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Abstract 
 

Planar or Cylindrical Phased Arrays are two candidate antennas for the future 

polarimetric weather radar. These two candidate antennas have distinctly different 

attributes when used to make quantitative measurements of the polarimetric properties 

of precipitation. Of critical concern is meeting required polarimetric performance for all 

directions of the electronically-steered beam. The copolar and cross-polar radiation 

patterns and polarimetric parameter estimation performances of these two phased array 

antennas are studied and compared with that obtained using a dual polarized parabolic 

reflector antenna. 

 

Planar Polarimetric Phased Array Radar (i.e., PPPAR) creates biases in observed 

polarimetric parameters when the beam is pointed off broadside. The biases of 

polarimetric parameters with a PPPAR are presented, and it is unacceptably large. Thus, 

a bias correction matrix needs to be applied for each beam direction. A bias correction 

matrix is developed for array elements consisting of either dipole, waveguide apertures 

or patches. Correction matrices are given for both the Alternate Transmission and 

Simultaneous Reception mode and the Simultaneous Transmission and Simultaneous 

Reception mode. The PPPAR, however, has significant deficiencies for polarimetric 

measurements, as well as other limitations, such as increases in beamwidth, decreases 

of sensitivity, and high geometrically projected cross polar fields when the beam scans 

off its broadside. The Cylindrical Polarimetric Phased Array Radar (i.e., CPPAR) is 

proposed to avoid these deficiencies. The CPPAR principle and potential performance 

are demonstrated through theoretical analysis and simulation. It is shown that the 



xi 

CPPAR has much lower geometrically induced cross-polar fields and less bias of 

polarimetric parameters than those of PPPAR. Array lattices, element separations, and 

error effects of CPPAR are examined. 



1 

Chapter 1 Introduction 

The USA’s network of singularly polarized (i.e., linear horizontal) weather radar 

(i.e. the WSR-88D) has been updated to simultaneously transmit and receive vertically 

(i.e., the electric field lies in the vertical plane) and horizontally polarized waves of 

equal intensity along the beam axis (i.e., boresight). Dual polarization can provide 

additional information to the single polarization radar (Bringi and Chandrasekar 2001; 

Doviak and Zrnić 2006, section 8.5.2). The additional measurement of differential 

reflectivity ZDR can provide previously unavailable information on precipitation particle 

size and shape. The additional measurement of specific differential propagation phase 

KDP can be used to correct for cumulative attenuation due to rain along the path. The 

additional measurement of the copolar correlation coefficient ρhv depends mainly on the 

variability in the ratio of vertical-to-horizontal size of individual hydrometeors, but it 

can also be affected by non-Rayleigh scattering. The ρhv is a good indicator of regions 

where there is a mixture of precipitation types, such as rain and snow. Quantitative 

precipitation estimation (QPE) is improved by dual polarization radar parameters.  By 

using the R-(Z, ZDR, KDP) relation, the accuracy of rainfall rate estimation was improved 

by 40% over the traditional R-Z relation (Brandes et al. 2002; Ryzhkov et al. 2005). 

Moreover, the dual polarization information is used to classify hydrometeors (e.g., rain, 

hail, snow, etc.; (Liu and Chandrasekar 2000; Vivekanandan et al. 1999; Zrnić et al. 

2001), and non-weather objects (e.g. ground clutter, insects, birds, etc.; (Park et al. 2009; 

Steiner and Smith 2002) by fuzzy logic techniques. Moreover, polarimetric radar can be 

used to retrieve the microphysical properties of cloud and precipitation (e.g., drop size 

distribution, particle size, particle shape, etc.; (Zhang et al. 2001)). Radar polarimetry 
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with dual H & V polarizations, with proven benefits of more accurate rainfall rate 

measurements and classification of weather radar echoes, has recently been 

implemented on the national network of WSR-88D Doppler radars (Darcy 2012). 

 

Meanwhile, phased array radar technology has been successfully utilized in 

weather surveillance with the milestone of the nation's first phased array weather radar--

---the National Weather Radar Testbed (NWRT). Its potential in weather surveillance 

has been recognized by the meteorological and radar communities. The volume update 

time for surveillance by a four-faced PAR is less than one minute whereas the volume 

update time for the WSR-88D is 5 minutes (Zrnić et al. 2007).  For severe weather 

applications, studies have shown that PAR can extend the severe weather warning lead 

time from 10 to 18-22 minutes, which should reduce loss-of-life and injuries 

(http://www.nssl.noaa.gov/research/radar/par.php). Furthermore, PAR has the capability 

to quickly re-scan areas with the most severe weather; therefore, it could further 

increase the warning lead time. The Multi-mission Phased Array Radar (MPAR) 

concept was introduced by Weber et al. (2007). A Multi-mission Phased Array Radar 

(MPAR) is being considered as a future replacement to simultaneously serve the 

functions of weather and aircraft surveillance at a significant lifetime cost savings while 

providing significant improvement in weather surveillance performance. For example, a 

four-faced planar PAR antenna with electronic beam steering allows simultaneous 

transmissions to and receptions of echoes from four sectors, and time multiplexing of 

radar assets allows multi-mission surveillance of aircraft and weather (Zrnić et al. 

2013). Time multiplexing missions preserves the required update time needed to track 

http://www.nssl.noaa.gov/research/radar/par.php
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aircraft while scanning, and potentially provides faster update rates of hazardous 

weather. Moreover, more rapid volumetric scans can improve forecasts of a storm’s 

evolution based on numerical weather prediction (NWP) models, and thus warnings can 

be based on forecasts, rather than on detection of the hazard itself (Dawson II et al. 

2012; Yussouf et al. 2013). Furthermore, an MPAR could reduce the total number of 

radar sites because one radar network could be used for surveillance of both weather 

and aircraft (Weadon et al. 2009; Weber et al. 2007; Zrnić et al. 2007), and thus there is 

a potential to reduce the usage of spectrum space (Zrnić et al. 2012). Because of these 

advantages, a PAR is expected eventually to replace the mechanically steered beams of 

radars using parabolic reflector antennas.  

 

If an MPAR is to be used for weather observations, the weather community 

expects to have not only the adaptive and rapid scan capability of a PAR, but all of the 

present capabilities of the polarimetric WSR-88D (Smith et al. 2008; Zrnić et al. 2007). 

It is the polarimetric capability that the 2
nd

 MPAR Symposium 

(http://www.ofcm.noaa.gov/mpar-symposium, 17-19 November, 2009, Norman, OK) 

identified as the most challenging technical issue for the future Polarimetric Phased 

Array Radar (PPAR). It would be ideal for the PPAR to have, as does the WSR-88D for 

any beam direction, the vertically polarized wave field θE  only (i.e., copolar θE  and no 

cross-polar E ) transmitted if the V port of the antenna is excited, and horizontally 

polarized wave field E  only (i.e., copolar E  and no cross-polar θE ) transmitted if the 

H antenna port is excited. This ideal condition is practically achieved along boresight 

with the parabolic reflector of the WSR-88D. This ideal condition of the polarization 

http://www.ofcm.noaa.gov/mpar-symposium
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orthogonality is theoretically also achieved for Planar PPAR (PPPAR) only if the array 

element is a pair of ideal collinear magnetic and electric dipoles (Crain and Staiman 

2007; Zrnić et al. 2012).   

 

But if the PPPAR has common H and V array elements, as do most PPPARs, 

this ideal property is not attained and the wanted copolar and unwanted cross-polar 

fields are transmitted along boresight (Zhang et al. 2009). That is, if the beam is 

electronically steered away from the cardinal planes, cross-polar beams coaxial with the 

copolar beam are formed, as shown in Chapter 2 and Chapter 3. Cross-polar beams 

coaxial with the copolar beams can create large biases, as noted by Zrnić et al. (2010). 

This unwanted or geometrically induced cross-polar field cannot be ignored if it 

significantly biases estimates of polarimetric parameters (e.g., ZDR bias needs to be less 

than 0.1 dB; (FAA 2013)). 

 

For PPPAR, corrections for each beam direction are needed to suppress biases, 

especially those large biases created when the beam is steered away from the principal 

planes of the array, to provide accurate quantitative measurement of the polarimetric 

properties of precipitation. Urkowitz (2006) first noted corrections can be made in the 

receiver and suggested that the corrections determined from calibrations be applied to 

the receiving signals during weather data collection. Zhang et al. (2009) theoretically 

derived the biases of polarimetric parameters assuming crossed dipoles as an array 

element and showed the biases are larger than those specified for acceptable 

polarimetric parameter estimates. In Zhang et al.’s article, correction is provided either 
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to a scattering matrix or to radar variables by jointly solving the polarimetric parameters 

ZDR and ρhv. These corrections apply to beams of infinitesimal width for which only the 

cross-polar fields along the boresight are considered in bias calculation. Lei et al. (2013) 

developed bias corrections for a PPPAR consisting of an array of idealized aperture and 

patch elements, and again cross-polar fields only along the boresight are considered.  

Staiman (2009) applied the Zhang et al.’s PPAR bias correction to differential 

reflectivity. The engineering demonstration of bias correction has been done by Fulton 

and Chappell (2010), in which the polarization correction is applied to eight 10-cm 

wavelength dual-polarized elements of a phased array to form an active Digital Array 

Radar (Darcy 2012) prototype system. Sikina and Trott (2010) examined the issue in 

terms of a unit radiating cell. Zrnić et al. (2011) showed the need to decouple the effects 

of Doppler velocity from polarimetric parameters in the bias correction when the ATSR 

mode of data collection is used.  Doviak et al. (2011) used the NWRT to experimentally 

verify the theoretically deduced cross-polar fields generated by beams electronically 

steered away from the cardinal planes.  

 

A Cylindrical PPAR (CPPAR)  is proposed to considerably reduce the cross-

polar radiation that is the source of bias in the measurement of polarimetric parameters 

(Zhang et al. 2011). CPPAR has the characteristics of polarization purity and scan 

invariant beam. The horizontal and vertical polarized wave fields will be orthogonal in 

all beam directions. The CPPAR would essentially eliminate the beam-to-beam 

calibration that is required for a PPPAR. In azimuth, the mainlobe is always at 

broadside, and scan is achieved by shifting the column of active elements. The 
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characteristics and polarimetric parameters of CPPAR will be discussed in detail in 

Chapter 4. 

 

As mentioned above, theoretical bias corrections of polarimetric parameters to 

be measured with an array of crossed dipole elements has been studied (Zhang et al. 

2009). However, more practical radiation elements need to be considered. For example, 

the first 10 cm-band weather PAR, the NWRT, uses waveguide apertures as the 

radiating elements, but it only transmits vertically polarized waves. Rapid-DOW 

(Doppler on Wheels) and TRMM (Tropical Rainfall Measuring Mission)/GPM (Global 

Precipitation Measurement)’s PR (Precipitation Radar)/DPR (Dual-frequency 

Precipitation Radar) also use aperture antenna elements (Wurman and Randall 2001). 

Although the patch element is widely used in communications, it is still new for 

weather PAR. In this dissertation, bias correction for aperture and patch antenna 

elements of a PPAR is studied, and the similarity and differences of the biases between 

these radiation elements and dipoles is discussed. The theoretical patch using the cavity 

model (Lei et al. 2013) and more realistic patches for which radiation patterns are 

calculated by a full wave analyzer (e.g. HFSS) are considered and compared.  

 

Zrnić et al. (2010) and Galletti and Zrnić (2011) examined cross-polar fields of a 

reflector antenna and assumed that copolar and cross-polar fields can be modeled by 

Gaussian shaped beams in which the cross-polar field over the entire angular space are 

used to obtain the ZDR, 
DP ,  and copolar correlation coefficient, hv , biases. Herein we 

also calculate biases of polarimetric parameter estimates (i.e., differential reflectivity 
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ZDR，the magnitude of copolar correlation coefficient,
hv  and differential phase dp ) 

obtained with PPPAR and CPPAR over the entire angular space. and compare these 

biases to those incurred if an ideal center-fed parabolic reflector is used, one having  the 

size, shape of the WSR-88D, but not the narrow ridges of sidelobes due to the three feed 

support structures; such sidelobes are absent in the radiation from PPARs and parabolic 

reflectors having offset feeds (Bringi et al. 2011). Henceforth we refer to this ideal 

WSR-88D simply as the WSR-88D, having a diameter D of 8.54m and an f/D = 0.375 (f 

is the focal length). Results are calculated for operation at a wavelength of 11.09 cm 

used by KOUN, NSSL’s R&D WSR-88D, so theoretical radiation patterns can be 

compared with measurements. All three antennas are assumed to have identical aperture 

distributions. An objective of this dissertation is to determine angular scan limits on 

CPPAR and PPPAR to make polarimetric measurements with acceptable bias without 

beam to beam calibration while preserving the performance standards of the WSR-88D.  

 

The differences of the WSR-88D, PPPAR and CPPAR copolar and cross-polar 

radiation patterns are discussed in Chapter 2 and general formulas of polarimetric 

parameters are derived. In Chapter 3, polarimetric parameters bias and corrections of 

PPPAR are discussed. The biases given in Chapter 3 are also compared with the results 

given by Zhang et al. (2009), as well as with those biases presented by Zrnić et al. 

(2010) and Galletti and Zrnić (2011) for an ideal center-fed parabolic reflector antenna. 

In Chapter 4, CPPAR characteristics and bias corrections are discussed. Biases are 

recalculated if partial corrections are applied, as suggested by Zrnić et al. (2010), to 

account for differential changes of H and V copolar gains of the array element’s 
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radiation patterns as the beam is scanned. In Chapter 5, we study the multi-faced 

cylindrical array and find the design trade-offs. And we present multi-phased cylindrical 

array’s polarimetric radar parameter biases. Conclusions and discussions are provided 

in Chapter 6. 
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Chapter 2 Comparisons of the WSR-88D, PPPAR, and CPPAR 

radiation patterns 

2.1 Description of the antennas 

The WSR-88D radar has a parabolic reflector antenna with a diameter of 8.54m 

(Figure 2-2a) and a copolar beamwidth of about 1°. If the planar array is to provide 

angular resolution at least as good as that of the WSR-88D for all pointing directions, 

each beam of the four-beam planar array (Figure 2-2b; only one beam is shown) 

requires an array having an elliptical shape with a 8.54/cos(45°) meter horizontal length 

2Ry and a 8.54 meter vertical length 2Rz (i.e. azimuthal beamwidth needs to be 1° at the 

largest azimuth electronic scan angle of 45°, and sidelobes at further angles beyond 10° 

need to be below -50 dB). There is a small loss of angular resolution as elevation angle 

increases, but the increased beamwidth compensates for the gaps that presently exist in 

elevation coverage of the WSR-88D volume scans. Each face of the PPAR 

electronically steers the beam o45 in azimuth and at least 0
o
 to 20

o
 in elevation over 

which quantitative estimates of weather should nearly match or exceed that of the 

WSR-88D. 

 

A four-sector CPPAR has a 8.54/cos(45°) meter diameter and a 8.54m vertical 

dimension (Figure 2-2c). Each 90
o
 sector of the CPPAR generates one of four beams 

(one is shown) which are always azimuthally separated by 90
o
 as the beams are 

synchronously steered in azimuth by commutating the aperture distributions column by 

column. The vertical beamwidth of the PPPAR and CPPAR increases slightly—6%—

with elevation angles between 0 and 20
o
; it is assumed this increase in beam width with 
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elevation angle is acceptable for all MPAR functions, and estimates of H and V 

reflectivities.  

 

Given the distribution of the electric field across the aperture of the WSR-88D’s 

parabolic reflector, and given the far field of the array element and the weight applied to 

each of the elements to approximately match the radiation pattern of the WSR-88D, the 

theoretical far field radiation patterns can be computed for each of the radars and 

compared with available experimental results.   

 

Figure 2-1 A spherical coordinate system with a vertical polar axis is used to plot 

radiation patterns; variables used in this dissertation are also defined. 
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Figure 2-2 (a) the WSR-88D center fed parabolic reflector, (b) a four-faced planar 

array, and (c) a four-sector cylindrical array. Single-sided bold arrows indicate beam 

direction. 

