chlorine solution is required for L. monocytogenes inactivation on stainless 

steel surfaces. Peroxyacetic acid and glutaraldehyde were effective in controlling 

L. monocytogenes in milk and meat processing facilities. Since water-based 

chain conveyor lubricants also serve as a potential source for L. monocytogenes, 

sanitizing agents can be included into lubricants to minimize spread of the 

organism (Ryser et aI., 1991d). Research is also being conducted on the use of 
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antimi.crobials of natural origin (nisin, lysozyme) to inhibit adhesion of pathogens 

like L. monocytogenes to food contact surfaces (USDA, 1999). 

2.8 Microbial Interventions: 

As a result of market globalization and a need to meet the consumer 

needs for high quality and convenient meat products with natural flavor and taste, 

food manufacturers employ a variety of processing techniques (Hugas et aI., 

2002). The most common methods of meat preservation include the application 

of heat, pressure, acid treatment, salts of organic acids, irradiation, and 

chemicals. These reduce the potential pathogens in foods by creating conditions 

that are unfavorable for growth and survival. All these methods aim to control the 

pathogen while having a mild effect on the food. They also offer a wide range of 

applications by various combinations to control L. monocytogenes. 

2.8.1. High-pressure pasteurization: 

High pressure processing (HPP) represents a promising and attractive 

non-thermal process for the preservation of sliced cooked cured meat products. 

High-pressure technology between 100-600 Mpa is of increasing interest to 

biological and food safety systems to control microbial growth at low or moderate 

temperature without affecting the organoleptic properties of meats. The level of 

inactivation by HPP depends on the type of microorganism. level of pressure, 

time of treatment, temperature. pH, water activity and the composition of foods 

(Hugas et aI., 2002). Although research involving the application of pressure to 

meat is limited. several studies have been conducted on the application of 

pressure to control L. monocytogenes in broth/growth media or emulsions and 
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food suspensions using L. innocua as a model. (L. innocua is a nonpathogenic 

species of Listeria with heat resistance similar to that of L. monocytogenes). 

Lanciotti et al. (1994) studied the effect of 100 Mpa on a suspension of L. 

monocytogenes and reported that a high-pressure homogenization treatment 

around 100 Mpa causes a reduction in L. monocytogenes. Similarly Wuytack et 

al. (2002) studied the effects on L. innocua suspensions and obtained 2 log10 

reduction at 300 Mpa and concluded that >4 log10 reduction can be obtained after 

4 rounds of homogenization. Cheftel et al. (1997) studied pressure resistance of 

L. monocytogenes by applying pressure on minced beef for 20 min at 20°C using 

L. innocua as a model. They observed a 5 log10 reduction at pressure above 

400Mpa. Higher (35°G) or lower temperature (4°G) enhanced the inactivation. 

Cell death can be due to mul'tiple or accuniulated damage inside the cell, 

the cell wall often is the main target. Cellular functions sensitive to pressure 

include modification of membrane permeability, fatty acid composition, cell and 

membrane morphology, protein denaturation, inhibition of enzyme activity, 

formation of vacuoles etc. Thus change in membrane structure is the main factor 

of inactivation (Lado et aI., 2002). Occurrence of bud scars on the surface of 

cells altering the membrane morphology was observed when 400 Mpa pressure 

was applied to buffer containing L. monocytogenes for 10 min (Ritz et 811.,.2002). 

A synergistic effect of antimicrobial compounds with HPP in a meat model 

system was conducted by Hugas et al. (2002). They obtained <102 CFU/g of L. 

monocytogenes until 16days of storage when nisin was used after application of 

high pressure (400 Mpa, 10 min, 17°G). When a meat model system containing 
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cooked ham was treated with sakacin, enterocins, and pediocin after a pressure 

treatment of 400 Mpa for 10 min, the population of L. monocytogenes was kept 

below 102 CFU/g (6 log10 reduction) until the end of storage (61 days, 4°C). 

(Garriga et aI., 2002). A 10 10glO reduction of L. monocytogenes in ground beef 

patties using a mild heat treatment at 50°C simultaneously with HPP at 414 Mpa 

for 6 min was observed by Murano et al. (1999). The applicat1ion of pressure has 

advantages as well as disadvantages. Stressed cells can develop resistance 

and exhibit growth during storage, which is not desirable. Also stressed cells 

may be less heat resistant, so a combination of pressure and heat may lead to 

excellent reduction of the pathogen (Cheftel et aI., 1997). 

2.8.2. Irradiation: 

Irradiation also known, as cold pasteurization, is an effective control 

measure in maintaining the quality of raw, cooked and minimally processed meat 

products (Molins et aI., 2001). The FDAIWHO Codex Alimentarious Commission 

consider irradiation as a safe technology for controlling L. monocytogenes in raw 

and uncooked meat. Among the different forms of irradiation UV, gamma 

radiation and electron beam (using electricity) are considered to be bactericidal. 

UV rays because of thei1r poor penetration power are restricted to the 

treatment of food and non-food contact surfaces and eradication of airborne 

contaminants. Studies involving UV radiation to meat and L. monocytogenes is 

limited. Collins et al. (1971) determined the susceptibility of L. monocytogenes to 

UV rays in Tryptic Soy Agar plates by exposing to a radiation output of 40W/cm2 

for 30,60,90 sec and found that the D-value for L. monocytogenes was 60 sec. 
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The rate of inactivation increased with time. UV radiation can thus be of some 

practical use in reducing L. monocytogenes in food production and storage area. 

By the year 2001 , 40 countries have permitted use of irradiation in many different 

types of foods including 12 countries that use irradiation for control of pathogen 

in poultry, 8 countries permit for use in meat and 13 in fish and. seafoods (Mol ins 

et aI., 2001). 

Gamma radiation: 

Gamma radiation, having excellent penetration power makes it suitable to 

effectively control L. monocytogenes in uncooked meats, but has not been yet 

approved for use on RTE meats. A petition to permit its application on RTE 

foods is under review by FDA (Clardy et al., 2002). Currently a dosage level as 

high as 10 KGy is permitted for use to control pathogens in foods (Aziz et a.I. I 

2002). Clardy et al. (2002) found that a dose, of 3.9 KGy reduced L. 

monocytogenes populations by 5 log10 units in frozen ham sandwiches. Thayer 

et al. (1995) found that the D-values for L. monocytogenes in uncooked beef, 

lamb, pork and turkey stored at 5°C ranged from 0.45-0.5 KGy. 

Monk et al. (1994) applied a dose of 2.5 KGy to raw ground beef patties 

and observed 4.1 log10 reduction in the population of L. monocytogenes. They 

also observed that neither the fat content nor the temperature during treatment 

effected the inactivation rate. Fu et al. (1995) applied a radiation dose of 0.9 

KGy on ham inoculated with L. monocytogenes and obtained a 3 log10 reduction. 

They also observed that a dose of 2.0 KGy at 7-10°C reduced the population of 

L. monocytogenes to undetectable levels. Gamma radiation (2.9 KGy) in 
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combination with heat (65.6°C) was applied to chicken breast by Shamsuzzaman 

et al. (1992) and they observed that L. monocytogenes was reduced to 

undetectable levels for 8 weeks. Sommers et al. (2002} found that a dose of 2.3­

3.1 Kgy was required to obtain a 5 10glO reduction in L. monocytog'enes on 

vacuum packaged cooked beef bologna containing dextrose. They also 

observed certain undesirable changes in meat these include acceleration of lipid 

oxidation, breakdown of PUFA and formation of MDA and also loss of red color. 

