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CHAPTER I 

INTRODUCTION 

Previous Studies 

In 1947, single crystals of cadmium telluride (CdTe) 

were studied for the f1rst time when Frerichs (1) grew these 

materials for photoconductivity measurements. In 1959 de 

Nobel (2) studied the radiative recombination mechanisms 

responsible for the broad-emission band in single-crystal 

CdTe by means of photoluminescence (PL) and electrolumines­

cence (EL) measurements. Two years later, Thomas (3) used 

reflectivity measurements to reveal the recombination charac­

teristics of the exciton emission bands in CdTe. Many types 

of investigations have been made on this material since the 

pioneering work of these investigators. The reasons for 

continu1ng these investigations are due to some of the spe­

cific technolog1cal applications that have recently become 

available. For example, since this material has a wide band 

gap, much effort has been directed toward using it in infra­

red detectors as a substrate because of its close lattice 

match with HgCdTe. Other applications include using CdTe in 

the areas of optoelectonics and integrated optics, and gamma­

ray detectors and solar cells (9). Recently, there has been 

an upsurge of interest by examining PL spectra at 77 K and 

1 



low temperature as a means of determin1ng crystal quality, 

with the aim of improv1ng crystal growth techniques (5,9). 

Our motivation for studying undoped and manganese-doped CdTe 
' 

2 

is due to the potential use of this material as a near infra-

red spatial light modulator. The developement of this type of 

device would be important for applications in photonics 

systems including energy generation, communications and 

information processing. 

Before such a dev1ce can be developed, however, it is 

necessary to determ1ne the energies of the localized defect 

states in order to improve d~vice performance. The presence 

of these states can affect the nonlinear optical properties 
' 

of the material in two ways. First, intrinsic states (i.e., 

real states) with1n the bandgap can enhance the process of 

two-photon absorption, and second, trapping of free carriers 

can give rise to long-lived photorefractive effects and free 

carrier removal from the delocalized bands. A popular experi-

mental tool to accomplished this is PL spectroscopy which is 

one of the most powerful experimental techn1ques for charac-

terizing defect states in materials capable of absorbing 

light. Much information on the radiative recomb1nation mecha-

nisms can be obtained at 77 K and lower temperatures by using 

a variety of PL techniques. 

In CdTe, two luminescence bands are typically seen at 77 

K -- a narrow band at about 1.58 eV and a broad band at about 

1.42 ev. The former band is due to free and bound exciton 

decay. Although the latter band has been frequently observed 
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to be near 1.42 ev, the peak maximum, nevertheless, has been 

seen in the range from 1.40 to 1.49 eV (12). This region is 

commonly termed the 1.4-eV defect emission band and has been 

seen in samples prepared in a diversity of ways and with a 

wide range of properties, and occurs in all but the purest 

samples. At temperatures between 1.8 and 20 K, however, three 

regions of PL emission are seen. These are the 1.4 to 1.5 eV, 

the 1.51 to 1.56 ev and the 1.57 to 1.603 ev emission re­

gions. The 1.51 to 1.56 eV and 1.57 to 1.603 eV regions are 

termed the edge and exciton emission regions, respect1vely. 

However, this thesis deals only with the origin of the 1.4-eV 

defect band. 

It is generally observed that, when temperatures are low 

enough, the defect band usually shows equally spaced emission 

components due to phonon emission. The separation between the 

zero-phonon component and its replicas is 21.3 mev corre­

sponding to the energy of longitudinal optical (LO) phonons. 

Longitudinal acoustical (LA) phonons have also been observed 

but these usually arise as a result of deep-center electronic 

transitions (7). 

The major 1nterest of this thesis is the orig1n of the 

defects giving r1se to the 1.4-eV broad-emission band. Under­

standing how the emission band behaves under different exper­

imental cond1tions is important for gaining much knowledge on 

the defect structure. Much work has been directed toward this 

effort in many CdTe crystals grown by different methods (4-

6), or w1th dev1at1ons from stoichiometry and differing 
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1mpur1t~ content (7-17). The or1g1n of the em1ss1on has been 

attr1buted to native defects which are defects intrinsic of 

the material and may be associated with the acc1dental con­

tamination of res1dual impurit1es during the crystal growth 

process. Nat1ve defects associated with impurities in one way 

or the other seem to be the or1gin most commonly accepted for 

the 1.4-eV emission. The defects involved in the production 

of the 1.4-eV emission band have been reported as Cd vacan­

C1es, Te vacancies, Cd interstitials, Te interstit1als, 

impurity substitution on Cd sites, Cd vacancy-donor complex 

and surface defects (2,4,7-13). The 1.4-eV emission has been 

observed in n- and p-type and semi-insulating samples and it 

has been reported that the emission does not seem to be 

related to Cd or Te overpressure during the growth process 

(16). 

The source of the electronic transitions responsible for 

this emission band are still a matter of much debate. Three 

mechanisms have been suggested in the literature. The first 

involves transit1ons of free electrons from the conduction 

band with trapped hole states or free-to-bound (FB) transi­

tions. The second involves inter1mpur1ty transitions or 

donor-acceptor pa1r (DAP) recombinat1on, and the third in­

volves electron-hole recombination within a local1zed center. 

It is difficult to decide on any one of the mechanisms 

JUSt presented based on the data found in the published 

literature. For instance, the first mechanism fa1ls to ex­

pla1n the shift 1n energy of the 1.4-eV lum1nescence band 
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from exc1tat1on intensity and time-resolved experiments when 

only one hole state or shallow acceptor state is included in 

a model. From the former experiment, this shift has been 

generally observed to occur from lower to higher energy as 

the intensity of the excitation source is increased 

(4,14,15). From the latter, it has been reported that the 

shift takes place from higher to lower energy with time after 

decay of the pulsed excitation source (4). In spite of this, 

the model appears to work when explaining PL thermal quench­

ing measurements. The problem with the second mechanism is 

the difficulty in accountiPq for the measured values of the 

thermal quenching energies which are of the order of 0.10-

0.16 ev (12). This implies that the donor level must be just 

a few hundreths of an ev below the conduction band. For the 

DAP model to be valid, it would thus have to consider the 

donor states as being "thermally disconnected" from the 

conduction band. This is an unlikely possibility considering 

the activation energy values obtained from thermal quenching 

studies. However, the DAP model seems to explain the spectral 

energy shifts observed from the experiments mentioned above. 

The third mechanism loosely describes electron-hole recombi­

nation within a localized center through an excited state by 

using the configurational coordinate model (11). However, 

this analysis seems to explain the interaction of LA phonons 

with the 1.4-eV defect band but is somewhat irrelevant to the 

origin of the band which is what these investigators 1nitial­

ly set out to do. Difficulties are also apparent when at-
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tempts are made to fit the thermal dependencies of the inten­

sity and the Full W1dth at Half Maximum (FWHM) for the emis­

sion band to this model (16,17). The analysis yields fitting 

constants which are unreasonable and provide no physical 

insight into the process 1nvolved. In addition, the analysis 

neglects the presence of overlapping peak components consid­

ering the asymmetric shape of the emission band observed by 

these authors. 

