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C hapter 1

In troduction

Binary star formation, structure and evolution are important areas of research in m odem  

astrophysics. These systems provide the best determination of stellar mass, the most 

fundamental of stellar parameters. Close and contact binaries offer severe tests for 

evolutionary models. W  Ursae Majoris (hereafter W UMa) stars comprise one class of 

close binaries and they form the basis of this study.

1.1 T he W  U rsae M ajoris Class

W  UMa systems are eclipsing binaries with short periods (~0.4 d). Binnendijk (1970) 

noted the significant fact that there are two main types of W UMa light curves. These 

types have been classified as W and A. The difference between the two types is demon­

strated by the difference in light curve (hereafter LC) shape during primary and sec­

ondary eclipse. W types have the primary eclipse as flat while A’s have a  flat secondary

eclipse (see Figure 1.1). Similarly the W secondary eclipse is curved while the A type

prim ary eclipse is curved.

The standard model to explain these differences is the direction of the temperature
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Figure 1.1: Light curves of W  UMa stars of the A and W subclass. The distinguishing 
characteristics include the shape of the light curve at phase =  0.5. For EP Cep (the A 
type), the curve is flat near this region, meaning the smaller star is in front. For CE Leo 
(the W  type), the curve is not flat near this phase. Rather it is flat near phase =  0.0. 
This is where the smaller star is in front for a W type. EP Cep data from Branly, et al. 
(1990), and for CE Leo the data is from Samec, et al. (1993).



difference between the two components. If we make the basic assumption th a t both 

components are on the main sequence, then the hotter star should be the bigger star. 

This would lead to an A type LC. If the components have their temperatures reversed 

a W type conGguration results (see Figure 1.2).

Another difference between A and W  types is the spectrzd cicissification of the mem­

bers. A type W UMa’s usually have spectral types in the A to early F region while W 

types are in the F to K region. This would tend to hint at possibly different underlying 

mechanisms for these two types of contact systems. However, a  fraction of A types are 

much cooler than the norm -that is they have spectral types more like mid-G, in the 

typical W type region. It would then seem we might be dealing with two m ain types, 

the hot A types and the cool A/W  types. Evidence for this hypothesis will be drawn 

from the database, which will show correlations between such parameters as period vs 

color. In  addition, some other striking evidence is offered by those systems th a t have 

‘flipped’ classiflcation type. An example of this is TZ Boo, observed extensively by Hoff­

mann (1978). Based on observations taken between 1967 and 1976, Hoffmann classified 

TZ Boo as a W type. Later work (McLean and Hilditch, 1983) classified this system as 

an A type; indeed the light curve had changed to relect this. The class A /W  has been 

adopted for this system by Rovithis-Livaniou, et. al. (1992). It should be noted that 

TZ Boo is a cool system by A type standards. Also it has one of the lowest mass ratios 

among the W UMa class.

W UMa systems are usually described as being nearly zero-age. This would imply 

that both components are Zero-Age Main Sequence (ZAMS) stars. However the tem­

perature difference between the components is much smaller than we would expect for 

detached stars of the same mass. This leads to the so called “Light Curve Paradox” 

for contact binaries. The secondaries are much hotter than they should be for a main 

sequence star. The paradox is even more extreme for the W type, where the secondary
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Figure 1.2: A representation of the two main subclasses of the W  UMa class. The A 
types have the physically larger star as hotter and more massive. The W types have 
the physically larger star as cooler and more massive. Here, and in all later plots, the 
Roche lobe representation was created by the program of C.H. Kim.



is actually hotter than the primary. The usual explanation is the common envelope the 

two stars share allows this surplus temperature for the secondary.

Since the stars are so close, a  common envelope which is primarily heated by the 

hotter primary dominates the  luminosity from the secondary. This results in a  much 

smaller tem perature difference than would be expected for detached components of the 

same mass. This would adequately explain A types. In the case of the W  types, the 

primary is actually slightly cooler than the secondary. However, the prim ary’s larger size 

means that its overall luminosity is still higher than the secondary’s. Again, envelope 

interactions are invoked. Hazlehurst’s theory (see Section 2.7) tries to explain how this 

temperature inversion can develop.

1.2 W  U rsae M ajoris M odeling

In the past quarter century, static  models of contact binaries have made great advances. 

The computational difficulty of the problem meant that good numerical models had to 

await the proliferation of fast computers. The differences between Lucy’s early mod­

els (1967a and 1967b) and the current Wilson-Devinney code (hereafter WD) (1992) 

demonstrate this advance.

Most of the current advanced models are based on the Roche model, outlined exten­

sively in Kopal’s work (1958 and 1990). Its primary property is that the contact surface 

of the system is described by the so-called Roche equipotentials. Most of these current 

models are static. There are several reasons for this, foremost being the difficulty of 

doing 3-D non-spherical hydrodynamics. Chapter 2 extensively discusses Kopal’s work 

and the history behind the early Roche based models, including the heavily used WD 

method.



1.3 T he O ’Connell Effect

The Wilson-Devinney code and its rivals do a very good job of fitting the light curve, 

with the exception of certain asymmetries. A static  model is going to predict th a t a 

light curve is symmetric about the eclipses. However, observations of W  UMa types 

show tha t for many systems there are significant asymmetries in the light curves. In 

many cases, these asymmetries are the difierence in peak luminosity at the two out of 

eclipse phases (see Figure 1.3).

Observations of these light curve irregularities are nothing new. One of the earliest 

significant studies of these light curve asymmetries was done by O’Connell (1951). In 

his method he measured the peak magnitude asymmetry, later renamed the O’Connell 

eflfect (Milone, 1968). O’Connell calculated the magnitude difierence as the difierence 

between the second maximum and the first m a x im u m :

^771 =  TTljVfoa:// (1 .1 )

A positive A m  implies that Max I is brighter. O ’Connell measured this asymmetry 

for many systems, both contact and non-contact systems. Later, a  study of non-contact 

systems ( Davidge and Milone (1984)) was completed, which compared the asymmetry 

amount with various parameters. Physical quantities such as the radii of the larger com­

ponent, the relative radii of both components and so forth were analyzed in an attem pt 

to find correlations with the asymmetries. Davidge and Milone mostly excluded contact 

systems from their study, since they felt a difierent mechanism might be responsible for 

asymmetries in the light curves of these systems.

In Chapter 4, two new methods of measuring light curve asymmetries will be ex­

plained. The O’Connell method, above, will be compared with these methods.
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Figure 1.3: An example of the O’Connell method for measuring the peak asymmetry. 
A m  is the peak asymmetry difference in units of magnitude (see Equation 1.1). For 
this system (V401 Cygni) A m  =  0.071. Data from Purgathofer (1964).



1.3.1 P h o to m e tr ica lly  D erived  Spot M odels

For contact systems, the usual method to deal w ith such asymmetries is to  sta te  that 

they are of a  magnetohydrodynamic (MHD) origin and place an ad hoc spot which 

adjusts the luminosity by the necessary amount, bu t in a non-physical manner. There­

fore the modeled luminosity for the system is no longer kept constant (w ith a flux 

re-distribution), instead a net change is added to the overall value of the luminosity. 

This change can be positive or negative depending on whether a hot or cool spot is 

placed on the system. This method works very well for some subclasses of close bina­

ries, particularly RS CVn systems. In these systems, the spots can be seen to “drift” 

over time, allowing a good determination of their latitude, longitude and size. Reducing 

these ambiguities greatly helps in refining the more fundamental parameters for the 

system.

Long-term monitoring of the spots’ movements are needed to accurately determine 

their physical parameters. Trying to model spots on a system without some independent 

determination of the spot parameters leads to a uniqueness problem. Maceroni and 

Van’t Veer (1993) show th a t ju s t by including spots without good latitude, longitude and 

size values, solutions can vary by 20% to 30% in such critical parameters as inclination, 

mass ratio of the components and contact surface potential.

Unfortunately, the light curve asymmetries of W UMa systems seem to be quite 

different from their non-contact counterparts. W ith the exception of a  few systems 

(most noteably VW Cep), it has proven diflBcult to find a drift period for the spots in 

W  UMa systems. Since the geometry of the situation is quite different compared to 

RS CVn class, this is not suprising. While circulating the star, the spots would enter 

the mass-interaction region between the two components. The effects of this turbulent 

region on spots is not understood, so a good independent determination of physical



parameters is extremely useful. This drift problem has led to much higher ambuiguity 

into the nature of the spots on contact systems. W ithout some kind of drift it is hard to 

determine the fundamental spot parameters, meaning most of the WD models involving 

spots have a uniqueness problem. Difficulties in getting good fits w ith cool spots has 

led some authors (see e.g. Samec 1993) to attem pt hot spot solutions, which cannot 

have conventional "sunspot like” explanations.

Another im portant distinction between the W  UMa asymmetries and RS CVn asym­

metries is longetivity. Some W UMa systems, such as RW Com and AlM Leo have com­

plete light curves dating back 40 years or more. Small changes appear, but in general 

the peak asymmetry seems remarkably constant on these time frames. This has led to 

attem pts to find non-MHD explanations for the mechanism.

1.3.2 S pectroscop ically  D erived  Spot M od els

Better determination of the spot’s longitude and latitude is necessary to develop more 

reliable models. One method tha t holds promise is Doppler imaging. Piskunov and 

Rice (1993) describe in detail the Doppler imaging technique for obtaining a surface 

temperature profile. An initial guess of the distribution of tem perature over the s ta r’s 

surface is used to calculate the local line profiles and local continuum intensity. This 

calculated residual intensity, Rcaic (from line profiles), is then compared to Robs obtained 

from actual observed line profiles. Adjustments to the initial tem perature distribution 

are then made to minimize the difference between Rcalc and Robs-

The primary drawback is that sufficient spectroscopic resolution is needed to get 

a  detailed line profile. Observing constraints have slowed data collection in this area. 

W UMa types orbit quickly (~0.4 day) and since it is difficult to get high resolution 

spectra with a short integration time, high resolution W UMa spectra are uncommon. 

As stated by Maceroni (1994), the 1.5m ESQ telescope in La Silla is limited to systems

9



with m„ <  8 and strong Ha lines - which have possible chroraospheric contamination. 

Thus the current Doppler imaged sample is too smaJl for a  statistical survey a t this 

time.

1.4 D atabase-T heory Com parisons

A database of around 100 W UMa systems has been compiled and is outlined in Chapter 

4, along with some of the current observational problems associated with W UMa types. 

This database will be used to provide an observational comparison w ith the model.

For modeling the systems, one avenue being explored is using dynamical models to 

attem pt to explain the light asymmetries by such mechanisms as the Coriolis effect (Zhou 

and Leung, 1990) and irradiation (Zhou and Leung, 1997a). This is a difficult prob­

lem because of the inherent non-spherical nature of the model. Rather than spherical 

harmonics, a different method developed by Tassoul (1992) involving Roche harmonics 

must be used. Zhou and Leung’s method form the basis of the model described in 

Chapter 3, a simplified model which primarily hopes to understand the equatorial flow 

(where the Coriolis acceleration should be strongest) and provide motivation for more 

detailed and complicated 3-D calculations. This method incorporates Hazelhurst (1985, 

1993, 1996 and 1999) as well as the Zhou and Leung models, thus the code represents a 

simplified dynamic model. The remaining two chapters are devoted to analyses of the 

code output in conjunction with the database. Finally an appendix details the actual 

database in a detailed tabular form.

10



C hapter 2

C ontact B inary M odeling T heory

The Roche model as developed by Kopal is used to explain the non-spherical surfaces of 

W  UMa systems. Lucy’s work showed that W UMa systems exist as contact binaries, 

having a common convective envelope with the photosphere lying between the inner and 

outer zero-velocity Lagrangian surfaces. A discussion of the current theoretical work of 

Leung and Zhou as well as Hazelhurst is included.

2.1 Early A ttem p ts

Wilson (1994) summarized in detail the historical background of the earliest light curve 

modeling. An overview of the important models from history is appropriate, since the 

models which came out of these early attempts and are still in use today will provide 

the focus of this chapter. The Russell Method (e.g. Russell (1912a, 1912b, 1948)) 

was the dominant model of the first half of the 20th century. Its intricate ellipsoidal 

configurations which used the “reflection effect” was usually the only model used to fit 

observations. This method was primarily a  geometric one, since it made several incorrect 

assumptions about the local physics in order to have a tractable solution during the pre-

11



computer age. A central point was the process of “rectification”, whereby an. observed 

light curve was modified to correspond to a  binary system made up of spherical, limb- 

darkened components in a circular orbit. This rectified light curve could then  be used 

to determine the geometric (i.e. orbital inclination, component radii) and photometric 

(i.e. surface temperature) properties of the  two stars. These could then be related back 

to the real stars by the tranformation formulas used to obtain rectification. However, as 

stated above, in order to make this a  solvable solution, somewhat non-physical models 

had to be used. In the late 1960’s, computer programs based on these rectifiable models 

were developed (Jurkevich (1964) and Proctor and Linnell (1972)).

By this time, models were being developed based on the important work of Kopal. 

In particular, his Close Binary Systems (1959) provides an amalytical model which in­

corporates Roche geometry, rather than the ellipsoidal geometry of the Russell model. 

Combining the Russell method for light curve analysis w ith the improved physical mod­

els of Kopal led to a burst of activity in modeling of contact binary systems. Around 

the same time, Lucy (1968a and 1968b) published two im portant papers on W  UMa 

structure. These papers provide the first good models for W  UMa systems and are still 

the fundamental basis for today’s work. Lucy’s important contribution was to provide a 

method to model contact systems as they really were -  two stars with a common outer 

envelope, undergoing significant thermodynamic interactions in this envelope. Using 

the two separate sphere method of Russell would lead to serious systematic errors for 

systems w ith a common convective envelope. So instead, Lucy (1968b) used Kopal’s 

work to develop some simple power law relationships between such important quantities 

as the luminosity, radius and mass ratios of the components. Computerization of Lucy’s 

method required very finely spaced coordinate grid elements on the surface, otherwise 

numerical noise dominated the results. Despite these limitations this work was crucial 

as it allowed the light curves of distorted stars to be computed directly, by using real

12



physical parameters. This replaced the need for the process of rectification.

Many advanced computer models quickly developed. A list of these models needs to 

include the work of Hill (Hill and Hutchings (1970)), Wilson and Devinney (WD), Wood

(1971), Nelson, Davis and Etzel (Nelson and Davis (1972)), Mochnadd and Doughty

(1972) and Budding (1977). Several other models appeared, but are not used extensively 

except by their originators. The above models comprise around 75% of the solutions 

published during the 1987-1990 time period (lAU Comm 42 Bulletin (1991)). The WD 

method accounted for 44%. During the latter half of the 1990’s, the WD percentage has 

risen even higher, to around 65%. An in depth discussion of the WD method is below, 

in Section 2.3.

2.2 T he R oche M od el

In Chapter 2 of his Close Binaries (1959), Kopal extensively analysed the Roche Model. 

A summary of his work will be used to understand the numerical models used.

The total potential, 'Î', acting on an arbitrary point P (z, y, z) for a pair of close 

stars is:

*  =  +  <  +  (2.1)

Here, m  and m ' are the mass of the two components, w the angular rotation velocity 

(constant everywhere) and G is the gravitational constant. Furthermore,

-t- -h z^, (2 .2)

and

13



=  (r — x Ÿ  +  +  z^- (2.3)

These values represent the squares of the distance of P  from the center of gravity of 

the two components (see Figure 2.1). For very close systems, assuming the components

are centrally condensed, we can assume the angular velocity is equal to the Keplerian

angular velocity:

Next, we adopt the separation R  of both components as the unit of length. Then, 

converting from cartesian to spherical coordinates:

X =  rco s0 sin 0  =  rA, (2.5)

y =  rs in ^ s in S  =  r/i, (2.6)

z = r  cos 9 =  ri/, (2.7)

results in the common expression:

where ~  2rnQr^^rir) ’ using the standard definition for the mass ratio, q =

Here, and in all later cases, m  is the mass of the more massive (also called primary) 

component, m ' designates the less massive (also called secondary) component. This 

implies: 0 <  ç <  1. Some authors prefer to define the primary as the hotter component
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and the secondary as the cooler component. As we will find, the hotter component is 

not necessarily the more massive one. Thus, for these authors, it is possible for g >  1. 

In all work, a conversion of their temperature method to the mass method will be done.

Setting n  =  constant will generate a surface called the Roche Equipotential. For 

Imge ft, the corresponding equipotentials consists of separate ovals (nearly circles) 

around the two mass points. As ft decreases, the ovals become more elongated in 

the direction of the  center of gravity. Eventually, for a value f ti, the two ovals will 

touch. This dumbbell configuration (see Figure 2.2) is called the  Roche Limit by Kopal. 

The contact point is known as the L \ Lagrangian point. As ft continues to decrease we 

get a common envelope configuration (see Figure 2.3). A useful quantity is the fillout, 

/ .  It is defined as:

/  =  X 100%, (2.9)
—  i l 2

where Clamtact is the Roche equipotential value for the system in question and ftg is the 

Roche equipotential value for contact with the Lg Lagrangian point. The fillout gives us 

a simple way of estimating how overcontact a binary system is. If /  =  0%, this means 

the components just touch a t the L i point. For /  =  100%, the envelope completely 

surrounds both components and is filled to the L2  point. Any further decrease in ft will 

not enlarge the envelope. Instead, mass loss through the L2 point occurs. The /? Lyrae 

types, which are similiar to W  UMa types, have such a configuration.

For W UMa types, the fillout provides another parameter which distinguishes the W 

and A subclasses. From Maceroni and Van’t Veer’s (1996) sample, the average fillout 

for W’s is 14% with a range from -9% to 41%, while for A’s the average is 31% with a 

range from 2% to 87%. A typical W is then in lower thermal contact than a typical A. 

