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CHAPTER I 

INTRODUCTION 

1.1 Fluctuations in the Measured Properties 

of Systems 

In an endeavor to understand the nature of physical systems, mea­

surements of certain defined properties are essential. These measure­

ments not only provide empirical data to characterize the systems, but 

also give insight into the formalism of a set of hypotheses on which 

generalizations can be made for a better understanding of the system. 

The advantages of generalizations are multifold; they are employed to 

redefine the properties of the systems, they are used to predict the 

behavior of a similar class of systems, they point to the philosophy of 

future measurements, etc. This is the scientific method. 

Any kind of measurement of a defined property of a physical system 

is uncertain in character. The uncertainty can be brought forth by 

several factors, e.g., the uncertainty could be inherent in the defined 

property itself; it could result through the influence of the environ­

ment; it could be a function of the equipment used for measurements, 

the techniques used for analysis, or even the experimenter himself; etc. 

In this perspective all measurements are probabilistic in nature and, 

therefore, any hypotheses derived from them should involve representa­

tions in terms of averages, e.g., means, variances, correlations, etc. 
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For bur mode of analysis, we define fluctuations in a defined property 

of a physical system as a random uncertainty in the measurement of the 

property. In general, these fluctuations could exist in a class of 

identical systems (ensemble) at an· instant of time; and also, as a 

function of time in a single system (time evolution of a system). The 

random nature of fluctuations in our definition should be emphasized. 

We exclude, as far as possible, any kind of biases or trends from our 

uncertain measurements to define fluctuations. In this sense, any kind 

of measurement of a defined property of a physical system has fluctua­

tions ultimately. 

1.2 Characterization aild Identification of 

Different Kinds of. Fluctuations 

Over the years, in the study of fluctuations, the term "noise" has 

been used to represent "fluctuations". We shall use both terms inter­

changeably. Because of the random nature of. noise we have to resort to 

averages of measured quantities (for convenience!) in order to 

characterize different kinds of fluctuations. In fluctuation theory, 

the concept of power spectral density (Papoulis; 1965, Chapter 10), 

SXX(f), of a fluctuating property x(t) of a system as a function of 

frequency f, has received considerable attention as an average measured 

quantity to characterize and identify different kinds of fluctuations. 

We shall postpone the detailed discussion of SXX(f) till Chapter III 

where mathematical tools used in the fluctuation theory are discussed. 

However, for the present analysis, the various kinds of noise can be 

identified from the features of the measured SXX(f) as a function of f 

for a particular system. Some of the important kinds of noise are 
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classified as follows:~ 

(a) White noise: In this case, SXX(f) = constant over the 

frequency range of interest (e.g., Nyquist noise, Shot noise 

(Van der Ziel, 1959)). 

(b) Generation-Recombination (g-r) noise: In this case, 

SXX(f) ex: 1 2 typically, where T is the time constant 
1 + (27TfT) 

of a generation-recombination process occurring in the 

physical system. This kind of noise is of common occurrence 

in semiconductors where we have the generation and recombi-

nation of holes and electrons (Vander Ziel, 1959). 

(c) Excess noise: a. 
In this case, SXX(f) ex: 1/f , where a. is a 

constant close to 1. 

(d) Burst noise: In this case, SXX(f) has a higher value over a 

certain short frequency range as compared to the value over 

most of the frequency range. 

1.3 Low Frequency Fluctuations (1/f Noise) 

Because excess noise has a spectral density SXX(f) ex: 1/fa. (a.~ 1), 

it is generally referred to as 1/f noise. This kind of noise is the 

dominant form of noise at low frequencies because of its inverse 

frequency dependence .and generally exists in systems which are in 

thermodynamic nonequilibrium. 1/f noise was first observed by Johnson 

(1925, 1971) around 1925 in electron tubes. Since then its presence 

has been found not only in different electronic systems but also in 

various other physical systems (see Chapter II). 
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1.4 1/f Noise in Electronic Systems 

Over the last fifty years electronic systems have received consi­

derable attention in the instrumentation technology. Most properties 

of the physical systems are now transduced into electronic signals 

because of their ease in processing. In other words, electronic 

systems constitute the heart of the measurement method. Now, since 

electronic systems also possess fluctuations, the noise in electronic 

systems imposes a lower limit to their applicability for low level 

processing of the transduced signals of the properties of physical 

systems. This is a very strong justification for why noise in 

electronic systems has been studied extensively over the last half 

century as compared to direct basic fluctuations of the defined pro­

perties of other physical systems. 1/f noise in electronic systems 

imposes a fundamental lower limit for low-level low-frequency signal 

processing and, therefore, has shared extensively its importance in the 

study of electronic noise. 

Since the first observance of 1/f noise in electron tubes by 

Johnson (see Section 1.3), electro~ic 1/f noise has been found in 

almost all electronic systems (see Chapter II) in a thermodynamic 

nonequilibrium situation, and the frequency range of observance has 

been more than twelve decades (see Chapter II). In particular, to 

name a few, electron tubes, resistors, metal films, p-n junction diodes, 

bipolar transistors, Zener diodes, FET's, MOSFET's, superconductors 

have all been shown to possess 1/f noise. In an effort for the search 

of the origin of 1/f noise several noise mechanisms have also been 

proposed by several researchers (see Chapter IV). This has led to a 
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variety of different names to describe the same 1/f noise depending 

upon its relationship to the other properties of the electronic system 

under investigation. "Flicker noise", ''Contact noise", "Current noise", 

"Pink noise", "Excess noise", "Surface noise" etc., are the names used 

to describe the same 1/f noise. In retrospect, considering the modern 

state of research in 1/f noise, it would not be an exaggeration to make 

the statement that "All electronic devices/components/systems in 

thermodynamic nonequilibrium possess 1/f noise at low enough frequen­

cies". It should be mentioned that, from the experimental standpoint, 

it is probably more difficult to refute· this statement than to verify 

it. 

1.5 Why Study 1/f Noise? 

Figure 1 shows' the electromagnetic spectrum (Heirtzler, 1962). It 

is drawn open-ended at the two ends to indicate the point that no 

limits to frequency can be assigned to the electromagnetic phenomena. 

The low frequency end (Le. below 1 Hz), often referred to as the 

micropulsations region, is attaining more and more attention in modern 

investigations. Some of the phenomena that occur in this region are also 

listed in Figure 1. It should be mentioned in passing, that since the 

frequency bounds on the spectrum do not exist, if we choose f = 1 Hz as 

a reference, there are probably as many decades of useful phenomena 

occurring above 1 Hz as there are below 1 Hz. Now, since 1/f noise 

dominates at low frequencies its study proves important because it 

tends to mask several interesting phenomena that occur at low frequen­

cies. Inherent in this statement is the idea that understanding of the 

1/f noise mechanism could reveal methods whereby it could be reduced in 



FREQUENCY (Hz) 

~rrrrrrrrrrrrrrrrrrrrrl rrri_ I I I I I I I I I I I I I I I I I I I I I I I I I lo-13 lo-12 1o-11 lo-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1oo 101 102 103 104 105 106 107 108 109 1010 1011 

WAVELENGTH(METERS) 

X RAYS 

~I 
GAMMA RAYS ~I 

INFRARED RADIO 
COMMUNICATIONS 

AUDIO 
FREQUENCIES 

I~ 
~~ MICRO 

PULSATIONS 

LIGHTNING DISCHARGE 
GEOPHYSICAL PHENOMENA 

ASTRONOMICAL MAGNETIC WAVES 

Figure 1. The Electromagnetic Spectrum (Heirtzler, 1962) 

Ol 



magnitude, thus making several interesting low frequency phenomena 

apparent. Investigation of 1/f noise in physical systems also proves 

worth while from several other standpoints: 

(a) The reduction of 1/f noise in electronic systems helps in 

developing more sensitive low frequency instrumentation. 

(b) The study of other kinds of noise (e.g. thermal noise) 

becomes more difficult in the presence of 1/f noise because 

of the dominance of 1/f noise at low frequencies. If, how­

ever, the 1/f noise mechanism is understood, its reduction 

makes the investigation of other kinds of noise easier. This 

aspect is illustrated by Figure 2, which shows the noise 
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power density spectrum of a silicon single injection diode at 

high electric fields where the hole mobility is a function of 

the electric field (Tandon, 1975a). In this case, the interest 

is in determining the high frequency asymptote of the measured 

noise power spectral density in order to search "hot carrier" 

effects. Note that because of the presence of 1/f noise, the 

determination of the high frequency asymptote within the fre­

quency range of measurement becomes difficult. 

(c) The phenomena of so-called "drift", "running-away" of the 

properties of physical systems involve low frequency (long 

term) changes. A study of 1/f noise, because of its higher 

magnitude at low frequencies, could provide insight into 

such phenomena. 
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1.6 Purpose of This Thesis 

In spite of the immense amount of. effort 7 both experimental and 

theoretical in the understanding of 1/f noise, the mechanism generating 

it is still not well understood (Bell, 1968; Muller, 1971; Hooge, 1972; 

Malakhov, 1975). 

9 

In this thesis, the phenomenon of 1/f noise is viewed from a 

general standpoint as being existent in a wide variety of physical 

systems, not necessarily electronic, which are in thermodynamic non­

equilibrium. The idea that 1/f noise results from a nonstationary sto­

chastic process (see Chapter III for definitions) is proposed and evi­

dence is provided to support it. This is a new approach to the problem 

of 1/f noise. The fundamental occurrence of 1/f noise ultimately at low 

enough frequencies in open thermodynamic physical systems is also 

emphasized. 

In Chapter II an account of some of the major experiments on 1/f 

noise is given. Some of the more recent measurements on non-electronic 

systems are also presented. On the basis of the empirical information 

through measurements, certain hypotheses are made regarding the process 

generating 1/f noise. It is emphasized that the process should satisfy 

these hypotheses. In Chapter III the relevant mathematical definitions 

and concepts involved in the characterization of fluctuations are given. 

These are later used in the subsequent Chapters. Chapter IV contains 

a discussion of the important, different theories which purport to ex­

plain the 1/f noise phenomenon since 1925. Some of the mathematical 

difficulties associated with arriving at the 1/f type power density 

spectrum are given. A classification of the approaches, in an effort to 
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understand 1/f noise, is attempted and an evaluation is made in terms of 

the stipulated hypotheses in Chapter II. Finally, the need for a gene­

ral 1/f noise theory is recognized. The nonstationarity of the stocha­

stic process responsible for 1/f noise is pointed out in Chapter V 

using analytical arguments. This is based on the hypotheses cited in 

Chapter II. In Chapter VI a possible class of nonstationary processes 

is analyzed, in terms of analytical conditions, which could be respon­

sible for the generation of 1/f noise. A time-dependent autocorrelation 

function for such processes is proposed. Finally, in Chapter VII, an 

electronic system, namely an ion~implanted resistor, is picked as an 

example to demonstrate the nonstationary character of the 1/f noise 

mechanism. Measurements on the electronic 1/f noise and the long term 

variation of the resistance are reported, which suggest the existence 

of a nonstationary stochastic process responsible for the generation of 

1/f noise. 