 

2.2 Aperture distribution and element weightings 

The WSR-88D feed horn’s E field is nearly axial symmetric, and the normalized 

amplitude electric field across the aperture is well approximated by   

 2

o1 ( / )
( )

1

a

b
W

b

 


   


 

 (2-1) 

where 
o = 4.77 m, a =3, and b = 0.16 (Doviak et al. 1998). This aperture distribution 

was computed for KOUN, a prototype dual-polarimetric WSR-88D, which used a dual 

port circular feed horn having predominately a TE11 electric field distribution across its 

aperture—this aperture field suppresses much of the cross-polar field generated by the 

reflector (Appendix A and Fradin 1961,section 8). 

 

2.2.1 PPPAR 

To mimic the aperture distribution of the WSR-88D (Doviak et al. 1998), the 

amplitude weights wmn applied to the mn
th

 element of the PPPAR are 
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  
  

(2-2) 

where 
ny  is the horizontal distance of the n

th
 column from the center of the elliptical 

array and 
mz  is the vertical distance of  the m

th
 row from the center of the elliptical 

array. Thus PPPAR projected aperture distribution matches that of the WSR-88D only 

for the beam at 
o = 90

o
, 

o = 45
o
. Thus the PPPAR has higher azimuth resolution 

everywhere else in the domain of interest, but a slightly lower elevation resolution for 

beam elevations less than about 20
o
.  

 

Electronically scanning arrays are presented with the problem where there are 

changes in the H and V gains as the beam scans (Zhang et al. 2009). These gain changes 

contribute to biases in reflectivity factor Z, as well as differential reflectivity, ZDR, 

because gain changes are not necessarily equal and depend on beam direction. These 

contributions to bias in polarimetric parameter estimates can be partially eliminated by 

adjusting the excitation of the H and/or V ports to equalize the received copolar H and 

V voltages for each beam direction—these adjustments are presented in Chapter 3 and 4. 

  

2.2.2 CPPAR: 

The weights wmn  applied to the elements of the CPPAR are (Zhang et al. 2011): 

 2 2 2

2

sin ( )
1 4

1

a

o n m

mn

R z
b

D
w

b

     
   

   


 

(2-3) 
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where R = 6 m is the radius of the cylinder, 
mz  is the vertical distance of m

th
 row from 

the center  of the cylinder, D  = 8.54 m is axial length of the cylindrical array, and the 

CPPAR beam is pointed in the (
o ,

o ) direction. 
n is the azimuth angle of the n

th 
 

column relative to the azimuth 
0 of the beam (Figure 2-2c). As with the PPPAR, to 

match the aperture distribution of the WSR-88D, a  = 3 and b  = 0.16. The match is 

approximate because we have not compensated weighting for the change of the density 

of elements projected onto the vertical plane perpendicular to the broadside direction, 

nor have we compensated for the change in element gain as the n
th

 column of elements 

is at increasing angular distance from the broadside direction—herein called element 

rotation compensation. Nevertheless, as we shall see, the radiation patterns of the 

CPPAR are reasonably matched to those of the WSR-88D. 

 

2.3 The array elements 

As mensioned in the introduction, dipole antennas have been studied by Zhang 

et al. (2009). And aperture antennas have been used in the NWRT, Rapid-DOW and 

TRMM/GPM’s PR/DPR. And patch antennas have been considered as the most 

competitive choise recently. Thus the dual-polarization radiation elements studied in 

this dissertation are aperture and patch antennas. For the aperture antenna, only the ideal 

model is considered. For the patch antenna, both the ideal patch using the cavity model 

and the full-wave simulated patch are considered. The spherical coordinate system is 

chosen with its polar axis vertical at the dual-polarized radiating element located at the 

origin, and the PPPAR array face is in the y, z plane (Figure 2-1). For simplicity, the 
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mutual couplings between the two antenna elements are all neglected. The mutual 

coupling will cause positive or negative bias to the radar parameters.   

 

2.3.1 Ideal Aperture 

The aperture antenna is an open ended waveguide. By using the field 

equivalence principle, the actual sources can be replaced by the equivalent electric and 

magnetic current sources. For the aperture on an infinite flat electric, only the magnetic 

current density has non-zero values on the aperture surface (Fig. 12.5 in Balanis 1997). 

The calculations of the far field radiation for the aperture antenna on an infinite electric 

conducting ground plane are shown in Appendix A.  

 

For a horizontally polarized rectangular aperture, the longer side lies along the z 

axis (Figure 2-3a). A TE10 mode is assumed to propagate inside the waveguide feeding 

the aperture. To simplify the problem we assume the aperture is surrounded by an 

infinite ground plane. The cofactor 
4

jkr

o

jke
abE

r



 is used to normalize the electric field 

radiating from a horizontally polarized aperture (Appendix A): 

 (h) (h)sin ( , )E f       (2-4) 

 

 (h) 0E    (2-5) 

where,  
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 (2-6) 

The superscript 
(h)

 denotes the radiated field is from the horizontally polarized aperture, 

and 0 02 /k    is the free space wave number. 

 

For the vertically polarized aperture, the longer side lies along the y axis (Figure 

2-3b). Similarly, a TE10 mode and infinite ground plane are assumed. In this case the 

cofactor  
4

jkr

o

jke
abE

r



 is used to normalize the radiated field which is (Appendix A): 

 (v) (v)cos sin ( , )E f       (2-7) 

 (v) (v)cos ( , )E f       (2-8) 

where,  

 2

0 0

(v)

22
0

0

cos( sin sin ) sin( cos )
2 2 2( , )

cossin sin
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k a k b

f
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 
  

 
 
  

  
   

   

 

 (2-9) 

Usually, if only the TE10 mode exists in the aperture, the length a  is between 0.5 λo and 

1.0 λo, and b  is less than a . In this paper, a typical size of aperture is assumed (i.e., a  

= 0.55λo, b  = 0.25λo). The layout of array of rectangular apertures could be an 

interlaced brick pattern of orthogonal rectangles. But to simplify the calculation, both 

the horizontally and vertically polarized apertures are assumed to be located at the 

origin.  
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Figure 2-3 Horizontally and vertically polarized apertures 

 

 

Figure 2-4 Copolar and cross-polar electric fields for horizontally and vertically 

polarized apertures in an infinite ground plane, a=0.55λo, b=0.25λo).  

 

The patterns of the electric field given by Eqns. (2-4) to (2-8) are plotted in 

Figure 2-4. The copolar and cross-polar patterns of horizontally polarized aperture are 
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shown in Figure 2-4a and c; and the copolar and cross-polar patterns of vertically 

polarized aperture are shown in Figure 2-4b and d.  Because the polarization definition 

commonly used by radar meteorologists is definition 2 in Fig.1 of Ludwig (1973), the 

pattern of the vertically polarized aperture is not simply the pattern of the horizontally 

polarized aperture rotated 90°
 
in y-z plane. In other words, radar meteorologists use a  

to represent the local H polarized field unit vector, and use -a  to represent the local V 

polarized field unit vector (Bringi and Chandrasekar 2001, chapter 3; Zhang et al. 2009) 

(Figure 3-1); whether the H field is the copolar or cross-polar field depends whether the 

aperture is illuminated with H or V polarized waves (likewise for the V field). The 

cross-polar pattern (Figure 2-4d) of the V polarized aperture is given by Eqn. (2-7), and 

it shows that the vertical polarized aperture has an electrical field in the local horizontal 

direction (i.e. a in Figure 3-1) for directions away from the principal planes. However 

for radar observations of precipitation, this coupling from V to H is unwanted because 

hydrometeors typically have a vertical axis of symmetry, and thus hydrometeor 

properties are more easily measured using uncoupled H and V waves (Doviak et al. 

1998, section III.1). Thus, this coupling needs to be accounted for and corrections need 

to be made to the observations in order to accurately characterize the type of 

precipitation and the measurement of its fall rate. In weather radars using mechanically 

steered parabolic reflectors (e.g., the WSR-88D), this coupling is typically negligible 

because the V and H are always aligned with the unit vectors a and a respectively.  
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2.3.2 Ideal patch element 

A microstrip patch antenna consists of an electrically conducting ground plane, a 

substrate, and an electrically conducting patch on top, forming an open-ended cavity. If 

the substrate thickness is much thinner than the free space wavelength and the patch and 

ground plane are perfectly conducting, the four sides of this open-ended cavity can be 

modeled as perfect magnetic walls. In other words, the radiation field of a patch element 

can be calculated by assuming that the space below the patch is a resonant cavity 

bounded on two sides by walls (i.e., the patch and the ground plane) that perfectly 

conduct electric currents and on the other four sides by walls that perfectly conduct 

magnetic currents. Although the four open sides of the cavity leak radiation, only the 

two sides (i.e. radiating slots) perpendicular to the E-plane accounts for most of the 

radiation. This pair of sides acts like a pair of phased array aperture antennas in a two 

element array. For a square patch considered herein (Figure 2-5), the patch width is 

equal to the patch length (i.e., W L ). By the equivalence principle, the equivalent 

sources of the square patch are magnetic current densities having the same direction and 

value on the two opposing sides separated by length L  of the patch (Fig. 14.16 in 

Balanis 1997). Because the electric field fringes at the open ends, there is an effective 

patch length ( eL ) separating the pair of magnetic current densities (i.e., Le is a little 

larger than the physical length L  (Eqn. (14.3) in Balanis 1997)). The difference between 

L  and eL  is a function of patch dimension, PC board thickness, and substrate 

permittivity. Although the cavity model approximates the actual fields of the patch, it 

has been shown that input admittance, resonant frequencies, and the copolar radiation 
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patterns of the model cavity compare well with measurements  (Balanis 1997, section 

14.2.2).  

 

For the square patch, the TM010 and TM001 modes (e.g. TM010 is horizontal 

polarization; TM001 is the vertical polarization) have the same resonant frequency. Both 

modes can be excited and coexist independently inside the patch. For small values of 

substrate thickness, the electric fields radiated from the horizontally polarized square 

patch are given by Eqn. (14-44) in Balanis (1997). In order to directly constitute the 

projection matrix in the next section, the cofactor  
0

0 02

2

jk r
V e k L

j
r



  is extracted out, so 

the normalized copolar electric field is:  

 ( ) (h)sin ( , )hE g       (2-10) 

and the cross-polar field is 

 ( ) 0hE   (2-11)   

where, 

 
0

(h) 0 e

0

sin( cos )
2( , ) cos( sin sin )

2
cos

2

k L
k L

g
k L


   



  

 (2-12) 

0V  is the voltage across the open edges of the patch and the fringing fields at the edges 

account for most of the radiation.  

  

Similarly, the cofactor 
0

0 02

2

jk r
V e k L

j
r



  is extracted out and normalized E fields 

of vertical polarized patch are calculated in Appendix A: 
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 ( ) (v)cos sin ( , )vE g         (2-13) 

 ( ) (v)cos ( , )vE g        (2-14) 

   

Where 
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 
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 

  

  (2-15) 

L  is the physical length of the square patch and is determined by the permittivity of the 

material in the cavity (typically / 3 / 2o oL   ). For an air substrate L  is / 2o ; for 

high permittivity substrates L  approaches / 3o . The value of eL  is assumed to be 

/ 0.95L , one commonly used in practice. Eqns. (2-10), (2-11), (2-13), and (2-14) are 

plotted in Figure 2-6 for one example of patch dimension (i.e. L  = 0.38λo and eL = 

0.40λo). The co- and cross-polarization patterns are not simple versions of one another 

simply rotated by 90
o
 when the patch excitation is rotated by 90

o
. This is because the 

coordinated system that defines the co-and cross-polar fields does not rotate (See 

definition 2 in Fig.1 of Ludwig (1973). 
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Figure 2-5 Dual-polarized ideal square patch.  

 

 

Figure 2-6 Co and cross electric fields of horizontally and vertically polarized ideal 

patches (physical length: L  = 0.38λo, effective length: eL = 0.40λo).  
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The four open sides of the cavity leak radiation, radiating slots account for most of the 

radiation. However, the other two sides, called non-radiating slots, also contribute to the 

radiated field. Radiation fields of non-radiating slots of vertically polarized patch are 

derived in chapter 14 in Balanis (1997). Radiation from the non-radiating slots of 

horizontally polarized patch can be found in Appendix A. A comparison of the radiation 

fields of an ideal patch (considering both radiating and non-radiating slots) and the full 

wave (HFSS) simulated patch is in Appendix D. They are almost the same, and the 

slight difference is due to the fact that higher order mode exists in full wave analysis 

while only the base mode is assumed to exist in the ideal patch. 

 

2.3.3 Full wave simulated patch 

The full wave simulated antenna elements considered in this dissertation is a 

single layered 0.321λ square probe-fed patch on a substrate with a permittivity of 2.2 

and a thickness of 0.0142 λ with a ground plane size 0.81λ (Figure 2-7a). The substrate 

size is as large as the ground plane. The probe feed location is 0.045λo to the center of 

the patch and the probe feed has an inside center conductor with radius of 0.0039 λo and 

outer conductor with radius of 0.0090 λo. The element separation is 0.5λo for both the 

PPPAR and CPPAR, and the mutual coupling between elements is neglected. Although 

the radiation patterns of a patch on a finite ground plane differ from those patterns of a 

patch on a conducting cylindrical or planar surface, and although mutual coupling will 

alter the radiation pattern of the patch embedded in the array, the methodology 

presented herein can use the embedded radiation pattern of patches mounted on realistic 

structures. 



23 

 

The HFSS (ANSYS) is used to compute the copolar and cross-polar radiation 

fields of the patch. . The H and V copolar and cross-polar patterns of the array are 

obtained by coherently adding the fields from each element of the array for both the 

CPPAR and PPPAR—an array factor could have been used for the PPPAR but not for 

the CPPAR (Josefsson and Persson 2006, chapter 2); thus realistic mainlobe and 

sidelobes are considered.  

 

It should be noted that the probe-fed excitation of the patch antenna element 

generates higher order standing wave modes, although of lesser intensity than the 

fundamental TM010 and TM001modes in the open-ended patch cavity (e.g. TM010 

generates copolar H fields; TM001 generates copolar V fields). These higher order modes 

cause slightly asymmetrical radiation patterns as seen in Figure 2-7  (e.g. the horizontal 

null line in Fig. 3e is at about θ = 96
o
, not the 90

o
 it would have if only the fundamental 

mode was present; This can result in the array null slight shifted a little angle due to the 

asymmetric of element pattern). This asymmetrical radiation patterns can also be found 

in Bhardwaj and Rahmat-Samii (2014). However, because the H port probe is symmetry 

about horizontal line, the cross-polar null in Figure 2-7d is at o90  . Mirror 

arrangement of the patches can eliminate asymmetry, which should result in a lower 

cross-polar field along the horizontal plane as seen in experiments (Perera et al. 2014) 

 

Figure 2-7b-e presents the patch’s radiation field. ( )pFvv is the copolar pattern of 

the V field ( E ) if the V port is energized and vice versa for ( )pFhh . ( )pFhv is the cross-
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polar H ( E ) pattern  if the V port is energized and vice versa for ( )pFvh
.  Both copolar 

and cross-pol patterns in this dissertation are normalized by the copolar peak ( Fvv ). 

 

Comparing patch patterns of the full wave simulation (Figure 2-7) with an ideal 

one defined by Lei et. al. (Fig.4 in Lei et al. 2013), ( )pFvh
 (Figure 2-7d) is not zero as it is 

for the ideal patch. ( )pFvh  is due to the so-called non-radiating slots (Balanis 1997, 

chapter 14).  But for the cross-polar field ( )pFhv  (Fig. 3e) both radiating and “non-

radiating” slots contribute to cross-polar E ; the radiating slots cause the geometrically 

induced cross-polar field. The ideal patch patterns considering both the radiating slots 

and non-radiating slots agree very well with the HFSS simulated patch patterns 

(Appendix D). It should also be noted the copolar phases of realistic patterns are not 

necessarily equal and zero as assumed by Zrnić et al. (2010) and the phases can be a 

function of ,θ φ etc. as is seen in the phase plots not shown here. Thus in our 

computation of biases the amplitude and phases of the copolar and cross-polar patterns, 

which are dependent on beam direction, are included.  
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Figure 2-7 HFSS simulated patch element radiation patterns normalized by the Copolar 

peak. 

