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CERTAIN STATISTICS RELATED TO TIME-HOMOGENEOUS
BIRTH AND DEATH PROCESSES

CHAPTER I
INTRODUCTYON

In the classical theory of population growth, the size of the
population is considered as a continuous variable throughout the whole
range of ages, arnd the changes that occur in this variable through births,
deaths or other agencies are considered deterministicallye. A short sketch
of the deterministic theory is given by D. Ge Kendall [ji].l

The deterministic approach is most readily illustrated by the
example of the simple birth process; the rate at which the population is
increasing is directly proportional to the size n. This leads at once to

the linear differential equationy

g2 =

where A is the birth rate per capita per unit time. When A\ is cone

stant, the solution is the law of Malthus

a(t) = n(0) o™V, (1)

1Numbers in brackets refer to the list of references. When two
numbers are used, the second number is the page number in the referencee

1
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It is clear that so categoricalré statement as (1) cannot be a
satisfactory answer. Not only is the solution (1) not even a rational
number, let alone an integer, although that objection is perhaps more
philosophical than practical, but it takes no account of the role of
chance effects upon the size of the population.

In the stochastic approach, the probabilities Pn(t) that the
population size will be n at time t are calculated., For the example
above, the simple birth process, these probabilities were first obtained
by Yule [213. For this reason, the process is occasionally called a
Yule process. It is, however, more usual nowadays to call it a Furry
process, since Furry considered the application of such & process to the
physical problem of the passage of radicactive particles through a slab
of lead [9]. The first paper published with a systematic mathematical
approach to this problem is due to Feller [5], 1939.

If, in addition, the population may diminish with a death rate
MM, we have a birth and death process. In the case where the rate of
change of the population size is directly proportional to the size itself,
the simple proceéss, complete results for the Pn(t) nay be obtained by the
method of generating functions. This method is attributed by Arley and
Borchsenius [1] to C. Palm (unpublished), and may be used whether the
parameters QA_ and’/u- are constants or functions of te. Kendall obtains
the results for the birth and death process using this method [12].

When the rate of change is not directly proportional to n, and
when the birth and death rates are not necessarily the same functions
for every n, we have a generalized process, which is discussed by Feller

[7]. In the simple case, the population size obtained by the deterministic
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approach appears as the expected size of the population in the stochastic
approachy this is not, however, true in general,
It may happen in the general case that the population size be=-
comes infinite in finite time. This is the Feller-Eundberg phenomenon,
and in terms of probabilities it may be expressed as

oo
Z pt) <1
n =1

.

The s:cond chapter of this paper is concerned with this pheno-
menon. The problem is treated by considering the expected time of such
& transition to infinity. By this means, the Feller-Lundberg result for
birth processes is obtained in a direct and straightforward manner,
Feller [ 7] obtains the result as a consequence of a more general theorem,
the proof of which is by no means readily comprehensible. Feller also
gives an elementary proof in [ 7] which is incorrect, since he proves the
sufficiency condition twice; he repeats this in his book [8, 370_7.

We also obtain by this method necessary and sufficient conditions
for the occurrence of the phenomenon in birth and death processes; our
conditions are similar to those obtainéd by Reuter and Ledermann [15],
[19] s although they differ in detail., We obtain new information coﬂcern-
ing this phenomenon, In particular, we f£ind that if the expected. time
of the occurrence of an infinite number of events is finite, then the
phenomenon occurs with probability 1, and if the expected time is infinite
the phenomenon occurs with probability O.

The purpose of the third chapter is to lay the foundation for

the final two chapters. It comprises a short survey of the present state
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of knowledge of estimation of the parameﬁefs of these processes, and in-
troduces the concept of proper, improper and strictly improper statisticse
In it, also, the Poisson and Furry processes are defined in terms of tha
stochastic theorye The Furry process has been mentioned above; for the
Poisson process the probability Pn(t) that n events (births) occur in
time t is given, for 2ll1l n;, by

P(t) = e-)\t As)2
n n

’

It is characterized by the fact that the nmumber of events occurring in:
any time interval is independent of the population size.

In Chapter IV, tests are obtained for the hypothesis that a
given process is actually Poissonian. It is necessary for this purpose
to obtain statistics whose distributions are independent of the value

l of the parameter. Such statistics are called strictly improper, and
a family of them is obtained, each one of which provides a test for the
hypothesis. These statistics are of the form ax + by, where a, b, ¢ and
d are constants such that ad > bc, and cd > O, Qa:.n; :,yy are the lengths
of time intervals between events. The simplest of these is the statistic

X - ¥y, which we show to have the rectangular distribution over the range
x+y

(-1, 1)e In general, the range is(-g-’ -:‘-), but the distribution is only
rectangular if ¢ = de These statistics are also adaptable to the Furry
process.

In Chapter V, we obtain the distribution of the statistic x -~ y,
xX+Yy

where x, y are lengths of time intervals between births in a Furry
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.process. We show that, if x is the lengiﬁ 6f ﬁhe 1t jnterval and y ie
the length of the kit interval, then the distribution of the statistic
‘depends upon k, bui not upon i. This result leads to a test for discrimi-
nating between the hypothesis that a process is Poissonian and the hypo-
thesis that it is a Furry process. When k is an integer, the test is
quite simple, and, for this case, we give a table showing, for various
values of k, the critical value of the statistic and the number of obser-

vations required at the 0,05 level of significances



CHAPTER II
DIVERGENT PROCESSES

In a generalized birth and death process we consider a popula-
tion, the size of which is given by an integer-valued random variable
a(t). We shall denote by PijG?,t) the probability that the population
size will be J at time t, subject to the condition that it is i at time

T The process is a Markov process in which the transitions are governed

by the following rules,

In an element of time At possible transitions and their associ=
ated probabilities are given as fcllows. If n(t) denotes the population
size at time t, then the probability that

n(t#at) = n(t)tk, k>1 is Z B, .. (¢, t+At) = olat),

that
n(t+at) = n(t)+L 4is P (t,4948) = A\ (t) teo(at),
n+l n

n,
(u that

n(tsat) = n(t) s P (t,teat) = 1- {hn(t),* /un(t.)iAt*o(At),

and that

n(t#at) = n(t)=l is (t,00at) = 4 (t)Ateo@at),

Pn Y p o

where of{at) has its usual meaning,



7
1.2,y
Aaif:b t;rb = 0.