CHAPTER II 

EXPERIMENTS ON 1/f NOISE 

In this Chapter some of the major experiments conducted in the 

study of 1/f noise are reported. The objective is to document the 

existence of the 1/f type fluctuations in various systems (both elec­

tronic and non-electronic) without dealing with the details of the 

relationship of 1/f noise to the properties of the system. 

2.1 The Empirical Nature of the 

1/f Noise Phenomenon 

The support for the existence of fluctuations responsible for the 

generation of 1/f noise is based purely on experimental grounds. We say 

a physical system possesses 1/f noise if the measurements of the noise 

power spectral density (see Chapter III) of a property made on the 

system reveal the 1/fa (a = constant) dependence at low frequencies 

without significant departure over a wide range of frequencies. In 

other words, the characterization of the existing excess noise pheno­

menon in a physical system is made through the spectral (frequency) 

distribution of the noise power spectral density of a property. 

2.2 1/f Noise Measurements in 

Electronic Systems 

In electronic systems noise measurements normally involve 

11 



estimating the spectral density of the fluctuating voltage or the 

current (SW(f) in V2/Hz or SII(f) in A2/Hz respectively). These 

estimates can in almost all cases be related to the resistance flu-

ctuations. Table I gives a brief smnmary of major electronic systems 

in ~hich the presence of 1/fa type noise has been reported in the 

12 

measured SW(f) or SII(f) in a thermodynamic nonequilibrium situation. 

In constructing this Table out of the vast amount of experiments, an 

attempt is made .to select only the ones which are considered represen- ' 

tative of a given type of system and which indicate somewhat the 

limits of frequency over which the 1/fa type behavior is observed. An 

effort is also made to include recent information. It is evident from 

the Table that 1/f noise exists i~ a ~ide variety of electronic systems 

and, at this time, extends in frequency range from approximately 

. -7 6 . 
5 x 10 Hz to 10 Hz (the low frequency end is the experimental limit, 

whereas the high frequency end is decided by other noise mechanisms, 

e.g. Nyquist noise, which tend to dominate at high enough frequencies). 

This is a huge frequency range for any phenomenon to be documented. As 

a counter example, one may state that the Nyquist theorem· for thermal 

noise of a resistor (SW(f) = 4kTR, where k = Boltzmann's constant, 

T = absolute temperature and R = resistance) is firmly accepted, al-

though its experimental support is outright scant, if compared to 1/f 

noise, e.g., there exist no measurements to demonstrate Nyquist noise 

-3 down to even 10 Hz. 

Figures 3, 4, 5, 6 and 7 are extracted from Table I as classic 

examples where the occurrence of 1/f noise at very low frequencies is 

evidenced. It should be mentioned that within measurement errors, no 

departure from the 1/fa behavior is observed, although some 
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TABLE I 

EVIDENCE OF 1/f NOISE IN ELECTRONIC SYSTEMS 

Approximate 

Electronic Particular Frequency 

System Reference Subsystem Range (Hz) 
Investigated For Which 

sxx(f) a: 1/fa 

Rollin (1953) Pyro1ytic Carbon 2.5xl0-4 - 101 
Figure 3 Resistors a ~ 1 

0 
106 

Van Vliet (1956) Cds-Ag Crystals 5xl0 -

Resistors a ~ 1 

1 106 
Montgomery (1952) Ge :E'ilaments 

2x10 -
a ~ 1 

Bilger (1974) Ion-Implanted -4 5xl0 - 106 
Boehm (1975a) Resistors a ~ 1 

p - N Firle (1955) Si P-N Junction 6xl0-5 - 10-2 
Junctions Figure 4 Diode a = 1.2 

Ringo (1972) Si Zener Diodes 
10-l - 101 

Zener a ~ 1 
Diodes 

10-4 - 5xl0-l 
Boehm (1975a, 1975b) Si Zener Diodes a ~ 1 

Baldinger (1968) Si Bipolar 10-4 - 5xl0-2 
Bipolar Figure 5 Transistor a = 0.86 
Transistors 

1 103 
Jaeger (1970) Si Planar 2xl0 .-

Transistors a ~ 1 

Au, Ag, Al, 2 4 
Hoppenbrouwers (1970) Cu, 1.3xl0 - 5xl0 

Metal Pt, Sn, Cr Films a ~ 1 

Films 
Cu, Ag, Au, Sn, 10-l - 1 

Clarke (1974) Bi, Manganin 2.5xl0 

Films 
a ~ 1 

FETS Lauritzen (1965) Si FETS 10° - 104 
a ~ 1 
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TABLE I (Continued) 

Approximate 
Electronic Particular Frequency 
System Reference Subsystem Range (Hz) 

Investigated For Which 
sxx(f) a: 1/fa 

Mansour (1968) -5 lxl0° Hawkins (1968) Si MOSFETS 5xl0 -
1 < a < 1.2 

MOSFETS Figure 6 

101 4 
Berz (1970) Si MOSFETS - 4xl0 

a ~ 1.2 

Si Point Contact 
102 - 104 

Hooge (1972) Thermo Cells and 
Thermo Ionic Solution a ~ 1 
and Cells 
Concentration 

Intrinsic and Cells 
102 .104 Kleinpenning (1974) Extrinsic Ge -

and Si Thermo a ~ 1 
Cells 

Filament 0 103 
Johnson (1925, 1971) 8xl0 -

Electron Tubes a ~ 1 
Electron 

Temperature 
4xl01 - 104 Tubes 

Graffunder (1939) Limited a ~ 1 Electron Tubes 

Super- Clarke (1975) Josephson 5xl0-2 - 102 
Conductors Junctions 0. 9 < a < 1.15 

Integrated Caloyannides (1974) Operational -7 5xl0 - 10° 
Circuits Figure 7 Amplifier a = 1. 23 
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of them were deliberately set up to search for any kind of levelling off 

at the low frequency end •.. Also, since vastly different techniq~es were 

used to estimate the power spectra in these measurements, viz. slow 

tape recording with speed-up for analysis, optical techniques, electro-

nic sampling with digital processing, it is highly improbable that the 

method of analysis or measurement is responsible for the apparent 1/f 

noise. 

A certain objection can be raised .regarding the validity of the 

low frequency noise spectral estimates as depicted in Figures 3 through 

7. Since the measurement of such fluctuations, which are typically in 

-6 the microvolt range, extend over rather long periods of time (1/10 Hz 

~ 12 days), the stability of the noise spectral analyzer itself, or of 

any reference quantities, may become a problem, such that the fluctua-

tions of the analyzer (or of the references) may not be separable any 

longer from the fluctuations of the system under investigation. This 

problem is, however, solved by stating that the electronic system com-

bined with the analyzer can be treated as a generator of 1/f noise, 

again demonstrating that the presence of 1/f noise is universal. 

2.3 Evidence of 1/f Noise in 

Non-Electronic Systems 

Recent investigations show that 1/f noise is not restricted to 

electronic systems only. Table II lists situations where the measure-

ments on a fluctuating property of a system in thermodynamic nonequili-

brium reveal 1/f noise. Figures 8, 9, and 10, taken from Table II as 

examples, illustrate that the spectra, within errors of estimation, 

possess the 1/fa dependence at low frequencies. 
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TABLE II 

EVIDENCE OF 1/f NOISE IN NON-ELECTRONIC SYSTEMS 

Particular 
Approximate 

Subsystem Property 
Frequency 

System Reference Range (Hz) 
Investi- Analyzed For Which 
gated sxx(f) ex: 1/fa 

Insulin Fluctuations 
10-8 - 10-s 

Campbell (1972) Needs of in the Rate 

Figure 8 an Unstable of Insulin ('}. ~ 1 

Bio- Diabetic Intake 

physical Voltage 
Verveen (1968) Nerve Fluctuations 10-l - 102 

Figure 9 Membrane Across Nerve ('}. ~ 1 
Fibres 

Angular 

Astro- Munk (1960) 
Fluctuations 10-9 - 2xl0-8 

Earth in the 
nomical Figure 10 Earth's 

('}. = 2.8 

Rotation 

Northwest Acoustic 
101 - 3xl03 

Perrone (1969) Atlantic Ocean 

Ocean 
Ambient ('}. ~· 1 
Noise 

Physical Frequency -7 10-6 
Attkinson (1963) Quartz Fluctuations SxlO -

Crystals in Quartz ('}. = 1.4 
Crystals 
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2.4 Basic Hypotheses About 1/f Noise 

Considering the evidence provided in Sections 2.3 and 2.4, the 

following three hypotheses can be made about the 1/f noise phenomenon, 

with reasonable confidence: 

A. The phenomenon of 1/f noise· is general; in particular it is 

not restricted to electronic systems; it exists objectively, 

and is not affected by the type of measurement or mode of 

analysis. The fact.that the study of 1/f noise has been asso-

ciated with electronic systems is incidental because of their 

developing utility in the last fifty years. 

B. Physical systems are capable of fluctuations in their pro­

perties whose spectral density is of the type SXX(f) ~ 1/fa, 

over all observable frequen~ies. In this perspective, 1/f 

c. 

noise is "unbounded" as regards the frequency range of its 

existence is concerned. Practically, the high frequency end 

of SXX(f) could be masked by other noise mechanisms but the 

a 
low frequency end always reveals the 1/f dependence. 

. a 
The observed spectra of the type SXX(f) ~ 1/f are stable 

in the sense that repeated observations give rise to the same 

spectrum, within errors of observation. This aspect is de-

mon1strated by measurements and quantitative evidence for a 

special case of an electronic system is given in Chapter VII. 

As a consequence of the above hypotheses one may state that 

ultimately, any physical system produces fluctuations in its properties, 

·which are of the 1/fa type when au't of the~dynamic equ·ni:PP±um• This 

statement is true in such a widespread class·of·systema.~ that it could 
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be accepted as a general empirical fact. 



CHAPTER III 

RELEVANT MATHEMATICAL CONCEPTS INVOLVED IN THE 

CHARACTERIZATION OF FLUCTUATIONS 

Because of the random nature of fluctuations, various methods can 

be used to describe them. In general it is not possible to completely 

specify a random process. The description of a random process is sta-

tistical, i.e., the characterization is in terms of certain averages, 

and therefore, there exists an inherent limitation to the amount of 

knowledge one can ob.tain from such a study, due to the lack of complete 

information. In this Chapter, definitions and concepts which lead to 

the notion of power spectral density as an average quantity to chara-

cterize a random process are discussed and examined. Since the existe­

<l nee of the excess noise phenomenon is evidenced by the 1/f dependence 

of its power spectral density (see Chapter II), an understanding of the 

concept of power spectral density is developed in this Chapter which is 

later used in the subsequent Chapters in an effort to investigate some 

of the properties of excess noise. 