 

(a) 
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2.4 Theoretical radiation patterns of three polarimetric radars  

Patterns of radiation from the WSR-88D, PPPAR and CPPAR are shown in 

Figure 2-8, Figure 2-9, Figure 2-10, and Figure 2-11 respectively. The sizes of antennas 

are given in the previous section “2.1 Description of the antennas”. The antenna 

elements considered for arrays in this section—all the same for both the PPPAR and 

CPPAR—are the full wave simulated patch antennas discussed in this chapter. Tapers 

for arrays are given in the previous section “2.2 Aperture distribution and element 

weightings”. Antnena element separation chosen for both PPPAR and CPPAR is 0.5 

wavelengths. All patterns at broadside (can be slightly shifted at a small angle due to the 

asymmetric of element pattern) have type 2 cross-polar fields as defined by Zrnić et al. 

(2010)—a quad of 4 cross-polar peaks of alternating phase symmetrically located about 

the copolar beam. Only the PPPAR radiation pattern evolves into the type 1 cross-polar 

pattern (i.e., cross-polar radiation main lobe coaxial with the copolar beam) as the beam 

is steered away from the principal planes—it is the type 1 pattern that is the most 

effective in creating polarimetric parameter estimate bias.  

 

For these four figures, the beam pointing elevation angle 
eθ ( o

e 090θ θ  ) for 

all three antennas is chosen to be at 20° which is typically the highest elevation angle 

for weather radar, and the azimuth for all three beams is o = 45°. This limit of the 

scanned sector gives the condition for maximum bias and gain change. All patterns of 

radiation are presented using the coordinate system of Figure 2-1. Fvv, etc. are elements 

for the electric field radiation matrix F  defined by Zrnić et al. (2010). For the phased 

array, F  includes both element factor and array factor, but it does not include any 



27 

adjustments to the projection loss nor for the change in the density of elements 

projected onto the vertical reference plane perpendicular to the broadside direction of 

the CPPAR. That is, the aperture distribution of the CPPAR does not quite match that of 

the WSR-88D.  Fvv
is the copolar pattern of E  if the V port is energized and vice versa 

for Fhh
. 

hvF is proportional to the cross-polar H field ( E ) if the V port is energized and 

vice versa for
vhF . Both copolar and cross-pol patterns in this dissertation are 

normalized by the copolar peak Fvv along the beam axis. Moreover, 

ij ij ij 0 0( , ; , )F g f     , where ij 0 0 ij 0 0 ij 0 0( , ; , ) ( , ; , ) exp ( , ; , )f f j                in 

the coordinated system of Figure 2-1, radiation patterns are functions of beam direction. 

 

2.4.1 WSR-88D radiation patterns 

Patterns for WSR-88D are shown for the vertically polarized radiation and the 

patterns of the other polarization are identical for WSR-88D. The copolar and cross–

polar radiation amplitude patterns of the WSR-88D are calculated using theoretical 

formulations and then compared with measurements — Fhh patterns are identical as Fvv; 

Fhv patterns are identical as Fvh. The theoretical formulations are given in Appendix B. 

Because the theoretical and measured patterns are given in ( , , )r     spherical 

coordinate system in which the polar axis is along the beam axis, Appendix C gives the 

transformation to plot the WSR-88D radiation patterns in the ( , , )r   spherical 

coordinate (Figure 2-1) used by radar meteorologists so meaningful comparisons can be 

made. 
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 The theoretical patterns of WSR-88D pointing at o( , ) (70 ,45 )o o

o   are shown 

in Figure 2-8. Although not apparent in these figures, the WSR-88D patterns are 

slightly distorted (i.e., not circularly symmetric in the ( , )  displays) due to the 

coordinate system transformation (Appendix C) —the lack of circular symmetry is, 

however, evident in the sidelobe patterns. Four equal cross-polar main lobes have 

alternating phase and the copolar phase is a constant through all the angles (Figure 2-8c). 

 

Figure 2-8 The normalized theoretical one-way radiation patterns of the KOUN for a) 

the copolar 
θE  , b) the cross-polar E

, and c) the cross-polar phase. Wavelength   = 

11.09 cm. Beam is directed at 
o = 70

o
 and 

o = 45
o
.    
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2.4.2 The PPPAR radiation patterns 

The PPPAR patterns are calculated by multiplication of antenna element factor 

and array factor. The copolar and cross-polar fields are shown in Figure 2-9a and b. The 

cross-polar E field pattern of the PPPAR has a main lobe coaxial with the copolar 

beam, and has a peak 12.4dB below the copolar peak at the mainbeam direction. 

Although not shown here, the cross-polar peak below the copolar peak of horizontal 

polarization is -11.2 dB. The cross-polar peak of horizontal polarization is larger than 

the cross-polar peak of vertically polarization because the antenna element cross-polar 

patterns are larger of horizontal polarization than that of the vertically polarization 

(Figure 2-7). As will be shown in Chapter 3 this geometrically induced cross-polar field 

and the difference of H and V gains causes significant bias. The copolar and cross-polar 

fields are the fields of the element pattern multiplied by the array factor. Thus the cross-

polarization nulls of the element patterns remain along the principal planes ( o, 0   ) 

and ( o90 ,  ) for ideal patch but these nulls slightly shift a few degree if the antenna 

element patterns are asymmetry which are shown and discussed in Fig. 3. Both the 

copolar and cross-polar beams have elliptical cross sections determined by the array 

factor. The orientation of the elliptically shaped beam, and the major to minor axis ratio 

is a function of beam direction—not so for the invariant circular beam of the WSR-88D. 

Figure 2-11a shows relatively good agreement of the mainlobe, even when 
o  = 70

o
, 

o  

= 45
o
, but sidelobe locations differ. Although not shown, the broadside PPPAR beam 

has a higher gain and better azimuth resolution than the WSR-88D. This is because at 

broadside the aperture of the PPPAR is azimuthally larger than that of the WSR-88D 

(Figure 2-2). At ( , ) (90 ,45 )o o

o o   , the PPPAR gain is the same as that of WSR-88D. 
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And the PPPAR gain with main beam pointing at ( , ) (70 ,45 )o o

o o    is 0.2 dB less 

than that of WSR-88D due to slightly less effective area.  In Fig5c and d, the phase at 

boresight of copolar field is 72 degree and the phase at boresight of cross-polar field is 

91 degree. This illustrates that gain as well as phases are a function of beam direction—

thus corrections to eliminate bias will be a function of beam direction.   

 

Figure 2-9  The one-way power density patterns of a PPPAR array normalized by the 

gain at (45, 90
o
).  a) the copolar

θE  field, b) the cross-polar
φE field, c) the copolar phase, 

and d) the cross-polar phase. Beam is directed at 
o = 70

o
 and 

o = 45
o
.    
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2.4.3 The CPPAR radiation patterns 

For any arbitrary shape of array, the electrical field with the mainbeam pointing 

at 
0 0( , )  are given by 

0 0 0 0 0( sin cos sin sin cos ) ( sin cos sin sin cos )

1

( , ) ( , ) p p p p p p

N
ik x y z x y z

p p

p

E w EL e
         

   
      





 

 (2-16) 

where p is the index number of antenna elements ranging from 1 to N. pw is the 

amplitude weight for the p
th

 element. ( , )pEL    is the element factor. If the elements 

distribute on a curved surface, ( , )pEL   varies for each element. Specificly, for 

cylindrical array, element factor is expressed as ( , )nEL    , where 
n is the azimuth 

angle of the n
th 

 column relative to the azimuth 
0 of the beam. ( , ,p p px y z ) are the 

location of p
th

 element in a Cartesian cooridante system. 

 

Figure 2-10 shows the copolar and cross polar radiation patterns with taper for 

the CPPAR. The weighting of array elements does not include compensation for 

element rotation nor for change of element density when projected onto the vertical 

plane centered on the central column of the active sector of the CPPAR. Thus the 

projected aperture distribution of the CPPAR does not match exactly that of the WSR-

88D. Nevertheless, CPPAR gain at ( , ) (70 ,45 )o o

o o    is 0.2 dB less than that of WSR-

88D gain due to less effective area. The copolar beams of the CPPAR and WSR-88D 

are reasonably matched at the extreme elevation angle of 20
o
 (Figure 2-11b).  Although 

not shown, the cross-polar field pattern of CPPAR with beam directed at 96.2
o
 zenith 
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(90
o
 zenith angle for an ideal patch) has a quadrant of equal amplitude with  mainlobes 

(about -36 dB) equally spaced around the copolar beam as does the WSR-88D which 

also has cross-polar peaks at about -36dB (Figure 2-11c). But unlike the WSR-88D for 

which the quad of 4 mainlobes do not change as elevation angle changes, the intensity 

of the pair of cross-polar peaks below the zenith angle 96.2
o
 plane (or horizontal 

principal plane for ideal patch) decreases in intensity, but the pair above, of equal 

amplitude and spaced about a half a beam width from the vertical principal plane, 

follows the copolar beam and increases in intensity with increase in elevation angle. 

The quadrant peaks condition shifts from being centered about a zenith angle 90
o
 for 

ideal patch to 96.2
o
 for simulated patch 90o  (Figure 2-7) ); as stated earlier this  is 

due to the asymmetrical pattern(Figure 2-7e) of the simulated patch caused by higher 

order modes in the patch cavity.  

 

The vertical principal plane always bisects the cross-polar beam and forms a pair 

of cross-polar mainlobes of opposite phase and equal peak magnitudes of -24.9dB at 

o

o 70  . Whereas the PPPAR has a -12.4 dB boresight peak, the CPPAR cross-polar 

field is zero. Along the azimuth direction, the pair of cross-polar mainlobes (Figure 

2-10b) are displaced from boresight by about 0.6° (Figure 2-11b), and each has a 3dB-

beamwidth of about 0.6°. In the vertical direction the cross-polar mainlobes have a 3dB-

beamwidth of about 1°. 

 

 

 



33 

    

  

  

  

  

Figure 2-10 The one-way power density patterns of the CPPAR array, normalized by 

gain gvv.  a) the copolar  
θE  field and, b) the cross-polar 

φE  field, c) the copolar phase, 

and d) the cross-polar phase. Beam is directed at  
o = 70

o
 and  

o = 45
o
.    

 

Because the CPPAR and WSR-88D have nearly the same aperture distribution, 

the copolar radiation patterns at broadside (i.e.,  
o  = 90

o
, but any 

o ) are nearly in 

agreement about the main lobe of the copolar beam—comparisons of these patterns 

(Figure 2-11b) show this to be true. Slight differences are due to the lack of 

compensation for changes in element density and gain due to element rotation. The 

a) b) 

c) d) 
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agreement would be better if the weights applied to the CPPAR elements included 

density and gain compensation (Zhang et al. 2011 ). 

 

2.5 Comparison of measured and theoretical radiation patterns 

The line plots in Figure 2-11a, b, and c compare the copolar and cross-polar 

radiation patterns of PPPAR, CPPAR and the WSR-88D at the limit of the scan region 

where the PPPAR geometrically induced cross-polar fields are the maximum.  

 

In Figure 2-11a, the PPPAR copolar pattern is very similar to that of WSR-88D 

near the main lobe. The PPPAR pattern is not symmetrical about 45o

o  in azimuth (as 

can also be seen from Figure 2-9), and the side lobes for PPPAR are slightly higher and 

sidelobe widths are slightly narrower at 45o   rather than 45o  . These differences 

are due to the changes in the projection of the PPPAR’s array area (e.g., larger for 

45o  than for 45o  ).  

 

The sidelobes of the WSR-88D were measured by Andrew Canada along the 30
o
 

cut (Paramax 1992) ,and an eye-ball estimate of the envelope of these sidelobes at 

o2    is shown with a dashed-dotted line (Doviak et al. 1998). This pattern cut lies 

midway between the narrow ridges of higher sidelobes (about 5 to 13 dB higher) due to 

the blockages by the spars and is therefore more representative of the sidelobe levels of 

the WSR-88D. The KOUN main lobe measurements (dots)  are also obtained from 

Doviak et al. (1998).  
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The transformation in Appendix C is applied to the theoretical and measured 

data, and thus the beamwidth, in the  ( , )   coordinates of Figure 2-1 is slightly larger 

after the transformation. Specifically for measurement data in Figure 2-11, the azimuth 

beamwidth changed from 0.9
o
 at ( , ) (90 ,0 )o o      to 0.96

o
 at ( , ) (70 ,45 )o o      .  

Although the beamwidth of the WSR-88D measured in the spherical coordinate system 

with the polar axis along the beam does not change with elevation angle, it does change 

when measured in the coordinate system of Figure 2-1. 

 

The CPPAR copolar pattern is very similar to that of WSR-88D near the main 

lobe (Figure 2-11b). Slight differences arise because for the beam at  

( , ) (70 ,45 )o o       the CPPAR beam deviates slightly from the circular shape seen at 

broadside. WSR-88D sidelobe levels beyond 10
o
 azimuth are more than 50 dB below 

the copolar peak and are in agreement with measurements. The theoretical and 

measured sidelobe levels also agree well with the sidelobe levels measured for a dual-

offset fed antenna having ultra-low sidelobes needed for weather radar research (Bringi 

et al. 2011). At the elevation angles of 0
o
, 20°, and 30

o
, the pair of CPPAR cross-polar 

peaks are -37dB, -25 dB, and -22 dB below the copolar peak. The cross-polar peaks of 

the dual-offset fed reflector are also two—versus the four for a center-fed parabolic 

antenna—and each has a peak gain at about -35.5 dB below the copolar gain (Bringi et 

al. 2011) similar to that for the CPPAR if the copolar beam is pointed at 90o

o  . 

 

The measured cross-polar Fhv field of WSR-88D can be found in Figure 2-11 in 

Zrnić et al. (2010), but it is reproduced in Figure 2-11c to compare with the theoretical 
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pattern computed in Appendix B and shown in Figure 2-8b. The line plot in Figure 

2-11c is along   = 45
o
 and is plotted as a function of    ( and    are defined in 

Appendix B).  

 

All the copolar patterns of CPPAR, PPPAR and WSR-88D agree well at angles 

near the main lobe. And the cross-polar levels for the CPPAR are much less than that for 

the PPPAR. On the other hand, Fhh, etc. are functions of beam direction for the PARs 

unlike that of the WSR-88D. 

 

We show the patterns of WSR-88D, PPPAR, and CPPAR and make 

comparisons of pattern characteristics. By using the similar aperture size and the same 

taper discussed in previous sections, the normalized copolar patterns of phased arrays 

are almost the same as that of WSR-88D. However, the cross-polar patterns peak of 

PPPAR is high and CPPAR nature cross-polar patterns peaks are much lower than that 

of PPPAR and are more approaching the performance of WSR-88D.  Those cross-polar 

fields of PPPAR can cause unacceptable large polarimetric radar parameter biases.  
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Figure 2-11 Comparison of the theoretical and measured copolar |Fvv|
2
 and cross-polar 

|Fhv|
2
 radiation patterns of (a) PPPAR and WSR-88D, (b) CPPAR and WSR-88D; beam 

is directed at
0  = 70

o
 and 

0 = 45
o
, for frequency = 2905 MHz. (c) theoretical and 

measured |Fhv|
2
  as a function of   for the WSR-88D along a  =  45

o
 cut.   

 

2.6 The biases of polarimetric radar parameters calculated by pattern integration 

Zrnić et al. (2010) and Galletti and Zrnić (2011) calculated theoretical biases of 

ZDR and ρhv estimates for a center-fed parabolic reflector antenna when either the SHV 

or the AHV modes of polarimetric data collection are used. Zrnić et al. (2010) introduce 

the SHV notation that defines copolar H and V waves of equal amplitude transmitted 

along the beam axis. Here we apply the notation STSR to designate that the H and V 
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ports of the array antenna are simultaneously excited with equal voltages (for the 

parabolic antenna SHV and AHV are synonymous with STSR and ATSR).  

 

A Gaussian function was used by Zrnić et al. (2010) to model the copolar and 

cross-polar main lobes for the radiation patterns of parabolic reflector antennas.  

Although the main lobe is reasonably modeled by the Gaussian function, sidelobes are 

not. Furthermore, unlike the assumptions made by Zrnić et al. (2010), the copolar 

radiation pattern functions Fhh and Fvv for PPARS are not necessarily equal and real 

Gaussian functions, but are complex variables that are functions of ,θ φ . Moreover, for 

the reflector antenna, we use realistic radiation patterns to calculate the biases of ZDR 

and ρhv. Nevertheless the approach of Zrnić et al. (2010) can be generalized to compute 

biases for PPARs and parabolic reflector antennas having realistic radiation patterns. 

For the mechanically steered parabolic reflector there are no variations with direction. 

But for PPARs, the biases are a function of the beam scanning angle. 

