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CERTAIN STATISTICS RELATED TO TIME-HOMOGENEOUS
BIRTH AND DEATH PROCESSES

CHAPTER I 

INTRODUCTION

In the classical theory of population growth, the size of the 
population is considered as a continuous variable throughout the whole 
range of ages, and the changes that occur in this variable through births, 
deaths or other agencies are considered deterministically* A. short sketch 
of the deterministic theory is given by D* G* Kendall jljJ

The determinis tic approach is most readily illustrated by the 
example of the simple birth process; the rate at which the population is 
Increasing is directly proportional to the size n* This leads at once to 
the linear differential equatioi^

idiere \  is the birth rate per capita per unit time. When ^  is con­
stant, the solution is the law of Malthus

n(t) • n(0) e^*. (1)

T̂îumbers in brackets refer to the list of references* When two 
numbers are used, the second number is the page number in the reference.



2
It Is clear that so categorical a statement as (1) cauiuot be a 

satisfactory answer. Not only is the solution (1) not even a rational 
number, let alone an integer, although that objection is perhaps more 
philosophical than practical, but it takes no account of the role of 
chance effects upon the size of the population.

In the stochastic approach, the probabilities P (t) that then
population size will be n at time t are calculated. For the example 
above, the sinple birth process, these probabilities were first obtained 
by Yule C?lj . For this reason, the process is occasionally called a 
Yule process* It is, however, more usual nowadays to call it a Furry 
process, since Ftirry considered the application of such a process to the 
physical problem of the passage of radioactive particles through a slab 
of lead [j?J. The first paper published with a systematic mathematical 
approach to this problem is due to Feller 1939.

If, in addition, the population may diminish with a death rate 
, we have a birth and death process. In the case where the rate of 

change of the population size is directly proportional to the size itself^ 
the simple process, conplete results for the P̂ (t) may be obtained by the 
method of generating functions. This method is attributed by Arley and 
Borchsenius [ij to C. Palm (unpublished), and may be used whether the 
parameters and are constants or functions of t* Kendall obtains 
the results for the birth and death process using this method [l2~jm

When the rate of change is not directly proportional to n, anfi 
when the birth and death rates are not necessarily the same functions 
for every n, we have a generalized process, which is discussed by Feller 
[7]» In the simple case, the population size obtained by the deterministic
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approach appears as the expected size of the population in the stochastic 
approach; this is not, however, true in general*

It may happen in the general case that the population size be­
comes infinite in finite time. This is the Feller-Eundberg phenomenon,
and in terms of probabilities it may be expressed as

ao
£  pjt) <  1 . 

n * 1
The sscond chapter of this paper is concerned with this pheno­

menon* The problem is treated by considering the expected time of such 
a transition to infinity. By this means, the Feller-tundberg result for 
birth processes is obtained in a direct and straightforward manner*
Feller obtains the result as a consequence of a more general theorem, 
the proof of which is by no means readily comprehensible. Feller also 
gives an elementary proof in which is incorrect, since he proves the 
sufficiency condition twice; he repeats this in his book 370^»

We also obtain by this method necessary and sufficient conditions 
for the occurrence of the phenomenon in birth and death processes; our 
conditions are similar to those obtained by Reuter and Ledermann 
|l9j, althou^ they differ in detail. We obtain new information concern­
ing this phenomenon* In particular, we find that if the expected time 
of the occurrence of an infinite number of events is finite, then the 
phenomenon occurs with probability 1, and if the expected time is infinite 
the phenomenon occurs with probability 0*

The purpose of the third chapter is to lay the foundation for 
the final two chapters. It comprises a short survey of the present state
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of knowledge of estimation of the parameters of these processes, and In­
troduces the concept of proper. Improper and strictly inçroper statistics, 
In it, also, the Poisson and Furry processes are defined in terms of tha 
stochastic theory* The Furry process has been mentioned above; for the 
Poisson process the probability P̂ (t) that n events (births) occur in 
time t is given, for all n, by

P (t) - e“^ ^  ,
nT

It is characterized by the fact that the number of events occurring in
any time interval is indpendent of the population size.

In Chapter I\T, tests are obtained for the hypothesis that a
given process is actually Poissonian. It is necessary for this purpose
to obtain statistics whose distributions are independent of the value
A. of the parameter. Such statistics are called strictly improper, and
a family of them is obtained, each one of which provides a test for the
hypothesis. These statistics are of the form ax + by. where a, b, c and

cx ♦ dy
d are constants such that ad y- be, and cd ̂  O, and x, y are the lengths
of time intervals between events. The simplest of these is the statistic
X - y« which we show to have the rectangular distribution over the range 
X ♦ y
(-1, 1)* In general, the range is^* but the distribution is only
rectangular if c » d* These statistics are also adaptable to the Furry 
process.