Finally, it is to be noted that Myers et ~- (13) ob­

served that the intensity of the 1.4-eV band is affected 

dramatically when the samples are polished by different 

techniques. Consequently, they noted that surface damage was 

introduced to the sample in various proportions and depended 

on the polishing technique used. They noted also, that the 

intensity of the 1.4-eV emission band may be directly related 

to defects due to surface damage. 

Crystal Structure 

CdTe belongs to the II-VI semiconducting compounds. It 

has a stable crystallographic structure which is characteris­

tic of zinc blende. This structure may be thought of as two 

face-centered cubic structures displaced from each other by 

one-fourth of the body diagonal (9), as shown in Figure 1. 

There are four atoms per primitive cell. Using the indices 

[uvw] to represent the direction of a vector in the crystal, 

the vector displacements of the Cd atoms are [OOO]a, 

[Oll]a/2, [10l]a/2, and [llO]a/2 and those of the Te atoms 



[001] 

[100] 

F~gure 1. A Un~t Cube of the Z~ncblende Structure 
~n Cadm~um Tellur~de 
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are [lll]a/4, [133]a/4, [313]a/4, and [33l]aj4. Thus, the Cd 

atoms represented by their vector displacements form the 

corners of a regular tetrahedron that has a Te atom at its 

center. 

8 

The structure may take on a slightly distorted form when 

doped with a transition metal such as manganese (Mn). This is 

an element w1th a part1ally filled d shell which is stable 

and strong, and 1s characteristic of transition metals. The 

atomic structure of Mn is the Argon-like-3d54s2 structure 

whereas Cd and Te have the Krypton-like-4d10ss2 and 

-4d1°ss24p4 structures, respectively. Since the 2+ configura­

tion of Mn has an 1onic radius of about 0.80 A and that of Cd 

an ionic radius of 0.97 A, Mn could substitute on a Cd site. 

The substitution could give rise to acceptor states since Mn 

has a lower chemical valency (i.e., the d and s states of Mn 

have fewer electrons than the d and s states of Cd) than Cd. 

This kind of defect should not be strictly considered as the 

only possibility since other types could exist in CdTe. The 

lattice constant a for bulk CdTe is 6.4829 A (5). 

Scope of this Study 

The focus of this study is the 1.4-eV luminescence band. 

Four experimental techniques have been used to characterize 

the localized bound states of this emission band in undoped 

and Mn-doped CdTe samples. The techniques used involve PL, 

thermal quenching, exc1tat1on intensity dependence of PL and 

time-resolved measurements. PL spectra are obtained from a 
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.MT 1.0" 
variety of samples at 77 K and low temperature (usually 

between 11 and 16 K). At 77 K, two closely overlapp1ng em1s-

sion components are normally seen w1th peak energies at about 

1.47 and 1.49 eV. At lower temperatures, however, phonon 

replicas of these components are seen. By observing the 

thermal annealing behavior of and by applying Hopfield's 

relation to the defect band, it is concluded that the compo-

nents are legitimately two localized bound states. Thermal 

activation energies of these hole states are obtained with 

the values of 0.11 and 0.13 eV from the thermal quenching 

measurements. A set of coupled, first order differential 

equations are used to predict energy shifts from excitation 

intensity and time-resolved measurements. The shifts are 

observed in the experimental data and supported by the theo-

retical predict1ons. Flnally, a model based on free-electron 

to trapped-hole recombination is presented to explain the PL 

data. In addition, mechanisms are proposed for each of the 

processes observed during thermal quenching. 



CHAPTER II 

EXPERIMENTAL PROCEDURE 

Samples 

Single crystals of CdTe used in this study were grown at 

Eagle-Picher Research Laboratories by a modified Bridgman 

technique and by a modified Vapor Phase Transport method. The 

crystals were p-type with high-resistivity close to the order 

of 105 n em. The samples grown by the former method were 

either nominally undoped or doped with Mn (79 and 400 ppm) 

whereas for the latter method, the samples were undoped. 

These materials were mechanically polished to 0.25 microns. 

All of the samples used in this work received a cleanup 

etch for 20 minutes to remove the original surface. The 

etchants used were either solutions of sulphuric acid and 

saturated potassium dichromate or brom1ne in methanol. The 

concentration for the former solution was 30% by volume of 

sulphuric acid and 2% by volume of bromine for the latter. 

Some samples were used for thermally st1mulated conductivity 

(TSC) experiments pr1or to the photolum1nescence exper1ments. 

As a result of this, the bromine and methanol solution was 

used more extens1vely 1n order to remove the gold electrodes 

that were attached to the sample surfaces for the TSC meas­

urements. The dimensions of the samples were 10 mm x 10 mm x 

10 
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1 mm. 

Spectra Correction 

In order to correct the data from variations in s~gnal 

output due to the variable efficiency (as a function of 

wavelength) of the detecting and measuring devices, a quartz 

iodine lamp (traceable to NBS} was used as a standard light 

source. A plot of the standard irradiance curve of this 

source is shown in Figure 2. A correction curve was generated 

by dividing the measured irradiance by the standard irradi­

ance (i.e., as measured by NBS). The emission spectra were 

multiplied by the correction curve to obtain the corrected 

spectra. 

Photoluminescence and Thermal Quenching 

Spectra 

Emission spectra were obtained from photoluminescence 

and thermal quenching measurements with the experimental 

setup shown schemat~cally in Figure 3. The sample was cooled 

to low temperatures by using a CTI-Cryogenics model 22 Cold 

Head which was part of the model 22C Cryodyne Cryocooler 

system. The temperature was controlled by a TRI Research T-

2000 Cryo Controller and monitored with a Cryo Cal cryo Diode 

sensor. For the quench~ng studies, the temperature ranged 

from 70 to 110 K. To optimize the luminescence signal, the 

sample was mounted on the copper cold finger so that the 

laser beam and a line normal to the surface of the sample 
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formed an angle between 45 and 50°. A model ML855 Helium­

Neon Laser from Metrologic Instruments served as the excita­

tion source. The beam passed thru a laser line filter to 

block out unwanted flourescence lines from the lasing medium. 

To compensate for power fluctuations 1n the beam, part of it 

was singled out by a beam splitter with 10% reflection and 

was monitored with a model 815 Power Meter from Newport 

Research Corporation. As a result, all measurements were then 

d1vided by the output from the power meter to obtain the 

f1nal spectra. 

The luminescence spectra were measured by using a SPEX 

model 1702/04 Monochromator with focal length of 0.75 m for 

which a low pass filter was placed at the exit slit to cut 

off any scattered light in the reg1on of the emission signal. 

The entrance slit was set as norrow (usually less than 100 

~m) as possible with the exit slit twice the size of the 

entrance slit to get good resolution of the emission lines. A 

100 W low-pressure Hg lamp was used for calibrating the 

monochromator to one-tenth of an Angstrom. The signal was 

detected with a Thorn EMI Gencom Inc. model 9684 Photomulti­

plier Tube (PMT) with S-20 spectral response. A chopper was 

used in conjunct1on with an Ithaco model 3962 S1ngle Phase 

Lock-In Ampl1fier to synchrono~sly detect the signal output 

from the PMT. Some per1pheral devices (shown in the diagram) 

were 1nterfaced with an HP-86B Microcomputer from Hewlett 

Packard for data storage and analysis. 