 

General formulas for the biases are derived in terms of radiation matrix elements 

given any kind of radar array element and any kind of antennas including PPPAR, 

CPPAR, and WSR-88D. 

 

2.6.1 the STSR mode 

To simplify calculations without sacrificing the objectives of this paper, ZDR, ρhv 

and 
DPφ biases are calculated under following conditions: 1) the intrinsic ZDR is 

produced by oblate hydrometeors having zero canting angles projected onto a plane 
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perpendicular to the beam axis; thus the off-diagonal terms of the backscattering matrix 

S  are zero, 2) differential attenuation due to precipitation along the path of propagation 

can be neglected at 10-cm wavelengths, but differential phase shift Φdp cannot be 

neglected (Zrnić et al. 2010), and 3) reflectivity is spatially uniform. Thus as elevation 

angle is increased the axis of the oblate drops are assumed to increase so the drop’s 

oblateness remains fixed. Although this latter condition is not expected in practice, it 

simplifies the solution without losing the principle aim of the work. We only need to 

assume reflectivity is uniform within the beam, a commonly accepted assumption. To 

simplify notation, the phase shifts 
hh vvand   incurred during H and V propagation are 

incorporated into the backscattering matrix S  (e.g., 
hh is combined with 

hh the phase 

shift upon backscatter for the H wave).  

 

For the STSR mode, the matrix equation for the incremental voltages received in 

the H and V channels due to backscatter from a hydrometeor are given by Zrnić et al. 

(2010): 

0

0

VV F F s F F

V F F s F F V





         
           

         

thrh hh vh hh hh hvT

r t

rv hv vv vv vh vv tv

V F SFV ,  (2-17) 

where F  is the antenna’s electric field radiation pattern matrix (or relative gain matrix) 

defined by Zrnić et al. (2010). 
hvF is proportional to the cross-polar H radiated electric 

field ( E ) if the V port is energized and vice versa for
vhF . ( , ) ( , )ij ij ijF g f     

where ( , ) ( , ) exp ( , )ijf f j         ij ij , and ij are the phases of the copolar and 

cross-polar fields- not necessarily the phase difference between the copolar and cross-
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polar fields as can be assumed for the ideal reflector antenna. S is the backscattering 

matrix, but to account for differential propagation phase shift 
DP to and from the scatter 

hh hh
DPjs s e   . Vth and Vtv are voltages applied simultaneously to the H and V antenna 

ports (for the array it is assumed that all element H and V voltages with weights 

specified by (2-1) to (2-3)  are connected to a single H and V antenna port). 

 

Zrnić et al. (2010) assumed a phase difference   between the applied H and V 

voltages and assumed transmission lines from the antenna port to the element to be of 

equal length. Worst case ZDR bias has been shown to occur for coaxial copolar and 

cross-polar beams if o90   and if the phase difference between the copolar and cross-

polar fields are in phase quadrature. In this case, the coaxial cross-polar peak needs to 

be 50 or more dB below the copolar peak to ensure that the ZDR bias is less than 0.1 dB 

anywhere along the beam.   can be controlled, and if o0  or 180
o
 (i.e., transmitted 

polarization is linear at a slant of  45
o
 or 135

o
), the acceptable cross-polar peak can be 

increased to  45 dB below the copolar peak, a relatively small 5 dB improvement. To 

simplify and to focus on the more significant bias sources associated with PPARs, we 

assume o0  and 1V V th tv
.   Constants of proportionality are to make Eqn. (2-17) 

dimensionally correct, and the arguments of Fij and sij, are omitted to shorten the 

notation. 

 

Eqn. (2-17) is applied to a single hydrometeor. But of interest is the spatial 

distribution of scatterers weighted by radiation pattern matrix elements. Under the 
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condition that the echoes from the neighboring area are uncorrelated, the expected 

powers received in the H and V channels are (Zrnić et al. 2010) 

                         
2

P V d


h rh ,  (2-18) 

                        
2

P V d


v rv ,  (2-19) 

The bias of ZDR in dB is computed by subtracting the true value of 
DRZ from the 

estimated one. Thus bias(ZDR) is given by 

1 2( ) 10 log( / ) 10 log( / )true truebias Z P P Z B B Z     DR h v DR DR , (2-20) 

where, 

2

1 2

4 2 2 2 *

2 2 4 21 *

* 2 2 * * 2

0.5

* 2 * *

2 Re( )

2 Re( )

2 (0) Re
j

V d

B
s

F F F F F F

Z Z F F F F F F

F F F F F
Z e

F F F F F F F

















 
 
   
       
 

    
          



dp

rh

vv

hh hh hv hh hh hv

dr dr vh vv vh vh vh vv

hh vh hh hv vh

hv dr

hh vh vv hh hv vv vh

d




 

 (2-21) 
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 (2-22) 

 

Eqs.(2-21) and (2-22) are obtained by substituting (2-17) into  (2-18) and (2-19). Lower 

case “dr” on Z indicates the ratio of H and V received powers, whereas the upper case 

“DR” subscript denotes ZDR in logarithmic units.  

 

The bias of copolar correlation coefficient magnitude |ρhv| and differential 

phasedp  are given by 

*

2 2
( ) true

V V
bias

V V

 
 

 

 
rh rv

hv hv

rh rv

 (2-23) 

*

2 2
( ) true

V V
bias angle

V V

 
 

 

 
 

  
 
 

rh rv

dp dp

rh rv

 (2-24) 

The bias of |ρhv|  and differential phasedp  can be rewritten as 

3

1 2

( ) true
B

bias
B B

  hv hv  (2-25) 
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B B
 

 
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dp dp
 (2-26) 

where B3 is 
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 (2-27) 

The sample results can be found in Chapter 3 section “3.3 Comparison of 

boresight contribution and integrations” and in Chapter 4 section “4.1 Bias of CPPAR” 

and section “4.2 Partial bias reduction of PPAR: adjusting antenna port voltages”. 

 

2.6.2 the ATSR mode 

For the ATSR mode, we alternately set Vth to 1 and 0 and vice versa for Vtv. The 

copolar H and cross polar echo voltages deduced from (2-17) are 

2 2V F s F s  rh hh hh vh vv , copolar        (2-28) 

V F F s F F s  rv hh hv hh vv vh vv  cross-polar (2-29) 

if Vth = 0 and Vtv = 1, and 

2 2V F s F s  rv vv vv hv hh , copolar (2-30) 

V F F s F F s  rh hh hv hh vh vv vv cross-polar  (2-31) 
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The strongest terms are the first terms in the copolar receiving channel and 

should dominate the second order cross-polar terms (in general 
hv vhF F , (Zrnić et al. 

2010)). The cross-polar terms given by (2-29) and (2-31) are first order in Fhv and Fvh 

and these terms set limits on how well the radar can measure shv, which is typically 

small for rain.   

 

We can bring Eqns. (2-28) to (2-31) into Eqns. (2-18) and (2-19) to obtain the 

powers. 

Then, the bias of ZDR in dB is computed from 

4 5( ) 10 log( / ) 10 log( / )DR h v DR DR

true truebias Z P P Z B B Z      ,  (2-32) 

Where, 

2

4 4 0.5 * 2 2

4 2
2 Re( )dp

h

dr hh vh hv dr hh vh

vv

j

V d

B Z F F Z e F F d
s











     
 


  (2-33) 

2

4 4 0.5 2 * 2

5 2
2 Re( )dp

v

vv dr hv hv dr vv hv

vv

j

V d

B F Z F Z e F F d
s











     
 


  (2-34) 

 

The bias of |ρhv| and differential phasedp  are given by 

*

2 2
( ) true

V V
bias

V V

 
 

 

 
h v

hv hv

h v

, (2-35) 

*

2 2
( ) true

V V
bias angle

V V

 
 

 

 
 

  
 
 

rh rv

dp dp

rh rv

 (2-36) 
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The bias of |ρhv| and differential phasedp  can be rewritten as 

6

4 5

( ) true
B

bias
B B

  hv hv
 (2-37) 

6

4 5

( ) trueB
bias angle

B B
 

 
  

 
 

dp dp
 (2-38) 

 

where 
4B and 

5B  can be found in (2-33) and (2-34)  respectively and 
6B is 

* 2 2 2 * 2
*

0.5 * 2 2

6 2

0.5 2 * 2

dp

dp

dr hh hv vv vh
h v

hv dr hh vv

vv

hv dr hv vh

j

j

Z F F F FV V d

B e Z F F d
s

e Z F F





 







 

 
 

    
 
  


   (2-39) 

The general formulas given in this section can be used to calculate the biases for any 

kinds of antennas in the following chapters. 

 

The sample results can be found in Chapter 3 section “3.3 Comparison of 

boresight contribution and integrations” and in Chapter 4 section “4.1 Bias of CPPAR” 

and section “4.2 Partial bias reduction of PPAR: adjusting antenna port voltages”. 
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Chapter 3 PPPAR Biases and Correction 

Polarimetric weather radar provides multi-parameter measurements that reveal 

detailed precipitation microphysics, which has matured to the stage that the national 

network of WSR-88D radars is being upgraded with dual-polarization. Recently, phased 

array radar has received great attention, as it allows for fast data update to quickly track 

storm evolution. It is desirable to combine polarimetry and phased array technology into 

one system: polarimetric phased array radar (PPAR). The most common configuration 

for a phased array is planar arrangement. The planar PPAR (PPPAR), however, has 

significant deficiencies, including polarization coupling, increase in beam width, and 

loss of sensitivity when its beam scans away from the broadside. Due to these reasons, 

biases of polarimetric parameters occur as the beam scans. Some methods have been 

suggested to solve the coupling deficiency of PPPAR. A method considers a projection 

matrix or correction matrix to correct the polarization coupling (Zhang et al. 2009). If 

the projection matrix or correction matrix is known, the bias of dual polarization radar 

parameters can be corrected. This chapter is to discuss these biases and the corrections 

of these biases.   

 

3.1 Projection and scattering matrices 

The projection and scattering matrices for the PPAR are discussed. The 

projection matrix is first defined by Zhang et al. (2009) to represent the relation 

between the broadside transmitted wave t ( ,0,0)E r  and the wave i ( , , )E r    locally 

incident in the direction ,  . Whereas the cross-polar radiation is independent of beam 
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axis direction for a mechanically steered beam, the cross-polar radiation intensity of a 

beam electronically steered by a PPAR does depends on beam axis direction. The 

projection matrices for both aperture and patches are given in this chapter. 

 

Figure 3-1 The coordinate system for electric fields from a pair of radiating elements. 
( )hM is the magnetic current density of a horizontally polarized radiating element. 
( )vM is the magnetic current density of a vertically polarized radiating element.  

 

 

3.1.1 Projection matrix 

The projection matrix P  is defined by i t PE E  and its entries represent 

projections of radiated fields 
tE  along the broadside direction (x) onto the local H, V 

directions at r (Figure 3-1). The local horizontal is defined by a ; the local vertical is 

defined by a (Figure 3-1). The broadside transmitted waves generated by the 

horizontally and vertically polarized elements are projected onto the local unit vectors 

a  and a  to obtain the incident wave:  
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i th

i t

iθ tv

   
     

   
P P

E E
E E

E E


 

 (3-1) 

where the projection matrix P  is: 

 (h) (v)
11 12

(h) (v)
21 22 θ θ

  
    

    
P

p p E E

p p E E

   
 (3-2) 

where the superscripts define H and V antenna ports. The H antenna port primiarly 

transmits horizontally polarized fields and V antenna port primiarly transmits vertically 

polarized fields, and all the electric fields on the right side of (3-2) are normalized by 

their respective  broadside electric fields (e.g.,
( ) ( , )hE    or ( ) ( , )hE   is normalized by 

( ) ,0
2

 
 
 

hE


).  Substituting the appropriate electric fields from Eqn. (2-4) to (2-15) into 

(3-2), the projection matrix for aperture or patch can be obtained. The projection matrix 

for the aperture is: 

 (h) (v)

(v)

sin ( , ) cos sin ( , )

0 cos ( , )

  
  

 
P

f f

f

      

  
 

 (3-3) 

The 
(h)( , )f    and 

(v) ( , )f    given by (2-6) and (2-9) in the above matrix are due to the 

finite size of the aperture compared to the infinite small size of dipole in one direction. 

The terms other than 
(h)( , )f    and 

(v) ( , )f    have similar forms as the P-matrix of 

Hertzian dipoles (Zhang et al. 2009). The slightly different form is due to the 

complementary characteristics (Kraus et al. 2002, chapter 9-2) of the dipole and the 

rectangular aperture in an infinite ground plane; whereas a vertically oriented electric 

dipole generates fields isotropic in the x-y plane (i.e., the H-plane of the dipole), a 

vertically oriented narrow slot, having horizontally polarized fields, is well represented 

by a vertically oriented magnetic dipole that generates fields isotropic in the E-plane, 
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also the x-y plane. That is, the H-plane of the vertically oriented electric dipole and the 

E-plane of the vertically oriented narrow slot are both the horizontal plane at z= 0. 

 

Similarly, the projection matrix for the patch is: 

 (h) (v)

(v)

sin ( , ) cos sin ( , )

0 cos ( , )

  
  

 
P

g g

g

      

  
 

(3-4) 

where the sine function in
(h)g and

(v)g  given by (2-12) and (2-15) is due to the finite size 

of the antenna and the cosine function in them is the array factor for the two radiating 

slots on opposite sides of the patch. By comparing the P-matrix of aperture and patch 

elements with the P-matrix of the crossed dipole element in Zhang et al. (2009) and 

assuming that f and g in (3-3) and (3-4) are equal to one, the P-matrices have the 

following relationships: 

 
1

dipole aperture



P PT ,  
1

dipole patch



P PT ,  
1

aperture dipole



P PT , and   
1

patch dipole



P PT . 

 

3.1.2 Scattering matrix 

The back scattering electric field sE  can be expressed as (Doviak and Zrnić 

2006, section 8.5.2.1) 

 
sh ( )

s i

sv

exp( )  
   
 

S b
E jkr

E E
E r

 
 (3-5) 

where 

( ) ( )

( ) hh hv

( ) ( )

vh vv

 
  
 

S

b b

b

b b

s s

s s
, is defined as the scattering matrix of a hydrometeor which 

relates the backscattered electric field to the incident electric field. The electric fields at 
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the receiving array element (assumed to be the same as the transmitting array element) 

can be expressed as (Zhang et al. 2009): 

 
rh s

r s

rv s

   
     

   
P PT T

E E
E E

E E





 
(3-6) 

rE
 
is the electrical field at the receiving antenna port. By combing(3-1), (3-5) and(3-6), 

rE  can be expressed as:  

 ( )

r t

exp( )
 P S P

T b jkr
E E

r
 

 (3-7) 

where ( ) ( )S P S Pp T b  is the scattering matrix for the PPAR. If the propagation effect is 

included and the transmission matrix is added, (3-7) is extended to (Zhang et al. 2009): 

 
r t

exp( )T jkr
E E

r


 P S P  

 (3-8) 

where ( ) S TS Tb

 and T is the transmission matrix (Zhang et al. 2009).  Then, the 

backscattering matrix for the PPAR is  

( )

2 2

11 hh 21 vv 11 21 vh hv 11 12 hh 21 22 vv 11 22 hv 12 21 vh

2 2

11 12 hh 21 22 vv 11 22 vh 12 21 hv 12 hh 22 vv 12 22 vh hv

( )

( )



             
  

             

S P S Pp T

p s p s p p s s p p s p p s p p s p p s

p p s p p s p p s p p s p s p s p p s s

 

 (3-9) 

To simplify (3-9) it is noted that 21p  is zero for ideal aperture and patch antennas 

according to(3-2), (3-3) and(3-4). Thus (3-9) reduces to: 

 ( )

2

11 hh 11 12 hh 11 22 hv

2 2

11 12 hh 11 22 vh 12 hh 22 vv 12 22 vh hv( )



   
  

         

S P S Pp T

p s p p s p p s

p p s p p s p s p s p p s s

 

 (3-10) 
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The off-diagonal terms in (3-10) are even smaller because, for most meteorological 

observations of interest, hydrometeors have a vertical axes of symmetry and 

therefore hv vh 0s s   . Thus (3-10) is further simplified to: 

 ( )

2

11 hh 11 12 hh

2 2

11 12 hh 12 hh 22 vv



  
  

   

S P S Pp T

p s p p s

p p s p s p s

 

 (3-11) 

The superscript ‘prime’ here means the scattering matrix measured by radar using a 

mechanically steered beam with propagation effect included (Zhang et al. 2009). In 

order to recover S for PPAR,  

 ( ) S C S CT p   (3-12) 

where C is defined as correction matrix and 1C P . 