The functions )‘n(t) and /,Ln(t.) are in general functions cf
both n and te If all the Xn(t) s /u,n(t) are independent of t, the pro-
cess is said to be time-homogeneouse.

An increase of one in the population size is called a birthj a
decrease of one is called a death; the occurrence of either will also
occasionally be called an event.

We recall that a process is called a Markov process if the pro-
bability distribution of the random variable, in this case n(t), at time
t#At is completely determined by the value of the variable at time t,
and is independent of the previous development of the process. For a
Markov process, it is well known that the probabilities satisfy the

following relations, the so-called Chapman-Kolmogorov equations::
(2) Pij(‘r,t) - fEPikw,s) ij(s,t) for all T< s < te

Thus, in connection with the birth and death process, we must find a set
of functions satisfying both (1) and (2)e.

Equations (1) lead formally to an infinite set (3) of differen-
tial equations for the Pijer,t) as followss

Byj(Tstmat) = P J_l(»r,t){x 3_1(t)At+c(At)} *®, Jﬂ(vr,t);;njﬂ(t)am(at)}

*2, (T 0)f1- X (Bt (D)ateolat)} s £P, L (T6)0A0) «



Py (T3 tat) =By 4 (7,8)

— R O} AN 7 t)*/gﬂ(t)i“( »t)

- e (0] By et

. ,_%giPij(rr’t’*Pi, €7 t)+z A ;m; ot} o(at)e

Taking the limit as A4 t— O we have

) 25 (yy(mt)= A g 1 (0B, 4 0=l (0)es (0B, (750
501 ) 59 (Tst)e

Feller [ 7] has shown that under very general conditions the so-
lutions to the system (3) exist and satisfy (2), so that since they ob=
viously satisfy (1), they furnish a solution to the problem. The unique=-
ness question is more delicate, and has been discussed by Doob [ )4] and
by Reuter and Ledermann [ ISJ, [19]. It bears a certain relation to the
Fzller-Lundberg phenomenon which will be discussed belowe

We now prove a lemma which will be needed subseguentlye

LEMMA 2,12 The probability Pg_;?_) (7,t) that the populz tion size
remains at the value i throughout the interval (7,t) is:

90y = o LB a8

PROOF: Wa: have
pig)(v,bmt) - Ps_g) (*r,t){ i—/\i(t)d‘b./‘i(t)Abﬁo(At)} ’
8o that

B0 (ry tent) =B 1)

%

B ) A (8)p (£ z%{pﬂ)(t)om)}
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“and
%.pﬁ)(rr,t) = ~P{Q)¢r, t)i) i(t)-y‘i(t)} s
giving
Yog P{Q)(7,t) = -I; i) ()40, (8)} dswe()e
But,
pg)‘(r.-, D=1 for a11 T ,
go that -
0=- £ (A ()4 (2))dseo(T) for al1l T,
and ”
| () = {) (A, (=) (=))dse
Therefore,

t .
PS)(T:'“) .e _(;_ QO 1(85)*/3_(8”6.8;.

It is the purpose of this chapter to consider the relation
Pij(‘l",t) %21 for time-homogeneous processes. It is a remarkable fact
observed by Feller [7] and apparently independently by Lundberg Z:lé_]
that the inequality sign cannot in general be replaced by an equality.
Feller and ILundberg show that a necessary and sufficient condition for
the inequality to hold for a pure birth process (i.e., a process for
which all the u  are zero) is that Zj 1  should converge. Further

n
work has been done by Reuter and Ledermann LlS] and | 19],, who have ob-

tained conditions for the inequaliiy 2:] Pij (7,t) 2 X for a time-homogeneous

birth and death process. We obtain a new result regarding this phenomenon
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which gives further insight into its nature, and from which the results:
of the above authors followe. In particular, we show that, if there is
a positive probability that an infinite number of events occur in a
finite time, then that probability mist equal l.

For convenience we shall ascume that the population size is 1
when t is zero, and we shall write pn(t) for the probability that the
‘population size is n at time teo

The inequality %:Ph(t)" 1l means that there is a positive proba=
bility that n is infinite at time t, i.e., that infinitely many transi-
tions have taken place in finite time. The results: will be obtained by
considering the expected value of the time taken for such a transition
to infinity.

We shall call a process for which l%:lph(t)& 1 for some value
of t, a divergent processe

THEOREM 2,Y: For a time~homogeneous pure birth pirocess the

expected value of the time T =t  ,=ij, where t, is the time at which

the populztion becomes k, is 1 o (/\m> 0.)

RIﬂ
PROOF: By Lemma 2¢%
=\ (8,=87)
B0(ey, 5p) =0 B 2V,

Then the probability that & < "‘m < t 0t is

-t
P(Es7 Sthat) = e ™ A atwo(at),
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"so that l-
-t
m
B7) = Jokmte dat

00

. -)\t]

ao
= L-te n 5" ‘(o e-)‘mtdt

- - 1),‘_ {:e.xmt :- })T .

m m

COROLLARY 2,1: If v, is the time taken for the population size

o

to pass from 1 tow , then £, E(t.) = 2. 1 .