In Chapter V, we obtain the distribution of the statistic x - y.
X ♦ y

where x, y are lengths of time intervals between births in a Furry
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process. We show that, if x is the length of the i ^  interval and y ie 
the length of the ki^ interval, then the distribution of the statistic 
depends upon k, but not upon i. This result leads to a test for discrimi­
nating between the hypothesis that a process is Poissonian and the hypo­
thesis that it is a Furry process. When k is an integer, the test is 
quite single, and, for this case, we give a table showing, for variouff 
values of k, the critical value of the statistic and the number of obser­
vations required at the 0.05 level of significance*



CHAPTER II

DIVERGENT PROCESSES

In a generalized birth and death process we consider a popula­
tion, the size of which is given by an integer-valued random variable 
n(t). We shall denote by P (̂ ,t) the probability that the population 
size will be j at time t, subject to the condition that it is i at time

The process is a Markov process in which the transitions are governed 
by the following rules*

In an element of time At possible transitions and their associ­
ated probabilities are given as follows* If n(t) denotes the population 
size at time t, then the probability that

!" n(t*it) » n(t)+k, k>l is ^  ̂ ,nik(^* t+At) - o(dt),

that
n(t+At) “ n(t)+I is P (t,tt̂ t) “ A (t) t*o(At),n,n+l n

(l) \ that , ,
n(t*At) - n(t) is P _(t,t*At) ■ 1— N  (t)*yh (t)(4t*oCAt),n, a *• n n 3

and that
n(t4@st) - n(t)-l is P _(t,t*At) ■ ̂  (t)-An, n—X n

where o(nt) has its usual meaning.

6



The functions ^_(t) and U- (t) are in general functions ofn n
"both n and t. If all the \ y6&^(t) are independent of t, the pro­
cess is said to be time-homogeneous»

An increase of one in the population size is called a birthÿ a 
decrease of one is called a death; the occurrence of either will also 
occasionally be called an event*

We recall that a process is called a Harkov process if the pro­
bability distribution of the random variable, in this case n(t), at time 
ttAt is completely determined by the value of the variable at time t, 
and is independent of the previous development of the process* For a 
Markov process, it is well known that the probabilities satisfy the 
following relations, the so-called Chapman-Kolmogorov equations:

(2) P (*7',t) » (<̂ ,s) P (s,t) for all T <. a <. t#ij ^  ik kj
Thus, in connection with the birth and death process, we must find a set 
of functions satisfying both (1) and (2)»

Equations (1) lead formally to an infinite set (3) of differen­
tial equations for the P^j(T»t) as followst

P^(^»t^At) • ̂ i,j_i('̂ t]ĵ Xj_̂ (t)At+o(nt)j t t >At*o(dt)j

♦P^^C-î-.tXfl-X (t)At*o(At)U |p.  ̂. (T,t)o(At) .ij  ̂ j j •» K 1, j+k
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Pjj i'T, t*̂ t) -Pjj (̂ , t)

Û t
(•t>'«y*̂ Ct)J C'T,t)

Taking tha limit as A t—  ̂0 we have

Feller ̂ tJ has shown that under very general conditions the so­
lutions to the system (3) exist and satisfy (2)> so that since they ob­
viously satisfy (1), they furnish a solution to the problem* The unique­
ness question is more delicate, and has been discussed by Doob^iiJ and 
by Reuter and Ledermann * It bears a certain relation to the
Feller-Lundberg phenomenon vdiich will be discussed below*

We now prove a lemma which will be needed subsequently*
LEMMA 2*11 The probability P^^(^>t) that the population size 

remains at the value i throughout the interval (v̂ ,t) is

PROOF r W& have 
I^^(^,t*At) • l-/^jL^tMt^(t)At^(At)f ,

so that

At At



and

giving

Bat,

80 that

±I^>('75t) - A ) ^ (  t)̂  ,

log , t) » -|Ĵ /̂ (̂»)'*;/̂ (̂s)}ds+c('î̂ *

P ^ ^ ' ( S f o r  all

and 'r
c('t) « f (̂ ĵ (&)'Ŷ (8))d6#

Therefore, ^
(0) */ (A.(»)4^(8))d&.

P^^'T,t> •  e i i

It is the purpose of this chapter to consider the relation
P^(*r,t) ̂  1 for tine-homogeneous processes. It is a remarkable fact
observed by Feller and apparently independently by Lundberg [̂ léj

that the inequality sign cannot in general be replaced by an equality.
Feller and lundberg show that a necessary and sufficient condition for
the inequality to hold for a pure birth process (i.e., a process for
which all the are zero) is that should converge. Further

^n _
work has been done by Reuter and Ledermann |̂ l5j axid£̂ 19j, idio have ob­
tained conditions for the inequality ̂  . (T,t) 4. 1 for a time-homogeneous

j ^
birth and death process. We obtain a new result regarding this phenomenon
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lAiich gives further insight into its nature, and from which the results 
of the above authors follow*. In particular, we show that, if there is 
a positive probability that an infinite number of events occur in a
finite time, then that probability must equal 1*

For convenience we shall a^jume that the population size is X
when t is zero, and we shall write p^(t) for the probability that the
population size is n at time t*

ma
The inequality ^p^(t) <l means that there is a positive proba­

bility that n is infinite at time t, i.e., that infinitely many transi­
tions have taken place in finite time. The results; will be obtained by 
considering the expected value of the time taken for such a transition 
to infinity* «0

We shall call a process for idiicb ^ 1 for some value
of t, a divergent process*

THEOREM 2*lt For a time-homogeneous pure birth process the 
expected value of the time There tĵ is the time at which

the populo tion becomes k, is 1 * (X > 0. )

PROOFt By Eemma 2*X

3,) .