Some studies indicate that organic acids like citric acid enhance the bactericidal 

effects of ionizing radiation (Sommers et al. 2003). Although effective, irradiation 

affects the color of raw and cured meats. Sensory panelists could differentiate 

between irradiated and non-irradiated products. Irradiated foods also suffer from 

a negative public image because of its chances of having carcinogenic effects 

(Stermer et al., 1987). 

2.8.3. Acid treatment: 

Since emerging technologies like irradiation are not permitted for use on 

RTE foods, there has been renewed interest in the application of GRAS 

chemicals and organic acids as hurdles. Acidification of foods is an age-old 

method of preservation and can be used to create an adverse environment to the 

growth of L. monocytogenes. The type of acid, pH, temperature and other 

antimicrobial compounds all play an important to create an effective barrier 

against the pathogen (Doyle et aI., 1999). The antimicrobial action of an acid 

depends on the extent of undissociation. Weak acids like acetic acid can diffuse 

into the cell, lower the intracellular pH resulting in the inhibition of certain 
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metabolic and anabolic processes (Abee et aI., 1999). Rinsing of the carcass 

with acetic acid is permitted in the U.S. (FSIS, 1992). Samelis et al. (2001) 

observed the effect of dipping L. monocytogenes-inoculated sliced bologna for 1 

min in 2.5% and 5.0% of acetic and lactic acid solutions before vacuum 

packaging and stored at 4°C. At 5.0% acetic acid they found an inhibition of the 

pathogen for 120 days while 5.0% lacti'c acid inhibited growth for 50-80 days 

before significant growth occurred. Using 2.5% acetic acid was antimicrobial 

until 70days while 2.5% lactic acid permitted significant growth within 20-35 days. 

They also found that inoculation before dipping didn't differ in effect when 

compared to dipping after inoculation. 

A post-heat processing, organic acid dip treatment of pork frankfurters to 

control L. monocytogenes was evaluated by Palumbo et al (1994). They used a 

2 min dip in a mixture of acetic acid and citric acid (at 2.5% each), 5% acetic 

acid, or 5% lactic acid and observed that the combination treatment was effective 

in restricting growth for 90 days when stored at 5°C while the individual acids 

also suppressed the pathogen during the 90 days storage period. When lean 

pork fat and tissue that were artificially inoculated with L. monocytogenes were 

dipped for 15 sec in 3% lactic acid at 55°C, a 2-3 log10 reduction was observed 

and the bacterial population remained unchanged following the 15 days storage 

period (Green et aI., 1995). Podolak et al. (1996) found that fumaric acid at a 

concentration of 1% was effective in reducing the population of L. 

monocytogenes by 1 10910 on artirficially contaminated raw beef. A treatment 

involving 2% polylactic acid, 2% lactic acid, 400 lU/ml nisin, or a combination of 
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each acid and nisin for 5 min was shown to reduce the population of L. 

monocytogenes within the range of 0.97-1.97 log10 cycle on vacuum-packed 

fresh beef stored at 4°C for 42 days. Addition of organic acids increased the 

effectiveness of nisin to reduce L. monocytogenes (Ariyapitipun et aI., 1999). 

Acetic acid was found to be more inhibitory than lactic acid because of its ability 

to diffuse through the cell membrane and deposit in the membrane and finally 

effect substrate transport (Vasseur et aI., 1999). Thus either one used alone, or 

in combination, with other organic acids have the potential of reducing L. 

monocytogenes in meat products. 

2.8.4. Salts of organic acids: 

One of the emerging food safety tools to combat L. monocytogenes in 

RTE meats is use of antimicrobial substances like sodium or potassium lactate, 

sodium nitrite, sodium propionate, sodium diacetate, potassium sorbate and 

sodium benzoate. These substances when used either singly or in combination 

reduce the risk of foodborne illness due to L. monocytogenes. Sodium diacetate 

was registered by EPA in 1968 as a food preservative and is considered a GRAS 

chemical. CFR part 424 deals with the application of these chemicals as a food 

additive in meat and poultry foods. FSIS permits the use of sodium diacetate at 

a level of 0.25% in meat and poultry products in accordance to 21 CFR 184.1754 

(EPA 1991, FSIS 1999). 

Combination of low aw and pH are important for the inhibitory effects of the 

salts towards L. monocytogenes (Ryser et aI., 1991d). The current permitted 

levels of sodium lactate and sodium diacetate are 4.8% and 0.25%, respectively. 
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(Glass et aI., 1999). A study conducted by Mbandi et aI., (2002) evaluated the 

effect of sodium lactate (2.5%), sodium diacetate (0.2%) and their combination 

on a single strain (L. monocytogenes Scott A) and a mixture of 6 strains of L. 

monocytogenes inoculated beef bologna and then stored at 5°C and 10°C. They 

found that each of the salts alone delayed the growth of L. monocytogenes for 

about 30days while the salt combination inhibited growth at both 5°C and 10°C. 

Bedie et al. (2001) studied the effect of current permissible and increased levels 

of sodium lactate (3% or 6%), sodium acetate (0.25% or 5.0%) and sodium 

diacetate (0.25% or 5.0%) included in frankfurter formulation stored at 4cC on L. 

monocytogenes. The results obtained indicate that sodium I!actate (3%) was 

more effective in controlling L. monocytogenes than sodium diacetate (0.25%), 

which was better than sodium acetate (0.25%) for 70, 35 and 20 days 

respectively. At levels of sodium lactate (6%) and sodium diacetate (0.5%) 

higher than that currently permitted complete inhibition of L. monocytogenes was 

found for 120days on frankfurters stored at 4°C. A study was conducted to 

examine the efficacy of lactic acid (0.5%) and sodium benzoate (0.05%) to 

reduce L. monocytogenes on raw chicken stored at 4°C for 0, 2, 4, 6, 8 days. 

Cheng-an et al. (1995) found that a solution containing the above solutions can 

reduce the population of L. monocytogenes until 8 days when stored at 4°C. 

Islam et al. (2002) studied the effect of 4 different preservatives (sodium 

benzoate, sodium propionate, potassium sorbate and sodium diacetate) by 

dipping L.monocytogenes-inoculated turkey frankfurters for 1 min in these 

solutions. The solutions were prepared to 15, 20 or 25% wtlvol with <0.3% of the 
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chemical in the frankfurter. The results revealed that the L. monocytogenes 

population decreased by 1-2 log10 immediately and storage at 4°C for 14 days 

showed 3-4 log10 reduction for all treatment concentrations. Storage at 13°C for 

14days showed a 3.5-4.5 10910 reduction for treatments using 25% sodium 

benzoate or 25% sodium diacetate and a 2.5 log10 reduction for treatments 

involving 25% sodium propionate or 25% potassium sorbate. Only the 

treatments involving 25% sodium diacetate or sodium benzoate showed 

significant inhibition of L. monocytogenes on frankfurters stored at 22°C for 7 

days or longer. 

810m et a!. (1997) studied the effect of a mixture of 2.5% lactate and 

0.25% acetate (w/w) on L. monocytogenes-inoculated sliced servelat sausage 

and cooked ham, which was then stored at 4°C. They found that population of L. 

monocytogenes was inhibited for a storage period of 5 weeks in both servelat 

and cooked ham stored at 4°C and for 2-3 weeks at 9°C. Miller et a!. (1994) 

found that 3% and 4% sodium lactate had inhibitory effects on beef top rounds 

inoculated with L. monocytogenes and stored at 10°C for 28 days. In all these 

studies sensory analysis was conducted to evaluate appearance, flavor and 

overaH satisfaction and the results revealed that no significant difference existed 

between treated and untreated samples. 