A computer code was written to do these experiments. The 
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code was written in such a way that the wavelength, emission 

intensity per wavelength, beam power and the qoutient of 

emission intensity and beam power were recorded. For the 

quenching studies, it was necessary to maintain each tempera­

ture of the sample for one hour and a half so that it would 

reach thermal equ1librium. The temperature was held constant 

to within ± 0.1 K. 

All measurements were carried out in a vacuum of 10-6 

torr. 

Excitation Intensity Spectra 

The experimental setup used for the PL dependence on the 

excitation intensity is shown in Figure 4. After replacing 

the He-Ne laser with the Ar-Ion laser, the setup is the same 

as that shown in Figure 3 except for the addition of a varia­

ble beam attenuator (VBA) and a transimpedance amplif1er 

(TIA). The former was a Newport Research Corporation model 

935-5 whereas the latter was a circuit built in the lab 

which comprises a 10 Mn feedback resistor and an Operational 

Ampl1fier model LF357J. Since this circuit had a gain of 

about 1000, the PMT power supply was set from 1630 to 1260 V 

for better noise statistics. When the attenuator was not 

available, spectra were also recorded by using a set of 

Reynard Enterpr1ses, Inc. Metallic-Coated Neutral Dens1ty 

Filters. The excitation source used in these experiments was 

the 514.5 nm line from a Spectra-Physics model 2020 Argon-Ion 

Laser. For this work, the laser beam power ranged from 0.20 
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to 170 mw. A d1fferent PMT was used with s-1 spectral re­

sponse to improve the sensit1vity in the near IR. In order to 

reduce saturation effects due to laser heating, a CaF2 disc 

was placed on top of the sample to serve as a heat sink 

medium. On top of this plate was a copper plate with a square 

hole in the center to hold the CaF2 disc in place. Indium 

foil was used between the sample and the heat sink disc, and 

between this disc and the copper plate to provide good ther­

mal contact. Refer to Figure 5 for a schematic representation 

of this arrangement. Basically, this experiment consisted of 

changing the laser beam power and recording the change in PL 

spectrum. The beam power was changed by using the attenuator 

or filters of different optical density. Since the emission 

signal was amplified by the TIA, the entrance slit was nor­

mally set to 50 ~m. Th1s corresponded to a resolution of 1.1 

A. 

It should be noted that the heat sink disc was found to 

work since the luminescence signal was observed to increase 

to a larger extent in proportion to the larger power range 

applied to the sample. This was necessary to do considering 

that before us1ng the disc, the signal w~uld increase as the 

power increased but then it would decrease with increasing 

power due to saturation of the luminescence signal. 

Time-Resolved Spectra 

The exper1mental setup for these measurements is shown 

1n Figure 6. The excitation source was a Xenon Corporation 
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model 457A M1cropulser with a pulse w1dth of 2.5 ~s and a 

variable repitition rate of about 2 Hz. A point source flash 

tube with Xenon as the ionizing gas was used by discharging 

the capacitor to 8.5 kV. The unit was des1gned to deliver 1 

to 10 Joules of energy per pulse with a variable voltage 

adjustment from 2 to 10 kV. The voltage setting used was 8.5 

kV in order to keep radio frequency (rf) interference to a 

minimum. Also, a Faraday cage was constucted from a brass 

wired-mesh material to suppress rf noise (18). To suppress rf 

noise even further, the power supply was placed in another 

room and the high voltage cables were twisted and shielded 

with rigid wall conduit to eliminate electromagnetic induc­

tion. Furthermore, the signal source cables were shielded 

with a thick wired-mesh material and the chasis ground of the 

power supply was mantained floating with respect to an elec­

trical ground to eliminate ground loops. Three wide bandpass 

filters were used in tandem to block out uv and IR light. The 

luminescence signal was measured and detected by the mono­

chromator and PMT, respectively. These devices were described 

earlier. Again, the samples were mounted in the same manner 

as described before from the previous experimental setup. A 

LeCroy model 9400A Dual 175 MHz Digital Oscilloscope was used 

to capture the s1gnal trans1ents. To pick up the signals in 

real time, a potentiometer was built for impedance matching. 

The exper1ment consisted of exciting the sample with a 

pulse of light and then recording the luminescence waveform 

in single shot mode. Once the waveform was frozen 1n the 
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oscilloscope, a set of data po~nts from the waveform was 

extracted according to specific de,cay times chosen (i.e. , 0, 

1, 2, 4, 6, 10 and 15 ~s were chosen) from a computer program 

that was written. The set of points was selected 20 t~mes and 

the average was taken for each point. This was done to aver­

age out noise. 



CHAPTER III 

PHOTOLUMINESCENCE AND THERMAL QUENCHING 

SPECTRA 

Introduction 

This chapter will deal with PL spectra taken at 77 K and 

12 K, primarily from samples grown from the melt. Data on 

thermal quenching of the PL spectra will also be presented 

from these mater1als. The differences in the overall PL 

emission between etched and unetched sample are pointed out. 

The data indicate that the 1.4-eV broad emission band is made 

up of at least two overlapping components. From a study of 

the temperature dependence of this emission band, activation 

energies are calculated for the two emission components using 

an Arrhenius plot. The 1.4-eV emission bands are compared for 

samples grown from the melt using the Bridgeman method, and 

by Eagle-Picher's modified vapor phase transport method. 

Finally, a model is proposed to explain the PL and thermal 

quenching results. 

Experimental Results 

Figure 7 shows a typical PL spectrum taken at 77 K from 

CdTe and illustrates the main features of 1nterest. The 

spectrum was obtained from a Mn-doped (79 ppm) sample and 
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Figure 7. PL Spectrum at 77 K from a Mn-Doped 
(79 ppm) CdTe Sample 
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shows the narrow band near 1.58 ev (785 nm) due to free- and 

bound-exciton em1ssion and the broad-em1ss1on band near 1.47 

ev (843 nm). All of the melt grown samples used in this study 

exhibited these general emission character1stics. As stated 
' 

in Chapter I, the energy of the broad emission band is highly 

variable from sample to sample and despite the fact that in 

this sample the band is near 1.47 eV, the usual description 

of 1.4-eV emission band will be used throughout this thesis. 

It is worthwhile to point out that the luminescence 

1ntensities of the 1.58 and 1.4-ev'emission bands varied 

considerably under different conditions. For example, the 

luminescence intensities and shapes of the bands depended 

upon the particular sample used. For most samples, the 1.4-eV 

emission normally showed two emission components whereas only 

one component was seen in some other samples. It is reported 

elsewhere (15), and is generally observed, that as the impu-

rity content 1ncreases, the 1.4-eV emission band becomes 

broader, occasionally showing more than one emission compo-

nent. However, th1s was not the case from the results ob­

tained in this study since it'was found that some pure sam-

ples al'so revealed more than one emission component. As 

another example, 1t was noted when the laser beam was changed 

to a different spot on the sample, both the overall and the 

relat1ve luminescence intensities of the 1.58- and 1.4-eV 

emission bands were affected dramatically. To reduce this 

effect and to ensure as much reproducibility of the PL spec-

tra as possible, all the samples received a "clean-up" etch. 
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After the samples were etched, the relative variab1lity 

between intensities of the emission bands was still present 

but was less noticeable. It was also noted that the lumines­

cence intensity was more variable for the unetched samples 

than for the etched samples. 