Since some W ’s have a /  less than 0%, this implies that any energy transfer between

15



Potential on an Arbitrary Point

Figure 2.1: The point, P, has a potential acting upon it from masses m  and m ' as 
shown in Equation 2.1. The center of mass is marked with a '+ ’.
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Roche Equipotentials, Q
Detached Systems

Figure 2.2: A plot of the Roche Equipotentials for the case where the components axe 
detached. For this example, the mass ratio is 0.5. The smallest pair of ovals represent 
an n  of 5.0, while the largest ovals are for CL =  2.95. The ^contact surface is 2.88 in this 
case. The inner contact Lagrangian point, L\  is indicated.
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Example of an Overcontact System

Figure 2.3: An example where one common surface exists. As with Figure 2.2 above, 
q =  0.5. The surface represented is for Q. =  2.70. The inner contact Lagrangian point, 
Li and the outer contact Lagrangian point, L2 are indicated. For the inner surface, 
fii =  2.88 and for the outer, fZg =  2.58. This corresponds to an /  =  60%. See 
Figure 2.4 for an example of each subclass.
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components is radiative rather than convective. Looking at an example of a low contact 

W-type vs a higher contact A-type (Figure 2.4), it would seem th a t a model must 

incorporate this radiative exchange for low contact systems. Later sections will deal 

with the theory behind these two methods. Section 2.5 will review the Zhou and Leung 

irradiation model for close and low contact binaries. Sections 2.6-2.8 will outline a  flow 

model based on the work of Webbink, Zhou and Leung, and Hazlehurst.

2.3 U sin g  T h e R och e M odel To F it The L ight Curves

Among the models mentioned above, the Wilson-Devinney model is the  most extensively 

used among solutions published in the literature. Since the bulk of calculated parameters 

printed in Appendix A are values obtained by the WD method, a  summary of the 

pertinent points of this model are in order.

The WD method uses the physics of the Kopal and Lucy theoretical models. By an­

alyzing a light curve of photometric observations, important parameters (e.g. the mass 

ratio of the components, the inclination of the system, the photospheric temperatures 

of the components and the Roche potential of the common surface) are calculated. The 

code contains two FORTRAN programs, LC (for generating light and radial velocity 

curves) and DC (to calculate diSerential corrections to the parameters). LC works by 

reading in a da ta  file which contains photometric observations of a  system (from one 

or more filters) and values for some 30-odd “significant” parameters. These parameters 

include such fundamental quantities as the rotation period of the system and the orbital 

inclination. O ther parameters of secondary importance are also included, such as limb 

darkening.

Of course, when beginning, very few of these parameters are known. Most likely the 

period and color of the system are known. From there, educated guesses are made about
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R oche Surface Potentials
Examples of W and A Subclass

W -type

A-type

Figure 2.4: Examples of the potential surface for the envelope for typical W and A 
subclass members. In  b o th  cases, q = 0.5. f w  =  14% and Ja =  40%, typical values 
from the Maceroni and Van’t Veer (1996) data.
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the o ther parameters. Once the parameters are given values, the LC code is used to 

get an eyeball fit of the these guesses with the observed light curve. Usually these first 

guesses are quite bad, but after some manipulation a reasonable visual fit will be made. 

Now, the latest set of parameter guesses are used as input for the DC program. This 

program calculates (via least squares fitting) how much a param eter should be adjusted, 

based upon the value given and the photometric data provided. Since we have a 30+ 

dimensional space in which to find the m i n i m u m  solution in, simultaneously adjusting 

all the parameters is not possible. Instead the preferred method is to leave the secondary 

parameters fixed and only adjust the important parameters a t first. Since varying q, the 

mass ratio, can lead to instabilities in the solution, q is usually kept fixed until a  stable 

solution is found, then q is incremented and the process restarted. This will lead to 

solutions than can be plotted as E (the root mean square error) vs q. At the q value for 

m in i m u m  E, a solution is usually ran with the above prim ary parameters plus q as free 

parameters. This trick allows us to “fall” as close as possible to the final solution ahead 

of time, saving greatly on computation time. Some authors have tried just sweeping 

large grids of solutions and looking for the minimum in some n-dimensional space, but 

that solution proves woefully inefficient compared with the above method. Due to the 

difficulty in finding a stable solution, the WD method is not set up to self-iterate to 

a solution. It is possible to fall into a back and forth oscillation around the solution, 

without ever converging.

2.4 P roblem s W ith  W  U rsae M ajoris L ight Curves

The above scenario works well if the input light curve is “simple” ; tha t is it contains no 

large scale asymmetries. However in the case of most W UMa systems this is unfortu­

nately not the case. Two important problems exist with W UMa light curves:
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• Third Light. The problem of third light is caused when, the binary is part of 

a  larger, multiple system. 44i Boo is an example of such a  system. In some 

cases, the extra member (responsible for the “th ird  light”) can be brighter than 

the components. This causes the light curve to show less net intensity change, 

since we have a constant background intensity which is p a rt of the  light curve 

(see Figure 2.5). An undesirable efiect of making it harder to observe small-scale 

asymmetries in the light curve results, and the  resulting model is less reliable.

• Light Curve Asymmetries. This includes all short-term and long-term variations 

in the light curve, grouping together a possibly heterogeneneously derived set of 

effects. Included is the O’Connell effect and the spot m ethod used to compensate 

for it. The O’Connell effect is sometimes called the Kwee effect, bu t the former is 

far more common.

The O’Connell effect led to a situation where two solutions were generally published, 

one where the brighter peak was well fit and another where the dimmer peak was well 

fit. The true solution was figured to lie somewhere in between. These two solutions 

became known as “hot” and “cold” solutions respectively, since the  tem perature of the 

secondary component varied wildly for these two solutions. The W D method reconciled 

this problem by allowing the user to add an ad hoc spot onto the stellar surface. These 

spots are generally placed on the surface as an after effect to make the light curve fit. 

Thus, if one favors the “hot” secondary solution, a  cool spot would be placed on one of 

the stars which would depress the lower intensity half of the light curve, making a good 

fit. Conversely, if the “cool” secondary solution was picked, a hot spot would be placed 

on the secondary instead. Usually a  hot spot is placed only on the cooler star, not the 

hotter star. The reasoning behind this is that stable hot spots on the hotter star are 

not thermodynamically possible. Possible brightening mechanisms such as flares, which
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Effects of Third Light

1

0.9

®  0.8

0.7

—  Without Third Light
-  -  With Third Light

0.6

0.8 10.4 0.60.20
Phase

Figure 2.5: This plot shows the difference caused by third light. In both  cases, q =  0.27, 
f2 =  2.32, /  =  32% and A T  =  lOOK. The third light is 10% of the  total system intensity. 
The WD method was used to generate these and all later theoretical light curves.
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could result in a hot spot on the hotter component, are too short term to explain the 

O’Connell effect.

Most of the early solutions with spots used the cool spot method. T he reasoning 

behind this was that the  spots must be similar to sunspots, which are cooler than the 

surrounding region. An even better comparison was to another class of binaries, the 

RS CVn systems. These are detached binaries where bo th  components are spherical. 

For these systems variations in the light curve existed, which were very well modeled 

with spots. Over time, the  asymmetries on the light curve would drift which would allow 

a good independent determination of the spot latitude and longitude. These spots are 

considered as being magnetohydrodynamic in origin. As described in recent work by 

Kalhrath and Milone (1999), these could be the result of dares or coronal holes around 

the star. The primary problem is tha t most of these effects are short term, much shorter 

than the observed O’Connell effects time scale.

W  UMa light curves show some variance from one period to the next. Small (com­

pared to  the peak asymmetry) ‘dimples’ and ‘bum ps’ occur on the light curve with 

intensity changes on the order of a few tenths of a %. These changes, which are possi­

bly explained by the above magnetohydrodynamic theory, are out of the scope for the 

current topic. Confusingly, these small scale short term  effects are sometimes referred 

to as th e  O’Connell effect. As Kallrath and Milone state: “Unfortunately, it has be­

come practice to use these names {the O ’Connell or Kwee effect) as catch-all terms for 

a variety of physical effects.” Many effects (with most likely different causes) have been 

inappropriately grouped together under the O’Connell effect classification.

For the W UMa class, the solution is much harder to  come by. Many of the systems 

show remarkable stability in their asymmetry over a longer time period as compared to 

the RS CVn class, which in turn makes an independent determination of the latitude 

and longitude of the spot impossible. So, by adding spots to a contact binary model, we
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add an additional four degrees of freedom (radius, longitude, latitude and temperature 

of the spot) per each spot, unless we have doppler imaging of the surface to provide some 

constraint. Since the system is already underdetermined, this makes getting a stable 

solution very difficult. Compounding this problem is the fact that the spot models 

commonly used are non-physical, that is, they aren’t  used as part of the overall flux 

equations, but are later add-ons to (or subtractions from) the net flux. In  the 1993 

analysis of Maceroni and Van’t Veer, the uniqueness problem led to solutions where 

acceptable q’s varied between 0.408 and 0.681 - a  very large range. Kallrath and Milone 

state, with regards to the current spot models: “One way to overcome this problem is 

to include spots in the light curve modeling, although in such cases spots serve only as

an artifice to save the phenomena Therefore we cannot show in any conclusive way

that the O’Connell effect is correctly modeled by spots; neither can we show th a t is was 

not.” This summarizes the ad hoc nature of current spot modeling very well.

A sample solution using the WD method and requiring spots is shown for the system 

V401 Cygni in Appendix B.

2.5 Irradiation T heory

A good starting point for building a  sophisticated model is to first simplify the problem 

before creating the more complex model. Before a discussion of a solution involving 

actual flow of material in a large, convective envelope is detailed, a simpler solution 

involving irradiation of each component by the other will be used. In the WD model, 

one parameter is the albedo of the system. This is merely a fractional measurement 

of how much of the radiation that one star receives from the other is reflected back 

out, also referred to as the reflection effect. From Wilson’s (1990, 1993) theory, a value 

between 0.5 and 1.0 is typically chosen. This is a fractional amount that is between
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50% and 100% of the radiation being reflected. Cooler systems tend toward the  50% 

value, while ho tter ones (with radiative envelopes) are given values of 100%. Since W 

UMa stars are cool enough to fall in the convective envelope class, a  value near 50% 

is usually used in modeling them. The rest of the radiation is absorbed by the  star. 

Currently the WD model does not consider this absorption. Zhou and Leung (1997a) 

have outlined the  theory dealing w ith this absorbed portion. Their analysis yields that 

the tem perature variation on the surface of star 1, due to irradiation by star 2 is:

(2.10)
l i o  lio

where s is the absorption fraction and Txq is the unperturbed surface tem perature of 

star X .  F{9) is a  function of the solid angle of star 2 visible a t an angle 0 on the surface 

of star 1 (Figure 2.6, a  reproduction of Figure 2, pg 71 in Zhou and Leung (1997a)):

F{9) = — f  cos 5 • dw, (2.11)
7T J

n

where cos 6 = fi ■ m, n  and m being unit vectors, n  is the normal to the surface of the 

irradiated star a t the point the irradiation is being measured, rh is the direction from 

this point to the point on the second star that the radiation is coming from, as shown 

in Figure 2.7. For simplicity, Leung and Zhou used spherical stars. To do a  detailed 

model, the non-spherical nature of the stars must be incorporated. A discussion of how 

to transform coordinates from spherical geometry to Roche geomoetry will be included 

in Chapter 3. This will handle the distortion of the two components. We collect the 

formalism of Zhou and Leung below. The integral over the solid angle, fi, is broken up 

into four regions:

1) E n tire  I r r a d ia t io n  R egion . This is for the region 9 < A, where cos A =  r i  + ra . 

r i  and rg are the relative radius of the primary and secondary, respectively. These values
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Close Binary Model Used For Irradiation Theory

Figure 2.6: A close binary with the parameters from the Zhou and Leung irradation 
theory marked. The area between Pik\  on the secondary is irradiated by the entire 
surface of the primary. The area P1P2 — kiko is irradiated by only part of the primary’s 
surface, a is the separation distance.
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are expressed as a  fraction of a, the separation distance. Since r% and rg are in relative 

coordinates (scaled by a), their sum is always less than or equal to 1. For the angle 

6 in this region the disk of s ta r 1 is irradiated by the entire disk of star 2. The angle 

function F{6) becomes:

F(0) =  r^(cos e -  r i ) / D l  (2.12)

Here, D\ =  y j l + r \ — 2r\ ■ cosd. Figure 2.7, based on Figure 3, pg 71 of Zhou and 

Leung (1997a), highlights this region.

2) P a r tia l  I r ra d ia tio n  R eg io n  - Part I. In this region, A  < 6  < B, where cos B  =  

r i  — rg. The angle a  < ir/2. This angle represents the angle between n  (the surface 

normal at the angle 6) and the  line which bisects the irradiating star. The angle z  =  

a  — 7t/2, therefore z <  0 in this region. Figure 2.8, based on Figure 4, pg 72 of Zhou 

and Leung (1997) shows a. F (6) becomes:

3 COS^Z I f  r  y 5 . 2 . - l / C O S /  IFiO) = cos 0 : 4 -----------  < cos 7 • v  cos^ z — cos'  ̂7 +  cos z - sin (------ ) > 4-
2 7T ( cosz J

—  ^  / sin^ 7 • cos~^(^^*^^) — TTsin̂  z  — sinz - tan“ ^(cos z y / tan^ 7 — tan^ z)  1 .
7T ( tan  7 J

(2.13)

where cos a  =  sin a. =  cos 7 =  ^  and sin 7 =

3) Partial Irradiation Region - Part II. Here A  < 9 < B  still, but now a  > tt/2  

and z > 0. F{9) becomes:

F{6) = ^ ~  ~  I cos 7 • V  cos^ z — cos^ 7 4- cos^ z • sin~^ (—  ̂- ) 1 4-2 7T ( cosz J
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Entire Irradiation Region
Schem atic of Irradiation Model

Figure 2.7: The point Pi on the secondary is in the  Entire Irradiation Region. It is 
irradiated by the prim ary with a solid angle of P% — BiPa-
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Partial Irradiation Region
Schem atic of Irradiation Model

Figure 2.8: The point Pi on the secondary is in the Partial Irradiation Region - I. It 
is irradiated by the prim ary with a solid angle of P i — CiQiC^- For a point in Partial 
Irradiation Region - II, a  would be >  x/2 .
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cosû r /  — sin^ I  - cos _  ginz • tan  ^(cos z V  tan^ F — tan^ z) \  .
7T L tan  I  J

(2.14)

4) N o n  I r r a d ia t io n  R egion. This is the part of the star's surface for 0 > B. No 

emergent radiation from the other star is visible at this angle.

This model, as proposed by Zhou and Leung, may be realistic as well. Among the 

W  subclass of the W  UMa class, the fillout % is typically very small, auround a  few %. 

The amount of energy which can be transferred through the neck region compared to 

irradiation is small. As the fillout is increased, they propose that the flow of material 

through the neck will become more important. The irradiation model can then  provide 

us a lower limit for w hat we would expect, a t a  point where little mass exchange occurs. 

Chapter 3 will discuss the computer model incorporating this theory.

2.6 F low  D yn am ics

Systems with large fillouts (> 30%) cannot be realistically modeled w ith the above 

method. Instead, we need to model the material flow through the neck region. Webbink 

(1977) discussed the mechanism for large-scale circulation in contact systems in great 

detail. The standard conservation equations tha t are relevant to the flow are:

Mass conservation:

^ + V - ( p V )  = 0. (2.15)

Momentum conservation:

—— |- (v • V)u = ---------- — V'0 — 2U X u -f- -f- (— —f/) V(V - v). (2.16)at p p 3
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Energy conservation:

+  ^ ) )  =  +  h +  i f i )  -  V  - a -  F ). (2.17)

The large list of definitions used is: p, the density; v, the velocity of the mass 

component; P , the gas pressure; u, the kinematic viscosity; the bulk viscosity; rfi, the 

gravitational potential (per unit mass); fi, the angular velocity; u, the interal energy of 

the gas; h, the specific enthalpy of the gas; a , the viscous stress tensor; and F , the heat 

flux.

W ith these equations, we can study the flow in the system. Webbink starts w ith an 

adiabatic, isopotential, irrotational approximation of the hydrodynamic equations and 

proceeds to model the luminosity transfer between contact binaries. He first obtains 

a  stationary (non-rotating) solution by neglecting four important eflfects: (i) the flow’s 

coupling with the gravitational field, (ii) the Coriolis forces, (iii) viscosity eflects and 

(iv) thermal relaxation across the flow. As we might expect, this simplifies the problem 

greatly. The momentum equation becomes:

^  +  ( v V ) v  =  - - V P .  (2.18)
at p

and the energy equation:

+u)) = -S /[p v {^v ^+  h). (2.19)

These simplifications allowed Webbink to obtain stationary solutions to Equations 2.15- 

2.17. Among his assumptions, he invokes hydrostatic equilibrium for the L\ point and 

assumes that the stream velocities (from Bernoulli’s equation) are negligible a t that 

limit. Webbink (1975) derived the following quantity in this scenario:
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h +  — — /iQ) (2.20)

where /iq is the specific enthalpy of the gas far firom the inner Lagrangian point, L \.  The 

fiow is laminar since it is fifictionless and adiabatic (that is, no turbulence develops). 

Thus it follows:

V  X  V  X  V  = 0, (2.21)

for this flow.

For Equation 2.18 we then get:

V(^u^) =  - - V f .  (2.22)
2 p

Here, we have used the vector identity:

V(v  ■ v) = 2(v ■ V)v  +  2(v X  V  X  v), (2.23)

to simplify the final result. Webbink then includes the ignored terms and shows tha t 

the circulation responsible for luminosity transfer cannot be due to simply an entropy 

change. Rather, Webbink states that the flow must be due to large-scale circulation 

induced by rotational and tidal distortion, and by the resulting temperature change 

occuring w ithin the Li region.

