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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1.  Background 

 Friction is an essential part of each and every day.  Imagine a world without 

friction…a man would not be able to simply walk down the road because without 

friction, he would fall!  With the importance of friction it is amazing how little is actually 

known about it.  In undergraduate physics, Coulomb’s law of friction is taught as F=µN, 

where F is the frictional force, µ is the coefficient of friction, and N is the normal force.  

However, this equation leaves out some very important details. 

 It is already known that when the speed of an object increases, its coefficient of 

friction decreases.  However, rock experiments conducted by geophysicists showed that 

when an object’s speed is suddenly increased, the coefficient of friction first increases 

and then exponentially decreases until it reaches its limiting value.  This exponential 

decrease is referred to as the transient effect.  Coulomb’s Law has a different coefficient 

of friction for static and dynamic friction.  It does not explain transition, effect of hold 

time, and how it changes with speed as demonstrated in the experimental data from 

Marone (1998) shown in Figure 1.1. 
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b.a. c.b.a. c.

 

Figure 1.1:  Coefficient of Friction Experimental Results (Marone 1998) (a) effect of 

hold time on µµµµs, (b) effect of sliding velocity on µµµµd, (c) transient effect on 

µµµµd due to a instantaneous change in sliding velocity 

Figure 1.1a shows the effect of the static coefficient of friction over time.  Coulomb’s 

Law indicates that the static coefficient should be constant over time but experimental 

results have shown that instead of remaining constant over time, the static coefficient of 

friction actually increases logarithmically with time.  Figure 1.1b shows the dynamic 

coefficient of friction plotted against sliding velocity.  As the velocity increases, the 

dynamic coefficient of friction actually decreases over time.  This is not what we would 

expect from Coulomb’s Law which leaves the dynamic coefficient of friction constant as 

velocity increases.  The third area where Coulomb’s Law does not accurately explain 

experimental results is the effect of the coefficient of friction with a change in the 

velocity during sliding.  Figure 1.1c shows that for a velocity of 0.4 mm/s the coefficient 

of friction remains fairly constant around 0.545, but when the velocity is suddenly 

increased to 4 m/s the coefficient of friction decreases over time and distance.  The 

interesting note here is that when the velocity is increased suddenly, there is an 

instantaneous jump in the coefficient of friction to a higher coefficient of friction before it 

logarithmically returns to a lower value than the 0.545 that was seen initially. 

 Thus, it was found that a frictional law should not hold the coefficient of friction 

constant but instead the frictional coefficient is better modeled as a function of sliding 
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speed and its history.  The law that accounts for these occurrences is referred to as the 

rate-state constitutive friction law and an example can be seen in Figure 1.2 below. 

 

Figure 1.2:  Variation of µµµµ due to an instantaneous change in sliding velocity in the 

rate-state friction law 

Coulomb’s Law does not accurately describe stick-slip sliding.  This stick slip 

phenomenon can be witnessed in many different situations.  While driving home in the 

rain, one could witness a windshield wiper on a car sticking and then skipping on the 

glass.  Instead of easily sliding across the windshield, it would probably leave layers of 

water on the glass.  This stick-slip is also found on different length scales that might 

include the squeaking of machinery or the unstable fault slips in the Earth.  Earthquakes 

are stick-slip events on a large length scale measured in kilometers and a large time scale 

measured in years.  Over many years the tectonic plates of the earth along a fault are 

sticking to one another and building up stress.  But as discussed from Figure 1.1a, the 

static coefficient of friction that keeps these tectonic plates from sliding is gradually 

increasing which allows for a slip event to trigger an earthquake over many kilometers of 

the fault line.  Figure 1.3 shows the San Andreas Fault as an example of this frictional 

sliding along an interface (the fault line). 
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Figure 1.3: San Andreas Fault – earthquakes as an example of frictional sliding 

The two blocks shown in the middle of Figure 1.3 are each of similar earth materials and 

are sliding relative to one another.  In fact, this is the driving force behind this research.  

Instead of simulating two blocks made of rock, this research will look at two Homalite 

blocks that are sliding relative to one another.  Homalite was chosen as the material to 

model due to its similarities with rock including their brittleness and elastic properties.  

Homalite’s ability to show isochromatic fringes in laboratory experiments that 

qualitatively showed important correlation to numerical simulation results was also an 

important factor.   

 

1.2.  Introduction to Stick-Slip Sliding 

 Imagine two blocks held together.  Now the bottom block suddenly begins 

sliding.  What might happen?  Looking closely in very small time segments at the sliding 

will reveal the following demonstration seen in Figure 1.4. 
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Figure 1.4: Blocks Demonstrating Sliding Behavior 

Note that the bottom block does not simply translate to a new position but instead the left 

side begins to inch its way over and then finally the right side begins to inch its way over 

until the actual sliding displacement has occurred.  This is a demonstration of what is 

happening during the stick-slip sliding.  But how would anyone be able to catch a 

glimpse of this stick-slip sliding without special equipment?  Imagine a sponge that is 

setting on top of a kitchen counter.  If one side of the sponge was held with one hand 

while pushing or scrunching up the other end, the sponge would constrict.  After 

releasing the sponge, it would then appear to “grow” while it was instead just finishing its 

forward movement.  This can be seen illustratively in Figure 1.5. 

 

Figure 1.5: Moving a sponge to demonstrate stick-slip behavior 

The area of the sponge that is contracting together before it is released is illustrative of 

sticking in a dynamic frictional stick-slip event.  Similarly, as the sponge is released it is 

reminiscent of the slip pulse associated with stick-slip sliding.  This stick-slip sliding 

occurs not only with a sponge and a counter top, but also could occur between any two 

objects under the right physical conditions.
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CHAPTER 2 

 

 

REVIEW OF LITERATURE 

2.1.  Friction Laws 

 Frictional sliding is important to many different fields including geophysical 

faulting, composite fracture behavior, machining, and behavior between moving and 

fixed mechanical parts.  In the case of geophysical faulting, constitutive rate-state laws 

were introduced in order to match the recent observations of dynamic friction 

experiments on rocks (Dieterich 1979).  In recent sliding experiments to simulate fault-

like behavior, it was noticed that there was not only an instantaneous dependence on the 

rate of sliding but also on the dependence of the evolving state (Rice & Ruina 1983).  So 

not only is the frictional behavior dependent on the sliding rate but also on its past 

history.  And so, as previously discussed, Coulomb’s Law could not be considered fully 

adequate to cover these changes in frictional sliding behavior and thus some constitutive 

rate-state laws emerged. 

 In addition, the use of these rate-state friction laws allowed the numerical 

simulations with stable numerical algorithms which allowed the observation of new types 

of sliding behavior that the use of Coulomb’s Law did not allow (Ranjith and Rice 1999, 

Lapusta et al. 2000, Povirk and Needleman 1993, Marone 1998, Coker et al. 2005).  This 

driving application was the modeling of which was later adapted to applications such as 

geophysical faulting and also in fiber pull-out (Tsai and Kim 1996) and other frictional  
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model experiments used to examine the effects of frictional sliding of engineering 

materials. 

2.2.  Observed Sliding Modes in Dynamic Friction 

 Numerical studies and laboratory experiments generally find two types of 

frictional sliding which will be referred to as frictional sliding modes in this research 

paper.  Povirk and Needleman (1993) implemented a rate-state constitutive frictional law 

into a finite element code in order to simulate a single fiber being pulled out of a 

surrounding matrix.  They reported stick-slip behavior during this fiber pull-out process 

in addition to steady sliding.  Not only was the stick-slip behavior discovered during the 

fiber pull-out process but also in earthquake faulting as well.  Ben-Zion and Huang 

(2002) studied the dynamic rupture along an interface fault zone between two rock 

models.  In fact, they report that the observation of pulses is occurring and has the 

tendency to grow in velocity and to be a set distance of nearly 25.5 km apart from one 

another along the fault.  The plot shown in Figure 2.1 is describing the time history of the 

slip pulses at different locations along the fault zone line. 

