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Abstract

In this dissertation we determine the reducibility of certain induced represen-

tations. We do this using Bushnell and Kutzko’s method of types and covers.

We consider certain quaternionic hermitian groups over a p-adic field. While

the types and covers can be found in the literature, the computation of the

associated Hecke algebras has not been done before.
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Chapter 1

Introduction

The area of interest in this dissertation is the representation theory of reductive

p-adic groups. Specifically we are interested in how Bushnell-Kutzko’s theory

of types and covers can be used to obtain explicit results on the reducibility of

parabolically induced representations.

Representation theory is a central area of modern mathematics. In particular,

the representation theory of reductive p-adic groups is central to the web of

conjectures known as the Langlands program whose influence pervades current

research in automorphic forms and number theory. The origins of representation

theory go back to Frobenius and others in the 1890s in the study of finite groups.

A key tool introduced by Frobenius is the method of induction, a way of building

representations of a group from representations of subgroups. To make this an

effective means of constructing or classifying representations, one needs to be

wise in the choice of both the subgroups one induces from and the representations

one induces.

In the case of reductive real or p-adic groups, it is natural to induce from

what are called parabolic subgroups. For general linear groups, these are (up

to conjugacy) the subgroups of invertible block upper-triangular matrices. A

proper parabolic subgroup is not reductive but admits a canonical reductive

quotient. For example, in the case of block upper-triangular matrices, this

reductive quotient is isomorphic to the corresponding group of block diagonal

matrices. One takes a representation of this reductive quotient, views it as a
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representation of the parabolic subgroup and then induces. The whole process

is called parabolic induction.

In contrast to reductive real groups, a central feature of reductive p-adic

groups is that there are irreducible representations that never occur as subrepre-

sentations of parabolically induced representations. These are the supercuspidal

representations. They serve as fundamental building blocks. Indeed, suppose Π

is an irreducible representation of a reductive p-adic group G. By insights of

Harish-Chandra and others it is known that there is a parabolic subgroup of G

and an irreducible supercuspidal representation π of its reductive quotient such

that Π occurs in the representation obtained from π via parabolic induction.

Moreover, only finitely many Π are related to the supercuspidal representation

π in this way.

Thus, a core problem in p-adic representation theory is to understand when

and how parabolically induced representations decompose, especially when the

inducing representation is supercuspidal. This is the problem I study in a very

special situation.

In the case of finite groups, Mackey theory provides an efficient way of

decomposing induced representations through the action of certain intertwining

operators. The same operators can be used to study parabolically induced

representations for p-adic groups. Their construction, however, is considerably

more subtle and involves a process of analytic continuation. By work of Langlands

and Shahidi [20], one knows that properties of these intertwining operators

give rise to local L-functions and that these L-functions are the key to many

reducibility questions. In [21] Shahidi studies certain reducibility questions in

this way for the split classical groups.

Bushnell-Kutzko’s method of types and covers [4] provides another way of

studying reducibility questions. It relies on detailed knowledge of the internal

2



structure of the inducing representation and certain related constructions. In

circumstances where this is available, the method can lead to strikingly explicit

results. Indeed, in [9] Kutzko and Morris use the method to reconsider a special

case of the situation studied by Shahidi in [21] and obtain a sharper form of

his results. In this dissertation, I study a situation that is analogous to the

one considered by Kutzko and Morris where the underlying group is non-split.

Pursuing the same basic strategy, I obtain an explicit reducibility result as

described in more detail below.

With the first chapter being this introduction, in the second chapter we give

some background that mainly aims to fix some notation and terminology. In the

third chapter we pose the question and walk through the answer.

Our approach is local. We note that Muić and Savin in [17] have answered

the reducibility question that we consider using global methods. Their work

is more general in that it is not restricted to the depth zero case. However,

their results are less explicit. Further, their approach only works when the

underlying field has characteristic zero. Our only restriction is that the residual

characteristic of the underlying field is odd.

We adopt the following conventions and notations. All rings are assumed to

have multiplicative identities. All representations are complex representations.

Given a category C, by x ∈ C we mean that x is an object in the category.

We often identify representations if they are equivalent as representations. In

this same way, we often say that one representation is a subrepresentation of

another representation if it is equivalent to a subrepresentation of the other

representation.
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Chapter 2

Background

In this chapter we lightly touch on some of the background needed. We will not

go into great detail, but only highlight tools and results that we shall use later.

The main sources for background are [5], [2], and [11].

2.1 Algebraic groups

We assume some familiarity with algebraic groups. There are several ways to

present the basic notions. We adopt here the view found in [22]. For this section

only, let K be an algebraically closed field. We recall that an algebraic group is

an algebraic variety over K that is a group, such that the multiplication and

taking inverse are morphisms of varieties. When the variety is affine we call

the group an affine (or linear) algebraic group. It is a fact that every affine

algebraic groups is isomorphic to some closed (in the Zariski topology) subgroup

of GLn(K) for some n. We follow standard abuses of notation in often not

distinguishing between algebraic groups and their groups of F -points.

2.1.1 About finite groups

We now describe finite groups of Lie type as in [5]. Assume that K has charac-

teristic p and let q = pe for some positive integer e. Let Fq : GLn(K)→ GLn(K)

be the homomorphism given by

Fq(aij) = (aqij).

4



A map F : G→ G is called a standard Frobenius map if for some embedding

i : G→ GLn(K) we have

i(F (g)) = Fq(i(g))

for all g ∈ G. A map F : G→ G is called a Frobenius map if Fm is a standard

Frobenius map for some m. For a Frobenius map F : G→ G we can talk about

the F -points of G:

GF = {g ∈ G : F (g) = g}.

Then GF is a finite subgroup of G. The finite groups we obtain in this way are

called the finite groups of Lie-type. Consider the following examples.

1. Let G = GLn(K). Let i : G→ G be the identity map. Let F : G→ G be

the map: (aij) 7→ (aqij). Then GF = GLn(Fq).

2. Let G = GLn(K). Let again i : G → G be the identity. Let F : G → G

be the map F : (aij) 7→ >(aqij)
−1. Then GF = {(aij) ∈ GLn(Fq2) :

(aij)(a
q
ij)
> = 1}. This is the unitary group Un(Fq2).

3. Let G = Spn(K). Let i : G → GLn(K) be inclusion. Let F : G → G be

the map F : (aij) 7→ (aqij). In this case, GF = Spn(Fq).

2.1.2 Locally profinite groups

The following is mainly based on the treatment in [2]. We say that a topological

group G is profinite if it is compact, Hausdorff, and totally disconnected. We can

also define a profinite group as the inverse limit of finite groups. Let (I,≤) be a

partially ordered set. Let {Hi}i∈I be a collection of finite groups all equipped
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with the discrete topology. Let fij : Hj → Hi for i ≤ j be group homomorphisms.

We require that fii is the identity of Hi and that fki ◦ fij = fkj for k ≤ i ≤ j.

Then we can form the inverse limit

lim
←−

Hn =
¶
(hi) ∈

∏
Hn : fij(hj) = hi

©
.

This is a group under (ai)(bi) = (aibi).

For p a prime, Hn = Z/pnZ, and the maps fij : Z/pjZ→ Z/piZ being given

by fij : x+ pjZ 7→ x+ piZ, the inverse limit is the p-adic integers Zp.

We also have the definition of a locally profinite group. We say that a

topological group G is locally profinite if it is Hausdorff and if each neighborhood

of the identity in G contains a compact open subgroup.

Lemma 2.1. A topological group is locally profinite if and only if it is locally

compact and totally disconnected.

A compact locally profinite group is a profinite group. Finite groups are

locally profinite.

2.2 Facts from representation theory

We recall some basic facts from representation theory. The following is not in

any way a systematic treatment, but merely serves to fix notation and highlight

tools that we shall need later.

2.2.1 Smooth representations

Let G be a locally profinite group. A representation (π, V ) of G is a complex

vector space V together with a group homomorphism π : G→ GL(V ).

Let K be a compact open subgroup of G. Then we let V K be the set of
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π(K)-fixed vectors: V K = {v ∈ V | π(k)v = v for all k ∈ K}. We call (π, V ) a

smooth representation if

V =
⋃
K

V K .

A smooth representation (π, V ) is called admissible if the spaces V K have finite

dimension.

Let

V ∗ = HomC(V,C)

be the dual of V . Define a representation (π∗, V ∗) of G by

(π∗(g)v′)(v) = v′(π(g−1)v)

for v ∈ V , v′ ∈ V ∗ and g ∈ G. This defines a representation of G, but it is not

necessarily smooth. Therefore we consider the space of smooth vectors

V ∨ = (V ∗)∞ =
⋃
K

(V ∗)K

where the union is taken over all compact open subgroups of G. We then define

the representation (π∨, V ∨) by π∨(g)(v) = π∗(g)v for v ∈ V ∨ and g ∈ G. This

representation is smooth and we call it the smooth dual or the contragredient of

(π, V ).

Given a representation π of H ≤ G and g ∈ G we let πg denote the

representation πg of Hg = g−1Hg given by πg(h′) = π(gh′g−1).
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2.2.2 Induced representations

Let G be a locally profinite group and let H be a closed subgroup of G. Let

(σ,W ) be a smooth representation of H. Let

IndGH(σ,W ) = {f : G→ W |f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G,

there is a compact open subgroup K ≤ G

such that f(gk) = f(g) for all g ∈ G, k ∈ K}.

Let G act on IndGH(σ,W ) by

(g.f)(x) = f(xg).