=1y
m
PROOF: We have
o
tw = m%]:rm [ 2

Then

f‘” - E_(n%ITm) = lélE("rin) = Z 1 o

m=1"1"

m

In a stationary birth and death process it is possible that the
population size may never reach some given finite value for two reasons:

(i) it may happen that 3\3 = 0 for some J, 1 £ J< n3

(i1) there may be an attainable lower absorbing barrier for the
population size, An example which we may consider is the case in which

/’1> 0, X = O3 when once the population dies out, there is no re-

o}

birthe
an
In case (i) it is not possible for the inequality len(t) <1
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' to be satisfied, since iph(t) = 1, In case (ii) we may still have
1
;an(t) < le As a simple example, consider the process in which /ai > 0,
/u.m = 0, for all m)>1, AO = 0 and )\ s m>0, satisfy the requirements
m

for a divergent birth process.

We shall therefore denote by 7 n the time for n to increase
from m to m*l, and we shall consider E! (’Fm) s the conditional expected
time of the change, by which is meant the expected time, conditional on
the change not being prevented by passage to an absorbing barrier in the
:Lntei‘im.

THEOREM 2,23 For a time-homogeneous birth and death process

1%'(7;u ) is given by the recursion formila

E(7g) = 1 4y E(Th ) e
Amn 5a
PROOF: By Lemma 2.1,
(A e ) (8o=5,)
P;?;(’l,32) = @ »om 2™ >

Hence, by the same method as was adopted in Theorem 2,1, the
expected time for a further event to occur after the population size

reaches m is lL o
A
Such an event has probability /lm of being a birth, in which
Am
case the population has passed from m to mtl as required, and probability

/“ u_ of being a death, in which case the desired increase
X+
m/h
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'requires further passage from m-=1 to m and then from m to m+l,.

We thus haves:

E(Ty) = Am o _1 + /My 1 +E(7T ) +E())
YoNm N At <X;v‘m net "

2 § 5~
BT Oy a)” = Noae e O\ p Y(ECT )+EB(T))

/™) = 1 g Tn) /0 s

yielding
(1) BEAD vt wiCo
m

n

In case (1) E(*Tj) is infinite if 3\3 = 0, and all subsequent
E(or :)) are infinitee

In case (i1) E( W‘l) is infinite, there being a positive proba-
bility of passage to the absorbing barrier n = O, and hence all the
E( arm) are infinitee

We therefore use E!( 'I‘m) s the conditional expected time of pas-

sage defined above, and our equation becomes

(ko) EV(7) = + L BT 4) .

2
Xm  An
(If there is no absorbing barrier, we have E( q'm) = BEt( 'rm). )

Writing ;’\_/m for E'('rm) we have
Tt tAn T

 ha TAg
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‘which is the equation obtained by Reuter and Ledermann E19].
Furthermore (if n = O is the absorbing barrier, or if /ua = 0,

-when there is no absorbing barrier)
T. =_1 o o, = 1 4+ A ’
1 . .2 m——
A A2 I;%_

"q_-r:- 1+ &y el th S
xn )nln-l Ln "')“1

which results differ in detail from those of the above authors. They,

using & where we have used -y , have begun their«) sequence with w,

and have put "‘l-’i = X 4u, (for formal convenience)", which would

L

seem tacitly to assume that "’i 1 =l

The conditional expected time of passage to infinity is there-~

- @ ———
fore given by £, = = T
n=1

We proceed to obtain our main results. The first is obtained

THEOREM 2.,3: If % 1is finite, there are values of t for which

g ()<l .
n=-0pn

L -~
PROOF: Z p_(t) = 1L implies that the probability that t, < t
n=0

is zero, which in turn implies that
Pt >t)=1.
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Using Cramér's generalizatitrm‘ oi:i :bhé Tchebycheff inequality
| [3,182] we have, for all t,
Bty 2t) & E(tes) = Two .
t t
so that for t > T,

o0
Zp (t) = Bty t) &£ B2 1,
n=Q

t
oo
and indeed, by taking t large enough, ,? pn(t) may be made as small as
n=1

we wishe

oo

Thus if -t'w is finite, then for all ¢ > ?oo, Z pn(t) £L. e
n=0

The second main result ls

THEOREM 2.}z If there is a finite time 7 such that £ p (=1,
then t_, is finite.

In case (i) for a birth and death process the requirement of
this theorem is never satisfied. In case (ii) the probabilities below
are to be taken as conditional probabilities, conditional upon non-
absorptione

PROOF: Suppose that plo,(ﬂr) =] -O%pn(‘r) =@&> 0
then

() <oo]=1 - amd P _(M2Z*, iz 1.
Pa(an <=z (1 - O™ ;
so that : m
P[a(nm) <00, n((m1)n) =o]= (1 - Q" ;
thus

T 2 (meD)T. P[a(m) cao, n((mel)7) =oz]
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4

£ Z (@)7(1-0" = 7T = (we1) (1=,
=0 =0

But the series Z(ml)xn converges for /x{< 1, being the
derivative of the power serlss Z xm.

Therefore, ¥, is finite.

COROLLARY Z42¢ A necessary and sufficient condition for a pro-

cess to be divergent is that T _, shall be finite.