Then the probability that t ̂  T  ^ t ♦/i-t ism
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so that

-L-*® “ 4 * 4

x 4  °
COROIJARY 2*1: If t^ is the time taken for the population size

to pass from 1 to«> , then = E(%») ■ 1 *ap-1
m

PROOFt We have
^  T 
1IP*1

Then

^  •

In a stationary birth and death process it is possible that the 
population size may never reach some given finite value for two reasons:

(i) it may happen that » 0 for some J, 1 é j # n*

(ii) there may be an attainable lower absorbing barrier for the 
population size* An example idiich we may consider is the case in which

> 0, \ ̂  ■ G| idxen once the population dies out, there is no re­

birth*.
In case (i) it is not possible for the inequality ̂ Pn(t) 1
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to be satisfied, since ^p^(t) ■ 1* In case (ii) we may still have 

^ ^  1» As a simple example, consider the process in idiich 0,

JUL. • 0, for all m>l,, A * ® and X , a>0, satisfy the requirements/ B1 0 91
for a divergent birth process•

We shall therefore denote by ̂  the time for n to increasem
from m to m*l:, and we shall consider E.*('T̂ ), the conditional expected 
time of the change, by idiich is meant the expected time, conditional on 
the change not being prevented by passage to an absorbing barrier in the 
interim.

THEOREM 2*2% For a time-homogeneous birth and death process 
EĈ T ) is given by the recursion formulam'

A m

PROOF: By Lemma 2*1^

Hence, by the same method as was adopted in Theorem 2*1, the
ejqpected time for a further event to occur after the population size
reaches m is 1 *

Such an event has probability of being a birth, in which
Amy^

case the population has passed from m to nH-l as required, and probability
„ of being a death, in which case the desired increase

^my*m
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requires further passage from m-1 to m and then from m to nH-1* 

We thus havet

^  . 1 * ̂

(\ E(^ ,) +/-E('T)m/m m // m m-1 / m m '

yielding

In case (i) E(Tj) is infinite if » 0, and all subsequent 

E(or ) are infinite»w
In case (ii) E( is infinite, there being a positive proba­

bility of passage to the absorbing barrier n " 0, and hence all the
E((y ) are infinite*' m

We therefore use E*( ), the conditional expected time of pas-m
sage defined above, and our equation becomes

(U. ) E* ( V  i  •

(If there is no absorbing barrier, we have E(T') »E*(-t')« )m m
Writing 7p for E*(*T" ) we have' m m

m Tm-1 '
/ifli ^m
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Tvhich is the equation obtained by Reuter and Ledermann 0̂ 9']»
Furthermore (if n » O is the absorbing barrier, or if * 0, 

when there is no absorbing barrier)

I • ^ '
'i 2 'I

' T  •  J L  ♦  -̂ n - . ■*■••• *
^n ^ n  **"^1

which results differ in detail from those of the above authors. They, 
using ̂  where we have used ̂  , have begun their cO sequence with

and have put ± (for formal convenience)", which would
^  X-i

seem tacitly to assume that ^  * 1*i—1
The conditional ejected time of passage to infinity is there-

  -fore given by ^  .
n*l

We proceed to obtain our main results. The first is obtained

THEOREM 2*3: If is finite, there are values of t for which

n=0 ̂
PROOF: ^  p (t) » 31 implies that the probability that ^  t

n“0 ^
is zero, which in turn iiq>lies that

P(t. > t) - 1 .
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Using Cramer*s generalization of the Tchebycheff inequality 

j3,l82^ we have, for all t.

^ t) ^  E(t*# ) * too •
t t

so that for t > OO
CX>

Z  P (t) • P(tooi t) 4  ¥0® wC.1 ,
n»0 t

and indeed, by taking t large enough, ^  P„('b) may be made as small as 
we wish.

n-1 “

Thus if t_ is finite, then for all t > t , ̂  p^(t) ^  1»
n-0 “

The second main result is
THEOREM 2»ht If there is a finite time such that^ 1,

then t ^  is finite.
In case (i) for a birth and death process the requirement of 

this theorem is never satisfied. In case (ii) the probabilities below 
are to be taken as conditional probabilities, conditional upon non- 
absorption*.

PROOF; Shppose that p̂ (̂«r) “ 1 - ̂ p^(T) * CC> O j
then _   ̂  ̂̂l£n(«rO < o*y » 1 - ot and Pj^^(T) ̂ ^  , i Z  1 »

P[xx(m^ (1 - <0™ I
so that ^ , _

p/n(m*))<oo, n((m»'l)r') (1 - &) |
thus **=» _ -,T ^ %  (m*l)T. P/n(m-j) <00, n( (mfl)T) 

m-0 ^
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^  ^  (ana) (!-<*)“•
mpO m-0

Bat the series eomrergee for fxj <lit being th«
derivative of the power series ̂  x®#

Therefore, is fiziite*
COROLIAEr Z#2t necessary and sufficient condition for a pro­

cess to be divergent is that shall be finite*.
For a pore birth process this condition becomes ^  1 jC, co

and for a birth and death process we have ̂  ^  *n
COROUABY 2*3* For a birth and death process with no lower ab­

sorbing barrier, the probability that an infinite number of events will
take place in finite time is either zero or 1»

fEOOPt Suppose ^  is finite, then from Theorem 2*3 we have
for all t ̂  t ^

F(too ^  *
t

Butm *̂#3 0 SIS t —  ̂OO, so that
n r

t) -*1,
i*e*, if ^09 is finite, the probability that an infinite number of events 
occurs in finite time is 1»

It follows immediately from Theorem 2*U that if the probability 
of an infinite number of events in finite time is not zero, then t ^  is 
finite, so that the probability mast therefore be 1*
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CQRnT.TARY 2mht In any birth and death process the are

either finite for all i or infinite for all i, where tj^œ Is the 
expected tine of passage from n " 1 to m —o» *



CHâPTER III

GENERAL fîMARKS ON ESTIMATION AND TESTING HYPOTHESES

With regard to the general theory of estimation and testing 
hypotheses^ it seems desirable to classify statistics into three cate­
gories, proper, improper and strictly improper. Since in the sequel we 
shall be concerned main].y with Poisson and Furry processes, it is appro^ 
priate here to define these processes and give a short account of the 
work already done in the theory of estimation of their parameters. We 
shall also distinguish below between these three classes of statistics 
in terms of the Poisson process.