This defines a smooth representation of G. We also consider the space

indGH(σ,W ) = {f ∈ IndGH(σ,W ) | f has compact support modulo H}.

The same action as above defines a smooth representation of G. We call this

method of induction compact induction. That f has compact support modulo

H means that supp(f) is compact in G/H. That is, if p : G → G/H is the

projection map, then p(supp(f)) is compact.

We also define normalized induction. Let P be a parabolic subgroup of the

F -points of a reductive algebraic group defined over a p-adic field F . Let

ιGP (σ,W ) = indGP (δ
1/2
P ⊗ σ).

Here δP is a certain function: P → (0,∞). See section 3 in [2] for more on this

function. As a matter of notation we will write ιGP (σ) for ιGP (σ, V ).
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One important property of normalized induction is that

ιGP (σ)∨ ' ιGP (σ∨).

In particular parabolic induction takes self-dual representations to self-dual

representations.

2.2.3 Cuspidal representations

Definition 2.2. Let G be a finite group of Lie type. Let π be an irreducible

representation of G. We call π cuspidal if

HomG(π, IndGP τ) = {0}

for all proper parabolic subgroups P of G and τ representation of a Levi factor

of P inflated to P .

In the following chapter we will, as mentioned earlier, study reducibily of

induced representations. A key requirement is that the representation being

induced has depth zero. The general definition of depth can be found in [16]. In

chapter 3 we will state the definition in the setup that we use there.

We recall Frobenius Reciprocity. Let G be a locally profinite group. Let H

be a open subgroup of G. Let (π, V ) be a representation of G and (σ,W ) a

representation of H. Then

HomG(indGH σ, π) ' HomH(σ, π|H).
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For H a closed subgroup of G, we have

HomG(π, IndGH σ) ' HomH(π|H , σ).

We also recall Mackey’s Irreducibility Criterion which is often used in conjunction

with Frobenius Reciprocity. The original reference for this is [13]. Let G be

a locally profinite group and H an open and compact mod center subgroup

of G. Let (π, V ) be a smooth irreducible representation of H. Then indGH π is

irreducible exactly when

Hom(πg|H∩Hg , π|H∩Hg) = {0}

for g 6∈ H.

2.3 Finite groups of Lie type

The following highlights certain aspects that we shall make reference to later. A

fuller treatment of the theory of finite groups of Lie Type can be found in [5]

where precise statements and definitions can be found. Another good resource

is [6].

In the following we abuse notation and let G = GF be a finite group of Lie

type with a Frobenius map F : G → G. As described well in [5] we have the

so-called Deligne-Lusztig (generalized) characters RT,θ where T is a maximal

torus in G and θ an irreducible character of G. We recall that θ is said to

be in general position if the only element of W (T ) = NG(T )/T that fixes θ is

the identity. In the case where θ is in general position ±RT,θ is an irreducible

character of G.

For χ ∈ Irr(G) a character there is a maximal torus T and θ ∈ Irr(T ) such
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that 〈χ,RT,θ〉 6= 0. Here 〈·, ·〉 is the usual scalar product. This means that all

irreducible characters of G occur as constituents of some RT,θ. We say that two

pairs (T, θ) and (T ′, θ′) are geometrically conjugate if

� there is a g ∈ G such that T = gT ′ and

� if g ∈ GFn for some n, then θ ◦NFn/F = θ′ ◦NFn/F ◦ Ad(g).

Here Ad(g) is conjugation by g and NFn/F is the reduced norm.

If (T, θ) and (T ′, θ′) are not geometrically conjugate, then RT,θ and RT ′,θ′

have no irreducible components in common.

Each irreducible character of G determines a unique geometric conjugacy

class [T, θ]. We say that two characters are (geometrically) conjugate if in

this way they give rise to the same class. An irreducible character χ is called

unipotent if 〈RT,1, χ〉 6= 0. Note that all unipotent characters form a single

conjugacy class. An irreducible character χ is called regular if 〈Γ, χ〉 6= 0 where

Γ is the Gelfand-Graev character (See chapter 14 in [6] for more on this). An

irreducible character will be called semi-simple if its dual is (up to sign) a regular

irreducible character. Note that the only semisimple unipotent character is the

trivial character.

If (T ∗, F ∗) is dual to (T, F ), then Irr(T F ) ' (T ∗)F
∗

(see chapter 13 in [6] for

more on this). Note that the θ in the RT,θ’s are exactly characters of T , so using

this isomorhism (of groups) we get elements of the dual torus T ∗.

Suppose that (G,F ) and (G∗, F ∗) are in duality with corresponding dual

tori T and T ∗. Then we have have a bijection between the pairs {[T, θ]} and

F ∗-stable semisimple conjugacy classes in G∗.
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2.4 Types and covers

The theory of types and covers is described in detail in [4]. We adopt the approach

given there. We will, though, also rely on the presentations given in [11] and [3].

Let F be a non-Archimedean local field. Let G be the F -rational points of a

connected, reductive, algebraic group defined over F . Then G is (isomorphic

to) a closed subgroup of GLn(F ) for some n. Since GLn(F ) is locally profinite,

G is locally profinite. We recall that this means that G is locally compact and

totally disconnected, or equivalently, that each neighborhood of the identity in

G contains a compact open subgroup.

We note that G is unimodular, so a left Haar measure is a right Haar measure

and vice versa. We fix a Haar measure µ on G.

Let R(G) be the category of smooth representations of G. That is, the

objects in R(G) are the smooth representations and the morphisms are G-maps

between representations. Given a smooth representation π of G, there is a

parabolic subgroup P of G with Levi decomposition P = LU (with L the Levi

factor) and an irreducible supercuspidal representation σ of L such that π is

a composition factor of ιGP (σ). We note that if π is supercuspidal then L = G.

The pair (L, σ) is not unique. We say that two pairs (L1, σ1) and (L2, σ2) are

inertially equivalent if there is a g ∈ G such that L2 = Lg1 and σ2 ⊗ χ ' σg1 for

some unramified character χ of L2. We let [L, σ] = [L, σ]G be the equivalence

class and we let B(G) be the set of equivalence classes. Given π ∈ R(G) we

then obtain a unique equivalence class I(π) ∈ B(G). We call I(π) the inertial

support (or just support) of π.

For s ∈ B(G) we let Rs(G) be the (full) subcategory of R(G) consisting of

all smooth representations π′ with inertial support I(π′) = s. We can now state
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the Bernstein decomposition:

R(G) =
∏

s∈B(G)

Rs(G).

Let s ∈ B(G). Then fix L and σ such that s = [L, σ]. Then let sL = [σ, L]L ∈

B(L). Given this setup with P a parabolic subgroup of G with Levi-factor L,

we have the normalized induction functor

ιGP : RsL(L) −→ Rs(G).

2.4.1 Types

Let K be a compact open subgroup of G. Let (ρ,W ) be an irreducible smooth

representation of K. For a smooth representation (π, V ) of G we let V ρ be the

ρ-isotypic subspace of V . That is, V ρ is the sum of all irreducible K-subspaces

of V which are equivalent to ρ:

V ρ =
∑
W ′
W ′

where the sum is over all W ′ such that (π |K ,W ′) ' (ρ,W ).

Let H(G) be the space of all locally constant compactly supported functions

f : G→ C. This is a C-algebra under convolution ?. That is, for f, g ∈ H(G)

we have

(f ? g)(x) =
∫
G
f(y)g(y−1x) dµ(y).

We have here fixed a Haar measure µ on G. We note that H(G) only has an

identity when G is a discrete group. For (π, V ) a representation of G, H(G) acts

13



on V via

hv =
∫
G
h(x)π(x)vdµ(x)

for h ∈ H(G) and v ∈ V . We identify R(G) and H(G)−Mod.

Let eρ be the element in H(G) defined with support K such that for each

x ∈ K,

eρ(x) =
dim ρ

µ(K)
trW (ρ(x−1)).

Then eρ is an idempotent in H(G), that is, eρ ? eρ = eρ.

Let Rρ(G) be the (full) subcategory of R(G) consisting of all (π, V ) where

V is generated by V ρ = eρV (the ρ-isotypic vectors). That is, (π, V ) ∈ Rρ(G) if

and only if

V = H(G) ? eρV.

We can now state the definition of a type.

Definition 2.3. Let s ∈ B(G). We say that (K, ρ) is an s-type in G if Rρ(G) =

Rs(G).

2.4.2 Hecke algebras

We define the Hecke algebra:

H(G, ρ) = {f : G→ EndC(ρ) : supp(f) is compact and

f(k1gk2) = ρ(k1)f(g)ρ(k2) ∀ki ∈ K, g ∈ G}.
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There is a canonical isomorphism

H(G, ρ)⊗C EndC(W )
'−→ eρ ?H(G) ? eρ,

and a corresponding functor

V 7→ V ρ : Rρ(G) −→ eρ ?H(G) ? eρ −Mod.

So we get a functor

Mρ : Rρ(G) −→ H(G, ρ)−Mod.

The importance of types is seen in the following theorem

Theorem 2.4. The following are equivalent:

1. (K, ρ) is an s-type in G.