3.1 The Concept of a Stochastic Process 

A stochastic process (also called a general random process) is an 

extension of the concept of a random variable (Lathi, 1968, Chapter 3; 

Papoulis, 1965, Chapter 9). In the case of random variables, one 

assigns a number x(~) to a random outcome ~ of a given experiment. In 

27 



28 

the case of stochastic processes, to each outcome ~ a waveform x(t) is 

assigned (which is a function of time), according to some rule x(t,~). 

Thus the space consisting of outcomes is a collection of waveforms, 

called an ensemble. The family of functions, one for each ~' is 

referred to as a stochastic process. 

A stochastic process can be viewed as a function of two variables 

t and ~ (Figure ll(a)). The domain of ~is the set of all possible 

outcomes, and the domain of t is the set of real numbers (the time 

axis). For a specific outcome~., the expression x(t,~.) signifies 
1 1 

a single time function. For a specific time ti, x(ti'~) is a quantity 

depending on~' i.e., a random variable. Finally, x(t.,~.) is a mere 
1 1 

number. It is common practice to represent a stochastic process by the 

notation x(t), for convenience, where the dependence on~ is implied. 

The fluctuations, as defined in Chapter I, are stochastic in nature. 

In general, the family of functions of a stochastic process are compli-

cated indeed. As an example, suppose x(t) represents the irregular 

motion of a particle due to its impact with the surrounding medium 

(Brownian motion - e.g. motion of electrons in a resistor). A specific 

outcome of this experiment is the selection of a particle, and the 

resulting x(t) is a curve. This curve is irregular and cannot be 

described by a formula. Now, if the motions of the different particles 

are considered, a family of time functions of the type shown in 

Figure ll(a) are obtained, constituting a stochastic process. It 

should be mentioned that if a specific x(t) is known for t < t 1 (see 

Figure ll(a)), one cannot predict its future values. Also the known 

value of x(t) at t = t 1 for a particle does not make it possible to 

estimate the exact value of x(t) of an another particle. 
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Figure 11. Graphical Representation of a Stochastic Process. 
(a) Ensemble Waveforms (b) . Illustration for 
Interpreting Probability Density Functions 
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3.2 Probability Density, Mean, Variance, 

and Autocorrelation Function of 

a Stochastic Process 

Any knowledge about a stochastic process can be obtained only by 

using a probabilistic description. Figure ll(b) is derived from 

Figure ll(a) where the amplitudes x(t,~.) are drawn on a single time 
~ 

axis. The first-order probability density, p(x;t), is defined as the 

probability density of the amplitudes of the stochastic variable x(t) 
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at time t. Thus, p(x;t)dx represents the probability that the amplitude 

of x(t) will lie in the interval (x, x+dx) at the instant t (see 

Figure ll(b)). The interpretation of the second-order probability 

density function for the process x(t) is made in terms of the probabi-

lity, p(x1 ,x2;t1 ,t2)dx1dx2 , of the joint event when the amplitudes of 

the variable x(t) are in the range (x1 , x1+dx1) at t = t 1 and in the 

range (x2 , x2+dx2) at t = t 2 (see Figure ll(b)). Here p(x1 ,x2 ;t1 ,t2) 

is the second-order probability density function for the process x(t). 

Higher order probability density functions can be defined similarly, 

but they will not be considered here, as a description in terms of the 

second-order probability density function suffices for the computation 

of variance, autocorrelation and powe.r spectral density for the process 

(Lathi, 1968, Chapter 3). 

The computation of mean, variance and autocorrelation function is 

done using the first-order and the second-order probability density 

functions as follows: 

First-Order Mean, x(t) _ +! x p(x;t) dx (3.2.1) 

- 00 
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Second Order Mean, x2 (t) = +~x2 p(x;t) dx (3.2.2) 
- 00 

+oo 
Variance, (i (t) = = J ( x - x(t) ) 2 p(x;t) dx 

- 00 

(3.2.3) 

= 

00 co J Jx1 x2 p(x1 ,x2;t1 ,t2) dx1 dx2 (3.2.4) 
-co -co 

3.3 Stationarity, Nonstationarity 

and Ergodicity 

A stochastic process is defined to be strictly stationary if all 

orders of its probability density functions are independent of the 

shift in the time origin. Mathematically, for a strictly stationary 

process: 

p (x;t) = p(x) 

= 

= 

where Tk = tk+l - t 1 (k = integer } 1) (3.3.1) 

and in particular, 

x(t) = x (3.3.2) 
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x2(t) 
2 

(3.3.3) = X 

ci (t) = cr2 (3.3.4) 

~(tl,t2) = ~(t2 - tl) 

= ~X(T) where T ;:: t2 - tl . (3.3.5) 

In certain cases a stochastic process may have only the first and 

the second-order probability density functions independent of the shift 

in the time origin, whereby, Equations (3.3.2) to (3.3.5) are true. 

Such a process is called a wide-sense stationary process. 

A nonstationary process is defined as a stochastic process when 

any order of its probability density function is dependent on the time 

origin. In this respect, stationarity is a special case of nonsta-

tionarity. Strictly speaking no physical process is stationary because 

every physical process must begin and end at some finite instants of 

time. Obviously, the statistics cannot be independent of the time ori-

gin in such a case. A stationary process is an idealized model. 

An ergodic stochastic process is a special case of a stationary 

process. For an ergodic process the ensemble averages (over differe~t 

members 

members 

X 

2 
X 

of the ensemble) 

of the ensemble). 

+oo 
- J x p(x) dx 

- 00 

p(x) dx 
- 00 

are equal 

Thus, 

---= x(t) 

= 

to the time averages 

-
+/2 

Hm ~ x(t) dt 
T~ - T/2 

+ T/2 

£im! fx2 (t) dt 
T~ T_ t/2 

(over one of the 

(3.3.6) 

(3.3.7) 
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+oo 

( X )2 /< 2 
- X - X - X ) p(x) dx 

- 00 

+ T/2 
--"- )2 tim~/< ;(;) 2 

= ( x - x(t) - - x(t) ) dt (3.3.8) 
T~_ T/2 

00 00 

~(T) :: J Jx1 x2 p(x1 ,x2 ;T) dx1 dx2 
-oo -oo 

+ T/2 

/x(t) x(t+T) dt (3.3.9) 

T/2 

Figure 12 (Lathi, 1968, Chapter 3) summarizes the concepts of non-

~tationarity, stationarity and ergodicity. 

3.4 The Concept of Power Spectral Density 

The power spectral density SXX(f) (f = frequency) of a stochastic 

process x(t) gives the power distribution per unit frequency of the 

various components present in the process as a function of frequency. 

Any stochastic process can be viewed as an energy signal and therefore 

can be represented in terms of SXX(f) by using Fourier Transform techni-

ques (Lathi, 1968, Chapter 3). 

3.4.1 Power Spectral Density of~ Stationary 

Process 

For a stationary stochastic process x(t), the power spectral 

density is defined as the Fourier Transform of its autocorrelation 



Figure 12. Classification of Stochastic Processes (Lathi, 1968, 
Chapter 3) 
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function as follows: 

+ QO J Rxx(T) exp (-j2'1TfT) dT (3.4.1) 

- 00 

3.4.2 Power Spectral Density of~ Nonstationary 

Process 

Unlike a stationary process, the representation of the signal power 

in terms of its frequency distribution becomes more difficult and ambi-

guous for a nonstationary process. For a nonstationary process y(t), 

the autocorrelation function RyyCt1 ,t2) (Equation (3.2.4)) is in general 

a function of two variables t 1 and t 2 , hence the method used to obtain 

the power spectral density in the case of a stationary process cannot 

be applied directly. Several methods to obtain the power spectral den-

sity of a nonstationary process are discussed by Bendat (1966) in Chap-

ter 9. If one transforms the variables t 1 and t 2 by writing t = t 1 and 

T = Ct2 - t 1 ), RyyCt1 ,t2) can be expressed as Ryy(t,T) for a nonsta­

tionary process y(t) (Lampard,l954). The notion of instantaneous power 

spectral density Syy(t,f), which is a function oft and f, can be intro­

duced as the Fourier Transform of RyyCt,T) with respect to the variable 

T (a generalized Wiener-Khintchine Theorem - Lampard, 1954; Turner, 

1954; Levin, 1964) as follows: 

. t QO f Ryy(t,T) exp ( -j2'1TfT) dT (3.4.2) 

- 00 

It should be mentioned that SYY(t,f) does not exist for all non­

stationary processes y(t). Some of the conditions which have to be 

satisfied for Syy(t,f) to exist and to be unique are discussed by 



Donati (1971). Practically, the quantity Syy(t,f) is not measurable 

(Bendat, 1966, Chapter 9). However, since the measurement of power 

spectral density involves time averaging (see Chapter VI), another 
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quantity SYY(T,f) can be defined and realized experimentally, which is 

the time average of Syy(t,f) for a finite time T. Thus, 

T 

Tl f SYY(t,f) dt. (3.4.3) 

0 

In this respect any measurement of the power spectral density of a 

nonstationary process could be interpreted in terms of SYY(T,f). 



CHAPTER IV 

DISCUSSION OF 1/f NOISE THEORIES 

Upto the present date almost all ideas proposed to explain and/or 

interpret the 1/fa type fluctuations have been catered towards elec­

tronic devices and systems. Much of the effort has been expended to 

relate 1/f noise with other physical properties of an electronic sys­

tem. In this Chapter, several major different approaches which envi­

sage to explain electronic 1/f noise are sunnnarized and discussed. 

The restrictive domain of application of a particular approach is rea­

lized. Some of the mathematical and physical difficulties associated 

with the understanding of i/f noise are mentioned. An evaluation of 

some of the major 1/f noise theories is made, wherever possible in 

terms of the stipulated hypotheses based on experimental evidence (see 

Chapter II). Finally, considering the general occurrence of 1/f noise, 

a need for a general 1/f noise theory is recognized. 

4.1 Chronological Development in the 

Understanding of 1/f Noise 

One of the earliest attempts to explain 1/f noise in vacuum tubes 

was made by Schottky (1926), who termed the phenomenon as "Flicker 

effect". He attributed the origin of 1/f noise in tubes to the flu­

ctuations in the properties of the surface of the cathode as due to the 

interaction with foreign atoms present in the tube. Schottky's ideas 
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were not only restricted to vacuum tubes, but also calculations made on 

the basis of his assumptions did rtot agree too well with Johnson's 

earlier experiments (Schottky, 1926). In the early 1930's, noise in 

carbon granules as used in microphones and other resistive structures 

a revealed the 1/f behavior at low frequencies (Frederick, 1931; Otto, 

1935). It was demonstrated that 1/f noise was dependent on the current 

carrying contacts. This resulted in a new term for 1/f noise, the 

"Contact noise". However, further experiments (Van Vliet, 1956) where 

care was taken to make cleaner contacts, established that 1/f noise 

did not originate from the external current carrying contacts. A di­

ffusion model for 1/f noise in resistors was proposed by Richardson 

(1950), where the calculation was made considering a resistor being 

linearly coupled to a diffusing medium undergoing thermally excited 

fluctuations. The inability of the diffusion mechanisms to explain 1/f 

noise was, however, pointed out by Van Vliet (1958). During the 1950's 

the fast development of solid state technology shifted the interest 

in the study of 1/f noise towards investigating semiconductor device 

structures. The surface model of 1/f noise was developed (McWhorter, 

1957; Vander Ziel, 1959), whereby the origin of 1/f noise in a semi~ 

conductor was stipulated to arise from the interaction. of charge carriers 

with the traps in the oxide near the conducting path through tunneling. 