 

Figure 2.1: Time History of Slip Pulse Along Fault (Ben-Zion and Huang 2002) 
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Similar pulses were also found by Coker et al. (2005) when they performed numerical 

simulations using a finite element code that implemented a constitutive rate-state law 

where the dynamic sliding of a plate subjected to impact was incorporated.  Their model 

setup is identical to the setup used in this research paper and was briefly discussed in 

Section 1.2 above.  In laboratory experiments, Coker et al. (2005) and Lykotrafitis et al. 

(2006) found not only crack-like sliding but pulse-like sliding as well.  Their experiments 

were conducted using two Homalite plates that were being held together and a projectile 

was then fired at one of the plates to generate sliding.  Coker et al. (2005) also performed 

experiments and captured similar results.  The findings also showed crack-like sliding 

with a possible pulse-like sliding in some cases.  These laboratory findings allowed for 

numerical studies to look further into these pulse-like and crack-like sliding cases with 

some qualitative validation of such results. 

 Coker et al. (2005) began to study the different types of sliding that they observed 

and found multiple sliding modes.  Along with the crack-like sliding mode they report 

that there are two different stick-slip modes (train of pulses and growing pulses).  With 

this in mind, there are questions as to what other types of sliding might be occurring 

under similar circumstances.   

 

2.3.  Crack Tip Velocity 

 In numerical simulations, the crack tip speed of the front wave for the frictional 

sliding has been studied.  In work done by Coker et al. (2005), they not only studied 

numerical simulations but some experimental data as well.  The crack tip velocities for 

experimental and numerical cases are plotted in Figure 2.2. 
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Figure 2.2: Crack Tip Velocities (Coker et al. 2005) 

In these simulations, Coker et al. (2005) found that the crack tip propagated at supersonic 

speeds shown by solid lines in Figure 2.2.  However, experiments have shown frictional 

sliding that has intersonic crack tip velocities between the longitudinal wave speed 

(denoted by cl) and the critical crack tip speed of the Homalite material (denoted by sc2  

where cs is the shear wave speed).  Crack tip speeds will be further investigated 

numerically in this research study. 

 

2.4.  Research Objectives 

 The main objective of this research is to more thoroughly search for and analyze 

the frictional sliding modes using a finite element method that incorporates a rate-state 

dependent friction law.  The work that has been previously done is not entirely 

conclusive and was not done in detail.  It is expected that multiple sliding modes might 

be found and so it will also be critical to analyze the stick-slip sliding that should be 

observed and determine what conditions might cause this versus crack-like sliding. 

 Not only will the interfacial sliding be studied, but also there is some interest in 
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what is actually happening along the interface.  Therefore, the interface will also be 

closely examined to see what might be occurring during these dynamic frictional sliding 

events.  

 It is also important that numerical simulations can be done such that it simulates 

not only supersonic crack tip velocities but also intersonic crack tip speeds as observed in 

laboratory experiments.  To do this, each simulation will be analyzed to determine the 

characteristics that might be largely be influencing the crack tip velocity.  Then this 

information will be used to refine the computational simulation by changing input 

parameters in order to find a specific condition that might invoke these low crack tip 

velocities. 
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CHAPTER 3 

 

 

THEORETICAL BACKGROUND 

 

3.1.  Rate-State Friction Law 

 A rate-state friction law needed to be chosen to model in the finite element 

simulations.  The rate-state equation selected for use in the finite element model was 

adapted from work done by Dieterich (1979) and Rice & Ruina (1983). This form of the 

rate-state law represents the coefficient of friction as a function of sliding speed, slipu& , 

and a state variable, θ , representing the contact quality between sliding surfaces. 
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where 0L  is the characteristic length, 0V  and 1V  are both constants with units of velocity, 

sµ  is the static coefficient of friction, and dµ  is the dynamic coefficient of friction.  It is 

also important to note that the internal state variable characterizing the state of contact 

between two surfaces, θ , has units of time.  The evolution of this internal state variable, 

θ , is given by the following differential equation: 

  







−=

0

1
L

u
B

slip
&

&
θ

θ     (3.4) 

where 0θ&=B .  Values are required for the constants in the equations mentioned above.  

The purpose of these constant values is then to take the rate-state law and “match it”  

with the experimental results obtained in previous laboratory examples by those of 

Dieterich (1979), Rice & Ruina (1983), and others.  These constant values were obtained 

from Coker et al (2004) because they have been used in the same rate-state law 

previously.  However, the values were manipulated to see what their effects were on the 

frictional model.  It was determined that changing these values did not cause the model to 

fit the data any better.  Thus, it was decided to use the original values from Coker et al 

(2004) shown below in Table 3.1: 

µµµµ s 0.6

µµµµ d 0.5

V0 100

V1 26

p 1.2

m 5

L0 0.00002  

Table 3.1: List of Constants used in Rate-State Law 
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3.2.  Steady-State Frictional Behavior 

 It is also important to look at the steady-state behavior of the coefficient of 

friction in Equation 3.1.  Thus, plugging in 0=θ&  to obtain steady-state sliding yields the 

following result: 
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Substituting this steady-state value of θ  back into Equation 3.3 yields the following: 
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Then again inserting Equations 3.2 and 3.6 into Equation 3.1 yields the steady-state 

expression for the coefficient of friction, ssµ , as can be seen in Equation 3.7. 
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Constants from Table 3.1 (discussed previously) were then inputted into Equation 3.7.  

This resultant steady-state coefficient of friction, ssµ , was then plotted with respect to the 

non-dimensionalized slip velocity variable, 
1V

u slip&
, and can be seen in the following figure: 
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Figure 3.1: Steady-State Friction Coefficient vs. Non-Dimensionalized Slip Velocity 

 

As can be seen from Figure 3.1, the coefficient of friction begins at the static coefficient 

of friction value of 0.6 and then within four to five time steps (where one time step is 
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equal to a value of one for the non-dimensionalized slip velocity variable) it reaches a 

steady-state value of 0.5 which is the coefficient of dynamic friction value.   

 

3.3.  Non Steady-State Frictional Behavior 

 Now that a steady-state representation of the coefficient of friction has been 

shown in a single equation format, the next objective is to find an expression for the 

coefficient of friction when it is not under steady-state sliding.  The steady-state 

conditions do not apply when θ&  takes on a non-zero value.  Applying this condition 

requires the differential equation stated previously in Equation 3.4 to be solved.  First, the 

equation is manipulated using a fundamental calculus approach as follows: 
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Now that like terms have been grouped and sorted to each side of the equation, the next 

step is to integrate both sides: 
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All that remains to do in order to simplify this equation are a few simple algebra 

techniques.  The left-hand side is first reduced down to only its logarithm term. 
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The logarithmic equation is then rewritten in an exponential form to simplify Equation 

3.10 even further. 

   2

0

0

1
C

Bt
u

L

slip
ee

L

u
slip&

& −

=−
θ

 

 
Bt

u

L

slip slipeC
L

u
&

&
0

3

0

1
−

=−
θ

  (3.11) 

It is important to note that the desired equation needs to be a function of the following 

form, ( )tθ .  Thus, the equation is then rearranged to solve for θ : 
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In order to solve for the integration constant, 4C , an initial condition of 0θθ =  at 0=t  

must be applied. 
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slipu

L
C

&

0

04 −= θ   (3.13) 

But, this integration constant 4C  is not necessarily valid for all times, 0t .  What if the 

sliding velocities suddenly changed?  Then 0t  might not be zero and then using the 

variable ( )00 tθθ =  in the constant’s expression would be misleading.  Instead, think of 

these velocity jumps occurring at any given time ntt =  where ( ) nnt θθ = .  Then, 

recalculating the integration constant to account for this change yields the following 

result: 
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Taking this more diverse constant and plugging back into Equation 3.12 yields the 

following for an expression of the time history variable, θ : 
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The finalized equation demonstrated above in Equation 3.15 was then written into an 

Excel VBA code.  A counting variable, delta, was used instead of the time parameter in 

previous codes of this nature and so a relation of time to delta was also inputted into the 

program using the following relations: 
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L
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 A loop was then used to form a time array that was used to calculate the time 

history variable, θ , for each time step.  These values for θ  were then plugged back into 