A Poisson process is a pure birth process in which ^n
a constant for all n; ^  is called the parameter of the distribution»
It can readily be shown that if n ■ 1, when t » O, p (t) is givenn

P„(t) - (Xt)°
n% for all n»

The Furry process is a pure birth process in idiich %  • nX.n
for all n» If n(0) «1, we have

p^(t) - e-^(l - .

18
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There are two approaches to the problem of estimation of the 

parameters of these processes, depending upon different stop rules*
The first method is to obsez*ve the number of events occurring 

in a given time* If for the Poisson process n events occur in the time 
Interval (0, T)> the maximum likelihood estimator of lu is

A
V  “ n •I

Kendall ̂ 13̂  estimates the parameter of a Furry process in this 
way. The process is observed at times t “ 0, , 2*r, k*r - T,
the observed population numbers being respectively N^*

He obtains the maximum likelihood estimator of
A.

e^T - W — .

understanding the number of replications to be very large.
A similar estimator of the parameter for a siaç>le death process 

has been obtained by Immel *
The second approach considers the time intervals between suc­

cessive events, and, for the Poisson process, has been discussed by Ma­
guire, E. S. Pearson and Wynn flîjt and also by Moran /l8^*

Instead of fixing the time of the experiment, we observe the 
occurrence of N ♦ 1 events, noting the N intervals between them. 
These intervals have the probability distribution

dp ■ X.e ̂ d t  » e"^dOyt) ,
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so that ̂ t  is distributed as a (1) variate, or 2\jb is distributed 
as*^^ with 2 degrees of freedom*

If the sum of the intervals is I> then, from the additive 
property of ̂  it follows that 2\,T is distributed as with
2N degrees of freedom. The estimators are then readily obtained. If

and ^C^u^_Q^are the upper and loweroc;̂  % points of the distribution 
of there is probability l-2<?̂  that

2T
The maximum likelihood point estimator of is

^  f .
By a similar method Horan has obtained an estimator for

the parameter of the Furry process.
In order to claarify the classification of statistics which was 

made at the beginning of this chapter, we consider the case of a Poisson 
process. The above methods of estimation are proper, since they always 
provide a confidence interval ^ for ^  * A. statistic is
inçroper if it sometimes yields a confidence interval for and some­
times rejects all values of A. • A strictly inproper test is one idiich 
either accepts or rejects the hypothesis that the process is Poissonian* 
but yields no information regarding the value of ̂  *

The remainder of this paper is concerned with strictly improper 
statistics only, and it therefore seems appropriate to say a few words 
here about improper statistics. In regard to the Poisson process with 
parameter value ̂  , the mean value and variance of the time for an
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event are 1 and 1 respectively. This suggests that the ntmbar 

7^
pair

be considered as a point in the plane and that a confidence interval for 
^  be given in terms of a portion of the parabola y » which is 
sufficiently near to this point. On the other hand* if the above point 
is far enough away from the parabola we infer that the process is not 
Poissonian. This idea* which is intuitively siiq)le and appealing* seems 
difficult to put on a rigorous basis* and for this reason we do not dis­
cuss it further. However* crude tests can easily be derived*

\



CHAPTER IV

HYPOTHESIS TESTING FOR THE POISSON PROCESS

In this chapter we shall consider statistics which lead to
strictly inggroper tests for the Poisson process*

Before treating our main problem we give a test due to Maguire*
E. S» Pearson and Wyxm[̂ l'ff »■ Following their estimate of^ to idiich

2reference was made above, they make use of the fact that if ^ and

/•v/ 2 •y' 2^  are two independent values of ̂  having, respectively, and
2 1

^  degrees of freedom, then the variance ratio is defined as 
^ 2 , 2

- 2L /zk .
* ^ 1  /  V  2

which is a distribution well known In analysis of variance.
If, then, we are given a set of N intervals between events and

wish to test the hypothesis that the process is Poissonian, we may divide
the set into two subsets, one containing n^ intervals with a total
time T , and the other containing n intervals with total time £ .1 2 2

Then, if the hypothesis is true, the ratio

2nj, /  Zug l2°l

«



23

is distributed as F with 2%x̂  and 2ng degrees of freedom. In particu­
lar if the statistic becomes T^/tg to be distributed

as F(lü,N).
In a note on the paper by Maguire, Pearson and Wynn, Barnard

[2] has suggested the use of Kolmogorov's D statistic [13J9 (6%̂  to test 
the hypothesis that the process is Poissonian*.

As we have shown, the probability density of the length of an 
interval t between two consecutive events in a Poisson process is

dp » X e ^̂ dt »
This is the exponential distribution. The hypothesis that a 

process is Poissonian is equivalent to the hypothesis that the randomi 
variable t has the exponential distribution; we therefore proceed to 
develop some of the properties of this distribution*

The characteristic function of the exponential distribution is

r — ( X — i  6)t 1J e  dt - ^  - 1 .
O 1 -iô 1-i^

V
The cumulant generating function is therefore

X- (s) - -iog(r-i£_) • * 1 ,
X, rl X /  r

80 that
“ (r-1 ) 1 .