Application of the surface model together with the better understanding 

of the oxide-semiconductor interface in_the early 1960's resulted in 

the fabrication of semiconductor devices with less 1/f noise. A new 

name was given to 1/f noise, the "Surface noise". In spite of the abili-

ty to produce very clean oxide-semiconductor interfaces (Grove, 1967, 

Chapter 12), it was discovered in the 1960's that 1/f noise.is still 
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present at low enough frequencies in devices in which the surface con-

trois the conduction process (Mansour, 1968; Hawkins, 1968; Berz, 1970). 

This led to suggesting an additional "bulk" source of 1/f noise, if not 

an alternate source in certain structures. As was pointed out in 

Chapter II, several structures, e.g. metal films, where the surface does 

not play a significant role in the conduction mechanism, strongly 

suggest the presence of a "bulk" source for 1/f noise. The question 

whether 1/f noise originates from the bulk or from the surface or from 

both in a device structure is still open and unanswered even up to the 

present. Thus, given a device structure, considering the present 

knowledge of 1/f noise, it is not possible to establish before measure-

ment the magnitude of 1/f noise, let alone the respective contributions 

from the bulk and/or the surface. 

One of the interesting characteristics of 1/f noise, apart from 

the 1/fa behavior, is its presence in a state when the system is in 

thermodynamic nonequilibrium. In the measurement of 1/f noise in an 

electronic system the state of thermodynamic nonequilibrium is typically 

achieved by a d.c. current flow. The dependence of electronic 1/f 

noise magnitude on the current (I), which is generally found as being 

proportional to I 2 , gives further insight into the 1/f phenomenon. In 

the early days (Frederick, 1931; Otto, 1935) when 1/f noise was thought 

as being originating from the current carrying contacts, the proportion-

2 ality of the 1/f noise magnitude to I was argued as resulting due to 

the power dissipation at the contacts. In this sense, the current flow 

was responsible for generating 1/f noise, and 1/f noise was called the 

"Current noise". The modevn approach to explain I 2 dependence is in 

terms of resistance fluctuations (Bell, 1968). In this perspective, 
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the current flow is merely a probe to detect 1/f noise rather than a 

source for it. The resistance fluctuations are further interpreted as 

the fluctuations in the number of charge carriers (Bell, 1968) or as 

mobility fluctuations of the free charge carriers, as recent measure­

ments on the fluctuations of thermo emf of semiconductors (Kleinpenning, 

1974) have indicated. As the resistance is inversely proportional to 

the product of the number of charge carriers and the mobility, the 

interpretation of electronic 1/f noise in terms of the resistance flu­

ctuations is generally accepted, although the dependence on the number 

of carriers and/or the mobility cannot be ascertained until more precise 

measurements on systems can be done, where a distinction can be made 

between mobility fluctuations and carrier fluctuations. 

In recent years, especially in the last decade, the approach 

to explain 1/f noise has been more on general grounds, primarily because 

of its occurrence in a wide variety of electronic systems (see 

Chapter II). However, the scope is still restricted to electronic 

systems only. It is admitted that, in a loose sense, electronic 1/f 

noise is probably as fundamental in origin as thermal noise and, there­

fore, considerable effort is oriented towards understanding the 1/f be­

havior rather than investigating its dependence on physical properties 

of specific electronic systems. Some of the approaches are tabulated 

in Section 4.4. 

4.2 Mathematical and Physical Difficulties In 

Stipulating Processes That Generate 1/f Noise 

The diverging behavior of the power spectral density of 1/f noise 

at low frequencies imposes serious problems, both mathematically and 



41 

physically. As was pointed out in Chapter III, the 1/f type fluctua-

tions are stochastic. The cortventioi:uil method of obtaining the power 

spectral density which involves the application of the Wiener-Khintchine 

cosine-transform theorem, and which results invariably in an even 

functional dependence of power spectral density with respect to fre-

quency (Papoulis, 1965, ChapterlO), cannot be applied to explain 1/f 

noise (see Chapter V). Another difficulty associated with stipulating 

a process that would generate a 1/f spectrum is the uniqueness problem. 

As was discussed in Chapter III, the power spectr~l density is an 

average quantity, therefore it does not contain all the information 

about a process as one would like to knciw. Several different processes 

could yield the same power spectral density (Papoulis, 1965, Chapter 

10). Thus, given a 1/f spectrum, it is difficult to arrive at a unique 

process responsible for the generation of 1/f noise. A third problem, 

probably not so serious, deals with·the finiteness of the total inte-

grated power as obtained from a 1/f spectrum. A beautiful discussion 

of this problem is given by Bell (1968). A typical resistor which has 

-12 a spectrum SVV(f) = 10 /f (1 ~V r.m.s. of noise power per decade of 

frequency) when 1 volt d.c. bias is applied, is considered. If the 

upper frequency limit for 1/f noise is chosen to be at 10 GHz (1010Hz), 

the period of the lowest frequency would then have to be of the order 
9 

Gf 1010 s in. order to make the-·int_egrated nol.se power equal to 1% · ~ 

of the d.c. power. This tim~ limit far exceeds the age of;the uni.,- ,. 
101. 2 

verse ( ~ 10 s ). Thus, although the problem of finiteness of the 

total integrated 1/f noise pciwer may seem difficult to circumvent 

mathematically, yet from the practical standpoint it is not so serious 

considering the incredibly small magnitude of the 1/f type fluctuations. 
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A process that attempts to explain the 1/f type fluctuations at 

very low frequencies also faces objections from the physical standpoint. 

Since the evidence of 1/f noise in a system involves long term measure­

ments, the stability of the properties (both physical and chemical) of 

the system becomes a serious question. In this sense, a stipulation of 

a physical process for the generation of 1/f noise in a system should 

incorporate in some fashion the change in the properties of the system. 

If, however, a process envisages to explain the 1/f behavior indepen­

dent of the change in the properties of the system, sufficient evidence 

should be established regarding the stability of the properties of the 

system at least for the period of duration for which 1/f noise is de­

monstrated to exist. 

Because of the problems cited above, there is no satisfactory 

theory for 1/f noise although several attempts have been made. 

4.3 Classification of Important 1/f Noise 

Theories Up To February~ 1976 

In this Section an attempt is made to classify several approaches 

to explain 1/f noise, especially electronic 1/f noise, in terms of four 

categories, namely, physical, statistical, phenomenological and empiri­

cal. Of course, there is quite a bit of overlap between the different 

categories, and in certain cases a classification is difficult. Never­

theless, such a classification demonstrates the immense amount of 

interest in the 1/f phenomenon over the years, for possibly all appro­

aches one could think of to study a scientific phenomenon have been 

applied to investigate 1/f noise. 

Table III is compile~ from a survey of the vast literature on 1/f 



Approach 

Physical 

TABLE III 

CLASSIFICATION OF 1/f NOISE THEORIES 

Reference 

Schottky 
(1926) 

Richardson 
(1950) 

Van Vliet 
(1958) 

McWhorter 
(1957) 
Van der Ziel 
(1959, Ch. 5) 

Bakanov 
(1965) 
Ganefel'd 
(1969) 

Muller 
(1970' 1971, 
1974a, 1974b) 

Clarke 
(1974) 

Basic Idea in Brief 

Flicker-ef:fect: 
Fluctuations in the 
properties of the 
Cathode 
Diffusion Model: 
Coupling to a diffusing 
medium undergoing 
thermally excited 
fluctuations 

Inability of the 
diffusion model to 
explain 1/f noise 

Surface Model: 
Interaction:of the 
charge carriers with 
the t~aps in the oxide 
through tunneling 

1/f noise as a 
manifestation of an 
anisotropic current 
instability in a 
semiconductor, for 
which non-potential 
waves propagating in a 
plane perpendicular to 
the current. are 
responsible. 
1/f noise generated due 
to. the microscopic shot 
noise sources in a 
p-n junction diode 
through thermal 
feedback 
Thermal Diffusion 
Mechanism: Frequency 
dependence of the 
spatial correlation of 
1/f noise and its 
dependence on the 
temperature coefficient 
of resistance 

Experimental 
Support 

Vacuum Tubes: 
Johnson (1925) 
Schottky (1926) 

MOSFETS: 
Sah (1966) 
Berz (1970) 
Leuenberger 

(1971) 
Resistors: 
Leuenberger 

(1967) 

P-N Junctions: 
Muller (1971, 

1974a, 
1974b) 

\ 

Metal Films: 
Clarke (1974) 
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Approach 

Physical 

Statistical 

TABLE III (Continued) 

Reference 

Handel 
(1975a, 1975b, 
1975c, 1975d) 

Tunaley 
(1974) 

Stephany 
(1975) 

Weissman 
(1975) 

Malakhov 
(1975) 

Bernamont 
(1937) 

Barnes 
(1966) 

J Basic Idea in Brief 

Quantum Theory of 
1/f Noise: Interaction 
of a current carrier 
with the quantized 
electromagnetic field 
1/f spectrum can result 
if the time between 
collisions or traps of 
charge carriers irt a 
resistor has an 
infinite variance 
Assumption of a complex 
autocorrelation 
function results in a 
1/f spectrum using the 
idea that the electron 
velocity increases by 
the action of the 
applied electronic 
field on the lattice 
atoms of a solid 
Diffusion controlled 
thermodynamic 
fluctuations produce 
1/f spectrum for 
resistors whose 
surfaces have sharp 
corners 
1/! noise in 
radioelements due to 
the eroding of the 
potential barriers by 
the diffusion of 
carriers 
Generation of 1/f noise 
by the superposition of 
the shot noise spectra 
with a time constant 
distribution 
Generation of 1/f noise 
from white noise by the 
method of fractional 
order of integration 

Experimental 
Support 
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TABLE III (Continued) 

Approach Reference Basic Idea in Brief 
Experimental 
Support 

Constraints, necessary 
and sufficient 

Halford conditions for the time 
Statistical (1968) 

dependent perturbations -----
that involve time 
constants and which 
generate a 1/[fla 
spectrum 
1/f noise due to the 

Bell fluctuations in the -----(1955) number of charge 
carriers 

Van der Ziel Prediction of the life 

(1966) time of a transistor by -----
1/f noise measurements 

Offner 1/f noise generated due 

(1970) 
to random walk plus -----
drift of carriers 

Phenomena- Teitler 1/f noise as a 
logical (1970) 

fluctuation of the local -----
. reference level 
Possible relation 

Bloodworth between 1/f noise and -----
(1971) drift in MOS 

transistors 

Ringo Possible relation 
between 1/f noise and -----(1972) drift in Zener diodes 

Metal Film 
Spreading 

1/f noise is-inversely Resistors: 
Hoppenbrouwers proportional to the Hoppenbrouwers 
(1970) total number of free (1970) 

carriers in a resistor Epitaxial 

Empirical 
Silicon: 
Hooge (1970) 

Characterization of the 

Conti "Surface" and the NPN Planar 

(1970) 
"Bulk" sources of Transistors: 
1/f noise in bipolar Conti (1970) 
transistors 
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noise. Almost all major approaches up to date ~re included. The cen-

tral theme of each approach is given in brief. The electronic system 

where a particular approach in certain cases has been applied with some 

experimental support is mentioned, and a reference is given. 