Webbink defines the null surface region as the dividing surface between the Roche 

lobes of the two componets. In  the null surface region, Webbink shows that an approxi­

mation of the flow as having sonic velocities is valid. This results in the pressure change 

being described as:
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6P  «  P (— )2. (2.24)
Cs

where Vdrc is the circulatioa velocity required to obtain thermal and hydrostatic equi­

librium. It can be approximated by:

V d r c - ^ — — . (2.25)
pTKH 9

p is the mean density of the star, g is the local gravity and t k h  is the thermal (or

Kelvin-Helmholtz) time scale for the star. We will call this method I: the Webbink flow

velocity.

2 .7  E nergy Transfer D issipation  In C ontact B inaries

Hazlehurst (1985) discussed a model for the dissipation of energy resulting from mass 

transfer in contact binaries. His argument is based on three basic postulates:

• The heat carrying elements pass from the prim ary to the secondary without mix­

ing easily w ith their local surroundings. Hazlehurst describes these elements as 

interlopers.

• These interlopers arrive with a higher tem perature than the surrounding media, 

leading to a high buoyancy. Thus, these elements rise to the top of the secondary's 

convective zone. Their speeds are approximately sonic.

• The interlopers then dissipate this kinetic energy a t the top of the convective zone. 

This extra energy is radiatively transported to the secondary's surface, leading to 

a luminosity enhancement.
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Using V as the vertical speed of the elements and A as the distance they travel before 

reaching the top of the convection zone, we obtain:

Td = X/v, (2.26)

for an order of magnitude estim ate for the dissipation time, To- The dissipation per 

unit mass per unit time is:

D  =  ^  =  ioV A , (2.27)

where K E ^  =  is the kinetic energy per unit mass. Since the interlopers only 

comprise a fraction, / ,  of the material in the secondary, D becomes:

D = \fp u ^ /X .  (2.28)

p is the density. The dissipative flux, Fd can be deflned as:

F D = D X  = ^ fp v^ ,  (2.29)

and finally, the dissipative luminosity, L d as:

L d = AttR^Fd = 2irR?ffyu^. (2.30)

Hazlehust uses this theory to explain the W UMa light curve paradox (see Section 1.1). 

He obtains a  maximum vertical velocity v of:

n =  0.83ca (2.31)

where Cs =  -^J^CpT is the speed of sound. Cp is the specific heat at constant pressure.
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As the interlopers rise in the convection zone, they split into smaller bubbles, which 

Hazlehurst calls ’’descendants”. As they split, some of the bouyancy energy is trans­

ferred into lateral motion. As these descendants rise, and split more, the interlopers 

push on each other even more, as they take up an increasing fraction of /  the  closer 

they get to the surface. Hazlehurst derives W ,  the bouyancy energy, per unit mass as:

W  =  -  1 ) 4  (2.32)

where cq  is the speed of sound at the layer of contact. A S  is the entropy excess of the 

interlopers. He obtains a lateral velocity ut of:

tit =  0.25c^. (2.33)

Hazlehurst uses an example with M i  =  0.85Af© and Mg =  0.5Mq , and assuming the 

primary is on the main sequence, he calculates «t «  2 km /s.

With such a high flow velocity, the bubbles can reach all the way around the sec­

ondary by the time they dissipate their energy. Thus the secondary, which should be 

much cooler, instead has a temperature only slighty cooler, or possibly, warmer than 

the primary. The latter case describes the W-type subclass. This flow velocity will be 

method II: the Hazlehurst flow velocity.

2.8 Inherent E xistence O f Circum fluence

Zhou and Leung (1990) also discuss the theoretical calculation of the flow in a contact 

system. They first prove that the isothermal surface is not coincidental with the isobaric 

surface in a static model of a contact binary. This implies a baroclinie structure in a 

contact binary atmosphere, which means the development of circumfluence (hydrody-
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naimical flow) is inevitable. They suggest then, th a t a static model shouldn’t  be used 

to model a contact binary atmosphere. Thus the  need to use a dynamic model results 

from the existence of this circumfluence. Using the momentum conservation Equation 

2.16 without viscosity they obtain a value for the  circumfluence in a contact system:

=  CoF(g, a )(n  x r). (2.34)

Co is a  constant made up of various physical constants and system parameters:

K is the opacity and Orad the radiation constant. Figure 2.9 (Prom Figure 2, pg 272 of 

Zhou and Leung (1990)) illustrates a and r . F(q, a)  is called the direction function:

F(,.a:) =  ( l (2. 36)

where q is the mass ratio and a  is derived from the mass-luminosity relationship for the 

two stars. Zhou and Leung find, tha t for a large range of q, a  is about the same: for 

0.2 < q < 1.0, a  =  0.82. As q drops to 0.07, a  =  0.81. Since only a handful of W UMa 

systems have q < 0.2, we can assume a  =  0.82. A plot of F(g, a) vs ç for a  =  0.82 is 

shown in Figure 2.10.

From this we can then determine a flow velocity for the system. A later paper (Zhou 

and Leung (1997b)) shows a numerical simulation of 2-D circulation. After letting the 

calculation go for 6733 minutes, they reach a characteristic velocity of 1 km /s. This is 

for an A type system, with the prim ary’s mass, M \  =  I.SMq and q =  0.5. This velocity 

is conistent with those obtained by the above methods.
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Potential on an Arbitrary Point

Figure 2.9: This is a plot of the variables used for the a x r  term in Zhou and Leung’s 
model. The /i’s are reduced masses.
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The Direction Function vs Mass Ratio
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Figure 2.10: A plot of F{q,a) vs q. As stated in the text, we can assume a constant 
a  = 0.82 over the range of q involving W  UMa systems.
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2.9 T h e Coriolis Force

Zhou aud Leung’s 1990 theory incorporates the Coriolis force. Unfortunately, their 1997 

model does not. So, we need to find some way to calculate the effect the coriolis force 

has on the flow. The proper way is to incorporate V x u into a 3-D model. In order 

to gain insight into future work in three dimensions, a 2-D approximation will be used. 

We are prim arily concerned with how the coriolis force affects the bouyant interlopers 

in assisting or restricting their rise in the  convection zone.

Hazlehurst (1999) used streamlines to show how the velocity field would be altered 

by the Coriolis force. Starting with Equation 2.16 above (again without viscosity):

— — u X  V X . V  +  2Cl X  u =  — — —VP, (2.37)
2 p

he takes the vector product of this with f  to obtain the component equations:

d , . 1
ae {<t> +  ^%^) =  (î?r +  2f2 sing COS (f>)v̂ , (2.38)

^  {(f>+ = —{rjr+ 2ÇISXD.9cos4>)ve- (2.39)sin d 64> 2

The vorticity component perpendicular to the surface is represented as:

Hazlehurst’s (1997) view is that there is no hydrodynamical argument favoring a  con­

stant Jacobi energy (the sum of the kinetic and potential energies) as derived from the 

consideration of the symmetry-breaking caused by the Coriolis force. Further topolog­

ical changes in the flow may result. If we assume that the Jacobi energy ($  -t- iu^) is
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constant everywhere then Eîquations 2.38 and 2.39 result in the following:

T]r +  20 sin 6 cos 0  =  0. (2.41)

Hazlehurst show that this results in solutions of the form:

Uÿ =  —Q.R cos 6 cos (p. (2.43)

He assumes approximate sphericity to make his calculations remain analytic, setting

A  = G.lOi?. This allows for a  maximum rms radius variation of 10% of the  average

radius for the star. Next, Hazlehurst relaxes the  constant Jacobi energy condition, 

which means now:

T]r +  20 sin 6 cos <f> — F, (2.44)

where F  ^ 0 .  This alters the velocity componets thusly:

Rsin0{O -  (2.45)

u , +  =  -R c o s  ecos 0 ( 0  - (2.46)

Using the same A limit w ith F  =  —0.50, he calculates stagnation points for both 

cases. For the constant case, 0 =  5.74° and 6 =  174.26°. Relaxing the constant condition 

results in 0 =  3.82° and 6 =  176.18° for the location of the stagnation points. Hazle­

hurst’s interpretation is tha t the area covered by closed streamlines increases slightly as
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we relax the energy condition. Obviously then, the open streamline region has shrunk. 

So, we have here an idealized point source or sink for a  2-D flow field. The velocity 

increases to very high values whenever a source or sink is approached.

With the stagnation points we have a meeting point for the open streamlines. W here 

these lines meet, the Jacobi energy will be the same for all the streamlines. Therefore, if 

we could connect every point on the surface via an open streamline with this stagnation 

point, we would have a  situation where the Jacobi energy was constant over the whole 

surface.

Hazlehurst’s argument is in response to the work of Kahler (1995, 1997a, 1997b 

and 1997c), who argues th a t the Jacobi energy is constant. Using this condition, he 

shows th a t contact binaries evolve on thermal time scales, in cycles oscillating between 

marginal contact and semi-detached configurations. Standard models for common en­

velope systems have them  evolving slower than thermal time scales and thus have the 

contact configurations being stable and long term. For our purposes the correctness of 

either argument is not of prim ary importance. Both methods result in material streams 

that move rapidly from the hot to cool component during the contact phase. During 

the Kahler semi-detached phase, the irradiation model o f Zhou and Leung would apply. 

Kahler’s flow velocities, while not identical to Hazlehurst’s values, are similar enough 

that we need not consider both methods in the current simple model, where all we wish 

to use this theory for is the  flow velocity value. Thus an  approximation of Hazlehurst’s 

method for finding the flow velocity will be used in the code.
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C hapter 3

M odeling C ode

In  the case where the components in a binary system do not have strong tidal inter­

actions, sphericity with minor pertubations can usually be assumed. Thus, spherical 

symmetry can be used to determine locations on and in the star. However for very close 

and contact binaries, this approximation breaks down. Due to the difiFerential tidal 

forces, the components distort significantly so the spherical symmetry can no longer be 

used. Instead, the Roche equations are used to describe the system (see e.g. Kopal, 

1958). Tassoul (1992) outlined a set of Roche harmonics to utilize in contact systems. 

I t is with these harmonics tha t a simple code model has been developed.

3.1 T he Irradiated M odel

The code based on the Zhou and Leung irradiation model (1997a) is outlined below. As 

stated in Chapter 2, it can be used to look a t the W type subclass in particular, due to 

the low fillout ratio those systems have, on average. For A types, this approximation 

breaks down, due to the large fillout ratio. Their model will be covered in Section 3.2. 

The code, w ritten in C, can be broken into five main areas:
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1) The tem perature profile.

2) The flow velocity.

3) Coriolis force effects.

4) Calculation o f the luminosity of the irradiated star.

5) Calculation of a synthetic light curve.

Im portant parameters, such as the masses of the components, their temperatures and 

sizes, will be read in and used by  the code to generate the final result, a theoretical light 

curve which can have OER measured for it. Since we are assuming spherical sym m etry 

for the irradiated case, the light curve will not qualitatively resemble a  system w ith 

distorted components. For this model we are primarily interested in showing the trends 

-  that is, how the irradiated model OER varies as we change one of the  parameters. Then 

we will compare this with systems in the database tha t (ideally) only vary significantly 

for the same parameter.

3.1 .1  C alcu lation  O f T h e  Irradiated T em perature P rofile

To begin, a set of data  is read in which contains parameters we will need during calcu­

lation. The Roche lobe radii, r i  and rg, of each component are used to calculate the 

angles A  and B , which are used to obtain the region for which one of the three irradi­

ation equations (2.12, 2.13 and  2.14) apply. F(0) is then calculated, with 6 having one 

degree steps from 0° to B°. This F{9) value is then plugged into Equation 2.10. The 

other parameters of this equation, s, the absorption factor, and surface tem perature of 

each star (Tio and T2 0 ) are also fed in as known values. It should be noted th a t the 

temperatures are not the same as the ones shown in Appendix A. This is because Zhou 

and Leung’s hypothesis is to assume two normal systems, which just happen to be close 

enough to heat each other via irradiation. Since in general we assume the components 

are somewhere between ZAMS and TAMS in their evolution, the mass-luminosity rela­

44



tionship for main sequence stars will be used to estim ate a surface tem perature for each 

component.

For the larger mass component, this will tu rn  out to be very close to its model 

temperature. This is because if we have two stars, both on the main sequence, then 

the more massive one is more luminous. The hotter s tar’s energy falling on the cooler 

component has a  bigger effect on the secondary’s final luminosity than  the reverse. The 

code calculates the  radiation of each star on the other anyway.

Thus for a system with Mp = l.OM© and Ms =  OAMq we would have Tp{= Tgo) =  

5800K and Ts(=  Txo) =  3400K. This is much larger than the observed temperature 

differences, typically from 100-500K. Therefore if the Zhou and Leung model is to be 

valid, it must predict the surface temperature over most of the cool component rising 

dramatically. Figure 3.1 is a plot of the above situation, showing the increase in Tio- 

As can be seen, the original AT has changed from 2400K to 750K. Perhaps a higher 

aborption coefficient is needed for such a cool star. While the magnitude of the theo­

retical value may be off, the relationship should remain consistent, th a t is, we would 

expect the tem perature distribution to follow the same functionality, regardless of the 

choice of s. In order to calculate an exacting model for a  given system, we would need 

to determine a b e tter s. But for comparing two systems, the profile should still increase 

if the primary tem perature increases.

3 .1 .2  T he F low  V elocity

Since this irradiation creates a temperature profile, this temperature gradient will there­

fore lead, by necessity, to a heat flow and the calculation of the velocity of this flow is 

our next step. Since we are dealing with an irradiation case, the flow here would simply 

be flow along the equator of the irradiated star. Using Equation 2.24 can give us an 

estimate for the flow velocity. Substituting the perfect gas law (P  =  into the
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Figure 3.1: The effect of a hotter star on the tem perature of the cooler star. This is 
for the example in the text. At the limit of no irradiation, the temperature goes to the 
unaffected temperature.
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above equation, we get:

Let us assume the density is constant, tha t is, the heating doesn’t change the local p. 

The above becomes:

If we consider density changes along the gradient, then 5p changes in the opposite 

direction as the tem perature. That is, as the temperature decreases, the local density 

would increase. This would lower the flow velocity. Therefore v is an upper limit. Since 

the problem of integrating the flow velocity must really be done by models which can 

develop over time, this can become a tedious exercise (see, for example Zhou and Leung 

(1997b)). Thus, we will use the above method (from Webbink, Section 2.6) to obtain 

an upper limit and parameterize the flow as well, with lesser values.

3 .1 .3  A p p lica tio n  O f T h e C oriolis Force

The irradiated material will move along the surface, since this is the direction of the 

tem perature gradient caused by the excess radiation. Since the staur is rotating, the 

Coriolis term should be kept in the conservation Equation 2.16. This term is a  cross 

product:

o-cor  =  X  V .  (3.3)

ÇL is the angular velocity. For a spherical star, if the material moves along the surface, 

V will be perpendicular to ÇI. This means that Ccor will be maximal:
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O'cor — 2Ü.V, (3.4)

Since we are staying in the plane, v  remains perpendicular to 0 .

This Ocor will accelerate the irradiated material vertically. From a  view over the 

pole of the star, we would have m aterial flowing in a clockwise direction on one side 

of the star, while the material would flow in a  counter-clockwise direction on the other 

side (see Figure 3.2). Thus Ocor would accelerate the material down on one side, and 

lift it up on the other side as it moves along. Countering this would be the buoyant 

force. On the side where the m aterial is driven down by the coriolis acceleration, the 

buoyancy will increase as the m aterial falls. Eventually, the force up due to buoyancy 

will be greater than the downward force due to the coriolis acceleration.

The buoyancy acceleration on the  irradiated mass can be approximated by;

GM* / g

O-buoy — I ( 3 - 5 )

where M* is the meiss of the irradiated star and E , is the radius of the irradiated

star. This approximation assumes th a t the density of the bubble of heated material 

is very close to the density of the surrounding media. If this is not true, a factor of 

Pmedia!Pmateriai would be introduced. From Equation 3.5, we can see that as we go 

into the star, the radius will decrease as will the mass contained within that radius. 

Looking at standard polytropes for main sequence stars, we find tha t the radius term 

dominates the change in the upper regions of the star. Thus, aî ôy will increase as the 

radius decreases.

So a t the point tha t Ocor =  o.buoy, the acceleration is zero. However, the vertical 

velocity of the material isn’t zero, it still has a  downward velocity. The material will

evenutally be deccelerated to zero velocity, due to the buoyant acceleration. Thus the
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Flow In The Irradiated Star
With Direction Of Coriolis Acceleration

Figure 3.2: A plot of the flow and the coriolis effect upon it for an irradiated star. The 
bold lines represent the irradiated material, with the direction of flow indicated. The 
material is hottest at the point closest to the other star. The small arrows indicate the 
direction of the coriolis acceleration. The system is being viewed from the top and has 
clockwise rotation.
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varying velocity will be integrated to find the total travel distance. The heated material 

will now be a t a  higher optical depth, r  than  before. If we assume some mean opacity, 

X , then the relationship between the optical depth and the radial coordinate is:

dr =  —%dr. (3.6)

The optical depth gets bigger at smaller radius. We can find the change in radius, since 

we know the  flow velocity. Then we can get the new optical depth by:

Tnew ~  Told "b X i^o ld  *”neiu)> (^ -^ )

where we will use Vgid = R* and Tou =  2/3, which is the base of the photosphere.

Now we can calculate the new effective temperature at r  =  2/3 by:

=  (3.8)

r(r)neto is the temperature of the irradiated material, which has been sunk to its new 

optical depth r .  We then solve this equation for Te//. Now we have the Coriolis adjusted 

tem perature profile at the base of the photosphere (see Figure 3.3).

For the rising side of the star, the situation reverses. The buoyant force is in the 

opposite direction from before since the material doesn’t  want to rise naturally as the 

material is too heavy. The coriolis acceleration drives it to rise. Eventually a point is 

reached where the material will be so heavy that the upward coriolis accieration won’t 

lift it anymore.