2. For π ∈ Irr(Rs(G)) we have I(π) = s.

3. The functor Mρ is an equivalence of categories.

2.4.3 Covers

Definition 2.5. Let P = LU be a parabolic subgroup with Levi factor L and let

P = LU be its opposite. We will in general denote the L-opposite of a parabolic

subgroup P by P . Let K be a compact open subgroup of G and let (σ,W ) be

an irreducible representation of K. Then we say that (K, σ) is decomposed with

respect to (L, P ) if the following hold:

1. K = (K ∩ U)(K ∩ L)(K ∩ U).

2. K ∩ U , K ∩ U ≤ ker(σ).
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For (K, ρ) decomposed with respect to (L, P ) we write KL = K ∩ L and we

write ρL for ρ |KL . Let IG(ρ) = {g ∈ G : there exists f ∈ H(G, ρ) such that g ∈

supp(f)}. Let H(G, ρ)L = {f ∈ H(G, ρ) : supp(f) ⊆ KLK}.

Proposition 2.6. Let (K, ρ) decompose with respect to (L, P ). Then

1. ρL is irreducible.

2. IL(ρL) = IG(ρ) ∩ L.

3. There is an embedding

T : H(L, ρL) −→ H(G, ρ)

such that if f ∈ H(L, ρL) has support KLzKL for some z ∈ L, then T (f)

has support contained in KzK.

4. The map T induces an isomorphism of vector spaces

H(L, ρL)
'−→ H(G, ρ).

Definition 2.7. An element z ∈ L is called (K,P )-positive if

1. z(K ∩ U)z−1 ⊆ K ∩ U ,

2. z−1(K ∩ U)z ⊆ K ∩ U .

Definition 2.8. An element z ∈ L is called strongly (K,P )-positive if

1. z is (K,P )-positive,

2. z is in the center of M : z ∈ Z(M),
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3. for any compact open subgroups K1 and K2 of U , there is an integer m ≥ 0

such that zmK1z
−m ⊆ K2,

4. for any compact open subgroups K ′1 and K ′2 of U , there is an integer m ≥ 0

such that z−mK ′1z
m ⊆ K2.

Let

H(L, ρL)+ = {f ∈ H(L, ρL) :

supp(f) consists of (K,P )-positive elements}.

The isomorphism of vector spaces T restricts to an embedding of algebras

T : H(L, ρL)+ ↪−→ H(G, ρ).

This embedding extends to H(L, ρL) under the following condition.

Theorem 2.9. The embedding T extends to an embedding of algebras

t : H(L, ρL) ↪−→ H(G, ρ)

if and only if T (φz) is invertible for some strongly (K,P )-positive element z. If

this embedding exists, it is unique.

Proposition 2.10. We have the following.

1. Strongly (K,P )-positive elements exist.

2. Given a strongly (K,P )-positive element z ∈ L, there is a unique function

φz ∈ H(L, ρL) with support KLzKL such that φz(z) is the identity function

on W .
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Let H(G, ρ)L = {f ∈ H(G, ρ) : supp(f) = KLK}. This is a subspace of

H(G, ρ).

Definition 2.11. Let L be a proper Levi subgroup of G. Let KL be a compact

open subgroup of L, and let ρL be an irreducible smooth representation of KL.

Let K be a compact open subgroup of G and let ρ be an irreducible smooth

representation of K. Then we say that (K, ρ) is a G-cover of (KL, ρL) if

1. the pair (K, ρ) is decomposed with respect to (L, P ) for every parabolic

subgroup P of G with Levi factor L;

2. L ∩ L = KL, and ρ|L ' ρL;

3. The embedding T : H(L, ρL)+ ↪→ H(G, ρ) extends to an embedding of

algebras t′ : H(L, ρL) ↪→ H(G, ρ).
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Chapter 3

Quaternionic Hermitian Groups

We now turn to the study of quaternionic hermitian groups.

3.1 Setup

Let F be a non-Archimedean local field of residual characteristic not equal to 2

with uniformizer $F . Write νF : F → Z ∪ {∞} for the normalized valuation on

F so that νF ($F ) = 1. Thus the ring of integers OF = {x ∈ F : ν(x) ≥ 0} and

the unique maximal ideal pF = {x ∈ F : ν(x) > 0}. Write q for the order of the

residue field kF = OF/pF . Then q = pf for some odd prime p and some positive

f . Let D = F ⊕ iF ⊕ jF ⊕ kF be the unique quaternionic division algebra over

F . Here i2, j2, k2 ∈ F are non-squares in F . For x = x0 + ix1 + jx2 + kx3 we

denote by x̄ the involution

x0 + ix1 + jx2 + kx3 = x0 − ix1 − jx2 − kx3.

For a matrix (gij) ∈ Mn(D), let ḡ = (ḡij). We have the reduced norm NrdD :

D → F . The map

νD : D → Z ∪ {∞}
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given by

νD(x) = νF (NrdD(x))

is a valuation on D. As with F , we have the ring of integers OD, the maximal

ideal pD, and the finite residue field kD. Note [kD : kF ] = 2, so |kD| = q2.

Lemma 3.1. One can choose a uniformizer $D in D such that $2
D = $F .

See [18] for a proof of this. We fix $D as in the lemma.

Definition 3.2. Let π be an irreducible supercuspidal representation of GLn(D).

Let K = GLn(D) and K1 = 1 + $DMn(OD). We say that π has depth zero

if πK1 6= {0}. That is, π has depth zero exactly when it has non-trivial fixed

vectors under K1.

3.1.1 The groups

Let ε ∈ {±1} and let n > 1 be an integer. Let In be the n× n identity matrix

and let Jε be the 2n× 2n matrix

Jε =

Ü
0 In

εIn 0

ê
.

Define the group

Gε = {g ∈ GL2n(D) : g∗Jεg = Jε}

where for g = (gij), g
∗ = (gij)

> = (gji). Then G1 is an inner form of Sp(4n, F )

and G−1 is an inner form of SO(4n, F ). We will sometimes drop the subscript ε

and just write G.
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Let P be the standard Siegel parabolic subgroup of Gε with standard Levi

decomposition

P = LUε.

Thus

L =


Ü
a 0

0 >ā−1

ê
: a ∈ GLn(D)

 ' GLn(D)

and

Uε =


Ü

1 X

0 1

ê
: εX +X

>
= 0

 .

3.1.2 The question

Let z ∈ C be a complex number. Let Nrd denote the reduced norm from Mn(D)

to F (see [18]). The characters χz given by χz(g) = z−νF (Nrd(g)) for g ∈ L are

the unramified characters of L. We write Xnr(L) for the group of unramified

characters of L. Thus C× ' Xnr(L) via the map z 7→ χz.

Let π0 be an irreducible unitary supercuspidal representation of L of depth

zero and let χ ∈ Xnr(L). The question we wish to answer is

When is ιGεP (π0 ⊗ χ) reducible?

That is, we want to find the characters χ such that this induced representation

is reducible.

First, by Corollary 2 in [19], if ιGεP (π0 ⊗ χ) is reducible for some χ, then

wπ0 ' π0 ⊗ ν
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for some ν ∈ Xnr(L) where w denotes the non-trivial element of NG(L)/L,

represented by ( 0 ε
1 0 ). We note the effect on an element from L:

w
Ü
a 0

0 >ā−1

ê
=

Ü
>ā−1 0

0 a

ê
.

Thus wπ0(g) = π0(
>ḡ−1). By Lemma 1.1 of [17], wπ0 ' π∨0 . Suppose

wπ0 ' π0ν. We write ν = η/wη for some η ∈ Xnr(L). Note this is possible since

wη = η−1, so we are simply choosing a square root of ν. Then wπ0
wη ' π0η, that

is,

w(π0η) ' π0η.

Hence, replacing π0 by a suitable unramified twist, we can arrange for π0 to

be self-dual (and still unitary): π∨0 ' π0. From now on, we assume that π0 is

self-dual.

3.2 Construction of π0

We want to understand how π0 is constructed. Consider the maximal compact

open subgroup K = GLn(OD) of L. Let K1 = 1 +$DMn(OD). Then K/K1 '

GLn(kD). Since π0 has depth zero,

π0|K ⊇ ρ.

where ρ is the inflation to K of an irreducible cuspidal representation (σ, U) of

K/K1 ' GLn(kD) = GLn(Fq2). To understand π0 we therefore ask the question:

What are the irreducible representations of L ' GLn(D) that contain ρ upon

restriction to K? First we focus on σ.
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We know that the character of σ is a Deligne-Lusztig character:

char(σ) = ±RT,θ

for some minisotropic torus T ' F×q2n of GLn(Fq2) and some regular character

θ : F×q2n → C
×. Regularity of θ means that

θγ 6= θ

for all non-trivial γ in the Galois group Gal(Fq2n/Fq2) where γθ(x) = θ(γ(x)).

We now fix this pair (T, θ). Since ρ is inflated from σ we write

ρ = ρθ.

3.2.1 Structure of π0

Let

K̃ = NG(ρ) = {x ∈ G | xK = K and xρ ' ρ}.

Let ρ̃ be any extension of ρ to K̃ that contains ρ. This extension exists

because K̃/K is cyclic. Then we claim that

indL
K̃
ρ̃

is irreducible. To show this we have to show that the elements intertwining ρ̃

are exactly the elements from K̃. Say that g ∈ L intertwines ρ̃. So

Hom
K̃∩gK̃(ρ̃|

K̃∩gK̃ ,
gρ̃|

K̃∩gK̃) 6= {0}.
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Restricting to K,

HomK∩gK(ρ|K∩gK , ρ|K∩gK) 6= {0}.

That is, g intertwines ρ. By “intertwining implies conjugacy” (see [7]), g ∈ K̃.

Hence by Mackey’s criterion, indL
K̃
ρ̃ is irreducible.