4.4 Evaluation of Major 1/f Noise Theories in 

Terms of the Stipulated Hypotheses 

In this Section several approaches to explain electronic 1/f 

noise as tabulated in Table III are discussed briefly and their results 

evaluated, wherever possible, in terms of the hypotheses cited in 

Chapter II. 

The "Flicker effect" as proposed by Schottky (1926) for vacuum 

tubes predicts the noise spectrum to be a constant at low frequencies, 

with a l/f2 roll off at high frequencies. This behavior is calculated 

considering the small shot effect resulting due to the interaction of 

foreign atoms with the surface of the cathode emitting electrons res-

ponsible for conduction. 1/f noise is explained to be a region between 

2 the constant value and the 1/f dependence of the noise spectrum. The 

"Flicker effect" is probably restricted to vacuum tubes only. In addi-

tion, computations made by Schottky (1926) on the basis of the "Flicker 

effect" do not agree too well with the fine set of earlier experiments 

conducted by Johnson (1925). 

The general linear theory of fluctuations arising from diffusional 

mechanisms as proposed by Richardson (1950) attempts to calculate the 

spectral density for the electrical resistance when it is linearly 

coupled to a diffusing medium (particles or heat) undergoing thermally 

excited fluctuations. Consideration of several types of coupling 
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results in the general result for the power spectral density 

S(f) ~ D-n-v/ 2 f-l+n+v/ 2 , where Dis the diffusion constant, vis the 

-+ 
dimension of the wave number (k) space and n is an integer. Also 

-1 < 2n + v + 1 < 3. A S(f) ~ 1/f - spectrum results if v = 2 and 

n = -1. Van Vliet (1957) discusses the inability of the diffusion 

mechanisms to produce 1/f noise. It is argued and shown through calcu-

lations, picking practical values, that the diffusion mechanisms must 

result in a flat noise spectrum at low frequencies which is not 

observed. experimentally. The difficulty in obtaining a 1/f spectrum at 

higher frequencies is also pointed out. 

The statistical model of Bernamont (1937) suggests that it is 

possible to obtain a 1/f spectrum for a range of frequencies if one 

considers the superposition of the shot noise spectra of the type 

------~T ____ (T = time constant for a physical process), with the T's 

1 + (2TifT) 2 

distributed as 1/T in the range T1 < T < T2 . Thus, 

S(f) 

or s (f) ~ 

or S(f) ~ 

1 dT 
T 

(see Van der Ziel, 1959, Chapter 

1 -1 -1 
I (tan 2TifT2 - tan 2TifT1) 

T2 for 2TifT2 << 1 

1/f for 2TifTl < 1 < 2TifT2 

l/f2 for 2TifT 1 » 1. 

5) 
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This indirect method of generating a 1/f spectrum is employed in 

McWhorter's surface model (McWhorter, 1957; Vander Ziel, 1959, 

Chapter 5) and also in Muller's thermal feedback model (Muller, 1970, 

1971, 1974a, 1974b). In McWhorter's approach, the process of surface 

tunneling of the charge carriers to and from the traps located in the 

oxide is shown to result in a 1/T-type trapping time constant distri-

bution. In Muller's method, the thermal time constants associated with 

the mechanism of heat conduction from the device to the ambient on a 

microscopic level, and which modulate the properties of the device 

through thermal feedback, are argued to be responsible for the genera-

tion of 1/f noise. The ability of the thermal conduction mechanism to 

produce a spread in the thermal time constants, especially with a 1/T 

distribution, is rather doubtful, as recent discussions have revealed 

(Bilger, 1976). Nevertheless, both approaches as adopted by 

McWhorter and Muller, predict flattening of the noise spectrum at low 

frequencies (a property of Bernamont's statistical model) which is not 

observed experimentally. 

Bakanov (1965) and Ganefel'd (1969) suggest low frequency solid 

state (electron-hole) plasma oscillations resulting in an anisotropic 

current instability as a possible cause for excess noise in semi­

conductors. The 1/fa character of excess noise is not evident from 

their analysis. Moreover, an experimental support is lacking. 

The thermal diffusion mechanism employed by Clarke (1974) gives 

the noise voltage spectral density SV(f) ~ 

metal film structures, where B is the temperature coefficient of 
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1 aR 
resistance R ( = R aT ) , T is the abs·olute temperature (K), V is the 

d.c. voltage bias on a sample with length t 1 and width t 2 and NA is the 

number of atoms in the sample. This value of SV(f) is computed by 

approximating ST(f) (spectral density of the te111perature fluctuations) 

-3/2 
to be a constant for f << f 1 and proportional to f for f » f 2, 

where f 1 and ~2 are the characteristic frequencies calculated by using 

the relation fi = D/2nt:. 2 for a thermal diffusion process with the 
. ~ 

diffusion constant D. For the frequency range f 1 < f < f 2 , ST(f) is 

merely postulated to be proportional to 1/f. ST(f) and SV(f) are 

related by the expression SV(f) = v2s2sT(f). The variance of 

temperature 

2 
result (llT) 

(llT) 2 

= 

00 

= ~ST(f) df is obtained from the thermodynamic 

2 
kT /CV where CV is the specific heat of the sample 

( ~ 3NAk' k = Boltzmann constant, Reif, 1965). It should be· 

pointed out that no attempt has been made in this analysis to explain 

the 1/f region of. SV(f). The assumption of SV(f) being a constant at 

low frequencies (as one would expect for the diffusion mechanisms - see 

Van Vliet, 1958) is rather uncomfortable from the experimentaL stand-

point. Moreover, for a sample which has S = 0, the Clarke effect is 

zero (SV(f) = 0). Such a sample may still show 1/f noise considering 

the universal occurrence of 1/f noise. Nevertheless, this thermal 

diffusion model has good agreement with measurements carried out by 

Clarke (1974) and Hoppenbrouwers (1970). 

Th~ Quantum theory of Handel (1975a, 1975b, 1975c, 1975d) is an 

interesting generalized approach to the problem of 1/f noise which 

applies to all systems involving transport of carriers. In this 



approach ·the interaction of a current carrier with the quantized 

electromagnetic field is considered. Scattering with bremsstrahlung 

which modulates the current is claimed to be a cause for 1/f noise. 

The noise current spectrum SI(f) as calculated by this model possesses 

a 1/f dependence down to an arbitrarily low value of frequency f 0 , and 

is a constant for f < f 0 • An estimation or interpretation of f 0 is 

missing. A numerical computation made by Handel (1975c) gives the 

possible minimal value of 1/f noise as 55% in excess of that measured 

by Hoppenbrouwers (1970). This difference is not explainable. 
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The treatment adopted by Tunaley (1974) considers the spectral 

density of the current fluctuations in a resistor under conditions when 

the time between collisions or traps has a finite variance. It is 

claimed that when the variance is infinite, a 1/f spectrum can result. 

The translation of this model into a physical situation where one could 

have infinite variance in the time between collisions or traps of 

carriers is rather difficult to comprehend. Moreover, as yet, there is 

no experimental comparison available for Tunaley's model. 

An interpretation of 1/f noise in semiconductors and thin metal 

films is attempted by Stephany (1975) in terms of a bulk source consi­

dering a complex autocorrelation function for the current fluctuations 

which results if the units of the autocorrelation function are assumed 

to be those of power. Two noise generating currents are considered; 

the electron current (I_) and the so-called "lattice current" (I+). An 

assumption of a simple relaxation process with a carrier life time TO 

describing the noise generating mechanism of both currents, results in 
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1/2 

the spectrum of the type S(f) 
4n£•~(::) l where 

I 0 = d. c. current, R0 = resistance of the sample, N0 = total number of 

carriers, m = effective mass of the electrons and m+ = effective mass 

of the In the limit when TO + oo, 

1/2 

S(f) for 2Trf >> L (m+). . It should be pointed out 
TO m_ 

that the assumption of TO + oo is not conceivable physically and, there­

fore, the 1/f spectrum as obtained by Stephany's model is not so clear. 

Richardson's generalized theory for the calculation ofnoise power 

spectral densities for diffusion mechanisms (Richardson, 1950) is 

applied by Weissman (1975) for the singular case where the surfaces of 

a spreading resistor have sharp corners. It is shown that the noise 

produced by thermodynamic fluctuations (e.g. in the number of carriers) 

is of the type S(f) ~ 1/f for f > f 1 and S(f) = constant for f < f 1 , 

where f 1 is a value of frequency dependent upon the geometry of the 

resistor and the diffusion constant (D). Again, using this model and 

considering the physical values of D, it is difficult to interpret the 

1/f character at very low frequencies (see Van Vliet, 1958). Moreover, 

since Dis strongly dependent on the temperature, Weissman's model pre-

diets the strong variation of f 1 with the temperature, which is not 

observed experimentally. 

The interesting recent approach outlined by Malakhov (1975) consi-

ders the presence of 1/f noise in thermodynamic nonequilibrium systems 

as natural as the occurrence of thermal or shot noise in equilibrium 

systems. It is proposed that 1/f noise in radioelements is generated 
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during the eroding (aging) of the potential barriers. A calculation is 

made considering the aging of a sharp p-n junction caused by the 

diffusion of doping impurities. This approach, since it considers a 

long term change in a property of a system (the conductance in a p-n 

junction), shows promise for the interpretation of 1/f noise (see 

Section 4.2). However, by the method described by Malakhov the 1/f 

character of the fluctuations is not spelled out clearly. 

The statistical model of 1/f noise proposed by Barnes (1966) is a 

mathematical exercise, where it is shown that by the methbd of the fra-

ctional order of integration one could generate a 1/f spectrum from the 

white noise spectrum. If x(t) represents a white noise process with 

SX(f) = c (c = constant), then the power spectral density of them-fold 

integral of x(t) is given by S~m)(f) = c/jfj 2m. A 1/f spectrum results 

if 2m= 1 (fractional order integration). It is difficult to see how 

this model could be used in a physical situation to provide an explana-

tion for 1/f noise. 

The criterion discussed by Halford (1968) stipulates the necessary 

and sufficient conditions for the generation of 1/jfj spectrum from the 

so called "reasonable time dependent perturbations" which occur at 

random with a distribution of time constants. It is shown that under 

these specific conditions a 1/jfj type spectrum can be obtained for an 

arbitrary but a finite range of frequencies. Physically, whether the 

perturbations are assumed to possess a time constant distribution is not 

known. Also, in order to explain 1/fnoise spectrum for a large range 

of frequencies, one would require a huge range of time constants which 

are not realizable. Nevertheless, the models of Bernamo:b.t (1937), 

McWhorter (1957) and Muller (1970, 1971, 1974a, 1974b) satisfy the 
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general criterion of Halford in the statistical sense. 