‘  V "

^The reference is made to the paper by Feller because the paper 
by Kolmogorov is not readily available*
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We calculate the following population moments s

K.1 - 1I
-̂ 2 ■ H.2
^ 3 " K.3

A -  ̂U ♦ 3*^ 2 X » '
We now consider the coefficient of variation of a sang)le of

size n defined by ,—
V_ ■ s.d. ■ V“2 •n  . —mean _t

THEOREM U»lt The distribution of converges to the normal
distribution with mean 1 and variance 1 #

n
PROOF: Cramer £3» 357 and has shown that for a random vari­

able which takes only positive values and whose first four moments exists 
the sanqpling distribution of the coefficient of variation n=l, 2,
. . is asymptotically normal, with mean and variance given by

y i  “
In the case of the exponential distribution these formulae lead to

• 1 • °(|).E(V„) •
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■ i  * ” ( »  •
Thus to the given order of approximation both E(T^) and Var (7̂ ) 

are independent of the parameter and to the same order of approxi­
mation 7^ is asymptotically normal with mean 1 and variance 1 •

It follows that to this order of approximation 7^ is a statistic
which leads to a strictly improper test. Prom a practical standpoint,
however, we are handicapped by the fact that the sizes of the terms 0(1)

n
and O/l. . \ are not precisely known and may indeed be quite large, so

that we are unable to make calculations of the size of saaple required 
for any given confidence limit*. We conj eotui-e that these approximating 
terms actually vanish, but have not proved this*

We now proceed to the main results of the chapter, idiich develop 
statistics for the Poisson process that are independent of X  and may 
accordingly be used to test the hypothesis that the process is Poissonian 
at all*

THEOREM U»2t Let x and y be two independent observations from 
an eaponential distribution

dp • X e ̂  dt*
The distribution of the random variable

w - ax + by , 
cx + dy
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lAiere a, b, c, d are constantŝ  cd)fO, and A  “ ad-bc ̂  O is indepen­
dent of the parameter ̂  •

There is no loss of generality in taking a, c, and d to be 
positive. We shall assume for convenience that the determinant

A  “I® b ho, i.e., a > b jic d / c d
a ̂  b implies that O, so that this case may be handled by the

interchange of the independent variables z and y» The necessity for 
the restriction cd>0 will be seen later#

IthtMMft. l&#lt
d cac ♦ dy c 

(the equalities occurring idien either z or y is zero)*
PROOFS Since A  >0, JÉ > b#.

So
ady

az » by ̂  az ♦ c m acx * ady « » ̂
cx + dy * cx ♦ dy c(cz + dy) c

Similarly
bcz

a^b£> _d_j^ br b
cx+dy = cx 4- dy a

x«o * ̂
a .d~ ox -»• dy — c

PROOF OF THEOREM U#2t We compute the cumulative distribution 
function, F(0).

P(w> &■) • P(ax +- by><9 (cz + dy))
■ P(x(a — ĉ ) > y(dA - b))*

We see from the lemma that neither (a - ce) nor (d<9— b) is negative,
Hence ,

P(w7 (9 ) - P(x > y) ,
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- - -- -■  —  -

P(w>0) • _f / \  ̂e”̂ e-^dxdy

Sa

ymQ xmdO-b y 
a-ce

dyynQ d6—b yS-cip

r
) ̂  e dy

1 â -c ̂
» 1 » oî «̂  • a-ce —b •

a-og

P(wé© ) - 1-P(w >© ) - da-b - F(0) .(d-c)**a-b

Thus F(0 ) is independent of and the theorem is proved* 
COROLLARY U»la The probability density function is

f(e) - _______^  .
tCd-c)©+ (a-t>;5

PROOF:
f(e) - d_ . p(a ) - di(d-c)e* c«-bi - (d-c)(ae-b)de iCd-cJ© ♦ (a-b)|2

2 2 m d B •odB^ ad-bd-d cà.̂ * bd—be
{ (d-c)e ♦ (a-b)̂  ̂

(6) £(d-c)a
THEOREM L*31 The random variable w has the rectangular distri­

bution if̂  aid only if, c * d#



PRCX2F: In Corollary it*!,, let c-dU Then
f(i9 ) " ^  • ad-bc_ - c ,

(a^b)^ «mb

CQROLIARI hmẐ t The random variable V • aac»by is distributed
x+y

uniformly over the range (b, a), a^b*
GORQT.tary h»3t The random variable V • x-y is distributed

uniformly over the range (—1^1)*
COSQT.TARY hmht The random variable V* x is distributed uni-

x+y
formly over the range (0,1)*

This special case could also be obtained from a theorem on gamma 
distribution, "If x and y are independent Gamma variâtes with parameters 

m respectively, the quotient x/x+y & Beta variate of the first 
kind with parameters and m*." Weatherbum (̂ 20, l53j*

^-1 -XThus if X and y are distributed as dp » x e dx and

dp “ y™̂ ê**̂ dy respectively, then x has the probability density
3»yfunction
"̂-1,_ „,m^X

_  94̂ (8 ) . e (1-6 )
^  B O  ,sr

which gives us, on putting ■ n • 3i, the density function

1 B(l,l)
We return to the general case,in which c^d*
It is advisable at this stage to show that the denominator does

( b a\not vanish within the range^ I ^1.
(d-c)^ (a-b) • 0 for & • a-b •

c-3
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Then *a — a-b “ ac-ad-ac+bc ■ - f

"c c-d c(c-d) c(c-d)
b —- a—b “ bc-bd-ad»bd ■ - ^  •
d c-d dCc-d) d(c-d)

These differences are of the same sign (i.e., a-b lies outside the
c-d

fa b]
interval |_ ĉ  dl ) if, and only if, c and d have the same sign. The
restriction cd ̂  O in the statement of Theorem 2t*l assures this*

We now transform our variable to u • ̂  ♦ a-b » The density
d—c

function becomes
^  M  .