Now say that ρ̃1 and ρ̃2 irreducible representations of K̃ that contain ρ (upon

restriction to K). Then the induced representations indL
K̃
ρ̃1 and indL

K̃
ρ̃2 are

irreducible. Suppose that

indL
K̃
ρ̃1 ' indL

K̃
ρ̃2.

Then

{0} 6= HomL(indL
K̃
ρ̃1, indL

K̃
ρ̃2)

' Hom
K̃

(ρ̃1, indL
K̃
ρ̃1|K̃)

' Hom
K̃

(ρ̃1,⊕g∈K̃\L/K̃ indK̃
K̃∩gK̃

gρ̃2|K̃∩gK̃).

Thus there is a g ∈ K̃\L/K̃ such that

Hom
K̃∩gK̃(ρ̃1|K̃∩gK̃ ,

gρ̃2|K̃∩gK̃) ' Hom(ρ̃1, indK̃
K̃∩gK̃

gρ̃2|K̃∩gK̃) 6= {0}.

That is, g intertwines ρ̃1 with ρ̃2. As before this means that g intertwines ρ. So

g ∈ K̃ and ρ̃1 ' ρ̃2.

In sum, we have a bijection from equivalence classes of irreducible represen-

tations of K̃ containing ρ to equivalence classes of irreducible representations of
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L containing ρ given by

ρ̃ 7→ indL
K̃
ρ̃.

We will show in the next section that K̃ = K〈$F 〉. This implies

π0 = indL
K̃
ρ̃.

Note π0 self-dual implies ωπ0($F ) = ±1, where ωπ0 denotes the central character

of π0. As ρ̃ is completely determined by its value at $F , it follows that there

are exactly two possibilities for π0.

3.3 Computing K̃

We have

〈$F 〉K = Z(G)K ≤ K̃ ≤ NG(K) = 〈$D〉K.

Note the index of K̃ in 〈$D〉K is 1 or 2 since

|〈$D〉K/〈$F 〉K| = 2.

We want to prove the following:

K̃ = 〈$F 〉K.

That is, we want to prove that $D 6∈ K̃. This will take some time. The proof

divides naturally into two cases.
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3.3.1 Two cases

We have

π0 = indL
K̃
ρ̃,

π∨0 =
Ä
indL

K̃
ρ̃
ä∨ ' indL

K̃
ρ̃∨.

Thus ρ̃ and ρ̃∨ intertwine in L which implies that ρ and ρ∨ intertwine in L and

so ρ and ρ∨ are conjugate in L (see [7]).

Hence we are in one of two cases:

(A): ρ ' ρ∨ or (B): $Dρ ' ρ∨.

We consider these seperately. We first need some preliminary observations. Let

k = Fq2 and l = Fq2n , so the extension l/k has degree n.

Lemma 3.3. Let ψ and φ be regular characters of l×. If

tr(ρψ) = tr(ρφ)

on l×, then

ρψ ' ρφ.

Proof. In chapter 7 of [5] one finds the character formula for the RT,θ’s. Using a

version from [12], we have for α ∈ l×

trρψ(α) = c
∑

ν∈Gal(l/k)

ψν(α) = c
∑

ν∈Gal(l/k)

ψ(ν(α))
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where the constant c depends only on the field extension k(α)/k. Hence, if

tr ρψ = tr ρφ on l×, then

∑
ν∈Gal(l/k)

ψν(α) =
∑

ν∈Gal(l/k)

φν(α),

for all α ∈ l×. Now let Γ = l× o Gal(l/k) where Gal(l/k) acts on l× in the

obvious way. We form the induced representations

τψ = indΓ
l× ψ and τφ = indΓ

l× φ.

Note τψ and τφ are irreducible by Mackey’s criterion. The support of tr τψ is

contained in l×. Further, for α ∈ l×,

tr τψ(x) =
∑

ν∈Gal(l/k)

ψν(x).

We have the same formula for τφ and so

tr τψ = tr τφ.

Hence τψ ' τφ. That is, indΓ
l× ρψ and indΓ

l× ρφ are isomorphic. Thus, by Frobenius

Reciprocity,

1 = dim HomΓ(indΓ
l× ρψ, indΓ

l× ρφ)

= dim Homl×((indΓ
l× ρψ)|l× , ρφ)

= dim Homl×

Ñ ⊕
ν∈Gal(l/k)

ρνψ, ρφ

é
.

So there is a ν ∈ Γ such that ψν = φ. Hence ρψ ' ρφ.
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Proposition 3.4. With notation as above,

ρ∨θ ' ρθ−1 .

Proof. For x ∈ l×, there is a constant c (which depends only on k(x) = k(x−1))

such that

tr ρ∨θ (x) = tr ρθ(x
−1)

=
∑

ν∈Gal(l/k)

θν(x−1)

=
∑

ν∈Gal(l/k)

(θ−1)ν(x)

= tr ρθ−1(x).

So from lemma 3.3, ρ∨θ ' ρθ−1 .

Write ρθ for the representation given by ρθ(g) = ρθ(ḡ). For g = (aij) ∈

GLn(Fq2), ḡ = (aqij).

Proposition 3.5. Let θ : l× → C
× be a regular character. Then

ρθ ' ρθq .

Proof. We recall that l = Fq2n and k = Fq2 . Fix the k-vector space V = kn.

Then Mn(k) ' Endk(V ). Let i : l ↪→ Mn(k) be an embedding of k-algebras.

Write φ : l → l for the map λ 7→ λq and Φ : Mn(k) → Mn(k) for the map
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(aij) 7→ (aqij). Consider the diagram

l
i //

φ

��

Mn(k)

Φ
��

l
i
//Mn(k).

Let f = Φ ◦ i and g = i ◦ φ. We can make V into an l-module in two ways:

� λ.v = Φ(i(λ))v,

� λ∗v = i ◦ φ(λ)v = i(λq)v.

Note that for λ ∈ k we have λ.v = Φ(i(λ))v = Φ(diag(λ))v = diag(λq)v =

i(λq)v = λ∗v. Hence the two different actions agree on k. These l-module

structures must be isomorphic as there is only one l-module (up to isomorphism)

of a given dimension. Thus there is an isomorphism (of l-modules) h : V → V

such that

h(λ.v) = λ∗h(v).

Note that h is k-semi-linear since the module structures agree on k. Thus, for

v ∈ V

h(λv) = λqh(v).

Likewise, h−1(µv) = µqh−1(v) for v ∈ V and µ ∈ k. Now, for a ∈ Endk(V ) we
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have hah−1 ∈ Endk(V ). We see this from

(hah−1)(λv) = ha(λqh−1(v))

= h(λqah−1(v))

= λq
2

hah−1(v)

= λ(hah−1)(v)

for λ ∈ k. Thus

h(Φ(i(λ))v) = i(λq)h(v).

That is

h ◦ Φ(i(λ)) ◦ h−1 = i(λq).

Hence for α ∈ i(l×),

tr ρθ(α) = tr ρθ(ᾱ)

= tr ρθ(Φ(α))

= tr ρθ(h
−1)αqh)

= tr ρθ(α
q).

By Lemma 3.3, ρθ ' ρθq .
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3.3.2 Case (A): ρ ' ρ∨

We begin the treatment of Case (A). Recall Gal(l/k) = 〈Fr〉 where Fr(λ) = λq
2
.

In this case we have ρθ−1 ' ρθ = ρ. Thus there exists a γ ∈ Gal(l/k) such that

θγ = θ−1.

Applying γ twice we get

θγ
2

= θ.

Since θ is regular, γ2 = 1. Assume γ = 1. Then θ = θ−1, so θ2 = 1 and the

image of θ is contained in {±1}. Then

θFr(λ) = θ(λq
2

) = θ(λ)q
2

= θ(λ)

for all λ ∈ Fq2 . That is, θFr = θ, a contradiction. Hence γ must have order

2. Thus n = 2m for some m and γ = Frm is the unique element of order 2 in

Gal(l/k). In all,

θ−1 = θγ = θFrm = θ(q2)m = θq
2m

= θq
n

.

We keep this in mind as we study case (B).

3.3.3 Case (B): $Dρ ' ρ∨

From [2] we have that for x ∈ OD,

$Dx$
−1
D ≡ xq mod pD.
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That is, conjugating by $D induces the non-trivial Fq-automorphism λ 7→ λq :

Fq2 → Fq2 . This extends to a map GLn(Fq2)→ GLn(Fq2) via

(aij) 7→ (aqij).

which we also denote by (aij) = (aij). Recall that ρ denotes the representation

ρ(g) = ρ(g).

Proposition 3.6. We have

$Dρθ ' ρθq .

Proof. By Proposition 3.5, ρθ ' ρθq . So we need to prove that ρθ ' $Dρθ. Recall

that conjugating by $D is the same as raising to the power q mod pD. Therefore,

for x ∈ F×q2n , tr ρθq(x) = tr ρθ(x) on F×q2n . So by Lemma 3.3, ρθ ' ρθq .

Thus

ρθ−1 ' ρ∨θ ' $Dρ ' ρθ ' ρθq .

As before this gives the existence of an element γ ∈ Gal(Fq2n/Fq2) such that

(θq)γ = θ−1.

Since the operators φ 7→ φq and φ 7→ φγ commute,

(((θq)γ)q)γ = θq
2γ2 = θ.
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Therefore Fr γ2 = 1, or γ2 = Fr−1. Recall that Fr is a generator of

Γ = Gal(l/k) = {x 7→ xq
2k

: 0 ≤ k ≤ n− 1}.