The phenomenological approaches as tabulated in Table III discuss 

certain aspects of 1/f noise in relation to certain properties of spe­

cific systems with no attempt to explain the 1/f character of the noise 

spectrum. In the approach by Bell (1955) it is shown, through rough 

estimates for the noise in a resistor, that 1/f noise depends on the 

total number of carriers N more strongly than 1/N. A nonequilibrium 

process for the generation of 1/f noise is suggested. Van der Ziel 

(1966) suggests that the relative life expectancy of transistors can be 

estimated by 1/f noise measurements. It is shown that 1/f noise 

increases after a transistor is artificially aged at elevated tempera­

tures. Offner (1970) provides a computer simulation of 1/f noise, 

whereby the mechanism for 1/f noise is claimed as a random walk plus 

drift. The 1/f character is, however, not clear from the numbers 

published by Offner. The approach outlined by Teitler (1970) considers 

two distinct aspects of the fluctuations, namely, the fluctuations 

around a reference level local in time; and the fluctuations of the 

local reference level. The fluctuations about the local reference 

level are just those that give rise to white noise. However, the 

fluctuations of the local reference level are claimed to result in 1/f 

noise in nonequilibrium systems if a specific nonlinear coupling 

between the different frequency regions of the noise power is assumed. 

The method is rather ambiguous. An attempt to answer the question of a 

-possible relation between drift and 1/ f noise is made by Bloodworth 

(1971) and Ringo (1972). Bloodworth suggests by the variance calcula­

tions of noise in MOS transistors, that sometimes 1/f noi~e 

may be the main cause of drift for periods between a day and a year. 
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Ringo compares the predicted mean square voltage drift, as obtained 

from 1/f noise measurements, with the measured mean square voltage 

drift for reference diodes. In certain cases a correlation between the 

predicted and the measured values is found to exist, although the mea-

3 sured values are approximately a factor 10 higher than the predicted 

values. 

The beautiful set of measurements made by Hoppenbrouwers (1970) 

and Hooge (1970) in a wide variety of spreading resistors (metal films 

and epitaxial silicon) suggest a remarkable empirical relation .for 1/f 

noise. ( ~RR)2 It is shown that = 2xl0-3 ~f h (~R)2 N f , w ere R is the 
tot 

mean square relative fluctuations in the resistance R of a homogeneous 

sample with N total number of carriers and ~f is the bandwidth of tot 

measurement. Several theoretical attempts (Handel, 1975c; Stephany, 

1975). to explain this empirical relation have not yet been successful. 

Finally, in the empirical approach by Conti (1970) extensive mea-

surements are taken on NPN planar transistors to find out the spatial 

location of the 1/f noise sources. It is claimed that the planar tran-

sisters possess a 1/f noise source which mainly depends on the surface 

potential and the collector current. For the gated transistors and 

diodes, it is shown that the majority of 1/f noise comes from the bulk. 

The major source of 1/f'noise is ascribed to a minority carrier recombi-

nation process in the emitter region. 

4.5 Need for a General 1/f Noise Theory 

. From the discussion given in the previous Section, the following 

two shortcomings of the present state of 1/f noise theories are 
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evident:-

(a) Almost all approaches deal with the transport of carriers in 

electronic systems and, in addition, are testrict.ed in their 

application to only special kinds of systems. 

(b) Most of the theories do not satisfy the hypothesis B (see 

Chapter II). 

Considering the universal occurrence of 1/f noise in various kinds 

of systems, a general approach to the 1/f noise problem is needed, 

whereby a class of fluctuations, which yield the 1/fa type spectrum 

satisfying the hypotheses of Chapter II, should be investigated. Such 

an attempt is made in Chapters V and VI. 



CHAPTER V 

ON THE STATIONARITY OR THE NONSTATIONARITY 

OF 1/f NOISE 

The basic hypotheses as developed in Chapter II are used in this 

Chapter as a building block to decide whether the process generating 

1/f noise should be stationary or noilstationary. Using analytical 

arguments it. is shown that, in order that the hypothesis B (Chapter II) 

be satisfied, the 1/f mechanism must be nonstationary. This is an 

interesting result in the sense that 1/f noise then provides probably a 

first experimental example of a nontransitory type nonstationary sto-

chastic process. Moreover, the universal occurrence of 1/f noise in 

systems suggests the presence of nonstationary fluctuations as a 

fundamental property of a large class of systems. 

5.1 1/f Noise and Stationarity 

Following the definitions given in Chapter III, ~(t1 ,t2 ) = 

~(T) (T = t 2 - t 1) for a stationary stochastic process x(t). The 

relationship between ~(T) and SXX(f) is given by the Fourier Trans­

form pair (Papoulis, 1965, Chapter 10): 

+oo 

SXX(f) = J ~(T) exp (--j27TfT) dT , and (3. 4.1) 

- 00 

56 
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+oo 

RXX(T) J SXX (f) exp (j 2TifT) df (5.1.1) 

- 00 

A necessary and sufficient condition for ~(T) of the process x(t) 

(Bendat, 1966, p. 72) is 

~(-T) = ~(T) (5 .1. 2) 

i.e. ~(T) is an even function of T. 

In order to investigate the capability of a stationary stochastic 

process x(t) to generate a 1/f spectrum satisfying the hypothesis B 

(Chapter II) we detennine the asymptotic behavior of SXX(f) for f + 0. 

Taking the derivative of Equation (3.4.1) using Leibniz' theorem 

and estimating the result for f + 0 we have, 

.R-im dSXX(f) 
f+O df 

+oo 

~:~ J ~£ [ ~(T) exp (-j2~fT)] dT 

- 00 

+oo 

.R-im J f+O -j2TIT ~(T) exp ( -j 2TifT) dT 

- 00 

+oo 

-j2TI J T ~(T) dT (5.1.3) 

- 00 

Now since ~(T) is necessarily even (Equation (5.1.2)), 

+oo 
~T~(T) dT = 0, i.e. for the stationary stochastic process x(t), 

- 00 

( 
dSXX(f) 

the power spectral density SXX(f) must "flatten" at f+O df must 



vanish) • This violates the hypothesis B which is based on the mea­

surements of 1/f noise in a variety of systems where the "flattening" 

is not observed even at very low frequencies. Of course, one could 

question the hypothesis B by arguing that the "flattening" could be 

observed if one pushed further down the lower frequency end of the 

noise power spectral density measurement. Such an argument has the 

difficulty of preconceiving the idea of stationarity and trying to ex-

plain the contradictory experimental evidence with conjectural results 

of further experimentation at the cost of the experimenter's patience. 

In conclusion, the present experimental documentation of 1/f noise 
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suggests more strongly the acceptance of the hypothesis B, thus pointing 

to the result that 1/f noise cannot be a consequence of a stationary 

stochastic process. 

5.2 1/f Noise Should Result From a 

Nonstationary Stochastic Process 

With reference to Figure 12, and "considering the arguments provided 

in Section 5.1, it is evident that an explanation of the observed phe-

nomenon of 1/f noise falls beyond the domain of stationary (and also 

wide-sense stationary - see Chapter III) stochastic processes, or in 

other words, 1/f noise should result from a nonstationary stochastic 

process. 

The nonstationary character of the process generating 1/f noise 

can now be employed as a new viewpoint to understand why most of the 

theories, as discussed in Chapter IV, have not been successful to 

explain 1/f noise. Since most of the approaches involve stationary 
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kinetics, they invariably result in the noise power spectrum flattening 

at low frequencies which is not acceptable from the experimental stand­

point (hypothesis B). It is interesting to mention that an exhaustive 

survey of the literature on the fluctuation phenomena reveals the study 

of stationary processes in almost all cases with exception of a few 

situations where the nonstationarity is dealt with only as a transient 

(asymptotic stationary processes, Donati (1971)). In this perspective, 

1/f noise is probably a first example of a physically realizable non­

transitory type nonstationary phenomenon which exists in a wide variety 

of systems. 

One important aspect of the nonstationary stochastic process re­

sulting in 1/f noise should be emphasized. The criterion set forth in 

the hypothesis C (Chapter II), namely, the measured noise spectra are 

stable, suggests that although the basic process for the generation of 

1/f noise is nonstationary, the measured power spectral density is 

nevertheless independent of time. Some properties of such a process 

are investigated in Chapter VI. 



CHAPTER VI 

SOME FEATURES OF A NONSTATIONARY PROCESS 

YIELDING 1/f NOISE 

In fluctuation theory the study of nonstationary stochastic pro­

cesses is rather a new subject. As was mentioned in Chapter III, a 

nonstationary process has time dependent probability density functions 

and, therefore, in general the statistical properties, e.g. mean, 

variance, autocorrelation etc., are also time dependent. This makes 

the characterization of nonstationary processes cumbersome and diffi­

cult not only from the experimental standpoint but also from the mathe­

matical and conceptual point of view. A neat elegant scheme to chara­

cterize nonstationary stochastic processes does not exist at present. 

In this Chapter the measured noise power density spectrum .of the 

type 1/fa in a general system is interpreted in terms of a nonstationary 

stochastic process. The concept of power spectral density is applied 

in the operational sense (see Chapter III) in terms of the methodology 

of measurement. Some of the properties of the nonstationary process 

which should satisfy the hypotheses A, B and C (Chapter II) are deve­

loped. Finally, an example of such a process is given. 

6.1 Noise Power Spectral Density 

Measurement Methodology 

The concept of power spectral density, which is so powerful in 

60 
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studying stationary stochastic processes, becomes shaky in its appli-

cability and interpretation in relation to nonstationary processes. 

The spectral distribution of nonstationary fluctuations is not well 

understood in the analytical sense. Thus, given a nonstationary pro-

cess is responsible for the generation of 1/f noise, the methodology of 

the noise power spectral density measurement should be carefully scruti-

nized in order to arrive at an operational interpretation of the concept 

of power spectral density. It should be mentioned that the only reason 

behind picking the idea of power spectral density for characterizing 

the nonstationary stochastic process generating 1/f noise is to explain 

an immense amount of experimental measurements which are stable and 

reproducible. However, one could adopt an alternative scheme for cha-

racterizing the same nonstationary process, whereby probably one could 

totally do away with the spectral description. 

Figure 13 depicts the general methodology of the power spectral 

density measurement. We consider here a nonstationary stochastic source 

y (t) defined over the time interval between- oo and t and zero elsewhere. 