2.8.5. Thermal Inactivation: 

Thermal processing for the inactivation of microorganisms is most widely 

used and is the fundamental method used to preserve food and for providing 

safer food for human consumption (Ryser et aI., 1991d). Pasteurization of raw 
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milk has been widely used and is considered as a safe process to reduce L. 

monocytogenes to levels that don't pose a risk to human health, High 

temperature short time (HTST) pasteurization (71.6°C/15 sec) was found to be 

sufficient to destroy L. monocytogenes in milk (Mathew et al. 2002; Ryser et aI., 

1991). Ever since pasteurization was found to be effective to control L. 

monocytogenes in milk, there has been heightened interest to apply heat to L. 

monocytogenes in meats. Cooksey et al. (1993) applied post-package 

pasteurization followed by refrigeration storage to control pathogens as well as 

surface contamination on RTE precooked beef. Pasteurization at 82°C for 16 min 

increased the shelf-life upto 85 days when stored at 4°C. Cooksey et al. (1993) 

then applied post-package pasteurization to control L. monocytogenes in 

precooked vacuum-packaged beef loin chunks. They observed that 

pasteurization effectively eliminated L. monocytogenes and reduced the levels by 

10,000 fold on the surface and by 1,000,000 fold in broth. The population of L. 

monocytogenes remained unchanged during 85 days of refrigerated storage. 

Hardin et al. (1993) examined the fate of L. monocytogenes-inoculated 

precooked beef roasts subjected to various post-package treatments and also 

evaluated the storage stability at 4, 8 and12 days (at 4°C) and for 8, 14, 28 and 

56 days (at 10°C). The process subjected the inocu'lated vacuum-packaged beef 

roast to hot water bath pasteurization at 2 d'fferent temperatures (196°C and 

205°C) and for 2 different dwell times (3 or 5 min), thus a total of 4 different 

treatments were tested. They found that treatment involving 5 min at 196°C 

showed the greatest decrease (4.5 log10 reduction) in L. monocytogenes 
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population on day 1 and further decreased throughout storage at both 4°C and 

10°C. Several studies have been done using L. innocua as a heat resistant 

model for L. monocytogenes. It is considered to be nonpathogenic and having 

heat resistance similar to. or greater. than L. monocytogenes. 

Vacuum/steam/vacuum surface pasteurization was applied to control L. 

innocua inoculated hotdogs. One cycle involved an initial vacuum for 0.1 sec, 

two cycles with 0.3 sec of steam exposure with a final and inter-cycle vacuum 

period of 0.3 sec. For a total process time of1.3 sec. Kozempelet al. (2000) 

obtained >3 10910 reduction. Pasteurization for 3 or 4 cycles can further reduce 

the population of L. innocua by 5 log10 cycles. Murphy et al. (2002) achieved a 7 

log10 reduction of L. innocua by using post package treatment of fully cooked 

chicken breast strips. The treatment involved 20 min (for a 227 gm package) or 

34 min (for 454 gm package) process time in a hot water cooker at 88°e.. 

Cygnarowicz-provQst et al. (1994) applied flash steam pasteurization for 32 sec 

at 136°C to L. monocytogenes-inoculated beef frankfurters and obtained a 4 10910 

reduction. They found that levels remained reduced when stored at 6°C and 

19°C without any difference in color and weight between treated and untreated 

samples. 

Bersot et a!. (2001) obtained a 3 IIog10 reduction of L. monocytogenes in 

RTE mortadella ham that was cooked to an internal temperature of 74°C in the 

coldest point and the population remained low for 30 days when stored at 7°C. 

Chikthimmah et al. (2001) obtained a 5 10910 reduction of L. monocytogenes 

during a commercial Lebanon bologna manufacturing process by fermenting the 
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raw mix to pH 5.0 at 37.7°C and then heating to 46.1°C for 5 hrs. Muriana et al. 

(2002) applied post-packaged submersed water pasteurization for reducing L. 

monocytogenes on different RTE products and found that a processing time of 2 

min at 195°C-205°C can readily provide a 2 log10 reduction. They were also able 

to achieve a 4 10glO reduction when the process time was extended to 4, 6, 8, or 

10 min. 

The objective of this study was to apply pre-package surface 

pasteurization using a radiant heat oven alone and in combination with post­

package pasteurization to provide a potential hurdle effect on L. monocytogenes 

inoculated on RTE meats (bologna, deli ham, roast beef and turkey). 
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CHAPTER III
 

MATERIALS AND METHOD 

3.1. Bacterial Strains: 

A four-strain mixture of L. monocytogenes (Scott A-2, serotype 4b; V7-2, 

serotype 1/2a; 39-2 retail hotdog isolate; 383-2 ground beef isolate)·was used for 

inoculation trials. These strains were made resistant to streptomycin (100 IJg/m'l; 

Sigma Chemical Co., St. Louis, MO) and rifamycin SN (10 IJglml; Sigma) and 

were plated on general purpose agar (Tryptic Soy Agar, TSA; DifcoTm 
, Becton­

Dickenson, Franklin Lakes, NJ) containing these antibiotics when selectively 

plating for the inoculum cultures. This approach allows the recovery of viable 

and heat-injured cells without the need for harsh selective media that may 

prevent the growth of heat-injured cells (Le., MOX agar) or in lieu of indigenous 

contaminating bacteria. The bacterial strains were cultured by transfer of 100 III 

of thawed frozen culture into 10 ml of Brain Heart Infusion (BHI) broth and 

incubated overnight at 300e; each of the four cultures were then transferred 

individually to 40 ml BHI culture and later combined (i.e., 160 ml) prior to use in 

the 'dip' inoculation treatment. For surface 'contact' inoculation, overnight 

cultures were m.ixed in equal proportions and the mixture was surface plated 

(100 Ill) onto Tryptic Soy Agar (TSA) that was held overnight at 300e. 

3.2. Product Inoculation: 

Product samples were generally 4-13 Ibs (1.8-5.9 kg) that included roast 

beef (whole and split rounds), corned beef (whole logs), and ham (formed and 

whole muscle), except for turkey bologna (-2-tb sections). Except for 2 lots of 
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roast beef (received frozen and allowed to thaw) all products were received 

fresh/refrigerated from commercial processors as they would normally be 

shipped for sale to retailers without the additional thermal processing. The· 

products were stored at 3°C (37.4°F) upon receipt and removed just prior to 

inoculation, so the internal temperature was the same. Immediately prior to use, 

products were taken from refrigerated storage, removed from their packaging 

wrap, and inoculated with L. monocytogenes by one of two different methods: a) 

dip inoculation method, or b) a contact inoculation method. Control product 

samples were also inoculated for each replication trial, but not heated, as they 

represented the basal' recovery level for the inoculated microorganisms. 

The 'dip' inoculation method: Approximately 160 ml of a 4-strain mixture 

(i.e., 4 x 40 ml) of L. monocytogenes was placed in a stainl'ess steel bowl into 

which individual product pieces were 'dipped' by rotating product until all exposed 

surfaces were wetted with the mixed culture. Product pieces were then placed 

on a sterile tray for 5 min to drain off excess culture and then placed on a 

conveyor belt leading into the radiant heat oven. Using the dip inoculation 

method, we typically had inoculation levels of -1-3 x 109 CFU per product as 

determined from recovery from inoculated, but unheated, control samples. 