Then Fr−1 is a generator, so γ is also a generator. The order of γ2 is equal to

n/ gcd(2, n). Hence gcd(2, n) = 1 and n must be odd. Say that n = 2m + 1.

Now γ is the unique element in γ ∈ Gal(Fq2n/Fq2) satisfying γ2 = Fr−1. Clearly,

Frn = Fr2m+1 = 1.

So

(Frm)2 = Fr−1 .

Hence

γ2 = Fr−1 = Fr2m,

so

γ = Frm .

Thus we obtain the same relation as in the other case:

θq
n

= θq
2m+1

= (θq)q
2m

= (θq)γ = θ−1.

We can distinguish case (A) and case (B) by noting that case (A) occurs when

n is even and case (B) when n is odd.
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3.3.4 Showing K̃ = 〈$F 〉K

Lemma 3.7. We have

K̃ = 〈$F 〉K.

Proof. In both cases above, we concluded that

θq
n

= θ−1.

Assume that $D ∈ K̃. That is $Dρθ ' ρθ. From Proposition 3.6 we recall that

$Dρθ ' ρθq .

Thus there is a γ ∈ Gal(l/k) such that θγ = θq. So θγ
2

= θq
2

= θFr. That is

γ2 = Fr. As before, Fr is a generator for the Galois group Gal(l/k), hence γ is a

generator. The order of γ2 is n/ gcd(2, n). Hence n must be odd.

Thus we are in case (B) where ρ∨θ ' $Dρθ. By assumption $Dρθ ' ρθ, so

ρθ ' ρ∨θ . This is case (A) where n is even. Hence we have a contradiction. So

$D 6∈ K̃.

3.4 Affine roots

We now want to view ρ as a representation of certain other groups. First we

relate these groups to a set of affine roots.

Let

S = {

Ü
diag(s1, s2, . . . , sn) 0

0 diag(s−1
1 , s−1

2 , . . . , s−1
n )

ê
: si ∈ F×}
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be a maximal split F -torus in Gε.

Write Φ = Φ(S,G) for the roots of S in G. This root system is of type Cn.

Concretely, if

ei :

Ü
diag(s1, s2, . . . , sn) 0

0 diag(s−1
1 , s−1

2 , . . . , s−1
n )

ê
7→ si,

then

Φ = {±ei ± ej,±2ei : 0 ≤ i < j ≤ n}.

The positive roots are

Φ+ = {ei + ej, ei − ej, 2ei : 0 ≤ i < j ≤ n}

and we have the basis

∆ = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = 2en}.

The longest root is α̃ = 2e1. Now we consider the affine roots aα,k = α+ k for α

a root and k an integer. (Here by k we mean the translation by k.) Specifically,

let a0 = 1− α̃, and for 1 ≤ i ≤ n let an = aαi,0. Then

{a0, a1, . . . , an}

is a basis for the affine roots. And we have the affine Weyl group ›W = 〈sαi :

0 ≤ i ≤ n〉 where sαi is a fundamental reflection in a hyperplane.
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3.5 The types and covers

Morris in [14] gives us the types and covers in our situation. We now describe

them in some detail. We have ρ, a representation of K = GLn(OD). Let

Θ = {a1, . . . , an−1}. Let I be the Iwahori subgroup of G, that is, the set of

(2n)× (2n) matrices in G of the form:

I =



OD OD . . . OD

pD OD . . . OD
...

. . .

pD pD . . . OD


∩Gε.

This is the set of matrices with elements from OD on the diagonal and above

and elements from pD below the diagonal. Then we get the Siegel parahoric

subgroup (compact open subgroup, 2n× 2n matrices)

P = PΘ = IWΘI =

Ü
OD OD

pD OD

ê
∩G.

Note that P is not maximal. We recall that ρ is a representation ofK = GLn(OD),

and now we want to view ρ as a representation of P . Then letM = P ∩L ' K.

Concretely,

M =


Ü
a 0

0 >ā−1

ê
: a ∈ GLn(OD)

 .

Using the isomorphism M ' K we view ρ as a representation of M. We

often abuse notation and write ρ for this representation. Later we will need to
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distinguish this representation, and so we use the notation ρM. Let

N = P ∩ Uε = {

Ü
In X

0 In

ê
: X ∈Mn(OD), εX +X

>
= 0},

N = P ∩ U ε = {

Ü
In 0

X In

ê
: X ∈Mn(OD), εX +X

>
= 0}.

Lemma 3.8. We have

P = N ·M · N = (P ∩ Uε)(P ∩ L)(P ∩ Uε)

with every element of P being written uniquely as a product n′ · m · n where

n′ ∈ N,m ∈M,n ∈ N .

We now extend ρ to a representation of P by ρ(n̄mn) = ρ(m). We must

show that this is well-defined. Let M1 be the image of K1 = 1 + $DMn(OD)

under the isomorphism K 'M. Thus ρ is trivial on M1. Note that

M∩ 〈N ,N〉 ⊆M1.

Suppose n̄mn = n̄′m′n′ ∈ P. Then mM1 = m′M1. Hence ρ(n̄mn) = ρ(m) =

ρ(m′) = ρ(n̄′m′n′).

Now let s = [L, π0]G and sL = [L, π0]L. From Morris [15], we have:

Theorem 3.9. (K, ρ) is an sL-type in L and (P , ρ) is a G-cover of (K, ρ). In

particular, (P , ρ) is an s-type in G.

By the theory of types and covers, we have the following commutative
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diagram

Rs(G)
mG //H(G, ρ)−Mod

RsL(L) mL
//

ιGP

OO

H(L, ρ)−Mod.

tP∗

OO

We note the importance that π0 has depth zero in the use of [15]. We recall that

tP∗ is the map U 7→ HomtP (H(L,ρL))(H(G, ρ), U) induced by the embedding of

C-algebras tP : H(L, ρ) ↪→ H(G, ρ).

3.6 The Hecke algebra

We have now reduced the problem to finding the Hecke algebras H(L, ρ) and

H(G, ρ). Since the intertwining of ρ in L is

IL(ρ) = K̃ = F×K = 〈$F 〉K

=
∐
i∈Z

K$i
FK,

we have

H(L, ρ) ' C[d, d−1].

Here d is an indeterminate. It corresponds to the element in H(L, ρ) that has

support $FK and whose value at $F is 1. Let D = C[d, d−1].

Our main result is:

Theorem 3.10.

H(G, ρ) = 〈f0, f1 : f 2
i = qn + (qn − 1)fi〉.
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Note that the relations H(G, ρ) can also be presented by

H(G, ρ) = 〈h0, h1 : h2
i = 1 + (qn/2 − q−n/2)hi〉,

where fi = qn/2hi, i = 0, 1.

The proof will occupy some space and we divide it up.

3.6.1 General preliminaries

We now fix ε = 1 and let G = G1. The case of ε = −1 is very similar. We

indicate in section 3.7 the minor changes needed to treat this case.

Let

NG(ρM) = {g ∈ L : gM =M, gρM ' ρM}.

From 4.15 in [14],

IG(ρ) = PNG(ρM)P .

We have

NG(ρM) ⊆ NG(M) = 〈

Ü
0 1

1 0

ê
,

Ü
$D 0

0 −$−1
D

ê
〉M.

As in the proof of Lemma 3.7 we now split the proof into two cases depending

on whether n is even or n is odd.

3.6.2 Case (A)

Assume first that n is even. That means that ρ ' ρ∨. Also recall that $Dρ ' ρ.

39



Let

w0 =

Ü
0 1

1 0

ê
,

wD =

Ü
$D 0

0 −$−1
D

ê
,

s0 =

Ü
0 $D

−$−1
D 0

ê
= wDw0, and

s1 =

Ü
0 −$−1

D

$D 0

ê
= w0wD.

Then

w0ρM ' ρ∨M,

wDρM ' ρM.

Since ρM ' ρ∨M , we have

siρM ' ρM

for i = 0, 1. Now Ü
0 1

1 0

ê
6∈ NG(ρM),

so

NG(ρM) ( NG(M).
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Thus

〈s0, s1〉M ⊆ NG(ρM) ( NG(M).

Now

s0s1 =

Ü
$F 0

0 $−1
F

ê
,

so

〈s0, s1〉 = 〈s0〉n 〈s0s1〉.

As s0 = wDw0,

NG(M) = 〈w0, wD〉M = 〈s0, wD〉M = (〈s0〉n 〈wD〉)M.

Thus

|NG(M)/〈s0, s1〉M| = |〈wD〉/〈s0s1〉| = 2.

We conclude that

NG(ρM) = 〈s0, s1〉M.

Hence

IG(ρ) = PNG(ρM)P = P〈s0, s1〉P .

Let W (M) = 〈w0, s1〉/{±1} ' NG(M)/M. That is, W (M) is an infinite
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dihedral group generated as a Coxeter group by w0 and s1 where we abuse

notation and write w0 and s1 for the corresponding elements in the quotient

W (M).

We now want to consider P\G/P double cosets. First, by general structure

theory or direct matrix multiplications as in section 6.9 in [1], the map

w 7→ PwP : W (M)→ P\G/P

is injective.

Second, let l be the length function on W (M). We have, for example,

l(s1) = 1 and l(s1w0) = 2. By [1],

� PwPw′P = Pww′P if l(ww′) = l(w) + l(w′).

� Pw0Pw0P = P ∪ Pw0P .