We assume that the blocks representing the measurement equipment 

perform ideal mathematical operations. The average energy contained in 

the component of frequency f of the'process y(t) can be expressed 

(Lampard, 1954) as : 

~(t,f) 
.. * 

= Y(t,f) Y (t,f) 

(~.:(tl) exp (-j2~ftl) 
t t J J Y (t1) y (t2) exp (j2Tif (t2 - t 1 )) dt1 dt2 (6.1.1) 

- 00 - 00 
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Here Y(t,f) is the running Fourier Transform of y(t) over the 

limits - oo and t. It is also assumed that the operations of time inte-

gration and ensemble averaging can be interchanged (Lathi, 1968, 

Chapter 3). The output of the Squarer (Figure 13) can now be inter-

preted.in terms of the instantaneous power spectral density syy(t;f) 

as: 

= 

= 

If one transforms the variables t 1 and t 2 by writing t 1 = t and 

t 2 = t + L' Syy(t,f) can be related to the autocorrelation function 

Ryy(t,L) (Lampard, 1954) as: 

+oo 

= f Ryy(t,L) exp (-j21TfT) dT (6.1.3) 

- 00 

The final power spectral density measurement is obtained by taking 

the finite time (T) average of Syy(t,f) (Figure 13), i.e. 

T 

Tl [ sYY(t,f) dt (6.1.4) 

It is thus seen that, considering the methodology of the power 

spectral density measurement, an operational interpretation of the 

measured pmver spectral density of a nonstationary process can be made 

in terms of Syy(T,f). 
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It is easy to show that the above interpretation of the power 

spectral density measurement gives the right value for a stationary 

stochastic process, x(t). For the process x(t), P~(t,T) = ~(T). 

Hence, considering again ideal measurement equipment, Equations (6.1.3) 

and (6.1.4) reduce to 

+oo J ~(T) exp (-j2nfT) dT = (6.1.5) 

- 00 

T 

and SXX(T,f) 
1 ! sxx(t,f) dt T 

T 

1 f sxx(f) dt = sxx(f) (6.1.6) 
= T 

0 

Since Equation (6.1.5) is the definition of power spectral density, 

Equation (6.1.6) shows that one indeed measures the power spectral 

density for the process x(t). 

6.2 Some Properties of the Nonstationary 

Process Possibly Responsible 

for 1/f Noise 

The hypotheses B and C developed on experimental evidence 

(Chapter II) can now be employed to predict certain properties of the 

nonstationary process responsible for the generation of 1/f noise in a 

general system. If one considers a nonstationary process, y(t), which 

exists for the time t = T0 after the start of observation at t = 0, the 

. stability criterion of the hypotheses C (Chapter II) demands 
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= (6.2.1) 

a . . . Also, the 1/f character (hypothesis B - Chapter II) requires 

= = 

(c and a are constants > 0) (6.2.2) 

Solutions of Equation (6.2.2) are in general not unique (see 

Chapter IV - Section 4.2) and are difficult to determine. In other 

words, there could be several processes y(t) which could satisfy 

Equation (6.2.2)• Nevertheless, Equations (6.2.1) and (6.2.2) are 

strong conditions, thus suggesting that the nonstationarity of the 

process y(t) responsible for generating 1/f noise must be of a special 

kind. 

Using Equations (6.1.3) and (6.2.2), a general expression for the 

autocorrelation function ( Ryy(t,T) ) can be written for the nonsta­

tionary process y(t) responsible for the generation of 1/~noise 

satisfying the hypotheses A, B and C (Chapter II) as follows: 

= 

Ryy(t,T) exp (-j2nfT) dT] dt 

(6.2.3) 
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It is clear that the nonstationary process y(t) which results in a 

Cl. measured power spectral density of the type 1/f must necessarily 

satisfy Equation (6.2.3). 

6.3 A Possible Time Dependent Autocorrelation 

Function For the 1/f Noise Mechanism 

In this Section a possible solution of Equation (6.2.3) is given 

and discussed. We consider again a nonstationary process y(t) which 

exists for the time t = T0 beyond the start of observation at t = 0. 

If the autocorrelation function ( Ryy(t,T) ) for the process y(t) is 

given by 

A 
= cos [ 

21rf0 T ] 

)1/a < 1 - t/T0 

(A, f 0, a are constants > O) 

then we can show that Equation (6.2.3) is satisfied for 

a-1 f 0 < f < oo, and c = Aa(f0) /2. 

From Equations (6.1.3) and (6.3.1) 

+oo 

f R.rr(t,T) exp {-j2nfT) dT 

- 00 

+oo 

(6.3.1) 

A 

( 1 - t/T /fa 
0 

f [ 27Tf0 T ~ 
cos -----=~-)-:-11-.-a exp (-j27TfT) dT 

< 1 - t/T0 
- 00 
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A 

2 ( 1 - t/T )l/a 
0 

j2rrf0T d 
)l/a exp (-j2rrfT) dT 

1 - t/r0 

+co 

+ f expL 
- 00 

Arr 

+ 

An 
( 1 - t/T )l/a 

0 

+ 

-j2rrf0T J 
I exp (-j2rrfT) dT 

1 - t/T )1 a 
0 

0 [-2~f -
2rrf0 J 

( 1 - t/T )l/a 
0 

0 [ -2~f 

0 [ -2~f ( 1 - t/T )l/a -
0 

( 1 - t/T )l/a 
0 

= A'iro [ -2rrf ( 1 - t/r0)l/a + 2rrf0 J 
+ Arro [ -2rrf ( 1 - t/T0)l/a - 2rrf0 J 

ArrT0o [ 2rrf0r 0 - 2rrfTO ( 1 - t/TO)l/a J 

+ ArrT0o [ -2rrf0r 0 - 2rrfTO ( 1- t/TO)l/a] • 

(6.3.2) 

In deriving Equation (6.3.2) some of the properties of the Dirac 

delta function (Schiff, 1968, p. 57.) are used. Putting the result of 
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Equation (6.3.2) in Equation (6.1.4), an expression for SYY(T0 ,f) is 

obtained as follows: 

= 

To 

An f 0 [ 2nf0T0 - 2nfTO ( 1 - t/T0 ) 1/~] dt 

OT 
0 

+ ~~ [-2nf0T0 - 2nfT0 ( 1 - t/T0 ) 1/~] dt 

0 

Making a transformation of variables by writing 

(6.3.3) 

and v = -2nf0T0 - 2TifT0 ( 1 - t/T0)l/a , Equation (6.3.3) can be 

expressed as: 

a-1 
( 2nf0 - u/TO ) du 

+ (6.3.4) 

For realistic values of frequencies f > 0, the second integral in 

Equation (6.3.4) is zero and 

-a a-1 = Ana (2nf) (2nf0) 



69 

for f 0 < f < oo 

0 for (6.3.5) 

Equation (6.3.5) 
a-1 

is same as Equation (6.2.3) with c = Aa(f0) /2. 

Thus a nonstationary process y(t) with the autocorrelation function 

given by Equation (6.3.1) generates a measured spectrum of the type 

From the autocorrelation function (Equation (6.3.1)) the following 

interesting characteristics of the process y(t) possibly responsible 

for the generation of 1/f noise in a general system can be stated: 

(a) Since the second order mean, y 2 (t) = R(t,O) 
A = ------~--~~ 

(1 - t/T )l/a 
0 

the process y (t) has a slow increase in its second order 

mean with time for large values of T0 • Such a result one 

would generally expect for a nonstationary process. Also, 

2 y (t) tends to become infinite at t = T0 , i.e., at a time 

beyond which the process ceases to exist. 

(b) The process y (t) has the lowest frequency fluctuation compo-

nent with the frequency value f 0 • It is noted that there is 

no flattening of the spectrum for f>f0 . For O<f<f0 , there is 

a discontinuity in the spectrum and Syy<T0 ,f)~O. f 0 may be a 

function of certain properties of a particular system. 

(c) The constants A and a may be considered to be functions of 

the system parameters and also of the forces which drive a 

system out of thermodynamic equilibrium (e.g. external bias 

on a resistor). 



It must be emphasized that Equation (6.3.1) is only a solution of 

Equation (6.2.3). Of course, there could be other solutions also. 

Nevertheless, one important aspect is revealed from the example of 

Equation (6.3.1), namely, it is possible to conceive a nonstationary 

a 
stochastic process which yields the measured 1/f type spectrum in a 

general system satisfying the basic hypotheses of Chapter II. 
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CHAPTER VII 

EXPERIMENTAL INVESTIGATION OF 1/f NOISE AND THE 

LONG TERM CHANGE IN THE RESISTANCE OF AN 

ION-IMPLANTED RESISTOR - EVIDENCE 

OF·NONSTATIONARITY 

Measurements on an electronic system, namely, an ion-implanted 

resistor, are reported in this Chapter as an example to demonstrate the 

general characteristics of 1/f noise discussed in the earlier Chapters. 

It is shown that, within experimental errors, the hypotheses B and C 

(Chapter II). are satisfied by the measured noise spectrum of the resis-

tor. Under bias, the average of the resistance fluctuations in the 

resistor for a fixed short duration of time is found to be dependent 

on time. This aspect is accepted as an evidence for the existence of 

a nonstationary stochastic process responsible for the generation of 

1/f noise. 

7.1 Ion-Implanted Resistor Under Investigation 

Exploratory measurements of 1/f noise in boron implanted silicon 

resistors were done previously (Tandon, 1973a, 1973b; Bilger, 1974). 

Details on the devices are given in the works by Tandon (1973a) and 

Dill (1971). Here the resistor R68 in Device No.27 is selected for 

experimental investigation. Device No.27 is implanted with 1.0. x 1013 

boron ions /cm3 at an energy of 80 keV, which are the intermediate 
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values for the available range of devices. The resistor R68 has a box­

type structure with the approximate dimensions 406 ~m x 25.4 ~m x 0.3 

~m, and has linear current-voltage characteristics for d.c. voltage bias 

f:8V (Tandon, 1973a). 

7.2 1/f Noise Measurements 

Figure 14 displays two measurements of the current noise spectrum 

SII(f) of R68 in Device No.27 taken approximately 2~ years apart at a 

d.c. current ID = 50.0 ~A and a temperature = 298 ! 0.5 K (Tandon, 

1975b). No power was applied to the resistor during the 2~ years 

storage. As can be seen from Figure 14, within the accuracy of measure-

ments, the noise power spectrum is reproducible. The remeasured value 

of resistance of R68 at a current bias of ID = 50.0 ~A was found to be 

93.4 kQ as compared to 93.2 kQ 2~ years earlier. This difference is 

within - .3% arising due to the systematic errors in the measurement 

equipment. Since, the resistance does not change appreciably one would 

expect the thermal noise to be essentially constant. This is verified 

by figure 14, where the white noise levels of the two spectra at high 

frequencies are seen to be closely equal and corresponding to the theo-

retical level given by the Nyquist theorem. In addition, the lower fre-

quency ends of spectra down to 10 Hz in Figure 14, which reveal 1/f 

noise, are also equal within the error of measurement - 20%. This result 

establishes that the measured 1/f noise spectra are reproducible and 

stable (hypothesis C - Chapter II). 

A further low frequency noise measurement on R6 8 in Device No. 27, 

-5 down to approximately 5 x 10 Hz, is shown in Figure 15 (Boehm,l975a). 