The differences in PL spectra between an undoped, etched 

and unetched sample are shown in F1gure 8. For the unetched 

case, it is readily apparent that two emission components are 

seen in the broad-emission band with one component near 1.47 

ev and the other near 1.49 eV. It is noted that most of the 

luminescence intensity is due to the 1.4-eV emission band 

which is more prominent than the 1.58-eV band. For the etched 

case, most of the luminescence intensity is due to the exci­

ton band, and the two components in the broad-emission band 

are seen but are not as apparent as in the unetched case. It 

was also found that the overall intensities actually in­

creased after etching when the intensity scales were compared 

from both spectra. 

In view of the observations noted above, it is clearly 

seen that some sort of relationship exists between the 1.4-eV 

emiss1on band and surface defects caused by mechanical pol­

ishing. This is 1n general support of the suggestion previ­

ously made by Myers gt ~- (13). According to these authors, 

they were able to vary the luminescence intensity by changing 

the method of surface pol1shing. For·example; from the me­

chanical, chemimechanical and hydroplaned polishing tech­

niques employed in their work, the relative intensities of 
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the 1.58-eV and 1.4-eV emission bands as well as the overall 

lum1nescence intensity changed as a function of the surface 

polishing method. Furthermore, they observed that the rela­

tive intensity of the two bands and the overall luminescence 

intensity varied substantially from sample to sample. This 

luminescence behavior is also seen in the present study. As 

pointed out by Zanio (9), and Agrinskaya et al~ (11), the 

intensity of the 1.4-eV emission band is definitely related 

to impurity-dop1ng in CdTe. However, as noted by Myers et al. 

(13), not only is the intensity of this emission band affect­

ed by impurities but is also affected by surface defects. As 

a consequence, the present study does not necessarily de­

clare, as do Myers et gl., that the 1.4-eV emission band is 

directly related to surface defects. It is thought instead 

that the observed variability in the luminescence intensity 

seen from etched to unetched sample, from sample to sample 

and from one spot location of the laser beam to another spot 

location on the same sample may be due, at least in part, to 

competing processes caused by presence of surface-damage 

states. This will be shown later in the chapter. 

It should be mentioned that a study was conducted to 

determine if the strength of the overall luminescence signal 

is affected by the repeated use of the etching solution. It 

was found that the luminescence intensity increased each time 

after the sample was etched in 5-minute intervals, and 

reached a steady intensity value at the fourth interval. That 

is, after 20 minutes the overall emission 1ntensity remained 
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constant. As a result, all of the samples used in this study 

were etched for 20 minutes to get a maximum signal output 

from each sample. 

F1gure 9 shows ~ome PL spectra as a function of tempera­

ture in the 1.4-eV emission reg1on. The presence of the 

overlapping emission components is clearly seen again, with 

one component near 1.47 ev and the other near 1.49 ev. As the 

temperature is ra1sed, an apparent shift in peak maximum is 

observed to occur from higher to lower energies. A possible 

cause of this shift in energy, is the change of the bandgap 

energy of the material. The bandgap energy of CdTe is 1.607 

eV at o K and 1.44 eV at 300 K (19). Thus, the difference in 

energy is 0.167 ev from 0 to 300 K. Since the temperature 

range of the present experiments is only from 70 to 90 K, it 

may be safely presumed that no apprec1able energy shifts due 

to this effect occur in Figure 9 and these can thus be 

ignored. From F1gure 9, it should be noted that although the 

the LO phonon energy in CdTe is 0.02 eV, which is equal to 

the difference 1n energy of the two components (viz., 1.47 ev 

and 1.49 eV), th1s does not mean ~hat the two components are 

phonon replicas of each other since the two signals show 

diff~rent anneal1ng rates. It is this difference in annealing 

rates that causes the apparent shift in energy of the 1.4-eV 

emission band as the temperature is varied. 

The Arrhenius plot shown in Figure 10 illustrates the 

thermal quenching characteristics of the 1.47 and 1.49 ev 

emission components. The two curves resulted from attempts 
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to separate the thermal quenching characteristics of each 

overlapping peak shown in Figure 9 by selecting two different 

wavelengths. Curve A was generated by measuring the intensity 

of each spectrum at 825 nm. This wavelength was chosen so 

that the intensities from the trailing edge of the 1.49-eV 

peak would be sampled more than that of the 1.47-eV peak. In 

the same manner, curve B was generated by measuring the 

intensity at 855 nm. 

The activation energies for thermal quenching were 

obtained using the A~rhenius law (20), namely: 

I(T) =constant x exp(-E/kT). (3.1) 

Here E is the activation energy and k is Boltzmann's con­

stant. Thus, from the straight line portion of the plot, the 

slope can be obta1ned and set equal to -E/k. From Figure 10, 

and using the above equation, an activation energy was calcu­

lated from curve A with a value of 0.11 ev. The two activa­

tion energies of 0.02 and 0.13 ev from curve B were obtained 

in the same fashion. The accuracy of the activation energies 

from the plot are l1mited by experimental errors, as shown by 

the error bars. However, the experiment was repeated many 

times on different samples. The values calculated from these 

other samples were within ± 3 meV of the values just present­

ed, so it is believed that the errors generated are relative­

ly small. The thermal quenching spectra were not analyzed by 

using a deconvolut1on routine due to the fact that a summa­

tion of Gaussians would have had to be fitted using a con-



stant energy bandwidth -- a difficult thing to do since the 

data were taken with a constant wavelength bandwidth. 

As mentioned earlier, the presence of two overlapping 

emission components is seen in most samples whereas in the 

others, only one component is observed. As a result, for 

those specimens which displayed the 1.47 and 1.49 ev compo-

nents, it was found that each one quenched with activat1on 

32 

energies of 0.02 and 0.13 ev for the former peak and 0.11 ev 

for the latter. When only the 1.47 eV component was present, 

it was found to quench with a single activation energy of 
' 

0.13 ev. The 0.02 ev process was absent. It is interesting to 

note that the quenching results of Agrinskaya et gl. (11) 

show such- a process but no mention was made of this through-

out the discussion in that paper. Furthermore, other authors 

seem to ignore this process despite the fact that the asym-

metric shape of the 1.4-eV emission suggests the presence of 

more than one em1ssion component (16,17). 