One checks that

s0 = w0s1w
−1
0 .

With this in mind we see that

IGε(ρ) = P〈s0, s1〉P .

Write W (ρM) for 〈s0, s1〉/{±1}. Then W (ρM) is a subgroup of W (M).

Under the isomorphism W (M) ' NG(M)/M this subgroup corresponds to

NG(ρM)/M:

W (ρM) ' NG(ρM)/M.
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The group W (ρM) is again an infinite dihedral group is generated as a Coxeter

group by {s0, s1} (again abusing notation). This Coxeter group has the length

function lρ. Furthermore, if lρ(ww
′) = lρ(w) + lρ(w

′) then l(ww′) = l(w) + l(w′).

Thus if lρ(ww
′) = lρ(w) + lρ(w

′), then PwPw′P = Pww′P .

For i = 0, 1, let fi be any element in H(Gε, ρ) with support PsiP . By Schur’s

Lemma, fi is unique up to multiplication by non-zero scalars. Each element of

W (ρM) is a word in {s0, s1}. Hence H(Gε, ρ) is generated as a C-algebra by f0

and f1. We now want to find the relations that the two generators satisfy.

Let

K1 = 〈P , s1〉.

Note that K1 is a compact open subgroup of G.

We will show that

H(K1, ρ) ' EndSp2n(k)(ind
Sp2n(k)

P (k)
ρ).

To motivate the following sections, we assume for the moment that we have

established this isomorphism. By Proposition 3.2 in [9], there exists a unique f1

in H(G, ρ) with supp f1 = Ps1P such that

f 2
1 = λ1 + (λ− 1)f1

where λ is given as follows. The representation ind
Sp2n(k)

P (k)
ρ = π1⊕π2 where π1 and

π2 are distinct irreducible representations of Sp2n(k). Assume dim(π1) ≤ dim(π2).

We need to find the parameter λ in the relation above to determine the Hecke
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algebra H(K1, ρ). By [9],

λ =
dim(π2)

dim(π1)
.

We will compute this quotient in our situation. First we recall that θ

corresponds to a semi-simple element s∗ ∈ T ∗ in the dual group G∗. Then by

theorems 8.4.8 and 8.4.9 in [5],

λ = |CG∗(s∗)|p.

In section 3.9 below we explain how the finite group Sp2n(k) appears.

3.6.2.1 Quadratic relations I

It is easier to find H(Kg
1 , ρ

g) ' H(K1, ρ) for a suitable g. Let Ψ be the compo-

sition of Ad
Ä
$D 0

0 1

ä
with reduction mod pD. By “reduction mod pD” we mean

that we take each entry in the matrix mod pD.

We need to find Ψ(K1). Recall first that

P = NMN .

We find the image of each of these factors. Clearly,

Ψ(N ) =

Ü
1 pD

0 1

ê
mod pD = {1}.
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Writing Ad for Ad
Ä
$D 0

0 1

ä
,

Ad(M) =


Ü
$Dg$

−1
D 0

0 >ḡ−1

ê
: g ∈ GLn(OD)

 .

Hence

Ψ(M) =


Ü
a 0

0 >a−1

ê
: a ∈ GLn(Fq2)

 .

Now recall that

N =


Ü

1 0

y 1

ê
: y + y−1, y ∈Mn(OD)

 .

Then

Ad

Ü
$D 0

0 1

êÜ
1 0

y 1

ê
=

Ü
1 0

y$−1
D 1

ê
.

We write x = y$−1
D ∈Mn(OD) and find that

x> = y$−1
D

>

= $−1
D y>

= −$−1
D (−y)

= $−1
D v

= $−1
D y$−1

D $D

= $−1
D x$D.

We now reduce mod pD and use that $Dα$
−1
D = ᾱ = αq mod pD to get (now in
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Mn(Fq2))

x> = x.

Hence

Ψ(N ) = {

Ü
1 0

x 1

ê
: x> = x, x ∈Mn(Fq2)}.

We find that

Ψ(P) = P (Fq2).

This is the opposite standard Siegel parabolic subgroup of Sp2n(Fq2) and so

Ψ(K1) = 〈P (Fq2),

Ü
0 −1

1 0

ê
〉

≤ Sp2n(Fq2).

In fact, we have equality since P (Fq2) is a maximal proper subgroup of Sp2n(Fq2)

and P (Fq2) does not contain ( 0 −1
1 0 ). So the image is Sp2n(Fq2):

Ψ(K1) = Sp2n(Fq2).

Hence

H(K1, ρ) ' EndK1(indK1
P ρ) ' EndSp2n(Fq2 )(ind

Sp2n(Fq2 )

P (Fq2 )
ρ̃).
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It now follows that there is an f1 ∈ H(G, ρ) with support Ps1P such that

f 2
1 = qn + (qn − 1)f1,

provided the parameter λ = qn. We show that λ takes this value in section 3.9.

3.6.2.2 Quadratic relations II

We need a different approach to find the quadratic relations for f0. Let

w0 =

Ü
0 1

1 0

ê
,

s1 =

Ü
0 −$−1

D

$D 0

ê
.

Note that

w0s1 =

Ü
$D 0

0 −$−1
D

ê
.

Thus

NGε(M) = 〈w0, s1〉M,

〈w0, s1〉 ∩M = {±1}.

Now we want to show that f0 can be chosen so that it satisfies the same

relation as f1. First note that since s0 = w0s1w
−1
0 (w0 = w−1

0 ),

Ps0P = Pw0Ps1Pw0P .
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Now w0 intertwines ρ with ρ.

Lemma 3.11. There exist elements Λ ∈ H(Gε, ρ) and Υ ∈ H(Gε, ρ) such that

Λ(p1w0p2) = ρ(p1)Λ(w0)ρ(p2),

Υ(p1w0p2) = ρ(p1)Υ(w0)ρ(p2)

for all p1, p2 ∈ P and

ΛΥ = 1ρ ∈ H(Gε, ρ),

ΥΛ = 1ρ ∈ H(Gε, ρ).

Here 1ρ and 1ρ are the identities in their respective Hecke algebras.

Proof. First we write φg = >g−1 for any g ∈ GLn(Fq2). Let ρφ be the represen-

tation defined by

ρφ(g) = ρ(φg).

Then ρφ ' ρ∨. We see this by considering the characters of the representations.

In particular we note that tr ρ(>g−1) = tr ρ(g−1). Let V be the space of ρ. Thus

there is an invertible map t : V → V satisfying that for all g ∈ GLn(Fq2)

t ◦ ρ(φg) = ρ(g) ◦ t.
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Hence

t2ρ(g) = t2 ◦ φ(φρ)(g)

= t ◦ φ(ρ(g)) ◦ t

= ρ(g) ◦ t2.

By Schur’s Lemma, t2 = c1V for some c ∈ C×. Adjusting t by a suitable scalar

multiple, we may assume t2 = 1V . Observe that for k ∈ K,

tρ(>k−1) = tφρ(k)

= ρ(k)t.

Hence, for m ∈M,

tρM(>m−1) = ρM(m)t.

Now let Λ1 be the map with support Pw0P given by

Λ1(p1w0p2) = ρ(p1)tρ(p2)

for pi ∈ P . We need to show that Λ1 is well-defined. To see this, suppose

p1w0p2 = r1w0r2

where pi, ri ∈ P . Then

r−1
1 p1 = w0r2p

−1
2 w−1

0 ∈ P ∩ w0Pw−1
0 .
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Recall the decomposition

P = NMN .

Write

r−1
1 p1 = k−k0k+,

r2p
−1
2 = l+l0l−

for k−, l− ∈ N , k0, l0 ∈M, k+, l+ ∈ N . We have

k−k0k+ = (w0l
+w−1

0 )(w0l
0w−1

0 )(w0l
−w−1

0 ) ∈ NMN.

By uniqueness of expression in NMN ,

k0 = w0l
0w−1

0 .

Further,

ρ(r−1
1 p1) = ρM(k0),

ρ(r2p
−1
2 ) = ρM(l0).

We want to prove that

Λ1(p1w0p2) = Λ1(r1w0r2).
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That is, we want

ρ(p1)tρ(p2) = ρ(r1)tρ(r2).

We can state this as

ρ(r−1
1 p1)t = tρ(r2p

−1
2 ).

That is,

ρM(k0)t = tρM(l0).

But l0 = w0k
0w−1

0 (w−1
0 = w0), so we need

ρM(k0)t = tρM(w0k
0w−1

0 ).

This comes from the definition of t. Hence Λ1 is well-defined.

Likewise we obtain a well-defined function Υ1 with support Pw0P satisfying

Υ1(p1w0p2) = ρ(p1)tρ(p2)

for pi ∈ P .

Now the convolution Λ1Υ1 ∈ H(G, ρ) has support of contained in

Pw0Pw0P = P t Pw0P .

If Λ1Υ1(w0) 6= 0, then there is a function in H(G, ρ) which is supported on

Pw0P. This implies $DρM ' ρM, so $Dρ ' ρ. As we are in case (A), this is a

contradiction. Hence the support of Λ1Υ1 is contained in P and Λ1Υ1 = c1ρ ∈
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H(G, ρ) for some constant c ∈ C×. The identity element 1ρ is supported on P

and satisfies

1ρ(p) =
1

vol(P)
ρ(p)

for p ∈ P . Hence

Λ1Υ1(1) =
c

vol(P)
1V .