For a pure birth process this condition becomes & 1 co,

n
and for a birth and death process we have 5 7 < oo e
n

COROLIARY 2,3¢ For a birth and death process with no lower abw

sorbing barrier, the probability that an infinite number of events will
take place in finite time is either zero or X

PROOF: Suppose. ¥, ie finite, then from Theorem 2.3 we have
for 211 % > "-t':x

But, %e >0 &8 © 2w, 80 that
<
ieeey, if T, is finite, the probability that an infinite number of events
occurs in finite time is 1.
It follows irmediately from Theorem 2.4 that if the probability
of an irfinite number of events in finite time is not zero, them T __ is
finite, so that the probability mmst therefore be le




x7

COROLIARY 2.4t In any birth and death process the fiw are

‘either finite for all i or infinite for all i, where 1, is the

iexpected time of passage from n =1 to n =o o



CHAPTER III
GENERAL REMARKS ON ESTIMATION AND TESTING HYPOTHESES

With regard to the general theory of estimation and testing
hypotheses, it seems desirable to classify statistics into three cate-

gories, proper, improper and sirictly improper. Since in the sequel we

shall be concerned mainly with Poisson and Furry processes, it is appro~
priate here to define these processes and give a short account or the
work already done in the theory of estimation of their parameters. We
shall also distinguish below between these three classes of statistics
in terms of the Poisson process.

A Poisson process is a pure birth process in which Xn - >\_ s

a constant for all nj; A. is called the parameter of the distributione.

It can readily be shown that if n =1, when t = O, pn(t) is given
by

pn(t) = S)\tzn e'xt'

nl for all ne

The Furry process is a pure birth process in which ln - n)k

for all ne If n(0) = 1, we have

- e-)t)n-l

p (t) = eD\t(l
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There are two approaches to the iﬂi't;blem of estimation cf thé
parameters of these processes, depending upon different stop rulese
The first method is to observe the number of events occurring
in a given timee, If for the Poisson process n events occur in the time

interval (0, T), the maximum likelihood estimator of X is

Kendall [13] estimates the parameter of a Furry process in this
way. The process is observed at times t = Q, T , 27T, ¢.ey k7T = T,

the observed population numbers being respectively NO, Nl’ csey Nko

He obtains the maximmm likelihood estimator of e '

A

As
e = N1+N2+...+Nk
Nothytee otV

understanding the number of replications to be very large.

A gimilar estimator of the parameter for a simple death process
has been obtained by Immel [11].

The second approach considers the time intervals between suc=
cessive events, and, for the Poisson process, has been discussed by Ma=-
guire, E. S. Pearson and Wynn [17], and also by Moran /18 Jo

Instead of fixing the time of the experiment, we observe the
occurrence of N + 1 events, noting the N intervals between them.

These intervals have the probability distribution

ap = Ao Fat - o a0\t)
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so that A\t is distributed as al” (1) variate, or 2) t is distributed
as‘)Cz with 2 degrees of freedome

If the sum of the intervals is T, then, from the additive
property of% 2, it follows that 2) T is distributed as %2 with
2N degrees of freedom. The estimators are then readily obtained. If
x«z_ and '7(21 _o 8re the upper and lowero{ # points of the distribution

of 9(,2[21{1 , there is probability 1-20f that

2
X 1 LN £ ‘7(2 o
27 2T

The maximum likelihood point estimator of A is
7S

By a similar method Moran ELB] has obtained an estimator for
the parameter of the Furry process. |

In order to clarify the classification of statistics which was
made at the veginning of this chapter, we consider the case of a Poisson
process., The above methods of estimation are proper, since they always
provide a confidence interval )(_0 < I)&‘-l 1 for x e A statistic is
improper if it sometimes yields a confidence interval for )L and some=-
times rejects all values of l e A strictly improper test is one which
either accepts or rejects the hypothesis that the process is Poissonian,
tut yields no information regarding the value of K -

The remainder of this paper is concerned with strictly improper
statistics only, and it therefore seems appropriate to say a few words
here about improper statistics. In regard to the Poisson process with

parameter value)L s the mean value and variance of the time for an
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event are 1 and respectively. This suggests that the number

1
* e
n

n 2
( =5 %1 15 & :;";-in) )

‘pair

=

be considered as a point in the plane and that a confidence interval for
(/\ be given in terms of a portion of the parabola y = x2 which is
sufficiently near to this point. On the other hand, if the above point
is far enough away from the parabola we infer that the process is not
Poissonian. This idea, which is intuitively simple and appealing, seems

difficult to put on a rigorous basis, and for this reason we do not dis~

cuss it further. However, crude testis can easily be derivede



CHAPTER IV
HYPOTHESIS TESTING FOR TI:IE POISSON PROCESS

In this chapter we shall consider statistics which lead to
strictly imgmroper tests for the Poisson process,

Before treating our main problem we give a test due to Magulre,
E. Se Pearson and Wynn[ 17]. Following their estimate of A to which

2
reference was made above, they make use of the fact that i.f?t 1 and
2 X 2
")(2 are two independent values of having, respectively, 1 and

N\ degrees of freedom, then the variance ratio is defined as
2 2 2
N1/ Ve
which is a distribution well known in analysis of variance.
If, then, we are given a set of N intervals between events and
wish to test the hypothesis that the process is Poissonian, we may divide

the set into two subsets, one containing n, intervals with a total

time Tl, and the other containing n2 intervals with total time T .
2

Then, if the hypothesis is true, the ratio

2NN / A, | hm
20y 20, Ty

a,
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'is distributed as F with an and 21:2 degrees of freedom. In particu-

lar if B =n, = 2N, the statistic becomes T:,_/'r2 to be distributed

as F(N,N).

In a note on the paper by Maguire, Pearson and Wynn, Barnard
(2] nas suggested the use of Kolmogorov's D statistic [13} s [6]'1 to test
the hypothesias that the process is Foissoniane

As we have shown, the probability density of the length of an

interval t between two consecutive events in a Poisson process is

dp = l e-kbd .