The final step in this calculation is to realize that the material at lower optical depths 

will be irradiated by some diminishing exponential factor. Thus we need to integrate 

this extra radiation over some reasonable range in r .  A value of r  =  3.67 results in
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Coriolis Effect On Temperature Profile

_ 5000
I
■ o

1
g 4500

Ô
£3
2® 4000
CL
E

3500

 Coriolis Acceleration > 0
 Coriolis Acceleration < 0

0 50 100
0 (Angle at Surface)

Figure 3.3: A plot for the example from Figure 3.1, with the Coriolis Acceleration on 
the heated material figtired in. T he difference is very small, but this is reasonable, since 
no large changes va. B  — V  for most W UMa systems are observed, during the eclipse 
cycle.
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the irradiated flux being 1% of its r  =  2/3 value. This is the range over which we will 

integrate.

3.1.4 L u m in osity  C alcu lation

Once we have a tem perature profile, the next step is to calculate the new luminosity for 

that part of the surface. Since we are dividing the surface up into 1 ° slices, each pre- 

irrcidiated slice has luminosity l/360th of the total luminosity. If, TgUce 7^ Tsurrounding 

we get:

Summing over the surface of the star would then give the total luminosity. However, we 

need something diSerent, the  visible luminosity for the part of the star facing us. We 

also have to add the luminosity from the other component, and take into account the 

eclipses. A synthetic light curve will be calculated for each theoretical model. This will 

be done by adding up the luminosity of the 180 visible 1° slices for each star. Any slices 

obscured by the other s tar will not be added into the luminosity sum. Prom this a light 

curve can be constructed. This light curve will then have an OER calculated as detailed 

in Chapter 2 . These theoretical OERs will then be compared with the database values. 

For simplicity, an inclination angle of 90° (eclipses seen edge on) will be used.

3.2 T he C ontact M odel

The code based on the Hazlehurst contact model is outlined in the following subsections. 

This code is also written in C and will be used to look particularly at the A-type subclass. 

The method of calculation is similar with the differences detailed below for the contact 

case.
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3.2.1 Tassoul’s Coordinate System

Tassoul’s system is a Roche coordinate system, which allows an easier way to  express the 

location of the bubbles (see Hazelhurst (1996)) and their eventual superposition onto 

the local luminosity of the unheated (but spherically distorted) Roche lobe star. In this 

system, the radial component is replaced with the coordinate a, which is not spherically 

symmetric. Rather, the symmetry is based on the shape of the surface derived from the 

Roche potentials. T hat is, all points on the surface are a t the same a, even though they 

are obviously not at the  same radial distance from the center of mass. Tassoul begins 

by stating  the Coriolis force components for a simple spherical case:

Cr =  2fîo(sin<^0 — cos 6 cos (jrve), (3.10)

Ce =  —2üo (sin +  sin ̂  cos ), (3.11)

= 2f%o(cos 6 cos (fwr + sing cos (jrue). (3.12)

Then the temperature structure can be viewed as a deviation from spherical symmetry:

r  =  To(r)+Ti(r,g,<^)+--- ,  (3.13)

Spherical harmonics can be used to handle this deviation from perfect sphericity.

However, for a close or contact binary case, this approximation will not work. Due 

to the greatly distorted shape of the components, Tassoul describes a  similar method, 

but using Roche harmonics rather than spherical harmonics. Tassoul defines the Roche 

coordinate system with:

53



y>2

where A being the usual designation for cosû, and the Py’s are Legendre polynomials. 

A similar equation exists for rj, the angular coordinate:

77 =  A 4 - ç ( l  — A )̂ ^  , fy(A). (3.15)

The final coordinate, C, coincides exactly w ith the azimuthal angle <f>. From this, Tassoul 

derives a  similar temperature structure equation:

T  =  To(a)+ri(a,T?,<^) +  ---,  (3.16)

The biggest hurdle to Tassoul’s work is proper consideration o f the boundary con­

ditions. Whatever expansion we use to express T , the values m ust match up at the 

opposite ends of the stars. That is, if we use an expression for T  to  express the temper­

ature on one side of the star, it must match up for value a t the point where we are on 

the back side of each component (this would be the part of the s ta r  we see directly at 

0.0 and 0.5 phase).

We will use Tassoul’s coordinates to provide a first order correction to the spherical 

star models generally used. This will result in change in the tem perature distribution

on the surface, since the surface has changed shape. For the first order expansion to

Equation 3.14 [j =  2), we have:

i  =  i-l-9r2p2(A). (3.17)
o r

Using Pa(A) =  i(3A — 1), we get:
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3

û =  r{ l  +  ^ (3 A 2  -  1 )} -^  (3.18)

Here, a is the Roche coordinate equivalent of radius. For a common enevelope, the 

distance from the center of mass of the binary will be the constant value a. Equation 

3.6 becomes:

3
q =  A +  g (l — A^)— P 2 (A}) (3.19)

where now, f^(A) =  3A. Finally for, rj we get:

Tj =  A{1 +  g(l — A ) r  }. (3.20)

As above, rj is the Roche equivalent of 9, measure from the line connecting the  two 

stars, with a  vertex at the center of mass. These relationships for a and 77 will be used 

for the contact model.

So, if we assume the  first order approximation, we get:

T(t7) =  To +  Ti(At7 +  5r?2), (3.21)

where A  and B  depend on the boundary conditions. As previously stated, th is is 

the primary weakness of the Tassoul coordinate method. We do have two boundary 

conditions: T (—1) =  T h , on the backside of the hot star, and where the two stars meet 

T[j]contact) is the same for each system, since the stars are coincidental. If we use a 

guess for the backside tem perature of the secondary, T (l)  =  T c, we can determine A  

and B  for each model. Preferably, we don’t want to have to do this, we would ra ther 

determine Tc  from the model. Because of this problem, we will use the same A T  

method as outlined for the irradiated model.
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3 .2 .2  T h e C ontact F low  V elo c ity

Hazlehurst’s method will be used to find the lateral flow velocity of the interloper 

materiéd. We will also use his assumption that the material spreads laterally in evenly 

sized bubbles along the surface. Thus, for reasonable guesses of the specific heat in 

the envelope, the flow velocity will be calculated using Equation 2.33. The difference 

between this situation and the irradiated case above, is that here we are using the Tassoul 

coordinate system, which means we first need to  convert back to  a system based on r  

cind 6 to find the velocity component perpendicular to the old radial coordinate. This 

is the velocity tha t will be used in Section 3.3.3 to find the Coriolis acceleration on the 

interlopers.

3.2 .3  A p p lica tion  O f T h e C oriolis Force

The Coriolis acceleration will be calculated in the same manner as Section 3.1.3 above, 

using the velocity as outlined in Section 3.3.1. The primary difference between the two 

methods is that only the component of the velocity tangent to the velocity is used, since 

the original term  is really 20, x v. This results in an altered version of Equation 3.4:

ÛCOT =  2flt; sin 0. (3.22)

3 .2 .4  Transferred L um inosity C alcu lation

The transferred energy is calculated using Hazlehurst’s dissipation theory outlined in 

Chapter 2. Since we are assuming even distribution of the bubbles along the surface, we 

can assume the dissipative luminosity, Ld  (Equation 2.30) is spread evenly as a  function 

of the angle sin“  ̂t j .  The luminosity will be diminished on one side and enhanced on the 

other, due to the Coriolis acceleration. Then, Loivi) will be added to the underneath
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static luminosity and this new total luminosity (per angle slice) will then be used to 

calculate the theoretical light curve, as in Section 3.1.4. For this case, we will sweep the  

angle sin"^ 77, rather than  6.

3.3 Grid Sw eeping

For each of the above two models, a  sweep of the im portant parameters will be done. 

The independent parameters varied will be: M \fi (and thus q), R ifi, T i ,2  and P . A 

reasonable range of values for each of these parameters would be:

• M l,2 : Maceroni and Van’t  Veer’s method (1996) calculate values between 0.2Mq — 

2.2M q . This will be the range used, with the additional constraint of 0.1 <  ç <  

1.0 .

• P i,2 : The physical radii (in P@) are determined from the given masses (above) 

and the WD scaled radii. Thus the value of r i ,2  will be varied. The im portant 

constraint here is tha t r i  +T 2 <  1.0. Also, if r i  + r 2 1.0 we have a  system which

isn’t a close binary. Referring to the database shows that most WD models for 

W  UMa systems have r i + r 2 >  0.75. We will use a range of 0.65 <  r i  +T 2 <  1.00 

for this parameter. The two radii will be varied separately, subject to the above 

constraint.

• Ti,2 : As shown in the example above, the temperatures used for the irradiated 

model will be the ZAMS value for a  detached system. Since the mass is already 

determined, this will fix the value of Ti used for the primary. For the contact case, 

the temperature of the secondary will be determined by a temperature difference 

relative to the primary, as determined by Hazlehurst’s method. A range of 3000K 

- 7500K will be used.
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• P : For the period, the range for W UMa systems is from 0.22 d up to 1.15 d. We 

will use 0.2 d to 1.2 d.

A spacing no bigger than 1% of the range will be used in each case. Chapter 5 will 

detail the results, as well as the comparisons with the database.
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C hapter 4

T he W  U rsae M a j oris database

4.1 D atab ase D etails

A large database of W  UMa systems has been gathered, and is displayed in Appendix 

A. This database has been collated to serve many purposes:

• To be the single largest collection of fundamental parameters of W UMa systems. 

A number of systems have data published tha t were not included in an exhaustive 

paper by Maceroni and Van’t Veer (1996). The present database attempts to 

remedy this by using the neglected systems, as well as the Maceroni and Van’t 

Veer systems. This will allow a search with the largest available statistics to check 

for correlations between the various parameters.

• Include the measurements of what we call the O’Connell effect Ratio (OER) and 

the Light Curve Asymmetry (LOA), as outlined below. A method has been used, 

developed by McCartney, Leung and Herczeg, to provide a  more detailed measure 

of the O’Connell effect than the historical method used by O’Connell and later 

researchers.
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• To allow for a comparisoa between the Coriolis modeling code (discussed in Chap­

ter 3) and the observational data.

The data  set has come from the literature, where a wide variety of sources were 

used. Most important were those systems which had observations with well separated 

epochs (e.g. VW Cep, AM Leo, and RZ Com), allowing for a check in variations of the 

O ER  and L C A  with time. The model parameters come from published models, usually 

determined by the Wilson-Devinney method.

4.1.1 D erivation  O f Physical P rop erties

Maceroni and Van’t  Veer (1996) (hereafter MV) utilize an angular momentum argument 

to determine a (hopefully) consistent set of physical parameters for W UMa systems, 

such as the radius (in R q units) and mass (in Mq). The method is based on two 

assumptions: I) the total luminosity of the system is not affected by the interaction 

between the components, and thus the common envelope radiates the same luminosity 

as the sum of the internal luminosities. This means the total luminosity is the same 

as for two detached components of the same mass and age. 2) The components of W 

types are considered ZAMS, while for A types they are considered as Terminal-Age 

Main Sequence (TAMS). The total luminosity is then determined by:

L = Airaa^irlTt -f- r | î ^ ) .  (4.1)

If we use Kepler’s third law, we can express this as:

L =  cm2/3 pV3 (^2^4 ^  r | l ^ ) , (4.2)

with c =  (47r)'^/^G^/^cr, r \^2 are the fractional radii and T i ,2 are the effective temper-
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attires of the prim ary and secondary components. Then, using isochrones from Van- 

denbergh (1985), they looked for the intersection o f the solution from the locus for 

the luminosity-mass relationship with the isochrone. Maceroni and Van’t Veer used 

isochrones between 1 and 8 Gyr. These derived values will be used in the present study 

as well; in addition the systems not included in Maceroni and Van’t  Veer’s study have 

had their physical parameters calculated in this way.

4 .1 .2  R e la t io n s h ip s  O f N o n -O E R  P a r a m e te r s

Several parameters have had relationships plotted by previous authors. One of the 

more significant is color vs period (Mochnacki (1985)). In  Figure 4.1, we see a clear 

relationship between these values. The hotter stars have the longer orbital period. This 

diagram also serves to show one fundamental difference between the A and W subtypes, 

namely their temperatures (or colors).

Thus, the more massive and physically larger stars have longer rotation periods. 

Since the primaries are main sequence, this also implies they are hotter. We see th a t 

a few of the A types mix in with the W types. These systems will be plotted w ith 

the W types when we look at the results from the irradiation model in Chapter 5. A 

simileur plot results for density vs temperature (see Figure 4.2). Color and temperature 

are directly correlated and as we move up the main sequence, the stars are less dense. 

This plot affirms the previous differences between the A and W types.

A final plot (Figure 4.3) shows the relationship between the total mass of the system 

and q. This da ta  does not have the same tight correlation of the above examples. 

However, if we look at just the W type, a weak correlation exists. For the A type, it 

seems that there are two populations, which split around q = 0.4. A plot of the two 

subsets shows th a t they tend to have different temperatures. The higher q value systems 

are cooler (see Figure 4.4).
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Color vs Period Diagram
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Figure 4.1: A plot of the B  — V  color vs period for both subclasses. The separation 
between A and W types is readily apparent.
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Figure 4.2: The relationship between temperature and density, again showing a differ­
ence between A and W types.
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Total Mass vs q
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Figure 4.3: This original plot is from Macaroni and  Van’t Verr (1993). The W  types 
seem to have a weak correlation of higher total mass for the high q systems. For the A 
types, it appears a  bifurcation may exist. Figure 4.4 highlights this difference.
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Temp vs Total Mass
A subtypes
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Figure 4.4: The A types are split according to the  apparent bifurcation in Figure 4.3. A 
distinct difference is that the high q value systems tend to have a cooler tem perature at 
a  given mass. The W types are plotted for reference. The high q value A types coincide 
with the W types. As stated previously, this behaviour will be discussed in more detail 
in Chapter 5.

65



4.2 D eterm ination. O f The O ’Coniiell Effect R atio

The usual way to plot a  light curve (LC) is to place the prim ary (or deepest) eclipse 

at phase =  0.0, which occurs in W UMa’s when the cooler component is in front (see 

Figure 1.3). A phase =  0.25 corresponds to the system being completely out of eclipse, 

as if the viewer is seeing the system from the ‘side’. Then, a t a phase =  0.5, the 

secondary eclipse occurs, when the hotter star passes in front of the cooler star. Phase 

=  0.75 is a  repeat of phase = 0 .25 , except the viewer now sees the ‘other side’ of the 

two stars. If there are no flux asymmetries, the intensity at these two phases should be 

equivalent. Finally, by definition, a phase =  1.0 is just phase =  0.0 again, and a new 

cycle begins. O’Connell’s m ethod (Figure 1.3) measured the difierence in magnitude a t 

the peaks (i.e. phase =  0.25 and phase =  0.75). While a useful diagnostic, this method 

excludes some possibly im portant information. If the largest asymmetry between the 

two halves of the LC (phase 0.0-0.5 vs 0.5-1.0) occurs away from the 0.25 vs 0.75 phase, 

then insight into where a spot is located is made more diflScult.

The O E R  method will also identify light curves where the asymmetry isn’t greatest 

at 0.25 vs 0.75 phase, which does not always offer the largest variation. Tliis method 

(McCartney 1997), groups the photometric data into small phase bins (see Figure 4.5). 

The light curve is broken up into n  bins, where each bin is a phase =  1/n  wide region. 

The mean intensity for bin i  is It is calculated from the average of the intensities for 

each photometric observation in that particular bin. The bins are then normalized by 

subtracting the intensity a t primary minimum (7i) from the given bin intensity. Next, 

the bins are summed from phase 0.0 to 0.5 and from phase 0.5 to 1.0. Bins 1 tlirough 

n /2  cover the first half of the LC while bins n /2  +  1 through n  cover the last half. O E R  

is the ratio of the 0.0 to 0.5 bin sum over the 0.5 to 1.0 bin sum:
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B-Light Curve of BB Peg
Showing Bins For Measuring OER
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Figure 4.5: An example light curve of BB Peg (Leung, et al. (1985)). In this case, 
the phase bin w idth =  0.025, for a total of 40 bins. Using the O E R  method, we get: 
O E R b = 1.088. The measured asymmetry by the old method yields: A rne =  0.048.
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An O ER > 1 corresponds to the first half of the light curve having more to tal fiux. 

A good correlation exists between the O ER  and  A m , the historical method used by 

O’Connell (see Figure 4.6). A A m  >  0.0 means, as noted above, peak I is brighter 

than peak H. This is not suprising, since a higher maximum at phase =  0.25 should 

result in more total fiux in the first half of the light curve. The O E R  will be listed as 

greater or less than 1 in the database, indicating which half of the light curve has more 

total flux (as outlined above). However, for modeling comparisons, an O E R  < 1.00 

will be reexpressed as \ fO E R .  The motivation for this comes firom the work of Zhou 

and Leung (1990), who state that this might be  indicative of an  inversion in the flow 

direction. That is, the circulation direction sets up in the opposite direction for some 

systems. This problem could be as simple as the binary system rotating in the opposite 

direction. Since the relationship between O E R  is similar for A m  >  0 and A m  <  0, this 

should be explored in future work.

As mentioned in Chapter 2, third light is a  problem that has to be resolved. By 

calculating the bin intensity as /,• — / i ,  we are looking at only the part of the light curve 

containing the intensity variation. Thus, this works to subtract out third light effects, 

and O E R  is measuring only the variation due to asymmetries, no m atter what constant 

background fluxes exist.

Previously, it was stated that one motivation for a  thermodynamic explanation vs a 

MHD explanation for the O ’Connell effect was the  stability of the magnitude difference 

for many systems. Two such systems, RW Com and AM Leo are detailed in Table 4.1.