Equations 3.2 and 3.3 in order to solve for the coefficient of friction as defined in 

Equation 3.1 previously.  The constants were inputted into the program from the previous 
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list from Table 3.1.  Next, three different sliding velocities were inputted into the 

program so that the simulation would experience a sudden increase and decrease in 

sliding velocities.  These velocities were 10 m/s, 100 m/s, and 30 m/s.  The following 

figure shows the coefficient of friction as a function of delta for the three different 

applied velocity jumps along with Amontons-Coulomb’s law for comparison (purple): 
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Figure 3.2: Rate-State Friction Coefficient vs. Delta 

 

From Figure 3.2 it is interesting to note that while the dynamic coefficient of friction was 

inputted as 0.5, the rate-state law did not reach this value until a much larger sliding 

velocity of 100 m/s was felt.  And although the dynamic coefficient of friction was not 

attained during the simulation of a sliding velocity of 10 m/s, the frictional coefficient did 

overcome the static coefficient of friction (0.6) and did maintain a steady value below 

that.  Once a higher sliding velocity was inputted, the coefficient of friction first spiked 

up to a higher value and then dropped in an exponential form as opposed to an immediate 

drop as one might have expected.  It then reached a steady frictional coefficient equal to 

that of the dynamic coefficient of friction (0.5).  Similarly, when the sliding speed was 
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decreased significantly, the frictional coefficient spiked first to a lower value and then 

increased logarithmically to a steady value above that of the dynamic coefficient of 

friction but still below the static frictional coefficient value.  This information matches 

well with other experimental data and so it was concluded that this particular rate-state 

law from Dieterich (1979) and Rice & Ruina (1983) would hold and was sufficiently 

good for our finite element model simulations. 

 



 21 

CHAPTER 4 

 

 

NUMERICAL IMPLEMENTATION 

 

4.1.  Finite Element Method Mesh Setup 

 The finite element code was used to simulate frictional sliding between two plates 

as might occur in an earthquake.  Homalite was chosen as the material to model because 

of its similarities with rock as previously discussed in the introduction section.  The 

numerical model is then comprised of two rectangular plates held together by a 

compressive load, σo.  An impact velocity is also utilized to initiate sliding and is an input 

to the finite element code along with the compressive load.  A numerical model setup is 

shown in Figure 4.1 below. 

 

Figure 4.1: Finite Element Model Loading and Geometry 
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The figure below shows the mesh used in the finite element code simulations. 
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Figure 4.2: Finite Element Model Mesh (lengths measured in meters) 

As can be seen from the figure, the left-hand side is comprised of a very fine, uniform 

mesh until x = 0.08 meters which then becomes a transitional region which gradually 

increases in coarseness until it reaches x = 0.12 meters where the mesh becomes uniform 

again.  Each mesh or rectangular plate was made to be 200 millimeters long and 75 

millimeters in height as shown above in Figure 4.2.  The impact velocity is chosen to 

simulate a projectile striking the lower plate on the left-hand side as shown above in the 

numerical model setup (Figure 4.1).  The impact velocity profile is shown in the 

following figure. 
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Figure 4.3: Impact Velocity Profile 

Figure 4.3 gives the velocity profile that was used in each of the numerical simulations 

presented in this research.  The profile was chosen based on experiments conducted of a 

projectile hitting a plate which was done in the laboratory and discussed later in Section 

4.4. 

 The Homalite plates modeled in the finite element code have material properties 

representative of Homalite-100 as shown in Table 4.1. 

E ρρρρ c l c s c R

(GPa) (kg/m
3
) (m/s) (m/s) (m/s)

5.3 0.35 1246 2201 1255 1170

νννν

 

Table 4.1: Homalite-100 Material Properties 

The table above shows the Young’s modulus E, Poisson’s ratio ν, density ρ, longitudinal 

wave speed cl, shear wave speed cs, and Rayleigh wave speed cR.  These wave speeds 

were determined using the following equations for plane stress: 
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4.2.  Fundamental Equations 

 The finite element code has two constitutive relations consisting of the bulk 

material constitutive law relating the stresses and strains in the material along with the 

cohesive law that gives the relation along the interface.  The material law governs an 

isotropic hyperelastic solid while the constitutive cohesive law utilizes the rate-state 

model discussed in the previous chapter which relates the traction rates to the 

displacement jumps.  The principal virtual work used in the finite element code is shown 

below and has also been discussed in Needleman (1987) and Xu and Needleman (1994). 

 ∫∫∫∫ ⋅
∂

∂
−⋅=⋅−
VSSV

dV
t

dSTdSdV

ext

u
u

uTES δρδδδ
2

2

int

: ∆∆∆∆  (4.2) 

where S is the second Piola-Kirchhoff stress tensor, u is the displacement vector, ∆∆∆∆ is the 

displacement jump across the cohesive surface, V is the volume, Sint is the interfacial 

cohesive surface area, Sext is the external surface area, and the relation A : B denotes 

A
ij
Bji.  Further, the displacement jump and traction relation on the interface is given by 

the following relations. 
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where slipq&  is the sliding rate at the interface.  The expression for the slip or sliding rate is 

the dependent relation shown below: 
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where β is defined as shown in Equation 4.5. 
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The friction equations are then updated using a single step tangent modulus method for 

rate dependent solids (Peirce et al. 1984).   

 

4.3.  Sliding Velocity Calculation 

 The following equation is used to calculate the change in sliding (horizontal) 

velocity: 

  ( ) −+ −=∆ xx uutu  (4.6) 

where ux is the displacement in the x-direction of an interfacial point and is described 

illustratively the following figure: 

ux
+

ux
-

uy
-

uy
+

 

Figure 4.4: Exaggerated Illustration of Sliding Displacements 

Although this appears to be a crack-like opening it is in fact an exaggerated view of the 

two surfaces that are sliding atop one another.  Thus the sliding displacements denoted 

with a positive superscript represent the upper interface and the negative superscript 

denotes the sliding displacement for the bottom interface.  The relative slip velocity can 

be found using a derivative definition as described in Equation 4.7 below. 

 
( ) ( )

t

tuttu
qslip ∆

∆−∆+∆
=&  (4.7) 

4.4.  Laboratory Experiments 

 Experiments were done to validate this program as described in Coker et al. 

(2005).  Their laboratory setup very closely matches the setup described above in for this 

numerical research done in finite element code. 
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Figure 4.5: Experimental Setup (Coker et al. 2004) 

The projectile was shot from close range at the steel plate pushing the bottom plate to 

initiate frictional sliding between the two Homalite plates.  To insure that the projectile 

was shot horizontally and not at an angle, the impression left behind on the steel plate 

was observed before any results were considered.   

 

Figure 4.6: Experimental isochromatic fringe patterns from a dynamic friction 

experiment on Homalite subject to a static compressive stress of 9.4 

MPa and impact velocity of 42 m/s, at (a) t = 40 µµµµs; (b) t = 48 µµµµs; (c) t = 

60 µµµµs: In the inset one or more lines are drawn to highlight Mach lines. 

The field of view is 130 mm in diameter (Coker et al. 2004) 
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The figures show the isochromatic fringe patterns captured by photoelastic equipment in 

conjunction with a high speed camera at three different times: 40 µs, 48 µs, 60 µs.  The 

progress of the impact wave in the bottom plate with time can be observed.  Immediately 

following the impact wave front, a stress concentration follows with a shear mach wave 

emanating at two angles from two different points.  Even though they are separate 

initially at 40 µs they eventually coalesce at 60 µs with the back shear mach wave 

traveling faster and reaching the front wave.  Coker et al. (2005) have shown similar 

behavior using finite element analysis that indicating the experimentally observed fringes 

could represent unsteady slip-pulse.  In addition, Lykotrafitis et al. (2006) made 

measurements of the particle velocity at the interface proving the existence of slip-pulses. 

 

Figure 4.7: The relative sliding speed of a point at the interface located at a distance 

of 70 mm from the impact side of the Homalite plates shows an isolated 

pulse A1 A2.  This experiment was done at 19 MPa and 10 m/s. 