The 'contact' inoculation method: Sponge-foam padding material (-5-6 cm 

thick) was cut to the shape of a petri plate, autoclaved in foil-covered beakers, 

and used to pick up the mixed-strain inoculum lawn from inoculated petri plates 

after overnight incubation on agar plates using a contact and half-twist motion. 

The inoculum was then 'contact inoculated' onto the surface of the product using 

48
 



the same half-twist motion. The inoculated product was then placed on the 

conveyor leading into the radiant heat oven. As determined from non-heated 

control samples, the contact inoculation method provided initial levels of 1-3 x 

109 CFU per product sample. 

3.3. Pre-package pasteurization with a radiant heat oven: 

A radiant heat oven (commercial name is "Infrared GrillTmll
) was obtained 

from Unitherm Foodsystems (Bristow, OK) and installed (480 V, 30 Amp) in our 

Pathogen Processing Pilot Plant (Fig 9A-9B). The oven consisted of a stainless 

steel conveyor belt that passed through heating e~lements above and be'low the 

conveyor belt (Fig. 9). Heating coils had 12 in (30.5 cm) of lateral clearance at 

the level of the conveyor belt and 8 in (20.3 cm) of vertical clearance above the 

belt; a separate, bottom coil was positioned 5 in (12.7 cm) below the belt. The 

coils themselves were spaced at 2.5-3 in (6.3-7.6 cm) apart. Inoculated product 

pieces were passed through the radiant heat oven (Fig. 9) for various dwell times 

at full (#5 dial setting for ham and roast beef), or 80% power (#4 dial setting for 

turkey bologna). Products were processed at residence times of 45-120 sec by 

adjusting the speed of the belt and depending on the resilience of the product 

and the throughput requirements of the respective processors. Product logs 

were placed lengthwise on the belt. Half-rounds of roast beef were pasteurized 

both ways, with the cut face facing the end of the oven as well as to one side. 

After passage through the oven, product sampiles were transferred into a sterile 

bag, chilled in an ice-water slurry, and rinsed (massaged and shaken) with a 

chilled sterile diluent (50 mls of 0.1 % buffered peptone water, BPW), to recover 

49
 



cells for microbial analysis (usually within 15-20 min); inoculated, but unheated, 

control samples were treated similarly. The same procedure was repeated for 

different meat samples. 

3.4. Post-package surface pasteurization: 

Post-package surface pasteurization of fully-cook.ed deli ham, roast beef, 

and turkey bologna was performed using a 50-gal (189 liters) steam-injected 

temperature-controlled water bath similar to that used inearl,ier study by Muriana 

et al (2002). For samples processed by post-package pasteurization alone (roast 

beef), we used a 25 mJ inoculum. Additional resuspension diluent (25-50 mls) 

was used after the pasteurization process to insure recovery of the remaining 

inoculum. 

3.5. Combination pre- and post-package pasteurization: 

A combination pasteurization process was examined that included a short 

pre-package pasteurization treatment (45 or 60 sec) of inoculated product 

followed quickly «2 min) by vacuum packaging and post-package pasteurization 

(either 45, 60, or 90 sec) by submersion and subsequent microbial analysis as 

described previously (Muriana et aI., 2002). 

3.6. Product temperature measurement: 

Product temperatures were examined by several methods. Temperature-, 

hardened DataTraceTm probes (Mesa Labs, Lakewood, CO) were placed at the 

top, bottom (offset to one side), sides, front, and back of turkey bologna in order 

to examine the temperature distribution of the oven on all sides of product that 

were not easy to obtain by any other method (Fig. 9C). An infrared digital 
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thermometer (Raytek, Raynger model ST80, Santa Cruz, CA) that could provide 

the average/minimum/maximum temperature of 8 infrared dots in a circular 

pattern was also used (Fig. 90). 

3.7. Microbiological analysis: 

After radiant heat and/or post-package pasteurization, the remaining 

inoculum bacteria were recovered by placing products into large sterile bags, into 

which were added 25-50 ml of BPW. The bags were then shaken and massaged 

for 5 mins to resuspend surviving bacteria into the rinse buffer. Recovery of the 

rinse buffer was followed by appropriate serial dilutions and was pour plated 

using TSA containing the antibiotics specified earlier. The plates were then 

incubated for 48 hrs at 300C. 

3.8. Experimental Design: 

Except for one study with frozen/thawed roast beef that was done in 

duplicate, all trials were performed in triplicate replications. Inoculated control 

samples and experimental sampl,es were run in pairs at each processing 

condition within a replicate. Different replications were done on separate days, 

with different lots of the same product, and with pairs of samples from the same 

lot at each test condition. Standard deviations were obtained for mUltiple 

samples in the various replications. Residence times were limi,ted to those of 

practical application to the various participating processors. 
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CHAPTER IV
 

RESULTS AND DISCUSSION
 

Post-processing contamination of RTE meats with L. monocytogenes has 

become a major concern to the value-added processed meat. industry and 

surface pasteurization is becoming an effective means in reducing risk from such 

products. Much of the work on "meat surface pasteurization" has been done in 

relation to carcass pasteurization (i.e., Frigoscandia, Inc.) that is intended to 

steam-pasteurize exposed raw beef carcass surfaces to reduce the incidence of 

E. coli 0157:H7 that would end up in trimmings and possibly, ground beef (Gill 

and Bryant, 1997). The Listeria problems currently encountered in the RTE 

processed meat industry are a combination of a) the presence of 

environmental/worker Listeria contamination, and b) a high degree of post­

process product exposure and handling that could possibly allow acquisition of 

incidental surface contamination (worker handling, removal of deli, product from 

cook-in bags, exposed product on trays/carts wheeled into smoke houses, etc). 

Jn order to provide a solution to this problem, we have been studying the 

application of surface pasteurization as a convenient and effective means of 

reducing incidental surface contamination on product surfaces immediately 

before (pre-packag:e) or after (post-package) final packaging. Post-package 

pasteurization (Muriana et ai, 2002) has already been implemented by several 

large meat processors and product that was processed and entered into 

commerce withstood a plant-wide recal due to L. monocytogenes. 
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In this study we examined pre-package surface pasteurization of RTE 

meats using a radiant heat oven alone (Fig. 9A, 9B), and in combination with 

post-package pasteurization (Muriana et aI., 2002), to reduce incidental L. 

monocytogenes contamination that could be acquired during post-process 

handling and packaging. 