Discussion 

To further support the argument that the 1.47 and 1.49 

eV em1ssion peaks are not phonon replicas of each other is 

made by the PL spectrum taken at 12 K in Figure 11. This 

figure shows the phonon structure (these peaks could be other 

defect-related components) of the 1.4-eV emission with the 

peaks of interest, labeled by I , I , I , and I which corre-
a b c d 

spond to energies (from Ia to Id) of 1.4975, 1.4760, 1.4565 

and 1.4354 ev. Starting with I , the energy separat1on be-
a 
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tween adJacent peaks is approx1mately 21.5, 19.5 and 21.1 

mev. Although these energies are close to the LO phonon 

energy {21.3 meV) 1n CdTe, the distinct1on between phonon and 

defect-related peaks remains to be determined. This is de­

scribed below. 

An elegant theory was developed by Hopfield (22) to 

describe the relative intensity of the individual peaks shown 

in Figure 11. This theory only applies to localized bound 

states, and is strictly used in the absence of thermal opti-

cal phonons. Thus, since only LO phonon emission is presumed 

(because of the energy separation between each component), 

the relative 1ntensity of each peak is given by 

(3.2) 

where In is the intens1ty of the nth phonon emitted peak, I 0 

1s the intensity of the zero-phonon peak, and N is the aver­

age number of phonons emitted during an electron transition. 

Straightforward applicat1on of Equation (3.2) shows that if 

I is the zero-phonon peak, then the relative intensities .... 

I /I , I /I and I /I do not agree with this equation. If I~ 
b .... 0 .... d .... ~ 

is the zero-phonon peak, then the ratios I 0 /Ib and Ia/Ib do 

agree with Equat1on (3.2) to a large extent. Thus, Ib is the 

zero-phonon peak w1th peaks Ic and Ia as the f1rst (1LO) and 

second (2LO) phonon replicas, respectively. Apparently, peak 

I has no phonon emiss1on and could be cons1dered as the .... 

other defect-related peak. It should be noted that at 12 K, 

the energies of I .... and I 0 are 1.4975 and 1.4760 eV, respec-
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t1vely. At 77 K, these peaks will sh1ft to lower energy as a 

result of the change 1n the bandgap. Most of the samples 

studied revealed the same conclusions, i.e., that peaks I ... 
and Ib are the two defect-related emission components w1th I 0 

and Id. as phonon replicas. 
~ 

As mentioned pr.eviously, the foregoing argument str1ctly 

applies to individual phonon peaks, and it should be noted 

that the ratios Ic/Ib and Id./Ib do not agree exactly with 

Hopfield's relation since there may be underlying emission 

components which would upset the measured ratios. It should 

be noted also that according to Hopfield's theory (22), it 1s 

highly improbable for the recombination of a hole in state k 

and an electron in state k' to occur with the emission of no 

phonons, wh1ch seems to be the case with peak I • However, it ... 
may be possible that the phonon replicas of I and I are 

... b 

strongly overlapping thus giving the apparent emission of no 

phonon lines for peak I . ... 
In Figure 7 was shown a PL spectrum at 77 K from an 

undoped CdTe sample. It was pointed out that the 1.58 and 

1.4-eV emission bands were characteristic of all the melt 

grown samples studied. Samples grown by the mod1fied vapor 

phase transport method were also studied in this work. The 

vapor phase transport method was developed some years ago and 

has been used to improve the crystal growth quality of CdTe. 

However, Eagle-P1cher Research laborator1es modif1ed this 

method to further refine the quality of these crystals. 

Figure 12 shows a PL spectrum at 77 K from an undoped 
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CdTe sample grown by the modif1ed vapor phase transport 

method. It is 1nteresting to note that th1s figure reveals 

the same spectral features as those seen from the PL spectra 

of the melt grown materials. That is, the 1.58- and 1.4-eV 

emission regions are observed in these materials even though 

there is a slight difference 1n the shape of the 1.4-eV 

luminescence band. From F1gure 12, the position of the peak 

maximum of the broad-emission band is near 1.49 eV with an 

overlapping component near 1.47 eV. Unlike most of the melt 

grown samples studied, the broad-emission band showed two 

weak emission components, one on each side of the band. 

Another feature noted in all the vapor phase samples is that 

the overall PL intensity at 77 K was usually weak. The PL 

emission of these samples was also unusual in that the shape 

of the 1.4-eV emiss1on band critically depended on the etch­

ing solution used. In one instance, when a sample was etched 

in the bromine-methanol solution, the 1.4-eV luminescence 

band was absent and the exciton band exhibited two weak 

emiss1on components on its low energy side. There were other 

1nstances where the 1.4-eV luminescence band exh1bited strong 

phonon structure'when the sulphuric ac1d and saturated potas­

sium dichromate solution was used. This was unlike other 

samples etched 1n the sulphuric acid solution where the 1.4-

eV band showed little phonon structure. In spite of this, 

most of the vapor phase samples showed the two overlapping 

emission components in the 1.4-eV band. 

Many thermal quenching studies on the 1.4-eV lumines-
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cence band have been reported 1n the publ1shed l1terature 

where 1t has been suggested that the thermal quench1ng proc­

ess 1s due to the thermal release of trapped holes from a 

hole state to the valence band (9,12). Thermally St1mulated 

Conduct1v1ty (TSC) results clearly support th1s ev1dence. 

From TSC exper1ments (19), a TSC peak 1s observed dur1ng 

thermal quench1ng and 1s due to the thermal release of 

trapped holes. It 1s worth stress1ng that the act1vat1on 

energy obta1ned from TSC measurements 1s 0.13 ev and agrees 

well w1th that observed dur1ng thermal quench1ng. 

It 1s noted that the 0.02 eV act1vat1on energy observed 

dur1ng thermal quench1ng has been 1nterpreted elsewhere 

(8,11,14) as be1ng due to a trans1t1on from a bound state 

below the conduct1on band (or above the valence band) to the 

delocal1zed band. The present study shows that th1s energy 

corresponds to the d1fference 1n energy of the two overlap­

p1ng em1ss1on components seen 1n the 1.4-eV em1ss1on reg1on, 

and when only the 1.47-eV em1ss1on component 1s observed, the 

0.02-eV process 1s absent. Hence, 1f the 0.02 eV process does 

correspond to a trans1t1on from a bound state to a delocal-

1Zed band, then 1t must be character1zed by a very small 

probab1l1ty term 1n order for th1s process to occur at tem­

peratures between 70 and 80 K (th1s w1ll be shown shortly). 

In v1ew of th1s, the 0.02 eV process 1s bel1eved to have the 

character1st1cs of an 1nterlevel trans1t1on. 

The follow1ng model 1s proposed to expla1n the thermal 

quench1ng and PL results, as shown 1n F1gure 13. In th1s 
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model, the luminescence s~gnals are due to transitions of 

free electrons from the conduction band (transitions 1 and 2) 

recombining with holes trapped at two hole states (trans~­

t~ons 3 and 4). These hole states are atE +0.13 ev and 
v 

E +0.11 ev with emission energies of 1.47 and 1.49 ev, re-
v 

spectively. The thermal quenching processes are indicated by 

transitions 5 and 7 for the 1.47 and 1.49 ev emission compo-

nents, and by trans~tion 6 for the interlevel hole process 

which is due to the thermal release of a hole from the 

deeper hole state to the shallower state. It should be men-
-

tioned that TSC is observed during transitions 5 and 7 but no 

TSC is observed during transition 6 (19). The electron level 

below the conduction band is included in the model for charge 

neutrality with transitions 8 and 9 included for complete-

ness. Transition 10 is the generation of free electrons and 

holes by the excitation source. 