(d-c)V
idiile the limits of u are

b + a-b » A  and a + a—b » ^ ,
d d-c d(d—c) c 3—c c(d-c)

f  i m = s y }  ' ^

Thus, if d > c, the frequency curve is a portion of the right 
half of the cui*ve

while, if dj/ c, we have a portion of the left half of the curve*
It follows that the frequency curve is either monotone increas­

ing or monotone decreasing as the case may be, and has no mods*
The moments of the distribution u are readily calculated. We

have
A

A (d-c)'
log u c(d-c)

A
d(d-c)
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T d log - 9Cd-c)2 c

80 that the mean of w Is

8Û.SO

W - ^ log d « au-b ;
Td-c)^ c d-c

(d-c)z ̂c(d-c) <i(d-cy)

-
cdld-oj2

so that
var (w) - r i_ - 7(d-c>^ j_ cd (d-cj2^ J

Furthermore, for every n^2

M  - /  , « 1 I A°~^ - A  %
/ “ (d-c)̂  n-1 I e°'^(d-c)““^

- A.” . .
(a-l)(d-o)**t (cd)“-^

Substituting a ■ c» 1, and b * d ■ It the following theorem 
is immediately obtained*

THEOREM It Jltt The distribution of the random variable
w “ X-

has mean
1 (2k log k - (k^-D)

(k-1)^



3X
and variance

Uk^ / 1 - (log k)^ ] 
-1)2 \ 5 rk-i)2̂  /(k-l)2 V S (k-1)

The distribution function in this case 1»
f(B) - gq-ric) .

(7) [(k-l)S* 1 * k]^

It is clear that as k^l, this distribution function con­
verges uniformly to the rectangular (-1*1)̂  so that the moments also 
converge to those of the rectangular distribution. For the rectangular 
distribution (-1̂ 1} the mean is 0 and the variance is 1 •J

So far we have made the restriction that cd> Oj when either
c or d is zero, one end point of the range / ̂  a I becomes infinite*

{d c/
Let us consider what hs^pens when e » QW We have the variable

V •SEtSZ .dy
We may proceed exactly as in Theorem U*l* It follows that the 

distribution function is
f(B) • ad ,

^ d& — (a-bjj

while the mean and variance are both infinite*
In particular, if a ■ d ■ I and b ■» 0, we have the following

theorem*
THEOREM U*5t The random variable TT “ y has the distribution 

function f(&) * 1 over the range (0, «>)•
(1 +9)2
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This result could also be obtained from a general theorem on 

ganma variâtes, Weatherburn ̂ 20, which states that the quotient
of two independent gansna variâtes with parameters ^  and m is a 
variate*

i-1 -Thus, if X and y have the distributions dp * x e"*dx and 
dp — y®“̂ e*“ydy respectively, then î has the probability density func­
tion

 âfji   ,

which gives us, on putting • m. ■ 1, the density function
(<9) - . 1 .

(1+6^)^

In the case where cd<0, our proof of Theorem U*1 is no longer
valid*

Consider the case in which c> 0, d<0 and avb * Then
c d

ad / b and a> be * 
c

So that, if cx ♦ dy> 0,

m
C

and, if cx ♦ dy< 0,

ax+by V «C» c • at 
cx+dy ' cx+dy

box
CB^dy ox*dy d 

Thus the values of the variate lie outside the interval /b, a\ •(fn)
We shall now give a proof of Theorem k»2 for this case*
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PROOFS We calculate the cumulative distribution function. 

There are two cases to be considered:
(i)

nr> y  & - 
c

This requires C3C ♦ dy > 0, i.e., x > -dy
c

and

i.e.,.

giving

Then

Then

ax*by > (9 (cx*dy) ,

b-d &  #
c9 -a

x-<b-d£]|jr y»a> r c<9 -a -\y -\x
P(w><9>a)« J J ^ e  . \e dxdy

c y*K) X— d
c

f  \  r  \I 1 -Ay ĉ -aJ / e j—e + e
-Xy("^

e j«e + e
y*o

dy

^  \ c<9—a+b— \ I c—d\
% - & y  - c 9 - % r -  A H y v * ~ c “ )J -X© ♦\e dyyO

c& -a ♦ c •
c&)-a*k-d(9' c-d



- ^ ♦ e^-a ^c-d (c-d)©- -{a-b)

(11)
V ̂ ô-z. 5 3

This requires cac + dy<_0, i.e., y
and

x.e»c..

gxvxng

Tiien

S2§2 ce ,cxtfrdy 

aac ♦ by > ( C3C dy) 6 ,

^  dzdy
7-0 _d0 -b

ai-ĉ

A  l ĉît' ̂  e  ̂«-e + e dy

— c ♦ a-c <9
c-d »-c^+ d^ -b

dy



- - c ■* çg -a » F.( (9-)t
C’-d —t&-b)

vhlch proves the theorem»
We note that

F,(§) • - _d_ - 1 - _c_ - Fg(§). ̂ c-d c-d
The cumulative distribution function is thus given by