(Lykotrafitis et al. 2006) 

Not only did Lykotrafitis et al. (2006) find an isolated pulse, but they found a crack-like 

mode as well as seen in the following plot of Figure 4.8. 
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Figure 4.8: The relative sliding speed of a point at the interface located at a distance 

of 70 mm from the impact side of the Homalite plates shows a crack-like 

sliding mode.  This experiment was done at 19 MPa and 19 m/s. 

These laboratory experiments provide qualitative validation, however, the numerical 

characteristics do not line up perfectly with experiments because of the loading 

conditions and the parameters used in the friction law simulations.  
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CHAPTER 5 

 

 

RESULTS AND OBSERVATIONS 

 

5.1.  Introduction into Observations of Different Sliding Modes 

 Finite element simulations were conducted with the material properties and 

friction constitutive properties fixed while varying the compressive load and impact 

velocities.  The finite element loading and geometry is shown in Figure 4.1 and the model 

is shown in Figure 4.2.  The frictional sliding starts between the plates at the impact 

point.  the frictional sliding region then travels down the length of the interface finally 

moving the lower block with respect to the upper block as shown in Figure 5.1.  
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Figure 5.1:  Stress contours of the bottom block sliding relative to the top block in 

three increasing time steps (from left to right): 2 µµµµs, 50 µµµµs, 100 µµµµs. 

Figure 5.1 shows the blocks sliding relative to each other in three separate stages.  In the 

figure on the left the sliding is initiated with an impact velocity on the left wall near the 

interface.  The middle plot not only shows the sliding of the blocks near the middle of the 

interface as the waves propagate along the interface but also that the bottom block has  
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moved on the left wall but not at the right wall yet.  The final figure shows that when the 

wave hits the right wall the block begins to move.  However, the block has only moved 

where the sliding wave has reached.  The rest of the right wall on the bottom block will 

move later when the remainder of the sliding waves reach these points.  This gradual 

growth of the sliding region occurs in six sliding modes.  These sliding modes are 

mapped in the compressive stress-impact velocity phase diagram in Figure 5.2. 
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Figure 5.2:  Frictional Sliding Modes Phase Diagram 

The results will be presented in terms of tractions and sliding velocity along the interface 

along with stress contours at a fixed time.  Using these outputs it was found that there 

were certain trends pertaining to the way the plates were sliding relative to one another 

based upon specific combinations of the compressive stress and impact velocity.  The 
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following subsections will not only discuss specific trends and traits pertaining to each 

mode, but will also show figures to further illustrate the modes. 

 

5.1.1.  Crack-Like Mode 

 The sliding velocity and shear stress plots of a typical crack-like mode are shown 

in Figure 5.3 below: 
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Figure 5.3: Crack-Like Sliding Velocity and Contour Stress Plots 

The sliding velocity plot shown on the left of Figure 5.2 is plotted against the distance 

along the interface between the two rectangular Homalite plates.  When looking at this 

slip velocity plot, some distinct features can be seen that exist only in the crack-like 

mode.  For instance, the single leading pulse is followed by a nearly constant sliding 

velocity.  This constant sliding velocity simulates constant crack growth.  Thus, this type 

of frictional sliding is referred to as “crack-like sliding.”  The figure below shows the 

data points plotted along with the solid line. 
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Figure 5.4:  Crack-Like Mode Sliding Velocity and Shear Stress Data Points 

As can be seen in Figure 5.4, the mesh is sufficiently refined to capture the gradual rise in 

the stresses along.  However, the jump in the sliding velocity for this mode occurs almost 

instantaneously from one node to the other. 

The stress contours plot shown on the right of Figure 5.2 is actually the plot of the 

contours of constant maximum shear stress.  When looking at this stress plot, it can be 

seen that there is a leading wave followed by a sliding region that expands similar to a 

shear crack. 

The normal tractions were also plotted together with the sliding velocity against 

the distance along the interface in Figure 5.5. 
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Figure 5.5: Crack-Like Normal Traction with Sliding Velocity plotted against the 

distance along the interface 
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The normal traction has the lowest value at the left wall.  The normal traction does vary 

some, although not significant, and does not seem to be contributing to the sliding event 

itself. 

 Another analysis tool used was to look at the pulses themselves—more precisely, 

the pulse peak height (measured by order of magnitudes), the distance between the 

pulses, and the widths of the individual pulses.  In the case of the crack-like sliding mode, 

the latter two analytic tools described above are not applicable since there is only a single 

peak and no real “pulse” to follow.  Here it is important to note that a pulse will be used 

to describe a sliding velocity that goes from zero velocity to some maximum peak 

velocity and back down to zero velocity.   

 For this particular case of 1 MPa 1 m/s, the peak velocity is around 2.5 m/s.  The 

following figure shows all of the peak velocities between times of 30 µs and 59 µs for 

each run in the crack-like case. 
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Figure 5.6: Crack-Like Sliding Velocity Peak vs. Time 
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The times of 30 µs to 59 µs were chosen to illustrate due to the fact that for all of the runs 

done for this research, most have sliding velocity peaks in this designated time region.  

However, as can be seen from the figure, not all of the runs will have the same time span 

available within their respective data sets.  Holding the compressive stress constant at 1 

MPa, and increasing the impact velocity in increments of nearly 5 m/s every time (the 

only exception being from 1 m/s to 5 m/s), the peak sliding velocity tends to increase by 

about 6 m/s throughout the trend as time increases.  The same type of trend can be seen 

when the compressive stress is held at 5 MPa—as the impact velocity increases, the peak 

sliding velocity also increases by roughly 5 m/s.  To illustrate the similarities between the 

different compressive stresses and trends, the following figure shows the sliding velocity 

for 5 MPa 10 m/s at a time that follows the trend at 43 µs. 
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Figure 5.7: Sliding Velocity vs. Distance Along the Interface for 05 MPa 10 m/s 

From the figure above, it is important to note that the front leading peak is beginning to 

form a leading pulse and has a peak velocity of 16 m/s.  If the impact velocity is 

increased by an amount of 5 m/s (putting the total impact velocity input at 15 m/s) the 

sliding mode is no longer a crack-like mode but it begins to transition into a multi-pulse 

mode as discussed in the following sections.  Similarly, if the compressive stress is 
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increased by 5 MPa, then the leading near-pulse of the above crack-like case, actually 

forms into a leading pulse for a leading pulse transitional mode also discussed later on in 

this chapter. 

 

5.1.2.  Trailing Pulses Transitional Mode 

 The sliding velocity and stress plots for this sliding mode can be seen in the 

following figures: 
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Figure 5.8:  Trailing Pulses Transitional Mode Sliding Velocity and Stress Plots 

Similar to the crack-like mode above, the trailing pulses transitional mode also has a 

single leading pulse followed by some constant crack-like sliding.  However, unlike the 

crack-like mode, this transitional mode includes some significantly larger pulses that are 

trailing the crack-like sliding.  Thus, this type of sliding is referred to as transitional 

trailing pulses.  Figure 5.9 below shows the data points plotted for the shear stress and 

sliding velocity plot. 
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Figure 5.9: Crack-Like Mode Sliding Velocity and Shear Stress Data Points 

The data points plotted above show again that the mesh is sufficiently fine and that the 

data is not mesh dependent.  The normal traction is plotted below on the sliding velocity 

plot versus the distance along the interface. 
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Figure 5.10: Transitional Trailing Pulses Sliding Mode Normal Traction with 

Sliding Velocity plotted against the distance along the interface 

The normal traction increases just before the trailing pulses become evident.  This will 

require further discussion later with sliding modes that include multiple pulses that are 

not just occurring in the rear. 
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5.1.3.  Crack-Pulse Transitional Mode 

 The crack-pulse transitional mode sliding velocity and stress plots are shown 

below: 
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Figure 5.11:  Crack-Pulse Transitional Mode Sliding Velocity and Stress Plots 

Unlike the previous transitional mode of trailing pulses, this mode leads with at least one 

front pulse and trails with a crack-like sliding behind the front pulse(s).  The leading 

pulse sliding velocity is an order of magnitude larger than the leading peak velocity of the 

crack-like sliding mode.  There is also a region following the leading pulse that where the 

sliding velocity is beginning to stick or come to a zero velocity which is why this type of 

sliding is called the transitional crack-pulse mode. 