 

There are two polarimetric transmitting/receiving modes in weather radar 

operation. One is ATSR (Alternate Transmit Simultaneous Receive) mode, wherein the 

H and V polarized waves are alternately transmitted but simultaneously received.  And 

the other is STSR (Simultaneous Transmit and Simultaneous Receive) mode, wherein 

the H and V polarized waves are simultaneously transmitted and simultaneously 

received. 

3.1.2.1 Scattering matrix for the ATSR mode 

In ATSR mode, all the elements of scattering matrix ( )S p  can be measured, and 

the correction for the ATSR mode of PPAR is given by solving (3-10) for S . For 

example, the backscattering coefficient hhs can be obtained by dividing the top left 
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matrix element by 2

11p .  Then, hvs and vhs can be calculated from the off-diagonal terms 

of (3-10). Finally, vvs can be obtained because the other three elements of the scattering 

matrix are now known.  

 

If the Doppler effect is considered (Zrnić et al. 2011), (3-9) need to be modified. 

The sample time between alternately transmitted H and V is equal to the PRT (i.e., 

Pulse Repetition Time). The phase shifts caused by scatterers’ motion are different in 

the H and V due to the PRT time difference.  In ATSR mode, we consider the two 

consecutive times with indices 2i  and 2 1i  , where i  is an integer, multiplied by the 

pulse repetition time sT . Even indices indicate that a horizontally polarized wave is 

transmitted whereas odd indices indicate that a vertically polarized wave is transmitted. 

Thus the backscattering matrix of PPAR, modified for the Doppler effect, is: 

 0

0

ˆ2( ) ( ) ( ) ( )

( ) hh hv hh hv

ˆ2( ) ( ) ( ) ( )

vh vv vh vv

(2 ) (2 1) (2 ) (2 )

(2 ) (2 1) (2 ) (2 )





   
    

    
S

s

s

j k vTp p p p

p

j k vTp p p p

s i s i s i e s i

s i s i s i e s i
 

 (3-13) 

where, v̂  is the radial velocity, which can be estimated from the auto-correlation of 

either  

( )

hh

ps  or ( )

vv

ps . The elements in the (3-13) can be found in (3-9) and they are given by: 

( ) 2 2

hh 11 hh 21 vv 11 21 vh hv(2 ) (2 ) (2 ) ( (2 ) (2 ))      ps i p s i p s i p p s i s i  (3-14) 

( )

vh 11 12 hh 21 22 vv 11 22 vh 12 21 hv(2 ) (2 ) (2 ) (2 ) (2 )ps i p p s i p p s i p p s i p p s i        (3-15) 

( )

hv 11 12 hh 21 22 vv 11 22 hv 12 21 vh(2 1) (2 1) (2 1) (2 1) (2 1)ps i p p s i p p s i p p s i p p s i             (3-16) 

( ) 2 2

vv 12 hh 22 vv 12 22 vh hv(2 1) (2 1) (2 1) ( (2 1) (2 1))           ps i p s i p s i p p s i s i  (3-17) 
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Because 21 0p   for the ideal radiating elements being considered here, (3-14) to (3-17) 

are simplified to: 

 ( ) 2

hh 11 hh(2 ) (2 )ps i p s i   (3-18) 

 ( )

vh 11 12 hh 11 22 vh(2 ) (2 ) (2 )ps i p p s i p p s i     (3-19) 

 ( )

hv 11 12 hh 11 22 hv(2 1) (2 1) (2 1)ps i p p s i p p s i        (3-20) 

( ) 2 2

vv 12 hh 22 vv 12 22 vh hv(2 1) (2 1) (2 1) ( (2 1) (2 1))           ps i p s i p s i p p s i s i  (3-21) 

Assuming the P matrix is known, hh (2 )s i can be obtained from (3-18). Then we 

bring hh (2 )s i  into (3-19), allowing us to calculate vh (2 )s i . In(3-20), hv(2 1)s i  can be 

obtained if the Doppler term 0 ˆ2 sj k vT
e is known, (it can be estimated from either of the 

auto-correlations ( )* ( )

hh hh(2 ) (2 2)p ps i s i     or ( )* ( )

vv vv(2 1) (2 3)p ps i s i     ; brackets 

denote ensemble average), and hh (2 )s i has already been calculated. Finally, 

vv(2 1)s i  can be obtained by (3-21) if hh (2 )s i , vh (2 )s i , hv(2 1)s i  ,and 0 ˆ2 sj k vT
e are known. 

 

3.1.2.2 Scattering matrix for the STSR mode 

Another radar operation mode is the STSR. Doppler effects are not coupled to 

the polarimetric variables in the STSR mode. However the four elements of scattering 

matrix cannot all be obtained in the STSR mode. In order to precisely calculate the 

diagonal terms of the scattering matrix, the off-diagonal terms must be zero. Fortunately 

most precipitation media have hv vh 0s s    and the off-diagonal terms can typically be 

ignored. Because the broadside H, V transmitted fields can have amplitude and phase 
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differences, we assume th tv

jE E e  , where   is the amplitude ratio of the broadside  

electric fields and  is their relative phase. From (3-8) with an assumption of no cross-

polar scattering, we have 

rh hh th

rv vv tv

2 2

th 11 hh 21 vv tv 11 12 hh 21 22 vv

2 2

th 11 12 hh 21 22 vv tv 12 hh 22 vv

0 exp( )

0

( ) ( ) exp( )

( ) ( )

      
          

       
  

      

P PT
E s E jkr

E s E r

E p s p s E p p s p p s jkr

rE p p s p p s E p s p s

 

 

(3-22) 

For an ideal aperture and an ideal patch for which the radiation from the non-radiating 

slots are ignored, 21 0p  , and thus 

2
rh th 11 hh tv 11 12 hh

2 2
rv th 11 12 hh tv 12 hh 22 vv

( ) ( ) exp( )

( ) ( )

    
   

      

E E p s E p p s jkr

E rE p p s E p s p s
 

(3-23) 

Equation (3-23) can be used to solve hhs and vvs . 

 

3.2 Biases of polarimetric variables 

The biased polarimetric variables (i.e. due to the coupling of H and V radiation 

for beams steered away from the broadside direction) reflectivities, differential 

reflectivity, correlation coefficient, and LDR for both the ATSR and STSR modes are 

presented next. Throughout this section, a narrow beam radar and homogeneous scatter 

distribution assumptions are made in the calculation of covariances (Doviak and Zrnić 

2006, section 8.5.2.2). 

 

3.2.1 Reflectivity Factor 

The intrinsic reflectivity factors at horizontal and vertical polarizations are given 

by  
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 4
2

( )

h,v hh,vv24

w

4
 bN

Z s
K




 

 (3-24) 

where  

 2 2
( ) ( )

hh,vv hh,vv( ) ( ) 
b bs p D s D dD  

 (3-25) 

N  represents the number density of scatterers per unit volume. ( )p D represents the 

probability density function of the scatterers’ diameters. Compared to drop size 

distribution ( )n D (Doviak and Zrnić 2006, section 4.4), ( )p D is normalized and its 

integral over all possible values of D is one. ( )p D computed from ( )n D is given by 

 

0

( ) ( )
( )

( )


 



n D n D
p D

Nn D dD
 

(3-26) 

The horizontal and vertical reflectivity factors h,vZ   measured by the radar using 

a mechanically steered beam are   

 4
2

h,v hh,vv24

w

4 N
Z s

K




   

 (3-27) 

h,v
Z are different from the intrinsic reflectivity factors h,vZ  by the propagation effect  

(Doviak and Zrnić 2006, sectioin 8.5.2.2; details can be found in Eqn. (23) in Zhang et 

al. 2009). 

 

By the same definition as (3-24) and (3-27), the reflectivity factor for 

horizontally polarized waves from the array element for the PPAR is 
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 4
2

( ) ( )

h hh24

w

4
2

2 2

11 hh 21 vv24

w

4 4 2 2

11 h 21 v h v hv 11 21

4

4

2 Re[ ]



  

      

p pN
Z s

K

N
p s p s

K

p Z p Z Z Z p p











 

 (3-28) 

where 11p  and 21p are elements of the P matrix defined in (3-2). For an ideal 

element, 21 0p  , and thus 

 ( ) 4

h 11 h

pZ p Z    (3-29) 

 

The horizontal reflectivity factor for PPAR is simply hZ  obtained with a mechanically 

steered beam scaled by 4

11p . But the reflectivity factor for vertically polarized waves is 

 4
2

( ) ( )

v vv24

w

4
2

2 2

12 hh 22 vv24

w
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where 12p and 22p are also elements of the P matrix defined in (3-2). For aperture and 

patch elements, the P matrices are from (3-3) and (3-4). If the same procedure is 

implemented on PPAR to obtain the reflectivities, it is seen that the measured 

reflectivities obtained with a PPAR are biased compared with the reflectivities 

measured with the mechanically steered radar. The bias depends on the projection 

matrix (i.e. the steering angle and the radiation pattern), the horizontal and vertical 

reflectivities, and the copolar correlation coefficient. From(3-29), it is seen that the bias 

of horizontal reflectivity depends on 11p , which are 
(h)sin ( , )f   and 



57 

( )sin( ) ( , )hg   for aperture and patch elements respectively. As the beam points 

gradually off the broadside, the bias of reflectivity increases from zero. For example, if 

the beam points at ( , )  = (75°, 30°), ( )

h h0.6489pZ Z  , which is a significant difference 

between the reflectivity factor measured by PPAR and the reflectivity factor measured 

with a mechanically steered dish antenna. From(3-30), it is seen that ( )

v

pZ depends on 

hZ , vZ , hv , as well as on the projection matrix. 

 

3.2.2 Differential Reflectivity 

Differential reflectivity is the ratio of horizontal and vertical reflectivities, and it 

is a measure of the oblateness of the hydrometers. For the mechanically steered beam, 

the definition of differential reflectivity is (Doviak and Zrnić 2006, section 8.5) 
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If the same measurement procedure is implemented on a PPAR as for the mechanically 

steered beam, the differential reflectivity measured with a PPAR for the ATSR mode 

would be 
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Figure 3-2a, Figure 3-3a, and Figure 3-3b present the DRZ  bias, for the ATSR mode, as 

a function of azimuth  and several for aperture and patch elements. The parameters 

used for calculations are dr 1.0Z 
 
and hv 0.9 

 
in all cases. The DRZ bias for the 

aperture antenna is positive at 45  azimuth because the vertically polarized wave is 

weaker than the horizontally polarized wave, as shown in Figure 2-4. At 0  azimuth 

and 90  , the  DRZ bias is negative because the horizontally polarized wave is 

weaker than the vertically polarized wave. This trend is opposite that seen for the dipole 

in Zhang et al. (2009) because of the complementary property of dipole and aperture 

antennas. Figure 3-3b shows that the dimension of the patch can largely change the 

DRZ bias, and a judicious selection patch size can make the DRZ bias almost zero for all 

azimuths if 90 20   .  For instance, because a patch having L = 0.38λo and Le = 

0.40λo generates nearly equivalent radiation patterns for H and V polarized waves in the 

intervals about 90 20   and 45   (Figure 2-6), there is minimal DRZ bias in 

this angular sector. In (3-32), drZ  is coupled with hv
 
and they need to be solved jointly. 

Another method is directly correcting the scattering matrix presented in section 3.1.2 

Scattering matrix to obtain DRZ . 

 

If the STSR mode is used, DRZ bias depends not only on the beam direction, but 

also on the amplitude ratio and relative phase of transmitted electric fields in the H and 

V elemental antennas. If the same measurement procedure is implemented on a PPAR 

as for the mechanically steered beam, the differential reflectivity measured with a 

PPAR for the STSR mode would be 
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where the ratio of H and V backscattering matrix elements are given by (3-22). If 

21 0p  , (3-33) is simplified to 
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(3-34) 

where  

              
2

tv 22a E p ,  2

s th 11 tv 11 12 b E p E p p ,  2

s th 11 12 tv 12 c E p p E p . (3-35) 

 

Figure 3-2b, c, d, Figure 3-3c, d, and Figure 3-4 show that the bias of DRZ  for 

the STSR mode is a function of different parameter values.  The bias of DRZ for the 

STSR mode is not symmetric about the x-z plane because (3-34) is not symmetric about 

 = 0 if the P matrix elements are put into (3-34). The amplitude ratio changes the bias 

of DRZ because it produces differences on H and V projected to local H and V 

directions. The DRZ bias also depends on the relative phase  .  As  changes, the 

DRZ bias at the zero azimuth angle does not change, but at any other azimuth angles it 

changes slightly. The size of patch greatly changes the DRZ bias as shown in the right 

panels of Figure 3-3 and Figure 3-4. The correction can also be made by jointly solving 

drZ  and hv  if the power imbalance and relative phase is small. 
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Figure 3-2 Bias of differential reflectivity PPAR with apertures antenna elements (TE10 

mode and mounted on an infinite ground plane, a=0.55λo , b=0.25λo) for the following 

cases. (a) ATSR mode, various   (b) STSR mode, various   but 1  and 0o  . (c) 

STSR mode, various  but 80o  and 0o  . (d) STSR mode, various   but 1   and 

80o   . (
dr 1.0Z   and 

hv 0.9  in all cases.) 
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Figure 3-3 Bias of differential reflectivity of PPAR with patch antenna elements for the 

following cases. (a) ATSR mode, various  , but L = 0.32λo (b) ATSR mode, various 

patch dimension but 80o   (c) STSR mode, various   but 1  , 0o  , and L = 

0.32λo (d) STSR mode, various patch dimension but 80o  , 1  , and, 0o   

( / 0.95eL L  in all cases.)  
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Figure 3-4 Bias of differential reflectivity of PPAR with patch antenna elements for the 

following cases: (a) STSR mode, various  but 80o  , 0o  , and L = 0.32λo.  (b) 

STSR mode, various patch dimension but 80o  , 0.9716  , and 0o   (c) STSR 

mode, various   but 1  , 80o   , and L = 0.32λo (d) STSR mode, various patch 

dimension but 80o  , 1  , and, 60o    (
dr 1.0Z   ,

hv 0.9  , and / 0.95eL L in all 

cases). 

 

3.2.3 Correlation coefficient 

The copolar cross correction coefficient between H and V polarizations is 

defined as (Doviak and Zrnić 2006, sectioin 8.5) 
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For the mechanically steered beam, the measured copolar cross correlation 

coefficient is 
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 (3-37) 

The correlation coefficient and the one measured by a mechanically steered beam are 

related by the differential phase DP . That is 

 
hv hvexp( )  DPj    (3-38) 

If the same measurement procedure is implemented on a PPAR as for the mechanically 

steered beam, the correlation coefficient measured by PPAR operated in the ATSR 

mode is 
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(3-39) 

If the array element is ideal, 21 0p  , and ( )

hv ( TSR)p A reduces to 
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If the PPAR operates in the STSR mode, the measured correlation coefficient is 
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 If the array element is ideal, 21 0p  , and ( )

hv (STSR)p reduces to 
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where
 

2

tv 22a E p , 2

s th 11 12 tv 12 c E p p E p .  