F(e) -Eg(p),

- * \^0é: & 'c-d d ~ " c

- Fï(&) £#(9c •
Differentiating^ we have the density function

• Q* a •d c

We now consider the use of the statistic w to test the hypo­
thesis that a process is actually Poissonian*

From a single observation of the statistic we are led to a crude, 
but very sinple test of significance, which is independent of k*

THEOREM ]i*6t let w  be the value of w  » x-tor , for idiich  1
P(w w ) then w> w if, and only if, x;, *] • 7r ^ à \ ^



we have

80 that

i*e»̂

giving

36
WOOFt For the variate w • x-l

ID
k *- kw^ » (k-3l>̂ ŵ  ♦ (k*l)7J j

Then w> if, and only if,,

**ky k -(k-l) »̂

xk - x(k-I)jĝ  "4ĉ y ♦ k(k-l)^ y >
x(k*l)^ — xk ♦ k(k*l)^ y — k̂ y,

80 that x(k - (k-1)^ + k ♦ (k+l)̂ ) >y(k(k'i»l)̂  - k(k-a>^), 
x(2k-2kĵ ) >y ♦ 2k ,

giving
X y Ÿ y> lAioh is independent of k#

^ ~ r
It follows, therefore, that if a sample of two intervals is 

taken from a process, a single test procedure for the hypothesis that 
the process is Poissonian is to reject the hypothesis if

z > y* ( S  • 1 -^ )

where ^ is the desired level of significance#
If ^  is 0# 10, -Uiis leads to x>9y* For ^ “ 0#0$, we have 

x>I9y, while for %  - 0.01, we have x> 99y*
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We proceed now to a less crude test of significance*
It has been shown by Gorsline C^oJ that for random variables 

having the rectangular distribution the averages of sums of these vari- 
allies approach normality very quickly^; indeed, he has shown that for an 
average of as few as four obsezvations the normal approximation is very 
good*

We therefore consider the statistic

Wn * ^l~yi ♦ + ... ♦ ̂  *
nixi+yi X2*y2 %n +7h^

idiere the and y^ are drawn at random from the population of inter­
vals between events, with no interval appearing more than once*

THEOREM lt*7t For every n the statistic W^ is a test for 
the hypothesis that a process is Poissonian with the 0.05 probability
level given approximately by Iw^ j ̂  1.155 and the 0*01 level by

An

l ' ^ >  iiM*2 •
W
PROOF* If the hypothesis that the population of intervals is 

exponential, i.e., that the process is Poissonian, is true, then Wq  is 
asymptotically normally distributed with mean 0 and variance 1 *

55
The standard deviation of the distribution is thus 3L * The

0*05 significance level is given approximately by a 2 deviation, and 
so we would reject the hypothesis if f WL / > 2 ■ 1.155 *

Similarly, taking 2.5 <3̂ for the approximate 0.01 level, we 
have the criterion JW^f >  1*W&3 .
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Conversely^ we may calculate the sanqple size required in order

for I I Z to be the region of acceptance for the hypothesis by the
formulae n • I4 at the 0.0$ leve^ and n •= 2$ at the 0.01 level* 

3Z^ 12Z^



CHAPTER V

THE PROBLEM OF DISCRIMINATION BETWEEN FURRY 
AND POISSON PROCESSES

In the previous chapter we have developed a test of significance 
for the hypothesis that a given process is Poissonian; we now proceed in 
the same way to consider the Furry process»

THEOREM 2*lz For the Furry process, if x is the duration of 
the interval (i.e., the interval in which the population size passes
from m to m + 1), and y is the duration of the interval, then
ihe distribution of the random variable

^  ~ cx 4̂  dy

is independent ofX •
PROOF» This is similar to the proof of Theorem U»2*
From the pz*oof of Lemma i»*l, we see that the range is again

frfj- We shall again take c, d> 0 and a ̂  b
c ÏÏ

We have
p(ir?«) - « x >  ^ ^ r ) ,

1*®"' GO

dxdy
7 ^  x-pÉÉZk yBfrnQS



80 that

ho

ooA oo- ny r -Xmxl ne / -e / dy
y-0 ^ -"de-b y

a-og

J dy 
y ^

n
"dô«E“
a-c0

n(ai-cé)
n(a^c^) 4- m(d^-^ '

• 1 - K w > © )

■ Bi(d<?»b) » F( ,
(md-nc)^ 4>(naiHnby

Thus F(^ ) is independent of \  and the theorem is proved»
This is the same function as was obtained for the Poisson pro­

cess with the substitution of na, mb, nc and mi for a, b, c and d» (5)* 
It follows immediately that the mean of the distribution for the Furry 
process is given by

na>Hnb ♦ Ann _ log md . 
nc«4a& (md-nc) nc

The variance is 2
2 2 2̂ &



la
The frequency distribution is given by

f(9 ) " ______ an A  •
^(md-nc)^ ♦(na-ab^

CORQT.TARY 5.It For the above Furry process the random variable
V • x-y has density function

f(9) -  a m   ,
I (m-n)©

the mean is
n*m + 2kn log m ,
n-Htt n

«id the variance ie
XI \ ̂  *1

ri_ -(log s ) I ,

These results follow immediately from those above by putting
a » c » d » 1 and b » -I*

