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CHAPTER 1 
 
 

INTRODUCTION 

1.1 Motivation 

EVERY image we look at has some objects that demand more attention than others. It has 

also been proven that under task free conditions humans tend to disregard certain objects 

in a scene irrespective of the observation time. So, what is it that makes certain objects 

more important than the others? Is it the location, color, contrast or any other high-level 

factor? 

Consider, for example, the image shown in Figure 1.1.  

 

Figure 1.1. An image from the Berkeley Segmentation Dataset and Benchmark image 
database. 
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For a human, it is quite evident that the butterfly forms the most important region in this 

image. So what is about this object that makes it more visually interesting than the 

flowers, leaves and other objects in the scene? One logical reason is the size: The 

butterfly is larger than the flowers and leaves in the background. Another reason is the 

location: The butterfly is located at the center of the image. Other factors like the 

butterfly’s contrast and the extent to which the butterfly’s presence in the foreground also 

contributes to our impression of visual interest. 

If we are provided with an algorithm that can predict the most important region or 

object in an image, it would cater to many applications in the field of image processing 

and human vision. The ability to quantify perceived interest would also be useful in areas 

like unequal error protection, watermarking, variable-resolution displays, image 

segmentation, region based retrieval, adaptive compression, automatic image retargeting 

[20] and many more. For example, in image compression, the ability to quantify the 

perceived interest of different objects would allow us to devote more bits to the 

significant objects. 

Here, we present an algorithm to quantify the perceived interest of objects in the 

images. Our algorithm follows the work of Osberger et al. and uses various factors (e.g., 

color, location, contrast, edge-strength, and blur) to determine perceived interest. 

However, unlike Osberger et al., our approach uses a Bayesian framework based on 

precise likelihood functions measured explicitly via a psychophysical experiment. 

Hence, the main objective of this research is to predict the importance of defining 

“regions of interest” in an image for improving the perceived fidelity of the image and 

propose an algorithm that would find these regions in an image. The “regions of interest” 
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or popularly known as the “ROI” can be defined as the objects or regions to which draw 

the attention of the viewer. 

 

1.2 Review of Literature 

Researchers have proposed algorithms to locate and quantify regions of interest in images 

[1]-[4]. In [1] Osberger et al. present a method to automatically determine the perceptual 

importance of different regions by combining various factors like size, location, contrast, 

and shape. An image is first segmented into regions. Then each factor (e.g., size) is 

measured and converted into a relative level of interest. The results of all the factors are 

then squared and summed to produce a final interest map. However, a more accurate way 

to measure and combine the various factors to arrive at the overall interest map still 

remains an open question to answer. 

In [2], Itti et al. computed features based on linear filters and center-surround 

structures encoding intensity, orientation, and color to construct a saliency map that 

reflects areas of high attention. This model is biological in nature where the visual input 

is first decomposed into a set of topographic feature maps. Feature maps are then 

combined in a bottom-up manner to form a final saliency map which consists of locations 

that stand out from the surroundings. Stentiford [3] proposed a measure of visual 

attention that depends upon the dissimilarity of neighborhoods in an image. In [4], Stark 

et al. provide an analysis of effectiveness of various image-processing operations and 

clustering procedures in predicting regions-of-interest in images.  

Most existing visual attention approaches are based on low-level features such as 

color, contrast and luminance, because the visual attention is unconsciously driven by 
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such low-level features. Almost all the approaches extract low-level features first and 

then combine them in a unique fashion to obtain the final saliency map of an image.   

The approaches to determine the saliency can be broadly classified as biological models 

and purely computational ones. Ma and Zhang [24] propose a method that is not a 

biological model and is based on local contrast to generate saliency maps.  Frintrop et al 

[17]  use integral images in VOCUS ( Visual Object Detection with a Computational 

Attention System) to speed up computation of center-surround differences to find salient 

regions using separate feature maps of color, intensity, and orientation. An improvement 

using integral images has been proposed by Achanta et al [12] where saliency maps of 

same size and resolution as the input image are generated using luminance and color as 

low-level features. This is accomplished by resizing the filter at each scale instead of the 

image and thus maintains the same resolution as the original image.  

 A coherent computational model of visual selective attention is presented by 

Olivier et al [25] who follow the work of Koch and Ullman [27]. The basic difference is 

the way they normalize the early visual features. The normalization is done automatically 

using visibility threshold. Another unsupervised extraction of visual attention objects is 

proposed by Han et al [18] where a generic model is used. The approach uses Markov 

random field (MRF) to integrate computational visual attention mechanisms with 

attention object growing techniques. A hierarchical selectivity for object-based visual 

attention is proposed by Sun et al [26] where integration of bottom-up and top-down 

attentional setting is done. 