 The shear stress plotted on the sliding velocity plot of Figure 5.11 has a peak in 

the same region that the initial leading pulse is on the sliding velocity plot.  The 

following figure shows the data points plotted on the sliding velocity and shear stress 

plot. 
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Figure 5.12: Crack-Pulse Transitional Mode Sliding Velocity and Shear Stress Data 

Points 

Figure 5.12 shows that the data is again mesh independent for the crack-pulse transitional 

mode.  The mesh is sufficiently fine such that the data points are accurately occurring.  

The normal traction is plotted against the distance along the interface with the sliding 

velocity in the following figure. 
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Figure 5.13: Crack-Pulse Transitional Mode Normal Traction with Sliding Velocity 

plotted against the distance along the interface 

The normal traction is the lowest at the left wall, as was the case for each sliding mode 

discussed so far.  The trend of the normal traction is similar and does not seem to be 

contributing to the actually frictional sliding event. 
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Figure 5.14: (A) Isochromatic fringe pattern generated during an experiment in 

which the impact speed was 17 m/s and compressive load was 19 MPa. 

(B) Relative velocity history of points M1 and M2 located at a distance of 

70 mm from the impact side of the Homalite plates. Two pulses, A1A2 

and A2A3,were formed. The crack-like rupture mode initiated at A3 

immediately behind the second pulse. (C) Isochromatic fringe pattern 

generated during an experiment in which the impact speed was 13 m/s. 

(D) Relative velocity history of points M1 and M2 located at a distance of 

30 mm from the impact side of the Homalite plates. A self healing pulse 

A1A2 was formed. The crack-like rupture mode initiated at A2 

immediately behind the second pulse. (Lykotrafitis et al. 2006) 

The numerical and experimental results exhibit a variety of common features including 

single and multiple pulses leading with a trailing crack-like sliding mode. It is important 

to note that the experimental results are plotted with respect to time at a fixed point along 

the interface while the numerical results shown previously are plotted with respect to 

distance along the interface at a fixed time.  In order to compare the two types of results 

qualitatively, the experimental result figures should have the time axis inverted.  In the 
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experimental results the pulses are leading just as they are in the numerical results with 

the crack-like sliding mode following. 

 Thirty times were chosen in the middle of the simulation to show some specific 

traits of each sliding mode.  These times were chosen to be 30 µs to 59 µs because most 

of the runs included typical results for the entire sliding mode type.  The front pulse 

shape and peak velocity for each of these times can be seen for the transitional crack-

pulse mode in Figure 5.15: 
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Figure 5.15: Sliding Velocity vs. Front Pulse Location for Crack-Pulse Transitional 

Mode 

At 30 µs, it can be seen that an initial leading pulse had not actually been established yet 

and it still mostly in a crack-like state.  However, one microsecond later, the front pulse is 

established and separates itself from the crack-like mode.  As time increases, the sliding 

velocity peak for these front pulses also steadily increases until approximately 55 µs 

where the peak velocity is approximately 45 m/s.  After this time the peaks begin to drop 

off but still fall between 35 m/s and 40 m/s. 
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 Another interesting trend to take note of in Figure 5.15 is the base of each pulse.  

The following figure shows a line drawn onto Figure 5.15 that signifies where the base 

pulse approximately ends and the peak of the pulse begins to rise from: 
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Figure 5.16:  Pulse Base for Figure 5.15 

The dark line shown in Figure 5.16 is cutting the pulses at the point where the base 

begins to slope up into the peak of the pulse.  For the transitional mode above, the pulse 

bases range from a “height” of sliding velocity of 16 m/s to 20 m/s.  Also, these pulse 

bases have initial widths ranging from 0.00379 meters to 0.00467 meters and have been 

plotted in the following figure: 
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Figure 5.17: Pulse Width vs. Time for 10 MPa 04 m/s 

The pulse widths shown above do not include the width at 30 µs since that was not 

actually a pulse.  The pulse widths are all very consistent and close to one another in 

distance—the maximum and minimum widths are both within one millimeter of each 

other.   

 

5.1.4.  Pulse-Train Transitional Mode 

 Sliding velocity and stress plots for this pulse-train transitional sliding mode are 

shown in the following plots of Figure 5.18: 
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Figure 5.18: Pulse-Train Transitional Mode Sliding Velocity and Stress Plots 
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The pulse-train transitional mode is a continuation of the previous crack-pulse 

transitional mode.  What separates the two modes is that there is not a trailing crack-like 

mode in the rear but instead there are pulses beginning to emerge.  Also, the mid-section 

(between the leading pulses and trailing pulses) is pulsating although what keeps this 

mode as a transitional one is the fact that the mid-section never reaches a velocity of zero 

to form actual pulses.  Figure 5.19 shows the data points for the sliding velocity and shear 

stress plot of Figure 5.18. 
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Figure 5.19: Transitional Pulse-Train Sliding Velocity and Shear Stress Data Points 

The data points shown in Figure 5.19 demonstrate that there were sufficient data 

collected within the fine mesh to be accurate.  Below is a plot of the normal traction. 
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Figure 5.20: Transitional Pulse-Train Sliding Mode Normal Traction with Sliding 

Velocity plotted against the distance along the interface 
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The normal traction increases slightly in magnitude just prior to the trailing pulses but 

does not deviate very much from -10 MPa for the leading pulses.  As observed also in 

previous cases, the gradual variation of the normal tractions along the interface (which is 

due to dynamic loading waves) is not a factor in the dynamic friction mode 

characteristics.   

 The front pulse sliding velocity is plotted below against the position along the 

interface in Figure 5.21. 
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Figure 5.21: Sliding Velocity vs. Front Pulse Location for Pulse-Train Transitional 

Mode 

The peak velocities of these leading pulses hold a somewhat steady peak around 72 m/s 

although the maximum peak velocity occurs at 56 µs for a velocity of nearly 85 m/s.  The 

pulse bases are also a good measuring tool as shown below in the following figure. 
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Figure 5.22: Pulse Base for Figure 5.21 

The pulse bases range from a sliding velocity of 20 m/s to approximately 24 m/s.  These 

base pulses are around 4 m/s greater than the bases for the crack-pulse transitional mode 

that was discussed in the previous sub-section.  The actual base widths can be seen 

plotted according to their times of occurrence in the following figure: 
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Figure 5.23: Pulse Width vs. Time for 10 MPa 09 m/s Leading Pulse 
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The base widths vary from 0.00305 meters to 0.00420 meters.  These widths are all 

within approximately one millimeter of each other and therefore are consistent.  Another 

good measuring tool is to compare all of the pulses as shown in the following figure: 
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Figure 5.24: Pulse Width vs. Time for 10 MPa 09 m/s 

First, it is important to note that the key at the bottom of the figure is denoting the pulse 

number where ‘1’ denotes the front or leading pulse.  Note that the majority of the pulses 

are fairly constant towards the bottom of the plot.  The pulses that have widths jumping 

up above the line at the bottom are pulses ranging from number 3 through 6 and also 

pulse 7 jumps up a little.  Recall that for this type of transitional mode the midsection of 

the sliding velocity plot was referred to as pulsating and fluctuating trying to come to 

zero.  This plot shows this same trend with the middle pulses.  It is also important to see 

that the front pack of pulses is nearly the same in base width as the trailing pack of 

pulses. 
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5.1.5.  Train of Pulses Mode 

 The train of pulses mode sliding velocity and stress modes are shown in the 

following figures: 
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Figure 5.25:  Train of Pulses Mode Sliding Velocity and Stress Plots 