We examined surface temperatures using "hardened" temperature probes 

with a turkey bologna product. By using paired placements of probes (Fig. 9C) 

on turkey bologna (top/offset-bottom, left/right side, front/rear face) we were able 

to examine the temperatures at the various surfaces to test for major 

discrepencies. The largest discrepency was observed between the upper and 

lower product surface temperatures (Fig. 10A) as a result of 'shielding' of the 

bottom of the product by the stainless steel mesh conveyor belt and was 

alleviated (Fig. 10B) by a design modification. In order to alleviate this condition, 

the manufacturer suggested making a rotational adjustment of the heating coils 

underlying the conveyor belt (Fig. 10C) to a closer proximity to the belt and the 

overlying product's bottom surface (Fig. 100). This modification resulted in a 

noticeable and significant improvement in the top and bottom heating profiles 

compared to what was observed previously. It should be noted that the 'bottom' 

probes were placed 'offcenter' and were not influenced by the temperature of the 

belt, which is a nominal 95-99°F (35-37°C) upon its return to the oven entrance 

since approximately 65-70% of the circuit of the circular belt is outside the oven; 

this is also observed with larger commercial, systems. 
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Although we used metal-tipped probes for surface measurements, we 

recognized that these could be susceptible to errors. If the probes were placed 

1-2 mm too deep (along the surface), they may be measuring more sub-surface 

temperature, and if placed too high, they may be influenced more by air 

temperature and therefore, extreme care was taken in their placements.. Our 

intention was to identify if gross temperature differences existed with different 

products of various shapes/sizes. We expected size differences would position 

the product closer to or farther from the upper heating coils which is a problem 

with any fixed-distance radiant oven. A hand-held infrared thermometer was also 

used that gave the average temperature from 8 infrared 'dots' projected onto the 

surface of a product (Fig. 9D). At first, this appeared as perhaps a better means 

of obtaining accurate surface temperature measurements. However, 

temperature values would change as either conveyor belt or hand movement 

would change the position of the dots and the exact points that were being 

measured. It is conceivable that a mounted ,infrared temperature sensor/monitor 

could provide continuous monitoring of product as it is exiting the oven to give 

continuous real-time alert if targeted surface temperatures are not achieved (Le., 

pointing at the product as it exits the oven perhaps through a hole in the exit 

housing in which the product crosses the path of the beam). Using the hand-held 

infrared monitor, we observed surface temperatures for ham in the ranges of 

138°-162°F (30 sec dwell time; 59°-72°C), 147°-189°F (45 sec; 64°-87°C), 154°­

209°F (60 sec; 68°-98°C), and 165°-215°F (75 sec; 74-102°C). Some cut meat 

surfaces (turkey bologna, roast beef half-rounds) showed somewhat lower 
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temperatures than other surfaces, either due to the cut flat side being offset from 

directly facing the heat source, or possibly due to cut sides also showing slight 

sweating (purge) during heating. Occasionally, surface temperatures as high as 

250°F (121°C) would be observed, but would quickly change to lower 

temperatures as the product moved. 

As with post-package pasteurization, care should be taken in developing 

microbial reduction/processing models based on surface temperatures without 

confirmatory inoculated studies. It is clear from various high surface temperature 

measurements we obtained that the accompanying microbial reduction was not 

in line with what would be expected by extrapolation from D-values for the 

inoculated pathogens (Muriana et aI., 2002). Unlike heating to a specific internal 

temperature for fully-cooked products where everything from the center-on­

outwards has reached the target temperature (or more), brief surface heating 

may not necessarily penetrate all the cuts, folds, and crevices that can be 

accessed by bacteria and therefore single-point, or even multi-point, temperature 

readings of the outermost surface may be of limited pract'ical application. 

In previous studies with post-package pasteurization, a fixed amount of 

inoculum was added to each of the products in vacuum packaging bags before 

being vacuum sealed (Muriana et aI., 2002). This method of inoculation had to 

be modified for use with surface inoculation of a non-packaged product and 

therefore we examined both a dip- and contact-inoculation method and 

contemplated the practical difference between the two methods after using them 

in several pasteurization trials. RTE deli ham and roast beef half-rounds were 
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surface pasteurized using both the dip and contact inoculation methods (F,ig. 11). 

The results showed that the contact inoculation method demonstrated 1-2 log10 

greater reduction than the extreme 'dip' inoculation method. During radiant heat 

surface pasteurization of hams inoculated with L. monocytogenes, we obtained a 

0.75-1.85 10glO reduction using the dip method and 2.7-3.9 log10 reduction with 

the contact inoculation method during processing between 45-75 sec (Fig. 11A). 

Similarly, with roast beef we achjeved a 1.5-2.2 log10 reduction (dip inoculation) 

compared to a 2.5-3.8-log10 reduction (contact inoculation) when processed for 

60-90 sec (Fig. 11 B). The differences between the two inoculation methods are 

reasonably assumed to be due to the aggressive infiltration of small cracks, 

crevices, and folds by the dip me,thod that protects some of the bacteria from the 

full heating regimen. 

From our results with radiant heat pasteurization, it appears that this 

process can reduce incidental contamination that may have been acquired 

upstream during post-process handling. We propose that this process could be 

most effective if placed just prior to final packaging for processes where currently 

no such microbial interventions exist. However, there could still be concerns for 

contamination during the final packaging, although this would be minimized if 

packaged immediately while product was still hot. With this in mind, we further 

examined a combined pre- and post-package pasteurization step which would 

gain the benefit of direct surface heating of pre-package pasteurization with the 

added benefit of further pasteurization after final packaging while the su.rface is 

still warm (with no further exposure due to handling). Using formed ham and 
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tur:key bologna, we obtained a 1.35- and a 1.53-log10 reduction of L. 

monocytogenes, respectively, using a 50-sec radiant heat surface pasteurization 

step with dip-inoculated product, our most aggressive inocuration method (Fig. 

12). When the pre-package pasteurized ham was followed with either a 60- or 

90-sec post-package pasteurization step at 200°F (93.3°C), we obtained a 

combined 3.17- or 3.91-10910 reduction. respectively (Fig. 12A). When turkey 

bologna was followed with either a 45- or 60-sec submersed water post-package 

pasteurization step, we obtained a 2.73- or 4.3-log10 reduction, respectively (Fig. 

12B). 

After examining both, the dip and contact inoculation methods, we feel 

that the contact inoculation method is more typical of how incidental 

contamination is acquired in plants (cross-contamination with contaminated food 

contact surfaces) and suggest this method is a more practical way to surface­

inoculate large non-packaged deli meat products. It is important to note that the 

contact inoculation method does not undercut the safety of process evaluation as 

the typical sponge-delivered 'contact inoculum' for our deli products inoculated 

circa -109 CFU of L. monocytogenes per product piece tested and all products 

were inoculated in this manner on several sides. There is no conceivable way 

that fully-cooked product could contact-acquire such high levels of Listeria as we 

have inoculated unless permissive growth conditions were allowed. 

In an additional roast beef study using only contact inoculation, we 

examined the effect of radiant heat surface pasteurization with whole- and half­

rounds of roast beef positioned in the oven with the cut side either facing forward 
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or to the side, and comparison of frozen/thawed roast beef product processed by 

radiant heat alone and in combination with post-package pasteurization (Fig. 13). 

Radiant heat pasteurization of fresh refrigerated roast beef, both whole and half­

rounds regardless of position, as well as whole logs of corned beef, gave similar 

levels of 2.15-2.45-log10 reduction (Figs. 13A & 138). However, radiant heat 

pasteurization of frozen and thawed roast beef provided lower levels of reduction 

(1.5-log10), presumably due to destruction of meat cells leading to increased 

'juiciness' of the roast beef after thawing (Fig. 138). When frozen/thawed roast 

beef was processed via short term post-package pasteurization (50 and gO sec), 

the effect of freeze/thaw together with the short processing time resulted in low 

levels of reduction for L. monocytogenes (Fig. 138). However, whether roast 

beef was fresh or frozen/thawed, the use of a combination short 50-sec radiant 

heat process followed by a 50- or gO-sec post-package pasteurization process 

(200°F) gave reduction levels exceeding 3 log10 cycles (Fig. 138) that would 

have required a 10-min process to achieve by post-package pasteurization alone 

(Muriana et aI., 2002). It should be noted that the combination process with fresh 

roast beef (50-sec radiant + 50-sec post-package) gave higher reductions than a 

slightly longer process (50-sec radiant + gO-sec post-package) using 

frozen/thawed roast beef (Fig. 138). The reduced time spent in the post­

package pasteurization phase of the combination process (50- or gO-sec) 

provided an additional benefit of generating little or no purge compared to what 

we observed in longer (4-, 5-, 8-, or 10-min) post-package pasteurization trials 

(Muriana et aI., 2002). These data demonstrate the effectiveness of a short­
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duration combined process to provide significant reduction levels and which 

provides additional processing after final packaging with no further handling of 

product. However, it should be c1ea.r that heat-treated product will need to be 

chilled using a brine chiller or blast cooler prior to boxing since the surface ~-in 

has been heated. 