 Another contribution to this field is by Jian et al [22] who use a large database to 

validate their results. In this approach, they formulate the salient object detection as an 



 5 

image segmentation problem. They proposed a set of features like multi-scale contrast, 

center-surround histogram, and color spatial distribution to detect a salient object locally, 

regionally, and globally. Liu et al [22] presented a region enhanced scale-invariant 

saliency detection method. They constructed a scale-invariant saliency map by 

segmenting the image into regions and then enhance the saliency map with the region 

information. Chul Ko et al [16] proposed an object-of-interest (OOI) segmentation 

algorithm that is based on human attention and semantic region clustering. In this 

approach, an image is first segmented into regions and then merged as a semantic object. 

A support vector machine is used within an attention window (AW) which is based on 

the saliency map and saliency points from the image. Hu et al [19] proposed a subspace 

analysis for detecting visual attention where an image is represented in a 2D space using 

polar transformation of its features. A subspace estimation algorithm is proposed based 

on Generalized Principal Component Analysis (GPCA).  Another biologically motivated 

visual attention system is proposed by Choi et al [15] using bottom-up saliency map and 

top-down inhibition. A training selective attention model is used which inhibits the 

unwanted salient area and thus only focus on an interesting area in static natural scene.  

 Bayesian probabilistic approaches have also been used to locate regions of 

interest. Luo et al [7] proposed a computational approach to determine the main subject 

in photographic images. The algorithm consists of region segmentation, perceptual 

growing, feature extraction, and then Bayesian probabilistic reasoning. Another 

application of Bayes’ theorem is given by Chen et al [8] to discover main subjects in 

video; the algorithm in [8] consists of an appearance model and a motion model. 
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Though, a lot of work has been done in this field, there are still some major areas of 

concern which are addressed in our research. Most of the approaches mentioned above 

perform main subject detection [12, 24, and 21] whereas our algorithm can perform 

multi-level region of interest detection. Another common problem is the need of 

segmentation [22, 16] in the first stage to perform saliency detection. Due to the 

computational intensity of segmentation, it becomes almost impossible to use the 

approach for real-time applications. To encounter this problem, we have come up with a 

block-based approach to perform saliency detection. This approach doesn’t need any 

segmentation and is fast enough to be used in real-time applications. We have also 

compared our results with the ground truth data obtained by conducting a psychophysical 

experiment where the subjects rate a set of 300 images from the Berkley image 

segmentation database. 

 

1.3 Outline 

This thesis is organized as follows: Chapter 2 describes the psychophysical experiment 

performed to obtain the likelihood functions. Chapter 3 presents the algorithm that 

utilizes various factors like location, color, luminance, contrast, edge strength, blur and 

then combines these factors to come up with an importance map of each object in an 

image. Chapter 4 gives the results obtained using our algorithm as well as a comparison 

with other existing algorithms. General conclusions and future work are provided in 

Chapter 5.  
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CHAPTER 2 
 
 

PSYCHOPHYSICAL EXPERIMENT 

The primary goal of this experiment is to obtain the likelihood functions of perceived 

interest of over 1100 objects in 300 images from Berkeley image segmentation database. 

A psychophysical experiment was performed in which subjects rated the perceived 

interest of 1143 objects in 300 images. For each of the 1143 objects, subjects were 

instructed to rate the perceived interest relative to the other objects within the image. The 

ratings were performed using an integer scale of 1 to 10 where 10 corresponded to 

greatest interest and 1 corresponded to least interest. Subjects were given unlimited time. 

 

2.1 Methods 

2.1.1 Apparatus and Subjects 

Stimuli were displayed on high-resolution, ViewSonic VA912B 19-inch monitor. The 

display yielded minimum and maximum luminance of 2.7 and 207 cd/m2 respectively and 

an overall gamma of 2.9. Stimuli were viewed binocularly through natural pupils at a 

distance of 46 cm under D65 lighting.  

A total of fifteen subjects participated in the experiment out of which, thirteen 

adult subjects were naive to the purpose of the experiment, and the remaining two were 

the authors. The experiment was conducted prior to the development of the proposed 
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algorithm, and thus the psychophysical results from the authors were not biased toward 

the algorithm. The results from the authors were very much in agreement with those from 

the naïve subjects (correlation R > 0.8).  Subjects ranged in age from 23 to 34 years. All 

subjects had either normal or corrected-to-normal visual acuity.  

 

2.1.2 Stimuli and Methods 

Images used in the experiment were obtained from the Berkeley Segmentation Dataset 

and Benchmark image database [9]. This database was chosen because its images are 

accompanied by human-segmented versions (averaged over at least five subjects). The 

database consists of 300 images out of which 200 are the training set whereas the 

remaining 100 form the testing set. The same set of 200 images has been used as training 

set for our algorithm and the remaining set of 100 images has been used to test the 

algorithm. The images used were of size 321 × 481 with 24-bit RGB pixel values. 