In TSC measurements on these samples (19), it was ob-

served that the TSC signal centered near 103 K in the 

unetched sample completely disappeared after the sample was 

etched. This was noted to be suggestive of surface damage 

states due to mechanical polishing with the defects being 

removed after etching. Also, another s~gn of surface-related 

defects was detected when measurements of the growth of the 

103 K peak with illum~nation time for posit~ve and negative 

biases were conducted. Furthermore, it was observed that when 

a negative bias was applied to the illuminated electrode, the 

TSC spectra were always slightly larger than those when the 
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pos1t1ve bias was appl1ed to the 1lluminated electrode (19). 

This was suggestive of electron-related defects. 

As a result of the observations made above from refer-

ence (19), there appears to be some suggestion that the 103 K 

peak is due to electron release from surface defects. From 

Figure 13, an electron state has been incorporated in the 

model to account for all the electron traps. These states are 

due to trapp1ng and detrapping of electrons due to surface-

damage states caused by mechanical polishing. The trap depth 
' 

of this electron state is at E -0.21 ev and was determined 
c 

from trap depth analysis us1ng peak fitting routines. 

The model clearly shows that the traffic of charge of 

the two hole states is reduced by the presence of the elec-

tron traps due to surface-damage states. These traps intro-

duce alternate competing pathways for the elctrons thereby 

decreasing the 1.4-eV luminescence efficiency. When the 

surface-damage states are etched away, the electron traps are 

removed and the 1.4-eV luminescence efficiency increases. 

This was the case shown in Figure 8 where the overall lumi­

nescence intens1ty increased after etching the samples for 

this study. 

Another po1nt worthy of note 1s that the 1nterlevel 

process of 0.02 eV is cons1stent with calculated transition 

probabilit1es (1.e •• frequency factors). For example, a 

transition from a localized level to a delocalized band is 

characterized by a probability per unit time of the form 

(s)x(exp(-E/ksT)), where E is the trap depth, Tis the tem-
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perature, and k is the Boltzmann's constant. In this expres-
s 

sion s is a constant 1nvolving the attempt to escape frequen-

cy and the change 1n entropy assoc1ated with the transition. 

For the localized level to the delocalized band transit1ons, 

sis expected to be of the order of 101 ~-1014 s-1 , (21). 

Thus, s would have to be extremely small for the interlevel 

transition to occur. By assuming a first-order process, it is 

estimated that in the present study s is of the order of 105 -

10 6 s-1 -- 1.e., many orders of magnitude below expected 

values. However, such small preexponent1al factors can be 

characteristic of interlevel, localized transitions wherein 

the freed charge does not enter the delocalized band. In this 

situation, the attempt to escape frequency is modified by a 

factor of p which takes 1nto account the probability of 

finding an empty neighboring level close enough for the 

transition to occur. This probability may be very small and, 

in that case, the resulting preexponential factor (i.e., sp, 

not s) would also be very small. 



CHAPTER IV 

EXCITATION INTENSITY AND TIME-RESOLVED 

SPECTRA 

Introduction 

Exc1tation intensity dependence and time-resolved spec­

troscopy measurements are presented in this chapter. First, 

it is shown that a shift in energy of the 1.4-eV band is seen 

to occur from lower energy to higher energy as the excitation 

power increases. A sublinear power dependence on the 1.4-eV 

band is also observed. Then, it is noted in time-resolved 

measurements that a shift in energy occurs from higher energy 

to lower energy with time after the end of the excitation 

pulse. A time constant is estimated for the 1.47- and 1.49-eV 

emission components from these experiments. Finally, it is 

shown that the above measurements are in support of the model 

proposed in Chapter III. That is, these observat1ons are 

pred1cted based on a set of coupled, first-order, differen­

tial equations that were formulated to simulate the traffic 

of charge between the energy levels shown in the model de­

vised to explain the PL and thermal quenching results. 

Experimental Results and Discussion 

Figure 14 shows PL spectra at 77 K that were obtained by 

43 
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varylng the intensity of the incident laser beam. The powers 

shown in the figure were measured at the window of the cryo­

stat and the sample used was a 400 ppm Mn-doped sample. 

(These and subsequent spectra were recorded with an s-1 PMT 

to improve the spectral sensitivity in the near IR.) As a 

consequence of improving the PMT sensitivity, a new feature 

is apparent in these spectra. The peak maxlmum lS now near 

1.45 eV despite the fact that the previous positions of the 

peak maxima were at 1.47 and 1.49 ev. It should be noted that 

these two emission components are still present on the high 

energy side of the broad-emisslon band. These features were 

observed ln all of the excitation intensity dependence meas­

urements. 

In addition to the new features mentioned above, it 1s 

interesting to note that more emission peaks become visible 

in the 1.4-eV luminescence band at higher excitation powers. 

It is interestlng to'note also that an apparent shift in 

energy of the overall emission band occurs from lower ener­

gies to higher energies as the excitation power is raised. 

This shift takes place from 1.43 eV (865 nm) at 1.3 mW to 

1.45 ev (858 nm) at 156 mw. The overlapping emission compo­

nents and the shlft in energy were characteristic of the 

other excitation intenslty dependence measurements obtained 

from the 79 ppm of Mn and undoped samples. 

It is worth mentioning that the shift in energy lS in 

support of the observations made by Norrls and Barnes, (12), 

from cathodoluminescence (inJection level dependence measure-
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ments) experiments. They noted that as the 1n]ection level 

increased, the result1ng shift in energy may have been caused 

by overlapping peaks. 

The behav1or of the 1.4-eV luminescence intensities as a 

function of excitation power (from here onward, this will be 

denoted as f) from the Mn-doped sample in Figure 14 and an 

undoped sample are shown on the log-log plot in Figure 15. 

These plots were generated by measuring the emission intensi­

ty of the peak maximum for each spectrum as a function of f. 

The graph shows slightly curved plots with a l1near power 

dependence of the 1.4-eV emission band at low f followed by a 

sublinear power dependence at high f. The average slopes at 

low f and high f for each plot are: 1.1 and 0.52 for the Mn­

doped sample, and 1.04 and 0.5 for the undoped sample. Ac­

cording to Taguchi et al. (4) and Feng et gl. (5), a slope of 

value 1 is characteristic of DAP and FB transitions which is 

inconsistent with the slope values just presented. It seems 

however, that these authors only took into account the 

straight line portion of their log-log plots and may have 

1gnored a possible overall curved behavior. 

Other experimental data showed a more pronounced curva­

ture with a linear and sublinear power dependence of the 1.4-

ev emiss1on band at lower f and higher f, respectively. That 

is, the slopes at low f and high f were slightly larger than 

1 and 0.5, respectively. It will be shown 1n the Further 

Discussion section that the slope values calculated above are 

cons1stent with the theoret1cal formulation of the two-hole 
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state system wh1ch descr1bes FB transit1ons. 