The hv bias for an aperture element is shown in Figure 3-5, and the hv bias for a patch 

element is shown in Figure 3-6 and Figure 3-7. Comparing Figure 3-5 with hv bias of 

dipole (Fig.4 and 5 in Zhang et al. 2009), the hv bias of an aperture element is in mirror 

symmetry to the hv bias, if the elements are crossed dipoles. In the ATSR mode 

(Figure 3-5a and Figure 3-6a) and if dr 1Z  , the hv bias of aperture and patch are the 

same as the hv bias of dipole (Zhang et al. 2009). As the drZ   varies, the hv bias varies 

slightly (Figure 3-6b). In the STSR mode, hv bias depends on the beam direction,   the 

amplitude ratio and relative phase between H and V fields, drZ  , and the radiation 

pattern of the antenna element.  In Figure 3-6 and Figure 3-7, the patch size does not 

change the hv bias at zero azimuths, but at other azimuths the hv bias are slightly 

changed by patch size. The hv bias correction can be done by either directly correcting 

the scattering matrix or jointly solving drZ  and hv . 
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Figure 3-5 
hv  of PPAR with aperture antenna elements (TE10 mode and mounted on 

an infinite ground plane, a=0.55λo , b=0.25λo) for the following cases (a) ATSR mode, 

various   (b) STSR mode, various   but 1  and 0o  . (c) STSR mode, various  

but 80o  and 0o  . (d) STSR mode, various   but 1   and 80o   . (
dr 1.0Z   and 

hv 0.9  in all cases.)  
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Figure 3-6 
hv  of PPAR with patch antenna elements for the following cases. (a) ATSR 

mode, various   but 
dr 1.0Z    and L = 0.32λo (b) ATSR mode, various Zdr but 

80o  ,and L = 0.32λo (c) STSR mode, various   but
dr 1.0Z   , 1  , 0o  , and L = 

0.32λo   (d) STSR mode, various patch dimension and Zdr but 80o  , 1  , and, 

0o  . ( 0.9hv   and / 0.95eL L in all cases.)  
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Figure 3-7
hv  of PPAR with patch antenna elements for the following cases. (a) STSR 

mode, various  but 
dr 1.0Z   , 80o  , 0o  , and L = 0.32λo.  (b) STSR mode, 

various Zdr and patch dimension but 80o  , 0.9716  , and 0o   (c) STSR mode, 

various   but
dr 1.0Z   ,  1  , 80o   , and L = 0.32λo . (d) STSR mode, various Zdr 

and patch dimension but 80o  , 1  , and, 60o    (
hv 0.9   and / 0.95eL L  in all 

cases.) 

 

3.2.4 LDR (Linear depolarization ratio) 

The LDR can be measured if the ATSR mode is used. LDRh is the ratio of 

vertical received power and horizontal received power in dB when horizontally 

polarized waves are transmitted. If the same measurement procedure is implemented on 

a PPAR as for the mechanically steered beam, the LDRh measured by PPAR is given by 
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The intrinsic LDR is negative infinity (in dB) if hydrometeors’ axes of symmetry are 

vertical (i.e., ( ) ( )

vh hv 0 b bs s ).  

 

 LDRv is the ratio of horizontal received power and vertical received power in 

dB when vertically polarized waves are transmitted. If the same measurement procedure 

is implemented on a PPAR as for the mechanically steered beam, the LDRv  measured 

by PPAR is given by 
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In Figure 3-8 and Figure 3-9, bias of LDR increases as the beam steers away from 

o o90 ; 0   . For a crossed aperture, the LDRv bias is a few decibels larger than the 

LDRh bias because the vertical polarized power is lower than the horizontally polarized 

power at larger  . For patch elements, different sizes of patches can have different 
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result sets of LDRh and LDRv (Figure 3-9b and d). LDR can be corrected by calibrating 

the scattering matrix.  

 

Figure 3-8 LDR versus the electronically steered beam direction of PPAR with aperture 

antenna elements (TE10 mode and mounted on an infinite ground plane, a=0.55λo , 

b=0.25λo) . (a) LDRh (b) LDRv ( dr 1.0Z   and 
hv 0.9  in all cases)  
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Figure 3-9 LDR of PPAR with patch antenna elements for the following cases. (a) 

LDRh , various  but  L = 0.32λo.  (b) LDRh , various patch dimension but 80o   . (c) 

LDRv , various  but L = 0.32λo.  (d) LDRv , various patch dimension but 80o    

(
dr 1.0Z   ,

hv 0.9  , and / 0.95eL L in all cases.) 

 

 

Ideal aperture and patch radiation elements are studied to correct biases in 

polarimetric parameters, which are expected if the parameters are measured with the 

electronically steered beam of a planar polarimetric phased array radar PPAR. It is 

shown that if the element’s far field radiation pattern is known (either from a theoretical 

formula or measurement), the projection matrix can be found, from which a correction 

matrix can be derived to mitigate biases. The theoretical projection matrices for aperture 

and patch elements are derived, and it is shown they are nearly complementary to the 
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projection matrix for crossed dipoles (section Projection matrix). The projection 

matrices are related as:  
1

dipole aperture



P PT and  
1

dipole patch



P PT . The biases expected in 

PPAR measured polarimetric parameters such as DRZ , hv , and LDR, are functions of 

the element’s radiation pattern, beam direction, the copolar correlation coefficient, the 

reflectivity field, and the array factor.  Bias correction of DRZ and hv  can be done by 

either directly correcting the scattering matrix or jointly solving drZ  and hv  (sections 

3.2.2 Differential Reflectivity and 3.2.3 Correlation coefficient). Bias correction of 

LDR can be done by calibrating the scattering matrix or by formulas (3-43) and (3-44) . 

It is shown that by using a patch size to obtain the same patterns for horizontally and 

vertically polarized fields, the bias of DRZ  is almost zero between elevation 0° to 15° 

for both ATSR and STSR modes. This is an important property that can be utilized in 

antenna design for PPAR so that polarization correction is minimal. 

 

For future work, because it is difficult to isolate the H and V polarized waves if 

they co-exist in each element aperture, the layout and shape of pairs of H and V 

polarized apertures in an array needs to be considered to minimize coupling. Coupling 

between array elements and feed lines is another issue that needs to be examined.  

 

3.3 Comparison of boresight contribution and integrations 

Zhang et al. (2009) and Lei et al. (2013) calculated the biases of polarimetric 

parameters considering only the boresight contribution of the radiation pattern (i.e., the 

effect of the entire copolar and cross-polar radiation patterns were ignored). In this 
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section, we compare the biases from the boresight contributions and those biases 

calculated when the entire radiation patterns are integrated. 

 

In order to obtain the integral contribution, the formulas in previous section (i.e. 

the section ‘2.6 The biases of polarimetric radar parameters calculated by pattern 

integration’) are used. The biases of polarimetric parameters considering only the 

boresight contribution of patch antenna can be found in Lei et al. (2013). The patch 

element used in both calculations is shown in Figure 2-7.  From Figure 3-10, it is found 

that the results of integral contribution are very similar to results of boresight 

contributions. These two only have very slight differences. The reasons are, for weather 

radar application, beams are narrow, most power is located within the mainlobe, and all 

sidelobes together contribute a relative small amount of power. Therefore, under these 

conditions, the simplified boresight formulas in Zhang et al. (2009), Zrnić et al. (2010), 

and Lei et al. (2013) can be used to calculate biases for PPPAR instead of using 

complex pattern integration formulas; these boresight formulas are equivalent to 

multiplying the element pattern with the array factor, provided the beams are directed 

more than a beamwidth from the principal plane. But patterns of the CPPAR still 

require complex pattern integration. 
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Figure 3-10 
hv 0.90  , DR 1Z dB  70o

o   with mainbeam’s various azimuth angle，

tapered. a) 
DRZ bias ATSR mode, b) 

hv  bias ATSR mode, c) 
DRZ bias STSR mode, d) 

hv  bias STSR mode 
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Chapter 4 CPPAR Bias and Correction 

The PPPAR discussed in the previous chapter, however, has significant 

deficiencies including polarization coupling, the increase in beam width and the loss of 

sensitivity when its beam scans away from the broadside. One method considers a 

projection matrix or correction matrix to correct the polarization coupling which has 

been discussed in chapter 3 (Zhang et al. 2009). Another new method to build a 

cylindrical polarimetric phased array radar (CPPAR) is introduced by Zhang et al. 

(2011). CPPAR has the property that the beam is always in the vertical principal plane 

and thus geometrically introduced cross-polar fields are zero. The incident fields 

generated from horizontal and vertical polarized antenna port of CPPAR will be 

orthogonal in all beam directions. The CPPAR would essentially eliminate the beam-to-

beam calibration that is required for a PPPAR. In the azimuth, the mainlobe is always at 

broadside and scan is achieved by shifting the column of active elements. For example, 

when the mainlobe points to 15 degrees in elevation, the normalized cross-polarization 

along boresight for cylindrical array is zero (i.e., negative infinity dB) (Balanis 1997), 

but has cross-polar peaks and its left and right nearby pixel pattern values are about 

 28dB. The very low cross-polorization effect of CPPAR benefits from its symmetric 

structure in all azimuths. 

 

The CPPAR is divided into four equal sectors (i.e., 90 degrees angle per sector), 

as shown in Figure 2-2. Each sector forms one beam. Radar beams scan similar to the 

way a fan rotates. The curvature of the cylindrical surface will cause an undesired 

pattern increase at far angles, which might be caused by asymmetrical and blockage of 
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the cylindrical phased array at far angles. Four equal sectors are chosen because then 

the undesired pattern increase is within an acceptable range. 

 

4.1 Bias of CPPAR 

In this section, the biases of CPPAR polarimetric radar parameters are 

calculated. General formulas are derived in the last section of Chapter 2, but results are 

presented for patch elements on planar and cylindrical surfaces, and operating at a 

frequency of 2.705 GHz—this frequency has been chosen because it is the one for 

KOUN, a prototype dual polarimetric WSR-88D for which we have radiation pattern 

measurements to compare with theoretical patterns presented in Chapter 2 ‘2.4.1 WSR-

88D radiation patterns’. The HFSS simulated patch element shown in Figure 2-7 are 

used to calculate the biases from Figure 4-1 to Figure 4-4. 

 

Figure 4-1 shows the biases of 
DRZ , hv  and dp as functions of 

e  with 
0 = 

45
o
 for the three antennas (Figure 2-2) operating in the STSR mode. Here we assume 

that true
DRZ is a constant independent of elevation angle. There are multiple sources of 

cross-polar fields that can cause bias (e.g., radiation from the so-called non radiating 

sides of the patch in Balanis (1997, chapter 14)); edge effects associated with the finite 

size ground plane; geometrically induced cross-polar field, etc). Another source of bias 

is the differential gains in the H and V copolar radiation patterns of the patch.  

 

In Figure 4-1, the PPPAR and CPPAR elements have weights given by (2-2) and 

(2-3) but without density and polarimetric compensation. Therefore, both the bias 
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caused by the geometrically induced cross-polar field and the bias caused by differential 

gains in the H and V contribute the biases shown in Figure 4-1a.  In Figure 4-1a, as the 

elevation angle increases, the PPPAR 
DRZ bias decreases because the horizontally 

polarized patch fields (Figure 2-7b) reduce more than the vertically polarized patch 

fields (Figure 2-7c). For the planar array, the
DRZ  bias is always positive at azimuth 45

o
, 

which is consistent with the results in Lei et al. (2013) when patch length L is 0.32λ. 

The size of the patch influences the ratio of H and V of gains and therefore influences 

the sign of the
DRZ  bias. The CPPAR has much lower

DRZ  and 
hv biases than the 

PPPAR. Because the CPPAR beam is azimuthally steered by commutation, the beam is 

always in a vertical principal plane which rotates azimuthally and synchronously with 

the beam. If the H and V gains of the patch were matched, the theoretical bias of the 

CPPAR would be zero as is the bias for the the WSR-88D and will be shown in the next 

section ‘4.2 Partial bias reduction of PPAR: adjusting antenna port voltages’. Therefore, 

the small negative increase of ZDR bias for the CPPAR (Figure 4-1a) is due to the 

differential gain of the patch.  

 

Applying Eqns. (2-20) to (2-27) to the theoretical patterns of WSR-88D and 

integrating θ and Φ from -30 degrees to 30 degrees, the ZDR and 
hv biases for WSR-

88D are obtained. To save computational time, we choose  30 degree about 

boresight—because most powers are located inside this region, and integration outside 

this region doesn’t affect the results. The ZDR bias is -0.0005 dB. In Zrnić et al. (2010), 

the 
DRZ bias, assuming a Gaussian shape for the main lobe for the cross-polar field with 

a peak of -35.5dB, is about -0.0016 dB.  
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Figure 4-1 Biases vs beam’s elevation angle 
e  for the STSR mode. hv 0.90  , 

1drZ  , DP 0  . Density and rotational compensation are not included. The beam is 

pointed at o

0 45  ,  a)  
DRZ bias, b) 

hv   bias , c) dp  bias. 
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Figure 4-2 Biases vs beam’s elevation angle 
e  for the ATSR mode, hv 0.90  , 

1drZ  , DP 0  . Density and rotational compensation are not included. The beam is 

pointed at o

0 45  ,  a)  
DRZ bias, b) 

hv   bias , c) dp  bias. 

 

 

4.2 Partial bias reduction of PPAR: adjusting antenna port voltages  

In this section, input voltages are adjusted to partially correct ZDR biases due to 

PPPAR and CPPAR H and V copolar peak gain differences. To obtain the adjustment 

factors to the input voltages to correct the imbalance in the H and V copolar fields, we 

neglect the cross-polar terms of F  in (2-17). The copolar transmit and receive patterns 

are the same, so we only need to derive the voltage adjustments to achieve equal H, V 

boresight fields incident on the scatterer. The voltage adjustments to achieve equal echo 

power for spherical scatterers require an additional adjustment which simply is the 
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square of the adjusted input voltages derived herein. Under these conditions and in the 

boresight direction, we have 

 
hh 0 0 hv 0 0 th

vh 0 0 vv 0 0 tv

hh 0 0 th hv 0 0 tv hh 0 0 th

vh 0 0 th vv 0 0 tv vv 0 0 tv

( , ) ( , )
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( , ) ( , ) ( , )

F θ φ F θ φ V

F θ φ F θ φ V

F θ φ V F θ φ V F θ φ V

F θ φ V F θ φ V F θ φ V

   
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(4-1) 

 

Eqn. (4-1) applies to PPPAR. For CPPAR, all 
0φ  in Eqn. (4-1) is replaced with 

0 nφ φ . 

To calculate ZDR and ρhv bias we are concerned with received power, so we can neglect 

the received echo phases. We could adjust both input voltages so that the total input 

power remains the same, but to simplify our analyses we assume only the H port patch 

voltage is adjusted so H and V echo powers are equal. In this case the adjusted H port 

patch power needs to be 

 

   
2

2 2( ) vv 0 0
th tv

hh 0 0

( , )

( , )

a F θ φ
V V

F θ φ

 
  
 

 
(4-2) 

which applies to the PPPAR. For CPPAR, all 
0φ  in Eqn. (4-2) are replaced with 

0 nφ φ , where 
o  and 

n are defined in Eqn. (2-3). But for the CPPAR the relative 

copolar gain varies only with changes in elevation angle. Because the array factor gain 

is independent of the polarization, the relative H and V gain functions in Eqn. (4-2) are 

those associated with the array element. But the relative gain of the array is needed in 

Eqn. (4-2) to correct reflectivity biases as a function of beam direction. 

 

Because in Chapter 2 section ‘2.6 The biases of polarimetric radar parameters 

calculated by pattern integration,’ bias formulas are derived assuming magnitudes of  
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thV  and 
tvV  are equal. In this section we apply voltages given by Eqn. (4-2) to correct 

for changes differential H, V gains. Moreover, because in section 3 we computed 

CPPAR radiation patterns without compensating for polarization and element density 

effects for the CPPAR, we have included those and recalculated the radiation matrix for 

the CPPAR including these compensations. However,  the biases formulas derived in 

Chapter 2  still apply just by replacing  F  with F , which is given by 
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(4-3) 

which applies to the PPPAR for the gain compensation. For CPPAR, polarization 

compensation is more complicated obtained by 
0 0

1

( , )nF   hh

for horizontal 

polarization and  
0 0

1

( , )nF   vv

for vertical polarization (that is all 
0φ  in Eqn. (4-3) are 

replaced with 
0 nφ φ ). For the CPPAR, the element density is not uniform as with the 

PPPAR. So the density compensation for the CPPAR is simply obtained by applying the 

multiplicative factor to cos( )o n   to Egn. (2-3) as did (Zhang et al. 2011). 

 

The CPPAR and PPPAR 
DRZ and 

hv  biases, recalculated using adjusted 

voltages and the modified radiation matric F for the CPPAR, are presented in Figure 

4-3 and Figure 4-4 for the STSR and ATSR modes of data collection. 
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After differential gain compensation, 
DRZ biases are greatly reduced. Comparing 

Figure 4-1a and Figure 4-3a, the ZDR bias caused by different gains of H and V is larger 

than the ZDR bias caused by geometrically induced cross-polar fields. In Figure 4-3a, 

DRZ biases for the CPPAR and WSR-88D are equal and zero for all directions. 