We feel that radiant heat pre-package surface pasteurization, post­

package surface pasteurization (Muriana et at, 2002), or a combination of the 

two processes, can alleviate potential Listeria contamination on RTE deli meat 

surfaces with minimal effect on product quality. The benefit should be 

considered in respect to the potentiali for acquisition of contamination that often 

exists in plant environments where RTE products are manufactured and 

packaged, and in comparison with pre-existing processing lines that do not 

include additional intervention steps. The potential savings of such a process 

must be measured in lieu of recent large recalls (and worse, illnesses and 

deaths) that have been attributed to the manufacture and distribution of 

contaminated RTE products. The data provided herein demonstrates that new 

processing strategies and microbial interventions are currently available that can 

provide safe products for the benefit of consumers and processors alike.. 
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Figure 9. Radiant heat oven used in this study. Panel A, control box, conveyor belt, 
and radiant oven; Panel B, internal view of heating coils; Panel C, 
attachment of DataTraceTm hardened temperature probes to turkey bologna 
product; Panel D, Raytek ST8G hand-held infrared temperature monitor. 

61
 



Am III 
B1lD 

111) I~~)I-<>-Tq> 111) 

1«1 8) 140 III 

Em.. 
~ 
7O'IXI 

& 
E III.. 
I­

~ t13l 
! ! 

41)::> ::> 

~ ~'IXI.. .. 
Q. Q. 

E E lID..{!!. l­
2D 

[ 
! 

C)~ 
I! 
!. 
E.. 
I­

21 
III III 

Cl 
oo 

3ll---.-............--r---.-~"""T""--...-~-...---j
2l+---.----.----.--.-----..-----.--............-r~--j
 

o 10 21 Xl Cl ~ ED 111 III ~ 'III o 10 21 Xl Cl 9) ED 111 8J III 'IXI 

lm(.q 

Figure 10. Temperature profiles obtained from turkey bologna using temperature­
hardened DataTraceTm probes placed on top and bottom (offset from 
dead center) of product in relation to the positioning of the underlying 
heating elements. Panel A, temperature profiles when bottom heating 
elements were turned down and away from the conveyor belt, and Panel 
B, with bottom heating elements turned up toward the underside of the 
conveyor belt. Panel C. bottom heating elements directed downward, 
and Panel D, bottom heating elements positioned upward toward the 
conveyor belt. The radiant heat oven conditions were 60 sec residence 
time, temperature setting #4, and air temperature 475°F/246°C. 
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Figure 11. Radiant heat surface pasteurization of ham (Panel A) and roast beef 
(PanelS) inoculated by the dip or contact methods and processed at 
highest power setting for the time indicated. Each data point represents 
the mean of paired samples from triplicate replkations. Error bars 
represent standard deviations of the mean. 
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Figure 12. Radiant heat pre-package surface pasteurization of formed ham (Panel 
A) and turkey bologna (Panel 8), and in combination with post-package 
pasteurization. Pre-package pasteurization (PPP) was performed at 
temperature setting #5 (highest) for ham (750°F/399°C air temperature) 
or #4 for bologna (475°F/246°C), with a 60 sec residence time for both 
products. Post-package pasteurization was applied for either 60 or 90 
sec for ham, and 45 or 60 sec for turkey bologna at 200°F (93.3°C). 
Products were inoculated by the 'dip' method. 
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Figure 13. Radiant heat pre-package pasteurization of roast beef and in combination with 
post-package pasteurization. Panel A : radiant heat surface pasteurization of 
roast beef top rounds (whole round ; 13-16 Ibs). half-rounds with cut-side 
placed facing tunnel exit ("A"; 6.5-8 Ibs), half-rounds placed with cut-side 
facing to the side ("B"; 6.5-8 l'bs), and corned beef logs (whole, 25-27 Ibs). 
Panel B : radiant heat surface pasteurization alone, submersed water post­
package. pasteurization alone, and combination of pre- and post-package 
surface pasteurization of roast beef half-rounds. Treatments are as indicated 
on the figure. The entire Panel A and the first two bars of Panel B represent 
fresh, refrigerated product; the remainder of samples in Panel B represent 
product that was frozen and then thawed for testing. All samples were 
inoculated by the 'contact' inoculation method. 
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CHAPTER V 

CONCLUSION 

Post-processing contamination of RTE deli meats with L. monocytogenes has 

become a major concern to health authorities and food processing industries. 

Several current approaches described earlier have been suggested to reduce 

the levels of microbial contamination of meat and poultry products during 

processing. These require either relatively long treatment times with only 

minimal reduction in bacterial load or are ineffective for products with irregular 

surfaces. Our objective was to examine radiant surface heating (pre-package 

pasteurization), submersion water heating (post-package pasteurization) and a 

combination of pre-/post-package pasteurization as a means of reducing 

incidental surface contamination of L. monocytogenes on RTE meats (turkey 

bologna, deli roast beef, ham and deli turkey). Using radiant heat pre-package 

sU'rface pasteurization, we were able to achieve a 1-3.5 log10 reduction with a 

0.75-2 min process time at 450-750oF air temperature. Similarly for either a 2- or 

3 min post-package pasteurization process we obtained 1.75-2.9 or 2.2-3.6 log10 

reduction. However, a combination of pre- (1 min) and post-package (1 or 1.5 

min) pasteurization provided 3-4 log10 reduction of L. monocytogenes with 

minimal effects on product quality and appearance. Contact-inoculation provided 

-2 log10 greater reduction than the more extreme dip-inoculation method. 

These findings demonstrate that pre-package pasteurization either alone or in 

combination with post-package pasteurization provides an effective tool in 

controlling L. monocytogenes surface contamination that may have acquired 
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during post-processing handling and packaging. Pre-and post-package 

pasteurization are currently being used by large and medium sized meat 

processors and application of pre-and post-package pasteurization lethality 

steps can help establish a lower "risk category" for high risk products. The 

processes also help to reduce the FSIS sampling program in accordance with 

alternative 1 or alternative 2 of the recent "contro~ of L. monocytogenes in RTE 

meat and poultry products; final rule" (USDA-FSIS, 2003) 
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PRE-AND POST-PACKAGE PASTEURIZATION OF DELI TURKEY
 

PRODUCTS FOR REDUCTION OF LISTERIA MONOCYTOGENES
 

INTRODUCTION 

L. monocytogenes is a significant foodborne pathogen and has been a 

public concern because of the numerous foodborne outbreaks and product 

recalls (Islam et aI., 2002). L. monocytogenes is fairly ubiquitous on raw meats 

and in processing environments, requiring increased vigilance in worker and 

sanitation [procedures. The organism likely gains access to processed meats 

during packaging/re-packaging process through food contact surfaces, worker 

handling, and possibly air contamination (Tompkin et aI., 2002). Deli turkey 

products have been involved with the largest deli turkey products in the U.S. 

history. Subsequently, another large listeriosis outbreak was epidemiologically 

linked to deli turkey products and was implicated in 29 cases of illness and 4 

deaths, resulting in the recall of 17 million Ibs of deli turkey products (CDC, 

2000). Currently, a large foodborne outbreak of listeriosis of unknown food origin 

occurred in the Northeast, suspected of involving- deli turkey, has resulted in 13 

deaths and 43 illnesses. Isolates of L. monocytogenes from the deceased 

victims shared the same fingerprint pattern as that found among a non­

foodcontact surface environment of one processor, resulting in a large recall of 

deli turkey products (28 million pounds) (USDA-FSIS, 2002). In response to the 

continuing detection and isolation of L. monocytogenes in RTE products and 

processing facilities, the USDA-FSIS has proposed more stringent testing 
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standards for facilities that make such products and has issued a zero-tolerance 

for L. monocytogenes in RTE foods based on the concept of adulterant and 

added agent (Shank et aI., 1996). 