From the time-resolved spectroscopy measurements, a 

shift in energy is also observed with time after the end of 

the excitation pulse at 77 K, as shown in Figure 16. In this 

situation, an apparent shift in energy occurs from h1gher 

energies to lower energies with decay time. The shift takes 

place from 1.47 ev (844 nm) at o ~s to 1.44 ev (860 nm) at 15 

~s. From these spectra, the two overlapping emission compo­

nents are difficult to discern since the limunescence signal 

dramatically decreased in 1ntensity as a result of the imped­

ance matching ment1oned 1n Chapter II. Figure 17 illustrates 

time-resolved spectra that were obtained at 14 K with the 

same decay times as those shown from the spectra taken at 77 

K. Here it is clearly seen how each emission component from 

each spectrum behaves as a function of decay time. In partic­

ular, 1t is seen that the intensities of the 1.47- and 1.49-

eV emission bands dominate the overall emission band at 

shorter decay times but become less dominating at longer 

decay times. From these measurements, time constants of about 

4 and 3.5 ~s were estimated for the 1ntensity decay of each 

overlapping emiss1on component (i.e., the 1.47 and 1.49 eV 

peaks). These values were estimated by multiplying the maxi­

mum luminescence intensity of each component by e-~ in Figure 

17. The multiplicat1on factor e-~ used in this simple calcu­

lation 1s due to the s1gnal transients of the luminescence 

which showed a fair exponential decay. Taguch1 et al. (4), 

measured a time constant of 4.5 ~s for the overall peak 
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maximum of the 1.4-eV lum1nescence band from an undoped, p-

type sample. Th1s value of the time constant is close to the 

values just estimated in the present study. Lifetimes of the 

order of microseconds are present in the broad-emission band 

due to the repeated trapping of free electrons and holes by 

the localized states from the delocalized bands. As a result, 
I 

the time constant becomes long as the free carrier lifetime 

increases. 

The shifts in energy just noted above were also present 

in the doped samples. However, since there were weakly over-

lapping emission peaks, the shifts in energy were not as 

apparent as that seen in the undoped material. The vapor 

phase material on the other hand, which also showed little 

phonon structure, did not show an apparent shift. The reason 

for this may be due to the lack of overlapping peaks. 

It should be mentioned that the energy shifts seen from 

the time-resolved measurements obtained in this study are in 

support with the frequency-resolved cathodoluminescence 

measurements made by Norris and Barnes, {12), and with the 

t1me-resolved experiments made by Taguchi et al. (4). Howev-

er, it should be,pointed out that the interpretation of the 

mechanism responsible for luminescence by the latter authors 

differs from that of the present study. 

Further D1scussion 

In order to predict the observations from excitation 

intensity and time-resolved measurements, a set of coupled, 
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first-order, differential equations will be used to describe 

the traffic of charge between the energy levels shown in the 

model of the previous chapter. These equat1ons are: 

dJ\, 
dt = 

dn 
dt = 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Here nc and nv are the free electron and hole concentrations 

(cm- 3 ); n is the trapped electron concentration (cm- 3 ); n 
h:L 

and n are the trapped hole concentrations at the two hole 
h2 

levels (cm- 3 ); A, Ah1 and Ah2 are the trapping transition 

probab1lities (cm- 3 s-1 ); A and A are the electron-hole 
r:t. r2 

recombinat1on trans1t1on probabil1ties (cm- 3 s-1 ); N, N and 
h:L 

Nh 2 are the concentrations (cm- 3 ) of ava1lable electron and 

hole traps; and f is the generation rate (cm- 3 s- 1 ) of free 

electrons and holes due to the intensity of the excitation 

source. 

Two emission components denoted as I 1 and I 2 will be 

used throughout this analysis although more emission peaks 

could exist 1n real1ty. Since the luminescence 1ntens1ties of 

these two peaks are directly proportional to the recombina-
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tJ.on rate, then 

(4.6) 

and 

( 4. 7) 

where for the present study, ! 1 is denoted as the intensity 

of the lower-energy emission component and 1 2 as the higher­

energy component. 

In order to simulate the time-resolved measurements with 

the above equatJ.ons, it was assumed, for simplJ.cJ.ty, that the 

J.llumination occured at low enough temperatures so that the 

thermal release of trapped carrJ.ers could be ignored. This 

corresponded to neglecting transitions 5-7 and 9 from the 

proposed model J.n Figure 13. 

The simulation was done in such a way that free elec-

trons and holes were generated by the excitation source 

according to Eqs. (4.1)-(4.5), with initial concentrations 

equal to zero. These equations were solved numerically by 

using a Runge-Kutta, fourth-order, predictor-corrector method 

where the lumJ.nescence intensities 11 and 1 2 were allowed to 

build up until a steady-state process was reached. At this 

point, f was set equa~ to zero and the luminescence decay of 

11 and 1 2 were monitored as functJ.ons of time. 

The excitation intensity measurements were simulated by 

using th~ same set of equations employed in the above calcu­

lations. However, in these measurements, the steady-state 



values of I and I were monitored for several different 
1 2 

values of f. 

Figure 18 shows some typ1cal results for the following 

set of parameters: A= Ah1 = Ah 2 = 1X10-10 cm3 s-1 ; Ar1 = 

1X10-11 cm 3 s-1 • A = 2.3X10-12 cm3 s-1 ; N = N = 1Xl015 
1 r2 h2 
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cm3 ; Nh1 = 3X1014 cm3 • In part (a) of the figure, f = 1X1018 

cm- 3 s-1 and in part (b), f = o. In part (a) is shown the 

buildup of I 1 and I 2 versus time after the end of the pulsed 

excitation source whereas in part (b) is shown the decay of 

I 1 and I 2 • Due to the differences in intensities, it can be 

seen that I 2 builds up to a larger intensity than I 1 in part 

(a) but then decays with a faster lifetime in part (b). If 

the emission peaks of I 1 and I 2 are strongly overlapping, 

then, in a real experiment, an apparent shift of the overall 

emission band would be observed as a function of time and 

would occur from higher energies to lower energies. Figures 

15 and 16 show this to be true and it has also been observed 

in other experimental studies (4). 

It should be pointed out that the results shown in 

Figure 18 were obtained for the specific set of parameters 

used above. However, it is not necessary that the 1ntensities 

of I 1 and 1 2 actually cross during the decay in order to 

produce a shift in energy of the overall emission band. What 

is important 1s that ! 1 and ! 2 must have different lifetimes. 

It should also be noted that sets of parameters were found 

which did not show a crossing 1n ! 1 and 1 2 • However, almost 

every set of calculations that were performed showed differ-
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ent l1fetimes depending upon the relative s1zes of Nh 1 and 

N , and the corresponding values of the trapping and recom-
h2 

bination probalities. 

In Figure 19 is shown the dependence of I and I on 
1 2 

excitation intensity, f. Here it is demonstrated that if I 1 

and I 2 are at d1fferent wavelengths (energies), then an 

apparent shift in energy of the overall emission band will be 

observed as one component begins to dominate over the other. 