The train of pulses includes many pulses each reaching a zero velocity and then with a 

slight pause, another well-defined pulse emerges, somewhat reminiscent of a train of 

pulses.  The magnitude of the sliding velocity peaks on these pulses is nearly one order of 

magnitude greater than the previous pulse transitional modes.  The data points for the 

sliding velocity and shear stress plot on the left of Figure 5.25 are shown below in the 

following figure. 
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Figure 5.26: Train of Pulses Mode Sliding Velocity and Shear Stress Data Points 
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The figure above shows that the mesh is sufficiently fine and therefore, the data is 

independent of the mesh.  Another interesting characteristic of Figure 5.26 is the shear 

stress relation to the sliding velocity.  Figure 5.27 below zooms in on the leading pulses 

to show that correlation. 
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Figure 5.27: Sliding Velocity Pulse Correlation to Shear Stress Plot 

As can be seen from Figure 5.27 there are three vertical lines drawn at significant 

locations of the leading pulse. Line 1 denote the beginning of the pulse and occurs just 

before the peak of the shear stress plot.  This shows that the two Homalite plates are 

sticking together while the shear stress is building up and just before the sliding velocity 

pulse begins the plates begin to slip.  This sliding velocity pulse peaks just after the shear 

stress peak as can be seen from Line 2.  So just after the shear stress reaches a local 

maximum, the Homalite plates reach a slip velocity maximum and then begin to slow 

down rapidly.  The shear stress continues to decrease until it reaches a local minimum at 
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Line 3.  This local minimum corresponds to the sticking location of the sliding velocity 

pulse.  At this point, the plates stick again and stop sliding relative to each other. 

 The normal tractions are plotted against the interfacial distance along with the 

sliding velocity in Figure 5.28 below. 
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Figure 5.28: Train of Pulses Normal Traction with Sliding Velocity plotted against 

the interfacial distance 

In Figure 5.28 there is not a significant change in the normal tractions along the interface 

as was also the case in each of the previous sliding modes—including that of the crack-

like mode shown in Figure 5.5.  Thus, it should be concluded that since there is not a 

significant jump in the normal traction for each pulse observed that the normal traction 

along the interface is not a factor in the dynamic frictional sliding characteristics. 

 A plot of the leading pulses for the times between 30 µs and 59 µs are plotted in 

Figure 5.29. 
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Figure 5.29: Sliding Velocity vs. Front Pulse Location for Train of Pulses Mode 

The majority of the sliding velocity peaks fall around 225 m/s until a time of 42 µs where 

the peaks begin to drop off.  The following figure shows the pulse base comparisons. 
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Figure 5.30: Base Pulse for Figure 5.29 
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The dark line represents the approximate locations of the sliding velocities that occur as 

the base of the pulse narrows to begin formulating the peak of the pulse.  In this case, the 

base “heights” range from approximately 25 m/s to 30 m/s.  The base widths should also 

be analyzed and plotted for the front pulses as shown below. 
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Figure 5.31: Leading Pulse Width vs. Time for 15 MPa 10 m/s 

The pulse widths shown above vary from a minimum value of 0.00239 meters and a 

maximum value of 0.00352 meters.  As in the previous sliding modes, the pulse widths 

are fairly consistent, the range staying within a millimeter between each leading pulse.  

Figure 5.32 shows the pulse widths for the leading pulse and the pulses that follow. 
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Figure 5.32: Pulse Width vs. Time for 15 MPa 10 m/s 

Figure 5.32 shows that the leading pulses, in general, have the widest bases but for the 

pulses that follow, the pulse widths tend to maintain a pulse width between 0.0015 meters 

and 0.0020 m.  Some pulses have a wider base but not many.  This is important as it 

shows that the leading pulse is distinct and somewhat different from the trailing pulses.  

The leading pulse also tends to have the greatest peak sliding velocity. 

 One further interesting trait that should be mentioned for this case is the distance 

between the maturing pulses.  This has not been a relevant study for the previous cases 

because the pulses were not as constant down the line (or towards the impact zone on the 

interface).  The following figure shows the distance between pulses plotted against the 

times that range again from 30 µs to 59 µs. 
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Figure 5.33: Distance between Pulses vs. Time for 15 MPa 10 m/s 

The above figure shows that the distances between the pulses are mostly between 1.5 and 

2.5 mm.  There are some instances where the distance might drop significantly or spike 

somewhat higher, but these only appear for a couple microseconds and then fall into line 

with the rest of the data. 

 

5.1.6.  Growing Pulses Mode 

 The growing pulse mode sliding velocity and stress plots are shown below: 
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Figure 5.34:  Growing Pulses Mode Sliding Velocity and Stress Plots 
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The difference between the pulse train described above and the growing pulses shown 

here is not only the increase of at least one order of magnitude in the peak velocity but 

also the distance between pulses.   
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Figure 5.35: Growing Pulses Mode Sliding Velocity and Shear Stress Data Points 

The data points in Figure 5.35 show the mesh to be sufficiently fine.  This also shows that 

the data taken is independent of the mesh.  The normal traction along the interface is also 

plotted with the sliding velocity in Figure 5.36. 
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Figure 5.36: Growing Pulses Interfacial Normal Traction with Sliding Velocity 

plotted against the distance along the interface 

Figure 5.36 further illustrates that the interfacial normal traction is not affecting the 

frictional sliding event by causing slip-pulses.   
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 An investigation of the leading pulse was also conducted for this sliding mode 

and is plotted in the following figure. 
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Figure 5.37: Sliding Velocity vs. Front Pulse Location for Growing Pulses Mode 

Here it is interesting at how much the peak velocity fluctuates.  With the growing pulses 

sliding mode the front pulse tends to spike at a high sliding velocity and then drop down, 

still to a velocity that is higher than the previous sliding modes, and rebuild only to spike 

again in a short amount of time (only a few microseconds).  As in previous cases, the 

base of the pulse remains to be around 30 µs.  The next case to investigate is the width of 

the pulses.  The front pulse base widths are plotted against time in Figure 5.38. 
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Figure 5.38: Leading Pulse Width vs. Time for 30 MPa 05 m/s 

As can be seen above, the pulse widths are all within one millimeter of each other as time 

increases.  The minimum pulse width is 0.00217 meters and the maximum width is 

0.00284 meters.  The figure below shows the pulse widths plotted against time for the 

leading pulse along with the pulses that follow. 
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Figure 5.39: Pulse Width vs. Time for 30 MPa 10 m/s 
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There are a couple of interesting features of Figure 5.39.  One is that the first two pulses 

are nearly constant.  The following pulses all seem to hold a very distinct pattern which 

begins with a very small width between pulses in which the general trend as the widths 

increase has a positive concavity and then the width begins to decrease quickly at first at 

a decreasing rate and then the widths level off to the same “line” as the previous pulses. 

 Another trait that should be discussed is the distance between pulses.  This is 

really only an issue for the train of pulses and the growing pulses sliding modes because 

these are the only modes that have mature and consistent pulses.  The following figure 

shows the distance between pulses for the growing pulse mode plotted against time: 
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Figure 5.40: Distance between Pulses vs. Time for 30 MPa 05 m/s 

This plot also shows a general trend that is followed by every pulse.  The key indicates 

the distance between the appropriate numbered pulses (i.e. 1-2 would show the distance 

between the first and second pulse).  These pulses hold a constant distance of 

approximately 5 millimeters between the first two pulses where the following pulses can 

be nearly 20 millimeters apart from one another. 
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5.1.7.  Phase Overviews and Comparisons 

 Now that a foundation has been set for each of the observed sliding modes, it is 

important to actually compare them and describe some of the important differences that 

separate one mode from another.  First, recall that the train of pulses mode and the 

growing pulses mode are the two modes with the most mature pulses.  But what actually 

separates the two modes?  For one thing, the actual sliding velocity peak on the leading 

pulse is generally larger for the growing pulses mode than for the train of pulses. 
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Figure 5.41: Leading Pulse Sliding Velocity Comparison for Growing Pulses vs. 