Our objective was to examine pre-package, post-package, and 

combination pre-/post-pack.age pasteurization of deli turkey products as a means 

of reducing possible L. monocytogenes surface contamination. 

MATERIALS AND METHODS 

Product samples: 

Four different types of deli turkey products (oven roasted, peppered, 

naturally browned (skin-on) and oil browned) were provided by different 

processors for conducting the research. The product was stored at refrigeration 

temperature and removed just prior to the experiment. 

Bacterial strains: 

A four-strain mixture of L. monocytogenes (Scott A-2, V7-2, 39-2 and 383­

2 similar to that used in the earlier study was used. The bacterial strains were 

inoculated by transferring 100 MI of thawed frozen culture into 10ml of Brain Heart 

Infusion (BHI) broth and incubated overnight at 30°C for use with contact 

inoculation the next day. These overnight cultures were mixed in equal 

proportions and the mixture was surface plated (100 MI) onto Tryptic Soy Agar 

(TSA) and held overnight at 30°C. 
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Product inoculation: 

The products provided by the processors were removed from their 

packaging wrap and were inoculated by the contact inoculation method (Fig. 14). 

The process involves the use of sponge-foam padding material cut to the shape 

of a petri plate, sterilized and used to pick-up the mixed-strain inoculum lawn 

from inoculated petri plates after overnight incubation on agar plates using half­

twist motion. The inoculum was then 'contact inoculated' onto the surface of the 

product using the same half-twist motion and the product was subjected to pre­

package radiant heating. 

Pre-package pasteurization: 

Pre-package radiant heating was employed using a radiant heat oven 

(similar to earlier study). Inoculated products were passed through the radiant 

heat oven (Fig. 9) for either 60 or 75 sec at full (#5 dial setting) as desired by the 

processors. After passing: through the oven, product samples were transferred 

into a sterile bag, chilled in an ice-water slurry and rinsed with 50 ml sterile 

diluent (BPW) to recover cells for microbial analysis. Inoculated but un-heated 

samples served as control'. The procedure was repeated for all 4 types of turkey 

products. 

Post-package pasteurization: 

Post-package pasteurization was performed using a 50 gallon steam­

injected temperature-controlled water bath (Muriana et al.. 2002). The products 

were surface inoculated, vacuum packaged, and then post-package pasteurized 

for either 2.0, 3.0,4.0 or 5.0 min as desired by the processors. 
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Combination pre-and post-package pasteurization: 

A combination pasteurization process was examined by pre-package 

pasteurization treatment (1.0 min) of surface inoculated product followed by 

vacuum packaging and then post-package pasteurized by submersion heating 

for an additional 1.0 or 1.5 min at 200°F. The products were then cooled and 

then subjected to microbial analysis. 

Product temperature measurement: 

We used an infrared digital thermometer to measure the temperature on 

the surface of the product (similar to earlier study). Another temperature 

measuring device we tested that may have application in the future was a 

thermographic imaging camera whose digital diagnostics provide for a 

temperature measurement from every computer pixel in a designated boxed area 

(Fig. 18). 

Microbial analysis: 

After the treatment the remaining inoculum bacteria was recovered by 

placing the product into sterile bags into which 25-50 ml of sterile diluent (BPW) 

was added. The rinse buffer obtained after shaking the bags was pour plated 

using appropriate serial dilutions using TSA and incubated at 30°C for 48 hrs. 

Experimental design: 

All the experimental trails were performed in triplicate replications and in pairs at 

each processing condition within a replicate. Error bars were used to represent 

standard deviation of the means of triplicate replications. 
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Statistical analysis:
 

Data were analyzed by ANOVA using the general linear models (GLM)
 

procedure of SAS Institute, Inc. (Steel and Torrie, 1960). Differences in mean
 

log10 CFU/g among treatments were analyzed by a paired comparison t-test
 

using SAS (version 8.2) at p< 0.05.
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RESULTS AND DISCUSSIONS 

Numerous outbreaks of foodborne illness and product recalls have been 

associated with RTE meat products due to L. monocytogenes post-processing 

contamination and there is an increasing need for post-processing hurdles to 

control L. monocytogenes in RTE meats (Islam et al., 2002). In addition to post­

package pasteurization of deli hams and roast beef (examined earUer) we also 

processed 4 different types of deli turkey products for either 60 or 75 sec. Using 

pre-pasteurization method (Fig. 15) we obtained a 2.0-3.25 10glO reduction for 60 

sec processing time and 2.8-3.75 log10 reduction with a 75 sec process. This 

level of reduction establishes radiant heat surface pasteurization as a post­

lethality step to reduce risk of L. monocytogenes. Extended delay in packaging 

may result in environmental exposure and possible re-contamination of the 

product, thereby reducing the benefits obtained by pre-package pasteurization. 

Post-package pasteurization has the benefit that since the product is packaged, 

there is no chance for re-contamination. However, the presence of the 

packaging film acts as a barrier preventing quick surface heating as occurs with 

radiant heating. Using post-package pasteurization (Fig. 16) we obtained 1.95­

2.81 log10 reduction, 2.01-3.02 log10 reduction, 2.51-2.94 log10 reduction and 2.82 

10glO reduction for a processing time of 2.0, 3.0, 4.0 and 5.0 min respectively. 

The extent of reduction varied depending upon the type of product with oil 

browned giving the maximum reduction at all different processing times. Surface 

coloration may play a role in absorbing heat more/less than other types of 

products (Le. oil browned product). 
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In order to overcome the limitations of each processes we examined pre­

package pasteurization followed by post-package pasteurization while the 

product surface is still warm (by radiant heating). When pre-package 

pasteurization (1 min) of oven-roasted turkey was followed by either a 1.0 min or 

1.5 min post-package pasteurization step at 200°F (93.3°C), we obtained a 

combined 3.14 log10 reduction or 3.76 log10 reduction respectively (Fig. 17). 

Thus combined process not only reduces the amount of processing time required 

for post-package pasteurization but also reduces the amount of purge. The 

potential savings of such a process must be measured in lieu of recent recalls, 

diseases and outbreaks attributed to the manufacturer and distributors for the 

distribution of contaminated products. This provides a new processing strategy 

and microbial interventions that can provide safe products to both consumers 

and processors. 

Thermographic imaging of a deli turkey breast product (Fig. 18A-B) in 

'minimum temperature' mode (within the boxed area) indicated that the lowest 

temperature in the designated surface area was 25.6°F (-3.6°C). Similarly, 

during processing, we demonstrated minimum temperatures (within the box) at 

several positIons within, and upon exit, of the radiant heat oven (Fig. 18C-D). 