This is the exponential distribution. The hypothesis that a
process is Poissonian is equivalent to the hypothesis that the random
variable t has the exponentiai distribution; we therefore proceed to
develop some of the properties of this distributiones

The characteristic function of the exponential distribution is

[

| e'd'imtdt- A e 1
) TXs TITis8

X
The cumulant generating function is therefore

L

-

K (8) = <log(le=if) = £0) L. 1
A2 = I8 -
so that

K. = sr-lzl .

g )\r

1The reference is made to the paper by Feller because the paper
by Kolmogorov is not readily available,



5 We calculate the following popﬁlation mc;;e&bsz
Moo= K=L,

)

size n defined by J_—
m .,

n

- g,d, =
mean

e+||

THEOREM l4o1: The distribution of V, converges to the normal

distribution with mean 1 and variance 1 <
’ n

PROOFs Cramer LB,. 357 and 36ﬂ has shown that for a random vari-
able which takes only positive values and whose first four moments exist,
the sampling distribution of the coefficient of variation W,, n=1, 2,

eeey is asymptotically normal, with mean and variance given by

E(Wn) '*f/}‘-‘u-i + o),

2, 2 \ 3
Var (Wp) = & (f‘h‘/‘g) ‘;*/‘1/'2 /3" h/u2 + 0(5573) .

l‘/“;.u/“zn

In the case of the exponential distribution these formmlae lead to

oS )



. - ',40 . e 2 #
Var (V) = )\-]-'.%({1_1 )2'\-;) % ;]:-5 )—\5 X6 4-0(%3/2)
ho)\luo_lx_z_.n
- °(i3/z)’

Thus to the given order of approximation both E(Vn) and Var (Vn)
are independent of the parameter K, and to the same order of approxi-

mation vn is asymptotically normal with mean 1 and variance 1 o

]

It follows that to this order of approximation Vn is a statistic
which leads to a strictly improper test. From a practicel standpoint,

however, we are handicapped by the fact that the sizes of the terms 0(;!._)
n

_ ;‘372

that we are unable to make calculations of the size of sample required

and O ) are not precisely known and may indeed be quite large, so

for any given confidence limit. We conjecture that these approximating
terms actually vanish, but have not proved thise.

We now proceed to the main results of the chapter, which develop
statistics for the Poisson process that are independent of k and may
accordingly be used to test the hypothesis that the process is Poissonian
at alle.

THEOREM Lhe2: Let x and y be two independent observations from

an exponential distribution
-At
dp = >\ e x dte
The distrihution of the random wvariable

w=ax + by,
cx + dy
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where a, b, c, d are constants, cd)-b, and A -Vad-bc # 0 is indepen-
dent of the parameter )\ .
There is no loss of generality in taking a, ¢, and d to be

positive. We shall assume for convenience that the determinant

s=la b 0 i.e. a b;
.A’ !c d/> ? oo E>3

a, b dimplies that b> 0, so that this case may be handled by the
c 4

interchange of the independent variables x and y. The necessity for
the restriction ¢d >0 will be seen later,
EEMMA L, 1:

(the equalities occurring when either x or y is zero).

PROOF: Since A 30, 23 >b.

So
ady
g:3y=2§: d; - :m:!cx ’o-agy) = %‘
Similarly .
A s B L
i.e.,

..b..Lax"bL.a-o
d~ xx +dy— ¢

FROOF OF THFOREM l.2: We compute the cummlative distribution

function, F(O).
P(w> &) = P(ax + by> & (cx + dy))

= P(x(a = ¢B) > y(d8 - b))e
We sece from the lemma that neither (& - ¢ce) nor (dd- b) is negative.

Hence

Hw 0) = (x> $B 1),



<

pIPY - Y
’ Pw»g) = .{ f XZG-XXB_\me
_ y=0 x=df«b-.y
8=C
. R “ly[ -\
° [ ﬂdﬂ-b
-b
] I Ve
1 a~-cd
= T+ @P=b = a-cg+dg =b
a=CoH
5o ¢ ) P( ) (8)
P(W20 ) = 1-F(w>0 ) = dp=b = F .
() v ¥ {a=c)#+a=b
Thus F(@ ) is independent of \_ and the theorem is provede
COROLLARY lels The probability density function is
£(o) = A .
f@c)g+ (ab)yie
PROOF:
£(8) =d_ +F(8) = df(d=c)6 + §a—b% = (d=¢)(d® =b)
a® f(d-c)e + (a-b)]
- (123 -cd O + ad-bd-dze+ cd &+ bd=be
f (d-c)6 + (a-b)} 2
- 2 .
(6) f(a-c)o + (a-b}}2

THEOREM Li.32 The random variable w has the rectangular distri-

bution if, and only if, c¢ = de
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PROOF: In Corollary L.l, let c=d. Then
1o)== A = ad-bc. = _c
(a-b)2 Ta-b)< a=b

COROLIARY lLie2: The random variable V = ax+tby is distributed
X+y

uniformly over the range (b, a), a>be

COROLIARY L.3: The random variable V = X-y is distributed
x+y
uniformly over the range (=1,1)e

COROLLARY hﬁ: The random variable V= x 1is distributed uvni-
x+y

formly over the range (0,1).