 

Though the images were hand-segmented, they were not segmented into different 

regions. Hence, all objects in the image were given different colors to identify different 

objects in an image by the first author which is shown in the third column of Figure 2.1. 

All the 300 images were segmented into a total of 1143 objects. The average number of 

objects per each image was around 4. For each of the 1143 objects, subjects were 

instructed to rate the perceived interest relative to the other objects within the image. The 

ratings were performed using an integer scale of 1 to 10 where 10 corresponded to 

greatest interest and 1 corresponded to least interest. Subjects were given unlimited time. 

The ratings were converted to z-scores and then normalized to 0 to 1 which is discussed 
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in the next section. In general, subjects tended to agree with each other: The minimum, 

maximum, and mean standard deviation of the z-scores was 0, 0.94, and 0.29 

respectively.  

 

 

 

 

2.1.3 Results 

Raw scores for each subject were converted to z-scores by (1) subtracting the average of 

all the ratings of object within the image; and then (2) dividing it with the standard 

deviation of all the ratings within the same image. This was done for all the subjects and 

then the final z-score has been obtained by taking the average of z-scores of all the 

subjects. The averaged z-scores were then rescaled from 0 to 1 for each image by 

dividing each z-score with the minimum and then dividing the result by the maximum of 

the z-scores within each image. Finally, the rescaled ratings were denoted by labels 

Figure 2.1: First column gives the image, second column gives the average segmented result from Berkeley 
image segmentation database; third column is the segmented result by first author taking the image in the second 
column as reference. 
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“primary ROI,” “secondary ROI,” or “non-ROI” based on whether the score was greater 

than 2/3, between 1/3 and 2/3, or less than 1/3, respectively. 

The graph below shows how well the subjects tended to agree with each other. In this 

graph, the x-axis denotes different importance levels quantized in the intervals of 0.2 and 

the height of each bar denotes the average rating for each range. The main point that 

could be taken away from this graph is the error bars, which denote the standard 

deviation across observers for each image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

What this data suggests is that with three levels we can actually see that subjects tend to 

agree with each other. We can notice that the error bars are least for the ranges 0 to 0.2 

and 0.8 to 1. Most discrepancy is seen in the intermediate levels. But you can also notice 
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Figure 2.2: Subjective agreement of importance, where the x-axis gives the different importance levels and 
the y-axis denotes the average human ratings for each interval. The error bars denote the standard deviation. 
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that the error bars for ranges 0.2 to 0.8 tend to overlap.  

After obtaining the rescaled ratings, various factors or attributes such as: location, 

contrast, luminance, color, edge-strength, a measure of the extent to which the object was 

in the foreground (discussed in Chapter 3), and blur have been measured. After this, 

histograms of various object attributes given that the object was rated as a primary, 

secondary or non-ROI have been measured. 

The histograms were computed based on the results of the 200-image training set. 

The histograms were fitted using the distribution fitting tool from the statistics toolbox of 

MATLAB. The histograms were fit with either a generalized extreme value distribution 

or a Weibull distribution; or a Gamma distribution; the fits are shown in Figure 3.1. (1-6). 

These distributions were chosen as they provided a good fit to all three types (primary, 

secondary, and non-ROI) for each factor. 

 Some of the images from the Berkeley Image Segmentation Database are shown 

in Figure 2.3 which was used as the training set for the algorithm. Figure 2.4 gives the 

segmentation where each object is denoted by a different color. Figure 2.5 gives the 

snapshot of the excel sheet that has the ratings of different objects for each image shown 

in Figure 2.3. Finally, Figure 2.6 gives the ideal interest maps (in which brightness 

corresponds to perceived interest) which were generated from the ratings shown in Figure 

2.5. These results demonstrate that subjects tended to rate objects having human faces or 

animals to be of greatest interest (primary ROI), whereas background objects such as sky 

and grass generally received the least interest (non-ROI).  
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Figure 2.3: Snapshot of 50 images from the training set of 200 images of the Berkeley Segmentation 
dataset and Benchmark database used in Experiment. 
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Figure 2.4: Snapshot of the segmented images for the images shown in Figure 2.3. Each object is 
denoted with a different color. 
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Figure 2.5: Average normalized ratings for each object for all the images shown in Figure 2.3 and Figure 
2.4. 
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Figure 2.6: Human rated importance maps for all the images shown in Figure 2.3 and Figure 2.4. 
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CHAPTER 3 
 
 

ALGORITHM 

The algorithm section is broadly divided into two-sections. The first section gives the 

Bayesian probabilistic approach which needs segmentation and uses naïve bayes’ rule of 

independent assumption. The second section describes the block-based segmentation 

approach which doesn’t need segmentation and is fast-enough to be used in real-time 

applications.  