We now determine the value of c.

c

vol(P)
1V = Λ1Υ1(1)

=
∫
Gε

Λ1(g)Υ1(g−1) dg

=
∫
Pw0P

Λ1(g)Υ1(g−1) dg.

We use here that the support of Λ1 and Υ1 is Pw0P. For g = p1w0p2 ∈ Pw0P,

we have g−1 = p−1
2 w0p

−1
1 , so

Λ1(g)Υ1(g−1) = ρ(p1)tρ(p2)ρ(p−1
2 )tρ(p−1

1 )

= ρ(p1)ttρ(p−1
1 )

= ρ(p1)ρ(p−1
1 )

= 1V .
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Thus

c

vol(P)
1V =

∫
Pw0P

1V dg

= vol(Pw0P)1V .

Hence

c = vol(P) vol(Pw0P)

= vol(P) vol(P)[Pw0P : P ].

Let Λ = c−1/2Λ1 and Υ = c−1/2Υ1. In all

ΛΥ = c−1Λ1Υ1

= c−1c1ρ

= 1ρ.

In the same way

ΥΛ = 1ρ.

We can say a bit more about the constant c in the proof above. In fact, we

can compute the index [Pw0P : P ] = [P : P ∩ w0Pw−1
0 ]. Here

P ∩ w0Pw−1
0 =

Ü
OD OD

pD OD

ê
∩

Ü
OD pD

OD OD

ê
=

Ü
OD pD

pD OD

ê
.

(This is, of course, all intersected with G1.) Hence we see that the index of
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P ∩ w0Pw−1
0 is exactly the size of the set

N(Fq2) =


Ü

1 X

0 1

ê
: X ∈Mn(OD/pD), X +X

>
= 0

 .

The size of this set is

|N(Fq2)| = qn
2

.

Note that X = (xij) ∈ N(Fq2) means that xji = −xqij = 0 for j > i. For i = j

we get xii + xqii = 0. This equation has exactly q solutions. In all, the number of

elements in N(Fq2) is

(q2)
∑n−1

i=1
iqn = (q2)

1
2

(n−1)nqn

= q(n−1)nqn

= qn
2

.

Thus

c = vol(P)2qn
2

.

Since n = 2m is even,

√
c = vol(P)qn

2/2 = vol(P)q2m2

.

We can (and do) choose an element f ′1 ∈ H(Gε, ρ) such that

(f ′1)2 = qn + (qn − 1)f ′1.
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Let f0 = Λf ′1Υ. Then

f 2
0 = (Λf ′1Υ)2

= Λf ′1ΥΛf ′1υ

= Λ(f ′1)2υ

= Λ(qn + (qn − 1)f ′1)Υ

= qnΛΥ + (qn − 1)Λf ′1Υ

= qn + (qn − 1)f0.

3.6.3 Case (B)

We now turn to the case where n = 2m+1 is odd and $Dρ ' ρ∨. The arguments

here are broadly similar to those in case (A), so we do not provide all the details,

but just point out the differences. The groups N ,M, and N are as before.

Again we recall that k = Fq2 and l = Fq2n . Let

w0 =

Ü
0 1

1 0

ê
,

s1 =

Ü
0 −$−1

D

$D 0

ê
.

Now

s0 = s1w0s
−1
1 =

Ü
0 $−1

F

$F 0

ê
.
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Then

NG(M) = 〈w0, s1〉M

and

IG(ρ) = P〈w0, s0〉P .

Let

K0 = 〈P , w0〉.

3.6.3.1 Quadratic relations I

Note K0 ⊆ GL2n(OD), so we can reduce K0 mod pD. We write Ψ for this

operation.

As in 3.6.2.1, Ψ(N ) is trivial.

Ψ(M) =


Ü
a 0

0 >ā−1

ê
: a ∈ GLn(k)

 .

Now Ψ(P) is a maximal parabolic subgroup of U2n(Fq2), where we realize the

unitary group using the form given by

J =

Ü
0 In

In 0

ê
.
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That is

U2n(Fq2) = {g ∈ GL2n(Fq2) : >ḡJg = J}.

As Ψ(w0) 6∈ Ψ(P), it follows that Ψ(K0) = U2n(Fq2). Hence we need to computer

the parameter λ from section 3.6.2 (page 44) and we do this in section 3.8.

3.6.3.2 Quadratic relations II

Everything works out as in section 3.6.2.2.

3.7 The ε = −1 case

Until now we have silently assumed that ε = 1. We now touch on the case when

ε = −1. Much is the same and independent of the value of ε. Now, the group

G−1 is realized with respect to the form corresponding to

J =

Ü
0 In

−In 0

ê
.

We again get two cases and two sets of quadratic relations for each case.

We have P = NMN with M as above and

N =


Ü
In X

0 In

ê
: X

>
= X

 , N =


Ü
In 0

X In

ê
: X

>
= X

 .

As in section 3.6.2.1 we get a situation where we want to reduce mod pD. The
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key thing now is that

Ψ(N ) =


Ü
In 0

x In

ê
: x> = −x

 .

For case (A) with the corresponding parahoric K, Ψ(K) is the special

orthogonal group SO2n(Fq2). As SO2n does not have connected center, we

cannot directly appeal to Lusztig’s work to determine the parameter λ. Instead,

we appeal to [9] to see that λ = qn. For case (B) we again get the unitary group.

3.8 Unitary case

It remains to compute the parameter λ in the unitary and the symplectic cases.

We start with the unitary case.

Let G = U2n(Fq2) (not to be confused with Gε). Since the dual group G∗ ' G,

we will leave out the ∗ in the notation.

We realize G using the form

J =

Ü
0 In

In 0

ê
.

That is,

G = {g ∈ GL2n(Fq2) : >ḡJg = J}.

We have

P = M nN
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where

M = {

Ü
a 0

0 >ā−1

ê
: a ∈ GLn(Fq2)},

N = {

Ü
In X

0 In

ê
: X +X

>
= 0}.

We also recall that

θq
n

= θ−1.

As mentioned in the background material, θ corresponds to an element s in

M∗ 'M . We write

s =

Ü
α 0

0 >ᾱ−1

ê
∈M.

Here α ∈ F×q2n , or more precisely, α is in the image of F×q2n under a fixed

embedding F×q2n ↪→ GLn(Fq2). That θ is regular implies that α generates

Fq2n/Fq2 . That is, Fq2n = Fq2 [α]. Our goal is to compute

|CG(s)|p.

That is, we want the order of a Sylow p-subgroup of CG(s). By 3.19 in [6] the

Sylow p-subgroups of CG(s) are the sets of Fq2-points of the unipotent radicals of

the Borel subgroups of CG(s). By 2.2 in [6], the Borel subgroups of CG(s) have

the form B∩CG(s) where B is a Borel subgroup of G. Hence CP (s) = P ∩CG(s)

contains a Sylow p-subgroup of CG(s). Now suppose that x ∈ P commutes with

s and that x = mn with m ∈ M and n ∈ N . Then sx = xs and so sxs−1 = x.
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Hence

sxs−1 = x = smns−1sms−1sns−1.

Since P = MnN is a direct product, s commutes with both m and n. Therefore

CP (s) = CM(s) n CN(s).

The centralizer of s in M is T and thus has order prime to p. Furthermore CN (s)

is a p-subgroup. In all,

CN(s) = {n ∈ N : sn = ns}

is a Sylow p-subgroup of CG(s). We now compute |CN(s)|. That is, we must

compute the number of elements n ∈ N that commute with s.

Lemma 3.12. We have

|CN(s)| = qn.

Proof. The elements of N are have the formÜ
In X

0 In

ê
,

where X +X
>

= 0. If

n =

Ü
In X

0 In

ê
,
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then ns = sn givesÜ
In X

0 In

êÜ
α 0

0 >ᾱ−1

ê
=

Ü
α 0

0 >ᾱ−1

êÜ
In X

0 In

ê
,

which is equivalent to αX>ᾱ = X. That is, we need to count the number of

solutions to the following equations:

1. αX>ᾱ = X.

2. X + >X = 0.

Now let Ξ = Mn(Fq2). Let

Ξε = {X ∈ Ξ : >X = εX}.

Then

Ξ = Ξ1 ⊕ Ξ−1,

since, for any X ∈ Ξ,

X =
1

2
(X +X

>
) +

1

2
(X −X>).

Let

Ξ(α) = {X ∈ Ξ : αXα> = X},

Ξε(α) = {X ∈ Ξε : αXᾱ> = X}.
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Then

Ξ(α) = Ξ1(α)⊕ Ξ−1(α).

Choose γ ∈ Fq2 such that γ 6= 0 and γ = −γ. Then the map Ξε(α)→ Ξ−ε(α)

given by X 7→ γX is a bijection.

We also have the bijection from Ξ−1 to CN(s) given by

X 7→

Ü
In X

0 In

ê
.

Hence

|CN(s)| = |Ξ−1(α)| = |Ξ1(α)|.

If we can show that |Ξ(α)| = q2n, then we are done. That is, we want to

count the number of elements X ∈ Ξ satisfying that αX = X>ᾱ−1 for fixed

α. Consider an embedding φ1 : Fq2n ↪→ Mn(Fq2): β 7→ mβ. Let f(x) be the

minimal polynomial of α over Fq2 . Then

Fq2n ' Fq2 [x]/〈f(x)〉.

Under φ1, a polynomial p(α) in α is mapped to p(mα). We get another embedding

φ2 : Fq2n ' Fq2 [x]/〈f(x)〉 ↪→Mn(Fq2) satisfying

p(α) 7→ p(>ᾱ−1).