Here the data are represented in terms of the noise voltage spectrum 
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SVV(f) for a lower d.c. bias current ID = 6.8 vA. Important features 

are revealed from the analysis of Figure 15. Firstly, the noise 

spectrum of the resistor R68 has a high frequency asymptote given by 

the thermal noise verifiable by the Nyquist theorem, whereas the low 

frequency end has the 1/fa character down to at least 5 x 10-5 Hz. 

This supports the hypothesis B (Chapter II). Secondly, the high fre-

75 

quency portion of SVV(f) (open circles) evaluated by an analog technique 

(Tandon, 1973a) matches quantitatively with the low frequency portion 

(dots) computed by a digital technique (Boehm, 1975a). (One can rea-

sonably assume that no drastic behavior occurs in the range of fre-

-1 
quencies 10 - 10 Hz where unfortunately no data is available due to 

the shortcomings of the measurement techniques). This demonstrates 

that the noise spectral estimations (in particular, 1/f noise measure-

ments) are independent of the type of techniques employed for measure-

ment (see Chapter II -hypothesis A). 

7.3 Direct Variation of Resistance Measurements 

A high precision direct time averaged estimation of voltage flu-

ctuations across the resistor R68 in Device No.27 was made employing the 

bridge arrangement as shown in Figure 16. The d.c. bias voltage across 

the device was 6.75 V. Since the resistance has a relatively high 

temperature coefficient ( (:).R/ (R6.T) = 3. 6 x 10-3/ °C ) , the resistor was 

0 

inserted in a thermostat set at 32.25 C and whose peak-to-peak tempera-

ture fluctuation is less than 1 mK over periods of weeks (Boehm, 1975a). 

The power supply (with a temperature-stabilized Zener diode) for bridge 

and preamplifier showed negligible fluctuations over periods of the 

order of a day. The result of such a measurement, made over a period 
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of about 1 day, is shown in Figure 17, where tN = integrated value of 

v(t) over a short time duration of 100 seconds is plotted as a function 

of time. As can be seen, there is no sign of any periodic variations 

due to the temperature of the power supply reference. Also, since 

identical test runs over equivalent lengths of time show a negligible 

value of 11V for the system amplifier + power supply + bridge (with R68 

replaced by an equivalent metal film resistor), the picture presented 

by Figure 17 can be considered as a "drift" effect existent in the 

resistor R68 . Thus, the resistor R68 is found to be unstable under 

bias. From Figure 17, the slope (d/dt)/1V = 2 ~V/min ~ 3 mV/day, which 

translates into the variation in resistance of R68 as (1/R)(d/dt)R ~ 

5 x 10-4 /day under bias. Such a magnitude is significant, for it 

would give rise to (11R)/R ~ 0.5 in 2~ years, under bias, as compared to 

(0.2 + 3)% observed variation without bias. 

7.4 Relationship Between 1/f Noise and the 

Variation of Resistance Measurements 

It was argued in Section 7.3 that v(t), as measured by the bridge 

arrangement of Figure 16, represents the resistance fluctuations of 

R68 • It is noted that, because of the band limitation of the Oscillo­

scope, v(t) only has frequency components below 100 Hz and which are 

integrated by the Voltmeter (Figure 16). Since the noise spectrum of 

a 
R68 possesses predominantly the 1/f type noise below 100 Hz (Figures 

14 and 15),-it is evident that /1V (Figure 17) is essentially representa­

tive of the integrated value of the time record of 1/fa type resistance 

fluctuations inherent in the resistor R68 • If one considers an 
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elementary stochastic process for the resistance fluctuations in R68 , 

~V(t) can be interpreted as being equal to 100 x V(t) (V-sec), where 

V(t) is the ensemble average of the stochastic variable v(t). Thus, 

as ~V(t) is a function of t (Figure 17), one finds that the stochastic 
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. a. 
process for the resistance fluctuations in R68 responsible for the 1/f 

type measured power spectral density is nonstationary. (If y(t) is 

a function of time for a stochastic process y(t), then y(t) is nonsta-

tionary - see Chapter III). It should be realized, on the contrary, 

that if v(t) were stationary one would expect ~V(t) to be a constant 

and independent of time. 

The fact that'~V(t) is proportional tot (Figure 17), can be consi-

dered as a sufficient proof for the existence of a nonstationary pro-

a. 
cess in R68 which is responsible for the 1/f type measured power spec-

tral density. However, the kind of the nonstationary process cannot 

be realized by the mere information of the dependence of ~V(t) on t. 

To establish the specific nonst.ationary process that exists in R68 , and 

a. 
which results in the measured 1/£ type spectrum, additional informa-

tion e.g. the second order mean, autocorrelation etc. of v(t) is 

needed. Such measurements have not been done. Nevertheless, the con-

elusion that the process generating the 1/fa. type measured noise spec-

truro is nonstationary, which was derived using general analytical 

ideas in Chapter V, is verified here experimentally at least for the 

case of an electronic system, namely, an ion-implanted resistor. 

The "drift" effect, which involves genuine resistance change of 

R68 (Figure 17) under bias, can now be interpreted as the first order 

ensemble average of a more general nonstationary process existing in 

the resistor. In this perspective, if the nonstationary process is 



known, then the "drift" problem is solved. From the physical stand­

point, a model for such a nonstationary process is not available and 

cannot be easily deduced from this study. 
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CHAPTER VIII 

CONCLUSIONS 

A general methodical approach to explain 1/f noise present in a 

" wide variety of systems, not necessarily electronic, has been under-

taken in this thesis. Recognizing that the evidence for the existence 

of 1/f noise rests purely on empirical grounds, experimental informa­

tion, which reveals the 1/fa dependence in the measured noise power 

spectral density of various systems, is examined. On the basis of the 

observed features of the measured 1/f noise in a large class of 

systems, a general set of hypotheses for 1/f noise is derived 

(Chapter II). It is emphasized that the measured 1/f noise in systems 

and the possible approaches to explain it should satisfy these hypo-

theses. 

Various possible attempts made in the past to explain 1/f noise 

are classified and discussed (Chapter IV). Effort is made to include 

the up-to-date information. It is recognized that almost all of the 

approaches have been catered towards electronic devices and, there-

fore, it is.difficult to see how they can be employed to explain 1/f 

noise in other systems. Moreover, since most of the approaches up to 

the present do not satisfy one or more of the hypotheses postulated in 

Chapter II, a need for a general 1/f noise theory is realized. 

In an effort to stipulate features of a future general 1/f noise 

theory, the question whether 1/f noise results from a stationary or a 
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nonstationary stochastic process is answered (Chapter V). The question 

of possibly "flattening" of the 1/f noise spectrum at the lower fre­

quency end is rejected as being academic in favor of the hypothesis B 

(Chapter II). An analytical treatment of the stationarity of stochastic 

processes together with the acceptance of the hypothesis B reveals that 

a true 1/fa type noise power spectnnn cannot be obtained from a sta­

tionary stochastic process. It is, therefore, proposed that 1/f noise 

should result as a consequence of a nonstationary stochastic process. 

Features of a general nonstationary stochastic process which could 

explain 1/f noise are explored (Chapter VI). Although the application 

of the concept of power spectral density to nonstationary processes is 

shaky, yet an operational interpretation of the measured power spectral 

density is proposed by considering the methodology of measurement and 

the concept of instantaneous power spectral density. A necessary condi­

tion (Equation (6.2.3)) for the autocorrelation function of a nonsta­

tionary process which would yield the 1/fa type measured power spectrum 

is developed. It is emphasized that a nonstationary process for 1/f 

noise should satisfy this condition. Since Equation .(6.2.3) is not 

sufficient there could be several nonstationary processes that could 

satisfy it. A possible solution of Equation (6.2.3) in terms of a time 

dependent autocorrelation function·of a nonstatiortary -stochastic 

process is proposed and is shown to result in a 1/fa type measured 

power spectrum. Although a physical or mathematical interpretation, 

in terms of the time dependent probability density functions for such 

a solution is lacking, it nevertheless demonstrates that is possible to 

conceive a nonstationary stochastic process which generates the 1/fa 

type measured power spectrum in a general system satisfying the basic 
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hypotheses of Chapter II. 

As an experimental proof to the nonstationarity of the 1/f pheno­

menon, an electronic system (an ion-implanted resistor) is picked as an 

example (Chapter VII). The measurements on 1/f noise, when the 

resistor is biased, satisfy the basic hypotheses of Chapter II. The 

resistor is found to be unstable under bias and the measured "drift" is 

considered to be a sufficient proof for the existence of a nonstationary 

stochastic process in the resistor. Since both 1/f noise and the 

"drift" effect are measured on the same fluctuating quantity, one in 

the frequency domain and the other in the time domain, "drift" can be 

considered as the first order ensemble average of a more general non­

stationary stochastic process which is responsible for 1/f noise. 

8.1 Recommendations for Further Study 

The nonstationarity of 1/f noise existing in a wide variety of 

systems out of thermodynamic equilibrium should be considered as a 

major result of this thesis. This opens a new interest in the study of 

nonstationary processes, not only from the mathematical standpoint, but 

also from the physical point of view. Because of the stability of the 

measured 1/f noise spectrum, 1/f noise can be considered to be probably 

a first example of a nonstationary process which exists in a sta­

tionary state in systems which are out of thermodynamic equilibrium. 

Several systems which possess 1/f noise can be treated as sources of 

nonstationary fluctuations which can be employed to study the response 

of other systems to nonstationary stochastic inputs. 

In order to characterize the specific nonstationary process which 

is responsible for 1/f noise, direct studies of the statistical 



properties of 1/f noise sources seem important. In the recent years, 

some of these studies have been done (Brophy, 1970; Purcell, 1972; 
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Dell, 1973; Bell, 1975; Stoisiek, 1976). In the works of Brophy (1970), 

Dell (1973) and Bell (1975), the notion of "variance noise", which is 

the fluctuations in the variance of a noise source, is employed and it 

is shown that the "variance noise" is significantly larger in the case 

of a 1/f noise source as compared to the case of a Nyquist noise source. 

Purcell (1972) computes the spectral distribution of the "variance 

noise" and it is shown that the power spectral density of "variance 

noise" is also of the 1/fa type. Although the nonstationary character 

of the 1/f noise source is hinted in the investigations by Brophy 

(1970), Dell (1973), Bell (1975) and Purcell (1972), it is difficult 

to see how the information provided by them can be easily translated 

into the determination of a nonstationary process responsible for the 

generation of 1/f noise. It should be mentioned that the measurements 

made by Stoisiek (1976) test only the stationarity of the power 

spectral density measurement of 1/f noise (stability of the measured 

1/f noise spectra), and, therefore, cannot be employed to test the 

stationarity or the nonstationarity of the 1/f noise source. A major 

difficulty encountered in all these studies of the statistical pro­

perties of 1/f noise is the nonexistence of elegant schemes to investi­

gate nonstationary stochastic processes. Thus it seems reasonable to 

develop better statistical methods for characterizing nonstationary 

processes before a nonstationary model for 1/f noise can be proposed 

and conclusively verified experimentally. Such a study should be 

interesting in retrospection of obtaining a general model for 1/f 

noise. 
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