3.1 Bayesian Probabilistic Approach 

In this section, we present an algorithm which takes as input various measurable factors 

(attributes) of each object in an image, and then yields the relative perceived importance 

of each object. The algorithm operates via a Bayesian probabilistic approach using the 

psychophysical histograms described in the previous section. 

The input to the algorithm is a segmented image that is divided into different objects. For 

example, the first image is an input image that is segmented into different regions 

denoted by different colors. The next step is to measure attributes like location, contrast, 

color, luminance, edge-strength, foreground/background and blur. After measuring the 

attributes, the raw measures are translated to likelihood importance’s using the 

histograms generated on the training set. The choice of the object being primary, 

secondary or non-ROI is taken by choosing the interest which gives the maximum 

probability.  
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General flow of algorithm is given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following sections explain each step of the algorithm in detail. 

3.1.1. Measuring Various Attributes 

The various attributes involved in computing the interest maps are color, contrast, 

location, edge-strength, foreground/background and blur. For all 1100+ objects, each 

factor has been measured as follows: 

3.1.1.1. Location: Usually an object toward the center of an image is more important than 

distant objects. The location for each object was computed as follows: 

Input image (Segmented 
image having different 

objects) 

Measure attributes: location, 
contrast, color, luminance, 

edge-strength, 
foreground/background and 

blur 

Translate attributes into 
likelihood of interest )|( IaP  

))|()(max(arg)|( IaPIPaIP ×=  

Final Importance Map 
 

Figure 3.1: General flow of the algorithm 
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where xc , yc denote the horizontal and vertical pixel coordinates of the object’s centroid, 

respectively; and width, height denote the width and height of the full-sized image 

respectively. 

 

3.1.1.2. Contrast: It is often observed that an object tends to stand out whenever it is of 

high luminance contrast; such an object is generally rated to be of greater interest than 

other, low-contrast objects. The object’s contrast is measured by (1) dividing the object 

into B×B blocks, (2) measuring the RMS contrast of each block, and then (3) combining 

the per-block contrasts as follows: 

∑
=

=
M

m

mcontrast c
M

a
1

250
 

where M denotes the total number of blocks in the object, and the block size, B, is 

computed based on the object’s size via )]05.005.0(,4max[ += objectNB . The quantity cm 

denotes the RMS contrast of the mth
 block, which is given by cm = σm/µm, where σm and µm 

denote the standard deviation and mean of the block luminance’s, respectively. We have 

found this local (block-based) measure of contrast to provide a better prediction of 

perceived contrast than RMS contrast for natural images. 

 

3.1.1.3. Color: It is quite obvious that colorful and bright objects draw attention. 

Therefore, the color distance for each object has been measured by: (1) Creating a dilated 

mask for each object, and then (2) measuring the Euclidean distance between the average 



 

 
24 

object color/brightness( avg_clr/lum_object )and the average color/brightness of the 

neighboring pixels (avg_clr/lum_neighbor) defined by the dilation. The distance has been 

computed separately for brightness (abrightness) and color (acolor) in CIELAB color space, 

where avg_clr_object= [a1, b1], avg_clr_neighbor= [a2 b2], avg_lum_object= [L1] and 

avg_clr_neighbor= [L2]. 

||____|| neighborclravgobjectclravgacolor −=  

||____|| neighborlumavgobjectlumavgabrightnes −=  

 

3.1.1.4. Edge Strength: Usually, objects with greater numbers of edges are more obvious. 

We obtained a measure of edge-strength (aedge) for each object by: (1) applying a canny 

edge detector to the image, and then (2) counting the number of edge pixels for each 

object. The edge-strength was defined as the number of edges (Nedges) for each object 

divided by the number of pixels in each object. 

objectedgesedge NNa =  

3.1.1.5. Foreground/Background: To measure the extent to which an object is in the 

foreground, we have employed a variant of the measure specified by Osberger et al. [1] 

given by 

borderimage

borderobject

foreground
N

N
a

_

_2
2 −=  

where Nobject_border denotes the number of object pixels which lie within three pixels of the 

image’s outer edges (borders), and where Nimage_border denotes the total number of pixels  

in the three-pixel-wide border of the image. 
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3.1.1.6. Blur: Blur is another factor that has a significant influence on the importance of 

the object in an image. Right now, blur has been measured as a preliminary result using 

slope of the magnitude spectrum.  