This special case could also be obtained from a theorem on gamma
distribution. %If x and y are independent Gamma variates with parameters
,e and m respectively, the quotient x/x+y is a Beta variate of the first
kind with parameters ﬁ and m," Weatherburn [20, 153_].

la

Thus if x and y are distributed as dp = x eqxdx and

dp = ym-le-ydy respectively, them x has the probakility density
x+y

$(0) = 91-151-9;1‘.1 )
Y.

which gives us, on putting f = m =3, the density function

function

#1O) " gry =

We return to the general case,in which cide
It is advisable at this stage to show that the denominator does
b &
not vanish within the range,,,('a': 3’).

d: =) = 0 £ 6;'-bo
(d=c)o+ (a=b) or gq



29

Then A
& - a=b = ac-ad-actbc = - s
c c=d c(c-d) c(c=d)
b = a<b = be-hd-adébd = - A .
d ©cd d(c-d) d(c-d)
These differences are of the same sign (i.e., a-b lies outside the
ced

a b
interval['c-’ d| ) if, and only if, c and d have the same sign. The

restriction cd > O in the statement of Theorem L.l assures thise.

We now transform our variable to u = 4O+ a~b « The density

dec
function becomes
P =_2a .
(d=c)“u
while the limits of u are
| b+ab=_A and a+ a=b = A
d de-c d(d-c) c dec¢ c(d~-c)

t (b= - s $(AL)" £ .
d(d-c, A c(d-c) A
Thus, if d > ¢, the frequency curve is a portion of the right

half of the curve

-k PWB=p2Pb=n,

while, if d< ¢, we have a portion of the left half of the curvee

It follows that the frequency curve is either monotone increas-
ing or monotone decreasing as the case may be, and has no mode.

The moments of the distribution u are readily calculated. We

have



m .

- A 1 d
(d..c)2 og i

80 that the mean of w 1is

w=_ A log d - a~b ;

(d=c)? c d-c

also
i
- A a - A
Ao (d-c)‘2(c(d-c) d(d-c))
- a2 ,
cd( d-c:’2
so that

2
= A 2 1 - log ‘g- o
ver W) s e | & z{—)?ld-c

Furthermore, for every n2 2

1 A n-1 n-1
= o 1 A - A }
Jon " e i 1 FLatl FlaopT
= An PY dn.l.an.l °
(n-1)(d-c)n*I (ca)n=t

Substituting & = c= 1, and b = d = k the following theorem
is immediately obtained.

THEOREM lLolit The distribution of the random variable

¥= 1 (2k log k = (kZ=l))
(x-1)2

has mean
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2
Iaic® ( 1 - (log k) ) .
x-1)2 \ ¥ T(x-2)2
The distribution function in this case is

£2(H) = 0 (1+k)
(7 [(k—l) O+ 1 + sz

' and variance

It is clear that as k-*1l, +this distribution function con-
verges uniformly to the rectangular (-1,1), so that the moments also
converge to those of the rectangular distribution. For the rectangular

distribution (=1,1) the mean is O and the variance is 1

So far we have made the restriction that cd) O3 when either

c or 4 is zero, one end point of the range ( b, g) becomes infinitee
d ¢

Let us consider what happens when ¢ = Q, We have the variable

v -mg
dy

We may proceed exactly as in Theorem biel. It follows that the
distribution function is

£2(O) = ad s
{dG- (a,s-'bfZ

‘while the mean and variance are both infinitee

In particular, if a=d =1 and b =0, we have the following
theoreme

THEOREM .52 The random varisble ¥ = § has the distribution

function £(Q) = 1 over the range (0,90).
(1 *6)2
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This result could also be obtained from a general theorem on
- gamma variates, Weatherburn EE’.O, 158_] s wnich states that the quotient
T of two independent gamma variates with parameters ,é and m is a Be(ﬁ o1m)
; variatee
Thus, if x and y have the distributions dp = xz-le-xdx and
; dp = y* le.’"ydy respectively, then E;.r has the probability density func-

tion

51
‘# (6) = o v ’
W fm) (140 ) T*
which gives us, on putting £ = m = Jl, the density function
(&)= 1 .
(1+ <'5*)2
In the case where cd< 0, our proof of Theorem L.l is no longer
valid.
Consider the case in which ¢> 0, d<0 and g>_‘g e Then
¢ d

ad £, b and a> be .
c d

So that, if cx + dy» O,

ady
ax+by | ax+ ¢ s
cx+dy - c

and, if cx + dy«< O,
bex
ax+b <. E +b s D °
=i ¢ @
Thus the values of the variate lie outside the interval % g) .
c

We shall now give a proof of Theorem L2 for this case.
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PROOF: We calculate the cumulative distribution function.

There are two cases to be considered:

(1)
w> 0 S a.
c
This requires cx +dy >0, i.e., x > -dy
: c
and
ax+b
'&f‘;&% > 9:
i.e.,
ax+by > © (cx+dy) ,
shvine b=d &
14———09_a .
Then
x={ b=-d&
yee fc-a | -y A
Plw>0>a) = [ Ke «\e dxdy
c y=0 xa-gy
(]
* - b-d® =d
f N[ <\ 5= (3
L ]e -g + e dy
y=0
i 9-& bedd
[ == ) Al
- X )\ dy
= - cl =a + C o
c o c=d
Then

Fl(&) - P(f £we8 )



3k

-] 4 cO=a - C
(c=d}& ~{a~b) c~d

-4 ,_cb=a
c=d  (c-d)o -{a~-b)

(i1)

WLOL b o
d
This requires cx + dy <0, 1i.e., xL'% y

and

axedy <8,
i.e.’

ax + by (cx + dy)e,

giving

x5 db «b .

a~<cgo 7

Ziien

y
P(x << g) - f)\ e':h X 3‘1‘ dxdy
d@ =
=0 X a—c <

f )| Ayf =S e
= e -8 + @ dy
0

T Dy c-d) Ay h-c B +d€@ -b)
- -le 2y +le Ca=-cg /
o A

= - Cc 4 a-cG
c=d a-cl + a8 ~b

ay
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= - c cfé —-a ~F2(c9),
c=d (c~d)o =(&a-b)

which proves the theorems

We note that

F(d) == d =1-_c = E (D).
% 4 4 29

The cumulative distribution function is thus given by

== b.o. 2
c-d’ cl"e"= c,
= F1(&) 2:0

Differentiating, we have the density function

f(o) = - A ,
f(c-d);ﬂ -(a-b? ’