68



OER vs Magnitude Difference
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Figure 4.6: A comparison of the O E R  method with the A m  m ethod. The line represents 
a least squares fit to  both the B and V data. The correlation coefficient is 0.902. The 
equation for the line is: O ER  =  2.193Am +  1.001.
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Table 4.1

System Year Am System Year Am

RZ Com 1911 -0.10 (photographic) AM Leo 1959 0.03 (visuad)

1923 -0.08 (photographic) 1969 0.00 (V-filter)

1937 -0.07 (visual) 1969 0.00 (B-filter)

1949 -0.08 (visual) 1977 -0.10 (B-filter)

1969 -0.12 (V-filter) 1981 0.02 (V-filter)

1969 -0.14 (B-filter) 1981 0.07 (B-filter)

1976 -0.10 (V-filter) 1983 0.00 (V-filter)

1976 -0.15 (B-filter) 1983 0.01 (B-filter)

Table 4.1: The A m  values for two variables, each of which has been observed on many 
widely seperated occasions.

For RW Com, we see good stability between the different eras, even w ithout considering 

a  transformation from a photographic magnitude to  the either the B or V filters. For 

AM Leo, there is dramatic change, but it is worth noting that at the two very separate 

times (1959 and 1983) the light curves are very similar. The 1977 data would seem to 

be evidence of a temporary superluminous bump, possibly a  temporary magnetic effect. 

The point here is tha t the observations show th a t the light curves retain a similar 

O’Connell effect th a t is difficult to explain with short-term  MHD effects. Observations 

over a  long time span must be used to eliminate the  effects of temporary bumps, which 

seem to be unrelated to the more stable O’Connell effect.

4.3 D eterm ination  O f T he Light C urve A sym m etry

The bin method allows the additional information of knowing where the asymmetry is 

gieatest. To find this information, a  given bin is compared with its reflected bin in the 

other half of the light curve. For a  40 bin total example, bin 2 covers phase 0.025 to
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0.050 and is compared to bin 39, which covers phase 0.950 to 0.975. If we reflect the 

light curve about the phase =  0.5 point, we can better visualize where the light curve 

deviates the most from symmetry (Figure 4.7).

In this way, the location of majdmum asymmetry can be compared with phase (see 

Figure 4.8). By using as many systems as possible, we can then maJce a determination 

of the preferred statistical location for the asymmetric flux. This bin asymmetry is used 

to calculate the Light Curve Asymmetry {LCA).  Here each bin is compared w ith its 

reflection and the square of the difference is summed over each bin pair:

L C A  =
\ 1= 1

At first glance it may seem that OER  and L C A  measure the same thing. However, 

since LC A  measures the deviance from symmetry rather than the amount of flux under 

the curve, it contains different information. T hat is, one could imagine a light curve 

with little peak asymmetry, but the brighter peak being narrow while the fainter peak is 

shallower. In this situation, the O E R  could be almost exactly 1.00, despite the obvious 

asymmetry of the curves. Yet, measuring the L C A  will show a large asymmetry. An 

observed example of this is V566 Oph (see Figure 4.9). A plot of O E R  vs L C A  is shown 

in Figure 4.10.
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Figure 4.7: A plot of the light curve of AE Phe. This shows visually where the light curve 
is most asymmetric. The quantity LCA,  described above, measures the asymmetry as 
a function of phase. For this data, the maximum asymmetry is A lntensity =  0.028 a t 
a phase of 0.3063. The L C A b for this system is calculated as 0.02148. For reference, 
O E R b =  1.068.
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Figure 4.8: A plot of the phase location of maximum LCA.  A solid peak appears just 
around the phase 0.35, which would be ju s t after the first maximum. A t this phase, we 
are primarily seeing the ‘sides’ of the two components. We are seeing slightly in towards 
the cooler star’s region facing the hotter component.
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Light Curve of V566 Oph
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Figure 4.9: A plot of V566 Oph, which has O E R  =  0.993 (or O E R  =  1.007, see text) 
and Am  =  0.00, yet has an  appreciable L C A  =  0.042. This implies that even though 
the peaks are similiar, the shape of the light curve is fundamentally diflferent for the 
first half vs the second half.
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OER vs LCA
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Figure 4.10: The relationship between O E R  and LCA  is shown. A given L C A  will 
result in an O E R  between two extremes. V566 Oph is the black triangle near the 
middle of the plot.
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C hapter 5

M odel R esu lts

The results of fitting the theoretical model with the observational database is detailed 

below. As shown in Chapter 4, several observational differences exist between the W 

and A types. This was the original motivation for creating two separate models. The 

irradiation model is compared with the observational values for the W types, while the 

contact model is used for analyzing the A type data. A summary of the work, as well 

as a discussion of possible future work is included as well.

5.1 R esu lts  For T he Irradiated M odel

The Zhou and Leung irradiation model, as discussed in Section 3.1 was used to calculate 

theoretical OERs.  The grid sweep method detailed in Section 3.3 was used to generate 

a series of curves by varying one of the primary parameters and holding the others 

constant. The parameters varied were discussed in the above section. An in depth 

paper on the evolution state  of W UMa systems by Rovithis-Livaniou, Rovithis and 

Bitzaraki (1992) (RRB) provides useful information for the assumptions used during the 

parameter sweep. One of the bigger problems with computer modeling is keeping the
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parameters in a reasonably astrophysical range. One of the assumptions discussed earlier 

stated tha t W UMa stars are typically thought of as being ZAMS objects. RRB provide 

H-R diagrams of W  UMa stars for their sample of 31 systems (which are contained in 

the current database) and they find tha t the WD modeling technique typically predicts 

th a t indeed, the primaries are main sequence objects. An H-R diagram of the systems 

in the current database is shown in Figure 5.1.

W ith  this information in mind, the grid sweep was set up to account for those pa­

rameters that had strong empirical relationships. Since we can assume the primaries 

are main-sequence, the  radius is known if the mass is known. Thus, as the mass pa­

ram eter was varied, the radius of the primary was varied according to the mass-radius 

relationship (see, for example Kippenhahn and Weigert (1990)). The relationship of:

R  ~  M^, (5.1)

where typically ^ =  0.8 for the lower main sequence. Since a mass-luminosity rela­

tionship also exists, this can be combined with the above result to also derive a mass- 

tem perature relationship for the main sequence as well. Kippenhahn and Weigert use:

L ~  AP, (5.2)

and for the lower maun sequence derive t] =  3.88. After using the basic luminosity law, 

this yields T  ~  which was used for these models.

The period was considered a completely independent variable. No mass-radius or 

mass-luminosity relationships were used for the secondary, since RRB’s data showed 

them  to not be on the main sequence. Rather, the heating of the prim ary caused them 

to appear under the main sequence. This behavior is because they have increased their 

temperature, but not their radius (at least not enough) for them to move up the main
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H-R Diagram For W UMa Primaries
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Figure 5.1: The primaries plotted on the H-R diagram. Since the primaries are main 
sequence objects, the mass-luminosity and mass-radius relationships for main sequence 
stars will be used for the primaries. The exact relationship is detailed in the text.
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Irradiation Theory OER vs q
Varying Mass of the Primary
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Figure 5.2: The variance of the theoretical O E R  with q is shown. In each case, A T =  
200K, n  +  T2  =  0.75 and P  =  0.6 d. The lines represent constant mass of the primary. 
As the primary mass was increased, the O E R  increased in value by: O E R  ~  
with a  =  1.4. This is the relationship used in Equation 5.3. Mp has been varied from 
0.6 — I .8 M0 , in steps of 0.2Mq .
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Irradiation Theory OER vs q
Varying Temperature Difference
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Figure 5.3: As before, the variance of the theoretical O E R  with q is shown. In each 
case, Mp =  I.OATq, r \ +  =  0.75 and P  =  0.6d. The lines represent constant be­
tween temperature difference the two components. As the temperature difference was 
increased, the O E R  increased in value by: O E R  ~  (AT)-^, with {5 =  3.5. This is the 
relationship used in Equation 5.4. The lines don’t  meet a t q =  1.0 since the constant 
temperature is somewhat unrealistic as we sweep q. A g =  1 system would ideally have 
a A T  =  OK. The A T ’s range from 100 — 500K, in lOOK increments.
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Irradiation Theory OER vs q
Varying The Wiison-Devlnney Radius Sum
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Figure 5.4: Again, the variance of the theoretical O E R  with q is shown. In  each case, 
Mp = I.OMq , a t  =  LOOK and P =  0.5d. The lines represent constant radii sum 
between the two components. As the radii sum was increased, the O E R  increased in 
value by: O E R  ~  (ri +  r 2 )T\ with 7  =  2.1. This is the relationship used in Equation 
5.5. The sum varies between 0.65 and 0.95.
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Irradiation Theory OER vs q
Varying Rotation Period
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Figure 5.5: Once again, the variance of the theoretical O E R  with q is shown. In  each 
case, Mp =  l.GM©, A T  =  lOOK and r i+ r 2 =  0.75. The lines represent constant rotation 
period. As the period was increased, the O E R  decreased in value by: O E R  ~  P^, with 
5 =  —1.3. This is the relationship used in Equation 5.6. A period range of 0.3 d to 0.7 
d is shown.
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sequence. Instead it appears tha t the effect of the primary on the secondary is for the 

secondary to shift to the right on the H-R diagram. Thus the secondary mass was a free 

parameter, subject only to the constraint that the  mass ratio m ust be between 0 . 1  —1 .0 . 

This range was used since no systems in the database have q <  0.1.

The tem perature difference between the components was also considered an  inde­

pendent variable. This is a result o f the fact tha t no mass-luminosity relationship exists 

for the secondary. As such the secondary’s tem perature has no direct relationship to 

the secondary’s mass either. So, for AT, the tem perature difference of the components, 

a range between lOOK and lOOOK was used. Again, the m otivation is based on the  fact 

tha t almost all the systems had A T ’s in this range. The final variable to be addressed 

was the fillout. Systems that had many similar physical param eters could have very 

different fillouts. As such the WD radii of the components was varied, as discussed in 

Section 3.3. Values between 0.65 and 0.95 were used for the sum  of the radii. Systems 

with larger radii sum correspond to higher fillouts.

The results are plotted in Figures 5.2-5.5. In each case the variance of O E R  with 

respect to q is plotted. For each line, only the mass of the secondary was varied. Then, 

a step was made in one of the other independent parameters (prim ary mass, period, 

radii sum or tem perature difference), and a new line was plotted. From this we can

calculate the theoretical variance of OER  with each of our critical parameters. O E R

relationships have been derived from the plots for each of the independent parameters:

OER~Mp^-'‘, (5.3)

O E R  ~  (AT)^ \  (5.4)

O E R  ~  (ri 4 - rg)^-^, (5.5)
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O E R  ~  p-^-3, (5.6)

and have been used to fit the observ'ational data.

5 .1 .1  O bservational F its

To fit the observational data, the preceding relationships have been applied to the values 

shown in the database. A simple plot (Figure 5.6) of O E R  with respect to the primary 

mass will show the scatter caused by the other param eters. This diagram is very messy 

since the competing efiects of temperature difference, period, and radii sum are all 

mixed in. Ideally, the way to analyze the observational data is to plot it versus one 

independent parameter and bin the data with respect to  the other parameters.

However, with four parameters a very large sample would be needed. Not enough 

W  UMa types have adequate light curves to allow this. Instead a m ethod of applying 

the theoretical relationships was used. The data  has been plotted w ith respect to a 

combination of the free parameters. Since simple power law relationships were obtained 

for O E R  with each parameter, these were used to calculate A, a quantity defined as:

A =  M ^(A T )^(n  4-r2)-yp^ (5.7)

where or, 7 , and 5 are obtained from the theoretical relationship derived above. Thus 

for all cases with the irradiated model, we will assume: a  =  1.4, /3 =  3.5, 7  =  2.1, and 

5 =  —1.3. In Figure 5.7 a plot of O E R  vs A is shown. The values for each variable 

were obtained from the database, and the data was fit w ith a least squares fit. However 

it looks like an exponential fit might be better, b u t the one outlier makes it difficult to 

determine if this is a curve or scatter. The y-axis is plotted as (0£?/2(B) - 1) x 100 

to make the scale convenient to read. A value of 15 corresponds to a measured O E R  

of 1.150. This follows the method used in the work of Davidge and Milone (1984), in
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OER(B) vs Mass Of Primary
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Figure 5.6: O E R  plotted vs mass of the primary. This data is for just the W types. No 
relationship can be discerned, since the other independent parameters are still mixed 
in.
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their study of the O ’Connell effect. They plotted the various param eters vs A m  x 1000, 

typically obtaining values between -40 and 40.

Since the theoretical data is plotted vs q we should look at a plot of the observational 

data as well (see Figure 5.8). At best, a weak correlation of high q implying a lower 

O E R  is present. This roughly agrees with Zhou and Leung’s contact theory concerning 

the direction function, stating that there should be  almost no O E R  for systems with 

high q. A better plot is to show O E R  vs qr x  A, removing th e  effects of the other 

independent parameters. This relationship is shown in Figure 5.9.

Several other parameters have been plotted (Figures 5.10- 5.15), some showing good 

correlations, some none at all. The plots involving the secondary’s parameters show 

poor correlations, bu t this is not suprising, since no easy mass-luminosity relationship 

exists for these objects. L C A  is plotted in Figure 5.13. Although LCA  and O E R  

are not well correlated (see Figure 4.10) a reasonable agreement results for the same 

relationships that were used for OER.

Several interesting relationships result. From Figure 5.11, we would expect the lower 

density systems to have higher OERs.  For main sequence stars, this implies tha t the 

earlier spectral type systems would have a higher O ’Connell effect. In the WD model, 

the reflection coefficient goes to one when we reach hot stars. This means tha t s, 

the absorption coefficient goes to zero. At this point, the irradiation model would no 

longer be useful. However, the hottest W type systems are cool enough to still use an 

absorption coefficient around 0.5.

As shown in Figure 4.2, the primary tem perature is well correlated with the primary 

density. Thus we can infer from Figure 5.11 tha t the hotter W types have higher OERs.  

In Figure 5.13 the cool A types which are interlopers in most of the diagrams plotted 

in Chapter 4 are plotted here as well. The hottest of the group, V566 Oph, is quite far 

from the best fit line. Perhaps this system, a t T g// =  6700K, is too hot to have a high
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OER(B) Correlation With Primary Parameters
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Figure 5.7: The correlation of OER with the prim ary parameters, as determined by the 
theoretical predictions. This quantity is defined as A in the text, and will be used in 
later figures. A linear regression yields a correlation coefficient of 0.844.
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OER vs q
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Figure 5.8: Similar to Figure 5.6, this O E R  vs q plot shows little correlation. Both A 
and W  types which have a  complete independent param eter data set are plotted. As 
with the plot vs primary mass, the effects of the independent variables are mixed in.
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OER vs qA
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Figure 5.9: A plot of the W types for ç x A. This shows a better correlation (coefficient 
=  0.56) than Figure 5.8, since the four independent variables have been sorted  out.
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enough, absorption. The W type closest to it, a t A =  0.048, is AH Cnc, which, is also 

quite hot for a  W  type, with T ^ f f  =  6400K.

5.2 R esu lts  For T he C ontact M odel

For the A types, the contact model discussed in Section 3.2 was used to fit the  obser­

vational data. Since A type primaries also obey the mass-luminosity relationship for 

main sequence stars (see Figures 5.1), the same relationships as outlined in Section 5.1 

were used: R  ~  L  ~  and T  ~  For the grid sweeps a similar set of

ranges for each independent param eter was utilized. The theoretical data was plotted 

with the same method as outlined in Section 5.1. Figures 5.16-5.19 show the O E R  vs 

q plots for each independent parameter for the contact model.

For this scenario, A T  should be determined as a non-free parameter, based on 

Hazlehurst's method. However, using the Tassoul coordinates to approximate the non- 

spherical distortions leads to a boundary condition problem, discussed in Section 3.2. 

Thus until we have a better determination of boundary conditions, A T  will unfortu­

nately still be  a  free parameter.

We end up defining A as the same quantity,

A =  iW“ (A T )^(n  +  r 2 y P \  (5.8)

except the values of the exponents are now different. Using the various theoretical O E R  

vs q plots results in the following relationships:

O E R  ~  m2-2, (5.9)

O E R  ~  (AT)3-2, (5.10)
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OER vs Mass Of The Secondary
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Figure 5.10: At best, a weak agreement exists. Here the correlation coefficient =  0.10 
was calculated. As discussed in the text, this result isn’t  suprising, since the secondaries 
do not fit a ZAMS relationship. The exponent a  has been set to 1.4, the same as the 
relationship for the primary mass.
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OER vs Density Of The Primary
W types

20

\ A

oo
«

ÇÛ
cc
111
O

0.04 0.06 0.08 0.10.02
p“a  (primary)

Figure 5.11: A plot of O E R  vs the density of the primary. The correlation (0.862) is 
very high, b u t since pp depends on Mp and Rp, a good fit with O E R  is expected. T he a  
parameter for this case was ju st set equal to 1. The plot predicts that the lower density 
(higher mass and earlier spectral type) systems will have a higher O E R

92



OER vs Density Of The Secondary
W types
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Figure 5.12: As with the secondaxj'' mass, a poor correlation (0.42) results for this 
relationship.
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LCA Correlation For W Types
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Figure 5.13: L C A  p lo tted  against A. As w ith the O E R  vs pp, this relationship predicts 
that the higher mass systems will have a  higher OER.  The correlation here is 0.817.
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OER(V) Correlation With Primary Parameters
W types
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Figure 5.14: The V data for O E R  vs A is shown. The correlation of 0.86 is similar to 
the B value. Due to the similar agreement of O E R  with A m  regardless of color, this is 
expected.
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OER(U) Correlation With Primary Parameters
W types
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Figure 5.15: The U data  for O E R  vs A. Similar to the V plot, the correlation here is 
0.78.
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Contact Flow Theory OER vs q
Varying M ass of the Primary
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Figure 5.16: P lotted here is the contact model’s OER variance with respect to q. In 
each case A T  =  200K, r i  +  r2  =  0.95, and P  =  0.6 d. The prim ary mass was increased 
from 0.8 - 1.6M@. The derived relation is: O E R  ~  M “ where ol = 2.2. This is the 
relationship used in Equation 5.9.
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Contact Flow Theory OER vs q
Varying Temperature Difference
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Figure 5.17: The contact model’s OER variance is plotted with respect to q. In each 
case ilTp =  1.2Mq , r i  +  r2 =  0.95, and P  =  0.6 d. The tem perature difference was 
increased from 200-600K. The derived relation is: O E R  ~  (AT)^ where /3 =3.2. This 
is the relationship used in Equation 5.10.
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Contact Flow Theory OER vs q
Varying The Wilson-Devinney Radius Sum
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Figure 5.18: Again, OER variance is plotted with respect to q. In each case Mp = 
1 .2 iW0 , A T  =  200K, and P  =  0.6 d. The radii sum was increased from 0.65 - 0.95. The 
derived relation is: O E R  ~  (r% +  where 7  =  0.5. This is the relationship used in 
Equation 5.11.
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Contact Flow Theory OER vs q
Varying Rotation Period
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Figure 5.19: OER variance is once again plotted with respect to q. In each case Mp =  
1.2Mq , a t  =  200K and r i  +  r2 =  0.95. The period was increased from 0.4 - 1.2 d. 
The derived relation is: O ER  ~  where S =  —1.6. This is the relationship used in 
Equation 5.12.
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O E R ^ { r x + r 2 f - ^ ,  (5.11)

O E R  ~  (5.12)

As with the irradiated case, these power laws were used to fit the  observational data. 