So, to measure blur, the image is first divided into 16×16 blocks with 50% 

overlap between the blocks. Then the slope of the magnitude spectrum is computed for 

each block to obtain a mask. Another mask is obtained by passing the original image 

through a high pass filter and then by measuring the kurtosis for each block. Kurtosis is 

chosen because it gives the measure of sparseness. The next step is compute the straight 

Euclidean distance between the two maps, and the then a median filter is applied on the 

resultant image where the darkness indicates the blocks that have greatest blur.  

 

3.1.2. Histograms: Likelihood functions 

In order to translate the attributes to the perceived interest, we need the histograms to 

compute the likelihood interests. The histograms were generated using the training set 

data. The histograms were fitted using the distribution fitting tool from the statistics 

toolbox of MATLAB. The histograms were fit with either a generalized extreme value 

distribution or a Weibull distribution; or a Gamma distribution; the fits are shown in 

Figure. 3.1. (1-6). These distributions were chosen because they provide a good fit to all 

three types (primary, secondary, and non-ROI) for each factor. 
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Figure 3.1.1. Likelihood function for location derived from the results of the psychophysical experiment. Red, 
blue and brown color curves give the histograms for location given that the object is primary, secondary or 
non-ROI, respectively  

Figure 3.1.2. Likelihood function for contrast derived from the results of the psychophysical 
experiment. Red, blue and brown color curves give the histograms for contrast given that the object is 
primary, secondary or non-ROI, respectively  
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Figure 3.1.3. Likelihood function for color derived from the results of the psychophysical experiment. Red, 
blue and brown color curves give the histograms for color given that the object is primary, secondary or non-
ROI, respectively  

Figure 3.1.4. Likelihood function for edge-strength derived from the results of the psychophysical experiment. 
Red, blue and brown color curves give the histograms for luminance given that the object is primary, 
secondary or non-ROI, respectively  
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Figure 3.1.5. Likelihood function for foreground/backgorund derived from the results of the psychophysical 
experiment. Red, blue and brown color curves give the histograms for f/b given that the object is primary, 
secondary or non-ROI, respectively  

Figure 3.1.6. Likelihood function for blur derived from the results of the psychophysical experiment. Pink, blue 
and brown color curves give the histograms for blur given that the object is primary, secondary or non-ROI, 
respectively  
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3.1.3. Using the Factors with Bayes’ Rule 

Bayes’ theorem relates the conditional and marginal probability distributions of random 

variables. Here, we are interested in the probability of perceived interest given the 

attributes of location, color, contrast, edge-strength, foreground/background, and blur. 

Let a  = [alocation, acontrast, abrightness, acolor, aedge, aforeground, ablur] denote a vector of 

measured attributes, and I be the perceived interest. The probability of interest given the 

attributes is given by 

))|()(max(arg)|( IaPIPaIP I ×=  

where P (I) was assumed to be 1/3.  

)|( aIP  returns the probability of interest that can take three labels: Primary, Secondary 

and non-ROI. The Bayesian probabilistic approach used here is based on naïve bayes. 

Hence we assumed statistical independence between the attributes and thus, the 

likelihood term can be expressed as 

)|()|(

)|()|()|(

)|()|()|(

IaPIaP

IaPIaPIaP

IaPIaPIaP

blurforeground

edgecolorbrightness

contrastlocation

×

×××

××=

 

where the individual probabilities were measured from the histograms generated based on 

the psychophysical experimental results.  

The algorithm thus estimates each object to be a primary, secondary, or non-ROI by 

choosing the rating which yields the greatest probability given the measured attributes. 
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3.1.4 Algorithm Summary 

In summary, given a segmented image, the algorithm performs the following steps: 

i. Computes each object’s factors alocation, acontrast, aluminance, aedge-strength, acolor, aforeground, 

ablur.  

ii. Converts the factors into perceived interest from the histograms obtained for each 

factor. 

iii. Computes each object’s total perceived interest by plugging everything into the 

Bayesian framework. 

iv. From this Bayesian framework, the algorithm computes the probability of each 

object being primary, secondary or non-ROI.  

v. The final outcome is the estimation that depends on the largest probability. For 

example, if the algorithm has highest probability with primary ROI, then the 

object is estimated to be a primary ROI. 

 

3.2. Block-Based Approach 

This section describes an alternative method to compute the importance of objects in the 

images. This approach is similar to the Bayesian probabilistic approach described in the 

previous section. However, the basic difference between these two approaches is the need 

of segmentation. Block-based approach does not need any segmentation algorithm and is 

fast enough to be used in real-time applications.  