Train of Pulses 

From the figure shown above, it is evident that the sliding velocities for the leading 

pulses of the growing pulses mode is above the train of pulses mode for nearly every time 

displayed.  Another interesting note to make is that it seems that some time after 50 µs 

the trends begin to break down a little.  The growing pulses however holds onto its 

rebuilding or growing stage from time segment to time segment, dropping down to 

around 400 m/s and then shooting back up to nearly 2000 m/s, while the train of pulses 
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holds somewhat steady around 200 m/s.  Another comparison that should be noted is that 

of the pulse widths shown below: 
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Figure 5.42: Pulse Width Comparison for Growing Pulses vs. Train of Pulses 

The plots shown in Figure 5.42 were placed in the same viewing window dimensions to 

show the actual trend comparisons.  While the front pulses are actually very similar in 

width for the two modes, the rest of the following pulses tend to be much different.  The 

train of pulses pulse widths don’t seem to really increase more than 3 millimeters, while 
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the growing pulses can have at least one pulse width up to nearly 9 millimeters at any 

given time.  The last trait to discuss, and perhaps one of the more important traits, is the 

distance between pulses. 
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Figure 5.43: Distance between Pulses Comparison for Growing Pulses vs. Train of 

Pulses 

The distance between pulses for the train pulses holds fairly constant at about 2.5 

millimeters apart, while the distance between pulses for the growing pulses mode can be 
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up to 20 millimeters apart.  One final look at these comparisons can be the sliding 

velocity plotted against the distance along the interface shown in Figure 5.44 below: 
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Figure 5.44: Sliding Velocity Plot Comparison for Growing Pulses vs. Train of 

Pulses 

This plot clearly shows that the pulses are significantly larger for the growing pulses 

mode and the distance between pulses is significantly larger as well.  Another interesting 

look at these two modes is how much more defined the pulses are for the growing pulses 

mode than for the train of pulses mode. 

 Next, the transitional modes will be analyzed.  Recall that the crack-pulse 

transitional mode has at least one leading pulse followed by a crack-like sliding in the 

rear.  However, the trailing pulse transitional mode does not lead with a defined pulse but 

instead starts like a crack-like mode and has pulses trailing the crack-like sliding.  The 

following figure shows the sliding velocity of each of these transitional modes plotted 

together against the distance along the interface between the two homogenous sliding 

plates. 
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Figure 5.45: Sliding Velocity Plot Comparison for Crack-Pulse vs. Trailing-Pulse 

Transitional Modes 

From the figure above, it can be seen that these two transitional modes, when spliced 

together, look significantly like the final transitional mode—the pulse-train transitional 

mode—shown in the figure below: 
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Figure 5.46: Sliding Velocity Plot Comparison for Figure 5.45 vs. Pulse-Train 

Transitional Mode 
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From Figure 5.46, the train-pulse mode is a transitional mode that leads into the train of 

pulses mode but is also a combination of the previous transitional modes.   

 After discussing the six different sliding modes observed, a sliding modes 

diagram was created as seen in Figure 5.2.  To get a better understanding of what is 

happening, a blended illustration of this modal diagram was created to see how the 

transitions might be occurring.  However, in order to make this diagram non-material 

dependent, it has been normalized with the material’s Young’s modulus and the shear 

wave speed and can be seen in Figure 5.47. 
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Figure 5.47:  Normalized Blended Sliding Modes Phase Diagram 
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Figure 5.2 and Figure 5.47 show some interesting sliding mode trends.  Generally as the 

impact velocity increases, trailing pulses emerge and mature.  For example, looking at a 

low compressive stress 







≤ 0015.00

E

σ
 the sliding would begin as a simple crack-like 

sliding and as the impact velocity increases, the crack-like sliding will begin to transition 

into a pulse-like mode with some trailing pulses.  However, holding the impact velocity 

constant and varying the compressive stress allows pulses to begin to mature in the lead 

as the crack tip formulates.  For example, looking at a low compressive stress 









≤ 0015.00

E

σ
 would show that there is crack-like sliding initially which transitions to a 

leading pulse with a crack-like trail behind the crack tip.  From this crack-pulse 

transition, the pulses begin to mature everywhere behind the crack tip to form a train of 

pulses sliding mode.   

 Recall the similarities between the three transitional modes.  It was previously 

stated that the pulse-train transitional mode looked like the crack-pulse transitional mode 

and the trailing pulse transitional modes put together.  Looking at the phase diagrams, it 

can be seen why this is so.  The trailing pulses begin around an impact velocity of 

016.0>
s

imp

c

V
, while the leading pulses begin to emerge for an intermediate compressive 

stress 







> 0015.00

E

σ
.  As the compressive stress continues to increase, the pulses begin 

to increase in magnitude and separate their distance from one another. 
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5.2.  Openings 

 The stick-slip sliding occurring along the interface brings up some questions as to 

what is actually going on.  When the interface between the two Homalite plate meshes 

was zoomed in on, it was found that an opening was actually occurring as shown in 

Figure 5.48 for the crack-like case of 1 MPa 1 m/s. 
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Figure 5.48: Mesh Opening for 01 MPa 01 m/s (left) and the Ratio of Interfacial 

Normal Traction to Applied Compressive Load vs. Distance Along the 

Interface (right) at t = 50 µµµµs (top) and t = 60 µµµµs (bottom) 

In the mesh opening figures on the left of Figure 5.48, a white region can be seen 

between the x-locations of 0.04 meters and 0.08 meters.  These areas are the separation of 

the two plates along the interface.  The normal tractions occurring along the interface 

have been normalized with the applied compressive load and are plotted in the figures on 
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the right of Figure 5.49.  There is separation occurring between the two plates along the 

interface when the ratio of the normal traction to the applied compressive load drops 

below one.  Therefore, it can be inferred that when the interfacial normal tractions drop 

below the applied compressive load that there will be separation occurring along the 

interface between the two plates.  This occurs not only for the crack-like case but for 

every numerical simulation studied in this research.  Figure 5.49 shows an opening 

example for the train of pulses example case of 15 MPa 10 m/s: 
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Figure 5.49: Mesh Opening for 15 MPa 10 m/s (left) and the Ratio of Interfacial 

Normal Traction to Applied Compressive Load vs. Distance Along the 

Interface (right) at t = 50 µµµµs (top) and at t = 60 µµµµs (bottom) 
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Figure 5.49 shows a very similar scenario as the one portrayed by Figure 5.48.  The 

orange region to the left and right of the interface is a slight interpenetration of the two 

meshes.  While these interpenetrations may not actually be happening in reality, the 

cohesive laws allow for very small interpenetrations to keep numerical stability.  This can 

also be seen in the normalized figures on the right of Figure 5.49.  For any normal 

traction to applied load ratios greater than one, interpenetrations occur.  Thus, it can be 

concluded that when the interfacial normal traction is larger than the applied compressive 

load, interpenetrations will occur between the two meshes.  

 The openings waves that have been observed in this research are reminiscent of 

Schallamach waves that were discovered by closely examining the relationship between 

rubber and the hard material that it was sliding on.  These Schallamach waves are 

actually openings that occur between the rubber interface with a harder track during the 

stick-slip frictional events (Schallamach 1971).  An opening along a Homalite interface 

was also found in simulations done using a cohesive law formulation (Coker et al. 2003). 

 The front locations of the opening waves observed for some numerical 

simulations are plotted in Figure 5.50. 
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Figure 5.50: Opening Wave Front Locations vs. Time 

The opening waves are all very similar in location throughout time.  As can be seen, the 

opening waves usually start between 33 and 36 µs.  These opening waves begin at nearly 

the same location of approximately 0.03 meters regardless of the compressive stress or 

impact velocity.  The following figure plots the length of the opening waves with respect 

to time. 
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Figure 5.51: Length of Opening Waves vs. Time 

The lengths of the opening waves follow a similar trend throughout time for each of the 

cases represented in Figure 5.51.  The lengths of the opening waves are all within ten 

millimeters of one another for any given time shown above.  Also, it should be noted that 

these opening waves are always growing as time increases.  Finally, the actual speeds that 

these opening waves are moving at can be seen in Figure 5.52 below. 
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Figure 5.52: Opening Wave Velocities vs. Time 

The opening wave velocities are all similar as well.  These wave speeds are all around the 

longitudinal wave speeds for the Homalite material represented in the numerical 

simulations.  Thus, it is interesting to note that regardless of the compressive stress 

holding the plates together and regardless of the impact velocity used to start sliding 

between the two plates, there are always opening waves occurring along the interface.  