Moreover, although the ZDR bias for the PPPAR is significantly larger than for the 

CPPAR, the bias at low elevation angles less than 20
o
 is acceptably small.  

 

 

 

Figure 4-3 ZDR bias after input voltage adjustments vs beam’s elevation angle 
e  for 

the STSR mode ( 
o

0 45  , 
hv 0.90  , 1drZ  , DP 0  ). 

 

 

 

Figure 4-4 As Fig.4-3, but for the ATSR mode. 

 



82 

Another method to decrease the incident cross-polar fields can be acheived by 

adjusting H and V port voltages of PPAR. Specificly, it is realized by transmiting H and 

a small amount of V (or by transmiting V and a small amount of H) to obtain a pure 

E (or E ) field(Lei et al. 2012). 

 

 4.3 Characteristics of CPPAR 

Array lattices and element separations are examined using simulations to 

determine the optimal configuration that has the desired sidelobe level and cross-

polarization isolation needed for quality precipitation measurements. The simulation 

results are verified by the linear and ring array theory. Different lattice structures (i.e., 

rectangular and triangular) and their corresponding performances are compared, 

yielding the minimum number of array elements. Copolar and cross-polar pattern 

changes caused by 1) errors in mechanical positioning of the array elements, 2) 

quantization errors of the phase shifters, and 3) elements failures, are also examined. 

Tolerable error limits are provided for system design. 

 

4.3.1 Element Separation and Grating lobes 

The cylindrical array can be considered as a combination of linear arrays in 

elevation and ring arrays in azimuth. For weather radar, the scan domain is always 

between 0° and 30° in elevation. For linear arrays, a scan to 30° without grating lobes in 

visible space needs element spacing (Balanis 1997, chapter 6):  

 

0

1
0.6667

1 sin(30 )o

d


 


 

(4-4)   
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where d is the element spacing and 0  is the free space wavelength. Therefore a 

0.6667 0  vertical direction separation of elements on the cylindrical array will place 

the grating lobe outside 30
o
 of visible space in elevation, as will be shown in the 

following section “Array Lattice”. For the horizontal separation, ring array theory can 

be found in Hansen (2009). The azimuth   of the grating lobe is approximated by 

 
sin( )

2 2

r

s


   

 (4-5) 

Where 0, 1, 2,...r    and s is the inter-element spacing on the ring and 

normalized by 0 . 0r  gives the mainlobe at 0  . Positive and negative r give 

grating lobes at positive and negative   under the condition 1
2

r
s
 . To eliminate 

grating lobes in the visible space (i.e. front half hemisphere of array), we choose 

90o   and the separation turns out to be 0.707s  . In theory, the critical point (i.e., 

where the grating lobe is at the edge of visible space) is 0.707 0  separation. However, 

the computed critical separation obtained from our simulation is s = 0.73, which is a 

little larger than theory, but consistent with Hansen (Fig. 11.5 in Hansen 2009). 

 

4.3.2 Array Lattice 

The element lattice is designed according to the scan domain and the specified 

location of the grating lobes. If the scan domain is defined, an optimum lattice design 

uses a minimum number of elements to eliminate the peak of the grating lobes from 

being inside the visible space.  
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First, the critical points of grating lobes just outside the visible space, for the 

three lattices shown in Figure 4-6, are shown in Figure 4-5. In Figure 4-5, a sine space 

coordinate system is used in which cosw  , sin cosv   . The dots outside the unit 

circle are the grating lobe locations if the mainlobe is at broadside (i.e., the centers of 

the circles). The green arrows represent the shift of the grating lobe locations when the 

beam is scanned to 30° in elevation. The green arrow inside the unit circle is the scan 

domain of the radar, and the arrow length is cos(60°) cos(90°)  = 0.5. 

 

 

Figure 4-5 Sine-space grating-lobe locations for three lattice structures shown in 

Figure 4-6: rectangular lattice (left panel), horizontally staggered triangular lattice 

(center panel), and vertically staggered triangular lattice (right panel) 

 

 

Figure 4-6 Three lattice structures of array elements: Rectangular lattice (left), 

horizontally staggered triangular lattice (center), and vertically staggered triangular 

lattice (right)  
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Figure 4-7 Patterns for main beam at broadside (bottom row) and 30° elevation (top 

row) for the three corresponding lattice structures shown in Figure 4-6. 

 

Then, a set of simulations is run for various element separations, for each of the 

three lattice structures shown in Figure 4-5. The set of seperations that generated 

copolar radiation patterns that satisfied the conditions given in the next paragraph are 

entered into Figure 4-6, and the corresponding patterns are presented in Figure 4-7. The 

corresponding simulation results for the element separations given in Figure 4-6 

generate one-way patterns (Figure 4-7) that satisfy the specified conditions. 

 

For the simulation, the cylindrical array size is specified to be 8.54m in height 

and 6.0387m in radius. If an angular sector of active elements is 90°, this CPPAR 

antenna will generate a 1° beam, one comparable to that of the WSR-88D. This is so 

because the projection of each 90° sector onto a plane perpendicular to the beam of 
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cylindrical array is the same size as the area of the WSR-88D’s antenna. Array elements 

are crossed horizontal and vertical free space dipoles so that both H and V polarized 

waves can be transmitted and received.  A taper is applied to the excitation of the array 

elements so as to mimic the aperture distribution of WSR-88D given by Eqn. (2-3). If 

the grating lobes lie just outside visible space and the value of grating lobes at the edge 

are set to be just below  30dB, the element separation is determined and recorded in 

Figure 4-6. 

 

Rectangular lattice 

Due to its easier fabrication, a rectangular lattice is most common and is studied 

first. In the left panel of Figure 4-5, the grating lobe coming in from the bottom 

determines the element spacing in the vertical direction; 0.66λ0 entered into Figure 4-6 

is determined by running a set of simulations. The grating lobes that come in from left 

and right determine the azimuth separation (i.e., 0.71λ0 circumferential distance along 

the ring); this is also determined by running a set of simulations. The agreement of the 

element spacing obtained from simulations and that obtained from theory for the linear 

and ring array given in the previous section verify the correctness of the simulation. The 

broadside and 30° patterns are shown in the left two panels in Figure 4-7. The color 

scale of the patterns in this dissertation shows that the patterns are all dB below the 

mainlobe peak. 

 

Triangular lattice 
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Triangular lattice has two forms: a horizontally staggered triangular lattice and a 

vertically staggered one. The middle panel in Figure 4-5 is grating lobes at the edge of 

visible space for the horizontally staggered lattice. The bottom grating lobe determines 

the vertical separation of elements; the separation of 0.66λ0 was obtained from running 

a set of simulations. The azimuth separation of the lattice is determined by lower left 

and lower right grating lobes when beam scans to a 30 degree elevation. By running a 

set of simulated patterns for different azimuth spacings, the azimuth separation of 

0.77λ0 was obtained as shown in the middle panel of Figure 4-6. The corresponding 

copolar patterns are shown in the middle two panels in Figure 4-7. Similarly, the 

element separations for vertically staggered lattice are determined and are shown in the 

right panels of Figure 4-5, Figure 4-6, and Figure 4-7.  

 

Let’s take the horizontally staggered triangle lattice as an example to calculate 

the spacing using the relation of grating lobe locations and element separation. For 

planar array, theoretically derived formulas for grating lobe location and element 

separation relationship in sine space are availabe (Hansen 2009, chapter 2.2). However, 

there are no available formulas of grating lobe locations and element separation 

relationship for cylindrical array. Therefore, the methods for planar array are modified 

to predict the grating lobe location and element separation relationship for CPPAR. 

Here is an example of how we use the sine space to calculate the element separation by 

avoiding grating lobe locations for CPPAR. In Figure 4-8, due to curvature of CPPAR, 

the grating lobes move along curved lines when the beam does an elevation scan. Dots 

represent grating lobe locations. The green arrow inside the unit circle gives the scan 
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domain and its length is cos(60°)=0.5. If the bottom grating lobe is at the edge of unit 

circle when scanning to 30° elevation, coordinates of dot A before scanning (i.e., beam 

at broadside) are (  1.5,0). Then, the y coordinate of dot B is calculated by 

 1.5/2+cos(60°) =  0.25. Because dot B is on the unit circle, coordinates of B are 

(0.9682, 0.25), and the azimuth and elevation angles of B are about 90° and  14.48° 

respectively. Element spacing can be approximately calculated using the equation 

(Hansen 2009): 

sin( )
2 2 cos( )

r
s




  , where 
 
is the elevation angle in Fig.11.12 in Hansen 

(2009). The azimuth separation is given by 1/[2cos( 14.48 )sin(45 )] 0.73o os    . 

Vertical separation is 1/1.5 = 0.667λ0. If grating lobes are outside unit circle and set to 

be 30dB which is an acceptable sidelobe level for weather radar, the separations are 

slightly smaller than these. Therefore, theoretically derived separations approximate the 

separations obtained from simulations as shown in the middle panel of Figure 4-6.  

 

Due to the curvature of cylindrical array, there are denser columns than rows 

projected onto an equivalent planar array. Therefore, the horizontally staggered lattice, 

which makes the columns dense, uses fewer array elements than the vertically staggered 

lattice, which makes the rows dense.  To achieve the same grating lobes performance, 

the element ratio of rectangular vs. triangular lattice is 100:92. Thus the triangular 

lattice has 8% fewer elements compared with the rectangular lattice. Normally, a  

triangular lattice saves 15% elements for a planar array.  
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Figure 4-8 Grating lobe paths of CPPAR and PPPAR 

 

 

4.3.3 Error Effects 

Copolar and cross-polar radiation patterns are affected by 1) errors in 

mechanical positioning of the array elements, 2) element failures, and, 3) errors in the 

phase shifter; changes in radiation patterns are now discussed.  

 

Radiation pattern changes due to errors in positioning array elements (Figure 4-9) 

shows that copolar sidelobes increase by less than 10 dB for standard errors in locating 

elements is less than 0.05 cm in x, y, or z direction, and cross-polar radiation increases 

by less than 10dB. Thus containing increases in copolar sidelobes and cross-polar 

radiation should be relatively easy achievable for the 10-cm wavelength weather radar 

because fabrication techniques should be capable of placing element with accuracies 

finer than a half a mm.  
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Figure 4-9 Mechanical positioning errors. Copolar and cross-polar patterns for main 

beam at broadside. First column are patterns for perfect element location; second 

column patterns are obtained if 0.0045λ standard derivation is added to each element 

location; third column results are for adding 0.027λ standard derivation to element 

locations. 

 

It is a finite probability, however small, that a fault in the hardware or power 

suppy may cause antenna element to fail. An element failure simulation shows that if 

randomly selected elements fail, the sidelobes increase. Figure 4-10 shows the array 

patterns if 1% or 10% of the array elements fail.  

 

A typical phase shifter has a finite number of quantized phase states. The phase 

quantization introduces undesired quantization beams and affects gain and sidelobe 

levels. Phase quantization simulations shows that a 6 bit phase shifter does not have 

much effect of the patterns compared to none quantization patterns. And 6 bit phase 

shifter meets our needs for weather radar (Figure 4-11). 



91 

 

   

   

 

Figure 4-10 Random element failures. Co-pol and cross-pol  patterns for main beam at 

broadside. First column is no element failure; second column is 1% element failure; 

third column is 10% element failure.    
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Figure 4-11 Discretization of phase. Copolar and cross-polar  patterns for main beam at 

broadside. First column is no quantization; second column is using 6-bit phasor. 
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Chapter 5 Multi-faced PPAR 

In the previous chapter, we present the advantages of the Cylindrical 

Polarimetric Phased Array Radar (CPPAR) over those of the Planar Polarimetric Phased 

Array Radar (PPPAR) for weather applications. However, due to the manufacturing 

complexity of the CPPAR, multi-faced PPAR is introduced to find the design trade-offs 

(Figure 5-1).  

 

The CPPAR’s beam direction is always in the vertical plane bisecting the active 

sector, and azimuth scans are obtained by commuting the array excitation column by 

column.  Similar to the multi-faced PPAR, the beam direction is always in the vertical 

plane bisecting the active sector although the active section is not always exactly 

symmetric in azimuth any more. This slight asymmetry of the active section causes 

increases in biases of polarimetric radar parameters. The performance of multi faced 

PPAR lies between that of CPPAR and PPPAR as will be shown. 

 

 

 

 

Figure 5-1 Cylindrical, multi-faced, and four-face planar PPAR 

 

In this chapter, we calculate polarimetric radar parameter biases of multi-phased 

PPAR. The size of multi-faced PPAR is chosen as 5 meters in diameter and 3.53 meters 

in height, with 0.5 λ element separations for all cases. A 90 degree active sector is 
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always used (i.e. 4 sectors). For 12 columns per face of the multi-faced PPAR, the 

radian corresponding to each face is 15° as shown in Figure 5-2a; for 8 columns per 

face, the radian corresponding to each face is 10° as shown in Figure 5-2b; and for 4 

columns per face, the radian corresponding to each face is 5.07° as shown in Figure 

5-2c. By running simulations, we found that the radiation patterns from multi-faced 

PPAR are not exactly azimthally symmetric any more, as in those of CPPAR. 

 

By using the general formulas from (2-20) to (2-27) and (2-32) to (2-39) in the 

last section of Chapter 2, we integrate the radiation patterns to calculate the biases of 

DRZ  and 
hv . Figure 5-3, Figure 5-4, and Figure 5-5 are the results of the

DRZ  and 

hv biases for 12 columns per face, 8 columns per face, and 4 columns per face multi-

faced PPAR respectively. In these figures, 7.5°, 5°, and 2.5° are the azimuth limits for 

these three structures respectively because the biases period vary in azimuth. The 

elevation angle is chosen as 20 degree and the ideal dipole is used as the antenna 

element.  

 

The variation of 
DRZ bias in azimuth is about 0.04 dB for 12 columns per face 

and 0.02 dB for 8 columns per face and nearly zero dB for 4 columns per face. The bias 

variations are small and tolerable for weather observations.  

 

In order to compare with multi-faced PPAR, the biases for CPPAR are also 

calculated using the same parameters of multi-faced PPAR. For the similarly sized 

CPPAR (i.e. the 5 meters diameter and 3.53 meters in height), the biases are fixed 
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values at -0.169 dB for
DRZ  in STSR mode, -0.164 dB for 

DRZ  in ATSR mode, -0.0009 

for
hv in STSR mode, and -0.0015 for

hv  in ATSR mode.  

 

The results of 4 columns per face multi-faced PPAR approach the results of 

CPPAR. The average
DRZ biases of 8 columns per face multi-faced PPAR increase about 

0.03 dB compared with CPPAR and average 
DRZ biases of 12 columns per face multi-

faced PPAR increase about 0.06 dB compared with CPPAR. Therefore, the more 

columns on one face of a multi-faced PPAR, the larger the
DRZ biases. 

 

Figure 5-2 top view of multi-faced PPAR: a) 12, columns per face, b) 8 columns 

per face, and c) 4 columns per face. 
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Figure 5-3 
DRZ  and

hv  biases for 12 columns per face multi-faced PPAR, 0

0
70  , 

hv 0.9  , 1
DR

Z dB , ideal dipole element. Top row:
DRZ  biases in dB for the ATSR 

and STSR modes. Bottom row:
hv  biases for the ATSR and STSR modes. 
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Figure 5-4 
DRZ  and

hv  biases for 8 columns per face multi-faced PPAR, 0

0
70  , 

hv 0.9  , 1
DR

Z dB , ideal dipole element. Top row:
DRZ  biases in dB for the ATSR 

and STSR modes. Bottom row:
hv  biases for the ATSR and STSR modes. 
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Figure 5-5 
DRZ  and

hv  biases for 4 columns per face multi-faced PPAR, 0

0
70  , 

hv 0.9  , 1
DR

Z dB , ideal dipole element. Top row:
DRZ  biases in dB for the ATSR 

and STSR modes. Bottom row:
hv  biases for the ATSR and STSR modes. 
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Chapter 6 Conclusions and future work 

Planar or Cylindrical Polarimetric Phased Arrays are studied for weather radar 

applications. The copolar and cross-polar radiation patterns and polarimetric parameter 

estimation performances of Planar and Cylindrical Polarimetric Phased Array Radar are 

studied and compared with those obtained using a dual polarized parabolic reflector 

antenna (WSR-88D). At broadside, all three antennas have cross-polar patterns of 4 

peaks alternating phase symmetrically located about the copolar beam. PPPAR 

radiation pattern evolves into 1 cross-polar pattern mainlobe co-axial with the copolar 

mainlobe, which is the most effective in creating polarimetric polarimetric parameter 

estimate bias as the beam scans away from principle planes. It is found that the cross-

pol field along boresight of CPPAR is much less than that of PPAR. The general 

formulas to calculate the biases of polarimetric radar parameters for any kind of antenna 

for both ATSR and STSR mode are given in chapter 2. 