First of all, the image is divided into n×n blocks (where n=8, 16 or 32). After dividing 

the image into blocks, all the attributes are measured for each block in the image. These 

attributes are then converted to the perceived importances using the histograms generated 
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by using the training set. The basic flow chart of the block-based approach is shown 

below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Even the training set is divided into blocks and the histograms of each attribute are 

computed given the importance is primary, secondary or non-ROI. The histograms are 

fitted using the distribution fitting tool box either with weibull or generalized extreme 

value distribution. The histograms generated for the 200 training set are as below: 

Input image (Divide image 
into n×n blocks; where n=8, 

16, 32) 

Measure attributes: location, 
contrast, color, luminance, 

edge-strength, 
foreground/background and 

blur for each block  

Translate attributes into 
likelihood of interest )|( IaP  

Final Importance Map 
 

Weighted linear combination 
of individual importance’s  

 

Figure 3.2. General flow-chart of the block-based approach.  



 

 
32 

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Data

D
e
n
s
it
y

 

 

 

 
 

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

Data

D
e
n
s
it
y

 

 

 

Figure 3.2.1 . Likelihood function for location derived from the results of the psychophysical 
experiment. Pink, blue and brown color curves give the histograms for location given that the object is 
primary, secondary or non-ROI, respectively  

Figure 3.2.2 . Likelihood function for contrast derived from the results of the psychophysical experiment. 
Pink, blue and brown color curves give the histograms for contrast given that the object is primary, 
secondary or non-ROI, respectively  
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Figure 3.2.3 . Likelihood function for color derived from the results of the psychophysical 
experiment. Pink, blue and brown color curves give the histograms for color given that the object is 
primary, secondary or non-ROI, respectively  

Figure 3.2.4 . Likelihood function for luminance derived from the results of the psychophysical experiment. 
Pink, blue and brown color curves give the histograms for luminance given that the object is primary, 
secondary or non-ROI, respectively  
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Figure 3.2.5 . Likelihood function for edge-strength derived from the results of the psychophysical experiment. 
Pink, blue and brown color curves give the histograms for edge-strength given that the object is primary, 
secondary or non-ROI, respectively  

Figure 3.2.6 . Likelihood function for blur derived from the results of the psychophysical experiment. 
Pink, blue and brown color curves give the histograms for blur given that the object is primary, 
secondary or non-ROI, respectively  
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Figure 3.2.7 . Likelihood function for global color derived from the results of the psychophysical 
experiment. Pink, blue and brown color curves give the histograms for global color given that the 
object is primary, secondary or non-ROI, respectively  

Figure 3.2.8 . Likelihood function for global luminance derived from the results of the psychophysical 
experiment. Pink, blue and brown color curves give the histograms for global luminance given that the 
object is primary, secondary or non-ROI, respectively  



 

 
36 

In Figure 3.3 the maps with raw measured factors are shown. The first image gives the 

raw map for location where the brightness denotes the distance from the center. Similarly 

for contrast, the brightness denotes greater contrast. The second row gives the maps for 

edge-strength and blur where the brightness for each-strength denotes more edge-

strength, but the brightness in blur denotes that the block is in focus. Similarly, the 

brightness in the map for color distance denotes more color distance.  

Again, these are just the measured factors, but these maps give a visual way of finding 

whether they affect the perceived importance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location Contrast 

Edge-strength Blur 

Color Distance 

Figure 3.3. Raw maps for measured factors. First row gives the maps for location and contrast. Second row 
gives the maps for edge-strength and blur. The bottom row gives the map for color-distance.   
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The next step is to take these raw factors and translate them to importances and the way 

we did this is by using the histograms by considering one factor at a time. The first image 

in Figure 3.4 gives the importance map we would get just from location, where clear 

regions correspond to primary ROI, grayish regions correspond to secondary ROI and 

black regions denote the non-ROI. Similarly, the image on the right gives the importance 

map obtained by considering contrast alone. The second row gives the importance maps 

generated considering edge-strength and blur. And finally the bottom row gives the 

importance map for contrast.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location Contrast 

Edge-strength Blur 

Figure 3.4. Raw maps translated to importance map for all the factors. First row gives the maps for location and 
contrast. Second row gives the maps for edge-strength and blur. The bottom row gives the map for color-
distance.   

Color- distance 
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Though both block-based and Bayesian based approaches are very similar, there are 

certain discrepancies.  

The major difference lies in the way the histograms are generated. The histograms 

from the 200 training set are generated by dividing all the 200 images into blocks and 

then measuring the various factors. The histograms are then classified as primary, 

secondary and non-ROI depending on the average rating of each block. That is, each 

block’s rating is obtained by taking the average of all the ratings (obtained from 

psychophysical experiment).  

