Radiative transfer and type Ia supernovae spectra analysis in the context of supernovae factory.
Abstract
We showed the spectrum formation in SNeIa around maximum light to be a multi-layered process involving regions from 5000 km per s to 20000 km per s, interacting not only through scattering but also through pure emission. This new understanding allowed us to introduce a new spectral indicators we called RSiSu, which can be used to measure SNeIa blue magnitudes with a precision comparable to the stretch factor. This makes it possible to independently constraint the evolutionary effect on SNeIa that are of crucial importance for high z surveys. We used the multi-purpose radiative transfer code phoenix, developed by P. Hauschildt, F. Allard and E. Baron to produce a grid of synthetic spectra sampling dates from 10 to 25 days after explosion and bolometric magnitudes from -18.0 to -19.7. We also developed an adaptive grid scheme in order to stabilize phoenix convergence. This co-supervised dissertation was conducted in collaboration between The University of Oklahoma City (USA) and University Claude Bernard of Lyon (France). It addresses the radiative transfer issue in type Ia supernovae expanding envelopes, in the context of the SupernovaFactory.
Collections
- OU - Dissertations [9477]