We now consider the above random variable with the restriction
n » and note that the mean, the variance and the density function
depend only on the ratio k » n *

m
We have

f(s>) - 2k , 1,
((l-k>©*(l+k))2

the mean is

^  (k-1)^
the variance is

- 2k log k

- (ipg Wfj (k3) 2j
2
k
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These formulae are similar to, but not identical with, those

obtained in Theorem 1**3# (They are actually the same if 1 is substi-
Ic

tuted for k*)
THEOREM $*2 g For k ̂  1, is a strictly increasing function

of k*
PROOF: 2

• k" - 2k log k -> H
(k-1)-

Ck - 1 - log k] -ZOf - 2k log k - j 
“  (k-l)2

“ -- 2-Ç. (k̂  - k — k log k - k + 1 ♦ log k - k^+2k log k+1)
(k-l)3̂

* ^  ̂(k log k — 2k ♦ 2 ♦ log k) ,
(k-1)^

The denominator is positive*. We conplete the proof of the theorem by 
showing that the numerator N(k) ■ k log k - 2c + 2 ♦ log k is positive*

d N(k) ■ 1 ♦ log k - 2 ♦ 1 » k log k - k + 1 .
k  T -------

But for k> 1, k log k k * 1 is an increasing function, its deriva­
tive being log k*.

When k » 1, we have k log k - k ♦ 1 * 0, so that for k> >|
we have d N(k) > Q* Thus, since N(0) - 0, H(k) > 0 for all k> 1

dfe
and the theorem is proved*

S i n c e » 0» it follows that for all k >1* This
leads us to the following theorem*
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THEQBEM 5»3t If ••• 4̂ )» ••• is &

sequence of pairs of positive integers such that k. » °̂i > k > 1  for
°i

All i, and if denote the lengths of the and n^^^

intervals respectively, then the statistic

N i-3i

is asymptotically normally distributed with positive mean, provided that 
the series

~ H  /1 . (log fci)*’
^   ̂ i 55

diverges.
PRQOFt is the average of a sum of statistics of the form

a:«>y idiich are uniformly bounded and such that the sum of the variances 
x^y
diverges. Hence, by one of the forms of "toe central limit theorem. 
Feller 20^, the distribution is asynptotically normal, with mean

i«N
% -  & r  l̂i

But

THEOREM If, in Theorem 5.3, ■ k > 1 for all i,̂ then
the statistic



m

«n “ » 1-1
Is asymptotically normally distributed with mean

^  variance,

PROCF t The sequence

2

r  l*k̂  / 1 - (log k)^
^(k-l]?^ ̂  (k-l)2 y( diverges.

We shall now make use of these theorems in the formulation of 
a test for dis crimination between Boisson and Furry processes»

Consider the statistic

1 E  , n i ^♦ykL

tdiere no interval is used more than once and idiere k is an integer; 
for exairple, if k » 3, the sequence might include

"^"^3 , ^*^6 , , ...
%+y 12

The third interval, having already been used as a *y» could not be 
regarded as an *x' .

THEOREM 5.5t For every n the statistic is a test for
discrimination between the hypothesis that a process is Poissonian, and 
the hypothesis that the process is a Furry process.

PBOOFt If the process is actually Poissonian is distri­
buted asyz^totically normally with mean 0 and variance 1 .

3n
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For a Furry process is asymptotically normal with mean
2

and variance k •

We discriminate as follows* ]Let n be chosen so that 

2/1 I* The critical value of ilL is then %  “ 2 *
7 Æ

If ’iTjj ^ 2 , we accept the Poissonian hypothesis. If ^ 2 ,
VTn

we accept the Furry hypothesis* The probability that assumes a
2value greater than » if the hypothesis thàt the process is Poisson­

ian is true, is approximately 0*02S* the probability of a value less 
than 2 for a Furry process is also 0*025* Thus 0*025 is the

probability of an error of either the first or second kind in the termi­
nology of N^mian*

The 2*5 ̂ Limit, for idiich n is chosen so that

gives errors of 0*006*

In the following table values are given, for various k, of the
2mean /̂ /V7» variance cT̂  of the variate for the Furry

Zi *yki
X —yprocess# We also give values of Uj* the number of ratios i ki 

needed for W_ to dlecrininate at the 0*05 level of significance* of



m

the critical value of and of where is the number of

intervals required to give the number of of ratios*

k
2

^k w*n

2 •227U #3127 100 .H 55 398

3 .3521 #281*1* 1*0 #1826 177

It #It3Wt #2593 25 #2310 132

5 J tg lil #2382 19 #2653 115

6 #51*00 #2205 16 #2688 H it

11 #6725 #1616 9 #3850 99

Thus, for exaiq}le, if k is 5 , then n^ ■ 19> -  115

so that
W - 1 /*1'"^5 + # # # * ̂ 3 ^ 1 1 5  ) . 

*23*^115 /

We take 19 pairs of observations, idiich requires that llS events occur* 
We accept the Poisson hypothesis if W^ ̂  we accept

the furry hypothesis if W^^ 0*2653*
The difficulty occurring in the calculation of is indi­

cated in the exmple for k *■ 3 given immediately above Theorem 5»5*
We may, however, calculate by the following formulaet

(i) If nĵ « O(mod (k-1)),

(ii) If = pCmod (k-1)), O ,



1*7

k ♦ P i »

-where denotes the greatest integer not exceeding *
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