Some additional factors like global color distance and global luminance distance 

are measured for the block-based approach. A slight modification is done to the way 

these factors are computed. Instead of taking the color and luminance distance of each 

region with the corresponding neighbors, the distance is computed between each block’s 

color/luminance and the average color/ luminance of the whole image.  

||____|| imageclravgobjectclravgacolor −=  

||____||min imagelumavgobjectlumavga ancelu −=  

 
 
The results with the block-based approach are shown in the results section. We observed 

that the block-based approach performed slightly better than the Bayesian based 

approach. This was due to the fact that the histograms measured for the block-based 

approach are dense and hence give better information. Moreover, certain factors like 

global color distance and global luminance distance make more sense when measured 

locally.  

The weights are obtained using the training set of 200 images. A regression is performed  
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to obtain the optimum weights. The regression is performed between the algorithm’s 

output and the results from the psychophysical experiment. The optimum weights are 

chosen by obtaining the maximum correlation between the algorithm’s output and the 

ground-truth data.  The weights thus obtained are given as follows:  

  

 

 

 

 

After obtaining the weights, a weighted linear combination is performed to obtain at the 

final saliency map shown as follows:  

 

 

 

 

 

 

 

 

 

 

Blur Location Contrast Edge-
strength

Global 
color 

distance

0.275 0.203 0.199 0.118 0.203

Blur Location Contrast Edge-
strength

Global 
color 

distance

0.275 0.203 0.199 0.118 0.203

Table 3.1: Weights obtained from the training set for each factor.  

Edge-strength

Blur

Location

Contrast

Color-

distance

∑

0.203

0.199

0.203

0.275

0.118

Final Importance 
Map

Figure 3.5: Weighted linear combination is performed to arrive at the final importance map.  
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CHAPTER 4 
 
 

RESULTS 

In this section we present the results by comparing our algorithm with the ground-truth 

data and also with Osberger et al and Itti et al approaches. The testing set consists of 100 

images taken from the testing set of Berkeley image segmentation database as already 

mentioned. The images used are of size 321 × 481 with 24-bit RGB pixel values. 

To test the efficiency of the algorithms, a comparison is made with the ground-

truth data obtained from the psychophysical experiment. Since, the Bayesian probabilistic 

approach and Osberger et al approach is based on segmentation; they can easily be 

compared with the ground truth data. However, for the algorithms such as Itti et al and 

block-based approach, the output isn’t an object level segmented importance map. Hence, 

to compare these approaches with the ground truth data, the work of Liu et al [22] has 

been followed where the average of the saliency points has been taken within each object 

of an image. That is for each object in an image, the importance is mapped back by 

taking the average of all the detected saliency points within that object. This could be 

shown in the form of demo in Figure 4.1. First of all consider the importance map 

generated using the human rating. Then take all the pixels corresponding to a single 

object for example the lions face. Then, find the same number of pixels in the Itti’s or the 

proposed block-based map. After finding the pixels, simply compute the average of all 

the pixels in that region from the raw map to arrive at the final importance map. This is 

how the result of Itti et al. and the proposed block-based approach are mapped back to 

the segmented result.  
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As part of the results, we show some demonstrative images in Figure 4.2.   Each image 

has five individual importance maps: (1) Human rated importance map (IM); (2) 

Importance map obtained by Osberger et al; (3) Importance map generated via Itti et al; 

(4) Importance map generated by proposed Bayesian probabilisitic approach and (5) 

Importance map generated by the block-based approach. The first row for each image is 

given in this order: First and foremost image is the original image. The second image is 

the human rated importance map which forms the ground truth data. The third image in 

the same row is the importance map generated using Osberger et al approach. The second  

row gives the importance map in the following order: First image is the importance map 

obtained using Itti et al which is obtained by taking the saliency map and mapping back 

to the segmented mask. (As explained in Figure 4.1). Second image in the second row 

Human Rating

Itti et al.

Human Rating Itti et al.

Average of 

the pixels

Itti et al.

Figure 4.1: Demo showing the mapping back Itti et al. to the human-segmented mask. 
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gives the importance map generated via the proposed Bayesian probabilistic approach 

and finally the third image in the second row shows the importance map generated via the 

block-based approach which is mapped back to the segmented image similar to the Itti et 

al.   

 Seven test images are presented showing the importance maps generated by all 

the algorithms. In all the images presented here, it is observed that almost all the 

algorithms predict the primary ROI perfectly. The problem arises while predicting the 

secondary and non-ROI in the image.  

 For example in the Figure 4.2.1, one can see that all the algorithms are successful 

in identifying the lion as the primary ROI. However, when it comes to the rocks in the 

foreground, which forms the next important object according to the human rating, 

Osberger’s approach gives the sky more importance than the rocks in the foreground. 

Even Itti’s approach gives the rocks and the sky almost the same importance. Whereas 

the proposed approaches do a better job finding rocks more important than the sky in the 

background. 
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Original

Bayes’

Human Rating Osberger et al.

Itti et al. Block-based approach 

Figure 4.2.1: Results showing the importance maps generated using all the algorithms for a lion’s image. 