& <=

Y
oip

or 0

ajo

= Q b
> E<&<

olp

We now consider the use of the statistic w to test the hypo~
thesis that a process is actually Poissoniane
From a single observation of the statistic we are led to a crude,

but very simple test of significance, which is independent of ke

THEOREM L 6: ZIet wﬂ,’ be the value of w = x-Ry , for which
xeky

Plwew )= then w>w_ if, and only if, x3 7 . 042%m « Xo
" 1s ),L ’ y 1, >-1£-;z.y’ £
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PROOFs For the variate w = %

‘ ha
~we have 7o) = k(1 +0 ,
(E.'j§9-¢+ K+ 1
so that k(1 + w )
2 =7 »
Tk-1) wm# (k+1)
ioeo’, |
k + kw,l - (k-l)zw,l’ + (k#l)7 ,
giving
w o= lk#l)g =k
1 = (D)7

Then w) w

7 if, and only if,;

ziy , Gel -k
ooy’ k ~(L)y
' 10303 xk . 2
- x(k-];)_vL “*«“y + k(k-1)y ¥ >
x(le#l)y - xk + k(1) 7 ~ B2y,

so that
x(k - (k-l);l + k » (k+1)7) >y(k(k+1)7 - k(k-l),;y),

x(2k=2ky) >y o 2 ,

giving A
x5 7 ¥, which 1s independent of k.

X

It follows, therefore, that if a sample of two intervals is
taken from a process, a simple test procedure for the hypothesis that

the process 1is Poissonian 1s to reject the hypothesis if

x51-8 3, (£ =1)
g .

where g is the desired level of significancee.
It E is O, X0, this leads to x>9y. For E = 0,05, we have
x >19y, while for € = 0.01, we have x> 99y,
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WBWpizﬁ'c;c;edﬂlix;)w to a les‘;“c;'v.'xde testuéi' éignificance.
It has been shown by Gorsline [101 that for random variables
having the rectangular distribution the averages of sums of these varie-
ables approach normality wvery quicklyz indeed, he has shown that for an
average of as few as four observations the normal approximation is wvery
goode

We therefore consider the statistic

Wn - l{xl.yl +* 12.y2 4 cee W xn .yn}’
nix+yy xX2tyz Xn +yn
where the x4 and y; are drawn at random from the population of inter=
vals between events, with no interval appearing more than onces
THEOREM leo7: For every n the statistic W, is a test for

the hypothesis that a process is Poissonian with the 0.05 probability

level given approximately by , Wo I > 1,155 and the 0.0L level by
A '
‘w;‘l > 1oh-h3 °
EY

PROQOFs If the hypothesis that the population of intervals is:
exponential, i.e., that the process is Poissonian, is true, then W, is

asymptotically normally distributed with mean O and variance lf' IS
n

The standard deviation of the distribution is thus 1 + The
d 3n
005 significance level is given approximately by a 2 o~ deviation, and
so we would reject the hypothesis if / W, / > 2 = 1,155 »

A3n  4m
Similarly, taking 2.5 o for the approximate 0.0l level, we

have the criterion [W, i N Yelih3 o
IJ n
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‘ Conversely, we may calculate the sample size required in order
1 for ’Whl £ Z to be the region of acceptance for the hypothesis by the

at the 0,05 leve}, and n = at the 0,01 level.

formulae n = L
372 122



CHAPTER V

THE PROBLEM OF DISCRIMINATION BETWEEN FURRY
AND POISSON PROCESSES

In the previous chapter we have developed a test of significance
for the hypothesis that a given process is Polssonian; we now proceed in
.the same way to consider the Furry process,

THEOREM 5.1l: For the Furry process, if x is the duration of

the mPP interval (i.e., the interval in which the population size passes
from m to m+ 1), and y is the duration of the n™ interval, then

the distribution of the random wvariable

ax + b
W‘-&f—‘—_-ag, where 0d>0

is independent ofj\ .

PROOF: This is similar to the proof of Theorem L.2e

From the proof of Lemma lLe.l, we see that the range is again
[\aa, a]. We shall again take ¢, 4> O and §>§ .

We have

P(w)e) = P(x) %_Qc—g-’-y),

ioeo,

X

oo @
{
Pw>6) = JAn f X ‘-)mx. o dxdy
y-o -d9°b y
a=c8

39
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m
co
- f\ ne. ny[-e-lmx dy
y=0 dg=b y
a-c@o

- ot
M

= n

n(a=c8)
B(a-cB) + m(dg=by °

80 that

Pw<b)=1=-Mw)o)

= m{db=b) = F(&) .
(md=rc) 8 +(na=-mb)

Thus F(g ) is independent of X and the theorem is proved.

This is the same function as was obtained for the Poisson proe
cess with the substitution of na, mb, nc and md for a, b, ¢ and de (5)e
It follows ilmmediately that the mean of the distribution for the Furry
process is given by

na~mb ¢+ Anm — log md .
ne-md (mdenc) nc

The variance is
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' The frequency distribution is given by

£2(B) = mn A
{(md-nc)e -r(na-mb?—

COROLLARY S5,1: For the above Furry process the random variable
w = x-y has density function
x+y
£(g) = 2am »

the mean is

ntm, Zim logm
n-m (n-m_)z n
and the variszsnce is=
n
[ -(10g = !
(n-m)z ™ (o-m)

These resulis follow immediately from those above by putting
am=c=d=] and b = =J,

We now consider the above random variable with the restriction
n = km, and note that the mean, the variance and the density function
depend only on the ratio k =n o
We have "

(o) = 2k —_— -1
((1-k)}© +(14k) )"

N
®
U
&

the mean is

ktl = log k =
= iy S

- (log kz l
(k-1) [ (k-1)

the varlance is
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Theée- "f'ormulae are simiiér to,';n_n; not iden;biéal with;_ those
‘ obtained in Theorem he3e (They are actually the same if % is substi=-

tuted for k.)