Figures 5.20-5.25 plot the A type observational da ta  for quantities.

5.2 .1  O bservational F its

At first glance, it is apparent th a t the data fit for the contact model is not as good as 

for the irradiated model. Several reasons exist for this. The contact model is not nearly 

as well developed as the irradiated one. The boundary condition problem introduces 

more uncertainty into a model which already includes many approximations. Clearly, 

the best was to proceed is to do a full-blown 3-D model which properly intertwines the 

temperature gradient and the  flow velocity. This was not done for this model since the 

computational time would have been too extensive for the large parameter space used. 

Zhou and Lueng (1997b) present results for a preliminziry static (non-rotational) model,

and their computational time was well over 6000 minutes for ju s t one model.

The situation is not a complete loss. The observational d a ta  shows similar trends 

with the previous set of data. In  particular, the Figure 5.20 plot shows a  reasonable 

fit. As with the irradiated case, it would appear tha t possibly a  better fit would be 

exponential. This most likely impies tha t the exponents determined by the O E R  vs q 

plots are not quite correct for the contact case.

Another factor which might be influencing the da ta  is that A types are often consid­

ered TAMS rather than ZAMS objects (see, e.g. MV). Thus, evolutionary effects could 

be causing some of the scatter.
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OER(B) Correlation With Primary Parameters
A types
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Figure 5.20: The fit for OER w ith A for the A types is not as good as for the W types. 
In this case the theory does not seem to be as well developed as for the irradiation case. 
The correlation coefficient =  0.84.
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OER vs qA
A types
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Figure 5.21: A plot of the A types for q x A .  This shows a better correlation (coefficient 
=  0.67) than Figure 5.8, since the four independent variables have been sorted out. The 
outlier has not been included in the best fit line.
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LCA Correlation for A Types
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Figure 5.22: For the A types, the LCA-A plot is shown. Again, as with the previous 
figure, the correlation (coefficient =  0.62) is not as good as the W  type correlation.
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OER vs Density Of The Primary
A types
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Figure 5.23: The OER vs density of the primary. As with the irradiation case, a  has 
been set equal to 1. The scatter is fairly high, for the reasons discussed in the text. The 
correlation is 0.58.
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OER vs Density Of The Secondary
A types
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Figure 5.24: The OER vs density of the secondary. Again, a  =  1. A very wealc 
correlation (0.34) exists.
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OER vs Mass Of The Secondary
A types
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Figure 5.25; The OER vs méiss of the secondary. As w ith the density cases, the cor­
relation of 0.46 is weak. In this case, a. =  2.2, in keeping with the relationship for
Mp.
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5.3 C onclusions

The O’Connell effect has been known for many years, but no adequate explanation has 

been published yet. The long term  stability of the asymmetry in many systems seems 

to indicate a thermodynamic explanation. The irradiation model of Zhou and Leung 

offers a reasonable fit to the  observational data for the W types. The correlation shown 

in Figure 5.7 indicates th a t the  parameters that were used (primary mass, tem perature 

difference, sum of the radii and period) do influence the O’Connell effect in W  types. 

The relationship indicates how a combination of important quantities would change 

O ER . As primary mass (and thus effective temperature), overall radius and tem pera­

ture difference increase, and the period decreases, the O’Connell effect becomes more 

pronounced in the W types. O ther parameters might also be im portant, and should 

be analyzed in the future. In particular, pp, the primary density shows a  very good 

correlation when plotted w ith  the above parameters (see Figure 5.11). The code should 

be re-ran with density as a  free parameter as well. The simple 2-D model presented 

here offers a preliminary look and hopefully motivates the development of a  3-D model.

The non-O’Connell effect asymmetries in the light curves (the ‘bum ps’ and ‘dimples’) 

remain unmodeled. The best course of action for these phenomena seem to be spot 

modeling, which implies a  probable MHD origin. However a good determination of the 

O’Connell effect with the current model should help to greatly reduce the param eter 

uniqueness problem inherent in the spot modeling method. Zhou and Leung’s irradiation 

model should be included in the WD model, so th a t the calculations are intertwined. 

This would provide a physically consistent model, which conserves energy, rather than 

the “slapping on” method inherent in current spot modeling. The derived relationships 

for O ER  with the various parameters would allow for a reasonable first guess for these 

parameters, thus at least closing the range of some of the free values. As a  result, this
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would reduce the ambiguity brought ou by spot modeling, which is still the primary 

weakness of the  WD method.

Using the L C A  method, a reasonable guess for the location of the  flux asymmetry 

can be obtained. This would help in obtaining a constraint on the longitude value for 

the spot. Since the normalized L C A  vs phase is known from this method, similarly 

sized asymmetries a t more than one location could justify the introduction of multiple 

spots for a  solution. The reduction in ambiguity of one of the spot(s) parameters would 

help with the uniqueness problem outlined by Maceroni and Van’t  Veer (1993).

The current model could also be applied to another class of eclipsing binaries, the 

near-contact systems. These are systems known to have fillouts ju s t less than 0%, 

implying tha t they are in a detached state, but are very close. The irradiated model 

chould be applied to these systems, many of which were studied in  the  1984 study by 

Davidge and Milone. For the W type W  UMa systems, many have fillouts of only a few 

percent, while a  few have negative fillouts, which implies they are actually near contact 

systems. Including the data set of close, near contact binaries would greatly increase 

the statistics.

For the contact model, the observational fit was not nearly as good. Perhaps this 

is a result of the  simple model not incorporating the complete theory of Zhou and 

Leung, which is still a work in progress. However, the weaker correlation doesn’t show a 

complete failure for the simplified version of this model used here. As w ith  the irradiated 

model, an increase in primary mass, radius sum and temperature difference, couple with 

a period decrease, still indicates an O E R  increase. One should note however, that the 

relationships for the two models are slightly difierent, which reinforces the hypothesis 

that the A and W  types have difierent mechanisms responsible for the asymmetry. As 

with the irradiation case, additional parameters may need to be included in the analysis. 

From Figure 5.21, it would seem that q should be included, since addition of the mass
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ratio provided a good correlation. Zhou and Leung’s direction function, discussed in 

Chapter 2 (see Equation 2.36 and Figure 2.10), shows that the circumfluence depends 

heavily on the mass ratio. As the contact model becomes more sophisticated, the mass 

ratio should also be used as an additional free parameter. A complete 3-D model 

which calculates the flow velocity more rigorously should provide a better correlation. 

Hopefully, when their model is complete, a reassessment of the  O E R  data will be done.

It is necessary that in order to formulate a better 3-D model, the observational 

data  set will need to grow. Also, the quality of the data needs to improve. More 

W UMa systems need to have q spectroscopically determined. Also broad band UBVRI 

photometry should be done, since the size of the O’Connell effect is weakly wavelength 

dependent. Consistent monitoring of a few, bright well determined systems would help 

greatly in smoothing out the light curve asymmetries that are caused by the short term 

MHD effects. Similarly, the neglected systems need to be reobserved with modern CCD 

photometry. As mentioned above one way to increase the data  set would be to include 

other types of binaries, in particular the near contact class. The justification for this is 

the close agreement in fillout %’s between the W  type W UMa systems and the near 

contact systems.

Most of the systems analyzed in this data set had enough observations to allow 40 

or 80 bins for calculating the O ER . However, for some of the  systems, the published 

photometry only allowed for a smaller set of 20 bins. This introduces a scatter into the 

calculation of O E R  that can be removed by more extensive photometry. In their recent 

publication, Kallrath and Milone (1999) mention some tips for observers. For the needs 

of this database, the most important recommendation they make is that observations 

need to be easily available to other astronomers. As they note, sometimes only the 

observations remain worthwhile 5 or 10 years after publication, since the methods of 

interpretation can change enough to render the analysis no longer useful.
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The models introduced here justify further examination into a thermodynamic cause 

for the O’Connell effect in W UMa systems. Much work remains to be done before the 

models are robust enough to yield a  complete, 3-D dynamic construct of these systems. 

Ongoing advances in hydro dynamical modeling will be very useful in creating more re­

alistic models of close and contact binary stairs. The interesting physical problems these 

systems bring to astrophysics provide a very good test environment for com putational 

methods used in the field.
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A p p en d ix  A

W  U rsae M ajoris D a ta  Table

A .l  T he D atab ase

This is the collation of the observational data for W  UMa’s, as well as the m odel 

values (primarily from WD method) for the systems. The notes section describes which 

m o d e l in g  method was used to d e te r m in e  the physical parameters. A column by column 

description of the table parameters follows the table.
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w  Ursae Majoris Data Table, Part I

MV
Period
(days) B-V

Mass Ratio
Q>p 1 Qph (/.,+L,)'' Incl.(°) TaCA-) Ccont /(%)

WD]
ri

Mean
ra Pi Pi Type

AB And 27 0.332 0.90 0.491 0.491 86.8 5450 5821 2.814 15 0.451 0.327 1.25 1.61 W
CN And 65 0.463 0.56 0.450 70.3 6200 4680 2.662 43 0.478 0.340 0.56 0.7O A
GZ And - 0.305 0.75
S Ant 74 0.648 0.871 68.8 7800 7340 3.503 7 0.396 0.371 0.39 0.41 A
0 0  Aql 68 0.507 0.61 0.843 0.835 90.0 5700 5635 3.350 27 0.416 0.386 0.56 0.58 A
V417 Aql - 0.370 0.62 0.368 0.676 84.5 6030 6256 2.570 19 0.480 0.3O7 0.91 1.28 W
V8Ù3 Aql 5 0.263 1.07 1.0Ù0 0.503 82.9 4594 46o0 3.702 8 0.385 0.385 2.39 2.39 w
V535 Ara 73 0.629 0.24 0.300 0.361 82.1 8750 8572 2.591 3 0.473 0.287 0.33 0.54 A
SS Ari 44 0.406 0.62 0.295 0.302 75.3 5745 5950 2.446 13 0.496 0.279 W
44i Ëoo 7 0.268 0.85 0.498 0.501 70.9 5553 5800 2.905 -9 0.417 0.315 2.41 2.80 W
AC Boo - 0.352 0.5Û 0.295 83.3 5520 5530 2.422 18 w
OK Boo - 0.355Tir Bod n - 0.324 0.498 0.648 88.1 5800 5805 2.777 32 0.463 0.343 1.18 1.45 A
TY Boo 19 0.317 0.76 0.466 0.467 77.5 5469 5834 2.783 10 0.454 0.322 1.37 1.79 W
TZ Boo - 0.297 0.220 A/W
VW Boo - 0.342 0.428 0.428 0.764 75.6 5700 519Û 0.470 0.322 A
"XY B o o l 53 0.371 0.49 0.160 0.182 69.0 7200 7102 2.182 5 0.559 0.254 0.66 1.29 A
AO Cam 25 0.330 0.769 75.0 5520 5826 3.359 1 O.400 0.358 1.53 1.64 W
CW Cas 20 0.319 0.543 73.4 5086 5440 2.922 11 0.439 0.332 1.42 1.78 W
V440 Cas - 0.326 0.83 0.375 0.635 76.7 5006 5347 2.598 12 0.471 0.304 1.20 1.70 W
V523 Cas 2 0.237 0.87 0.420 0.571 83.7 4207 4407 2.966 13 0.437 0.34Û 2.56 3.11 w
BRCen 72 0.606 0.36 0.210 0.180 78.7 7250 7188 2.142 35 0.555 0.247 0.25 0.52 A
V677 Cen 24 0.325 0.142 87.1 5V45 5841 2.050 34 0.563 0.24Û 0.88 1.61 W
V752 Cen 39 0.370 0.311 0.3Û0 83.2 6210 6234 2.455 6 0.494 0.275 0.88 1.53 w
V757 Cen 31 0.343 0.65 0.684 0.671 69.3 5927 6ÛO0 3.138 14 0.421 0.348 0.88 1.53 w
V758 Cen - 0.581 O.IO O.270 11800 8180 2.327 42 1.29 1.53 A
EB Cep - 0.290 0.90 0.233 74.9 5100 4774 2.312 0 0.504 0.261 1.42 2.38 A
EQ Cep - 0.307 0.90 0.460 0.463 0.618 85.0 5150 5376 2.774 11 0.456 0.323 1.44 1.88 W
EB Cep 13 0.286 0.82 0.560 0.549 0.537 78.1 5061 5330 2.888 1 0.429 0.319 1.89 2.52 W
ES Cep - 0.342 0.88 0.782 0.621 71.0 5500 5203 3.387 0 0.401 0.358 1.40 1.54 A
CW Cep 21 0.319 0.37O 83.9 5800 6113 2.591 l l 0.474 0.302 1.27 1.82 W
VW Cep - 0.278 0.86 0.410 0.370 66.0 5040 520O 2.594 lO 0.483 0.190 1.58 9.61 w
TW Cet 18 0.312 0.69 0.530 0.581 83.2 5460 5600 3.018 3 0.426 0.227 1.59 6.09 w



w  Ursae Majoris Data Table, Part I {continued)

MV
Period
(days) B-V

Mass
Qip

Ratio
Qph (r,+r,> Incl.(°) Ti{°K) n i^ K ) ^cont /(%)

WD]
ri

Vlean
ra Pi P2 Type

VY Cet 30 0.341 0.69 0.665 0.540 78.4 5393 5610 3.181 6 0.411 6.339 1.40 1.66 W
AD One 10 0.283 0.625 64.9 4825 5164 3.058 14 6.430 0.348 1.82 2.15 W
AH One 34 0.36O 0.53 0.537 0.610 62.9 6416 6500 2.936 4l 6.453 0.369 0.97 1.10 W
TX One 42 0.383 0.61 Ô.530 0.596 62.4 6338 6400 3.028 8 6.428 0.333 1.03 1.30 W
RS Col 75 0.672 0.500 68.7 5950 5789 2.804 24 6.457 0.336 6,29 0.37 A
CC Corn 1 0.221 1.24 0.470 0.518 87.9 4302 4500 2.849 26 0.449 6.328 2.81 3.73 W
EK Corn - 0.267 0.83 0.304 0.683 88.5 50ÙÔ 5310 2.447 15 6.494 6.289 1.68 2.52 W
RW Corn - 0.237 0.84
RZ Corn 29 0.339 0.57 0.430 0.436 86.0 5500 5564 2.732 7 6.457 0.366 1.26 1.74 W
eCrA 70 0.591 0.39 0.112 72.3 7100 6639 1.974 36 6.595 6.213 6.23 6.56 A
FS CrA 6 0.264 1.13 0.758 86.5 4567 4700 3.286 15 6.415 6.366 2.15 2.38 W
VY Cru -

W Crv 57 0.388 0.71 0.817 86.0 5600 4937 3.285 35 6.421 0.382 6.92 1.61 A
DK Cyg 66 0.471 0.37 0.271 80.3 7351 7200 2.308 55 0.529 0.292 0.45 6,73 A
V401 Cyg - 0.583 0.36 0.275 0.742 80.0 7300 7160 2.333 45 6.521 0.299 6.31 6.45 A
V508 Cyg - 0.780 0.839 0.530 76.3 5565 5600 3.225 55 0.448 6.418 6.19 6.19 W
V865 Cyg - 0.365 0.69 6.446 0.668 84.2 5650 5537 2.Y24 18 6.462 0.321 0.98 1.28 A
V1073 Cyg - 0.786 0.42 0.326 0.752 69.4 6856 6740 -8 6.457 0.271 A
LS Del 37 0.364 0.562 48.5 5704 5780 2.973 6 6.429 0.328 1.15 1.45 W
BV Dra 33 0.350 0.54 O.402 0.411 76.3 6245 6345 2.673 11 6.472 0.318 1.64 1.46 W
BW Dra 14 0.292 0.63 0.280 0.280 74.4 5980 6164 2.404 l6 6.499 6.281 1.39 2.18 W
YYEri 23 0.322 0.66 0.400 0.439 82.2 5389 5585 2.730 i6 6.458 0.315 1.32 1.78 w
H235 - 0.412 0.45 0.202 0.814 58.6 6500 6421 2.207 21 6.532 0.262 0.61 1.64 A
AK Her 61 0.422 0.53 0.233 80.8 6400 6033 2.298 16 6.519 0.257 6.61 1.18 A
SY Hor 17 0.312 0.83 0.667 0.502 82.4 4934 5240 3.165 5 6.417 0.367 1.66 1.57 W
DP Hya 26 0.331 0.60 0.400 0.660 82.5 5676 5980 2.622 23 6.474 6.316 1.16 1.56 W
EH Hya - 0.297 0.79 0.314 0.692 81.9 5300 5536 2.474 12 6.492 6.282 1.38 2.68 W
EZHya - 0.450 0.65 0.25 w
FG Hya 50 0.328 0.61 0.142 85.2 5900 5816 2.610 78 6.592 6.247 6.74 1.48 A
STÏnd ■ - 0.4O2 0.50 0.240 0.805 76.6 6.573 6.254 A
EM Lac 43 0.389 0.68 0.629 74.4 5450 5500 3.014 28 6.441 6.360 6.89 1.63 W
SW Lac 22 0.321 0.75 0.797 0.812 80.6 5468 5630 3.282 34 6.426 6.389 1.31 1.39 W
AM Leo 38 0.366 0.53 Û.450 0.426 87.0 6200 6380 2.692 15 6.464 0.362 0.99 0.89 W



w  Ursae Majoris Data Table, Part I {continued)