 Original Human-rating Osberger et al.

Itti et al. Bayes’ Block-based

Figure 4.2.2: Results showing the importance maps generated using all the algorithms for an image of a building.  
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Another simple image is shown in Figure 4.2.2., where the proposed algorithm mimics 

the human-ratings, but both Itti and Osberger fail completely in recognizing the building 

as the important region.  

Figure 4.2.3 gives an example of a difficult image where Osberger and the proposed 

approaches do a better job finding the animal as the most important region whereas Itti 

fails to do that. It is also observed that both Itti and Osberger give more importance to the 

background which is completely out of focus in the original image.  

 

 

 

 

 

 

 

 

 

 

 

Another difficult image is shown in Figure 4.2.4 where almost all the algorithms fail in 

finding the grass and the trees in the background. Our approach, assumes the trees to be 

more important as the trees have good contrast and color distance when compared to the 

sky. It is also observed that the importance map obtained via Osberger et al. fails in 

identifying the horse as the most important region.  

Original Human-rating Osberger et al.

Itti et al. Bayes’ Block-based

Figure 4.2.3: Results showing the importance maps generated using all the algorithms for an image of an animal. 
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Original Human-rating Osberger et al.

Itti et al. Bayes’ Block-based

Figure 4.2.4: Results showing the importance maps generated using all the algorithms for an image of a horse. 

 Original Human-rating Osberger et al.

Itti et al. Bayes’ Block-based

Figure 4.2.5: Results showing the importance maps generated using all the algorithms for an image of fishes. 
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Another example shown in Figure 4.2.5 is a difficult image to deal with because of the 

white corals in the scene. The corals in the scene do not have much contrast when 

compared to the other objects. Thus it is seen that block-based, Itti and Osberger fail to 

recognize the corals in the scene.  

Some failure cases are shown in Figure 4.2.6 and 4.2.7. These cases tell us that there are 

still some hidden factors which influence the importance of objects in images and are yet 

to be found.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.7 is an image of a snake where the proposed Bayes completely failed. Block-

based does a decent job in finding the snake, but still is way away from the human rating 

importance map.  

 

Figure 4.2.6: Failure cases showing the importance maps generated using all the algorithms for an image of a snake. 

Original Human-rating Osberger et al.

Itti et al. Bayes’ Block-based
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Above is another image, where the proposed algorithm failed to identify the importance 

of the cap. However it does a decent job compared to Itti’s where the face is not 

important and Osberger’s where the background is given more importance than the face.  

 

As mentioned earlier, all the algorithms are compared with the ground-truth data.  

To measure the performance of each algorithm, correlation coefficient and mean-square 

error is computed. Overall, our method leads to a correlation with subjective ratings of 

0.707 with Bayesian probabilistic approach and 0.754 with block-based approach when 

applied to the 100 images from the testing set of Berkeley image segmentation database. 

Original Human-rating Osberger et al.

Itti et al. Bayes’ Block-based

Figure 4.2.7: Failure cases showing the importance maps generated using all the algorithms for an image of a 
human. 
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For the same testing set, the algorithm of Osberger et al. yields a correlation coefficient 

of 0.468. We also compared our algorithm with Itti et al for same set of images. The 

correlation coefficient obtained using Itti et al is 0.512. The correlation coefficients along 

with the RMSE are shown in the form of a table in Figure 4.3. 

 

Approach 

R( Correlation 

coefficient) 

RMSE( Root mean 

square error) 

Osberger et al 0. 4683 0.4156 

Itti et al 0.5118 0.4036 

Bayesian probabilistic 

approach 

0.7067 0.3312 

Block-based approach 0.754 0.2639 

 

 

We can see that the RMSE for the proposed block-based approach is the lowest. The 

RMSE is lower for the Bayesian probabilistic approach as well. This shows that the 

proposed algorithms perform better both in terms of correlation coefficient and RMSE. 

Table 4.1: Table showing correlation-coefficient and RMSE for all the algorithms. 
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CHAPTER 5 
 
 

CONCLUSIONS 

Here, we proposed two algorithms to estimate the perceived interest of objects in images. 

A psychophysical experiment has been performed to determine likelihood functions, 

which were then used as part of a Bayesian algorithm. Our preliminary results 

demonstrate that the predicted interests correlate well with human-rated interests. A 

correlation coefficient of 0.7 has been achieved when the algorithm is given a segmented 

image. On the other hand, with the original image as the input, the block-based approach 

gives a correlation coefficient of 0.75. This block-based approach is fast enough to be 

used in real-time applications. We are currently in the process of repeating the 

psychophysical experiment with more images containing a variety of commonplace 

subject matter. We are also investigating other factors that contribute to the perceived 

interest.  
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