Not only are they occurring every time, but they are also all beginning at relatively 

similar locations and following the same trends as far as opening speed and lengths are 

concerned. 
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5.3. Crack Tip Velocity 

 As discussed previously in Chapter 2, the crack tip velocity associated with 

frictional sliding has been analyzed.  The results of the crack tip velocities found for this 

research is shown in Figure 5.53: 
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Figure 5.53: Crack Tip Velocity Plot for each Sliding Mode 

In Figure 5.53, cl denotes the longitudinal wave speed, cs is the shear wave speed, sc2  

denotes the critical crack tip speed, and cR is the Rayleigh wave speed.  From the figure, 

it can be determined that for each sliding mode, the crack tip velocity is around the 

longitudinal wave speed for Homalite.  However, in some laboratory experiments the 

crack tip velocity has been observed to be intersonic between the longitudinal wave speed 

and the shear wave speed.  During the numerical simulations performed in this research, 

there were some isolated cases that showed the crack tip velocities to be intersonic and 

one case showed a sub-Rayleigh velocity.  These isolated cases are all crack-like sliding, 
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but are not necessarily representative of the entire sliding mode as a group.  These 

velocities are plotted in Figure 5.54. 

0

500

1000

1500

2000

2500

3000

50 60 70 80 90 100

Time (µµµµs)

C
r
a
c
k
 T
ip
 V
e
lo
c
it
y
 (
m
/
s
)

01 MPa 01 m/s
01 MPa 0.95 m/s
01 MPa 0.9 m/s
02 MPa 01 m/s
03 MPa 01 m/s

c
l

c
R

c
s

 

Figure 5.54: Intersonic and Sub-Rayleigh Crack Tip Velocities 

There is a sub-Rayleigh crack tip velocity for the crack-like case of 1 MPa and 1 m/s.  As 

the compressive stress increases, the crack tip speed also increases above this Rayleigh 

wave speed and becomes intersonic.  But if the impact velocity is decreased, the sliding 

not only seems to start later but it also falls between the critical crack tip speed of sc2  

the shear wave speed, cs. 
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CHAPTER 6 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

6.1.  Summary 

 The dynamic behavior of frictional sliding between two Homalite plates subject to 

an impact velocity under compressive loading was studied.  Simulations were carried out 

using finite element analysis with a rate-state friction law implemented in a framework of 

cohesive element interfacial model.  Frictional sliding occurred between two identical 

elastic plates held together by compressive load and by the application of an impact 

velocity to the bottom plate. 

6.2.  Conclusions 

 Previous to this research three different modes of stick-slip behavior were known 

to exist—crack-like, slip-pulse (including multiple pulses), and a transitional mode 

between the crack-like and pulse sliding modes.  The results of this current research 

support the conclusion that in fact six different modes of partial frictional sliding exist.  

These modes depend on the compressive load and the impact velocity as shown in the 

frictional sliding blended phase diagram of Figure 5.47.  Frictional sliding occurred in an 

expanding crack-like mode for low compressive stress 







≤ 0015.00

E

σ
 and impact 

velocity 







≤ 016.0

s

imp

c

V
, where σ0 is the applied compressive load, E is Young’s 

modulus, Vimp is the applied impact velocity, and cs is the material’s shear wave speed.  
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Multiple pulses were found for intermediate to large compressive loading 







> 0015.00

E

σ
 

for all impact velocities.  These pulses are stable compared to growing pulses since they 

propagate steadily and have not been confirmed experimentally.  Although growing 

pulses are numerically unstable, experiments have shown single growing pulses that are 

stable.  More specifically, a train of pulses frictional sliding mode was observed 









≤≤ 0035.00025.0 0

E

σ
 whereas higher compressive loads allowed for growing pulses 









> 0035.00

E

σ
.  In addition to crack-like mode, train of pulses, and growing pulses, 

intermediate transitional modes were identified.  A transitional mode with stick-slip 

occurring behind the leading wave (trailing pulses transitional mode) was found for low 

compressive stress 







≤ 0015.00

E

σ
 and intermediate to high impact velocities 









> 016.0

s

imp

c

V
.  Another transitional mode has a leading wave with a pulse that is 

emerging (crack-pulse transitional mode) that occurs for compressive loading, 

0025.00015.0 0 ≤<
E

σ
, and low impact velocities 








≤ 007.0

s

imp

c

V
.  After these two 

transitional modes had been established, it was found that there was indeed a third 

transitional mode that combines these two modes and begins to stick-slip more often 

(pulse-train transitional mode).  This pulse-train transitional modes occur for intermediate 
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to high impact velocities 







> 007.0

s

imp

c

V
 and occurs in a compressive loading region, 

0025.00015.0 0 ≤<
E

σ
.   

 In addition to slip-pulses mentioned above which are sliding of adjacent points at 

the interface, opening waves were found.  Opening waves are the separation of the 

adjacent points along the interface which are occurring behind the leading sliding waves.  

This behavior has been noted in previous research done with the same materials by Coker 

et al. (2003) and two different materials by Schallamach (1971).  A new finding of this 

research is that this region of separation occurs independently of the sliding mode, impact 

velocity, and compressive load.  This seems to be an artifact of dynamic loading and is 

always reached when the local compressive stresses become less than the applied 

compressive load as the impact wave progresses.  This remains to be observed in 

experiments.   

 The observed sliding modes and the separation opening waves were observed for 

the sliding of identical materials and did not require a bimaterial interface.  It has been 

shown that these sliding modes have occurred between identical plates and does not 

require sliding between dissimilar materials. 

 The crack-tip speed is usually supersonic in previous numerical studies (Coker et 

al. 2005).  In this study, it was concluded that both supersonic crack-tip velocities and 

intersonic crack-tip velocities were possible at very low compressive loads and impact 

velocities.  Previously, intersonic crack-tip velocities were found in the laboratory but not 

in numerical experiments.  
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6.3. Recommendations for Future Work 

 While the train of pulses sliding mode has been observed numerically, it has not 

been seen experimentally.  This experimentally elusive train of pulses sliding mode could 

be searched for by finding the compressive load at which these are generated.  In the 

laboratory, once the compressive load is discovered that could allow for multiple pulses, 

then the train of pulses mode would begin to emerge.   

 It will be important to look at the effect of the friction law constitutive parameters 

on these sliding modes.  The effect of the impact velocity shape and dimensions of the 

impact velocity loading and its effect on the interfacial separation will need to be studied 

more in detail as well.  Adding energy calculations into the program would be useful to 

see the energy dissipation associated with each sliding mode.  This would be important 

not only for industry but is also a critical aspect in earthquake faulting.  
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APPENDIX 

A.1.  More Examples of Crack-Like Mode 
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A.2.  More Examples of Trailing Pulses Transitional Mode 
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A.3.  More Examples of Crack-Pulse Transitional Mode 
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A.4.  More Examples of Pulse-Train Transitional Mode 
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A.5.  More Examples of Train of Pulses Mode 
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A.6.  More Examples of Growing Pulses Mode 
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 The purpose of this research is to analyze the dynamic frictional sliding that is 

occurring between two Homalite blocks.  The blocks are held together by a compressive 

load and the sliding is initiated by an impact velocity that is applied to the bottom block.  

Previously, the main types of sliding observed were crack-like sliding and stick-slip 

(pulses) sliding.  Six different sliding modes were observed: crack-like, transitional 

trailing pulses, transitional crack-pulse, transitional pulse-train, train of pulses, and 

growing pulses.  Each mode has distinct sliding characteristics that are dependent on the 

compressive load and impact velocity.  Along with this interfacial sliding, there were 

opening waves observed due to a region of separation at adjacent points along the 

interface.  These regions of separation occur independently of the sliding modes 

discussed.  In addition, crack tip velocities of the leading sliding waves were found to not 

only be supersonic but also intersonic crack speeds were observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