MV
Period
(days) B-V

Mass Ratio
9*p 1 Qph Incl.(°) Tx{°K) ^cont /(%)

WDl
T]

\4ean
ra Pi Pi Type

CÉ Leo 16 0.303 0.98 0.505 84.6 4850 5111 2.876 3 0.441 0.321 1.59 2.08 W
XY Leo 11 0.284 0.98 0.500 0.500 65.8 4575 4850 2.858 6 0.444 0.323 1.78 2.31 W
XZ Leo 67 0.488 0.726 0.658 73.3 7850 7147 3.281 2 0.407 0.351 0.64 0.72 A
RT LMi 4l 0.375 0.385 0.672 84.0 5855 6000 2.586 26 0.479 0.314 0.88 1.20 W
FT Lup - 0.470 0.42 0.430 0.465 0.962 90.0 6700 3916 2.807 - 0.447 O.300 0.65 l.ûO A
UV Lyn 59 0.415 0.526 0.542 67.7 6709 6290 2.882 14 0.444 0.326 0.82 1.09 A
TY Men 64 0.462 0.215 79.5 8164 7183 2.256 lO 0.561 0.256 0.41 0.93 A
TV Mus 6â 0.446 0.83 0.119 O.150 78.9 5980 6088 2.019 8V 0.587 0.265 0.41 0.67 A
UZ Oct 78 1.149 0.54 0.278 0.760 78.6 6605 6577 2.3V2 26 Û.5Û6 0.287 0.09 0.13 A
V502 Oph 47 0.453 0.66 0.370 0.377 71.3 5968 6200 2.575 24 0.479 O.30O 0.61 0.93 W
V508 Oph 51 0.345 0.73 0.520 0.530 0.704 86.1 6000 5830 2.902 lO 0.441 0.341 1.21 1.38 A
V566 Oph 58 0.410 0.44 Ù.240 0.239 79.8 6700 6618 2.265 41 0.534 0.271 0.6g 1.09 A
V839 Oph - 0.409 0.588 0.613 79.8 5620 5796 0.411 0.314 W
ER Ori 46 0.423 0.54 0.613 0.610 80.5 5770 5800 3.082 0 0.419 0.334 0.89 1.07 W
TZ Ori -
BF Pav - 0.302 0.85 0.714 0.555 84.8 5330 5430 3.227 lO 0.414 0.355 1.70 1.93 W
HY Pav - 0.352 0.84 0.470 0.599 80.5 4739 5000 2.795 8 0.448 0.320 1.15 1.49 W
MW Pav 76 0.795 0.182 85.1 7620 7570 2.129 50 0.551 0.267 0.15 0.24 A
BB Peg 35 0.362 0.402 79.9 5883 6200 2.591 37 0.482 0.312 0.92 1.36 W
BX Reg 9 0.280 0.371 0.663 67.8 5760 6070 2.586 16 0.477 0.305 1.58 2.19 w
U Peg 40 0.375 0.62 0.315 0.331 76.0 5515 5800 2.615 9 0.488 0.297 0.87 1.27 w
AUThe ^ 54 0.380 0.59 0.940 73.6 5850 5815 3.574 15 0.396 0.386 1.08 l.lO A
AE Phe 36 0.362 0.64 0.461 0.4ÜO 88.0 6ÛÛ0 6145 2.637 17 0.471 0.3l2 0.98 1.35 w
ŸZ Phe -
RWPsA 52 0.360 0.75 0.813 77.4 5600 5325 3.407 7 0.398 0.360 1.27 1.40 A
T Z Psc 49 0.261 1.20 0.920 0.920 49.6 4500 4352 3.583 7 0.391 0.376 2.41 2.50 A
TY Pup 77 0.819 0.326 67.8 7800 7658 2.396 63 0.517 0.313 0.15 0.23 A
TG Set 8 0.271 1.07 0.Y86 89.9 4662 4800 3.35V 8 0.406 0.359 2.15 2.44 W
AU Ser 56 0.387 0.87 Û.710 0.300 80.2 5100 4780 3.385 7 0.405 0.366 1.05 1.14 A
Y Sex - 0.420
RZTau 60 0.416 0.59 0.540 0.372 82.9 7200 7146 2.495 55 0.50O 0.331 0.64 0.82 A
AQTuc 71 0.595 0.41 0.354 0.270 80.2 6900 7113 2.324 44 0.518 0.296 0.30 0.44 A
AA UMa 48 0.468 0.60 0.564 0.551 80.3 5932 6030 2.924 15 0.441 0.347 0.65 0.73 W

CO
to



w  Ursae Majoris Data Ihble, Part I {continued)

MV
Period
(days) B-V

Mass
Qsp

Ratio
Qph Incl.(°) T i i ^ K ) T 2 { ° K ) ^ c o n t /(%)

WDl
ri

Mean
rg P i P2 Type

AW UMa 62 0.439 0.36 0.070 O.072 79.1 7175 6875 1.332 73 0.559 0.185 0.52 1.04 A
BM UMa - 0.271 O.540 0.529 39.0 4600 4982 2.397 17 0.444 0.331 1.85 2.28 W
TY UMa 32 0.355 0.63 0.400 83.3 5849 5550 2.643 12 0.468 0.307 1.04 1.43 W
W UMa 26 0.334 0.66 0.433 0.470 32.9 5800 6194 2.727 32 0.467 0.337 1.13 1.41 W
W V ël 0.265 0.Ô1 0.533 0.561 82.1 4717 50ÛO 2.394 14 0.444 0.334 2.00 2.51 W
BU Vel 6Ô 0.516 0.29 0.251 34.9 7500 7448 2.259 61 0.510 0.239 0.43 0.59 A
ÆGTÎr - 0.643 0.30 0.325 0.687 83.3 7240 6645 2.403 1 0.443 0.268 0.33 0.53 A
AM Vir 45 0.408 0.73 0.420 0.342 36.5 5400 5733 2.507 24 0.439 0.304 0.72 1.03 W
AW Vir - 0.353 0.69 0.675 0.584 83.0 6000 5980 3.207 11 0.417 0.354 1.25 1.38 A
BI Vul 4 0.252 1.00 0.692 73.3 4549 4600 3.U4 ' 29 0.434 0.370 2.15 2.40 W

CO
CO



w  Ursae Vlajoris Data Table, Part [I

LCA

AT
T,

XlO®

AT

xlO®
mi

(Mq)
ma

(Mo)
Ri

(Bo)
Ba

(Bp)
Ll

(Bo)
L2

(Bo) OERu OERb OERv J^m u A ïïib Amy Ref
AB And -6807 -6373 1.04 0.51 1.05 0.76 0.8V 0.60 0.8è6 -O.055 1
CN And 0.02310 24516 32479 1.25 0.56 1.47 1.04 2.85 0.4V 1.06V 1.063 0.026 0.036 2
GZ And 3
S Ant 5897 626V 1.94 0.76 2.Û7 1.36 14.15 4.86 4
0 0  Aql Û.05243 ll40 1154 1.19 1.00 1.44 1.34 1.9V 1.62 l.OVV 1.121 0.013 0.O22 5
V4l7 Aql 0.01069 -3748 -36l3 1.13 0.42 1.22 0.61 1.V2 0.48 0.994 1.000 0.999 0.003 O.Û04 0.010 6
V803 Aql 0.Ô4355 -131 -130 0.V9 Û.V9 O.VV O.VV 0.24 0.24 1.018 1.006 O.033 0.004 V
VÔâ5 Ara 2034 207V 2.18 0.79 2.10 1.2V 23.1V V.86 0.96O -0.019 4
SS Ari 0.03160 -3568 -3445 1.16 0.35 1.31 0.74 1.68 0.61 0.957 0.948 -0.006 -0.007 8
44i Boo -4448 -4291 0.98 0.49 0.83 0.63 0.59 0.40 1.018 O.O08 4
AC Boo 0.02427 -181 -189 0.977 9
CK Boo 10
TU Boo 0.03804 -86 -86 0.97 0.48 1.05 0.78 1.12 0.62 1.O60 O.02Ô 11
TY Boo 0.02138 -6674 -6256 1.Ô3 0.48 1.02 0.72 0.83 0.54 0.983 12
TZ Boo 0.937 0.959 0.963 -0.Û4 -0.O2 -0.02 13
VW Boo 8947 982V 0.98 0.42 1.08 Û.V4 1.12 0.35 0.996 -0.002 60
XY Boo 1361 1380 1.49 0.27 1.47 0.67 5.17 l.Ol 0.968 0.970 -O.0O8 -0.012 4
AO Cam -5543 -5252 1.03 0.79 0.98 0.88 0.80 0.80 14
W C m ^ -6960 -650V 0.99 0.54 0.99 0.75 0.59 0.44 0.991 -0.004 15
V440 Cas 0.01803 -6812 -63W 0.95 0.36 1.05 0.68 0.53 0.33 O.950 -0.025 -0.019 16
V523 Cas -4754 -4538 0.V9 0.45 Ô.V5 0.58 0.16 0.12 i.o2o 4
RB, Cen 855 863 1.80 0.32 2.15 0.96 11.44 2.19 1.003 Ô.Ù02 4
V677 Cen -1671 -1644 1.06 0.15 1.19 0.51 1.39 0.2V 0.967 0.983 0.985 -0.011 -0.008 -0.007 17
V752 Cen -386 -385 1.20 0.36 1.24 0.69 2.06 0.65 4
V757 Cen 0.01562 -1232 -121V l.OV 0.72 1.05 0.87 1.23 0.88 0.946 0.966 0.958 4
V758 Cen 0.02632 1.102 1.0V2 1.063 18
ÈP Cep 0.01947 6392 6829 1.12 0.27 1.18 0.35 1.31 0.38 1.038 19
EQ Cep 0.04488 -4388 -4204 1.04 0.48 1.09 0.61 1.22 O.60 1.052 19
ER Cep -5315 -504V 0.95 0.52 1.05 0.67 1.12 0.56 19
ES Cep 5400 5V08 1.01 0.79 1.01 0.92 1.04 0.82 19
ÛW Cep 0.04706 -5397 -512Ù 1.06 0.39 1.05 0.67 1.12 0.56 0.922 20
Yw Cep 0.02751 -3174 -3078 0.81 0.33 1.05 0.41 0.84 0.37 0.973 0.989 21
TW Cet -2564 -2500 1.01 0.58 0.96 0.74 0.74 0.48 22



w  Ursae Majoris Data Table, Part II {continued)

LCA

AT
T,

XlO® xlO® (Mp)
m2

(Mo)
Ri Ri

(/((p)

Ll
{Le)

L2
{Le) OERu O E R b OERv Amy Amg Amy Ref

VY Cet 0.02233 -4024 -3868 1.02 0.68 l.Ol 0.83 0.77 0.61 1.035 1.035 1.035 23
A£) Cnc -7026 -6565 0.93 0.58 0.89 0.72 0.39 0.33 1.025 1.029 Ô.0l2 0.014 24
AH Cnc -13Û9 -1292 1.34 0.82 1.25 1.02 2.36 1.65 4
TX Cnc -978 -969 1.37 0.82 1.23 0.96 2.20 1.38 25
RS Col 2756 2781 1.46 0.73 1.92 1.41 4.13 2.00 1.027 1.021 0.013 O.OlO 26
CC Corn 0.03675 -4603 -4400 Ô.79 0.41 0.73 0.54 0.17 O.ll 0.961 4
EK Corn 0.05802 -6200 -5838 0.95 0.29 0.94 0.55 0.43 0.28 0.872 -0.086 27
RW Corn 28
RZ Corn -1164 -1150 1.03 0.45 1.06 0.71 0.93 0.43 1.006 Û.0Ù3 4
e CrA 6493 6944 1.76 Û.20 2.2Û 0.79 11.07 1.08 61
PS CrA -2912 -2830 0.86 0.65 0.82 0.73 0.26 0.23 59
VY Cru 0.09140 1.536 1.374 29
W Crv 11839 13429 1.04 0.85 1.16 1.06 1.19 0.59 36
DK Cyg 2054 2097 1.68 0.45 1.73 0.96 7.86 2.20 61
V401 Cyg 0.08520 1918 1955 1.64 0.45 1.71 0.96 7.49 2.15 1.076 1.044 31
V5Û8 Cyg -629 -625 1.02 0.86 1.08 0.98 1.11 0.61 32
V865 Cyg 2000 2041 1.08 0.48 1.17 0.61 1.25 0.49 33
V1073 Cyg 1692 1721 1.60 0.51 2.12 1.27 2.17 0.71 1.015 1.011 6.607 0.002 34
LS Del -1332 -1315 1.06 0.60 1.09 0.83 1.12 0.69 1.103 1.085 0.650 0.036 35
BV Dra 0.01170 -1601 -1576 1.20 0.49 1.17 0.79 1.88 0.91 1.022 1.024 1.0Û9 4
BW Dra 0.01967 -3077 -2985 1.05 0.29 1.02 0.57 1.19 0.43 1.003 0.999 l.Oll 4
YY Eri 0.01491 -3637 -3509 1.01 0.44 1.02 0.70 0.79 0.43 1.018 1.026 4
B235 1215 1230 1.18 0.24 1.39 0.68 3.09 0.70 0.976 0.983 -0.006 -0.603 62
AK Her 0.02157 5734 6083 1.31 0.30 1.44 0.71 3.11 0.60 1.075 4
SY Hor 0.02522 -6202 -5840 0.97 0.64 0.95 0.83 0.47 0.47 0.947 0.982 0.976 23
DF Hya 0.03072 -5356 -5084 1.06 0.42 1.09 0.72 1.10 0.6Ô 1.054 1.038 0.035 0.622 36
ËH Hya -4453 -4263 0.99 0.31 1.00 0.35 1.08 0.33 1.010 1.013 6.006 0.011 63
EZHya 0.04344 1.176 1.159 1.132 0.04Û 6.046 0.046 37
FG Hya 1424 1444 1.08 0.15 1.27 0.53 1.75 0.29 61
STÏnd 1.038 1.023 0.018 0.008 64
EM Lac -917 -909 1.06 0.67 1.19 0.97 1.12 0.77 65
SW Lac 0.08069 -2963 -2877 1.02 0.83 1.03 0.94 0.85 0.80 0.923 * 38
AM Léo 0.02090 -2903 -2821 1.25 0.53 1.2l 0.94 1.94 1.32 0.922 0.939 0.9l5 39

CO



w  Ursae Majoris Data Table, Part II {continued)

LCA \xlO®

■ ZT"
T,

XlO®
mi

(M@)
ma

(Mq))
Rx

(Ap)
Ri

(% )
Ll

(Lqi)
L l

W OERu OERb OERv Amy Ama [Amv Ref
CETib 0.05036 -5381 -5107 0.94 0.47 0.94 0.68 0.44 0.29 1.118 40
XY Léo -6011 -5670 0.89 0.44 0.89 0.65 0.31 0.21 0.950 42
XZ Léo Û.05Ô77 8955 9836 1.65 1.20 1.50 1.30 V.70 3.94 0.9O1 0.973 -0.060 43
RTLMi 0.0^452 -i4V7 -24l7 1.16 0.45 1.23 0.80 1.59 0.75 1.003 0.976 0.015 0.020 0.020 44
P T I u F " 0.Ô2781 4155 7110 1.43 0.61 1.43 0.94 4.22 0.17 ri.0'42 46
UV Lyn 6245 6661 1.34 0.71 1.32 0.97 3.16 1.32 1.116 "0.994 1.015 0.040 -0.OO3 O.007 46
TY Men 12016 13657 1.86 0.40 1.85 0.84 13.60 1.70 66
TV Mus -I8Ô6 -1774 1.32 0.20 1.66 0.75 3.14 0.69 0.997 0.992 0.008 O.OlÛ 47
UZ Oct 0.O14Û4 424 426 2.05 0.56 3.22 1.82 17.64 5.68 1.044 1.036 1.028 48
V5Û2 Oph -3887 -3742 1.26 0.48 1.43 0.90 2.33 1.06 0.884 TLS76" -0.057 -0.060 4
V508 Oph Ô.ÛO8O2 2833 2916 1.08 0.57 1.08 0.83 1.36 0.72 1.001 0.977 4
V566 Oph 0.04154 1224 1239 1.4l 0.34 1.49 0.76 4.02 0.99 0.993 0.982 4
V839 Oph 0.02904 -3132 -3037 1.08 0.64 1.14 0.91 1.28 0.88 1.040 1.027 6
ER Ori 0.04107 -520 -517 1.14 0.69 1.22 0.97 1.47 0.95 1.014 1.006 1.013 4
FZ Ori 0.01563 0.923 0.993 0.973 49
BF Pav 0.05388 -1876 -1842 0.83 0.60 0.88 0.76 0.58 0.46 1.011 50
HY Pav 0.02125 -5507 -5220 0.88 0.41 0.88 0.42 0.38 0.18 0.977 0.962 -0.055 -0.010 -0.022 51
MW Fav 656 661 2.13 0.39 2.70 1.31 22.10 5.05 52
BB Peg 0.03195 -5388 -5113 1.16 0.47 1.21 0.78 1.58 0.81 1.091 1.079 62
BX Peg 0.01779 -6491 -6096 1.03 0.38 0.96 0.62 0.88 0.46 1.004 0.992 52
U Peg 0.05081 -5168 -4914 1.06 0.35 1.20 0.73 1.19 0.54 1.013 1.030 4
At) Phe 598 602 1.05 0.98 1.11 1.08 1.28 1.19 0.875 0.9l7 -0.060 -0.040 26
AE Phe 0.02148 -2417 -2360 1.17 0.47 1.19 0.79 1.63 0.79 1.099 1.068 1.055 4
VZ'Phe 0.07204 0.834 -0.086 67
RWPsA 4911 5164 I.O2 0.83 1.04 0.94 0.96 0.64 68
VZ"Psc"" 3289 3401 0.79 0.72 0.77 0.74 0.22 0.18 0.966 0.978 -0.021 -o.olo 53
TYPup 0.00985 1821 1854 2.22 0.72 2.73 1.65 24.68 8.41 I.O2O 1.012 4
FGSct 0.04661 -2960 -2875 0.87 0.68 0.83 0.73 0.29 0.25 0.982 59
AU Ser 6275 6695 0.98 0.78 1.09 0.99 0.72 0.46 69
Y Sex 54
RZTau 750 756 1.57 0.58 1.51 1.00 5.51 2.34 4
AQ Tue -3087 -2995 1.71 0.46 2.OO l.l4 8.10 2.99 4
AA UMa -1652 -1625 1.26 0.69 1.40 1.10 2.17 1.43 14
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w  Ursae Majoris Data Table, Part II {continued)

LCA

AT
T.