When a process such as this is dependent upon surface pasteurization that is not 

intended to "re-cook' the product, then any surface areas that have not reached 

thermicidal levels could be weak links in the processing event. The use of such 

an imaging system could provide important feedback to modulate the residence 

time itself if combined with computer control of belt speed or a reprocessing (i.e., 
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rejection) mechanism. It is conceivable that the computerized control of 

temperature sensing by this method could be used for continuous monitoring of 

processed product whereby those sample pieces that fall below a specific 

surface minimum temperature (that have already been correlated to internal 

temperatures). would be removed from the line for possible rework or 

reprocessing. 
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f:"igure 14.	 Surface 'contact inoculation' using sterile round sponge padding 
material. Panel A, taking up inoculum from petri plates. Panels B 
and C, inoculum is applied to RTE deli meat products by a twist 
motion upon contact. 
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Figure 15.	 Pre-package surface pasteurization of four types of deli turkey 
(oven roasted, pepper seasoned, natural,ly-browned/skin-on, and 
oil browned) using a radiant heat oven. Oven dwell time was either 
60 or 75 seconds as indicated. Error bars represent +/- standard 
deviation of the means of triplicate replication. Significant 
differences of treatment times for a given product were determined 
using a paired t-tes1. Bars within a specific product with different 
letters (a, b) are significantly different (p< 0.05) 
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Post-Package Pasteurization 
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Post-package surface pasteurization of four types of deli turkey (oven 
roasted, pepper seasoned, naturally-browned/skin-on, and oil 
browned) using submersion heating in steam-injected water (200°F). 
Panel A, post-package pasteurization for 2 and 3 mlPutes (product 
from manufacturer A); Panel B, post-package pasteurization for 3, 4, 
or 5 min (product from manufacturer B). Error bars represent +1­
standard deviation of the means of trip.licate replications. Significant 
differences of treatment times for a given product were determined 
using a paired t-test. Bars within a specific product with different 
letters (a, b) are significantly different (p< 0.05) 
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Figure 17. Combination pre- and post-package pasteurization of oven-roasted 
turkey. Contact-inoculated deli turkey was pre-package pasteurized 
for 1 min, vacuum-packaged, and post-package pasteurized for an 
additional 1.0 or 1.5 min at 200°F. Significant differences of 
treatment times for the same process were determined using a 
paired t-test. Bars within a specific product with different letters (a, 
b) are significantly different (p< 0.05) 
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Figure 18. Thermographic imaging of a deli turkey breast. Naturally-browned 
(skin-on) deli turkey (panel a) examined by thermal imaging before 
(panel b), during (panel c), and after (panel d) pre-package 
pasteurization through a radiant heat oven. 
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EXTENDED SHELF-LIFE STUDY OF ROAST BEEF (half-rounds) AFTER 
SURFACE PASTEURIZATION USING INFRARED GRILL 

INTRODUCTION 

Food contamination creates enormous social and economic burdens on 

countries and their health systems. A survey conducted by Center for Science in 

the Public Interest (CSPI) revealed that contaminated food causes upto 76million 

illnesses, 325,000 hospitalizations and 5000 deaths every year in U.S. alone. As 

a result, governmental institutions and food industries must control the 

contamination of raw and finished products (Dewaal, 2003). Recontamination of 

precooked meat products is a potential source of foodbome illnesses. 

The research conducted in the previous chapters involves the use of 

pathogens to validate the application of pre- and post-package pasteurization to 

reduce L. monocytogenes in RTE meats. The purpose of this study is to 

examine the efficacy of the pre-package pasteurization (using IR grill oven) in 

extending the shelf-life of RTE roast beef and facilitate our earlier studies. 

MATERIALS AND METHODS 

Product samples: 

The beef samples were provided by a commercial beef processor and 

were stored at 3°C upon receipt and removed from refrigerated storage Just prior 

to treatment. The treated products were stored at 3°C for O. 15, 3D, 45, 60 and 

75, 90 days and were maintained at this temperature until analysis. 
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Pre-package pasteurization: 

The radiant heat oven used in the earlier study was used to provide 

surface pasteurization of RTE roast beef.. The product was passed through the 

radiant heat grill for 1min at full heat (#5 dial setting). After passage, the samples 

were transferred into a sterile bag, vacuum packaged and shrinked for 5sec 

(using hot waterbath at 195°G}. The packed product was then chilled before 

storage at refrigeration temperature, to facilitate shelf-life study. The product 

temperature was measured using an infrared digital thermometer. Products that 

served as controls were opened repackaged and shrink wrapped, cooled untill 

microbial analysis. 

Microbial analysis: 

The "0" day sampl1es (both heated and unheated control) were analyzed 

by rinsing with 50ml of sterile diluent (0.1 % BPW) and the rinse was recovered 

for total plate count. This was followed by appropriate serial dilutions and was 

pour plated using Plate Count Agar (PCA) followed by incubation at 30°C for 

48hrs. 

Experimental design: 

Trials were performed in triplicate and samples were run in pairs for both 

control and surface pasteurized treatment within a repl,icate. Standard deviation 

was obtained for the triplicate replications for means of sample pairs. 
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Statistical analysis:� 

Data were analyzed by ANOVA using the general linear models (GLM)� 

procedure of SAS Institute, Inc. (Steel and Tome, 1960). When a significant F­�

statistics was noted, treatment means were separated by the Tukey's multiple� 

range test (Steel and Torrie, 1960).� 
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RESULTS AND DISCUSSIONS� 

In general, nitrites are used to extend shelf-life and provide microbial 

safety. Concerns about nitrosamine formation have lead to concentration on 

alternate techniques to maintain shelf-life of meats (Maca et aI., 1999). Surface 

pasteurization of meats is becoming an effective means of reducing post­

processing contamination of RTE meats. Such a treatment not only reduces the 

risk of contamination with pathogens but also aids in longer storage period. 

In this study we examined the shelf-life of pre-package pasteurized roast 

beef stored at refrigeration temperature for 0, 15, 30, 45, 60, 75 and 90 days. 

The results (Fig.19) indicate that using pre-package pasteurization we were able 

to extend the shelf-life of the product for 90 days. The total plate count for the 

treated samples remained acceptable until 90 days, and was only slightly higher 

than the "0" day count. As the storage time increased from 60 to 90 days the 

total plate count for the treated samples started decreasing, which can be due to 

excess inhibitory substances (acids) produced by the residing microbes. The 

total plate count for the control increased with increased storage time and was 

atleast 2.5 log10 cycles higher than that of treated samples. This trend was 

observed from day 15 to day 60. The total plate count for the control decreased 

from day 60 to day 75 and then again increased from day 75 to day 90 (can be 

due to growth of other organisms growing at the storage temperature). Therefore 

this study validates the application of radiant heat pasteurization to extend the 

shelf-life of refrigerated meats. We propose this method as an effective process 
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to reduce incidental contamination acquired during post-processing handling, 

thus providing processor and consumer satisfaction. 
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Shelf-Life Study on IR Grill-Treated Roast Beef 
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Figure 19. Shelf-Life Study of IR Grill-Treated Roast Beef. Non-heated control (upper 
curve) was sampled for total plate count at 0, 15, 30, 45, 60, 75, and 90 
days. Radiant heat surface pasteurized roast beef (lower curve) was 
sampled after the same shelf-life period. Error bars represent +/- standard 
deviation of the means of triplicate replications. Significant differences 
between consecutive sampling data within ,a treatment were determined 
using ANOVA (GLM, Tukey's method of mUltiple comparisons). Data with 
the same letter designation are not significantly different (p<0.05) 
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