 

Planar Polarimetric Phased Array Radar (i.e., PPPAR) creates biases in observed 

polarimetric parameters when the beam is pointed off broadside. The biases of 

polarimetric parameters with a PPPAR are presented, and they are unacceptably large. 

Thus, a bias correction matrix needs to be applied for each beam direction. The biases 

expected in PPAR measured polarimetric parameters such as
DR

Z , 
hv  and LDR, are 

functions of the element’s radiation pattern, beam direction, the copolar correlation 

coefficient, the reflectivity field, and the array factor.  A bias correction matrix is 

developed to correct biases in polarimetric parameters for array elements consisting of 

either dipole, waveguide apertures or patches. If the element’s far field radiation pattern 
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is known (either from a theoretical formula or measurement), the projection matrix can 

be found from which a correction matrix can be derived to mitigate biases. The 

theoretical projection matrices for aperture and patch elements are derived, and it is 

shown they are nearly complementary to the projection matrix for crossed dipoles. 

Correction matrices are given for both the Alternate Transmission and Simultaneous 

Reception mode and the Simultaneous Transmission and Simultaneous Reception 

mode. It is shown that by using a patch size to obtain the same patterns for horizontally 

and vertically polarized fields, the bias of 
DR

Z  is almost zero between elevation 0° to 

15° for both ATSR and STSR modes. This is an important property that can be utilized 

in antenna design for PPAR so that polarization correction is minimal or no needed at 

all as with the WSR-88D. For PPPAR, we also compare the biases from the boresight 

contributions and those biases calculated when the entire radiation patterns are 

integrated and find that they are almost the same. Therefore, boresight contribution is a 

good approximation of the integration results. 

 

The PPPAR, however, has significant deficiencies for polarimetric 

measurements, as well as other limitations, such as increases in beamwidth, decreases in 

sensitivity, and high geometrically projected cross-polar fields when the beam scans 

away from the array’s broadside direction. The Cylindrical Polarimetric Phased Array 

Radar (i.e., CPPAR) is proposed to avoid these deficiencies. It is shown that the CPPAR 

has much lower geometrically induced cross-polar fields and smaller bias of 

polarimetric parameters than those of PPPAR. Biases in estimation of polarimetric 

variables including differential reflectivity, correlation coefficient, and differential 
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phase are derived for both STSR and ATSR modes. The biases are calculated by 

integration of the field in all directions assuming uniform reflectivity. Comparing 

CPPAR, PPPAR and WSR-88D, it is found that biases of CPPAR are much less than 

those of PPPAR and biases of CPPAR are approaching the biases of WSR-88D. After 

gain adjustment in H and V, the 
DR

Z  biases for PPAR reduce greatly. And 
DR

Z biases 

for CPPAR and WSR-88D are nearly zero after simple adjustments to the voltages 

applied to the H and V ports to account for the gain difference. Then, the CPPAR 

principle and potential performance are demonstrated through theoretical analysis and 

simulation. The element separation and grating lobes, element lattice and error effects 

are studied. The horizontally staggered triangular lattice can save 8% array elements 

than rectangular lattice but requires many circuit board crossovers.  

 

Multi-faced PPAR is introduced and discussed. And the polarimetric radar 

parameters biases are calculated by running simulations of pattern integration. It is 

found that the variations of  
DR

Z and
hv  is within tolerance for weather applications if 

several columns are placed on one face  for a 5m diameter multi-faced PPAR. 

 

Future work should employ a more types of antenna elements such as aperture 

coupled patch element that have more symmetric patterns and are less affected by the 

higher order mode of the feed lines. In addition, because it is difficult to isolate the H 

and V polarized waves if they co-exist in each element aperture, the layout and shape of 

pairs of H and V polarized apertures in an array needs to be considered to minimize 
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coupling. Coupling between array elements and feed lines is another issue that needs to 

be examined.  
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APPENDIX A: 

Analytically derived radiation patterns for Aperture and Patch  

Aperture: TE10 - Mode Distribution 

Let’s consider a rectangular aperture in an infinite ground plane, wherein the aperture is 

energized with a TE10 wave propagating in a uniform waveguide.  If the aperture has a 

vertical polarized wave (Balanis 1997, chapter 12: aperture antenna)  
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By equivalence principle, the equivalent sources are   
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Then, θL , L  are related to the electric vector potential and are defined by Balanis 

(1997, Eqn. (12.7)), whereas θQ  and Q are related to the magnetic vector potential and 

are also defined by Balanis (1997, Eqn. (12.6)); Q replaces N in this dissertation). 

θL , L , θQ  and Q can be obtained from (12.12) in Balanis (1997) 
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θ 0Q    (A5) 

 0Q    (A6) 

   

After the θL , L , θQ  and Q  are obtained, the far fields of a vertical polarized 

rectangular aperture can be calculated by substituting  Eqn. (A3) to Eqn.(A6) into  

(12.10) in Balanis (1997) to obtain the electrical fields of a vertically polarized aperture. 

That is 
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and 
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In the above equations, θE (i.e., V, the so-called vertically polarized field) is the copolar 

radiation field, and E (i.e., H, is the cross-polar field). 

 

Likewise the electric field of a horizontally polarized aperture can be calculated. At the 

aperture surface, we have 
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The equivalent magnetic current sources are  
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Then, θL , L , θQ  and Q can be obtained 
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where 0 0
2 2cos , sin sin

2 2

k a k b
X Y    , and 0L Q Q     . Therefore, the electric 

fields of the horizontally polarized aperture are: 
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where θE  and E are respectively the cross-polar and copolar fields. 

 

Radiating fields from the radiating slots of an ideal patch antenna 

The radiation fields of an ideal patch come from two sources: radiating and non-

radiating slots which will be discussed this subsection and next subsection respectively. 

The following derivation is limited to patches that have electrically thin substrates. The 

far field of a horizontally polarized patch can be found from (14-44) in Balanis (1997): 
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 Let’s next consider the radiation field from the radiating slots of a vertically 

polarized patch. A patch is composed by a pair of horizontally oriented radiating slots. 

So, the pattern of radiation from one slot is calculated first, and then the array factor is 

added to obtain the final radiation pattern for the pair of slots on opposite sides of the 

patch. Across each slot the electric field is uniform, that is (Balanis 1997, chapter 12: 

aperture antenna) 
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 (A16) 

And the equivalent sources are  
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Then, θL , L , θQ  and Q can be obtained: 
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where, 0 0
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θ 0Q  ;     0Q   

Therefore, the electric field radiated by one slot for a vertically polarized patch 

(i.e.  a horizontal magnetic dipole) is: 
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The array factor for the two slot elements (separated by eL  and both having the 

same magnitude and phase) of the patch is 
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    0 ez
2cos 0.5( cos )AF k L    (A22) 

 

Therefore the electric fields for the patch are 
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Radiating fields from the non-radiating slots of an ideal patch antenna 

The fields of non-radiating slots for a horizontally polarized patch are given in Balanis 

(1997). The radiation fields of non-radiating slots for a vertically polarized patch are 

derived by applying a coordinate system transformation to the already derived fields 

from the horizontally polarized patch. 

 

For horizontally polarized patch (i.e. vertical magnetic dipole in the radiating 

slots), the fields from the non-radiating slots are given by the eqs. 14-48(a) 14-48(b) in 

Balanis (1997). The normalization factors
2

ojk r

o e ok hL E e

r



  are taken out and the fields are 

 0rE   (A25) 



116 

 

( )

θ 2

2

sin cos
cos

2

j X YX Y
E Y e

X
Y






 
 
 

 
      

 

 (A26) 

 

( )

2

2

sin cos
cos sin

2

j X YX Y
E Y e

X
Y

  




 
 
 
 

      

 

 (A27) 

Where  
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Transformation from
rE , 

θE , and E   to 
xE , yE and 

zE , we have 
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 0yE    (A30) 
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In order to obtain the fields from the non-radiating slots of a vertically polarized patch 

we need transformation from , ,x y z  to , ,x y z    coordinate systems as shown below 
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Figure A: xyz to x y z  coordinates: transform horizontally polarized patch (left) to 

vertically polarized patch (right; only moments from non-radiating slots are shown). 

 

From Figure A, we have 
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And therefore,  
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Eqn. (A32) yields 
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and Eqn. (A33) can be recalculated as 
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Using eqs. (A29), (A30), (A31), (A34), and (A35), coordinate system transformation 

from 
xE , yE ,and

zE  to 
rE  , E ,and E  are: 
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Where 
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Therefore, eqs. (A36) to (A39) are the electrical fields for non-radiating slots generated 

from vertically polarized patch. 

 

And the corresponding array factor for the pair of non-radiating slots generated from 

vertically polarized patch is 
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APPENDIX B: 

Theoretical far field copolar and cross-polar radiation patterns for the 

WSR-88D 

 

 Analytical solutions for the copolar electric field radiated by a circularly 

symmetric aperture distribution can be obtained from equations given by Sherman and 

Skolnik (1970). Applying these equations and normalizing, we obtain the theoretical 

pattern of copolar power density 2

vv vv( ) ( ) /S u F u g  

4 1
10 4

4! ( ) ( )
( ) 20 Log 5.405 1.68 0.16

J u J u
S u

u u

 
  

 
   (B1) 

where 

2 sin
, 2 8.534, (KOUN) 0.1109m

πρ θ
u ρ λ

λ


  o

o ,  (B2)  

and ,  are the polar and azimuth angles in the spherical coordinate system with the 

polar axis along the beam—because of symmetry there is no  dependence for Fvv. 

 

Unfortunately there is no analytical solution for the cross-polar Fhv of an axially 

symmetric aperture distribution. Thus we use Jones’s (1954) theoretical formulas of the 

cross-polar far field of a reflector illuminated by a Hertzian dipole field to calculate the 

approximate angular distribution of cross-polar lobes, but the dipole’s aperture field 

distribution is multiplied by (B1) to account for the feed horn pattern weighting. Note 

the TE11 distribution of the WSR-88D horn’s radiation pattern partially cancels the 

cross-polar field generated by the reflector (Fradin 1961). Thus we cannot use the 



120 

magnitude of the cross-polar field as calculated by Jones (1954) to estimate the peak 

intensity of the cross-polar field. Cross-polar measurements are used to scale the 

theoretical cross-polar radiation patterns computed from Jones’ formulas.  

 

The integral for the far field cross-polar radiation field is given by Jones (1954, 

Eqn. (22)), and when ( )W   from (B1) is introduced this equation becomes 

3

2
x 2 2

0

( )sin(2 )
( )

(1 )

u J u
E A W u du

u


 


      (B3) 

where 
xE  is the cross-polar radiation in the far field, A   is a normalizing 

constant, / 2u f , f = 3.2 m is the focal length of KOUN’s parabolic reflector,  

2 sinkf  where 2 /k   , and J2 is the Bessel function of the first kind of order 2. 

The azimuth angle  around the beam axis is referenced to the dipole’s axis. This 

theoretical WSR-88D cross-polar pattern is plotted in Figure 2-8 and Figure 2-11 and is 

the one used to compute the polarimetric parameter biases for the WSR-88D. Also 

plotted for comparison in Figure 2-11c is the cross-polar pattern measured by Seavey 

Engineering on their antenna range in Massachusetts (Baron 2009).  
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APPENDIX C:  

Angle transformation from spherical coodinates ( , , )r     of the dish 

antenna to the ( , , )r   coordinates of Figure 2-1. 

 

 

 

 

  

 

 

 

 

 

 

Figure C The spherical coordinates ( , ,r   ) of Fig.1, and the spherical coordinates 

( , ,r    ) with polar axis along the dish antenna’s beam axis X = r.  

 

XYZ is the dish antenna coordinate system and the beam axis is along the X axis. 

( , , )X Y Z  and ( , , )r     are related by 
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system defined in Figure 2-1. ( , , )x y z  and ( , , )r    are related by 

sin cos

sin sin

cos

x r

y r

z r

 

 



   
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
   
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. 

The relations of xyz and XYZ coordinates using Euler angles are derived as follows.  

Let’s first find the rotation angles between the xyz and the XY’Z’ coordinate 

systems where Ox is in the XOY
’
plane (i.e. OY

’
 is in the xoX plane). Initally consider 

the XY
’
Z

’ 
coordinate systems to be overlapped with xyz coordinate system. First rotate 

XY
’
Z

’
 coordinates around X axis by ange  . Then rotate the XY

’
Z

’
 coordinates around 

Z
’
 axis by the angle  .  After these rotations OX is pointing to the ( ,o o  ) direction and 

the rotation angles   and   are calculated as now describe. First note that  

 2 2 21 (sin cos ) (sin sin ) cos
cos( )

2sin cos

o o o o o

o o

POA a
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 

     

  (C1) 

and assume that OP = 1; PB is perpendicular to xOy plane; OP is perpendicular to PC; 

PAB plane is perpendicular to the x axis; BD is perpendicular to PA and D is on line PA. 

Then 

 sin( )AP POA    (C2) 

   

 sin( )sin( )o oAB    (C3) 

   

 cos( )oPB   (C4) 

   

 tan( )PC POA   (C5) 
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It can be proved that PB is parallel to z and BD is parallel to Z, therefore β is 

equal to  PBD . Because PBD is equal to PAB , we finally  find that β and γ are 

given by 

 2 2 2

cos( )
2

AP AB PB
PAB a

AP AB


 
  


 

(C6) 

 POA 
 

(C7) 

After above two rotations, OX is along the (θo,ϕo) direction, but OY’ does not 

parallel to the ground. Therefore, one more step of rotation is needed which is to rotate 

XY’ Z’ coordinates around X axis by α degree to make OY’ lines with OY which is in 

the plane of xoy. It can be proved that OY’ is parallel to PC and OY is parallel to BC. 

 360 360 tan( / )o oPCB a PB PC       (C8) 

Therefore, for any point P, its coordinate system in xyz and XYZ are [x1, y1, z1] 

and [X1, Y1, Z1] respectively. And they are related by 
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APPENDIX D:  

Comparison of the analytically and HFSS derived radiation fields of a 

patch 

A microstrip patch antenna consists of an electrically conducting ground plane, a 

substrate, and an electrically conducting patch on top forming an open-ended cavity. In 

this appendix, the size of dual polarized square patch is the same size as the substrate 

and the ground plane is set to infinitely large. Horizontally polarized and vertically 

polarized patch formulas have been derived in Balanis (1997) and in Appendix A of this 

dissertation. For the theoretical patterns, both radiating slots and non-radiating slots are 

considered in this appendix. And those theoretical derived formulas are plotted in 

Figure D1 and to compare with HFSS simulated patch patterns (Figure D2).   

 

The parameters uses in both Figure D1 and Figure D2 are: 

frequency 2.7051 GHz 

dielectric constant of substrate 2.2 

substrate height 0.0142 λ 

Patch length and width 0.33114λ (this value is calculated from eqs. (14-1) to 

(14-3) in Balanis (Balanis 1997) to let Length L and 

width W the same) 
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Figure D1. Patch patterns calculated by theory (Balanis 1997). Both radiating slots and 

non-radiating slots are considered.  
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Figure D2. Patch patterns simulated by HFSS. The ground plane is infinitely 

 large and the size of patch is same size as the substrate.  
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In Figures D1 and D2, ( )pFvv
is the copolar pattern of the V field E  if the V antenna port 

is energized and vice versa for ( )pFhh . ( )pFhv is proportional to the H radiated electric field 

( E ) if the V port is energized and vice versa for ( )pFvh
.  Both copolar and cross-pol 

patterns are normalized by the copolar peak. Comparing Figure D1 and Figure D2, we 

see that the ideal patch model approximates the HFSS simulated fields of the patch, For 

the HFSS simulated patch, but the cross-polar pattern nulls (Figure D2) are not exactly 

at 090   as shown by the theoretical pattern (Figure D1). This change in null line 

location is due to the higher order modes caused by the unsymmetrical location of the 

feed lines.  

 

 