XlO®

AT
W

XlO®
mi

(Mp)
7712

(Mo)
Ri

( ^ )
% Ll

(^9)
La

( i o ) OERu OERb O E R y Amu Ams Amy Ref
AWÜMa 4181 4364 1.52 0.11 1.60 0.53 6.06 0.56 0.985 -0.007 55
BM UMa 0.01516 -63Û4 -7668 0.36 0.46 0.37 0.59 0.42 0.22 0.983 -0.008 56
TY UMa 5112 5387 1.06 0.43 1.13 0.72 1.33 0.45 0.868 0.874 -O.O60 -0.053 57
W UMa -6793 -6361 1.08 0.51 1.10 0.79 1.23 0.83 4
B B V el Û.06692 -6000 -5660 0.90 0.48 0.99 0.62 0.84 0.65 0.912 0.915 -0.041 -0.063 -0.055 51
BÜ Vel 693 698 1.Y5 0.44 1.79 1.02 9.11 2.85 61
AG Vir 8218 8954 l.Ol 0.51 2.07 l.i7 11.48 3.47 0.971 0.973 0.002 0.002 53
AH Vir -7093 -6623 1.18 0.41 1.3i 0.82 1.33 0.67 l.OlO 1.014 0.005 0.007 4
AW Vir 0.01802 333 334 1.09 0.74 1.32 O.08 1.87 1.33 0.993 1.009 O.OlO 0.001 0.005 51
Bl Vul. 0.04661 -1121 -1109 0.86 0.5Ô 0.82 0.70 0.26 0.20 0.883 59
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A .2 C olum n D escrip tions

Part I:

1. Designation. The name of the system.
2. MV Number. The number assigned by Maceroni and Van’t  Veer (1996)
3. Period. The orbital period in days.
4. B-V. The observed (unreddened) B-V color.
5. qsp. The spectroscopically measured mass ratio.
6. Qph- The photometrically (usually via WD) determined mass ratio.
7. V. The luminosity fraction of the primziry in the V  filter.
8. Incl. The orbital inclination, in degrees. 90.0° implies an edge on system.
9. T\. The photospheric temperature of the primary.

10. T2 . The photospheric temperature of the secondary.
11. Clcont- The Roche Equipotential of the contact surface.
12. / .  The percent fillout of contact for the system.
13. r i . The backside (farthest from the contact point) radius of the primary.
14. rg. The backside (farthest from the contact point) radius of the secondary.
15. pi. The density of the primary, using Mochnakci’s (1981) method.
16. p2 - The density of the secondary, using Mochnakci’s (1981) method.
17. Type. The W UMa class, based on the Binnendijk (1970) method.

Part II:

1. Designation. The name of the system.
2. LCA. The LCA  value of the system.
3. The temperature variation, scaled with primary temperature.

4. The temperature variation, scaled with secondary temperature.
5. mi. The primary mass, as determined by the Maceroni and Van’t Veer (1996) method.
6. m2 . The secondary mass, as determined by the Maceroni and Van’t Veer (1996) method.
7. Ri. The primary radius, as determined by the Maceroni and Van’t Veer (1996) method.
8. i?2 - The secondary radius, as determined by the Maceroni and Van’t Veer (1996) method.
9. Ll. The primary luminosity, as determined by the Maceroni and Van’t  Veer (1996) 

method.
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10. L^. The secondziry luminosity, as determined by the Maceroni and Van’t  Veer (1996) 
method.

11. OERif. The OER for the Ü filter.
12. OERb-  The OER for the B filter.
13. OERv-  The OER for the V filter.
14. Amu- The classic measurement of the O’Connell Effect for the U filter.
15. ArriB- The classic measurement of the O’Connell Effect for the B filter.
16. A m v-  The classic measurement of the O’Connell Effect for the V filter.
17. Ref. The primary reference for this paper, usually the source photometry or the published 

model.
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A  3 Table R eferences

List of references for W Ursae Majoris Data Table (Part H, Column 17):

1. Hrivnak (1988)
2. Rafert, Markworth and Michaels (1985)
3. Walker (1996)
4. Batten, Fletcher and McCarthy (1989)
5. Hrivnak and Milone (1989)
6. Samce, Pauley and Carrigan (1997)
7. Samec and Su (1993)
8. Lu (1991)
9. Mancuso, Milano and Russo (1978)

10. Aslan and Derman (1986)
11. Niarchos, Hoffinan and Duerbeck (1996b)
12. Samec and Bookmeyer (1987a)
13. Hofhnann (1978)
14. Barone, et al. (1993)
15. Burchi, Milano and Russo (1977)
16. Samec, Carrigan and French (1996)
17. Kihnartin, Bradstreet and Koch (1987)
18. Lipari and Sistero (1984)
19. Branly, et al. (1996)
20. Hofl&nann (1982)
21. Karimie (1983)
22. Russo, et al. (1982)
23. Lapasset and Claria (1986)
24. Samec and Bookmeyer (1987b)
25. Wilson and Biermann (1976)
26. McFarlane and Hilditch (1987)
27. Samec, Gray and Carrigcin (1996)
28. Milone, et al. (1980)
29. Milone and Hrivnak (1984)
30. Odell (1996)
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31. Purgathofer (1964)
32. Goderya, Leung and Schmidt (1995)
33. Samec, et al. (1992)
34. Sezer (1993)
35. Demircan, Selam and Derman (1991)
36. Niarchos, Hoffinan and Duerbeck (1992)
37. Lipari and Sistero (1989)
38. Lafter and Grainger (1985)
39. Lee (1989)
40. Samec, et al. (1993)
41. Vinko, Hegedus and Hendry (1996)
42. Hrivnak (1985)
43. Niarchos, Hoffinan and Duerbeck (1994)
44. Niarchos, Hoffinan and Duerbeck (1996a)
45. Lipari and Sistero (1986)
46. Markworth and Michaels (1982)
47. Hilditch, King and McFarlane (1989)
48. Lapasset and Sistero (1984)
49. Al-Away (1993)
50. Gonzales, et al. (1996)
51. Lapasset, Gomez and Farinas (1996)
52. Leung, Zhai and Zhang (1985)
53. Samec (1989)
54. Hill (1979)
55. Hrivnak (1982)
56. Samec, Gray and Carrigan (1995)
57. Broglia and Conconi (1983)
58. Bell, Rainger and Hilditch (1990)
59. Bradstreet (1985)
60. Awadalla and Yamasaki (1984)
61. Twigg (1979)
62. Milone, E.F., et al. (1995)
63. Samec, Charlesworth and Dewitt (1991)
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64. Walter, Niarchos and Duerbeck (1989)
65. Maceroni, Milano and Russo (1983)
66. Lapasset (1980)
67. Samec and Terrell (1995)
68. Lucy and Wilson (1979)
69. Binnendijk (1972)
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A p p en d ix  B

V 401 Cygni: A  W ilson -D ev in n ey  

M od el

V401 Cygni is a  neglected W UMa type binary. The only known comprehensive pho­

toelectric photometry was completed over 35 years ago (Purgathofer (1964)) and stiU 

no published model exists. Using the Wilson-Devinney approach, V401 Cyg was mod­

eled to fit Purgathofer’s B and V observations simultaneously. Due to a  pronounced 

O’Connell efiect, there is evidence for spot activity. Two solutions (one w ith a hot spot 

and one with a cold spot) are presented.

B . l  B asic D a ta

Purgathofer summarizes the early observational history of V401 Cygni. It was first 

classified as a short periodic variable of RR Lyr type. In 1947, Lurye announced that 

V401 Cyg is of W  UMa type. Purgathofer used his observations o f minimum with the 

previously published minima to obtain the following epoch:

M in 1= J.D.2434215.693 4- 0.58271901.B.
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A review (Herczeg (1993)) of the available work shows a  slow secular period increase, 

but tha t information does not affect this analysis, since Purgathofer’s observations are 

all w ithin one observing season.

Spectroscopic information on V401 Cygni is unfortunately sparse, thus th e  spectral 

types usually quoted were presumably obtained from the color of the system. Measured 

values for B  — V  range from +0.27 (Spinrad (1959)) to +0.36 (Purgathofer 1964)), 

corresponding approximately to a  spectral type of A9-F0. These B  — V  values have, 

however, not been dereddened. V401 Cygni is a t 6 =  +5°, so considerable reddening 

is possible. Using Purgathofer’s measurement o iU  — B  = +0.10 and dereddening by 

using the U — B  vs B  — V  diagram indicates a  spectral type of late A. Accordingly, an 

assumed value of Tffat =  7300K has been used.

B .2  P relim in ary P h otom etr ic  S olution

The preliminary photometric solution was done w ith the 1993 version of the  Wilson- 

Devinney code (Wilson and Devinney (1971), W ilson (1994)). The light curve con­

structed from Purgathofer’s da ta  indicates an A Type W UMa system, following the 

definition of Binnendijk (1970). The (B-V) value is also consistent w ith A type, as plot­

ted on the color-period diagram (see e.g. Mochnacki 1985). At first a  solution without 

spots was attem pted, which resulted in a  fairly flat E  (sum of the residuals) vs q (mass 

ratio) diagram (see Figure B .l), w ith  a shallow minimum around q =  0.25.

However, a  pronounced O’Connell effect indicates that s tar spots would probably 

yield a  better solution. Two methods were tried: (1) placing a  superluminous spot 

visible around 0.25 phase, and (2) placing an underluminous spot visible around 0.75 

phase. In  both cases, the spot was placed on the secondary (less massive and cooler) star. 

Samec et al. (1993) get a  solution for the W-type system  CE Leonis which discusses the
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Z vs q
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p  0 .12
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Unspotted Model

0.02
0.2 0.4 0.6

q (m a ss  ratio)
0.8

Figure B .l: A plot showing the error in the best fit solution for the range of q's. Both 
the unspotted and spotted solutions are shown. The spotted model plotted is for the 
hot spot fit. The curve for the solution with cool spot(s) is nearly identical.
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possibility of a  superluminous spot; they also reviewed W UMa systems with published 

hot spots. Moreover, they recommend that all older light curve analysis be rechecked 

with the WD code for the possibility of a hot spot solution.

In Table B .l, the final parameters for V401 Cyngi with hot spot and cold spot 

models are shown. The fit of the models to the light curve are shown in Figures B.2 

and B.3.

In  both  cases the results are consistent w ith standard A type systems. Of the 30 A 

types included in a recent study (Maceroni and van’t Veer 1996), only two have calcu­

lated solutions where T2 > T\: TV  Mus and AQ Tuc. With these possible exceptions, 

A types have the more massive prim ary as the physically larger and hotter component. 

This is also true for V401 Cygni.

B .3  Spot M od el Solution

In the following we outline our procedure of solutions with spots. As mentioned above, 

in both cases the spots were on the cooler component.

Case (1):

At first the solution ignored the region around phase 0.25 by dropping these points 

to a  statistical weight of zero, and a  preliminary fit was obtained for i, Tg, ^contact-, Ç, 

and L \. An estimate of the center of the spot was obtained by examining where the 

center of the excess occurred in the original light curve. This enabled us to obtain a  first 

guess for the longitude of the spot. Then the ignored data points around 0.25 phase 

were re-entered into the data set and the spot temperature factor and spot radius were 

allowed to adjust as free parameters. The spot longitude was also allowed to adjust.

The latitude was kept fixed, and assumed to be centered on the equator (a value 

of 90° in the Wilson-Devinney code). In the absence of doppler imaging, this has been
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V401 Cygni Hot Spot Light Curve
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Figure B.2: Light curve fit for the hot spot solution for the B-filter.
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V401 Cygni Cool Spot Light Curve
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Figure B.3: Light curve fit for the cool spot solution for the B-filter.
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the standard method for most solutions in the literature (see e.g. Samec et al. (1993)). 

The method of subset solutions was followed, as outlined in the WD mamia.] (Wilson 

(1994)), w ith the multiple subsets of: {spot longitude}, {spot size}, {tem perature fac­

tor}, {i, T2 }, and {f2, g}. Each was adjusted separately until the parameters converged. 

The final solution is shown in Table B.l.

A major drawback of spot modeling is the high inverse correlation between spot 

size and tem perature factor. Maceroni and Van’t  Veer (1993) discuss the uniqueness 

problem when using spots on W UMa systems. They issue a  strong w a rn in g : “Prom our 

work it has become clear th a t with the present photometric precision it is impossible 

to determine reliable (bright or dark) spot parameters”. Hence the solution for V401 

Cygni presented here should be considered preliminary. As recommended by Maceroni 

and van’t  Veer, spectroscopic imaging should also be included with the photom etric data 

to describe the spot parameters.

Case (2):

The possibility of a  cold spot solution was also checked. As with the hot spot so­

lution, part of the data was a t first ignored to obtain a  preliminary fit. This time, the 

flux region ignored was around 0.75 phase. The spot was moved 180° in longitude and 

then allowed to readjust. On the first DiSerential Corrections (DC) run, the temper­

ature factor adjusted to <  1. Yet, obtaining a stable solution proved diflBcult. The 

same method of subsets was used, however the spot longitude kept oscillating wildly in 

longitude and the spot size kept expanding up to around 120° in longitude extent, most 

of the size of the star. A quick run  in LC revealed that the first guess for the cool spot 

fit reasonably well from around phase 0.5 to 0.75, but poorly from phase 0.75 to  1.0. LC 

indicated a  light deficit still in this phase region. Since the first part of the curve, from 

phase 0.0 to 0.5, was being used as the preliminary fit, this usually indicates perhaps a 

need for a second cool spot tha t would be visible on the secondary in the phase 0.75 to
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1.0 region. With this in mind, a  spot was placed again a t the equator. This spot was 

kept fixed and not adjusted. Then, returning to DC resulted in solution convergence, 

w ith the final parameters shown in Table B.2.

B .4  D iscussion

The two solutions have similar Eior^, but the hot spot solution was obtained w ith only 

one spot. Perhaps the two spot solution needed for the cool spot case is more indicative 

of a  cool band near the equator (see e.g. Rucinski (1985)). Based on th e  period-spectral 

type diagram (Leung and Schneider (1978)), V401 Cygni should be an  evolved contact 

system. The fillout factor of around 40% is high, bu t not anomalous, when compared 

with the latest statistics for A type W UMa’s (Maceroni and van’t  Veer (1996)).

The photometric data  upon which this analysis is based is over 35 years old, thus new 

photometry should be obtained to calculate a more accurate model. Obtaining a spectra 

in order to better determine Ty is also a necessity. Doppler imaging would resolve the 

difficiilty with determining whether the primary, secondary or bo th  components have 

spots.
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Table B.l

Hot Spot Solution Cold Spot Solution

Q 0.2687± .0029 0.2815± .0009
Li/(Li-i-L2)(4700 A) 0.7664 ±  .0154 0.7399 ±  .0054
L i/(L i +L2)(5500 A) 0.7652 ±  .0133 0.7416 ±  .0062
i 80.24 ±  .25 80.33 ±  .08

ĉontact 2.3187 ±.0057 2.3607 ±  .0026

f 45 ±4% 37 ±2%

91 =92 0.32 0.32
X1 = 0.54 0.54
Ai =  A3** 0.50 0.50
ri(pole) 0.4816 ±  .0006 0.4747 ±.0006
ri (side) 0.5246 ±  .0008 0.5154 ±.0008
ri(back) 0.5552 ±  .0010 0.5450 ±  .0009
T2(pole) 0.2719 ±  .0019 0.2716 ±  .0020
T2(side) 0.2859 ±  .0024 0.2850 ±  .0025
r2(back) 0.3378 ±  .0056 0.3319 ±  .0053

n 7300RT 7300frr

T2 7197±32ir 7190 ±  AOK
(rms error) 0.0003276 0.0003298

*: Assumed (Lucy (1967))
**: Assumed (Van Hamme (1993)) 
***: Assumed (Rucinski (1973))
+: Assumed from (B-V)

Table B .l: The hot spot and cold spot solutions for V401 Cygni using the WD m ethod 
O i l  the data of Purgathofer (1964).
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Table B.2
Hot Spot Solution Cold Spot Solution

Latitude Spot 1 90°* 90°*
Longitude Spot 1 146° ±  5° 348° ±  2°
Spot Radius Spot 1 60° ±  3° 61° ±  2°
Temp. Factor Spot 1 1.050 ±0-005 0.920 ±  0.001
Latitude Spot 2 ---- 90°*
Longitude Spot 2 ---- 225°*
Spot Radius Spot 2 ---- 30°*
Temp. Factor Spot 2 ---- 0.960*
*: Assumed

Table B.2: The final values for the spot (s) for each model.
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