We first must show that this map is well-defined.
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Let α∗ denote >ᾱ. Also, for

p(x) =
∑
j

bjx
j ∈ Fq2 [x],

we let

p̄(x) =
∑
j

bjx
j.

We need to show that the minimal polynomial evaluated at >m−1
α is zero. We

note that

f(>m−1
α ) = f(m−1

α )∗ = (f̄(m−1
α ))∗.

We want to show that f̄(m−1
α ) = 0, equivalently f̄(α−1) = 0. We have θ−1 =

θq
n
, so the same relation applies to s and also to α. Thus α−1 = αq

n
. Let

c ∈ Gal(Fq2n/Fq) be the map c(λ) = λq
n
. We have f(α) = 0, so

0 = f(α)q
n

= f̄(αq
n

) = f̄(α−1).

The second equality uses the fact that n is odd. Hence the embedding is

well-defined.

We now have two different embeddings φ1 and φ2 of l in Mn(Fq2). We want

to find the number of X satisfying αX = X>ᾱ−1. That is, we want to find the

number of X satisfying

Xφ2(λ) = φ1(λ)X

for all λ ∈ Fq2n . Let k = Fq2 and l = Fq2n . As in the proof of Proposition 3.5,
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we make kn into an l-module in two ways:

λ.v = φ1(λ)v,

λ∗v = φ2(λ)v.

We then obtain two l-modules that we denote 1k
n and 2k

n. That means that

Xφ2(λ) = φ1(λ)X is equivalent to

X ∈ Homl(1k
n, 2k

n) ' Homl(l, l) ' l,

so |Homl(1k
n, 2k

n)| = q2n.

3.9 Symplectic case

We again let k = Fq2 and l = Fq2n . Let G = Sp2n(Fq2). The dual group

G∗ = SO2n+1(Fq2). We realize G∗ using

J =


0 0 In

0 1 0

In 0 0

 .

That is,

G∗ = {g ∈ SL2n+1(Fq2) : >gJg = J}.
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Let

M∗ =




a 0 0

0 1 0

0 0 >a−1

 : a ∈ GLn(Fq2)


and

N∗ =




In u X

0 1 −u>

0 0 In

 : X> + uu> +X = 0


.

Then

P ∗ = M∗ nN∗

is the standard Siegel parabolic subgroup. As mentioned in section 2.3, the

character θ corresponds to an element

s∗ =


α

1

>α−1



in M∗. Here α ∈ F×q2n . That θ is regular means that k[α] = Fq2n . We want to

compute

|CG∗(s∗)|p.
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First we observe (as in the unitary case) that

|CG∗(s∗)| = |CN∗(s∗)|.

Lemma 3.13. We have

|CN∗(s∗)| = qn.

Proof. Let


In u X

0 1 −u>

0 0 In

 ∈ N
∗.

Then s∗n = ns∗ means

1. αu = u,

2. >u>aα−1 = >u, and

3. αX = X>α−1.

The first condition gives u = 0 since α 6= 1 which holds because k(α) = l. We

are left with the third condition. As before, let Ξ = Mn(k) and Ξε = {X ∈ Ξ :

>X = εX}. Again,

Ξ = Ξ1 ⊕ Ξ−1.

We define Ξ(α), Ξε(α) as before, so that

Ξ(α) = Ξ1(α)⊕ Ξ−1(α).
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We again have a bijection from Ξ−1(α)→ CN∗(s
∗) now given by

X 7→


In 0 X

0 1 0

0 0 In

 .

As in the unitary case, we define two l-module structures on kn. Again let

f(x) be the minimal polynomial of α over k. As before, l ' k[x]/〈f(x)〉. For

p(x) ∈ k[x] we define an l-action on kn by

p(α).v = p(α)v.

Note this makes sense since p(α) ∈ Mn(k). We define the second l-module

structure via

p(α)∗v = p(>α−1)v = >p(α−1)v.

Again this makes sense since p(α−1) ∈Mn(k). Again we need to check that this

second structure is well-defined. That is, we need to check that f(α−1) = 0.

Again we use that αq
n

= α−1, so

0 = f(α)

= f(α)q
n

= f(αq
n

)

= f(α−1).

As before, we now have two l-module structures 1k
n and 2k

n on kn. Once again
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Ξ(α) ' l, and so

|Ξ(α)| = |l| = q2n.

Since Ξ(α) = Ξ1(α)⊕ Ξ−1(α),

|Ξ(α)| = |Ξ1(α)||Ξ−1(α)|.

In particular, each |Ξε(α)| is non-zero. Let X ∈ Ξ−1(α), X 6= 0. Then

Ξ(α) = {p(α)X : p(x) ∈ k[x]}.

We have p(α)X ∈ Ξ−1(α) exactly when

(p(α)X)> = −p(α)X.

Here the left hand side is

X>p(α)> = −Xp(α)>

because X ∈ Ξ−1(α). The right hand side is

−Xp(α−1)>.

So p(α)X is in Ξ−1(α) exactly when

Xp(α)> = Xp(α−1)>,
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that is, when

p(α) = p(α−1).

Now let σ ∈ Gal(l/k) denote the unique element of order 2 given by σ(x) = xq
n
.

Then σ(α) = α−1. So the condition above is equivalent to

p(α) = σ(p(α)).

Let l0 be the fixed field of σ. Then 〈σ〉 = Gal(l/l0) and so [l : l0] = 2. In

conclusion we get

Ξ−1(α) = {λX : λ ∈ l0}

and this set has order |l0| = qn. Hence,

|Ξ1(α)| = |Ξ−1(α)| = qn.

3.9.1 Conclusion

We have now proved Theorem 3.10 on page 38. That is, we have proved that

in all cases the Hecke algebra H(Gε, ρ) is generated by two elements f0 and f1

subject to the same relation f 2
i = qn + (qn − 1)fi. This will now allow us to give

the answer to the question that we posed in the beginning:

When is ιGεP (π0 ⊗ χ) reducible?

That is, for what χ is the induced representation reducible?
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3.10 Answering the question

We recall the diagram

Rs(Gε)
mGε //H(Gε, ρ)−Mod

RsL(L) mL
//

ιGP

OO

H(L, ρ)−Mod.

tP∗

OO

We are interested in the induced representation, that is, in the functor

ιGεP : RsL(L) −→ Rs(Gε).

We have now translated the question into a question about the map

tP∗ : H(L, ρ)−Mod −→ H(Gε, ρ)−Mod.

We have found generators and relations for H(Gε, ρ). Let

D = C[d, d−1]

H = 〈h0, h1 : h2
i = 1 + (qn/2 − q−n/2)hi〉

with d an indeterminate. We recall from page 39 the note that with hi = q−n/2fi,

H is generated by h0 and h1 subject to the relation h2
i = 1 + (qn/2 − q−n/2)hi.

We recall also that H(L, ρ) ' C[d, d−1].

Then

H(L, ρ)−Mod ' D −Mod

H(Gε, ρ)−Mod ' H−Mod.
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Therefore, we have the map

ι∗ : D −Mod −→ H−Mod.

This map is given by ι∗(T ) = HomH(H, T ) where H acts by right translation.

Proposition 3.14. We have ι∗(d) = h0h1.

The proof of this Proposition is like the proof of Proposition 6.4 in [9]. From

Proposition 1.6 in [10], ι∗(ψ) is reducible exactly when ψ(d) ∈ {q−n,−1, qn}.

Recall that π0 is self-dual, and so the square of its central character ωπ0 is 1:

ω2
π0

= 1. That is, the image of ωπ0 is contained in {±1}.

For χ an unramified character of L,

mL(π0 ⊗ χ)(d) = ωπ0($F )χ($F ).

If χ is trivial, then we have reducibility if and only if ωπ0($F ) = −1. Assume

that χ is not trivial. We know that χ(x) = |Nrd(x)|sF . So we need

{q−n,−1, qn} 3 χ($F )

= |Nrd($F )|sF

= |$2n
F |sF

= q−νF ($2n
F )s

= q−2ns.

Hence we need s ∈
¶
±1

2

©
We state this a bit differently. One can choose π0 such that ωπ0($F ) = 1,

and so we end with the following theorem.
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Theorem 3.15. Let π0 be a depth zero irreducible unitary supercuspidal repre-

sentation of Gε. Choose π0 such that it has trivial central character. Let χ be

an unramified character of L. Then

ιGP (π0 ⊗ χ)

is reducible if and only if χ($F ) = −1 or χ(·) = |Nrd(·)|±1/2
F .
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[17] Muić, G., and Savin, G. Complementary series for Hermitian quater-

nionic groups. Canad. Math. Bull. 43, 1 (2000), 90–99.

[18] Reiner, I. Maximal orders, vol. 28 of London Mathematical Society

Monographs. New Series. The Clarendon Press, Oxford University Press,

Oxford, 2003. Corrected reprint of the 1975 original, With a foreword by

M. J. Taylor.

[19] Roche, A. Parabolic induction and the Bernstein decomposition. Compo-

sitio Math. 134, 2 (2002), 113–133.

[20] Shahidi, F. A proof of Langlands’ conjecture on Plancherel measures;

complementary series for p-adic groups. Ann. of Math. (2) 132, 2 (1990),

273–330.

[21] Shahidi, F. Twisted endoscopy and reducibility of induced representations

for p-adic groups. Duke Math. J. 66, 1 (1992), 1–41.

[22] Springer, T. A. Linear algebraic groups, second ed. Modern Birkhäuser
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