This shift will occur from lower energy to higher energy 

(i.e., I 1 and I 2 ), as f increases. It is not necessary that 

the two lines in Figure 19 cross each other in order to 

predict a shift 1n energy. What 1s required is that the two 

lines must have d1fferent slopes. These results were con-

firmed from Figure 14 and were also observed in other experi-

mental work (12,14). As pointed out above, different behavior 

can be obtained for a different set of parameters. For in-

stance, the inset to Figure 19 shows that situations in which 

the ratio of I and I remains constant can be obtained over 
1 2 

a range of f. On the other hand, different ranges of f can be 

obta1ned in wh1ch the ratio of I and I does not remain 
1 2 

constant. Thus, these calculations illustrate that the model 

is capable of producing the experimental behavior seen in 

practice. 

It should be ment1oned that the values of the parameters 

used in the above calculation are believed to be real1stic, 

but are not meant to be ind1cative of CdTe. By slightly 

chang1ng the relative concentrations of available states 
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(i.e., by factors of 2 or 3), different behavior from the 

values of I and I were noted. 
~ 2 

The following theoretical formulation will be presented 

in order to explain the linear to sublinear power dependence 

of the 1.4-eV luminescence intensity data shown in Figure 15. 

That is, for FB transitions the slope changes from n = 1 to n 

< 1 as f increases. First, by assuming only one component, 

Equations (4.1) to (4.5) become, 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(Note that these equations ignore exciton formation.) At 

equilibrium, all the d~'s = 0, thus 

(4.12) 

and 

(4.13) 

Since I = ncnhAr, then I = f and a linear f dependence is 

obta~ned. 

However, ~n a real system the exc1ton formation has to be 

considered. The equations are modified as 

(4.14) 
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and 

(4.15) 

where Aa 1s the probability of free exc1ton formation. 

(Note that it is likely that Aa << Ar.) Charge neutrality 

for semi-pure materials (this may not be true for highly 1m­

pure materials since n + nc = ~ + nh -- but all of the 

materials used in this work are semi-insulating) impies that 

(4.16) 

At equilibrium 

(4.17) 

Recall that 

(4.18) 

or 

(4.19) 

S1nce Nh, Ah and Ar are all constants of the system then nh 

is constant, independent of f, at equilibrium. 

At low f, we may have ncnhAr >> n~Ae (recall Ar >> Ae) 

so that f = ncnhAr, and consequently, f « n0 • Thus, 

I = f (4.20) 

as before. 
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At high f, as nc increases, ~tis possible to have n~Ae 

(4.21) 

Thus 

I n n A oc fl/2 
= c h h (4.22) 

since nhAh is a constant (i.e., independent of f). Hence, 

the above discussion shows that the intensity goes from 

I « f at low f to I rx tl 12 at high f which is in agreement 

with the experimental results. 

The above rate equation formulation was done for only 

one component. For two components, the analysis would entail 

using Equations (4.1) to (4.5) but the results would be the 

same. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Photoluminescence thermal quenching, excitation intensi­

ty dependence and time-resolved spectroscopy measurements 

were used in this study to characterize the localized defect 

states in CdTe. The data obtained from these experimental 

techniques provided much information on the radiative recom­

bination mechanisms respons1ble for the 1.4-eV emission. This 

information suggested the need of a model to explain the 

experimental evidence obtained in the present work (and by 

other authors) which included the existence of overlapping 

emission components in the 1.4-eV emission region. 

The two-hole-state model was shown to explain the PL and 

thermal quenching results. From this model (figure 13), it 

was postulated that trans1tons 5 and 7 were due to the ther­

mal release of trapped holes to the valence band with activa­

tion energ1es of 0.13 and 0.11 ev, respectively • The 1nter­

level transit1on (transition 6) was due to the thermal re­

lease of a trapped hole from the deeper hole state to the 

shallower state w1th an activation energy of 0.02 eV. As a 

result of hole trapping (trans1tions 3 and 5), the 1.47 and 

1.49 ev emission components (i.e. transitions 1 and 2) were 

made poss1ble via electron-hole recombinat1on. It was noted 
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from reference (19) that TSC was observed during transit1ons 

5 and 7 but no TSC was observed for the interlevel transiton. 

From excitation intensity dependence studies, 1t was 

observed that a shift in energy of the 1.4-eV emission band 

occured from lower energies to higher energies as the excita­

tion power increased. It was noted that the model could not 

account for the shift 1n energy if only one hole state was 

present. This was also observed to be the case in cathodolu­

m1nescence studies performed by Norris and Barnes (12). 

The work of Taguchi et al. seems to be the only experi­

mental time-resolved spectroscopy study on the 1.4-eV defect 

band reported in the literature. A shift in the position of 

the band from higher energy to lower energy was seen by these 

authors as a function of time after the end of the excitation 

pulse but no correlation with overlapping peaks was made. 

Based on the model proposed here, it is inferred that more 

than one emission component was present from the samples used 

in that study. 

By solving a set of coupled, first-order, differential 

equations descr1bing the flow of charge 1n the model of 

Figure 13, shifts in energy of the overall peak maximum were 

predicted as a function of excitation intensity and time 

after the cessation of the excitation pulse. These predic­

tions are poss1ble only if overlapp1ng emiss1on components 

are present 1n the defect band. 

It is important to point out that the two-hole-state 

model presented 1n this study should not be strictly consid-



63 

ered as the only model. In real crystals, three or more hole 

states may be present thus compl1cat1ng the mechanism of the 

system. Whatever the case may be, it should be noted that the 

simple model can be adjusted in a straightforward manner to 

include more than two hole states. 

Finally, it was shown that surface damage int,roduces 

defect states which reduce the overall PL emission. This was 

easily handled in the model by incorporating trapped elec­

tron states for which free holes could recombine nonradia­

tively. From TSC measurements one such electr9n state was 

observed with a trap depth of 0.21 eV below the conduction 

band (19). These nonradiative pathways are believed to 

present alternative recombination possibilities for the 

holes. In the presence of such centers a weaker luminescence 

signal would occur. This is suspected to be the cause of the 

variability in the emission as a result of surface treat­

ments, as noted in this study and as observed by Myers et al. 

(13). 

A maJor thrust has been directed in determining the 

defect nature of the 1.4-eV luminescence band in the past few 

years. However, to this date, no definite agreement has been 

reached as to the defect origin of this band. Perhaps py 

using the ideas from the model presented in this work, it may 

help provide further 1nsight as to the defect responsible for 

the 1.4-eV emiss1on in future work. Nevertheless, the model 

1s capable of explaining most of the results reported for 

th1s emission in CdTe when free-electron to trapped-hole 
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recombination transitions are taken into account with hole 

states a few hundreths of an electron volt above the valence 

band. It is stressed that the existence of overlapping emis­

sion peaks is a crucial factor in this description and that 

the presence of competing, nonradiative pathways (due to 

surface damage) can result in dramatic changes in the 1.4-eV 

luminescence from sample to sample, and as a function of 

surface treatment. 
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