THEOREM 5,22 For k1, ,aLk] is a strictly increasing function
of ko
PROOF'z

2
- k° =2klogk -1 .,
Mg (k_l)gg

d/“g_q = 2(kel) [k =1 = 10531'5] =202 - 2k log k = 3]

(k=1)
- 2 (K2 -k-klogk-k+ 1+ log k = k242k log ksl
m( g og og )

- 2z (klogk =2k + 2 4 1log k)
(k-l)3

The denominator is positive, We complete the proof of the theorem by
showing that the numerator N(k) = k log k = 2k + 2 4 log k is positives

dN(k) = L+logk=2+1 = klogk-k+3 .
k X

But for k>1, klogk =k # 1 is an increasing function, its derivae
tive being log ke

When k=1, we have k logk =k +1 = 0, so that for k)
we have d N(k) > Q. Thus, since N(0) = 0, N(k)>O0 for all k>1

and the theorem is provede
Since /U»Li] = 0, it follows that /u'[k])o for all k >le This

leads us to the following theoreme
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THEGEE:EE.Q: If (my, ﬁl),(mg,ngh)ﬁ cee (Mg, n3)y «co is a

sequence of pairs of positive integers: such that ki - Ty >k >1 for

ny

all i, and if X, Jp, demote the lengths of the m " and n,

intervals respectively, then the statistic

is asymptotically normally distributed with positive mean, provided that

the series
S - = lue? 1 - (log ky)?
b STTET Ll T
divergese.

PROOF: W, is the average of a sum of statistics of the form

x=y which are uniformly bounded and such that the sum of the variances
x+y

diverges. Hence, by one of the forms of the central limit theoren,

Feller [8, 203] s the distribution is asymptotically normal, with mean

n"}Z Z N
But

/U'E(ﬂ g /‘Z-k:’ for all k,, so that ﬁﬁz /“[k].

THEOREM S.42 If, in Theorem 5.3, k; = k >1 for all i, then

the statistic

2 e




' is asymptotically normally distributed with mean

2
g = M and variance GL o
L Oc] > =k
PROOF ¢ The sequence
( - 1o k)2
(k-1)2\ E k-l) divergese

We shall now make use of these theorems in the formmlation of
& test for discrimination between Poisson and Furry processeses

Consider the statistic

where no interval is used more than once and where k is an integer;

for example, if k = 3, +the sequence might include

xl.yé 9 xz..yé [ 3 xh.yla 9 eoeoo
X1*y3  Xgh¥6 IV 12

The third interval, having already been used as a ty*' could not be
regarded as an 'x',

THEOREM 5.,5:¢ For every n the statistic W, die a test for

discrimination between the hypothesis that a process is Poissonian, and
the hypothesis that the process is a Furry process.
PROOFs If the process is actually Poissonian W, is distri-

buted asymptotically normally with mean O and variance % .
n
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For a I"tu'ry process W is asymptotically normal w:.'bh mean
2

/‘-ﬁ{] and variance K e

n

We discriminate as followse Let n be chosen so that

/fkl' 2 (lé &r%’. The critical value of W, is them W = _2_
n 43n

If W, < 2 , we accept the Poissonian hypothesis. If W S Z
—— n ————
+/3n 3o

we accept the Furry hypothesis., The probability that W, assumes a

2
value greater than 4—3..; s if the hypothesis that the process is Poisson-
ian is true, is approximately 04,0253 the probability of a value less

than 2 for a Furry process is also 0,025, Thus 0,025 is the

A3n
probability of an error of either the first or second kind in the termi=

nology of Neymane
The 2.5 flimit, for which n is chosen so that

Ay 2.5/ 1 w6y gives errors of 0.006e
" 25

In the following table values are given, for various k, of the

mean /“Lk]’ and variance 0‘ of the variate X3 =Fied for the Furry
X *Jici

process. We also give values of 0. the number of ratios xi.yki
e A= 1

needed for W, to discriminate at the 0605 level of significance, of
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Wg the critical value of W, and of N where Ny is the number of

~intervals required to give the number of ny, of ratios.

2 3t

k /fk] fk g wn Nk

2 «227h 3127 100 «1155 398

3 «3521 284y 4o ~1826 177

L olt3hly «2593 25 2310 132

5 o193 #2382 19 «2653 115

6 «5400 «2205 16 ~2888 13l
11 +6725 2616 9 3850 99

Thus, for example, if k is 5, then my =19, N = 1I5

so that
W= 1 (f.l._'_’fi + eee 4e~123'yg§) .
n 1'§ ‘.L"’ys x23+y1]5

We take 19 pairs of observations, which requires that 115 events occure

We accept the Poisson hypothesis if W, ¢ 0e26533 we accept
the Purry hypothesis if L 0620536

The difficulty occurring in the calculation of N

k
cated in the exmple for k = 3 given immediately above Theorem 5¢5e

is indi-

We may, however, calculate Nk by the following formmlaes
(1) If n g O(mod (k-1)),

N_= k(ﬁ-l),

(13) If my = p(mod (k-1)), p# O,
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()

where [_l_li] denotes the greatest integer not exceeding nf °
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